
Cleaner Engineering and Technology 17 (2023) 100704

Available online 1 December 2023
2666-7908/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Wind power density characterization in arid and semi-arid Taita-Taveta 
and Garissa counties of Kenya 

Ibrahim Kipngeno Rotich a,b,*, Peter K. Musyimi c,d,** 
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A B S T R A C T   

Wind Power Density (WPD) is a crucial parameter that can be used in assessing the potential of a given site for 
energy development and determining the suitability of wind turbine installation. A 7-year long-term data 
(2014–2020) of temperature, relative humidity, and wind speeds were obtained from Voi and Garissa synoptic 
station with a 3-h resolution. The objective of the study was to characterize wind power density in selected arid 
regions in Kenya. Analysis was performed using Weibull distribution parameters statistical tools i.e. Moment of 
Methods, Empirical Method (Justus), and Empirical Method (Lyssen), and error analysis using Mean Absolute 
Percentage Error, Mean Absolute Deviation (MAD), Coefficient of determination (R2) and Root Mean squared 
Error to determine the WPD accurate characteristics. Results show that Moment of Methods (MoM) performed 
better compared to other statistical tools, while the Taita Taveta had a better coefficient of Variance (CoV) 
ranging between 0.20 and 0.28% compared to 0.28–0.43% in Garissa. Based on the wind power density, the sites 
were found to be within Class II on the wind power classification from IEC and thus not viable for commercial 
power purposes. Results imply that power produced can be used in supplementing Kenya Offgrid Solar Access 
Project (KoSAP) which supplements power production used in gazetted marginalized counties by Kenya Power.   

1. Introduction 

Energy is a critical component, and driving factor of industrializa-
tion, wealth generation, and economic development (Bandoc et al., 
2013; Khargotra et al., 2021b; Mukulo et al., 2014; Yüksel, 2010). The 
renewable energy in the recent past has gained traction through the 
energy trilemma in solving the demand and reducing the impacts of 
global warming and carbon reduction (https://gwec.net/, 2022; Khar-
gotra et al., 2021a; Yaffe and Segal-Klein, 2023). Approximately, 6.6% 
of global electricity comes from wind power (https://theroundup.org/ 
wind-energy-statistics/) which is imperative to avoiding fossil fuels 
hence clean energy. Wind energy has constantly grown with estimated 
global power in the energy matrix approximated to 837 GW and ex-
pected to rise (Brown et al., 2012; C. N. S. Jones and Utyuzhnikov, 2022; 
Long et al., 2023; Rand and Hoen, 2017; Rotich and Kollár, 2022; 
Timilsina et al., 2013). Further, wind energy is indispensable for societal 

sustainable development in these regimes of global climatic changes 
(Bandoc et al., 2018). 

Electricity production in Kenya is solely from renewable energy 
current exploitation being 2651 MW, with wind energy contributing 
about 11.88% (435.5 MW) on the total energy matrix (Energypedia, 
2018; https://www.trade.gov/, 2022). The wind energy potential, 
extraction and growth is expected to rise with several large scale projects 
ongoing to meet the 100% renewable energy transition (Kazimierczuk, 
2019). However, the deployment has been marred with challenges such 
as limited descriptive data (Samu et al., 2019), limited resources, lack of 
regulatory mechanisms and efficient policies (Kazimierczuk, 2019), 
intermittent nature of wind (Hocaoglu and Kurban, 2007; Nordman, 
2014). 

The energy connectivity in Kenya is driven by the demand limiting 
the rural areas with approximately 4% connected (Kiplagat et al., 2011). 
The distribution of energy in remote, low-density populations and 
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underserved regions has always been hindered by a lack of data on the 
potential studies of resource utilization. Due to this factor, (Munyua, 
2021) stated that wind data by the Kenya meteorological department 
should be incorporated into in windmap generation. Electricity distri-
bution in Kenya is mostly in the urban and developed regions limiting 
other regions (about 72 of land mass) with high potential due to infra-
structural deficit. Kenya Power is mandated in the distribution of elec-
tricity in Kenya, and it defined 14 counties as marginalized counties 
where they supply the demand using solar panels (minigrid) through 
KoSAP and fossil fuels. Amidst concerns about environmental sustain-
ability, global geopolitics on fuel making the production to be more 
expensive in powering vulnerable communities, with the target of 100% 
transition to renewables by 2030. The gap in achieving the universal 
energy access in rural areas has been left and thus there is a need to 
harness, and utilize wind energy resources as a solution to the provision 
of sustainable, reliable, and cost-effective power to people and accel-
erate self-sufficiency (Mukulo et al., 2014). 

