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This article shines new light on the classical problem of tiling rectangles with squares 
efficiently with a novel method. With a twist on the traditional approach of resistor 
networks, we provide new and improved results on the matter using the theory 
of Diophantine Approximation, hence overcoming long-established difficulties, such as 
generalizations to higher-dimensional analogues. The universality of the method is 
demonstrated through its applications to different tiling problems. These include tiling 
rectangles with other rectangles, with their respective higher-dimensional counterparts, as 
well as tiling equilateral triangles, parallelograms, and trapezoids with equilateral triangles.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Tiling rectangles by squares has been a popular topic for more than 100 years. The first fundamental result is the 
following.

Theorem 1.1 (M. Dehn [4], 1903). If a rectangle is tiled by squares then the aspect ratio of the rectangle is rational.

A variety of proofs of Theorem 1.1 have been discovered since then, with a particular standout being from a paper by 
R.L. Brooks et al. [1] in 1940. This paper presents a one-to-one correspondence between a squared rectangle and a resistor 
network, with any solution to Kirchoff’s equations being exactly the sizes of the square tiles. Using the physical theory of 
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resistor networks, the problem is easily transformed into a graph theoretic one. In fact, Dehn proved a stronger version of 
Theorem 1.1 (later referred to as “Strong Dehn’s Theorem”) [4]: If a rectangle is tiled by squares then the side lengths of the 
squares are all rational multiples of the side lengths of the rectangle.

A natural next step of development is to investigate the possible rational numbers that could represent the ratio of the 
sides of a particular tiling; for example, is there anything one could conclude about the ratio given the number of tiles 
used? Specifically, two versions of this problem are well-studied historically:

(1) [Coprime Rectangle Tiling] What is the minimal number of square tiles of integer side lengths needed to tile a rectangle 
of size p × q, where p, q ∈Z and (p, q) = 1?

(2) [Prime Tiling, also known as Mrs Perkins’s quilt] What is the minimal number of square tiles of jointly coprime (integer) 
side lengths needed to tile a rectangle of size p × q, where p, q ∈Z?

It should be more or less clear that Prime Tiling is a more general problem than Coprime Rectangle Tiling, as any integer 
tiling of a coprime rectangle p × q cannot have common factors among the side lengths of its tiles: otherwise this would 
also be a common factor between p and q. Therefore, any result on Prime Tiling automatically applies to Coprime Rectangle 
Tiling. For each of these two questions, many lower and upper bounds on the number of tiles needed were established in 
the past endeavors.

Regarding the Coprime Rectangle Tiling problem, Kenyon [6] (1996) continues to utilize the theory of resistor networks 
to give an upper bound on the number of tiles needed. It is proved that for any coprime p, q with p > q, a p × q rectangle 
can be tiled using less than p/q + C log(p) squares with integer side lengths, which can be easily extended to an upper 
bound for the Prime Tiling problem.

As for lower bounds, Conway [3] (1964) established a lower bound on the number of tiles for a Prime Tiling using the 
resistor approach yet again: a prime tiling of a p × q rectangle requires at least log2(max{p, q}) tiles. Conway’s result has 
been recently improved by D. Fomin [5], who proved the lower bound logτ (max{p, q}), where τ ≈ 1.8637 . . ..

However, as noted at the end of both [1] and [6], the very natural higher dimensional, or even 3-dimensional, analogues 
of the above two problems of tiling hypercuboids with hypercubes are very difficult to attack. This is largely due to the 
fact that “there is no satisfactory analogue [of resistor networks] in three dimensions,” as stated in [1]. One of the best 
results in higher dimensions so far is found in [9] by M. Walters in 2009, who proves an upper bound of (log p)O (d) and 
a lower bound of �((log p)d/2) for the d-dimensional analogue of the Coprime Rectangle Tiling problem where p denotes 
the longest side length. While this upper bound could be worked into an upper bound in the higher dimensional Prime 
Tiling problem, the lower bound simply does not extend to the higher dimensional Prime Tiling problem as we shall see 
later in this introduction in a counterexample of a prime tiling of hypercubes whose number of tiles is linear in log(p). 
One will also notice that the lower bound in [9] is obtained by taking a 2-dimensional cross section of the hypercube tiles, 
circumventing but not resolving the issue noticed above in [1] and [6].

Our goal is to give lower bounds to the Prime Tiling problem, i.e. Mrs Perkins’s quilt, both in 2-dimensions and higher 
dimensions, as well as lower bounds for natural related questions about some more general tilings. To achieve this, we first 
rephrase the problem at hand, switching to a completely new perspective, and introduce novel techniques to the problem 
to avoid the known difficulties.

We formally state the Prime Tiling problem, i.e. Mrs Perkins’s quilt here again:
(1) What is the minimal number of square tiles with integer side lengths required to tile a p × q rectangle, given that the lengths of the 
square tiles are jointly coprime?

While this is a perfectly valid and natural problem, we study an equivalent one that is phrased quite differently:
(2) Suppose a rectangle is tiled by n squares. How large is the minimal-sized scaling of the rectangle such that all of its square tiles 
have integer side lengths?

These are equivalent questions in the sense that, a lower bound for the minimal number of square tiles required is 
equivalent to an upper bound on the size of the scaling. For example, the above mentioned log2(max{p, q}) estimate of 
Conway in [3] is equivalent to the statement that if a rectangle is tiled by n squares then there is a scaling of it with 
longest side length at most 2n such that all square tiles have integer side lengths. In fact, (2) can even be considered as a 
quantitative strong Dehn’s Theorem, while estimates for (1) only imply estimates for (2) by using strong Dehn’s theorem.

The difference in the perspectives of these equivalent problems allows us to think outside of the box and apply new 
techniques that otherwise would never be considered. In our paper, we develop such a technique through a brand new 
approach to this classical problem, and apply it in various settings, demonstrating its universality in dealing with such tiling 
problems. In the classical case of Mrs Perkins’s quilt we prove the following:

Theorem 1.2. For any tiling of a rectangle by n squares, one can find a scaling of it with longest side length at most 4n such that all 
squares have integer side lengths.

This result translates to a lower bound of 1
2 log2(max{p, q}) in the Prime Tiling problem. Although the new machinery 

gives weaker results in this case compared to Conway and Fomin, we shall see that it is able to break many barriers which 
the classical method has thus far failed to overcome.

In order to prove Theorem 1.2, we demonstrate the following result, which seems to be interesting in itself:
2
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Theorem 1.3. Suppose a rectangle is tiled by squares and both x-coordinates or both y-coordinates of the vertices of the rectangle are 
integers. If each coordinate of every vertex of each square tile has distance less than 1

4 to an integer, then all square tiles have integer 
side lengths.

