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Abstract
Gridded observational datasets are often used for the evaluation of regional climate model (RCM) simulations. However, 
the uncertainty of observations affects the evaluation. This work introduces a novel method to quantify the uncertainties 
in the observational datasets and how these uncertainties affect the evaluation of RCM simulations. Besides precipitation 
and temperature, our method uses geographic variables (e.g. elevation, variability of elevation, effect of station), which are 
considered as uncertainty sources. To assess these uncertainties, a complex analysis based on various statistical tools, e.g. 
correlation analysis and permutation test, was carried out. Furthermore, we used a special metric, the reduction of error 
(RE) to identify where the RCM shows improvement compared to the lateral boundary conditions (LBCs). We focused on 
the Carpathian region, because of its unique orographic and climatic conditions. The method is applied to two observational 
datasets (CarpatClim and E-OBS) and to RegCM simulations for 2010, the wettest year in this region since 1901.
The results show that CarpatClim is wetter than E-OBS, while temperature is similar over the lowland; however, E-OBS is 
significantly warmer than CarpatClim over the mountains. By the RE metric, RegCM has improvement against the LBCs 
over mountains for temperature and areas with dense station network for precipitation. Nevertheless, there are significant 
differences in the results depending on which observational dataset was used concerning precipitation. The evaluation 
method can be applied to other datasets, different time periods and areas. It is also suitable to find dataset errors, which is 
also exemplified in this paper.

Keywords  Carpathian region · Gridded observational dataset · CarpatClim · E-OBS · RCM evaluation · RegCM · 
Uncertainty · Reduction of error

1  Introduction

Climate researchers use general circulation models (GCMs) 
and regional climate models (RCMs) to improve our under-
standing of the climate system. Observations are used dur-
ing the model development phase, but model calibration 
and initialisation also often heavily rely on observational 
datasets (e.g. Bellprat et al. 2012; Hazeleger et al. 2013). 
Furthermore, the availability of reliable high-quality obser-
vational data is important for model evaluation (Kotlarski 
et al. 2019), for which temperature and precipitation are 
most often used (Perkins et al. 2007; Kotlarski et al. 2014, 
2019; Kalmár et al. 2021). However, measuring precipita-
tion is challenging because of its high variability in space 
and time and the existence of measurement errors (Bacchi 
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and Kottegoda, 1995; Frei 2014; Prein and Gobiet 2017; 
Kotlarski et al. 2019).

Several studies quantify the observation-related uncer-
tainty by comparing observation-based gridded datasets for 
specific variables (mostly precipitation or temperature) and 
different regions (e.g. Hofstra et al. 2009; Kyselý and Plavcová  
2010; Palazzi et al. 2013; Rauthe et al. 2013; Gervais et al. 
2014; Schneider et al. 2014; Isotta et al. 2015; Berg et al. 
2016; Bandhauer et al. 2022). Most studies focusing on Europe 
use the E-OBS dataset, which covers the whole continent.  
Hofstra et al. (2009) tested precipitation and temperature from 
the E-OBS dataset and found inhomogeneities in the underly-
ing station data and underestimation of extremes within the 
data. Kyselý and Plavcová (2010) highlighted the facts that sta-
tions may not be representative for a wider area and insufficient 
density of information from station observations used for the 
interpolation lead to bias in E-OBS, which affect the evalua-
tion of RCMs. Interpolation tends to introduce other bias, such 
as the excessive smoothing of spatial variability, and may thus 
lead to an underestimation of extremes (Hofstra et al. 2009, 
Maraun et al. 2012; Bandhauer et al. 2022). The observations 
used for creating the dataset differ from each other in many 
characteristics, including spatiotemporal resolution, length and 
homogeneity of the measurement time series. Other differences 
may include quality checking and error correction procedures. 
In addition, some observational datasets (e.g. E-OBS) are regu-
larly updated. All those factors lead to notable differences in 
the quality of the observational datasets (Tanarhte et al. 2012). 
Therefore, a comprehensive analysis of observational data-
sets is required, where less commonly used variables are also 
included, such as elevation and station density.

In the field of RCM evaluation, several papers examined 
different observational data and their effects on the evalua-
tion (e.g. Prein and Gobiet, 2017; Beck et al., 2017; Fantini 
et al. 2018; Kotlarski et al. 2019). Prein and Gobiet (2017) 
focused on precipitation and compared many gridded obser-
vational datasets over selected parts of Europe and used this 
observational ensemble to evaluate RCMs. They found that 
observational uncertainty may be at a similar magnitude as 
RCM biases, particularly in regions with low station density. 
The magnitude of the observational uncertainty increases 
with increasing spatiotemporal resolution. Beck et al. (2017) 
showed that the uncertainty in long-term precipitation means 
among the datasets was generally the largest in topographi-
cally complex and arid regions. Fantini et al. (2018) men-
tioned that the observational datasets (e.g. CarpatClim 
(Spinoni et al. 2015), E-OBS (Haylock et al. 2008; Cornes 
et al. 2018), SAFRAN (Vidal et al. 2010) and Spain02 (Her-
rera et al. 2016)) are influenced by widely different station 
densities and methodological approaches regarding their con-
struction, which make RCM evaluation rather difficult (e.g. 
some observational datasets are based only on station data, 
while others use additional high-resolution reanalysis data). 

Kotlarski et al. (2019) employed a simple ranking method on 
RCM evaluation and noted that results can depend on the ref-
erence dataset used. This dependency is more important for 
precipitation than for temperature due to its higher variability.

Using and testing RCMs for specific time periods (e.g. 
when heatwaves or flash flood occur) and for specific areas 
— i.e. for regions with complex topography — is benefi-
cial because the modelling of the climate conditions of these 
regions is quite difficult as it was pointed out by Ceglar et al. 
(2018) in case of the Carpathian region (located in East-
Central Europe). Pall et al. (2011) focused on flood risk in 
the UK in 2000, and they generated several thousand GCM 
simulations to show that global anthropogenic greenhouse 
gas emissions substantially increased the risk of flood occur-
rence in the UK. Mitchell et al. (2016) tested the capability of 
RCM for capturing the synoptic conditions of the European 
heatwave in 2003. Varga and Breuer (2020) evaluated the 
performance of WRF model, which was used as an RCM, and 
they analysed its sensitivity to different physical and dynami-
cal settings for the year 2013 over Central Europe.

Previous studies indicate that comprehensive examina-
tions of RCM-simulations require a quantification of obser-
vational uncertainty in the first place. In this paper, we intro-
duce a novel method to assess observational uncertainty, 
namely how the selection of the observational datasets (in 
this paper the CarpatClim and the E-OBS) affects the evalu-
ation of RCM simulations (in this paper the RegCM) with 
respect to the Carpathian region. Section 2 describes the 
datasets and methods used in the study. Then, the results 
of the uncertainty regarding the observational datasets and 
evaluation results based on the RCM simulations are pre-
sented and discussed in Section 3. Finally, we present our 
main conclusions in Section 4.

