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Abstract 
Context  The role of landscape diversity and struc-
ture is crucial for maintaining biodiversity. Both land-
scape diversity and structure have often been analysed 
on one thematic layer, focusing on Shannon diversity. 
The application of compositional diversity, however, 
has received little attention yet.
Objectives  Our main goal was to introduce a novel 
framework to assess both landscape compositional 
diversity and structure in one coherent framework. 

Moreover, we intended to demonstrate the signifi-
cance of the use of a neutral model for landscape 
assessments.
Methods  Both entire Hungary and nine of its 
regions were used as study areas. Juhász-Nagy’s 
information theory-based functions, i.e. “composi-
tional diversity” and “associatum”, were introduced 
and applied in landscape context. Potential and actual 
landscape characteristics were compared by analysing 
a probabilistic representation of potential natural veg-
etation (multiple PNV, MPNV) and actual vegetation 
(AV), treating MPNV as a neutral model.
Results  A significant difference was found between 
the MPNV- and AV-based, maximal compositional 
diversity estimates. MPNV-based maximal com-
positional diversity was higher and the maximum 
appeared at a finer spatial scale. The differences were 
more prominent in human-modified regions. Associa-
tum implied the spatial aggregation of both MPNV 
and AV. Fragmentation of AV was indicated by larger 
units carrying maximal compositional diversity and 
maximal associatum values.
Conclusions  Applying the multiscale Juhász-
Nagy’s functions to landscape composition allowed 
more precise characterization of the landscape state 
than traditional Shannon diversity. Our results under-
line, that increasingly transformed landscapes host 
decreasing complexity of vegetation type combina-
tions and increasing grain that carries the richest 
information on landscape vegetation patterns.
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Introduction

Quantifying landscape diversity has fascinated scien-
tists for several decades (Romme 1982; Ricotta et al. 
2000; Carranza et  al. 2007). Landscape diversity 
encompasses a range of phenomena; one of the most 
often considered aspects is the diversity of land cover 
types (Carranza et al. 2007) or habitats (e.g. Romme 
1982; Ricotta et  al. 2000). However, various ways 
of quantifying landscape diversity lead inherently to 
different results (e.g. Nagendra 2002; Şentürk and 
Özkan 2017). The various approaches may also dif-
fer in that how effectively they characterize the land-
scapes (e.g. Khare et al. 2019).

An approach to quantifying landscape diversity 
is applying indices on the proportion of separate 
land cover types at a single spatial resolution. This 
approach to landscape diversity can be calculated 
for either small regions (alpha-diversity, e.g. Liu 
et al. 2014; Kratschmer et al. 2019) or a large, com-
plete study extent (gamma-diversity, e.g. Dušek and 
Popelková 2017). However, if characterizing the vari-
ation of land cover types at a single spatial scale, i.e. 
calculating either alpha-diversity or gamma-diversity, 
the spatial configuration, which is a crucial compo-
nent of diversity, is ignored (Supplementary Material 
S1; Walz 2011; Dušek and Popelková 2012). A solu-
tion is provided by the third type of diversity termed 
beta-diversity, which reflects the variation between 
spatial units (Whittaker 1960), and thus it character-
izes the spatial configuration of the study area. A pos-
sible approach to capture beta-diversity is calculating 
alpha-diversity indices based on individual land cover 
types but at multiple scales (e.g. Shannon diversity 
index, SHDI – Reynolds et al. 2018; Gao et al. 2021; 
Barbaro et al. 2022; Simpson index – Schindler et al. 
2013, Rao index  –  Díaz-Varela et  al. 2016). This 
approach to beta-diversity has become widespread in 
landscape ecology thanks to studies that drew atten-
tion to the importance of scale-dependent analy-
ses (e.g. Wu et  al. 2002; Jackson and Fahrig 2015). 
Another opportunity is using the formulae of alpha-
diversity indices but calculating them based on the 

proportion of land cover type combinations. Though 
this approach is rarely applied, e.g. Ricotta and Car-
ranza (2013) calculated the Rao index for land cover 
type combinations. There are further possibilities of 
quantifying beta-diversity that could be adapted from 
the field of community ecology.

In general, the measurement of diversity is analo-
gous in community and landscape ecology (Peters 
and Goslee 2001). Thus, diversity indices of commu-
nity ecology can be applied in landscape ecology if 
substituting “species” for “land cover type” (see e.g. 
Romme 1982). In community ecology, the diversity 
indices measuring directly beta-diversity (e.g. Jac-
card index, Sorensen index, Juhász-Nagy’s compo-
sitional diversity function etc.) are fundamental as 
they provide deeper insight into the spatial structure 
of communities (Bartha et  al. 2011; Ricotta 2017). 
These diversity indices present definitely an opportu-
nity for landscape ecology. In the current study, we 
show a case study for applying a diversity measure-
ment approach from community ecology by adapting 
Juhász-Nagy’s functions to landscape context.

Juhász-Nagy’s information theory based frame-
work (hereinafter: “Juhász-Nagy’s framework”) was 
originally developed for quantifying the diversity and 
structure of communities (Juhász-Nagy 1976, 1984, 
1993; Juhász-Nagy and Podani 1983; Podani et  al. 
1993). The framework was developed to be able to 
(1) take gradients into account, and (2) handle mul-
tiscale data. In the first place, it contains a function 
termed compositional diversity (CD). CD measures 
the diversity of species combinations typically based 
on the observed patterns. The more species combi-
nation occur and the more even they are distributed 
the higher the CD value is reached. Furthermore, 
the framework coherently includes another function, 
termed associatum (AS) offering insight into the spa-
tial structure (Bartha et  al. 1998). AS calculates the 
difference between the expected (assuming independ-
ence) and the observed CD values. The value of AS 
is low in the case of random pattern and the more 
aggregated the pattern the higher the value it takes.