According to (KoSAP, 2017), Garissa and Taita Taveta counties are 
characterized as marginalized counties and thus need of looking for 
energy alternative to supplement the grid. Wind energy potential in 
these regions have not been fully studied, with the wind speed vari-
ability required in providing essential data for generation suitability. 
The site is considered among the Kenyan ASALs gazzeted regions and 
thus less friction coefficient theoretically making wind energy suitable. 
The wind power density (WPD) is used with the data obtained from 
Garissa and Voi weather stations was then used in estimating the power 
potential produced in these regions. Few studies have been done in the 
characterization of the wind energy potential due to limited data on 
wind velocities. In this study, the aspiration of this transition is driven 
through informed energy decisions which can critically help in the 
classification of wind power energy feasibility which can be used to 
supplement the already existing Program (KoSAP). The objective of the 
study was to characterize wind power density using Weibull distribution 
parameters statistical tools in selected arid regions in Kenya. The results 
would be helpful in sound policy development formulation and 
deployment of wind energy for in habitants in these rural regions. 

2. Methodology 

2.1. Study area 

Garissa County is located in Kenya’s North-Eastern region and covers 
an area of 44,174.1 km2. It is situated between latitude 1◦ 58′N and 
latitude 2◦ 1′ S, and longitude 38◦ 34′E and 41◦ 32′E (Garissa County 
Integrated Development Plan, 2018). It is bounded to the east by the 
Republic of Somalia, to the south by Lamu County, to the west by Tana 
River County, to the Northwest by Isiolo County, and to the north by 
Wajir County. It is divided into six sub-counties: Fafi, Garissa Township, 
Ijara, Lagdera, Balambala, and Dadaab shown in Fig. 1. It is low-lying 
and flat, with elevations ranging from 70 to 400 m above sea level. It 
is characterized by little surface water, a few seasonal rivers that flow 
during rainy seasons, and the permanent Tana River. With an annual 
average precipitation of 275 mm, the climate varies from semi-arid to 
hot desert (Bwh). The rain falls in two phases: long rains from March to 
April and short rains from October to December. Its low elevations are 
characterized by high temperatures ranging from 20 ◦C to 38 ◦C (Okoti 
et al., 2014). The hottest months are September, January, February, and 
March, with moderate temperatures experienced from April to August. 

Taita-Taveta is 89% arid and semiarid. It is characterized by a 
tropical savannah climate (Aw). The mean monthly temperature is 
approximately 23 ◦C while the maximum and minimum are approxi-
mately 18 ◦C and 25 ◦C (Ogallo et al., 2019). Its climate is influenced by 
South-Easterly winds. On average, the county highlands receive 265 mm 
of precipitation, while the lowlands receive 157 mm during long rains 
from March-April-May (MAM) during short rains from 
October-November-December (OND), rainfall amounts range from 341 

mm in the lowlands to 1200 mm in the highlands. Annual average 
precipitation amounts to 650 mm. The county is divided into three 
major topographical zones namely upper zone, comprising of Taita, 
Mwambirwa, and Sagalla hills region with altitudes ranging between 
304 m and 2208 m above sea level, the lower zone consists of plains, the 
zone of national parks and mining areas (Government of Kenya (GOK), 
2013; Mwakesi et al., 2020). 

The wind speeds, relative humidity (Rh), and temperature for the 7 
years (2014–2020) were obtained for a 3-h resolution at 10 m height. 
The data were arranged daily by averaging the hourly data daily and 
later in monthly inter-annual and fitted in Weibull distribution fits and 
comparisons made through error analysis of the study in optimizing 
wind power density. The Weibull distribution fits the Empirical Method 
(Justus), Empirical method (Lyssen), and Moment of method (MoM) and 
the error is analyzed using Root-Mean square (RMSE), Mean Absolute 
Deviation (MAD), Mean Absolute Percentage Error (MAPE) and coeffi-
cient determinant (R2) (Guenoukpati et al., 2020; Teyabeen et al., 2017; 
Tiam Kapen et al., 2020a; Tizgui et al., 2017). 