In order to use Theorem 1.3 to obtain Theorem 1.2, we will use the Simultaneous Version of Dirichlet’s Approximation 
Theorem (Theorem 2.3) to re-scale the tiled rectangle and ensure that all coordinates of all tiling squares have distance less 
than 1

4 to an integer. To optimize the scaling factor as much as we can, we provide a sharp estimate (Lemma 4.1) for the 
number of distinct coordinates in a rectangle tiling.

Although we prove Theorem 1.3 from scratch, the proof was partly inspired by the resistor network technique mentioned 
above (see more explanation before Lemma 3.1).

In fact, the previously mentioned result of Fomin [5] is more general: he proved that if a rectangle of size p × q is tiled 
by smaller rectangles of side length ratio pi/qi with (pi, qi) = 1 (i = 1, . . . , n) such that the side lengths of the rectangle 
tiles are jointly coprime then

max{p,q} ≤
n∏

i=1

τmax{pi ,qi}, where τ ≈ 1.8637.

With our approach, we prove the following result which is weaker than the above result of Fomin when max{pi, qi} ≤ 6 for 
most i, but much stronger otherwise since 8x < τ x for x ≥ 7.

Theorem 1.4. Given a tiling of a rectangle by n rectangles with side length ratios pi/qi for pi, qi ∈ Z (i = 1, . . . , n), one can find a 
scaling of it with longest side length at most

8n
n∏

i=1

max{pi,qi}

such that all tiling rectangles have integer side lengths.

As for the higher dimensional analogue of the prime tiling problem, the lack of a higher-dimensional analogue of the 
resistor network technique made it hard for R. L. Brooks et al. [1] and Richard Kenyon [6] to generalize their results as 
mentioned above. On the contrary, the Diophantine approximation technique offers a simple solution: as long as we scale 
the tiling such that a 2-dimensional section of the tiling has only squares with integer side lengths, all hypercubes have 
integer side lengths. This way we will be able to prove the following:

Theorem 1.5. For any tiling of a d-dimensional hypercuboid by n hypercubes, one can find a scaling of it with the shortest side length 
at most 4

2(n−1)
d +1 and longest side length at most n · 4

2(n−1)
d +1 such that all tiling hypercubes have integer side lengths.

This roughly translates to a lower bound in the classical higher dimensional Prime Tiling problem of d
4 log2(p), which is 

not only a result in uncharted territory, it is also linear in log(p), which is tight up to a factor not depending on p as we 
will see in an example later.

Finally, we study tilings with equilateral triangles, focusing on parallelograms and equilateral triangles tiled by equilateral 
triangles. Three analogous problems arise in these types of tilings:

(1) [Coprime Parallelogram Tiling] What is the minimal number of equilateral triangle tiles of integer side lengths needed 
to tile a parallelogram (whose interior angles are 60o or 120o) with side lengths p and q, where p, q ∈Z and (p, q) = 1?

(2) [Parallelogram Prime Tiling] What is the minimal number of equilateral triangle tiles of jointly coprime (integer) side 
lengths needed to tile a parallelogram (whose interior angles are 60o or 120o) with side lengths p and q, where p, q ∈
Z?

(3) [Triangle Prime Tiling] What is the minimal number of equilateral triangle tiles of jointly coprime (integer) side lengths 
needed to tile an equilateral triangle with side length p ∈ Z?

By making use of the theory presented in [8] (specifically the equations (24) and (25) of page 471), one can apply the same 
techniques offered by [6] and [3] (with the Leaky Electrical Network defined in [2] and its respective matrix) obtaining a 
lower bound of n ≥ log2(p) for Triangle Prime Tiling and n ≥ log2(max{p, q}) for the parallelogram problems where n is the 
number of tiles used in the triangulation. Our estimates, which we present in the next theorem, are slightly worse than 
these lower bounds, however, we offer them here as it is a natural generalization of our technique in rectangular problems.

Theorem 1.6. For any tiling of an equilateral triangle by n equilateral triangles, one can find a scaling of it with side length at most 
4

2n−2
3 such that all triangle tiles have integer side lengths.
3
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Fig. 1. Example to witness the sharpness of 
Theorem 1.3.
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Fig. 2. An easy to generalize construction re-
lated to Theorem 1.2.

Fig. 3. Example to witness some sharpness of 
Theorem 1.6.

As before, this theorem gives a lower bound on the Prime Tiling problem of the form n ≥ 3
4 log2(p), where p ∈Z is the 

side length of the triangle.

How sharp are the above results? Theorem 1.3 is sharp in the sense that the constant 1
4 cannot be improved, we cannot 

even allow equality: one can decompose the square [−1, 1] × [−1, 1] into squares of side-lengths 3/4, 1/2 and 1/4 such 
that the coordinates of the vertices of the square tiles are 0, ±1/4, ±3/4 and ±1 (see Fig. 1).

The other results are sharp only in the sense that the exponential estimates are necessary. For Theorem 1.2, this is 
witnessed by the classical Fibonacci tiling: by induction a rectangle of size un × un+1 can be tiled by n squares of side-
lengths u1, . . . , un , where un is the n-th Fibonacci number, which shows that 4n cannot be replaced by anything better than 
un+1 ≈ ((

√
5 + 1)/2)n+1/

√
5 in Theorem 1.2. To get another construction, which is easier to generalize, we can trivially tile 

a unit square, for any positive integer k, into 3 squares of side length 2−i , for i = 1, .., k − 1, and 3 + 1 squares of side length 
2−k (see Fig. 2). This way we have n = 3k + 1 tiling squares, and the side length of the smallest one is 2−k = 2− n−1

3 . By 
replacing squares by equilateral triangles in the previous construction (see Fig. 3), we get a triangular tiling which shows 
that in Theorem 1.6 one cannot replace 4

2n−2
3 by anything better than 2

n−1
3 . Finally, by replacing 3 by 2d − 1 and squares by 

hypercubes in the square tiling, of which Fig. 2 is an example, we get a hypercube tiling which shows that in Theorem 1.5

one cannot replace 4
2(n−1)

d +1 by anything better than 2
n−1

2d−1 . In terms of the classical setting of Prime Tiling, this example 
tiles a d-dimensional hypercuboid with side length p = 2r by (2d − 1)r + 1 = (2d − 1)�log2(p)	 + 1 tiles, linear in log(p) as 
promised.