Both CD and AS should be calculated at multiple 
spatial scales and analysed as the function of the scale 
(Juhász-Nagy and Podani 1983; Podani et  al. 1993). 
Their response to the changing scale has been identi-
fied as indicators of the spatial organization of plant 
communities (see Bartha et  al. 1998). Furthermore, 
these functions help capture the spatial scale holding 
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the most information by identifying the unit size cor-
responding to the maxima of the functions (ACD, 
AAS). These unit sizes are known to be characteris-
tic of the plant community types (Bartha et al. 1995; 
Campetella et  al. 2004), also termed characteristic 
areas (Podani et  al. 1993). They reflect the status of 
the plant community regarding naturalness, succes-
sion and further community processes (Bartha et  al. 
1995, 2004; Virágh et  al. 2008). A graphical rep-
resentation termed coenostate space (Bartha et  al. 
1998) enables the joint examination of the maxima 
and the characteristic areas. Visual examination of 
the coenostate space also provides insights into com-
munity patterns (Campetella et al. 2004; Virágh et al. 
2008). Thus, the application of the functions presents 
an opportunity for landscape-scale assessments.

Landscape diversity is typically assessed at actual 
conditions (hereinafter: “actual diversity”; e.g. 
Romme 1982; Burnett et  al. 1998). However, the 
actual habitat diversity of a specific landscape may 
be misleading without a neutral model to compare 
to. For instance, a potentially less diverse landscape 
could be thought being in a bad state of naturalness 
due to its low actual diversity value, even though it 
is near to its potential. The potential diversity calcu-
lated from the potential landscape composition (here-
inafter: “potential diversity”) can serve as a neutral 
model to compare actual diversity to. One notable 
representation of potential landscape cover is poten-
tial natural vegetation (PNV, Tüxen 1956). PNV 
embodies vegetation that could persist at a given site 
and date, under certain environmental conditions, 
without ongoing human management (Tüxen 1956; 
Somodi et al. 2021). Hence, PNV takes into account 
the abiotic conditions of landscapes, including those 
that emerged as a result of human activity (e.g. diver-
sion of river flow by dams), but excludes active ongo-
ing human management of the vegetation itself (e.g. 
livestock grazing). Although, the possibility of PNV 
to serve as a neutral model has been voiced (Ricotta 
et al. 2002; Somodi et al. 2021), only a few applica-
tions exist (Lenz and Stary 1995; Ricotta et al. 2000). 
Moreover, usage of the multiple potential natural 
vegetation (MPNV; Somodi et  al. 2012) concept as 
a neutral model can be even more beneficial. In this 
framework, the full vegetation potential of the land-
scapes is estimated in a probabilistic context (Somodi 
et  al. 2012; e.g. Somodi et  al. 2017; Fischer et  al. 
2019).

In our study, we aimed at advancing the assess-
ment of landscape diversity on three fronts:

(1)	 Introducing Juhász-Nagy’s framework at the 
landscape scale to assess landscape compo-
sitional diversity and landscape structure in a 
coherent framework.

(2)	 Identifying the scale holding the most informa-
tion to support the choice of scale for computa-
tion-intensive analyses not allowing multiscale 
assessment.

(3)	 Evaluating the actual landscape diversity and 
structure of Hungary against a neutral model rep-
resented by (M)PNV.

Materials and methods

Study sites

We examined the diversity and the structure of both 
the entire Hungary and nine smaller regions within 
the country (Fig. 1, Table 1.) delineated based on the 
vegetation-based landscape regions of Hungary (Mol-
nár et al. 2008).

We intentionally selected regions with contrasting 
topography and human-induced transformation state 
to facilitate generalization of our findings and detec-
tion of the interrelationships between topography, 
transformation and diversity. We had to consider the 
shape of the polygons as well. The closer the shape 
of the region is to a full circle, the higher sample 
size can be achieved, when enlarging spatial units. 
We applied the same methodology to all of the 9 + 1 
study sites.

Data

Datasets of both actual and potential vegetation are 
available for Hungary, in a hexagonal grid holding 
714.07 m diameter cells (area: 35 ha). In both cases, 
we considered the same, in total 39 (semi)natural 
vegetation types (Bölöni et  al. 2011; Supplementary 
Material S2). One hexagon can host multiple vegeta-
tion types in both the actual and the potential data.