The methodological structure of our study is as described in Fig. 2 
below. 

2.2. Wind speed analysis and variation 

2.2.1. Weibull distribution 
The Weibull distribution is used in probability distribution in 

describing wind speed variation and analyzing observed wind data 
speed. It is defined by shape factor (k) and scale factor (c). The shape 
factor determines the shape of the distribution curve and is related to the 
variability of wind speed, while the scale factor (c) determines the 
location of the distribution curve and is related to average wind speed as 
described in (Teimourian et al., 2022). 
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The cumulative distribution is given as 
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(2)  

Where f(v) is the probability density function and f(v) is the cumulative 
distribution function (CDF) of wind speed v. 

2.2.2. Empirical Method (Justus) 
Uses logarithmic/lognormal distribution of wind speed frequency to 

estimate Weibull distribution parameters from slope and intercept of the 
line. Wind speed is analyzed to determine the mean and standard de-
viation of wind speed (Mohammadi et al., 2016; Tiam Kapen et al., 
2020b). 
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Where Γ the Gamma function 

Γ(x)=
∫ ∞

0
exp (− t)tx− 1dt (5)  

Where v and σ are calculated using 

v=
1
N

∑N

i=1
vi (6)  
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2

(7)  

2.2.3. Empirical Method (Lyssen) 
This method assumes that the wind speed data follows a Weibull 

probability distribution to provide a good fit for measured wind speed 
data. The method uses the wind speed data which is then analyzed to 
determine the shape and scale parameters (Mohammadi et al., 2016; 
Tiam Kapen et al., 2020b). 

k =
(σ

v

)− 1.086
(8)  

c= v
(

0.568 +
0.433

k

)− 1
k

(9)  

2.2.4. Moment of Methods 
It follows a probability distribution with a set of statistical values 

describing the shape and scale characteristics distribution i.e., mean, 
and standard deviation for a normal distribution (Kisito et al., 2015). 

k= 1.2785
(v

σ

)
− 0.5004 (10)  

c=
v

Γ
(

1 + 1
k

) (11)  

2.2.5. Error analysis 
Wind power density requires distinctive accuracy and precise mea-

surements in power estimation of a site (Lai et al., 2006). The error 
analysis on WPD helps in understanding the statistical errors and un-
certainties which can be identified and quantified which helps in deci-
sion making (Kumar and AuthorAnonymous, 2017). The uncertainties 
propagated from the measurements of the factors such as air densities or 
wind speed measurements from the random error and uncertainty, 
systematic error or combination of the uncertainties (Lackner et al., 
2011; Moghim, 2021; J. J. Wang et al., 2021). Understanding the source 
of errors can be used in the optimization of the power feasibility and 
production based on the statistical significance and confidence (Roald 
et al., 2023; Rodríguez et al., 2015). 

2.2.5.1. Root Mean squared error (RMSE). It is uses the measurements 
on the difference between wind predicted velocity values at the hub and 
actual values measured which improves accuracy (Al-deen et al., 2006). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − xi)

2

√

(12)  

2.2.5.2. Mean Absolute Deviation (MAD). This measures the dispersion 
or variability of a dataset and is used in evaluating the accuracy and 
precision of wind power density estimates. 

Fig. 2. Schematic flow of the study.  

Fig. 1. Location of Garissa and Taita-Taveta counties of Kenya.  
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MAD=

∑n

i=1
|yi − yi|

n
(13)  

Where n is the number of observations, yi is a representation of the ith 
observation and the yi is mean. 

2.2.5.3. Mean Absolute Percentage Error (MAPE). It is calculated by 
averaging the absolute percentage errors between the predicted and the 
actual values to forecast accuracy of WPD. 

