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a b s t r a c t

This work aims to develop and validate a novel composite material for fused deposition

additive manufacturing utilizing poly (lactic acid) (PLA) and discarded slate powder. The

slate powder is mixed into PLA filaments at varying percentages (0%, 5%, 10%, and 15%)

using a twin screw extruder. The resulting filaments are used in a 3D printer to print the

test specimens. The tensile strength of the testing specimens is improved up to 5 wt% by

incorporating slate powder. In contrast, the tensile modulus, hardness, and impact

strength are raised with slate powder up to 15 wt% in PLA-based filament by 19.03%,

10.67%, and 31.63%, respectively. The maximum flexural strength and modulus values are

93.25 MPa and 4.15 GPa, respectively, achieved at 10 wt% slate powder content PLA matrix.

Moreover, slate powder's presence significantly affects the composites' dynamic mechan-

ical properties, such as storage, loss modulus, and damping factor. The composite's

entanglement density, C-factor, adhesion efficiency, and reinforcing efficiency factor are

investigated using dynamic mechanical properties and correlated with their structural

integrity. Results show that 10 wt% slate powder in the PLA matrix is sufficient for their

successful application.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over the past few decades, the application of additive

manufacturing technologies in medical, automotive, and

aerospace fields has been exponentially growing due to higher
).
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accuracy and rapid manufacturing with less wastage of ma-

terial [1,2]. Moreover, it enables the creation of specialized

structural components with complex geometry that would be

challenging or impossible to obtain using conventional

methods. The additive manufacturing technology known as

fused deposition modeling (FDM) is one of the most widely
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used technologies for printing poly (lactic acid) (PLA), poly-

carbonate, polyamide, and a blend of the two thermoplastics

with considerable design flexibility [3e5]. With the exhaustion

of petroleum resources and their environmental aspect, a

researcher currently focused on finding substitutes for prod-

ucts made of petroleum. PLA is a type of polymer that is

environmentally friendly. It is made from lactic acid, which

can be derived from plant sources such as corn and potato

starch. It has distinctive qualities, such as being renewable,

sustainable, biocompatible, and compostable [6e8]. PLA is a

thermoplastic alternative that may be manufactured in the

same manner as polyethylene, polypropylene, and other

synthetic polymers, often by extrusion, thermoforming,

blowing, and injection molding [6,9]. It makes films, sheets,

bottles, and different kinds of thermoforms. PLA is the stiffer

polymeric material, which is not very tough. The tensile

elongation at breaking is generally less than 20% [10]. So,

making PLA stronger is necessary if researchers want to use it

for more things (e.g., agricultural products, packaging, etc.).

These polymers, however, generally need to gain more of

owning technical or engineering polymers' typical properties.
Nevertheless, these polymers do not reach, in general, specific

properties of technical or engineering polymers. Including

filler in polymer composite is responsible for boosting the

composites' mechanical, thermal, and electrical properties

[11]. For this reason, it is interesting for researchers to study

the effect of PLA-based composite reinforced with various

materials. Adding filler may also reduce the number of voids

in the matrix, increasing the stiffness of the composite. The

amount of fillers in a fiber-reinforced composite affects its

mechanical properties because more filler encourages better

particle-particle interaction and fiber-particle-matrix inter-

action, which may not be possible when fillers are present in

optimal or suboptimal amounts [12,13]. Prashantha and Roger

[14] investigated the mechanical performance of graphene-

filled PLA filaments. Adding 10 wt% graphene to PLA in-

creases the elastic modulus by 30% and the ultimate tensile

strength by 27% while marginally decreasing the strain. Guo

et al. [15] investigated the impact of adding thermoplastic

polyurethane, polycaprolactone, and poly (ethylene-co-

octene) together with various graft copolymer contents to

poplar wood flour/PLA composites. The composites' impact

strength, tensile strength, and flexural strength were all

enhanced by 33.98%, 10.38%, and 51.31%, respectively, by

adding thermoplastic polyurethane. This material proved

more compatible with PLA composites made from wood flour

than other toughening agents. At 5 wt% wood flour and 2 wt%

graft copolymer, composite impact and tensile strength were

increased by 7.75% and 8.39%, respectively.