Actual vegetation data were obtained from the 
Hungarian Actual Habitat Database (MÉTA, Mol-
nár et al. 2007; Horváth et al. 2008) in the presence/
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Fig. 1   Study sites: Hungary and nine of its regions. Subplot 
a  shows the position of Hungary in Europe, and b  shows the 
topography of the county. Subplot c  shows the nine regions 
used as study sites delineated based on the vegetation-based 

landscape regions of Hungary (Molnár et  al. 2008). Larger 
regions encompass all smaller regions coloured according to 
the larger region’s legend

Table 1   Basic characteristics of the study sites

The regions are covered by the vegetation data in a hexagonal grid holding 35 ha area cells. They are listed in order of decreasing 
percentage of naturalness that was calculated based on the number of hexagons holding any (semi)natural vegetation compared to the 
number of hexagons of the region

Region Area 
(km2)

Number of 
hexagonal grid 
cells

Percentage of hexagonal 
grid cells holding (semi)
natural vegetation types 
(%)

State of natural-
ness

Topogra-
phy

Relative size 
of the region

Bakony 1,638.35 4681 73.27 (Semi)natural Mountain Small
Őrség 442.40 1264 59.73 (Semi)natural Hills Small
Southern Bükk 1,022.35 2921 56.18 (Semi)natural Foothills Small
Northern Medium Moun-

tains
11,999.40 34,284 44.47 (Semi)natural Mountain Medium

Hungary 93,734.55 267,813 32.83 Various Various Large
Hungarian Great Plain 51,514.40 147,184 28.47 Transformed Lowland Medium
External Somogy 2,953.65 8439 25.37 Transformed Hills Small
Körös-Maros Interfluve 4,859.75 13,885 25.28 Transformed Lowland Small
Mezőföld & Velence Hills 4,724.30 13,498 22.71 Transformed Various Small
Baranya Hills 1,157.80 3308 16.87 Transformed Hills Small
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absence form. The multiple potential natural vegeta-
tion (MPNV) predictions obtained by Somodi et  al. 
(2017) and by updated model runs of the same frame-
work with additional data as it has become available 
served as potential vegetation data. These predictions 
are estimations of the potential survival capability 
of the examined vegetation types for each hexagonal 
cell. They were produced by gradient boosting mod-
els trained on actual vegetation data and correspond-
ing environmental variables. We binarised the raw 
probability values since Juhász-Nagy’s functions need 
binary input data (Juhász-Nagy and Podani 1983). A 
specific binarization threshold, i.e. the mean of the 
predicted values in the known absence locations, was 
used that was found to enhance direct comparability 
across vegetation types (Somodi et al. 2017; Konrád 
et al. 2022).

Application of Juhász‑Nagy’s framework to 
landscape scale

Juhász-Nagy’s information theory-based functions 
(Fig. 2; Juhász-Nagy and Podani 1983; Podani et al. 
1993) were applied to analyse the diversity and 
structure of the studied regions. Landscape compo-
sitional diversity was measured using the compo-
sitional diversity (CD) function. CD characterizes 
the diversity of observed land cover type combina-
tions formed by land cover types that co-occur in the 
same spatial unit. It builds on a similar core equation 
(Eq. 1) as the Shannon diversity index (Shannon and 
Weaver 1949; Eq. 2), thus it also calculates entropy. 
The core difference is that CD is calculated based on 
the probability of landscape units holding a specific 
land cover type combination (Supplementary Mate-
rial S1). Thus, CD measures the compositional varia-
tion of types between spatial units (beta-diversity), as 
opposed to the diversity of types (alpha-diversity and 
gamma-diversity) traditionally measured using Shan-
non diversity. In the current study, land cover types 
were represented by vegetation types, thus vegetation 
type combinations were analysed. Thus, hereinafter 
we present details using terminology corresponding 
to vegetation type data.

(1)CDobserved = −
∑

pklog2pk

In Eq. 1 symbol pk means the observed probabil-
ity of the k th vegetation type combination, i.e. the 
ratio of spatial units holding the k th vegetation type 
combination and the number of all spatial units. 
Calculating CD at different spatial resolutions and 
plotting it against spatial scale usually shows a uni-
modal curve. The range of CD is [0,N] , where N is 
the number of vegetation types. The higher its value 
the greater the landscape diversity is. Thus, the 
minima are reached, when only one combination, 
i.e. either a single vegetation type or all vegetation 
types, is present in all spatial units. The maximum 
is reached, when all the possible, i.e. 2N ( N = num-
ber of vegetation types) combinations are present 
with equal frequencies. However, this is rather a 
theoretical case.

To demonstrate and evaluate the difference 
between the Shannon diversity index and CD, 
the former was also calculated scale-dependently 
(Shannon and Weaver 1949; Eq.  2, Supplementary 
Material S1).

In Eq. 2 symbol pj means the proportion the j th 
vegetation type among all the vegetation types.

Juhász-Nagy offered another function within this 
coherent framework (Fig. 2b; Juhász-Nagy 1984) to 
characterize the spatial structure of species occur-
rence, termed associatum (AS), which is adaptable 
to characterize land cover patterns. AS is the differ-
ence between the expected and observed diversity 
of vegetation type combinations. Thus, AS meas-
ures the overall spatial dependence of vegetation 
types within the landscape (Eq. 3).

 where

 where pk is the expected probability of the k th com-
bination of the all 2N possible combinations,  where 
N is the number of vegetation types. The expected 
probability of the k th combination can be calculated 
assuming independence and thus as the product of 
the probabilities ( pP ) of vegetation types present (P) 