MAPE =
100%

n

∑n

i=1

⃒
⃒
⃒
⃒
yi − yp

yi

⃒
⃒
⃒
⃒ (14)  

2.2.5.4. Coefficient of determination (R2). This is a statistical measure 
used in describing the proportion of the variation in the dependent 
variable that is explained by the independent (Enders, 2023). In the 
WPD scenario, R2 is used to assess the goodness of fit of a regression 
model used to estimate wind power density (Taylor, 2023). It is calcu-
lated as the proportion of the total sum of squares (TSS) in the dependent 
variable which is explained by the regression model. The TSS is the sum 
of the squared differences between each observed value of the depen-
dent variable and the mean value of a dependent variable (Glen, 2023). 

yi =
1
n
∑n

i=1
yi (15)  

R2= 1−

∑n

i=1
(yi − fi)

2

∑n

i=1
(yi − yi)

2
(16)  

Where yi, fi and yi are monthly observed mean data. 

2.2.6. Air density determination 
Wind power production is dependent on the air density modeled by 

the velocity frequency distribution. The air density estimation in each 
site is dependent on climatic parameters namely pressure, temperature, 
and relative humidity. The air density approximation of wind power 
density using the formulae. The calculated air density was based on the 
measured temperature, pressure, and relative humidity. The computa-
tions were done using the equations below. 

Equation of state of water vapor 

s(t)=
217Ps

t+273.15
(17)  

Ps is saturated water vapor obtained from Teten’s formulae as shown. 

Ps= 6.11×107.5t/(t+237.3) (18)  

Therefore, the air density can be obtained from Jones’ formulae (F. E. 
Jones, 1978). 

The air density ρ 

ρ= 0.0034848
t+273.15

(P− (0.0037960×Rh×Ps)

)

(19) 

(Tanaike, 2016).Where ρ is the density, P is the atmospheric pres-
sure, Rh is relative humidity. 

2.2.7. Wind power density estimation 
Wind power density is the amount of power that can be harnessed 

from wind at a particular location (W/m2) which is crucial in deter-
mining the suitability of a site in wind energy generation. It is derived 
from the wind speed, air density, and frequency. In regions with high 
velocity, it is estimated that the WPD will be higher relating to a higher 
wind power generated but when within the rated wind power of a tur-
bine thus making it the best indicator of wind resource compared to 

wind speed. 

P=
1
2

ρAv3 (20)  

WPD=
P
A
=

1
2

ρv3 (21) 

Using the Weibull parameters, the WPD was calculated using the 
shape and scale parameters. 

WPD=
1
2

ρc3Γ
(

1+
3
k

)

(22)  

3. Results 

3.1. Observed wind variation 

The wind speed data collected for 7 years (2014–2020) was analyzed 
and clustered to monthly variation. The variation of the data was used to 
theoretically quantify turbulent intensity quantifying the amount of 
turbulence in the wind flow through wind speed fluctuation such as 
mean, variance, power spectral and standard deviation (Julie and 
Andrew, 2012). Turbulent intensity is used in checking the variability of 
wind speeds over time with the intensity reducing efficiency and causing 
structural damage. The comparison of air density between the two 
counties was computed as demonstrated in Fig. 3. The density varied 
from month to month and from year to year with higher values between 
June and September (see Fig. 4). 

The turbulent intensity had a significant impact on wind turbine 
performance and mechanical loading with meteorological variables 
considered in the IEC61400-12-1 performance measurement stand for 
wind turbines (Bardal and Sætran, 2017; Kelevacha, 2023). The annual 
wind power for the two sites extrapolated at 10 m height with the 
highest wind speeds occurring between May–August (approximately 
120–300th day of the year). The maximum wind speed recorded was 
9.78 m/s for Taita-Taveta County with Garissa with two peak daily wind 
speeds at 13.80 m/s, 13.36 m/s, and 14.12 m/s on 97th, 261th, and 
307th respectively. The monthly wind speeds recorded for Taita Taveta 
is 7.1 m/s in June 2017 while for Garissa being 6.9 m/s in 2018 July. 

The month-to-month variation is affected by the inter-annual vari-
ation in monsoonal wind characteristics. From the analysis and wind 
direction over the period, the prevailing wind is high between April and 
October in the two sites affected by North-Easterly winds. The low wind 
speeds were affected by Kusi (December–March) winds for Garissa and 
Taita-Taveta counties. 