2 � Data and methods

2.1 � Short description of the study area 
and the target period

The study region extends between 17–27°E and 44–50°N 
(due to the spatial range of the CarpatClim), covering the 
area of the Carpathian region, which consists of the Car-
pathian Basin and the Carpathians). The Carpathian region 
is characterised by unique orography and climate condi-
tions, namely, it is a transition area between Mediterranean, 
oceanic, and continental climates. The Carpathian Basin is 
bordered by the Alps in the west, by the Dinaric Alps in the 
southwest and by the Carpathians in the north and east. The 
dominant wind direction over the basin is western, north-
western (Bartholy et al. 2003), resulting in a west to east 
spatial gradient of precipitation modulated by local topog-
raphy. As the air mass from the Atlantic region crosses the 



809Quantifying uncertainties related to observational datasets used as reference for regional…

1 3

Alps, it loses humidity resulting in a precipitation decrease 
towards the east. The annual mean precipitation is 700–800 
mm in the western part of the Basin, while the lowest annual 
precipitation totals occur in eastern Hungary with 550 mm 
(UNEP 2007; Spinoni et al. 2015).

The Carpathian Mountains function as an important 
obstacle to the circulation of air masses over Europe. The 
Carpathian Mountains have a temperate climate, with a basic 
continental regime, increasingly intensive eastwards (Cheval 
et al. 2014). The altitude, the compact arrangement and the 
shape of the Carpathians introduce important disturbances in 
the climatic zonality and in the general atmospheric circula-
tion (UNEP, 2007). The interaction between the mountains 
and the atmospheric flow is particularly complex, mountains 
playing a significant perturbation role in the large-scale pro-
cesses with to the overall dimension and orientation of the 
ranges and finally resulting in the prevailing airflows. Pre-
cipitation totals rise with altitude and decrease from west to 
east. The average annual precipitation amounts varies from 
600 to 1600 mm and is mostly between 900 and 1200 mm, 
depending on altitude and local conditions (UNEP 2007; 
Ptácek et al. 2011; Repel et al. 2021).

The year 2010 was selected as the target period, when 
extremely heavy and persistent rain caused severe flood-
ing in East-Central Europe (Poland, Czechia, Slovakia, 
Serbia, Hungary), especially in May and June (Bissolli 
et al. 2011). Due to the large amount of precipitation over 
the whole year, 2010 was the wettest year in this region 
since the beginning of coordinated measurements (WMO, 
2011). Figure 1 also shows the annual precipitation for the 
Carpathian region during 1961–2010 in the observational 
datasets used in this study, namely CarpatClim and E-OBS. 
The annual precipitation in 2010 was 978 mm/year, while 
the second wettest year was in 2005 in the past 50 years 

with 856 mm/year in CarpatClim. This value is still 100 
mm less than the value in the wettest year. For E-OBS, the 
annual precipitation in 2010 was 863 mm/year, and the 
second wettest year was 1970 with 782 mm/year.

2.2 � Observational datasets and climate simulations 
used in the study

2.2.1 � The CarpatClim dataset

The CarpatClim is a high-resolution interpolated gridded 
dataset for the Carpathian region with 0.1° by 0.1° hori-
zontal resolution, covering the 1961–2010 period, contain-
ing 11 major surface meteorological variables and several 
derived variables for daily basis (Szalai et al. 2013; Spinoni 
et al. 2015). The CarpatClim is based on the observations of 
precipitation and temperature stations. Quality control, gap 
filling and homogenization were conducted by the MASH 
software (Szentimrey, 2007). Spatial interpolation was made 
following a regression kriging concept using the MISH soft-
ware (Szentimrey and Bihari, 2006). The daily mean tem-
perature is calculated as the average of the daily minimum 
and maximum temperature, while the altitude was also con-
sidered during the interpolation (Spinoni et al. 2015).

2.2.2 � E‑OBS dataset

The gridded E-OBS dataset (Haylock et al. 2008; Cornes 
et  al. 2018) covers the entire European land surface. It 
spans the period 1950–2022. The E-OBS is based on the 
ECA&D station data and more than 2000 further stations 
from additional archives, and station density is increasing 
over the years (Kotlarski et al. 2019). The E-OBS contains 

Fig. 1   Time series (1961–2010) 
of annual precipitation for Car-
patClim and E-OBS, averaged 
over Carpathian region
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eight meteorological variables. The version used here is 
22.0e (ensemble mean for daily precipitation sum and daily 
mean temperature), and the horizontal resolution is 0.1° 
by 0.1° grid. The spatial coverage is heterogeneous, with a 
dense network in Czechia, and a sparse network in Ukraine. 
E-OBS uses ordinary kriging interpolation method (Klein 
Tank et al. 2002), and elevation is also considered to calcu-
late the temperature (Wood, 2003, 2006; Cornes et al. 2018). 
Note that, E-OBS has advanced interpolation which captures 
better the influence of topography on the analysed climatic 
parameters (Cornes et al. 2018; Sidău et al. 2021).

The main characteristics of the datasets can be found in 
Table 1.

Figure 2 shows the measuring stations and elevation for 
both datasets, as it can be seen the stations are not distrib-
uted homogeneously over the target area. Table 2 charac-
terises the station density for precipitation and temperature 
defined as the ratio of the number of grid cells containing 
stations relative to the total number of grid cells for each 
country. In general, CarpatClim uses more stations within 
the Carpathian region than E-OBS, and the total number 

of precipitation stations is higher than the number of tem-
perature stations. The average distance between the stations 
of CarpatClim is ~25 km for precipitation and ~50 km for 
temperature (Spinoni et al. 2015). It is worth to mention that 
these two observational datasets do not contain all observa-
tional station data of the national meteorological services.

The standard deviation (sd) of elevation can be used to 
characterize the target area, and it shows that the elevation 
field of CarpatClim is more detailed than that of E-OBS 
(Table 2). The sd of elevation of CarpatClim is higher in 
every country than the sd values of E-OBS. Romania — 
which is a mountainous area — has the highest sd of the 
elevation with 401 m in CarpatClim and 378 m in E-OBS. 
The country with the smallest sd is Hungary (CarpatClim: 
80 m, E-OBS: 75 m), which occupies the largest plain area 
within the domain.