(2)H = −
∑

pjlog2pj

(3)AS = CDexpected − CDobserved,

(4)CDexpected = −

2N
∑

k=1

pklog2pk,
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Fig. 2   Conceptual 
framework of the study. 
a Flowchart of the applied 
methods. Note, Shannon 
diversity (not shown in 
the figure) was calculated 
at the same resolutions as 
Juhász-Nagy’s functions. 
MPNV: multiple potential 
natural vegetation; AV: 
actual vegetation; CD: com-
positional diversity; AS: 
associatum. b Calculation 
of Juhász-Nagy’s func-
tions, i.e. the compositional 
diversity (CDobserved) and 
the associatum (AS) based 
on a sample landscape data 
of two vegetation types (A, 
B). p: probability, i.e. the 
ratio of spatial units holding 
a given vegetation type or 
vegetation type combina-
tion and the number of all 
spatial units. CDexpected: 
expected compositional 
diversity with the assump-
tion of independence. It can 
be calculated similarly to 
CDobserved, however, inner 
cells are resulted by multi-
plying the marginals with 
each other
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and the “1 – probabilities” ( 1 − pQ ) of the vegetation 
types absent (Q) in the k th combination (Eq. 5):

Equations  4–5 provide a didactic approach of 
calculating CDexpected , however, this is not an effec-
tive way. For this reason Eq.  6 is used, which is 
equivalent to the approach of Eqs. 4–5 (Supplemen-
tary Material S3) and provides a much simpler cal-
culation way:

In Eq.  6 symbol pi means the proportion of the 
spatial units, in which the i th vegetation type is 
present.

If AS is zero, i.e. the expected and the observed 
diversity are equal, a random pattern is implied, 
where vegetation types occur independently from one 
another. Typically, AS also shows a curve with one 
maximum if plotted against increasing spatial unit 
size (e.g. Podani et al. 1993).

Procedure of spatial scaling

As the main goal of the current study was the explo-
ration of landscape diversity and structure, we aimed 
at maximizing the sample size in each step of spatial 
scaling (Podani et al. 1993). Hereinafter, we term CD 
and AS calculated based on potential or actual veg-
etation as “potential CD”, “actual CD”, “potential 
AS”, and “actual AS”, respectively. The same applies 
to the maxima of the functions and to the characteris-
tic areas.

Initially, we calculated Juhász-Nagy’s functions 
(and also the Shannon diversity index) based on the 
binarized data of vegetation types available in all of 
the hexagons separately for both potential and actual 
vegetation (Fig. 2a). Then, these indices were calcu-
lated at a series of spatial scales at least until reaching 
the maximum value of the functions per study area.

To represent coarser scales, iteratively and radially 
enlarged rosettes were used as spatial units (Fig. 3). 
At each step, the rosette gained a new row of hexa-
gons around the spatial unit of the previous step. Pre-
liminary results suggested that the introduction of an 

(5)pk =
∏

P�k

pP ∗
∏

Q∉k

(

1 − pQ
)

(6)

CDexpected = −

N
∑

i=1

(

pilog2pi +
(

1 − pi
)

log2
(

1 − pi
))

extra step between the 7- and 19-hexagon rosettes 
is needed to achieve finer resolution near the begin-
ning of the sequence of spatial unit sizes. Therefore, 
a 13-hexagon rosette was additionally introduced 
that somewhat differed from the other rosettes in 
its shape, but represented medium size between the 
7- and 19-hexagon rosettes. Data were assigned to 
rosettes in a moving window scheme (Fig. 4, Supple-
mentary Material S4; e.g. Riitters et  al. 1997; Luck 
and Wu 2002). The presence of a vegetation type was 
assigned to a rosette if at least one of the hexagons 
belonging to the rosette contained the vegetation type. 
Rosettes spanning beyond the area of the given region 
were excluded from analyses. Thus, the sample size, 
i.e. the number of rosettes, decreased in each step.

After calculating the actual and the potential CD 
and AS values at different spatial scales, they were 
plotted as a function of the spatial scale for each 
region. CDmax, ASmax and the characteristic areas 
(ACD, AAS), i.e. the area of the rosette in hectare that 
produced the maxima, were identified. The coenostate 
space (Bartha et  al. 1998) was also presented by 

Shape

M = 1 + 6 ∗ ∑ i
m

i=0

Number of

hexagons

1

7

13

19

37

61

Aggregation 

step

0

1

1.5*

2

3

4

m

...

Area (km2)

0.35

2.45

4.55

6.65

12.95

21.35

A = 0.35   M∗

Fig. 3   Main properties of the 35-ha-hexagon and rosettes used 
as spatial units for calculation of compositional diversity (CD) 
and associatum (AS). In the aggregation steps, representing 
the series of increasing sampling units, we radially enlarged 
rosettes yielding units consisting of 7, 19, 37 etc. hexagons. * 
is an exception from the calculation of the number of hexagons 
given at the bottom of the plot
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plotting CDmax against ASmax and ACD against AAS. 
Paired samples sign test (Dixon and Mood 1946) was 
applied to the difference between potential and actual 
CDmax, ASmax, ACD and AAS. In order to avoid inter-
dependence of samples, i.e. overlapping regions, only 
data of small regions (see Table 1) were used when 
performing statistical tests.