It is also worth noting, and easy to prove, that any tiling by rectangles of an axis-parallel rectangle in the Cartesian 
plane has axis-parallel rectangular tiles. So, from now on we will always assume that these tiles have axis-parallel sides. 
Something similar happens when dealing with equilateral triangle tilings, as the sides of the tiles will also be parallel to the 
respective sides of the tiled figure.

The paper is organized as follows. First, to illustrate and introduce some of our tools and techniques, we give a new 
simple proof of Max Dehn’s theorem in Section 2 using simultaneous Diophantine approximation. In Section 3, we prove 
Theorem 1.3. In Section 4, we prove the estimates about the number of distinct coordinates for rectangle tilings, hypercuboid 
tilings and for some triangle tilings and we prove Theorem 1.2. Section 5 proves our results about tilings with rectangles, 
Section 6 is about the higher dimensional generalizations, and Section 7 is about tilings with triangles.

2. A new proof of max Dehn’s theorem using Diophantine approximation

Notation 1. For x ∈R, we denote the distance between x and the closest integer to x by ‖x‖.

Definition 2.1. An important tool of this paper is the grid of ( 1
2 , 12 )-translates of the integer grid lines. The resulting grid 

is composed of lines of the form {k + 1
2 } × R (k ∈ Z), which we call 1

2 -shifted vertical grid lines, and by lines of the form 
R × {k + 1

2 }, which we call 1
2 -shifted horizontal grid lines. Here, we follow the convention that the x-axis is horizontal and is 

directed to the right, and the y-axis is vertical and directed upwards.

Max Dehn’s theorem and Diophantine approximation are connected via the following two observations.

Observation 2.1. Let R = [a, b] × [c, d] be a rectangle tiled by axis parallel squares. Suppose that

(i) at least one 1
2 -shifted vertical grid line intersects R,

(ii) the 1
2 -shifted vertical and horizontal grid lines do not contain any vertex of any square tile,

(iii) there are equal numbers of 1 -shifted vertical and 1 -shifted horizontal lines through each square.
2 2

4
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Then the aspect ratio of R is rational.

Proof. Let h and v be the number of 1
2 -shifted horizontal and 1

2 -shifted vertical grid lines that intersect R , respectively. 
By adding up the lengths of the intersections of the 1

2 -shifted vertical grid lines and the squares, we get v(d − c) and by 
adding up the lengths of the intersections of the 1

2 -shifted horizontal grid lines and the squares, we get h(b − a). By (iii) 
and because the sides of a square are equal, this implies that v(d − c) = h(b − a), and therefore d−c

b−a = h
v ∈Q. �

Observation 2.2. If ‖ai‖ < 1
4 for i = 1, 2, 3, 4 and a2 − a1 = a4 − a3 > 0, then there are equal numbers of 1

2 -shifted vertical and 
1
2 -shifted horizontal lines through the square [a1, a2] × [a3, a4].

Proof. As ‖ai‖ < 1
4 , we can write ai = Ai + εi uniquely for some Ai ∈ Z and εi ∈ (− 1

4 , 14 ). The number of 1
2 -shifted hori-

zontal and 1
2 -shifted vertical grid lines through the square are A4 − A3 and A2 − A1, respectively. Therefore, we only need 

to show A2 − A1 = A4 − A3.
Since we have a square and a2 − a1 = a4 − a3,

(A2 − A1) + (ε2 − ε1) = (A4 − A3) + (ε4 − ε3)

=⇒ (ε2 − ε1) − (ε4 − ε3) = (A4 − A3) − (A2 − A1).

However, the left-hand side is within (−1, 1) and the right-hand side is an integer. Hence, both sides of the equation are 
exactly 0, which completes the proof. �

Proof of Theorem 1.1. Therefore, by the above observations, in order to prove that the aspect ratio of a rectangle with 
square tiling is rational all we need to do is to re-scale the rectangle with the tiling such that both coordinates of every 
vertex of each square tile have distance less than 1

4 to integers and the side-lengths of the rectangle are at least 1. This 
is achieved by a scaling making the sides of the rectangle become at least 1 first and the scaling given by Theorem 2.3
afterwards. �

The existence of such a scaling is clearly guaranteed by the following well known theorem. To make the argument 
self-contained and because the proof is short and elegant, we include it.

Theorem 2.3 (Dirichlet’s Approximation Theorem, Simultaneous Version). Given real numbers {a1, ..., ak} and a natural number N > 0, 
there exists q ∈Z, 1 ≤ q ≤ Nk such that ‖qai‖ < 1

N for all i.

Proof. The proof is a simple application of the pigeonhole principle. Consider the cube [0, 1)k ⊂Rk , which is the union of 
the Nk disjoint cubes of the form [ i1

N , i1+1
N ) × [ i2

N , i2+1
N ) × · · · × [ ik

N , ik+1
N ) for (i1, . . . , ik) ∈ {0, . . . , N − 1}k . Take the Nk + 1

points ({Ma1}, . . . , {Mak}) ∈ [0, 1)k for 0 ≤ M ≤ Nk where {x} denotes the fractional part of x. By the pigeonhole principle, 
there are two points ({M1a1}, . . . , {M1ak}) and ({M2a1}, . . . , {M2ak}) with 0 ≤ M1 < M2 ≤ Nk which are both elements of 
the same cube. Then taking q = M2 − M1 suffices. �
3. Square tilings with almost integer side-lengths must have integer side-lengths

In this section, we exploit a very special property of the set of coordinates involved in a square tiling. Roughly speak-
ing, if all coordinates of each square are close enough to integers, then that necessitates, with a few extra conditions, all 
coordinates to be exactly integers.

The method used in this section, especially Lemma 3.1, may seem to be pulled out of thin air. However, it is inspired 
by the correspondence between resistor networks and tilings of rectangles: the side lengths of the tiles naturally produce 
a solution to Kirchoff’s equations (see [7]). We make an unexpected application of the uniqueness of this solution by using 
1
2 -shifted horizontal and vertical grid lines to produce another solution to obtain certain equalities. Now Lemma 3.1 is a 
proof of the uniqueness statement put into the tiling context, while Lemma 3.2 is its application. We shall use Lemma 3.1
for the function r(x) = 
x + 1/2�, and in that case, (iii) of Observation 2.1 will guarantee that (1) of Lemma 3.1 indeed holds.