2.2.3 � RegCM simulations

In this study, we used regional climate model version 4.7 
(RegCM4.7, Giorgi, 1989; Giorgi et al. 2012). This study 
focuses on our simulations for the target period 2010 (2009 
was the spin-up year) with initial and lateral boundary con-
ditions (LBC) from the 0.75° horizontal resolution data of 
the ERA-Interim reanalysis (Dee et al. 2011), which is a 
commonly used LBC for regional climate simulations (e.g. 
Giorgi 2019). The horizontal resolution of our simulations 
is 10 km to represent the fine topography of the target area 
(Gao et al. 2006), and the integration timestep is 30 s, while 
the temporal resolution of the RegCM output is 1 day. The 
integration domain is over 6°–29°E and 43.8°–50.6°N after 
removing the buffer zones, but we analyse the simulations 
only over the CarpatClim domain. A great number of sen-
sitivity analyses have been completed with the RegCM 

Table 1   The main features of the two observational datasets

CarpatClim E-OBS

Spatial range 44°N–50°N 25°N–71.5°N
17°E–27°E 25°W–45°E

Timeframe 1961–2010 1950–2022
Temporal resolution 1-day 1-day
Spatial resolution 0.1°×0.1° 0.1°×0.1°
Number of precipitation stations in 

the study region in 2010
560 79

Number of temperature stations in 
the study region in 2010

224 69

Fig. 2   The location of precipitation and temperature stations (indicated 
by blue + and red ×, respectively, if a grid cell contains two stations, it 
is marked by blue or red dot) for CarpatClim (a) and E-OBS (b) (data 

source: www.​carpa​tclim-​eu.​org and www.​ecad.​eu). The white area 
indicates no data is available. The topography is shown by mean grid 
cell elevation.

http://www.carpatclim-eu.org
https://www.ecad.eu


811Quantifying uncertainties related to observational datasets used as reference for regional…

1 3

regarding the selection of a suitable integration domain, an 
adequate horizontal resolution, potential driving models, 
applied physics schemes and adaptation tools for Central 
and Eastern Europe (Torma et al. 2011; Güttler et al. 2014; 
Pieczka et al. 2017; Kalmár et al. 2021). These recommen-
dations were taken into account, when we chose the phys-
ics schemes. Twenty-four simulations were carried out by 
using all combinations of the physics schemes (2 land sur-
face schemes, 2 microphysics schemes, 3 cumulus schemes 
and 2 planetary boundary layer schemes) listed in Table 3. 
For the RegCM evaluation, we used daily precipitation sum 
and daily temperature values.

For further calculations, the E-OBS observational data-
set, the ERA-Interim reanalysis and the RegCM simulations 
required regridding on the CarpatClim grid. We used the near-
est-neighbour method to avoid the oversmoothing of the fields. 
A disadvantage of this interpolation method is the penalisation 
of low-resolution datasets, resulting in a set of large pixels with 
the same values on maps (Di Luca et al. 2016).

Based on the above description, we analysed 5895 grid 
cells over the Carpathian region (domain size is 101×61 
grid cells, but Bosnia Herzegovina with 266 grid points is 
excluded due to lack of data). Furthermore, each grid cell is 
associated with a daily time series (365 elements).

2.3 � Evaluation method

2.3.1 � Variables used for the study

For the first step of the analysis, the two observational data-
sets (CarpatClim and E-OBS) are compared based on their 
daily precipitation and temperature values. To examine the 
relationships between the variables, we use the annual sum 
of precipitation (PR) and the annual mean temperature (TAS) 
for 2010. Furthermore, we examine the spatial variation of 
less commonly used variables: the effect of station density 
on precipitation (PR_ST) and effect of station density on 
temperature (TAS_ST), elevation (E), and the variability of 
elevation (VE).

To determine the PR_ST and TAS_ST, we apply a mov-
ing window filter to the data with the window size of 5×5 
grid cells, which covers approximately 50 km×50 km, 
which is the average distance between the stations for 
temperature in CarpatClim (Spinoni et al. 2015). Then 
we count how many stations are located within the win-
dow, and the number is assigned to the central cell of the 
window.

To calculate the VE, we use the moving window method 
similarly to determine PR_ST and TAS_ST. We compute the 

Table 2   Topographic characteristics (total number of grid cell, standard deviation of elevation) and station density by country listed in CarpatClim and 
E-OBS

Country Total number of 
grid cells

Percentage of the grid cell 
from CarpatClim (%)

Precipitation station den-
sity (%)

Temperature station den-
sity (%)

Standard deviation of 
elevation (m)

CarpatClim E-OBS CarpatClim E-OBS CarpatClim E-OBS

Croatia 169 2.9 13.6 0.6 3.6 0.6 149 102
Czechia 168 2.8 13.7 11.9 3.6 10.7 178 163
Hungary 1045 17.7 15.3 0.4 3.4 0.4 80 75
Poland 303 5.1 11.2 2.3 3 1 226 188
Romania 2192 37.2 6 0.9 3.9 0.8 401 378
Serbia 507 8.6 15 3.2 5.7 3.2 193 169
Slovakia 599 10.2 14.2 1.5 4.2 1.5 322 285
Ukraine 912 15.5 3.1 0.2 3.1 0 272 242

Table 3   The applied physics schemes in the 24 different RegCM simulations for 2010

Physics scheme References

Land-surface BATS Dickinson et al. (1993)
CLM4.5 Oleson et al. (2004)

Microphysics Modified SUBEX Pal et al. (2000); Torma et al. (2011)
WSM5 Hong et al. (2004)

Cumulus Grell (land)/Emanuel (ocean) Grell (1993); Emanuel and Živković-Rothman (1999)
Kain-Fritch Kain (2004); Kain and Fritsch (1990)
Tiedtke Tiedtke (1996)

Boundary layer Holtslag Holtslag et al. (1990)
UW PBL Grenier and Bretherton (2001); Bretherton and Park (2009)
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difference between the highest and the lowest elevation val-
ues within the window, and the difference is assigned to the 
central cell of the window.

2.3.2 � Statistical analysis comparing observational datasets 
and pairs of variables for each observational dataset

Firstly, temporal relationships between the E-OBS and the 
CarpatClim were examined in each grid cell by using daily 
precipitation and temperature time series. In the second step, 
we analyse the spatial relationships between all possible pairs 
of variables (E, VE, PR, PR_ST, TAS, TAS_ST) for each obser-
vational dataset to gain deeper insight into their relationships.

In case of the analysis of temporal relationships, the Car-
patClim and E-OBS were compared by calculating average 
difference (DIFF) for temperature and relative difference for 
precipitation (DIFFrel), root-mean-square error (RMSE) and 
temporal Pearson correlation coefficient (rt) for precipitation 
and temperature. These metrics are calculated for each grid 
cell as follows:

where N is the length of the time series (N=365), t is 
the timestep, and overline indicates the average of the cor-
responding time series.

In case of the analysis of spatial relationships, the spatial 
correlation coefficient (rs) is computed between all possible 
pairs of variables for each observational dataset.

For example, in case of VE and PR:

where N is the total number of the grid cells (N=5895) 
and i denotes the ith grid cell.

Due to the dependency of grid cells, the significance of 
the rs values obtained from Eq. 2.5 cannot be determined by 

(2.1)DIFF =

∑N

t=1

�

EOBSt − CarpatClimt

�

N

(2.2)DIFFrel =

N
∑

t=1

(

EOBSt − CarpatClimt

CarpatClimt

)

× 100

(2.3)RMSE =

�

∑N

t=1

�

EOBSt − CarpatClimt

�2

N

(2.4)rt =

∑N

t=1

�
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��

CarpatClimt − CarpatClim
�

�
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t=1
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EOBSt − EOBS
�2

�
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t=1

�

CarpatClimt − CarpatClim
�2

(2.5)rs =
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i=1

�

VEi − VE
��

PRi − PR
�

�

∑N

i=1

�

VEi − VE
�2

�

∑N

i=1

�

PRi − PR
�2

commonly used hypothesis testing method like t-test. All grid 
cells also cannot be used because the large number of the grid 
cells would result in significant rs values even if it is close 
to zero (Maxwell et al. 2008). Due to this reason, random 
sampling is used first, as follows. One hundred elements of 
the grid cells of each pair of variables are randomly selected, 
and the correlation coefficients are calculated between the 
random samples (hereinafter called as the original correla-
tion coefficients, rs,original). This process is repeated 10,000 
times for all examined pairs of variables. As a result, a total 
of 10,000 rs,original values are produced in each examination. 
Note that the number of elements used here does not have any 
effect on the results of the permutation test due to the high 
number of random sequences.