3.2. Wind speed analysis and variation 

Wind speed variation was analyzed from the historical wind speed 
data collected and analyzed using statistical methods. Standard deviation, 
mean, maximum, and minimum speeds for the number of observations 
(number of days) were used in measuring the dispersion variability of the 
data. The yearly standard deviation was calculated for Garissa and Taita 
Taveta counties between 2014 and 2020. It can be observed that the 
minimum standard deviation occurs in 2014 with σ= 1.04 for Taita 
Taveta and σ= 0.90 in 2018 for Garissa County. From the analysis, the 
coefficient of Variance (CoV) (ratio of standard deviation to mean of the 
data) shows the reliability and consistency of wind power; low CoV shows 
that wind is relatively consistent over time with high having more vari-
able making unpredictability in power generation (Lee et al., 2018; N. N. 
Wang et al., 2021). The wind consistency based on CoV was lower in 
Taita-Taveta County ranging from 0.20 to 0.25% while for Garissa County 
ranged from 0.28 to 0.42%. The mean velocity ranged between 1.63 m/s 
in 2020, and the highest being 7.56 m/s in 2017 in Garissa county. In 
Taita Taveta county, the highest velocity was 13.80 m/s in 2015, and 
minimum velocity being 2.4 m/s in 2019 and 2020. 
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3.3. Analysis of values of parameters 

The calculated scale and shape parameters within Garissa and Taita- 
Taveta Counties were found to be within 3–6 showing that both sites 
present a moderate wind potential which can be interesting in the ap-
plications depicted in class II on the wind power classification. Small 
values of shape factor indicate widely dispersed data such that the data 
tend to be uniformly distributed over a relatively wide range of wind 
speeds (Al-Nassar et al., 2005). Comparing k the values being relatively 
lower that mean speeds ranging from 4.07 m/s to 5.16 m/s in 
Taita-Taveta and 3.77 m/s to 4.96 between the 7 years shows sufficient 
wind speed sufficient for power generation (Table 1). 

The comparison of wind power density was calculated from 
measured density distributions with the highest value for Taita-Taveta 
County being 1430.538W/m2/year for MoM, 1436.494 W/m2/year for 
EMJ, 1405.182 W/m2/year for EML and 1172.67 W/m2/year for 
measured data, while in Garissa the highest WPD was 1591.702 W/m2/ 
year, 1594.356 W/m2/year, 1592.156 W/m2/year and 1324.695 W/ 
m2/year for MoM, EMJ, EML, and Measured data respectively in 2017 
seen in Fig. 5 (Table 2). The percentage deviation between the maximum 
and estimated wind power ranged between 11.41% and 22.28% in 
Taita-Taveta County and Garissa County had a deviation between 

12.16% and 21.82%. 

3.4. Error analysis 

The RSME is an important tool in the measurement of accuracy in a 
site since it involves the measurement of power at available site theo-
riticaly calculated as a function of wind speeds used in describing in 
distribution models. Comparing the performance done in Garissa and 
Taita-Taveta County, RSME is used in measuring the error between the 
calculated mean and predicted values. The RSME values obtained 
ranged between 5.61 and 22.5 for MOM, 6.51–26.75, and 20.82–81.65 
for Garissa County and 13.00–22.66 for MOM, 13.23–31.09 for EMJ and 
16.39–22.79 for EML in Taita Taveta. Comparing the level of accuracy in 
the study shows that a lower RMSE indicates that the method has a 
higher level of accuracy, while a higher value indicates lower accuracy. 
Comparing the findings on RMSE, MOM generally had the lowest value 
indicating a higher accuracy compared to EML and EMJ. The MOM and 
EML methods have more consistent values within a narrower range, 
while the comparison of EMJ values indicates that the accuracy was 
affected by specific, and conditions being analyzed. 

MAPE is a measure of accuracy for forecasting and predictive models 
which can be used in identifying patterns or trends in power density for 

Fig. 3. Computed air density for Garissa County (Garissa meteorological Station) and Taita Taveta County (Voi meteorological station).  