Lemma 3.1. Suppose that a rectangle [a, b] × [c, d] is tiled by rectangles Ri = [ai, bi] × [ci, di] (i = 1, . . . , n) and we have a function 
r :R →R such that r(c) = c, r(d) = d and

(bi − ai) · (r(di) − r(ci)) = (r(bi) − r(ai)) · (di − ci) (i = 1, . . . ,n). (1)

Then for every i we have

r(ci) = ci, r(di) = di .
5
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Proof. Let δ(x) = r(x) − x. By subtracting (bi − ai) · (di − ci) from (1) we obtain

(bi − ai) · (δ(di) − δ(ci)) = (δ(bi) − δ(ai)) · (di − ci) (i = 1, . . . ,n). (2)

Take the union of the horizontal edges of the tiling rectangles and let S j = [u j, v j] ×{h j} ( j = 1, . . . , m) be its connected 
components. We can clearly suppose that h1 = c and hm = d. Thus the assumptions r(c) = c and r(d) = d imply that

δ(h1) = δ(hm) = 0. (3)

Using (2) first and then (3), we obtain

n∑
i=1

bi − ai

di − ci
· (δ(di) − δ(ci))

2 =
n∑

i=1

(δ(bi) − δ(ai)) · (δ(di) − δ(ci))

=
m−1∑
j=2

⎛
⎝ ∑

i:di=h j

(δ(bi) − δ(ai)) · δ(h j) −
∑

i:ci=h j

(δ(bi) − δ(ai)) · δ(h j)

⎞
⎠ .

Since for any j = 2, . . . , m − 1 the segment [u j, v j] × {h j} can be obtained both as the union of upper and lower edges of 
the rectangles of the tiling, we also have

δ(v j) − δ(u j) =
∑

i:di=h j

(δ(bi) − δ(ai)) =
∑

i:ci=h j

(δ(bi) − δ(ai)).

Thus the previous sum over j is zero, which implies that δ(di) = δ(ci) for every i. Notice that δ(c) = 0 and δ(ci) =∑
j∈S

(
δ(d j) − δ(c j)

) + δ(c) for some S ⊆ {1, . . . , n} with c j < d j ≤ ci for each j ∈ S due to the connectivity, hence 
δ(di) = δ(ci) = 0 for all i, which completes the proof. �

By applying Lemma 3.1 for r(x) = ⌊
x + 1

2

⌋
(in other words, the closest integer to x) we get the following.

Lemma 3.2. Consider a rectangle tiled by squares. Suppose that the conditions (i)-(iii) of Observation 2.1 are satisfied, and the vertices 
of the rectangle have integer y-coordinates. Then each square has side length equal to the number of 1

2 -shifted horizontal lines through 
it. In particular, all squares have integer side lengths.

Proof. Let r(x) = ⌊
x + 1

2

⌋
. We claim that the conditions in Lemma 3.1 are satisfied. Indeed, as c, d ∈Z, r(c) = c and r(d) = d

by (ii). For each i, bi −ai = ci −di is the side length of the square; r(bi) − r(ai) is the number of 1
2 -shifted vertical grid lines 

through the square, while r(di) − r(ci) is the number of 1
2 -shifted horizontal grid lines through the square by (iii). Hence 

(ci − di)(r(bi) − r(ai)) = (bi − ai)(r(di) − r(ci)). Applying Lemma 3.1 we get di − ci = r(di) − r(ci) for each i, which completes 
the proof. �
Proof of Theorem 1.3. Combining Lemma 3.2 with Observation 2.2, we clearly obtain Theorem 1.3. �
4. Bounding number of distinct coordinate values and the proof of Theorem 1.2

To use Theorem 1.3 we need to re-scale the tiled rectangle, by using the Simultaneous Version of Dirichlet’s Approx-
imation Theorem (Theorem 2.3), to make all coordinates of all the vertices of tiling squares closer than 1

4 to an integer. 
How many coordinates do we have to work with? If we have n square tiles then, trivially, we cannot have more than 4n
coordinates, and if we also notice that most coordinates are counted at least twice we get the immediate 2n + 2 esti-
mate. To optimize the scaling factor as much as possible, we prove the following sharp estimate for the number of distinct 
coordinates in a rectangle tiling. (To check that n + 3 is indeed sharp is left to the reader as an exercise.)

Lemma 4.1. Suppose that a rectangle R = [a, b] × [c, d] is tiled by rectangles Ri = [ai, bi] × [ci, di] (i = 1, . . . , n). Then the number 
of distinct x-coordinates plus the number of distinct y-coordinates of the vertices of the tiling rectangles R1, . . . , Rn is at most n + 3; 
that is,

#{a1, . . . ,an,b1, . . . ,bn} + #{c1, . . . , cn,d1, . . . ,dn} ≤ n + 3. (4)

Now we show how Lemma 4.1 completes the proof of Theorem 1.2, which we repeat here for convenience, and then we 
prove Lemma 4.1 in a more general form.

Theorem 4.2. For any tiling of a rectangle by n squares, one can find a scaling of it with the longest side length at most 4n such that all 
squares have integer side lengths.
6
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Proof modulo Lemma 4.1. We let the initial rectangle to have bottom left corner at coordinate (0, 0) and top left corner 
(0, 1), and let (0, 0) to (0, 1) be the longest side of the rectangle. Now consider the set

S := {x|(x, y) or (y, x) is a vertex of a square tile for some y} \ {0,1}.
From Lemma 4.1, |S| ≤ (n + 3) − 3 = n, where we take away 3 coordinates because we exclude {0, 1} and in the left-hand 
side of (4) the number 0 appears in both terms and 1 appears in the second term since (0, 0) and (0, 1) are vertices of the 
rectangle.

Applying Theorem 2.3 on the set of real numbers S with N = 4, we can find q ∈Z such that 1 ≤ q ≤ 4|S| and ‖qx‖ < 1
4

for all x ∈ S . Scale the tiling by a factor of q, then every vertex of each square has its coordinates in the form of qx for some 
x in S , and hence are closer than 1

4 to an integer. Also, the rectangle has bottom side coordinate 0 and top side coordinate 
q, which are both integers. Therefore by Theorem 1.3, all squares have integer side length.

Now, the longest sides of the rectangle have size q ≤ 4 |S| ≤ 4n . �
Remarks. 1. Without Lemma 4.1, using the trivial 2n + 2 estimate in (4) instead of n + 3, we would get this theorem with 
the slightly worse 42n−1 estimate instead of 4n .

2. Diophantine approximation is very carefully tailored to this situation. Not only does it very naturally guarantee the 
coordinates to be closer than 1

4 to integers, but the fact that q is an integer also helps to ensure both x-coordinates or both 
y-coordinates of the vertices of the scaled rectangle are integers.

Instead of proving Lemma 4.1 directly, we prove two generalizations of it. The first one (Lemma 4.3) will be needed for 
the higher dimensional variations, while the second one (Lemma 4.4) for the variants with triangle tilings, and either of 
them clearly implies Lemma 4.1.