Then, permutation test (Pitman, 1937) was carried out in 
order to determine whether the rs,original values are considered 
as significant or they are produced by random processes. For 
that purpose, the 100 elements for one variable from each 
pair of variables are randomly shuffled. After that, correla-
tion coefficients are calculated between the reshuffled random 
sample and the original elements of the other variable 10,000 
times (the obtained correlations are henceforth called as ran-
dom correlation coefficients, rs,random).

Finally, significance of the rs,original is determined in two 
ways. At first, we compute the percentage when the rs,random 
values are stronger than the median of rs,original values. 
The significance level is set to 5%. Therefore, if the above 
mentioned percentage exceed 5%, then there is at least 
5% chance that the median of rs,original values is produced 
by randomness. Thus, it is considered as not significant, 
indicating no significant linear relationship between them. 
Secondly, to gain further information about the quality of 
the linear relationship between the variables, empirical 
distributions of the rs,random values are compared against 
rs,original values. For that purpose, a metric was constructed 
hereinafter referred to as uncertainty (U). U is defined as the 
overlapping area of the probability density functions (PDFs) 
fitted on the histograms of the rs,original and rs,random values, 
respectively. For this, we used kernel density estimation 
(KDE, Rosenblatt 1956; Davis et al. 2011), which is a non-
parametric method to estimate the PDF of a continuous 
random variable (Härdle et al. 1990). As kernel function the 
Gaussian kernel was used, and the kernel bandwidth was 
estimated by the Sheather and Jones (1991) method. The 
total area under the curve for any PDF is always equal to 1, 
as it represents the total probability. U is associated with the 
quality of the linear relationship between the variables as 
follows. U increases with increasing overlapping area that 
means less reliable linear relationship between the original 
variables. To distinguish the pairs of variables objectively, 
k-mean clustering algorithm (Lloyd  1957; MacQueen, 
1967) was applied on their median of rs,original values and 
U values.
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For the permutation test and the calculation of uncer-
tainty (U), we constructed the required scripts using the 
R programming language. For the kernel density estima-
tion (KDE) we used R package, namely stats package (R 
Core Team 2013).

2.3.3 � Estimating the effects of the uncertainty 
of observational datasets on the evaluation of RCMs

Difference between the observational datasets can cause 
differences in the results on the evaluation of RCM simu-
lations. To quantify this, we used the metric reduction 
of error (RE, Prömmel et al. 2010). The RE is applied 
because it is important to know not only how well they 
perform compared to the reference datasets, but also how 
much improvement they show compared to the LBC (e.g. 
reanalysis or GCM; Diaconescu and Laprise 2013; Xue 
et al. 2014). By using RE, we identify where the RCM 
simulation has an improvement compared to the LBC 
and to assess how these potential improvements depend 
on the selection of the reference datasets or variables.

RE is calculated as follows:

where SIM indicates the specific RCM simulation which is 
evaluated. In our study, it is the RegCM with 24 different simu-
lations. OBS is the reference dataset for the evaluation, in our 
case the CarpatClim or the E-OBS, while the ERA-Interim is 
used as LBC.

The range of the RE is (-∞,1]. Negative RE values 
means that the RCM simulations and the observational 
dataset are less similar than the LBC and the observa-
tional dataset. Therefore, RE indicates no improvement 
of the RCM simulation relative to the LBC. When RE 
value is 0, it means the same performance for the RCM 
simulations and for the LBC relative to the observational 
dataset. Positive RE values mean that the RCM simula-
tions and the observational dataset are more similar than 
the LBC and the observational dataset, which express 
an improvement of RCM simulations compared to the 
LBC. When RE value is 1, it means the RCM simulation 
reproduces the observational data perfectly.

RE was calculated for daily precipitation and tempera-
ture as well in each grid cell by using the E-OBS and 
CarpatClim as reference datasets for all 24 RegCM simu-
lations. To overview the RE values obtained from the 24 
RegCM simulations, we chose the maximum of the 24 RE 
values over every grid cell for both observational data-
sets and both variables. Note that, before calculating RE, 
days with below 1 mm precipitation were omitted. This 

(2.6)RE = 1 −
RMSE[SIM,OBS]

RMSE[LBC,OBS]

threshold corresponds to standard recommendations for 
station data (Hofstra et al. 2009), and it is also necessary 
because it rains too lightly and too frequently in many 
climate models (Stephens et al. 2010; Maraun 2013).

The dependency of the RE on the chosen reference 
dataset was examined by calculating the correlation 
values (rs,original and rs,random) between the RE and the 
variables (E, VE, PR, TAS, PR_ST, TAS_ST) based on 
Eq. 2.5. Significance test was carried out similarly as 
described in Section 2.3.2 (calculating U too). Finally, 
k-means clustering based on the median of rs,original val-
ues and U values was used to distinguish between RE 
and the variables.

The entire complex method defined in this study is sum-
marised in Fig. 3 indicating the step-by-step procedures of 
the detailed analysis applicable to the comparison of different 
datasets.

2.4 � Correction of E‑OBS dataset with respect 
to precipitation

In order to carry out the analysis described in Sec-
tion 2.3, a dataset correction was necessary. When the 
rt and the RMSE values were calculated between the 
gridded time series of the CarpatClim and the E-OBS, a 
major discrepancy (rt>0.6 and RMSE>3-4 mm/day) was 
detected between Serbia and its neighbouring countries 
(Fig. 4c and e). This is caused by the fact that in the 
case of Serbian stations, the precipitation time series are 
shifted by 1 day backward compared to other domains 
in E-OBS, which is probably due to the different date 
assigning rule applied to daily precipitation totals. This 
time shift was missing for Serbian precipitation data 
from 2009 onward (it was applied prior to this date). 
To fix the problem in this paper, the E-OBS data were 
shifted forward 1 day in the grid cells of a masked area. 
We defined the mask based on two correlation fields. The 
first field contains rt values that are calculated between 
the CarpatClim and the non-shifted E-OBS. The second 
field contains correlation coefficients that are calculated 
between the CarpatClim and the shifted E-OBS datasets. 
The two correlation fields are compared to each other in 
every grid cell. The mask is created from grid cells in 
which the second rt is larger than the first rt. We used the 
corrected E-OBS precipitation time series for the further 
analysis. Figure 4d and f clearly indicates that the 1-day 
forward shift of the E-OBS time series results in better 
similarity between the CarpatClim and the E-OBS. Note 
that shifting the time series would not improve RMSE ​​
and rt values in other regions in the examined domain 
(e.g. in Ukraine).
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3 � Results and discussion

