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This paper is devoted to the analysis of an abstract formula describing quantum adi-
abatic charge pumping in a general context. We consider closed systems characterized
by a slowly varying time-dependent Hamiltonian depending on an external parameter
α. The current operator, defined as the derivative of the Hamiltonian with respect to
α, once integrated over some time interval, gives rise to a charge pumped through the
system over that time span. We determine the first two leading terms in the adiabatic
parameter of this pumped charge under the usual gap hypothesis. In particular, in case
the Hamiltonian is time periodic and has discrete non-degenerate spectrum, the charge
pumped over a period is given to leading order by the derivative with respect to α of
the corresponding dynamical and geometric phases.
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1. Introduction

1.1. Motivation

Many physical systems of interest can be described by means of a time-dependent

Hamiltonian reflecting the action of external agents on the system or taking into

account the variations of its environment, in an effective manner. In such generality,

little can be said about the evolution of the system. However, when the Hamiltonian

is a slowly varying function of time with respect to some fixed relevant time scale

of the system, the adiabatic theorem of quantum mechanics provides a very useful

tool to describe the evolution in an approximate way under certain hypotheses,

see e.g. [8, 23]. The mathematical circumstances under which an adiabatic theorem
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of quantum mechanics can be proven are diverse, starting with the well-known

gap hypothesis in the spectrum of the Hamiltonian, see e.g. [19, 26, 4], which

will be enough for our purposes. Note, however, that higher order approximations

[27, 28, 18], generalizations to situations where the gap assumption fails [9, 2] or

where self-adjointness does not hold [31, 17] or to a spacetime setting [33] have been

carried out over the years; see also the review [15] and references therein.

In several physical systems, the Hamiltonian also depends on some external

parameter, α ∈ R, associated with an instantaneous charge current. For instance,

this is the case for models used in the study of the quantum Hall effect where

the electric current is monitored by a magnetic flux, α, through the sample which

appears as a parameter in the Hamiltonian Hα(s). The instantaneous current oper-

ator is given by ∂αHα(s) see e.g. [29, 4]. A similar phenomenon holds in models

of mesoscopic physics where the current across the device they describe is driven

by a phase difference. Examples are superconducting systems used as Cooper pair

pumps [30, 1, 13, 14, 24, 25, 10]. In both cases, the physical reason behind the inter-

pretation of ∂αHα(s) as a current comes from the fact that a variation of magnetic

fluxes induces currents.

Accordingly, for an initial state ψ, the charge pumped through the system in

that state between time 0 and τ is given by

〈Qα(τ)〉ψ :=

∫ τ

0

〈Uα(τ ′)ψ|(∂αHα(τ
′))Uα(τ

′)ψ〉dτ ′,

where Uα(τ) is the evolution operator. It is often true in applications that the time

variation of the Hamiltonian is periodic, in which case one considers the charge

transported over a time period. For a slowly varying Hamiltonian Hα with an iso-

lated part of spectrum and an initial state ψ in the corresponding spectral subspace,

the pumped charged 〈Qα(τ)〉ψ can be computed by making use of an adiabatic

approximation. This yields the starting point of the analysis of the geometrical and

topological properties of this quantity. In particular, when the dependence of the

Hamiltonian is periodic in both the time and parameter α, it is well known that the

pumped charge over a cycle suitably averaged over α is quantized and related to

topological indices associated with the spectral projector, see e.g. [29, 5, 4]. How-

ever, in certain mesoscopic devices, the observed charge transfers do correspond to

〈Qα(τ)〉ψ for fixed values of α [10], which is also known to differ significantly from

the average value over α, [4].

Note that in contrast to other mathematical studies, see e.g. [3], the time-

dependent adiabatic pumps we consider are not open systems in the following

sense: their dynamics for frozen times is not characterized by an explicit scattering

matrix between infinite reservoirs. Therefore, no formula is available to determine

the charge transport in terms of matrix elements of the instantaneous scattering

matrix [11, 12].