Lemma 4.3. Suppose that a d-dimensional axis-parallel hypercuboid C is tiled by n hypercuboids {C1, . . . , Cn}. Then

(i) the intersection of the interior of C and the union of the boundaries of C1, . . . , Cn can be covered by n − 1 hyperplanes such that 
each hyperplane is perpendicular to one of the coordinate axes, and

(ii) there exist distinct i, j ∈ {1, . . . , d} such that the number of distinct i-th coordinates plus the number of distinct j-th coordinates 
of the vertices of the hypercuboids {C1, . . . , Cn} is at most

2(n − 1)

d
+ 4.

Proof. It is easy to see that the (i) implies (ii), so it is enough to prove (i). Fix one of the d axis directions, say i ∈ {1, . . . , d}, 
and consider the union of the 2n (d − 1)-dimensional faces of the C j ’s that are perpendicular to the given direction. Let 
Ti be the collection of connected components of this union. Define T ′

i to be Ti , but without the top and bottom (d − 1)-

dimensional faces of C and define T =�d
i=1 T ′

i , where here and in the sequel “top” indicates the largest i-th coordinate and 
“bottom” indicates the smallest i-th coordinate. Clearly, it is enough to prove that the set T contains at most n −1 elements.

We consider the natural partial ordering on the points of Rd , that is: we say that p � p′ if pi ≤ p′
i for each coordinate 

of p and p′ . Additionally, p is a minimal point of A ⊂Rd if p ∈ A and there does not exist p′ ∈ A such that p′ ≺ p. Clearly, 
any compact subset of Rd has at least one minimal point and any compact axis-parallel hypercuboid has a unique minimal 
point, which we call its bottom-left vertex.

For each S ∈ T we choose a minimal point p of S . Since T does not contain any top face of C this point p must be also a 
minimal point of a tiling cuboid C j . Also, as T does not contain any bottom face of C , this C j cannot be the cuboid tile that 
contains the bottom-left vertex of C . Therefore, to prove that T indeed has at most n − 1 elements, and thus to complete 
the proof of the lemma, it is enough to show that distinct S, S ′ ∈ T cannot have a common minimal point.

So, suppose that p = (p1, . . . , pd) is a common minimal point of these distinct S, S ′ . Choose i and i′ such that S ∈ T ′
i

and S ′ ∈ T ′
i′ . Clearly, i �= i′ . Due to the fact that S ∈ T ′

i , we have that for small enough ε the open line segment s between p
and p − εei , where ei denotes the unit vector in the direction of the i-th axis, is contained in C j for some j, see Fig. 4. As 
s is contained in the hyperplane of S ′ , the minimality of p in S ′ implies that s must be in the interior of C j . Furthermore, 
this implies that if we write C j = [u1, v1] × . . . × [ud, vd], then we must have vi = pi . But then the top (d − 1)-dimensional 
face of C j perpendicular to the i-th axis must be contained in S and so p is not minimal in S , which is a contradiction. �
Lemma 4.4. Suppose that T is tiled by tiles T1, . . . , Tn, where T and each Ti is a trapezoid with two horizontal sides or a triangle with 
a horizontal side. Then the intersection of the interior of T and the union H of the boundaries of T1, . . . , Tn can be covered by n − 1
lines.

Proof. Let L be the set of lines that contains at least one of the line segments of H . We need to show that #L ≤ n − 1. To 
this end, we define an injective, but not surjective, function f : L → {T1, . . . , Tn}.
7



T. Keleti, S. Lacina, C. Liu et al. Discrete Mathematics 346 (2023) 113442
C

C j

S

S ′
s

p

i′

i

Fig. 4. Cross section through p.

If � ∈ L is horizontal, then consider those tiles whose boundaries intersect � and are contained in the closed half-plane 
above �. It is easy to see that there exists at least one such tile and there is a clear ordering of these tiles from left to right, 
so, we can define f (�) as the leftmost one. If � ∈ L is non-horizontal then consider the tiles whose left edge is on � and let 
f (�) be the one with the lowest left side. Note that the bottom-left tile is not in the range of f since its domain L does not 
contain the left and bottom sides of T . Thus f is not surjective.

To prove that f is injective it is enough to check that we cannot have f (h) = Ti = f (v) for any horizontal h ∈ L and 
nonhorizontal v ∈ L. Suppose, to the contrary, that this is the case. Let (a, b) = h ∩ v . This point must be the bottom-left 
vertex of Ti . Now observe that v is not the left side of T because H is contained in the interior of T , so no line segment of 
H is contained in the boundary of T . Thus, for small enough ε > 0 the line segment s = (a − ε, a) × {b} must be contained 
in some tile T j . The segment s must be in the interior of T j , otherwise Ti would not be the leftmost tile whose boundary 
intersects h and is contained in the closed half-plane above h. Using that T j is a trapezoid with two horizontal sides or a 
triangle with a horizontal side, this implies that (a, b) is in the interior of the right edge of T j . Since Ti is the leftmost tile 
whose boundary intersects h and is contained in the closed half-line above h, there cannot be a tile between the right edge 
of T j and the left edge of Ti , so v contains the right edge of T j . But then, on the other side of v there must be at least one 
tile lower than Ti , contradicting f (v) = Ti . �
5. Tiling by rectangles

In this section, we consider tiling rectangles with smaller rectangles of pre-emptively fixed sizes and we prove Theo-
rem 1.4 mentioned in the introduction. We work under the set up that a rectangle is tiled by n smaller rectangular tiles, 
where the i-th tile has ratio-of-sides pi/qi , where pi ∈Z corresponds to the vertical side and qi ∈Z to the horizontal side. 
We investigate whether there will be similar results as the case of square tiles.

In the same manner as for squares, we get the following more general form of Lemma 3.2 by again applying Lemma 3.1
for r(x) = 
x + 1

2 �.

Theorem 5.1. Consider a rectangle tiled by n rectangles. Let the i-th rectangle, Ri, have ratio of its vertical side to its horizontal side 
equal to pi/qi where pi, qi ∈Z. Suppose that

(i) the vertices of the tiled rectangle have integer y-coordinates;
(ii) there is no vertex of any rectangular tile having y-coordinate with fractional part 1

2 ; and

(iii) the ratio of the number of 1
2 -shifted horizontal and 1

2 -shifted vertical grid lines through the ith tile is pi/qi or both numbers 
vanish.

Then each rectangle has horizontal side length equal to the number of 1
2 -shifted vertical grid lines through it.

Using a slightly different Diophantine approximation from the square case, we arrive at the following analogue of Theo-
rem 1.3.