Fig. 4. Wind speed variation.  
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optimizing wind energy production. The values obtained in the calcu-
lation ranged from 20.68 to 54.57 in MOM, 21.21–50.95 in EMJ, and 
22.27–52.86 in EML for Garissa County, while MAPE had 22.49–47.90 
for MOM, 22.58–46.06 for EMJ and 18.79–23.04 for EML. The values on 
EML and EMJ indicate a moderate to a higher degree of error in the 
estimation of density, while MOM showed a higher error in estimation in 
Garissa County. The values obtained in Taita Taveta County had MOM 
and EMJ still relatively high indicating a moderate degree of error in 
estimation. The EML method in both counties showed to have a lower 
error estimation and is a bit more accurate and can be used in further 
analysis in the two sites. 

MAD measures the average varibility between each data point and 
the mean of the data set used in evaluating the accuracy of wind power 
density. The calculated values ranged from 11.44 to 44.58 in EML, 
5.80–22.47 for EMJ, and 5.61–22.25 in MOM for Garissa County, while 
Taita Taveta County had EML ranging from 9.71 to 19.65, EMJ had 
9.17–26.27 and MOM varied from 8.84 to 26.10. From these values, 
EML had the highest deviation from the mean followed by EMJ and 
MOM suggesting that the EML method may not be the best choice as its 
prediction is less accurate while MOM was more accurate in Garissa 
County. In Taita Taveta County, MAD values were generally lower than 
in Garissa suggesting that wind power density calculations could be 
more accurate in Taita Taveta. If the MAD is low, it indicates that the 
wind energy system is producing a consistent amount of energy, when 
the MAD is high, it suggests that energy production is more variable. 
However, the performance based on the methods used, EML had the 
highest deviation from the mean with MOM being more accurate. 

The coefficient of the determinant (R2) shows the proportion of 
variability in the dependent variable that is explained by independent 

variables (Enders, 2023). A value near to 1 shows that all of the vari-
ability in dependent variables is explained by independent variables. 
The values obtained ranged from 0.93 to 1 in EML, EMJ, and 0.91–1 in 
MOM in Garissa County, while Taita Taveta ranged from 0.95 to 1 in 
MOM, 0.96–1 in EMJ and 1 in EML. From the findings, the values 
indicated that the model had a higher degree of fit to the data, with a 
large proportion of the variability in the dependent variables being 
explained by independent variables. This indicated that high coefficient 
of determination values suggest that the model accurately described the 
relationship between the independent and dependent variables in both 
Garissa and Taveta Counties. 

From the analysis, the determination of the model to be used in the 
study varied from model to model, with MOM performing better in 
MAPE and MAD, while EML performed better in the RSME though MOM 
had more consistent values indicating more accuracy and can be used in 
the analysis and predictive studies coupled with R2 (Tables 3 and 4). 

3.5. Wind power classification 

The chosen wind turbines had capacity factors for the turbines were: 
Vestas V90 9.5%, Enercon 82 2000 had 4.96%, Gamesa G87 2000 had 
4.77%, Nordex N100-2500 had 5.50%, Vestas V66-200 had 2.52% and 
Goldwind 121–2500 had 8.87% (Staffell and Pfenninger, 2016) (see 
Fig. 6). Comparing the performance of the WPD at same height (Fig. 7), 
it can be seen that these wind turbines can suitably fit to the perfor-
mance with higher capacity factors expected. From the analysis, the 
wind power classification can be done to determine location quality and 
average installation of wind turbines for power generation from velocity 
and turbulence (Roach et al., 2020). 

The power classes are identified based on the Rayleigh distribution of 
equivalent mean wind power density regionally from mean wind speed 
(Paraschiv et al., 2019). The categorization of wind power class is 
determined using the International Electrotechnical Commission (IEC) 
standards (IEC 61400) widely classified into 7 classes (Table 5) based on 
the annual wind speeds at hub of 10 m above the ground (IEC, 2019; Ma 
et al., 2014). The average velocities ranged in the study sites ranged 
from 1.6 m/s to 7.6 m/s making it ideal for small wind power produc-
tion. Figures on the Wind power density from actual and estimated from 
Weibull distributions, the wind power can be classified which can be 
used in the decision and analytical analysis for wind turbine installation 
on the two sites. The wind speed and wind power density calculated 
from the Weibull distribution estimation were within ±5% which could 
help in identifying the class of wind turbine used. Considering these 
factors with wind power density obtained from the Empirical methods 
(Justus and Lyssen) and Moment of Methods, wind power can be clas-
sified as class II due to velocity and average monthly WPD of about 
132.68W/m2 for Garissa County and 119.71 W/m2 for Taita-Taveta 

Table 1 
Shape and scale factors between 2014 and 2020.   