All analyses were done in the R statistical environ-
ment (R Core Team 2020) using the “sf” (Pebesma 
2018) package. A separate package applying the 
framework to the landscape scale (“LandComp”) was 
developed to adjust the framework to typical land-
scape scale input data and assure smooth applica-
tion. The new package made use of code parts of the 
package developed for community analysis (Tsakalos 

Fig. 4   Scheme of spatial scaling by the moving window 
design. Spatial units, i.e. hexagon and rosettes of different 
sizes, are shown in a small study area for demonstration. This 
demonstrative study area is marked with a black boundary for 
each scaling step shown. Note, the spatial units overlap start-
ing from the 7-cell rosette in the aggregated data. Thus, only 
the central hexagon of the spatial units is coloured according 
to the presence/absence data. Aggregation by any presence 
(technically i.e. aggregation by maximum) should be applied 

within the window (spatial unit with thick red border). Thus, 
aggregated data of an enlarged unit, i.e. rosette was 1 if the 
vegetation type was present in any of the hexagons covered by 
the window. The aggregated data was assigned to the rosette 
when data for all hexagons covered by the window is available. 
Otherwise, a not available (abbreviated as “NA”) value was 
assigned to the enlarged unit. The red, dashed arrow indicates 
the movement of the window between two steps
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et al. 2022). A coordinate reference system optimized 
to Hungary, i.e. the Hungarian National Projection 
(HD72/EOV; EPSG: 23700), was used throughout the 
study.

Results

Both CD and Shannon diversity appeared to be scale-
dependent in our analysis. Shannon diversity fol-
lowed a monotonous increasing trend with actual and 
potential diversity nearing each other towards coarser 
scales (Supplementary Material S5). On the contrary, 
the absolute maxima of the CD were clearly discern-
ible for the majority of the regions (Fig.  5, Supple-
mentary Material S6, S7).

In the case of a few regions (Bakony, Körös-Maros 
Interfluve, Southern Bükk), potential CD showed a 
decreasing trend, which points to the potential ACD 
being possibly smaller than the size of the hexago-
nal unit (i.e. <35  ha). Thus, in these three cases, it 
is possible that the potential CDmax values were 
underestimated.

A significant difference was found between 
potential and actual CDmax (paired samples sign 
test, p < 0.05). In all regions, the potential CDmax 
definitely exceeded the actual CDmax values. How-
ever, the difference between the potential and actual 

CDmax was remarkably smaller in the case of (semi)
natural regions (e.g. Bakony, Őrség, Southern 
Bükk) compared to that of transformed ones (e.g. 
Baranya Hills, External Somogy, Körös-Maros 
Interfluve, Mezőföld & Velence hills; Fig.  6). Dif-
ference between potential and actual diversity was 
also reflected by Shannon diversity index, higher 
potential diversity was found in the case of all study 
sites (Supplementary Material S5).

The difference between the actual and poten-
tial ASmax was remarkable in the vast majority of 
the regions (Fig.  5, Supplementary Material S6, 
S7). However, significant difference was not found 
(p > 0.05) between potential and actual ASmax. In 
the majority of the regions (e.g. Bakony, Baranya 
Hills, External Somogy, Hungarian Great Plain, 
North Hungarian Mountains, Őrség, Southern 
Bükk), the potential ASmax remarkably exceeded the 
actual one. However, in the minority of the regions 
(Hungary, Körös-Maros Interfluve, Mezőföld & 
Velence Hills) the opposite trend was found.

An evident trend was also found regarding the 
characteristic areas (Fig.  5, Supplementary Mate-
rial S6, S7). A significant (p < 0.05) difference was 
found between potential and actual ACD and AAS, as 
well. In the case of all regions and both indices, the 
potential characteristic areas were smaller than the 
actual ones.

Fig. 5   Values of Juhász-Nagy’s information theory functions along an increasing scale for Hungary. Dashed lines link the CDmax 
and ASmax with the respective spatial unit sizes, i.e., ACD and AAS. For plots of other regions see Supplementary Material S7
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The difference between the potential and actual 
landscape state was reflected also by coenostate 
spaces (Fig.  6, Supplementary Material S8). Fol-
lowing Bartha et  al.’s (1998) interpretation guide-
lines, small or moderate spatial dependence was 
found for a few of the smaller regions (e.g. Bara-
nya hills, Körös-Maros Interfluve) and a more pro-
nounced spatial dependence was revealed for e.g. 
Hungary (Fig. 6a). The potential and actual charac-
teristic areas were sharply separated (Fig. 6b).

Discussion

Traditional landscape measures and Juhász‑Nagy’s 
approach

Quantification of diversity has been carried out in 
landscape ecology analogously to community ecol-
ogy (Peters and Goslee 2001; e.g. Shannon diversity 
index  –  Reynolds et  al. 2018; Barbaro et  al. 2022; 
Simpson diversity index  –  Schindler et  al. 2013; 
Şentürk and Özkan 2017; Rao index  –  Ricotta and 
Carranza 2013; Şentürk and Özkan 2017). In commu-
nity ecology, Whittaker (1960) recognized different 
approaches of diversity, i.e. alpha, beta & gamma that 

characterize the communities from different aspects. 
Though this terminology has not become widespread 
in the field of landscape ecology yet, these types of 
diversities have been measured in landscape ecology, 
too. Alpha- (e.g. Liu et al. 2014; Şentürk and Özkan 
2017) and gamma- (e.g. Dušek and Popelková 2017) 
diversity relying on the land cover types characterize 
the local and regional landscape variation encoun-
tered. These types of diversity are typically measured 
using diversity indices developed for the measure-
ment of alpha-diversity in community ecology (e.g. 
Shannon diversity index, Simpson diversity index 
etc.).