Waste leather buff was employed as filler in the PLA by

Ambone et al. [16], who also investigated the impact of the

filler loading on the mechanical characteristics of the PLA

composite. A peak in tensile strength and modulus was ob-

tained for 10 wt% filler loading; then, it declined with more

filler addition. Hamdan et al. [17] utilized rice husk powder in

PLA composite and studied the performance at a different

weight percentage of the rice husk in PLA composite. As the

amount of filler in the PLA increased, it was observed that its

tensile strength dropped. Increased rice husk powder was not

related to a discernible rise in either the tensilemodulus or the
material's flexural strength. Nagarjun et al. [18] investigated

the influence on PLA performance by adding filler as tamarind

and date seed. The filler reinforcement significantly increased

the PLA composite's strength and remainedmaximum for 3wt

% filler loading. An enhancement of 27.36%and 50.24% in

tensile strength was noted for date and tamarind fillers.

Clarizio and Tatara [19] observed the influence of incorpo-

rating glycerol-plasticized DDGS (distillers' dried grains with

soluble) into the PLA matrix on its mechanical behavior.

Adding glycerol-plasticized DDGS lowered the tensile strength

of PLA, although the inclusion of 20e30 wt% filler decreased

the strength by 60%. While 35 to 50 wt% filled PLA had

approximately one-fifth the performance of pure PLA, and at

higher filler loading (60e65 wt%), about 10% tensile strength

remained. Koutsomitopoulou et al. [20] recycled the waste

material from the olive oil mill and blended it with PLA to

investigate its influence on the physical and mechanical

properties. The poor interfacial bonding among olive pit

powder and PLA may lead to a rise in tensile modulus but a

decrease in flexural strength with reinforcement content.

Altun et al. [21] investigated the impact of Pistachio shell

(10e30 wt%) loading in PLA-based composite. Tensile and

flexural analyses revealed that combining 20% of the pre-

treated Pistachio shell with PLA resulted in a composite with

optimal mechanical characteristics. Yang et al. [22] developed

a PLA/carbon nanotube (CNT) filament for the FDM technique.

To investigate the workability of the PLA/CNT filament, the

consequences of CNT content on the crystallization-melting

mechanism and melt flow rate were examined. The analysis

shows that the CNT proportion considerably impacted the

mechanical and conductivity properties. Including 6 wt% CNT

increased tensile strength by 64.12% and flexural strength by

29.29%. To improve the flame retardancy of PLA composites,

Zhang et al. [23] proposed an innovative flame-retardant ad-

ditive based on phosphate-mixed urea-grafted bamboo char-

coal. A 3.8% reduction in tensile strength of PLA was reported

for 10 wt% filler (grafted bamboo charcoal), while this loss

increased to 14.5% for 30 wt% filler loading. The modulus of

the PLA composites was reported to increase with grafted

bamboo charcoal inclusion, indicating that the composites

became more rigid and stiff.

Slate is a building material most commonly used for the

roofing of buildings [24]. However, the extraction of helpful

slate generates a massive amount of waste. It is reported in

the literature that about 30 tons of waste powder are gener-

ated for one ton of slate product [25]. The use of this waste in

producing valuable goods will not only be helpful from the

point of view of ecology. But, it will also be beneficial from the

point of view of the circular economy.Much research has been

done on the benefits of this waste slate powder in various

applications with fruitful results [24e26]. From the previous

literature, the utilization of slate powder as a reinforcement in

the biodegradable polymer (PLA) has yet to be used so far.

Therefore, this study aims to prepare a composite based on

PLA and slate powder for the 3D printer as a filament through

melt extrusion with a twin screw extruder. Testing specimens

are fabricated by a 3D printer using PLA-based and slate

powder content (0, 5, 10, and 15 by weight) filaments. The

properties of test specimens are evaluated through hardness,

tensile, flexural, and impact tests. The thermo-mechanical

https://doi.org/10.1016/j.jmrt.2023.03.046
https://doi.org/10.1016/j.jmrt.2023.03.046


Fig. 1 e (a) Microscopic image, and (b) EDS spectrum of slate powder.
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behavior of fabricated composites is examined through dy-

namic mechanical analysis.
2. Material and method

2.1. Materials

The PLA, provided by STALLION Enterprise International

Trade Company Rajkot (Gujarat), India, was delivered in ho-

mopolymer pellets (density ¼ 1.2 g/cm3). The melting point of

these pellets ranged from 120 to 130 �C, and their melt flow
Fig. 2 e Filament fab
rate was 7 g per minute. The waste slate powder

(density ¼ 2.51 g/cm3) was collected from the local industry,

which is situated in the village of Multanpura, located in

Madhya Pradesh, India. Fig. 1 depicts slate powder's micro-

scopic picture and energy-dispersive spectroscopy (EDS)

spectrum. Si, Al, K, and Fe were assigned for SiO2, Al2O3, K2O,

and Fe2O3.