The purpose of this paper is to provide a mathematical derivation of the adi-

abatic pumped charge through the system in an abstract setting that covers the

physical situations described above.
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We focus on the derivation of a controlled approximate expression for 〈Qα(τ)〉ψ ,
the charge pumped through the system over a time span [0, τ ] for fixed values of

α up to vanishing corrections in the adiabatic regime. We work in a quite general

framework, with arbitrary dependence of the Hamiltonian on time and α, assuming

only the existence of an isolated part of spectrum inHα(τ). This allows us to recover

as particular cases the time-periodic situations and, for an isolated eigenvalue in the

spectrum, expressions for the charge pumped over a period used in several contexts,

involving the geometric phase or its non-Abelian version [10].

Moreover, we hope the present analysis can provide an introduction to the

mathematical methods used in the analysis of adiabatic phenomena beyond the

matrix case.

1.2. Setup and results

Let us describe more precisely the mathematical setup and results we prove in the

next section. The adiabatic regime is characterized by a dimensionless time scale

1/ε, which is assumed to be long, i.e. ε� 1. The Hamiltonian is assumed to depend

on ε as follows: Hα = Hα(ετ). This makes the Hamiltonian slowly varying since

it takes a time of order 1/ε for it to change significantly. Introducing the rescaled

time variable t = ετ , of order one, the corresponding evolution operator Uα also

depends on the small parameter ε and satisfies

iε∂tUα(t) = Hα(t)Uα(t), Uα(0) = I.

Accordingly, for any initial state ψ, the charge pumped over a time interval [0, τ =

t/ε] now reads

〈Qα(t)〉ψ =
1

ε

∫ t

0

〈Uα(s)ψ|(∂αHα(s))Uα(s)ψ〉ds,

which is of order 1/ε. From here on, s is consistently the rescaled dummy integra-

tion time variable. In order to capture the leading term, up to a vanishing error

in the adiabatic limit ε → 0, it is necessary to compute the next-to-leading order

approximation of the evolution operator in ε. We do this in Theorem 2.2, under

the sole gap hypothesis, after having recalled the usual leading order adiabatic

approximation in Theorem 2.1. Then we focus on initial conditions that belong to

the spectral projector corresponding to the isolated part of spectrum. The corre-

sponding general expression for the charge operator is provided in Proposition 2.1.

A far more tractable expression is obtained for an isolated eigenvalue, of arbitrary

degeneracy, as Corollary 2.1. In case the Hamiltonian is periodic in time of period

one, we recover in Corollary 2.2 the expressions used in [10]. The simplest instance

being for a simple isolated eigenvalue Eα(t), such that Hα(t)ψ(t) = Eα(t)ψ(t). The

charge pumped over a cycle for the initial condition ψ = ψ(0) then reads

〈Qα(1)〉ψ =
1

ε

∫ 1

0

∂αEα(s)ds+ ∂αβα +O(ε).
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Here the first term is the usual dynamic contribution, whereas the second one is

of geometric nature [32, 34], βα being the familiar geometric phase [6, 7]. In case

the eigenvalue is degenerate, the matrix-valued non-Abelian generalization of this

quantity, B(1), to be used is of course also described in Corollary 2.1.

The last section of the paper is devoted to the study of a family of examples used

in the physical application described in [10]. The Hamiltonians considered display a

permanently degenerate isolated eigenvalue for which explicit computations of B(1)

can be performed. In case the dimension of the corresponding degenerate eigenspace

is two, which corresponds to the applications considered in [10], we also provide a

geometric interpretation of B(1).

2. Analysis

In this section, we provide the abstract rigorous mathematical analysis behind the

formulas used in the study of the physical phenomenon of adiabatic charge pumping.

We feel such a rigorous analysis is useful because of the presence of a variety of

formulations of geometric adiabatic charge pumping in the literature which have

similar features. This allows us to make clear under which hypotheses we work.

Also, we believe the analysis is interesting in itself because it applies under very

general conditions and it might be of use in different frameworks.