Year EMJ EML MoM 

k C K C k C 

Garissa 2014 4.91 4.01 4.91 4.12 5.01 4.11  
2015 4.81 4.94 4.81 5.12 4.90 5.12 
2016 3.40 4.81 3.40 4.95 3.43 4.95 
2017 3.87 5.22 3.87 5.46 3.90 5.46 
2018 3.84 4.73 3.84 4.91 3.89 4.91 
2019 3.49 4.73 3.49 4.94 3.51 4.93 
2020 4.45 4.81 4.45 5.02 4.50 5.02 

Voi 2014 5.24 5.43 5.24 5.50 5.34 5.50 
2015 3.68 5.45 3.68 5.63 3.72 5.62 
2016 4.19 5.46 4.19 5.54 4.26 5.54 
2017 3.97 5.68 3.97 5.76 4.03 5.76 
2018 4.36 5.05 4.36 5.08 4.42 5.07 
2019 3.80 4.43 3.80 4.53 3.83 4.53 
2020 4.65 4.53 4.65 4.58 4.45 4.58  

Fig. 5. Weibull distribution (WPD) for Garissa and Taita-Taveta Counties.  
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Table 2 
Annual wind power density for Taita Taveta County, Voi meteorological station and Garissa County.   

Voi meteorological station Garissa meteorological station 

Year Weibull Measured Weibull Measured 

MoM EMJ EML Calculated MoM EMJ EML Calculated 

2014 1265.95 1269.45 1297.83 1121.42 529.61 531.90 530.96 462.35 
2015 1413.00 1414.97 1335.61 1099.75 1120.58 1114.01 1112.51 926.06 
2016 1323.47 1329.22 1330.21 1121.38 1067.86 1071.35 1070.23 837.63 
2017 1430.54 1436.49 1405.18 1172.67 1591.70 1594.36 1592.16 1324.70 
2018 1059.44 1059.47 1030.20 874.38 1138.55 1141.48 1139.78 953.36 
2019 863.90 862.11 829.52 704.77 1279.75 1277.67 1275.94 1041.94 
2020 753.94 757.95 764.48 647.91 1275.30 1276.39 1274.17 1119.29  

Table 3 
Statistical error analysis (Moment of Methods) in Taita-Taveta County, Voi meteorological station.  

Taita-Taveta  2014 2015 2016 2017 2018 2019 2020 

MOM MAD 12.04 26.10 16.84 21.49 15.42 13.26 8.84 
RSME 13.00 31.04 17.79 22.66 17.91 15.88 10.17 
MAPE (%) 22.49 37.02 27.59 30.32 36.09 47.90 22.11 
Coefficient of determination (R2) 0.99 0.95 1.00 0.99 0.97 0.98 0.99 
RPE (%) 22.49 37.02 27.59 30.32 36.09 47.90 22.11 

EMJ MAD 12.34 26.27 17.32 21.99 15.42 13.11 9.17 
RSME 13.23 31.09 18.30 23.18 17.74 15.49 10.57 
MAPE 22.58 36.58 27.98 30.71 35.46 46.06 22.65 
Coefficient of determination (R2) 0.99 0.96 1.00 0.99 0.98 0.98 0.99 
RPE (%) 22.58 36.58 27.98 30.71 35.46 46.06 22.65 

EML MAD 14.70 19.65 17.40 19.38 12.99 10.40 9.71 
RSME 16.39 22.79 20.20 21.38 14.85 12.80 11.88 
MAPE 18.79 22.87 21.43 22.24 21.55 23.04 19.30 
Coefficient of determination (R2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
RPE (%) 18.79 22.87 21.43 22.24 21.55 23.04 19.30  

Table 4 
Statistical error analysis (Moment of Methods) in Garissa County, Garissa meteorological station.  