2.2. Filament fabrication process

3D printing filaments developed by melt extrusion using a

twin screw extruder that Lab Tech Engineering Company Ltd.,
rication process.

https://doi.org/10.1016/j.jmrt.2023.03.046
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India, supplied. The bio-compostable PLA with slate powder

was mixed in the feeder with different weight percentages

from 0 to 15, in increments of 5 wt% filler content and desig-

nated as PLA/SP0 (pure PLA), PLA/SP05 (95% PLA with 5% slate

powder), PLA/SP10 (90% PLA with 10% slate powder) and PLA/

SP15(85% PLA with 15% slate powder). This study did not

include the filler content above 15 wt% due to operational

problems such as nozzle choking. Fig. 2 depicts the steps

involved in the production of filament with the use of a twin

screw extruder. In the extruder, there are a total of six sub-

zones, and the length of each zone is 60 mm. The diameter of

the screw is 16 mm, and the length-to-diameter ratio of the

extruder is always 25. The resulting filament has a 1.75 mm

diameter, the required diameter for pure PLA and PLA with

slate waste composite using the 3D printer FDM machine,

respectively. The temperature conditions for each zone are

shown in Table 1. After departing the circular die, the filament

was instantly water-cooled and wound onto a spool, as

depicted in Fig. 2.

After preparing PLA/slate powder filaments, 3D printed

samples are fabricated through FDM 3D printing machine

(with a heated bed) manufactured by Adroitec Engineering

Solutions (P) Ltd., India. The schematic diagram and pictorial

view of the FDM 3D printingmachine are represented in Fig. 3.

To avoid the extruder blockage due to filler, a 0.4 mm nozzle

was used. The process parameters of the FDM 3D printing

machine during the fabrication of test samples are listed in

Table 2. The specimens for different characterization as per

ASTM standards are presented in Fig. 4.
3. Characterization

3.1. Mechanical properties

All the mechanical characterization is performed at ambient

temperature. Tensile tests are conducted as per ASTMD638 on

the servo-hydraulic universal testing machine manufactured

by HEICO Pvt. Ltd. Delhi, India, in displacement mode with

2 mm/min. The flexural test is also conducted on the same

machine following ASTM D790. The impact properties of

fabricated PLA/SP composites are determined through the

Charpy test per ASTM D6110-10. Each specimen is tested at

least five times, and the results are reported using the average

value. The surface hardness of fabricated composites is

determined through the Shore D indenter from an average of

twenty readings taken on the tensile specimen/or flexural

specimen.
Table 1 e Extrusion process parameters for composite
fabrication.

Process parameter Value Unit

Screw speed 110 rpm

Feed zone temperature 170 �C
Compression zone temperature 170 �C
Metering zone temperature 190 �C
Die temperature 180e220 �C
3.2. Dynamic mechanical analysis

Dynamic mechanical analysis (DMA) describes fabricated

composites' mechanical and rheological behavior. DMA of

composites evaluates the glass transition, dynamic fragility,

matrix-filler interfacial compatibility, and filler effectiveness

as a function of the system oscillating deformation force's
temperature, time, and frequency. It is well known that high

composite performance requires proper filler dispersion in the

matrix material. DMA is used to assess the distribution of the

different percentages of slate powder content in the PLA ma-

trix. DMA is carried out in the tensile mode on the test spec-

imen with the assistance of a PerkinElmer DMA 8000 in

compliance with the standard specified under ASTM D4065.