However, beta-diversity (e.g. Ricotta and Car-
ranza 2013; Barbaro et al. 2022) has the potential to 
be more sensitive to landscape configuration. Juhász-
Nagy’s framework provides the possibility to identify 
differences in landscape diversity even in the case of 
identical land cover types and evenness (Supplemen-
tary Material S1). The CD offers a measure that is 
sensitive to the co-occurrence of types and also iden-
tifies the scale holding the most information regard-
ing beta-diversity (Juhász-Nagy and Podani 1983; 
Virágh et al. 2008). Nonetheless, other beta-diversity 
measures used in community ecology (e.g. Bray–Cur-
tis dissimilarity) could be also used analogously in 

Fig. 6   Coenostate spaces sensu Bartha et  al. (1998). In sub-
figure a maximal values of Juhász-Nagy’s information theory 
functions, i.e. compositional diversity (CD) and associatum 
(AS) are plotted against each other. In subfigure b  the unit 
sizes corresponding to maxima of the functions, i.e. charac-
teristic areas are plotted against each other. Grey lines link the 

potential (red) and actual (blue) landscape state of the regions. 
The more natural the actual landscape state of a region is, the 
darker its symbol colour is. Symbols reflect the topography 
of the region. For the position of the exact regions in the coe-
nostate space see Supplementary Material S6 and S8. (Colour 
figure online)
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landscape ecology. Additionally, the Boltzmann 
entropy also enables the quantification of composi-
tional and configurational heterogeneity in theory 
(Cushman 2018). However, there are intense debates 
about this approach yet (Stepinski 2022; Cushman 
2023), thus further investigations are needed regard-
ing its application.

Studies using traditional landscape diversity indi-
ces consequently show increasing landscape diversity 
by increasing heterogeneity of abiotic conditions (e.g. 
Burnett et  al. 1998; Jačková and Romportl 2008). 
Similarly, high CDmax values were found in moun-
tainous regions with heterogeneous topography (e.g. 
Northern Medium Mountains, Bakony). However, the 
effect of human-induced landscape alteration is less 
clear when applying traditional landscape diversity 
indices. For instance, an increase in diversity is also 
reported as a result of fragmentation (e.g. Malaviya 
et al. 2010). In contrast, Cabezas et al. (2008) found a 
decrease in the actual landscape diversity as a conse-
quence of human modification of the abiotic environ-
ment. Scale-dependent analysis of CD, however, has 
the potential to resolve these apparent contradictions 
as it looks beyond alpha-diversity and thus reflects 
the background of diversity changes more precisely. 
In community ecology, CD was found useful to detect 
degradation even at early phase (e.g. Szollát & Bar-
tha 1991; Bartha et  al. 2004; Virágh et  al. 2008). A 
similar pattern echoed in our landscape-scale results, 
where actual CDmax was always lower than potential 
and transformed regions had lower CDmax than more 
natural ones. In addition, we also found that the more 
human-transformed the region was, the more promi-
nent difference occurred in the values of CDmax. This 
finding remains hidden when Shannon diversity is 
used even at multiple scales.

Besides the diversity component of Juhász-Nagy’s 
framework, AS delivered insight into the spatial dis-
tribution of the land cover types. The landscape is 
characterized indirectly by AS providing informa-
tion on overall associations of the land cover types 
from the aspect of size or juxtaposition of landscape 
patches. Landscape structure is typically analysed on 
a single-layer map, with studying the juxtaposition of 
types and statistical parameters of patches (e.g. Win-
ter et al. 2006; Zungu et al. 2020). However, assess-
ing landscape structure is a challenge if we go beyond 
a single-layer representation. Using the example of 
vegetation: we can view the landscape as a single map 

with vegetation classes excluding each other, which 
is clearly the typical case for actual landscape and 
was the traditional approach to PNV as well (Tüxen 
1956; Küchler 1964; Neuhäuslova et al. 1998). How-
ever, the potential vegetation types do not have to be 
mutually exclusive. Our MPNV and also the actual 
vegetation is represented as a multilayer landscape 
assessment. The AS function provided a possibility to 
assess the structure of these. Generally, high poten-
tial ASmax might be partly a result of high potential 
FDmax (see Bartha 1992) and partly the result of an 
aggregated distribution of vegetation types caused by 
environmental gradients.

The problem of single vs. multilayer representa-
tion is particularly acute for landscape assessment 
building on remote sensing, which data type is inher-
ently of a multilayer nature. However, traditional 
patch statistics (e.g. Fragstats, McGarigal and Marks 
1995) cannot handle multilayer representation. Thus, 
remotely sensed data is often classified into one layer 
in order to be analysed using statistical parameters of 
patches (e.g. Ojoyi et  al. 2016; Mallie et  al. 2020). 
However, changing to a single layer necessarily leads 
to information loss. Lausch et al. (2015) have already 
warned that reducing the information into single-layer 
maps may be particularly disadvantageous for land-
scapes without clear boundaries. In contrast, Juhász-
Nagy’s framework provides an opportunity to assess 
landscape diversity and structure without a need to 
simplify multilayer representation.