3.1 � Comparing observational datasets: 
the examination of the temporal and the spatial 
distribution of variables

3.1.1 � Comparison of the E‑OBS and CarpatClim 
observational datasets

In the followings, the largest similarities and dissimilarities 
between the E-OBS and CarpatClim datasets are presented 
with respect to the precipitation (DIFFrel, RMSE, rt) and 
temperature (DIFF, RMSE, rt). Both datasets (CarpatClim 
and E-OBS) are based on observations. CarpatClim dataset 
contains much more observations than E-OBS on the one 
hand. On the other hand, E-OBS covers a longer period, and 
it is continuously updated unlike CarpatClim. Furthermore, 
the interpolation technique of CarpatClim has been developed 
specifically for the climates and sampling conditions in the 
Carpathian region (Spinoni et al. 2015). Therefore, Bandhauer 
et al. (2022) attributed a higher reliability to CarpatClim and 
evaluated daily precipitation in E-OBS (v19.0e) against the 
CarpatClim as the reference dataset for the Carpathian region. 
In case of the precipitation, we found that the RMSE and rt 
values over Serbia are similar to the neighbouring domains 
(<3 mm/day and >0.8, respectively) after the data correction 
described in Section 2.4 was carried out (Fig. 4c–e). This 
result proves that RMSE and rt values are important to detect 
dataset errors in observational data before using them as a 

reference for RCM evaluation or in case of testing a newly 
developed meteorological dataset. For example, Sekulić et al. 
(2021) developed a meteorological dataset at a 1-km spatial 
resolution across Serbia (MeteoSerbia1km), and when they 
compared the daily precipitation data to E-OBS, they found 
similar differences between the two datasets as those can be 
seen in Fig. 4e. We assume that their result is affected by data 
shift in E-OBS.

DIFFrel values are small (mainly between –10% and 
10%) over Serbia suggesting that the amount of precipita-
tion obtained from the E-OBS is similar to the amount of 
precipitation obtained from the CarpatClim in this region 
(Fig. 4a–b). We found similar results over Czechia, over the 
Carpathians in Romania, over the south-western part of Slo-
vakia, and over the north-western part of Hungary.

The largest RMSE values (~8 mm/day) and the weakest 
rt values (<0.6) appear over the Ukrainian Carpathians in 
the analysed domain. The largest DIFFrel values appear also 
in this region, where the underestimation of precipitation 
in case of the E-OBS reaches 50% compared to the Car-
patClim. Since the variation in topography is much higher 
in mountainous areas, the above-mentioned features can be 
considered as a consequence, which is enforced by the lack 
of appropriate number of stations resulting in a less detailed 
precipitation field in E-OBS. It is worth mentioning that 
despite the smaller DIFFrel (between –10% and 10%) and 
RMSE values (~4 mm/day) over the eastern part of Ukraine 
compared to the Ukrainian Carpathians, the rt values are 
relatively weak over the whole country (0.5–0.8).

Fig. 3   The main steps of the method
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Over most of the territory of Hungary, RMSE and DIFFrel 
values are as large as in Ukraine (~4 mm/day and between 
–10% and –30%, respectively) compared to Czechia, Ser-
bia, and Romania. The rt values over the south-eastern parts 
of Hungary are similarly weak as over western Ukraine 
(0.5–0.7). This is caused by the sparse station density over 
these regions in E-OBS dataset, which implies that E-OBS 
represents the temporal and spatial distribution of the pre-
cipitation much worse compared to CarpatClim.

Differences between the E-OBS and CarpatClim data-
sets often follow country borders, namely, the rt and RMSE 
values follow the Ukrainian-Romanian border and the 

Hungarian-Romanian border. Furthermore, the RMSE values 
follow the Serbian-Croatian and the Serbian-Hungarian bor-
der even after the data correction described in Chapter 2.4. 
The main reason behind these discrepancies is probably 
the unequal distribution of measuring stations (Fig. 2) and 
data policy. Each participating country of the CarpatClim 
project exchanged data only with neighbouring countries 
in case of stations within a belt of 50 km from their borders 
(Spinoni et al. 2015), which could affect data homogeniza-
tion along the borders. This issue with the borders appeared 
in other studies, which focus on the CarpatClim dataset (e.g. 
Kis et al. 2015; Ács et al. 2021; Bandhauer et al. 2022). 

Fig. 4   Relative difference (DIFFrel, a–b), RMSE (c–d) and tempo-
ral correlation (rt, e–f) between CarpatClim and E-OBS for precipi-
tation in 2010. Maps of the left (right) column are based on the sta-

tions from E-OBS before (after) the dataset correction. The black 
dots indicate the precipitation stations from E-OBS dataset. (Iso-
lines represent topography.)
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Furthermore, the topography near the borders often changes. 
Consequently, the reduced density of stations is not able to 
capture the influence of topography on the climatic param-
eters (Sidău et al. 2021) which results in relatively large 
RMSE values.

Note that, the RMSE values between the E-OBS and 
CarpatClim are evidently close to zero in areas where both 
datasets contain the same precipitation stations (Fig. 4). 
This result is similar to Ly et al. (2011), who also examined 
RMSE over Belgium with different observational datasets. 
They found that the values of points close to the sample 
points were more likely to be similar than those that are 
further apart

Unlike in case of precipitation, major differences 
between the E-OBS and CarpatClim cannot be detected 
when temperature is analysed (results vary between –1 °C 
and 1 °C over the plains, Fig. 5a). More specifically, the 
results do not follow country borders. The distribution of 
stations with temperature measurements is more uniform 
than the distribution of stations with precipitation measure-
ments, although it does not imply enhanced station den-
sity. However, temperature varies in a smaller extent than 
precipitation.

The absolute value of DIFF is large over the mountains, 
but both positive and negative DIFF values (–5 °C and 5 °C) 
are presented. It could be caused by the difference between 
the datasets, namely E-OBS contains area-mean temperature 
over the grid cell, while CarpatClim contains point value, 
which causes the bigger differences over a complex topog-
raphy due to the high elevation variability within the grid 
cell. In general, the RMSE values are smaller than 2 °C and 
the rt values between the two datasets are close to 1 due to 
the overall dominance of the annual course in temperature, 
but some dependencies on topography is observed (Fig. 5c). 
The RMSE values are larger (~4 °C), and the rt values are 
slightly weaker (~0.95) over the mountains than over the 
plains. These can be explained by the same characteristics 
as in the case of DIFF.

3.1.2 � Spatial distribution of the variables

The spatial distribution of the variables (VE, PR, PR_ST, 
TAS, TAS_ST) for CarpatClim and E-OBS is shown in Fig. 6 
(for the variable E, Fig. 2).

According to Fig. 6, the two observational datasets 
show similar spatial distribution for PR and TAS. In case 
of PR, the higher values occur over the mountains, and 
the precipitation decreases from west to east. The effects 
of the altitude (orographic enhancement) and the dis-
tance from the Mediterranean Sea and Atlantic Ocean 
influence the precipitation amount. Among those, the 
Atlantic Ocean exerts the largest effect on precipita-
tion (Bihari et al. 2018). The lowest precipitation values 

occur in the eastern part of the domain with ~600 mm in 
CarpatClim and ~500 mm in E-OBS.