Lemma 5.2. Given a tiling of a rectangle by n rectangles with the ratios of the vertical side to the horizontal side equal to pi
qi

with 
pi, qi ∈Z. Suppose the ith rectangle Ri has actual size ai × bi , and

• the vertices of the tiled rectangle have integer y-coordinates;
• for each i, the ratio ai/pi is closer than 1

2 max{pi ,qi} to an integer;

• all coordinates of each vertex of the tiles are closer than 1 to an integer.
4

8
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Then the side lengths of the ith rectangular tile are integer multiples of (pi, qi). In particular, the side lengths of all the rectangular tiles 
are integers.

Proof. Now consider the ith rectangle tile Ri , in particular the y-coordinates of its vertices. Write these two coordinates 
to be r1 + ε1 < r2 + ε2, where r j ∈ Z and ε j ∈ (− 1

4 , + 1
4 ). Moreover let ai/pi = bi/qi = si + δi where si ∈ Z and δi ∈

(− 1
2 max{pi ,qi} , + 1

2 max{pi ,qi} ) by the hypotheses of the lemma. Now we have

(r2 + ε2) − (r1 + ε1) = ai = (si + δi)pi

=⇒ r2 − r1 − si pi = δi pi − ε2 + ε1

Now LH S ∈ Z and R H S ∈ (−1, 1). Hence both sides are exactly 0. In particular r2 − r1 = si pi . In other words, the number 
of 1

2 -shifted horizontal grid lines through the tile Ri is si pi . One could similarly show that the number of 1
2 -shifted vertical 

grid lines through Ri is siqi .
We are now ready to apply Theorem 5.1 to this tiling because all three conditions are satisfied. Therefore each rectangle 

tile Ri has horizontal side length equal to the number of 1
2 -shifted vertical grid lines through it, siqi . Then clearly the 

vertical side length is si pi . �
One can notice that Lemma 5.2 is exactly Theorem 1.3 in the case where tiles have dimension (1 : 1), that is, they are 

squares.

Theorem 5.3 (Dirichlet’s Approximation Theorem, Varied Simultaneous Version). Given sets of real numbers S0, . . . , Sr and natural 
numbers m0, . . . , mr ≥ 1, there exists q ∈Z, with 1 ≤ q ≤ m|S1|

0 . . .m|Sr |
r such that ‖qai‖ < 1

mi
for any ai ∈ Si and for all i.

Proof. This can be proved analogously to Theorem 2.3. �
We now have the conditions to prove Theorem 1.4, which we repeat here for the readers’ comfort.

Theorem 5.4. Given a tiling of a rectangle by n rectangles with ratios of side lengths pi/qi , pi, qi ∈ Z respectively, one can find a 
scaling of it with longest side length at most 8n ∏n

i=1 max{pi, qi} such that all rectangles have integer side lengths.

Proof. Again, we place the rectangle such that the bottom left corner has coordinate (0, 0), top left corner (0, 1) and let 
(0, 0) to (0, 1) be the longest side of the rectangle. For the ith rectangle tile Ri , denote the vertical side-length by ai and 
the horizontal one as bi . Let

S0 := {x | (x, y) or (y, x) is a vertex of a rectangle tile for some y} \ {0,1},
Si := {ai/pi} (i = 1, . . . ,n).

Now we apply Theorem 5.3 to these sets, m0 = 4 and mi = 2 max{pi, qi}, to find q ∈Z, 1 ≤ q ≤ 4|S0| ∏n
i=1

(
(2 max{pi,qi})|Si |)

such that∥∥∥∥q
ai

pi

∥∥∥∥ <
1

2 max{pi,qi} , and ‖qx‖ <
1

4
for all x ∈ S0.

Scale the entire tiling by q. Now apply Lemma 5.2 to the scaled tiling to obtain that all sides of all rectangles are of 
integer length.

The longest side of the rectangle is q, and we know q ≤ 4|S0| ∏n
i=1(2 max{pi, qi}). By Lemma 4.1, |S0| ≤ (n + 3) − 3 = n. 

Therefore, q ≤ 8n ∏n
i=1 max{pi, qi}. �

Remark. An analog of Observation 2.2 does exist in this case, but the resulting bounds are worse. Therefore, we have 
bounded the distance from ai/pi to an integer to guarantee the number of 1

2 -shifted vertical and 1
2 -shifted horizontal grid 

lines are in desired proportions after scaling without the help of an analogous observation.

6. Tiling of hypercuboids

We start this subsection by proving Theorem 1.5. As before, we write it again for convenience.

Theorem 6.1. For any tiling of a hypercuboid with n hypercubes, one can find a scaling of it with the shortest side length at most 
4

2(n−1)
d +1 and longest side length at most n · 4

2(n−1)
d +1 such that all tiling hypercubes have integer side lengths.
9
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Proof. Let C = {C1, . . . , Cn} be the set of tiles. By Lemma 4.3 we know that there exist two distinct coordinates, say the i-th 
and j-th coordinates, such that the number of distinct i-th coordinates plus the number of distinct j-th coordinates of the 
vertices of the tiles is at most 2(n−1)

d + 4. Without loss of generality we can assume that i = 1 and j = 2.
Now, we translate and scale the hypercuboid in question, H , so that it has vertices at (0, . . . , 0) and (1, 0, . . . , 0).
Let S be the set of the first and second coordinates of all the vertices. Since two of the four first and second coordinates 

of the vertices of H are both 0, we can conclude S \ {0, 1} has at most 2(n−1)
d + 1 elements. Therefore, applying Theorem 2.3

on S \ {0, 1} with N = 4, we find 1 ≤ q ≤ 4
2(n−1)

d +1, q ∈Z such that ‖qx‖ < 1
4 for all x ∈ S .

Scale H by q. Then let P be any arbitrary 2-dimensional plane parallel to the first and second axes that does not pass 
through any vertices of the tiles, and whose intersection with H is nonempty. Consider the rectangle R dissected by the 
collection of nonempty squares among Ci ∩ P ’s. Applying Theorem 1.3 to this rectangle tiling implies all hypercubes involved 
in the section have integer side lengths. However, the choice of the section is arbitrary, so all hypercubes must have integer 
side lengths. The first coordinate side has length q ≤ 4

2(n−1)
d +1. To finish, note that every side of H is partitioned by sides of 

the tiles in C , so the longest side of H is at most n times the smallest side of H . Since we know that the first coordinate 
side of H is at most 4

2(n−1)
d +1, we can conclude that the shortest side length of H is at most 4

2(n−1)
d +1 and the longest side 

is at most n · 4
2(n−1)

d +1. �
Remark. The estimate 4n of Theorem 1.2 also works here: enumerating the coordinates so that the longest side of the 
hypercuboid is in the first coordinate, and using (i) of Lemma 4.3, we have that the number of the coordinates in any two 
directions is at most n + 3. A similar argument as in Theorem 6.1 gives a scaling for any hypercuboid tiled by n hypercubes, 
with the longest side length at most 4n , such that all hypercubes have integer length. On the other hand, if d > 2, the 4n

bound is a better estimate than the one in Theorem 6.1 only for n = 2 and 3, in most cases it is much weaker.