Garissa  2014 2015 2016 2017 2018 2019 2020 

MOM MAD 5.61 16.21 19.19 22.25 15.43 19.82 13.00 
RSME 6.31 23.44 22.92 26.42 19.05 24.34 14.95 
MAPE 20.68 32.15 42.21 43.91 40.49 54.57 45.27 
Coefficient of determination (R2) 0.99 0.91 0.98 0.98 0.99 0.99 1.00 
RPE (%) 20.68 32.15 42.21 43.91 40.49 54.57 45.27 

EMJ MAD 5.80 15.66 19.48 22.47 15.68 19.64 13.09 
RSME 6.51 21.59 23.33 26.75 19.37 24.03 15.17 
MAPE 21.21 30.59 41.58 42.50 39.41 50.95 42.49 
Coefficient of determination (R2) 0.99 0.93 0.98 0.99 0.99 0.99 1.00 
RPE (%) 22.46 32.28 43.91 44.20 41.05 52.84 43.66 

EML MAD 11.44 31.08 38.77 44.58 31.07 39.00 25.81 
RSME 20.82 57.98 71.05 81.65 57.14 71.64 47.14 
MAPE 22.27 32.16 43.86 44.17 40.99 52.86 43.63 
Coefficient of determination (R2) 0.99 0.93 0.98 0.99 0.99 0.99 1.00 
RPE (%) 22.27 32.16 43.86 44.17 40.99 52.86 43.63  

Fig. 6. Annual wind power density and Weibull distribution percentage variance for Garissa and Taita-Taveta County.  
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County (Fig. 8). Wind power class above Class III has a potential of 
commercial power production limiting the WPD study on Taita Taveta 
and Garissa Counties not feasibile for commercial purposes from the 
average annual wind speeds and Weibull calculated WPDs; but can be 
used in supplementing the KoSAP program. 

4. Conclusion 

Quantitative measure of wind energy was done in Garissa and Taita 
Taveta Counties to investigate on Wind Power Density using Weibull 
Probability distribution from the calculated air density and measured 
wind speeds for a 7 year period. The turbulence intensity in Garissa 

Fig. 7. Comparison of estimated wind power and the data obtained by (Staffell and Pfenninger, 2016) from the Ninja.com site.  

Table 5 
Wind power class classification.  

Class I II III IV V VI  

Wind speeds (m/s) 0–4.4 4.5–5.0 5.1–5.5 5.6–5.9 6–6.4 6.4–6.9 >7 
WPD (W/m2) <100 101–150 151–200 201–250 251–300 300–400 >400 

Wind power classification (Heni and Badr, 2015). 

Fig. 8. Monthly wind power desnity in Garissa and Taita Taveta County.  
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County was high compared with Taita Taveta County, whereas the wind 
characteristic patterns were same with higher recorded wind speeds 
experienced between April and September. The air density which is 
determinant from the power production was calculated from the 
measured air temperature and relative humidity from the two sites. The 
annual air density was higher in Taita Taveta compared to Garissa 
county due to high humidity dependent on the location. The coefficient 
of variance calculated in two sites showed that Taita Taveta had a better 
coefficient of between 0.20 and 0.28% compared to 0.28–0.43% in 
Garissa County. Comparing the performance of the Weibull parameters, 
MoM had better performance where R2 had best fit for both counties 
ranging from 0.93 to 1. The annual WPD from the statistical tools ranged 
from the 600–1400W/m2 in Taita Taveta County and 500–1600W/m2 in 
Garissa County. The annual average monthly WPD was found to be 
132.68W/m2 and 119.71 W/m2 for Garissa and Taita Taveta Counties 
respectively with the annual wind power deviation 11% below the 
mean. From the IEC 61400 on wind power class, both sites, counties 
were bounded in Class II which is commercially unfeasible. Class II 
power can be used in mini-grids to supplement solar which are currently 
being used by KoSAP since they can’t be used commercially due to the 
WPD and wind speeds. Further research will be carried out on larger 
scales in the 14 gazetted marginalized counties to evaluate the potential 
of wind power density with more Weibull parameters for detailed 
analysis. This will enhance comparisons for wind power reliability and 
consistency on the suitability for different periods as well as to identify 
trends or patterns in the performance of wind energy systems in Kenya. 
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