In the case of TAS, the topographical features can be 
clearly seen (Fig. 6). Lower mean values appear at higher 
elevations in both datasets. The warmest area (13 °C) has 
a larger extent over the lowlands in CarpatClim than in 
E-OBS. The western part of the domain and Ukraine are 
slightly warmer (by ~1 °C) in CarpatClim than in E-OBS, 
but CarpatClim is colder over the mountains.

Maxima of PR at Carpathians are underestimated and 
oversmoothed, while TAS is oversmoothed in E-OBS com-
pared to CarpatClim, which is probably a direct consequence 

Fig. 5   The difference (DIFF, a), RMSE (b) and temporal correlation 
coefficient (rt, c) between E-OBS and CarpatClim for daily tempera-
ture in 2010. The black dots indicate the temperature stations from 
E-OBS (Isolines represent topography.)
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Fig. 6   The spatial distribution 
of variability of elevation (VE), 
annual total precipitation (PR), 
effect of station density for 
precipitation (PR_ST), annual 
mean temperature (TAS) and 
effect of station density for tem-
perature (TAS_ST) in Carpat-
Clim (left) and E-OBS (right) 
in 2010. (Isolines represent 
topography)
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of the lower underlying network density at high elevation 
areas in E-OBS (Kotlarski et al. 2019; Bandhauer et al. 
2022). In areas where E-OBS relies on dense observations, 
the agreement with CarpatClim is much better (e.g. High 
Tatras in the northern part of Slovakia).

VE is higher in CarpatClim than in E-OBS, especially 
over the Southern Carpathians and Western Carpathians 
(~80 m in CarpatClim and ~60 m in E-OBS). These dif-
ferences are caused by the fact that the elevation field of 
CarpatClim is more detailed than that of E-OBS (Fig. 2 and 
Table 2).

According to Fig. 6, PR_ST is larger in CarpatClim than 
in E-OBS, mainly in the western part of the domain, where 
the number of stations is ~11/2500 km2 in CarpatClim and 
~1/2500 km2 in E-OBS. The station coverage of the East-
ern Carpathians is relatively homogeneous in CarpatClim, 
while E-OBS contains only a few stations over this region 
and there are no stations in the Ukraine, which could cause 
uncertainty in the results. In E-OBS dataset, the largest sta-
tion density occurs over Czechia with ~4/2500 km2.

The TAS_ST derived from CarpatClim covers the whole 
area homogeneously. The pattern of E-OBS for TAS_ST is 
very similar to PR_ST. The densest part in E-OBS is over 
Czechia with 3/2500 km2.

3.2 � Comparing observational datasets: analysis 
of the relationships between the variables

The strength and reliability of the linear relationship 
between the pairs of variables with respect to precipitation 
and temperature are assessed in the followings.

Based on the distributions of the correlation values 
(rs,original and rs,random) presented in Fig. 7, there are signifi-
cant relationships between PR and E, PR and VE and PR 
and PR_ST, respectively. It can be noted that the median 
of rs,original values is close (<0.01) to the rs values between 
the non-sampled pairs of variables (where all the 5895 grid 
cells are considered, hereafter median of rs,original values is 
referred to as rs).

The strongest correlation is detected between PR and E 
(0.57 in CarpatClim and 0.52 in E-OBS) which indicates 
that the mountains affect precipitation, as the orographic 
lifting of air masses favours condensation and cloud for-
mation (Smith 1979). The U value associated to PR and 
E is less than 1% in both datasets indicating reliable rela-
tionship between the variables. The relationship between 
PR and VE is weaker (rs=0.48 in CarpatClim and rs=0.36 
in E-OBS) and the associated U is still under 5%. The 
relatively large difference (0.12) between the correlations 
obtained from CarpatClim and E-OBS and stronger cor-
relations in CarpatClim than in E-OBS are explained by 
the fact that CarpatClim contains more stations over the 
mountains. Therefore, PR is more realistic in CarpatClim 

than in E-OBS (Table 2 and Fig. 6). This highlights the 
need for large number of stations if regional and local 
scale precipitation features are of interest, especially in 
mountainous regions. The rs value between PR and PR_ST 
is only significant (0.23) in CarpatClim with increasing 
U (~28%). The sparse station density in E-OBS causes 
non-significant rs values and larger U values. In general, 
interpolation accuracy decreases as the station density 
decreases, and it is less accurate for variables with greater 
spatial variability (e.g. precipitation) and over complex 
topography (Hofstra et al. 2009).

No significant linear relationships were detected between 
E and PR_ST and between VE and PR_ST. These results 
depict that the locations of the stations do not depend on 
orography but instead on historically existing settlements.

Large negative rs values appear between E and TAS 
(rs=–0.86 in CarpatClim and rs=–0.9 in E-OBS, Fig. 8), 
because air temperature decreases with elevation. The asso-
ciated U values are close to 0%. Significant, but weaker 
correlations are detected between VE and TAS (rs=–0.57 in 
CarpatClim and rs=–0.61 in E-OBS) with the associated U 
values ~0.1%. There are slight differences between the rs 
values obtained from the two observational datasets, which 
may come from the different algorithms used in CarpatClim 
and E-OBS to derive temperature (Sections 2.2.1-2.2.2).

The relationship between TAS_ST and VE is remarkably 
different if CarpatClim or E-OBS is analysed. The rs value 
obtained from E-OBS is not considered as significant (rs≈0), 
while weak but significant rs value is detected in case of 
CarpatClim (rs=0.2). The associated U values are ~88% 
and 37%, respectively. No significant relationships were 
identified in cases of other pairs of variables (TAS_ST-E, 
TAS_ST-TAS).

In summary, the relationship between PR and VE is 
slightly different, and the relationship between PR and 
PR_ST is significantly different if CarpatClim or E-OBS is 
examined. It is clear that station density affects the spatial 
distribution of temperature to a lesser extent than elevation. 
Significant difference between the two datasets is detectable 
only in case of one pair of variables (TAS_ST-VE). These dif-
ferences are further examined by k-mean clustering, which 
results are presented in the scatterplots in Fig. 9.

Two clusters are detected in all the four cases (for pre-
cipitation and temperature obtained from CarpatClim and 
E-OBS). The first cluster contains pairs of variables, which 
relationships are considered reliable, i.e. strong correla-
tions (rs>0.4 and rs<–0.4) and small U values (U<30%). 
The second cluster contains pairs of variables, which rela-
tionships are considered less reliable, i.e. weak correlations 
(–0.2<rs<0.2) and large U values (U>30%).