Now we prove a higher dimensional generalization of Theorem 1.4.

Theorem 6.2. Suppose there is a tiling of a hypercuboid by n hypercuboids where the k-th tile is similar to a hypercuboid qk,1 × · · · ×
qk,d, where qk, j ∈ Z for all j = 1, . . . , d. Let the longest side of the hypercuboid be along the i-th coordinate. Then, for any j �= i one 
can find a scaling of the tiled hypercuboid with the longest side length at most 8n ∏n

k=1 max{qk,i, qk, j} such that all tiles have integer 
side lengths.

Proof. Let C = {C1, . . . , Cn} be the set of tiles. Without loss of generality the side (0, . . . , 0) to (1, 0, . . . , 0) is the longest 
of the hypercuboid, in particular, i = 1. Take any direction j �= 1 and for the kth hypercuboid tile Ck , denote the first axis 
direction side length by ak and the jth one as bk . Then we have ak

bk
= qk,1

qk, j
. Let

S0 := Collection of all first and j-th coordinates of all vertices of the tiles \ {0,1},
Sk := {ak/qk,1} = {bk/qk, j} (k = 1, . . . ,n).

Now we apply Theorem 5.3 to these sets, to find q ∈Z, 1 ≤ q ≤ 4|S0| ∏n
k=1

(
2 max{qk,1,qk, j}

)
such that∥∥∥∥q

ak

qk,1

∥∥∥∥ =
∥∥∥∥q

bk

qk, j

∥∥∥∥ <
1

2 max{qk,1,qk, j} , and ‖qx‖ <
1

4
for all x ∈ S0.

Scale the entire tiling by q and let H be the tiled hypercuboid we obtain. As in Theorem 6.1, we take P , any arbitrary 
2-dimensional plane parallel to the first and j-th axes that does not pass through any vertices, and whose intersection 
with H is nonempty. Consider the rectangle R dissected by the collection of nonempty rectangles among Ci ∩ P ’s. Then 
R together with its tiles satisfy the conditions of Lemma 5.2. Hence we conclude that the ordered pair of side lengths of 
Ci ∩ P is an integer multiple of (qi,1, qi, j). Therefore, all the side lengths of the hypercuboids are integers.

The longest side of H is q, and we know q ≤ 4|S0| ∏n
k=1(2 max{qk,1, qk, j}). By Lemma 4.3, |S0| ≤ n. Therefore q ≤

8n ∏n
k=1 max{qk,1, qk, j}. �

We could also have given an analogous bound to the longest side of H in terms of the smallest side, as in the final 
part of the proof of Theorem 6.1, but in this case the d, possibly different, side lengths of each tile would have given a 
more complex and artificial factor, rather than the elegant n factor found in Theorem 6.1. We left to the reader the task of 
obtaining this bound.

7. Triangle tilings

In this section, we study the dissections of an equilateral triangle or a trapezoid into equilateral triangles and we prove 
results similar to the ones obtained in previous sections. Here it will be more convenient to use an oblique coordinate 
10
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system with angle 60◦ between the axes. We use (1, 0) and (1/2, 
√

3/2) for base vectors, and we will denote by �(a, b)

the point with coordinates a and b in this oblique coordinate system; that is, we let

�(a,b) = a(1,0) + b

(
1

2
,

√
3

2

)
=

(
a + b

2
,

√
3b

2

)
.

We will refer from now on to the coordinates of this system as the “�-coordinates”. Let T (a, b, c) denote the equilateral 
triangles with vertices of the form �(a, b), �(a + c, b), �(a, b + c), where a, b, c ∈R, c �= 0. (Note that c can be negative.).

The proof of the following lemma was partly inspired by [2] in which “leaky” electric flows are assigned to triangle 
tilings of triangles and a uniqueness result is proved.

Lemma 7.1. Suppose that an equilateral triangle T (A, B, C) or a trapezoid with parallel sides on the horizontal lines �(R × {B}) and 
�(R ×{B +C}) is tiled by triangles T (ai, bi, ci) (i = 1, . . . , n) and we have a function r :R →R such that r(B) = B, r(B +C) = B +C
and

r(ai + ci) − r(ai) = r(bi + ci) − r(bi) (i = 1, . . . ,n). (5)

Then for every i we have

r(bi) = bi, r(bi + ci) = bi + ci .

Proof. Let δ(x) = r(x) − x. By (5) we also have

δ(ai + ci) − δ(ai) = δ(bi + ci) − δ(bi) (i = 1, . . . ,n). (6)

Let S j = �([u j, v j] × {h j}) ( j = 1, . . . , m) be the connected components of the union of the horizontal edges and the 
vertices of the triangles of the tiling. We can clearly suppose that B = h1 ≤ · · · ≤ hm = B + C . Thus the assumptions r(B) =
B, r(B + C) = B + C imply that

δ(h1) = δ(hm) = 0. (7)

Fix j ∈ {2, . . . , m − 1} and consider the line segment S j = �([u j, v j] ×{h j}). It contains vertices of the form �(ai, bi + ci)

(such that bi + ci = h j) and horizontal sides of the form �([ai, ai + ci] × {bi}) or �([ai + ci, ai] × {bi}) (such that bi = h j ) of 
some tiling triangles. Consider the triangles having one side contained in S j . There are two options for a triangle, either it 
is completely located in the upper-half plane determined by the extension of S j (that is of the form �([ai, ai + ci] × {h j})
with ci > 0), or located in the lower-half plane of this extension (that is of the form �([ai + ci, ai] ×{h j}) with ci < 0). Each 
of these two sets gives a partition for S j , so∑

i:bi=h j ,ci>0

(δ(ai + ci) − δ(ai)) = δ(v j) − δ(u j) = −
∑

i:bi=h j ,ci<0

(δ(ai + ci) − δ(ai)) =⇒
∑

i:bi=h j

(δ(ai + ci)−δ(ai)) = 0. (8)

Since the vertices and horizontal sides are alternating as we go around the segment S j , the numbers of vertices and 
sides bordering upon the fixed S j ( j = 2, . . . , m − 1) are equal. So, considering the horizontal sides of T (ai, bi, ci) and the 
vertices �(ai, bi + ci) in a fixed S j we have∑

i:bi=h j

δ2(bi) = δ2(h j) · #{Sides in S j} = δ2(h j) · #{Vertices in S j} =
∑

i:bi+ci=h j

δ2(bi + ci).