The experiment was carried out at temperatures ranging from

20 to 100� Celsius, with a heating rate of 2� Celsius perminute,

on specimen size 40 mm � 8 mm � 4 mm, with a frequency of

1 Hz. The damping reduction (DR) value indicates the filler

distribution quality inside the polymer matrix. This value is

calculated using Eq. (1), in which, ðtan dÞm represents the

damping factor of the neat PLA composite and ðtan dÞc in-

dicates the damping factor of the PLA/SP composite.

DRð%Þ¼ ðtan dÞm � ðtan dÞc
ðtan dÞm

� 100 (1)

4. Result and discussion

4.1. Tensile results

Fig. 5 illustrates the influence of slate powder as filler in PLA-

based composite on the tensile strength, Young's modulus,

and elongation at break. The outcomes reveal that the tensile

strength of neat PLA composite is 30.4 ± 0.4 MPa. The tensile

strength is increased by incorporating slate powder content

up to 5 wt% in PLA composite. Further inclusion of filler de-

creases the tensile strength.

The PLA/SP composites outperformed the pure PLA sample

regarding tensile modulus. With increased slate powder

loading, a linear increase in the tensile modulus can be

shown, improving by a relative 19% for composites with 15 wt

% filler content (i.e., PLA/SP15). In the inclusion of micron-

sized additives with high stiffness, like the slate powder in

this instance, this behavior is ascribed to the creation of hard

surfaces within the polymer matrix [23]. The elongation at

break is reduced by 5.38%, 16.02%, and 20.71% with the addi-

tion of 5, 10, and 15 wt% of filler, respectively, in PLA com-

posite. This decrease in elongation at break was predicted and

attributed to the composites' enhanced stiffness due to stiffer

filler with aluminosilicate content, such as slate powder. The

effect of slate powder content on the typical relationship be-

tween stress-strain behavior for PLA/SP0, PLA/SP5 PLA/SP10,

and PLA/SP0 composites, respectively, are shown in Fig. 6. The

slate powder contents limit the mobility of PLA molecules in

composites due to which the rigidity is increased, and plas-

ticity is reduced [27]. With the incorporation of slate powder

content in PLA composite, lower the elongation break as

depicted in Fig. 6.

https://doi.org/10.1016/j.jmrt.2023.03.046
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Fig. 3 e Schematic illustration of the mechanism of FDM printing.
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The SEM images of the fractured surface of 3D printed

tensile specimens of PLA/SP0, PLA/SP05, PLA/SP10, and PLA/

SP15 composites are shown in Fig. 7. Images of 3D printed

samples show the layer of filaments and void contents be-

tween the adjacent layers. The failure of material occurs due

to filament breakage, filler pulls out, poor adhesion between

the successive layer, and uneven melting of filament during

the extrusion [28].

4.2. Flexure properties

A three-point bending test is used to assess the flexural

characteristics of manufactured composites, and the results

are presented in Fig. 8. The results show that using filler in the

PLA matrix enhances flexural strength and modulus. PLA/SP0

has a flexural strength and modulus of 84.3 MPa and 3.21 GPa,

which are in excellent accord with existing research [18]. The

flexural strength of PLA/SP5, PLA/SP10, and PLA/SP15 com-

posites is enhanced by 8.26%, 10.61%, and 10.02%, respec-

tively, compared to PLA/SP0 composite. Similarly, the flexural

modulus of PLA/SP5, PLA/SP10, and PLA/SP15 composites is

improved by 23.67%, 29.28%, and 28.03%, respectively. The
Table 2 e Process parameter of FDM 3D printingmachine.

FDM operating parameter Value

Nozzle and bed temperature 220 �C and 60 �C
Infill rate 100%

Infill pattern Rectilinear

Raster angle 0 Degree

Layer thickness 0.1 mm

Extrusion width 0.45 mm

Printing speed 45 mm/s

Perimeter shell 3

Sample orientation Flat
maximal flexural strength and modulus of the PLA/SP10

composite are 93.25 MPa and 4.15 GPa, respectively, for a slate

powder content of 10 wt% in the PLA matrix. Integrating slate

powder content in the PLA matrix above 10 wt% reduces the

flexural characteristics by a marginal difference. The

improvement in flexural characteristics demonstrates the

inorganic filler's excellent engagement of the PLA matrix [29].