Figure 9 shows that the pair of variables PR-PR_ST 
belong to different cluster depending on the analysed 
observational datasets, namely to the first cluster in 
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Fig. 7   Probability density func-
tions (PDFs) of the original and 
random correlation coefficients 
(rs,original and rs,random) based on 
sampled datasets for precipita-
tion in CarpatClim (left) and 
E-OBS (right). The red vertical 
lines and r denote the median of 
the rs,original values. The asterisks 
indicate significant correla-
tions at the significance level 
of 0.05. The blue shaded area 
and uncertainty (U) indicate 
the overlapping area of the 
PDFs, and it is expressed in 
percentage. The method with 
its interpretation is described in 
detail in Section 2.3.2.
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Fig. 8   Probability density func-
tions (PDFs) of the original and 
random correlation coefficients 
(rs,original and rs,random) based on 
sampled datasets for tempera-
ture in CarpatClim (left) and 
E-OBS (right). The red vertical 
lines and r denote the median of 
the rs,original values. The asterisks 
indicate significant correla-
tions at the significance level 
of 0.05. The blue shaded area 
and uncertainty (U) indicate 
the overlapping area of the 
PDFs, and it is expressed in 
percentage. The method with 
its interpretation is described in 
detail in Section 2.3.2.
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CarpatClim and to the second cluster in E-OBS. Although, 
the correlation is significant between TAS_ST-VE only in 
CarpatClim, it belongs to the second cluster in both obser-
vational datasets.

3.3 � Results obtained from the estimation 
of the effects of uncertainty of observational 
datasets on the evaluation of RCMs

As already shown above, the relationships between the vari-
ables are affected by the observational datasets. The effect 
of the selected observational dataset on the assessment of 
the climate simulations of the RegCM was quantified by the 
metric RE which is shown in Fig. 10.

Possible improvements of RegCM simulations com-
pared to ERA-Interim can be detected for precipitation 
(Fig. 10a–b) and for temperature (Fig. 10c–d) in cases of 
the two observational datasets (CarpatClim and E-OBS). 
The simulations show improvements (positive RE values) 
over areas that are more densely covered with stations and 

lowlands in case of precipitation. However, if we compare 
the RE values obtained from E-OBS and CarpatClim for 
precipitation, significant differences can be found. The 
area with positive RE is larger in CarpatClim than E-OBS, 
because the former contains more stations than the latter. 
Larger negative RE values appear over mountain ranges and 
peaks in E-OBS (Fig. 10b), which indicates that the evalu-
ation over those regions shows large uncertainty because of 
the sparse observational network in E-OBS. The greatest 
difference between the RE fields for the two observational 
datasets also appears over the mountains in Ukraine, where 
the results show an improvement against ERA-Interim in 
CarpatClim, but not if we compare the RegCM simulation 
results to E-OBS (Fig. 10a–b). According to this result, cli-
mate simulations must be evaluated carefully over the moun-
tains, because this uncertainty in observational data could 
lead to significant differences. This outcome is confirmed by 
the significant positive rs values between RE and PR_ST in 
case of CarpatClim (~0.3) and by significant negative rs val-
ues between RE-E and RE-VE in E-OBS (~–0.3), according 

Fig. 9   Scatterplots for uncer-
tainty (U) and the median of the 
rs,original values (r) obtained from 
CarpatClim (left) and E-OBS 
(right) for precipitation (a–b) 
and temperature (c–d). Two 
clusters of the pairs of variables 
are detected in all four cases: 
the first cluster (which contains 
pairs of variables with reliable 
relationship) is distinguished 
from the second cluster (which 
contains pairs of variables with 
less reliable relationship) with 
underlined variables. The green 
(red) dots show the pairs of 
variables with significant (non-
significant) r values at a level 
of 0.05
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to Table 4, part a. We assume that this is the effect of the 
sparse observational network over these regions (especially 
over mountainous area), which cannot represent the precip-
itation adequately. Uncertainties in observational datasets 
tend to decrease in regions where all datasets have a high 
station density (approximately 22% for CarpatClim and 15% 

for E-OBS from the total Carpathian region). This highlights 
the need for high station densities if regional and local scale 
precipitation features are of interest, especially in moun-
tainous regions. Without such high station density behind 
gridded reference datasets, one cannot be certain whether 
RCM simulations have bias, or they represent reality, but 
the reference dataset is not detailed and accurate enough.

For temperature, the largest positive values of RE are 
found over the mountains in case of both datasets: the higher 
resolution of the simulations has improvement compared to 
the ERA-Interim, especially in regions with the most com-
plex orography (Fig. 10c–d) in accordance with the results 
of Prömmel et al. (2010).

Differences between RE values obtained from E-OBS and 
CarpatClim for temperature are smaller than in case of pre-
cipitation which is confirmed by similar rs values in Table 4, 
part b (rs values for RE-E and RE-VE are ~0.6 and for RE-
TAS are ~–0.4 for both datasets). Negative rs values between 
RE and TAS imply that RE values are high in the mountains. 
However, differences can be visually detected if the area 
covered by positive RE values are examined, namely, this 
area is larger in CarpatClim than in E-OBS (24% and 22%, 
respectively).

Fig. 10   Reduction of error (RE) for precipitation (a–b) and tempera-
ture (c–d) for CarpatClim (left) and E-OBS (right). The dots (one sta-
tion on a grid cell) and crosses (two stations on a grid cell) indicate 

the stations. The percentage shows the rate of the positive RE value. 
(Isolines represent topography.)

Table 4   The median of the rs,original values and uncertainties in % (in 
parenthesis) between RE and the variables E, VE, PR and PR_ST in 
section (a) and E, VE, TAS and TAS_ST in section (b). The numbers 
with asterisk indicate significant correlation coefficients at the level 
of 0.05

(a) Precipitation (b) Temperature

CarpatClim E-OBS CarpatClim E-OBS
E −0.07 −0.26* E 0.62* 0.59*

(76.80%) (22%) (0.10%) (0.10%)
VE −0.14 −0.31* VE 0.6* 0.64*

(51.50%) (12.80%) (~0%) (~0%)
PR 0.19 −0.09 TAS −0.44* −0.43*

(51.50%) (67.60%) (2.90%) (2.60%)
PR_ST 0.32* 0.19 TAS_ST 0.19 0.02

(9.50%) (31.70%) (36.90%) (90.40%)
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The scatterplots in Fig. 11 between rs and U values (Table 4) 
shows that the strengths of the relationships between the RE 
and variables are different in the two datasets.

The strongest relationship (the smallest U and the larg-
est rs) for precipitation appears between RE-PR_ST in Car-
patClim and RE-VE in E-OBS (in both cases U is ~10%). 
Meanwhile, the weakest relationship (the largest U and the 
smallest rs) can be found between RE-E in CarpatClim and 
RE-PR in E-OBS (the U is 76% in CarpatClim and 67.6% 
in E-OBS).

For the temperature, the U is very small (<1%) between 
RE and E, between RE and VE and between RE and TAS 
in both datasets. While the weakest relationship occurs 
between RE-TAS_ST pair in both datasets, but the difference 
between the U values is ~42% in favour of CarpatClim. The 
low station density in E-OBS can cause this high uncertainty 
compared to CarpatClim. According to RE, the key vari-
able is different for precipitation and temperature: PR_ST 
is crucial for precipitation, while E has the greatest effect 
on temperature.