Thus, summing for all j ∈ {1, . . . , m} and recalling that δ(h1) = δ(hm) = 0 we get

n∑
i=1

δ2(bi + ci) =
n∑

i=1

δ2(bi). (9)

Using (9), (6), (7) and (8) we obtain

n∑
i=1

(δ(bi + ci) − δ(bi))
2 =

n∑
i=1

(δ2(bi + ci) + δ2(bi) − 2δ(bi + ci)δ(bi))

=
n∑

(2δ(bi)
2 − 2δ(bi + ci)δ(bi))
i=1

11
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=
n∑

i=1

−2δ(bi)(δ(bi + ci) − δ(bi))

=
n∑

i=1

−2δ(bi)(δ(ai + ci) − δ(ai))

=
m−1∑
j=2

−2δ(h j)
∑

i:bi=h j

(δ(ai + ci) − δ(ai)) = 0.

Therefore δ(bi + ci) = δ(bi) for every i. Consider the following graph. Let V = {b1, . . . , bn, b1 + c1, . . . , bn + cn} be the 
vertex set and connect the numbers x and y by an edge if there exists i such that x = bi, y = bi + ci . Since δ(bi + ci) = δ(bi)

for every i, the function δ is constant on each connected component of the graph. On the other hand, by construction, 
min V = B and every x ∈ V \ {B} has an adjacent vertex y ∈ V such that y < x. By finiteness, repeating this we obtain a 
path from any vertex of the graph to B , which implies that the graph is connected, so δ(bi + ci) = δ(bi) = δ(B) for every i. 
Since by assumption δ(B) = 0, this completes the proof. �

Before going to the next result notice that, unlike the previous sections, here we will not make use of the “ 1
2 -shifted 

vertical grid lines”, presented in Definition 2.1. Instead, we will use the lines resulting after applying � to them, that is 
of the form �({y + 1/2} ×R), and, henceforth, we will denote them by “ 1

2 -shifted 60◦ diagonal grid lines”. The 1
2 -shifted 

horizontal grid lines remain unchanged by �, so it is not necessary to rename them. Now, for r(x) = ⌊
x + 1

2

⌋
the previous 

lemma immediately gives the next result, analogous to Lemma 3.2.

Theorem 7.2. Consider an equilateral triangle, T , with two of its sides parallel to the basis vectors �(1, 0) and �(0, 1), tiled by 
equilateral triangles. Suppose that

• the top and bottom of T have integer second �-coordinates;
• there are no vertices of any triangle tile having �-coordinates with fractional part 1

2 ; and

• there is an equal number of 1
2 -shifted 60◦ diagonal and 1

2 -shifted horizontal grid lines through the sides of each triangle tile.

Then each triangle tile has side length equal to the number of 1
2 -shifted diagonal grid lines through it. In particular, all equilateral 

triangles have integer side length.

We next present the analogous version of Observation 2.2.

Observation 7.3. If ‖ai‖ < 1
4 for i = 1, 2, 3, 4 and l = a2 − a1 = a4 − a3 > 0, then there are equal numbers of 1

2 -shifted 60◦ diagonal 
and 1

2 -shifted horizontal grid lines through the triangle T (a1, a3, l).

Combining Theorem 7.2 with Observation 7.3, we obtain the following result.

Corollary 7.4. Suppose an equilateral triangle with two of its sides parallel to the basis vectors �(1, 0) and �(0, 1) is tiled by equilateral 
triangles. If all �-coordinates of every vertex of each triangular tile are closer than 1

4 to an integer, then all triangular tiles have integer 
side lengths.

Next, we provide a proof for Theorem 1.6, which we state again for convenience. In contrast with the rectangular case, 
in a triangular tiling by equilateral triangles, we need a few more steps, as we will see, before we can obtain a scaling of it 
in which all of its tiles have integer side lengths.

Theorem 7.5. For any tiling of an equilateral triangle by n equilateral triangles, one can find a scaling of it with side length at most 
4

2n−2
3 such that all triangular tiles have integer side lengths.

Proof. Let T be our tiled triangle. Without loss of generality we can assume that T is T (0, 0, 1). By Lemma 4.4, we know 
that there are at most n − 1 lines (which are parallel to one of the three following vectors: �(0, 1), �(1, 0) and �(−1, 1)) 
containing the union of boundaries of the tiles in the interior of T . Considering the 0°, 120° and 240° rotations of T and 
the triangles tiling it, with respect to the center of T , we can assure, by the Pigeonhole Principle, that in one of these 
three configurations the total number of first and second �-coordinates is less than or equal to 2n−2

3 . Let S be this set 
of �-coordinates. We then replace the tiling with the corresponding tiling resulting from the rotation where this happens. 
Since the rotation is with respect to the center of T , the triangle T remains unchanged. Applying Theorem 2.3 on the set of 
real numbers S with N = 4, we can find q ∈Z such that 1 ≤ q ≤ 4|S| ≤ 4

2n−2
3 and ‖qx‖ < 1 for all x ∈ S . Scale the tiling of 
4

12
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the triangle by a factor of q, then every vertex of each triangular tile has its �-coordinates in the form qx for some x in S , 
and hence are closer than 1

4 to an integer. Also, T has bottom side second �-coordinate equal to 0 and top vertex second 
�-coordinate q, both integers. Therefore by Corollary 7.4, all triangular tiles have their side lengths equal to an integer. �

Analogous results for tilings of isosceles trapezoids and parallelograms follow easily.

Corollary 7.6. For any isosceles trapezoid or parallelogram tiled by n equilateral triangles, one can find a scaling of it with the longest 
side length at most 4

2n
3 for the trapezoid and 4

2n+2
3 for the parallelogram, such that all triangular tiles have integer side lengths.

Proof. By adding one more equilateral triangle tile, with side length equal to the smaller base of the trapezoid and joining 
it to this base, we create an equilateral triangle tiling with n + 1 triangular tiles. So, by making use of Theorem 7.5, we get 
the 4

2n
3 bound. The parallelogram case is almost the same, but we need two more tiles instead of one in order to create an 

equilateral triangle tiling with n + 2 tiles, thus obtaining the 4
2n+2

3 bound. �
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