4.3. Hardness

Fig. 9 displays the outcomes of hardness tests conducted on

the manufactured composites. With the addition of slate

powder, it was discovered that the composite's hardness

increased and stayed between 75 and 83 Shore D. Fig. 9 illus-

trates the tidy PLA's hardness value of 75 Shore D, which is in

good accord with the literature [30]. With the addition of 15 wt

% of slate powder, an increase of almost 11%was seen in PLA's
hardness, with the highest value 83 Shore D. This rising

hardness can be attributed to the presence of hard slate par-

ticles, which increase the polymer matrix's resistance to

plastic deformation [31]. The PLA is a relatively stiff material

that rarely exhibits plastic deformations, accounting for

comparatively minor changes [32].

4.4. Impact strength

Fig. 9 illustrates how the amount of slate powder in the PLA

matrix affects the impact strength. The impact strength of

neat PLA (i.e., PLA/SP0) is 2.75 kJ/m2, which aligns with earlier

research [31]. Using slate powder in the PLA matrix increases

the impact strength of manufactured composites. The impact

strength value is increased by 26.18%, 30.54%, and 31.63% for

5 wt%, 10 wt%, and 15 wt% of slate powder content in PLA-

based matrix composites, respectively. In Fig. 9, the 5 wt%

addition of slate powder contents shows the maximum effect

https://doi.org/10.1016/j.jmrt.2023.03.046
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Fig. 4 e Composite specimen with dimensions.
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on the impact strength value, i.e., 26.18%, further expansion

from 5 wt% to 10 wt% depicts a 4.3% effect while for 10 wt% to

15 wt% reveals only 1.09% significance. This sort of improve-

ment in the impact strength of polymeric composites is often

caused by fracture deflection around the stiff filler particles

and energy dissipation in the damage zone [33].
Fig. 5 e Results of
4.5. Dynamic mechanical analysis

Fig. 10aec represents the effect of slate powder content in

PLA-based composite on the viscoelastic behavior through

storage modulus (E0), loss modulus (E00), and damping factor

(tand) as a function of temperature. With increasing the
tensile testing.

https://doi.org/10.1016/j.jmrt.2023.03.046
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Fig. 6 e Stress-strain curves of slate powder filled PLA

composites.
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temperature from 20 �C to 100 �C composites’ behavior is

considered into three regions: glassy region (below 45 �C),
glass transition region (between 50 �C and 75 �C, and rubbery

region (above 80 �C) according to their molecular mobility as

shown in Fig. 10a. In the glass region up to 45 �C only g and b

secondary relaxations are possible. Above 50 �C a relaxation is

activated, due to which a sudden decrease in storagemodulus
Fig. 7 e Tensile fracture zo
is depicted as shown in Fig. 10a. Finally, in the rubbery region,

the mobility of molecules increases; thus, the matrix polymer

becomes soft from 80 �C to 100 �C [34e36]. Further, it is

observed that the inclusion of slate powder in a PLA-based

matrix significantly influences the viscoelastic response in

the glassy region. The storage modulus of a PLA/SP0 com-

posite (pure PLA) is 1.23 GPa at 40 �C; however, when 5, 10, and

15wt% of slate powder aremixed to the PLAmatrix, the values

of E0 increase to 1.49 GPa, 1.63 GPa, and 1.67 GPa, respectively.

This increment is because of the slate powder reinforcing

function, which transferred the tension from the PLA to the

slate powder particle. Fig. 10b represents the variation in loss

modulus caused by adding the slate powder to the PLAmatrix

composites. The loss modulus shows the energy dissipated as

heat due tomolecular friction when sinusoidal deformation is

applied at the same amplitude [37,38]. It is revealed that the

loss modulus peak values increase with the incorporation of

slate powder. The loss modulus of PLA/SP0 composite ach-

ieved a maximum value of 0.177 GPa at 48.95 �C. However, the

loss modulus of PLA/SP5, PLA/SP10, and PLA/SP15 composite

reached themaximumvalue of 0.241 GPa at 50.32 �C, 0.248 GPa

at 50.33 �C and 0.26 GPa at 50.35 �C. These results reveal that

slate powder content PLA composites exhibit a better capa-

bility to transfer mechanical energy as heat than the PLA/SP0

composite [39].