The results of k-means clustering show different num-
ber of clusters for the two datasets for precipitation, namely 
three clusters for CarpatClim and two clusters for E-OBS 
(Fig. 11a–b). RE has considerable relationship only with 
PR_ST in CarpatClim, which is the first cluster. The second 
cluster contains PR and VE, while E is in the third cluster. 
The relationship between RE and other variables in E-OBS 
is less obvious than in CarpatClim. The first cluster con-
tains significant and non-significant pairs of variables as 
well concerning the rs values (significant: RE-VE, RE-E; 
non-significant: RE-PR_ST) in E-OBS. Only PR belongs to 
the second cluster, and this relationship is not reliable at all.

For temperature, there are two clusters in both observa-
tional datasets, and the members of the groups are the same. 
RE-E, RE-VE, RE-TAS pairs are in the first group and all 
of the rs between the RE and the variables are significant 
(Fig. 11c–d). This result proves that the dynamical down-
scaling is important over complex topography. The second 
cluster contains only TAS_ST, which means that the location 
of stations does not have direct effect on RE.

Fig. 11   Scatterplots for uncer-
tainty (U) and the median of 
the rs,original values (r) obtained 
from CarpatClim (left) and 
E-OBS (right) for precipitation 
between RE and the variables 
E, VE, PR and PR_ST (a–b) 
and for temperature between 
RE and the variables E, VE, 
TAS and TAS_ST (c–d). The 
1st cluster is distinguished from 
the 2nd cluster with underlined 
variables and from the 3rd 
cluster with dotted underlined 
variables. The green (red) dots 
show the pairs of variables with 
significant (non-significant) r 
values at a level of 0.05
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Our results show that these improvements depend on the 
climate variable, topography, reference dataset, and appli-
cations using the RCM output. Prömmel et al. (2010) pub-
lished similar results over the Alps with the REMO RCM, 
but analysed only temperature. Our study extends previous 
analyses because it focuses on the Carpathian region includ-
ing both the mountainous and plain areas and contains addi-
tional variables besides temperature and precipitation.

Our results exhibit the potential improvements of RegCM 
simulations against the driving data according to RE values. 
As it can be seen in Fig. 11, the dependency of the RE on 
the chosen reference dataset can be clearly determined by 
calculating rs between RE and the variables and the associ-
ated U values.

Kotlarski et al. (2019) mentioned the uncertainties in the 
observational reference datasets directly translate into uncer-
tainties in model evaluation results. Our results confirm the 
importance to assess the relationships between all available 
variables for quantifying the uncertainties in the datasets, as 
using different observational datasets can lead to different 
evaluation results especially in case of precipitation.

4 � Conclusions

A specific novel evaluation method was introduced in this 
study which combines widely known metrics and statistical 
techniques (e.g. comparison of spatiotemporal distributions 
by DIFF, RMSE and rt, applying the metric RE and k-means 
clustering) to quantify the uncertainties in the observational 
datasets and how these uncertainties affect the evaluation of 
RCM simulations. Besides precipitation and temperature, 
our method uses geographic variables (e.g. elevation, vari-
ability of elevation, effect of station) that are considered as 
uncertainty sources. The method was applied to the obser-
vational datasets CarpatClim and E-OBS and to the RegCM 
simulations driven by ERA-Interim based on 2010 in the 
Carpathian region. 2010 was the wettest year in this area 
since the beginning of regular measurements, and thus, the 
climate simulations for such extreme conditions can pro-
vide important validation results to be used in impact studies 
later. Through our comprehensive analysis, we pointed out 
that the analysis of the time series of the variables from the 
observational datasets is useful for error detection as well.

Significant differences were found between the obser-
vational datasets. The spatial distribution of the examined 
climatic and geographical variables shows that CarpatClim 
is wetter over the whole region (mostly over the mountains, 
where the difference could be up to 50%) than E-OBS, 
because of the much lower number of stations in E-OBS. The 
temperature fields are similar in the two datasets; however, 
E-OBS is a little warmer than CarpatClim over the moun-
tains; and the representation of orography is more detailed 

in CarpatClim than in E-OBS. However, a shortcoming in 
CarpatClim is the appearance of the borders between some 
countries (e.g. between Hungary and Romania, Hungary and 
Ukraine), which may result from the inhomogeneities in the 
data and lower station density in Romania and Ukraine. The 
higher differences between the datasets in the mountainous 
areas can be associated with the different grid representation 
of the datasets, namely, E-OBS uses area-mean values for 
the grid cells, whereas CarpatClim contains point-values.

In accordance with previous studies, we found that the 
influence of observational uncertainty is larger for precipita-
tion than for temperature. However, CarpatClim is certainly 
more reliable compared to E-OBS in case of precipitation, 
because it is based on a greater number of stations than 
E-OBS. The difference between the two datasets was not as 
remarkable for temperature as for precipitation, but the alti-
tude dependence of temperature is a little stronger in E-OBS 
than in CarpatClim (0.9 vs. −0.86, respectively).

The joint investigation of spatial correlations between the 
pairs of variables and the associated uncertainties was useful 
to distinguish the pairs of variables based on reliability of 
their relationships. We found that the topography is important 
in case of precipitation and in case of temperature as well, 
but the effect of station density has stronger relationship with 
precipitation and in case of CarpatClim. This difference may 
be caused by the reduced number of stations in the E-OBS.

This is the first time, where RE metric has been used for a 
detailed evaluation of observational datasets. Using RE met-
rics, we have showed that the choice of observation dataset 
has a substantial effect on the evaluation of RegCM simula-
tions. For precipitation, RegCM has improvement compared 
to ERA-Interim where the station network is dense over 
mountains (e.g. in the Carpathians in Ukraine resulted in the 
increase of RE in case of CarpatClim compared to E-OBS), 
while the station density over lowlands is less important. 
Overall, 22% of the Carpathian region show improvement, 
when using RegCM simulations and validating against Car-
patClim. For temperature, we found that in regions with the 
most complex orography, the high-resolution RegCM sim-
ulations clearly improve the representation of temperature 
compared to the ERA-Interim in both datasets (over 22-24% 
of the total Carpathian region).

The main conclusion of the paper is that even small differ-
ences between the reference datasets can cause significant dif-
ferences in the RCM evaluation, which can be captured by the 
analysis of the relationships between the RE and the variables. 
Concerning the RegCM evaluation, the main differences based 
on the reference datasets are detected in case of precipitation 
where PR_ST has a stronger relationship with RE in CarpatClim. 
This indicates that a sufficiently large number of stations repre-
sent the spatial variability of precipitation and extreme values 
more accurately, which are crucial for RCM evaluation. The E 
and VE are in strong negative correlation with RE in E-OBS 
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indicating the sparse station network over the mountainous area 
cannot represent local scale precipitation features.

Following our results, we can evaluate RCM simulations 
properly, if observational uncertainties are considered, espe-
cially in a year with extreme precipitation events. We strongly 
encourage to use reference data sets with a high station density 
background. The higher the station density behind the reference 
data, the more reliable the validation procedure. Our method is 
beneficial not only for comprehensive comparison of observa-
tional datasets, but also for quantifying the differences and for 
error detection. We illustrated the use of the complex method 
on a special case study; however, the main message of the study 
is that it can be applied to other datasets, different time periods 
(even much longer) and areas with complex topography.
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