Our results underline the previous finding that 
landscape structures are typically scale-dependent 
(Rescia et  al. 1997; Wu et  al. 2002), which justifies 
scale-dependent assessment of diversity and complex-
ity (Wu 2004; e.g. Ricotta and Carranza 2013; Díaz-
Varela et  al. 2016). Scale dependence was equally 
present in the CD and Shannon diversity patterns. In 
the case of Shannon diversity, a monotonous trend 
emerged along the increasing scale in earlier inves-
tigations (Dušek and Popelková 2012; Khare et  al. 
2019). The same was observed in the current study, 
which suggested that potential and actual (alpha-) 
diversity would be equal if a coarse enough scale was 
examined. Taking into account that Shannon diversity 
quantifies alpha-diversity at individual scales, a large 
enough area holding all vegetation types eventually 
results in the diversity of the complete study extent, 
i.e. gamma-diversity. Gamma-diversity of PNV and 
actual (semi)natural vegetation equals for technical 
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reasons since all the examined vegetation types do 
occur somewhere in Hungary. Thus, the maximum of 
Shannon diversity does not carry information here.

In contrast to even a scale-dependent application of 
Shannon diversity, Juhász-Nagy’s information theory 
framework is able to differentiate between patterns 
of land cover types. This characteristic also enables 
the identification of differences in landscape diver-
sity even in the presence of an identical range of land 
cover types and evenness (see Supplementary Mate-
rial S1). The difference in the behaviour of Shannon 
diversity and Juhász-Nagy’s information theory func-
tions identified in our study further underlines that 
methods measuring beta-diversity are not equally 
effective (Khare et al. 2019). Besides the pure exami-
nation of Shannon diversity along increasing scale not 
being informative regarding maximum diversity as 
opposed to the Juhász-Nagy’s framework, the former 
approach was also insensitive to difference of actual 
and potential landscape diversity. Juhász-Nagy’s 
framework indicated a high difference between poten-
tial and actual CDmax for highly transformed regions 
and a low difference for (semi)natural regions. How-
ever, the comparison of potential and actual Shannon 
diversity index did not show such a trend. Thus, mul-
tiscale analysis of CD values was able to character-
ize the landscape even more precisely than that of the 
Shannon diversity index. Thus, the CD has the poten-
tial to be more sensitive to landscape configuration 
and to how much habitats have been preserved.

Besides the values of the functions, the spatial 
scale corresponding to these maximum values, i.e. 
the characteristic areas, and especially ACD can be 
informative for landscapes as well. ACD reflects the 
size of the sampling unit holding the highest diver-
sity of different vegetation type combinations. In our 
study, potential ACD values were consistently found to 
be smaller than actual ACD in all the studied regions. 
This is well explained by the more aggregated pat-
tern in actual vegetation type distributions. In com-
munity ecology, larger ACD was observed in the case 
of aggregated spatial distribution of species (Podani 
et al. 1993), i.e. a larger area could encounter all rele-
vant combinations. Smaller ACD often implies a more 
natural state (Bartha et al. 2004; Virágh et al. 2008). 
Measuring the characteristic area has significance for 
further research as well. Since it provides the unit size 
holding the most information on compositional diver-
sity or structure, it can serve as a basis to select the 

scale in those studies, where multiscale assessment is 
not possible, e.g. due to computing time or field work 
demand.

Comparison of the actual and potential landscape 
conditions

Calculation of actual landscape diversity may carry 
information on its own (e.g. Romme 1982). How-
ever, landscape diversity values without consider-
ing the landscape potential may be misleading. For 
example, a landscape with low diversity cannot be 
evaluated reliably in lack of knowledge of the land-
scape’s potential. Actually, a landscape could be con-
sidered to be in a bad state of naturalness due to its 
low actual diversity value, even though it is near its 
potential. Such a case did emerge in our study as well. 
The actual CDmax of the Őrség region appeared to 
be low, lower than that of most of the other regions 
(Supplementary Material S6, S8). Furthermore, its 
actual Shannon diversity was found to be also lower 
than the potential (Supplementary Material S5). Thus 
relying on Shannon diversity only or even inspecting 
CDmax without a reference, one could conclude that 
Őrség is probably in a bad condition. On the contrary, 
its actual CDmax is the closest to its potential CDmax 
indicating that it realizes its potential habitat com-
binations almost in full, which is also reflected in a 
large part of its area being classified as national park 
(Kocsis 2018).

This also shows that identification of the degree 
of negative human effects greatly benefits from con-
sidering the potential of the landscape (Ricotta et al. 
2000; Somodi et al. 2021). However, very few stud-
ies exist that compare the actual landscape diversity 
to the potential landscape diversity. An exception was 
presented by Mander and Murka (2003), who imple-
mented such a comparison based on soil patterns 
representing landscape potential and land use inten-
sity. Another notable approach is using the PNV as 
a neutral model (Somodi et  al. 2021; e.g. Lenz and 
Stary 1995; Ricotta et  al. 2000). Nonetheless, the 
interpretation of PNV can be variable, when used as 
a neutral model. Ricotta et  al. (2000) used classical 
single-layer PNV and considered it as the theoreti-
cal minimum baseline and expected the actual veg-
etation based diversity to exceed it due to human-
induced fragmentation. As opposed to that, Lenz and 
Stary (1995) used the maximum potential as a neutral 
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model for their landscape diversity. Their approach is 
closer to ours, where the maximal potential diversity, 
as measured on the multilayer MPNV estimation, was 
used as a reference.