Fig. 10c shows the effect of slate powder content in PLA-

based composite on the tan d (damping factor) change in
ne SEM micrographs.

https://doi.org/10.1016/j.jmrt.2023.03.046
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Fig. 8 e Results of flexural testing.
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response to temperature. It is noticed that with the incorpo-

ration of slate powder, the glass transition temperature (Tg) of

PLA/SP0 composites improved from 56.7 �C to 61.64 �C,
63.31 �C, and 64.09 �C in the case of PLA/SP5, PLA/SP10, and

PLA/SP15 composites, respectively. In the glass transition re-

gion, damping characteristics represent the imperfection in

the elasticity during the deformation of material energy

dissipated into heat. In the case of a particulate-filled com-

posite, molecular mobility of the polymer decreases with the

addition of filler which reduces the inter-friction between

molecular chains to overcome the energy dissipation. Thus,

shifting of glass transition temperature to a higher tempera-

ture occurs. The damping characteristics of composites made

of PLA are outlined in Table 3.

The increase in the value of damping reduction indicates a

decrease in damping with the incorporation of filler [40]. This

behavior of the composites shows the good compatibility of

slate powder as filler with PLAmatrix. Moreover, the cole-cole

plot (Fig. 10d) is utilized to investigate the change in structural

characteristics caused by the addition of slate powder to the

PLA matrix. In this analysis, the loss modus of the composite

is plotted against the storage modulus measured during the

DMA testing as a function of temperature corresponding to
Fig. 9 e The hardness and impact strength results of the

composites.
1 Hz frequency. The nature of the system can be inferred from

the pattern that the cole-cole plots acquire. The semicircle

shape of the cole-cole plot defines the system as homoge-

neous, whereas the imperfect semicircle or elliptical shape

shows a heterogeneous system [37]. Fig. 10d depicts the pure

PLA (PLA/SP0) composite's semicircular shape. In contrast, the

addition of slate powder in the PLAmatrix shows an imperfect

semicircular curve due to a two-phase system, thus pointing

toward good adhesion between the filler and matrix.

4.6. C- factor, entanglement density, reinforcement
efficiency factor and adhesion factor

4.6.1. C- factor
The C-factor determines the effectiveness of slate powder as

filler in PLA-based composite, which gives information on

storage modulus with filler variation. Equation (2) is used to

evaluate the value of the C-factor [41,42]:

C� factor¼

�
E0
gr

.
E0
rr

�
c�

E0
gr

.
E0
rr

�
m

(2)

Where, E0
gr and E0

rr are the storagemodulus values in the glassy

(at 40 �C) and rubbery (at 75 �C) regions, respectively. If the

value of the C-factor is high, the filler is less effective. The C-

factor values obtained for different wt.% of slate powder-filled

composites in PLA at the frequency of 1 Hz are depicted in

Fig. 11. The PLA/SP10 composites show aminimumvalue of C-

factor, i.e., 0.34 compared to other composites which indicate

the better effectiveness (maximum stress transmit between

the filler and matrix) compared to the other percentage of

slate powder content in PLA composite.

4.6.2. Degree of entanglement density
It is also possible to evaluate the level of entanglement in

polymer composites using dynamic mechanical analysis. The

storage modulus value is utilized in Eq. (3) to calculate the

entanglement degree [42]:

N¼ E0

6RT
(3)

Where E0 represents storage modulus, R is the universal gas

constant, and T denotes absolute temperature. The information

regardingthemodulusandtoughnesscanbecorrelatedwith the

entanglement density of polymeric composites [39,40]. Fig. 11

displays the degree of entanglement between PLA and PLA/SP

composites. The entanglement density improved by up to 10wt

% of slate powder, but then it declined at higher loading. As the

filler concentration increases beyond 10 wt%, the inter-particle

interaction probability rises significantly, which may reduce

the degree of entanglement [43]. The trend agrees with the

composite's decreased flexural strength and modulus with a

high slate powder dosage (~15 wt%). In contrast, impact

strength, Young's, and storage modulus showed comparable

results to 10 wt% slate powder-filled composites.

4.6.3. Adhesion factor
The adhesion factor (AF) is evaluated by taking the relative

damping factor of the different percentages of slate powder

https://doi.org/10.1016/j.jmrt.2023.03.046
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Fig. 10 e (a) Storage modulus (E′), (b) loss modulus (E00), (c) tand, and (d) cole-cole plot.
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content-based PLA composite and pure PLA polymer as a

function of the corresponding volume fraction of slate powder

at a specific temperature. The AF can be defined as Eq. (4) [42]:

AF¼ 1�
1�∅f

� tan dc

tan dp
� 1 (4)

Where, ∅f denotes the volume fraction of filler in composite,

tan dc and tan dp are damping factors for PLA/SP composite and

pure PLA polymer composite, respectively. As depicted in

Fig. 12, the value of the adhesion factor decreases as the de-

gree of interaction between the slate powder and the matrix

increases. The increased filler concentration reduced the
Table 3 e Damping characteristics of the manufactured
composites.

Composite Damping factor Damping
reduction (%)Peak

intensity
Peak

temperature (�C)

PLA/SP0 0.23 56.70 e

PLA/SP5 0.21 61.64 8.70

PLA/SP10 0.20 63.31 13.04

PLA/SP15 0.19 64.09 17.39
damping capacity of the composites, resulting in adhesion

factor reduction. A decrease in the value of the adhesion

factor will occur as a direct consequence of an increase in the

filler concentration, which will intensify the interaction be-

tween the slate powder particles. Similar results for the

adhesion factor reduction were reported in the literature for

acrylonitrile-butadiene-styrene composites [42,43].

4.6.4. Reinforcement efficiency factor
The reinforcing efficiency factor provides information on filler

matrix bonding by considering the impact of filler inclusion

into polymeric composites. Composites' reinforcement effi-

ciency factor can be estimated with the following equation

[42]:

Ec ¼Em

�
1þ rVf

�
(5)

Where Ec represents the storage modulus of slate powder-

filled PLA composite while Em denotes pure PLA composite,

Vf represents the slate powder content in composite in terms

of volume fraction, and r shows the reinforcing efficiency

factor. Fig. 12 reveals that as the percentage of slate powder

content increases in PLA-based composite, the reinforcement

factor shows a downward trend. The percentage of slate

powder added to the polymer composite is directly

https://doi.org/10.1016/j.jmrt.2023.03.046
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Fig. 11 e C- factor, and degree of entanglement density

(mol m¡3).

Fig. 12 e Adhesion factor and reinforcement efficiency

factor.
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proportional to the reinforcing factor. Because of the accurate

distribution of slate powder throughout the PLA polymer, the

reinforcing value of the PLA/SP5 composite is significantly

higher. Increased filler concentration might result in their

agglomeration, bringing structural inhomogeneities and

decrement in the strength of the composites.
5. Conclusions

In the present research, the waste slate powder is utilized as

filler with different weight percentages in PLA-based com-

posite. The PLA/slate powder filaments for 3D printers are

successfully fabricated with the help of a twin screw extruder.

The performance of PLA/slate powder filaments is investi-

gated through the mechanical and dynamic mechanical

behavior of test specimens fabricated using a 3D printer per

the ASTM standard. The outcomes of the study are summa-

rized as follows.
� With the incorporation of slate powder content up to 5 wt

%, the tensile strength of the testing specimen is improved.

In contrast, the tensile modulus, hardness, and impact

strength are increased by 19.03%, 10.67%, and 31.63% with

15 wt% slate powder content, respectively, in PLA-based

filament.

� The flexural strength and modulus of the testing speci-

mens are increasedwith slate powder content up to 10wt%

in PLA-based filaments.

� The viscoelastic response in the glassy region and the slate

powder percentage in the PLA matrix show a significant

effect. The storage modulus is increased by 35.77% by

adding 15 wt% of slate powder content in the PLA matrix.

At the same time, the increased loss modulus with slate

powder content reveals composites' better ability to dissi-

pate the mechanical energy as heat.

� The glass transition temperature of the composites is

increased by 14.09% with the addition of 15 wt% of slate

powder content in the PLA matrix, suggesting an incre-

ment in the thermal stability of composites.

� The minimum value of the C-factor and a higher degree of

entanglement density is represented by the composite

with 10 wt% slate powder content, suggesting that 10 wt%

slate powder in the PLA matrix is sufficient for their

effective utilization.

� Themechanical and dynamicmechanical characterization

shows significant insight into using waste slate powder as

filler in PLA matrix as a mechanically robust material for

3D printer filaments.
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