Deviation from maximal potential diversity in any 
direction bears information. Plausibly, a lower actual 
diversity indicates unexploited landscape potential 
possibly due to the eradication of vegetation stands. 
By contrast, actual vegetation type diversity exceed-
ing the maximal potential vegetation type diversity 
would be the result of additional vegetation types 
sustained by human management and thus that would 
be outside the range of PNV. In the current study, the 
received higher-than-actual maximal potential diver-
sity values in all ten regions reflected that the land-
scapes of Hungary have been considerably modified 
and vegetation types were eradicated by human use. 
This reflects accurately that only 32.83% of Hun-
gary’s territory can be considered as close to natu-
ral (Table  1). The magnitude of difference between 
actual and potential values of Juhász-Nagy’s func-
tions, however, characterized the magnitude of the 
transformation. A relevantly smaller difference was 
found between the actual and potential CDmax in the 
case of (semi)natural regions (e.g. Bakony, South-
ern Bükk, Őrség) compared to the transformed land-
scapes holding mainly arable lands (e.g. Baranya 
Hills, External Somogy, Körös-Maros Interfluve, 
Mezőföld & Velence Hills). The same pattern was 
not identified by Shannon diversity, however. This is 
likely the result of our indices being sensitive to com-
position and thus being more sensitive to deviation 
from natural patterns. Thus, the comparison of CDmax 
values indicated human-induced clearance of the 
(semi)natural vegetation with a preference towards 
specific vegetation types. This is also in accordance 
with the historical ecology finding, that vegetation 
removal was conducted selectively in Hungary with 
loess steppes being the primary target (Biró et  al. 
2018). With the help of CD, regions with different 
level of deviation from the landscape potential were 
possible to be identified.

Other indices derived from Juhász-Nagy’s frame-
work further elaborate on the differences between 
potential and actual landscape composition and pat-
tern. In the case of the actual vegetation, aggregated 
distribution and rarity of vegetation types were 
observable (Hungarian Actual Habitat Database; 
Molnár et  al. 2007; Horváth et  al. 2008). This was 

even more conspicuous in the case of human-trans-
formed landscapes (e.g. Körös-Maros Interfluve, 
Mezőföld & Velence Hills). However, there are two 
exceptions of the regions, Baranya Hills and Exter-
nal-Somogy, where rarity was extreme, but the aggre-
gated distribution of vegetation types was not char-
acteristic. Nevertheless, in general, potential ASmax 
strikingly exceeded actual ASmax (except e.g. Körös-
Maros Interfluve and Mezőföld & Velence Hills). As 
MPNV relies on environmental data, the high poten-
tial ASmax can be a result of environmental gradients 
within the region (e.g. soil, topographical properties, 
etc.). The higher the variability of environmental fac-
tors, i.e. configurational heterogeneity of a region 
is the higher ASmax was resulted. For example, the 
Őrség is a rather homogeneous region. However, 
Mezőföld & Velence Hills region is characterized by 
remarkable topographical and pedological variation.

The magnitude of the difference between potential 
and actual ACD is also of interest. Southern Bükk and 
Őrség regions are in a comparatively natural state as 
also implied by small differences between potential 
and actual CDmax and ASmax values. However, the 
apparent difference between potential and actual ACD 
also reflects the fragmentation that is present in the 
region. ACD has also relevance at the ecosystem level. 
If it is smaller, animals can find more habitat types 
within the same distances, which means the land-
scape can thus support species requiring more than 
one habitat type for survival, e.g. bats (Encarnação 
et al. 2005; Ciechanowski et al. 2017).

The fact that potential AAS was consequently 
smaller than actual AAS can be a result of the neutral 
model nature of MPNV. The multilayer framework of 
MPNV shows all areas, where vegetation types could 
persist. Thus, the potential presence of vegetation 
types is more homogeneous in space than the frag-
mented actual occurrences of vegetation types. Con-
sequently, in the case of MPNV, the distribution of 
vegetation types is more homogeneous in space and 
thus the same level of association appears at smaller 
spatial unit size.

Conclusion

Juhász-Nagy’s framework proved to be insightful 
regarding landscape diversity and structure as well. 
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The framework offers analysis opportunities for 
multilayer complex data sources (such as multilayer 
model outputs and remote sensing data).

The findings of the current study highlighted the 
importance of quantifying landscape compositional 
diversity based on land cover types (e.g. vegetation 
type, land cover, etc.) combinations instead or addi-
tional to that of alpha-diversity. Both compositional 
diversity and associatum highlighted aspects that 
support differentiation between more and less natu-
ral conditions.

Comparison with a neutral model, i.e. the poten-
tial diversity in our case, highly supported the 
interpretation. We have shown that without this 
reference false conclusions could have been drawn. 
The difference between the compositional diver-
sity of actual and potential landscape conditions 
closely reflected the level of human transformation 
and naturalness. Human-modified landscapes con-
sistently had smaller diversity of vegetation type 
combinations and the maxima of these combina-
tions appeared at larger spatial units. Additionally, 
associatum (AS), the sister function of CD (in the 
model family) also reflected differences in the spa-
tial arrangement of vegetation types in the regions. 
Though the aggregated distribution of patches was 
observable in the case of both potential and actual 
vegetation, fragmentation of actual vegetation was 
also reflected by larger actual characteristic areas 
of associatum. Hence, maximum values of Juhász-
Nagy’s functions and corresponding spatial scales 
can be used as indicators in landscape studies.

Application of the approach can be extremely 
useful when analysing landscapes with gradients or 
multilevel landscape data gained by remote sensing 
for example. Another particular advantage of the 
approach is the identification of scales holding the 
most information. This can be a guideline for stud-
ies that cannot complete multiscale assessments.
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