LetH be a separable Hilbert space andHα(t) be a bounded self-adjoint operator

on H. In order not to obscure the analysis by side issues regarding the technical

difficulties related to the use of unbounded operators, we stick to the bounded case.

For the same reason, we assume the parameter α is real-valued. We work under the

Regularity assumption. The map (t, α) �→ Hα(t) is C3 in the norm sense, as a

bounded operator valued function, with (t, α) ∈ [0, 1]× [0, 1].

Let Uα(t) be the solution to

iεU̇α(t) = Hα(t)Uα(t), Uα(0) = I, (1)

where we rescaled time for convenience. Since L(H) is a Banach space, it follows

from the general theory of differential equations, see e.g. [21] Chap. VI, that the

solution to (1) is as regular in (t, α) as the Hamiltonian is, i.e.

(t, α) �→ Uα(t) ∈ C3([0, 1]× [0, 1],L(H)). (2)

The variable α is a parameter whose variations monitor fluxes or currents in the

time-dependent physical device described by Hα(t). The current operator being

defined as ∂αHα(t), if ψ ∈ H is a normalized initial state, the average charge

pumped by the system between the physical times 0 and t/ε is equal to

〈Qα(t)〉ψ =
1

ε

∫ t

0

〈Uα(s)ψ|(∂αHα(s))Uα(s)ψ〉ds. (3)
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This leads us to study the charge operator Qα(t), whose matrix elements carry

the physical interpretation, defined by

Qα(t) =
1

ε

∫ t

0

U−1
α (s)(∂αHα(s))Uα(s)ds. (4)

The geometrical properties of another average charge operator in the adiabatic

limit have been investigated in [5] under the assumption that (t, α) �→ Hα(t) is

periodic in both variables. The average there is taken both over the period of the

time-dependent Hamiltonian and over the flux variable α. By contrast, we analyze

the adiabatic behavior of the charge operator for fixed values of α and t. In case of

a time periodic Hamiltonian, the geometric content of the charge operator over a

period is elucidated.

As already observed in [4] for example, an alternative exact expression for Qα(t)

reads as follows:

Qα(t) = iU−1
α (t)∂αUα(t). (5)

It is a consequence of the regularity of Uα(t) and the computation

iε∂t
(
U−1
α (t)∂αUα(t)

)
= −U−1

α (t)Hα(t)∂αUα(t)

+U−1
α (t)∂α(Hα(t)Uα(t))

= U−1
α (t)(∂αHα(t))Uα(t), (6)

with ∂αUα(0) = 0. Note that we also deduce from (5) the general estimate

∂αUα(t) = O(t/ε), (7)

which is sharp in the scalar case.

We proceed by considering the adiabatic limit ε→ 0 under the familiar

Gap hypothesis. Assume the spectrum σ(Hα(t)) consists in two disjoint parts

σ(Hα(t)) = σα(t) ∪ σα(t) such that

inf
(t,α)∈[0,1]2

dist(σα(t), σα(t)) = g > 0. (8)

Let Pα(t) be the spectral projector of Hα(t) associated with σα(t) by means of

the Riesz formula

Pα(t) = − 1

2πi

∫

γ

(Hα(t)− z)−1dz, (9)

where γ is a loop in the complex plane encircling σα(t) only, which is locally inde-

pendent of (t, α) and let Pα(t) = I−Pα(t) be its complement. These projectors are

as regular as the Hamiltonian is and moreover satisfy for any (t, α)

Pα(t)Ṗα(t)Pα(t) = Pα(t)(∂αPα(t))Pα(t) ≡ 0, (10)

as easily seen by differentiating the identity Pα(t)
2 = Pα(t).
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We introduce two unitary operators whose product will approach the true evo-

lution in the adiabatic limit. Let Wα(t) and Φα(t) be defined by

iẆα(t) = Kα(t)Wα(t), Wα(0) = I, (11)

iεΦ̇α(t) = W−1
α (t)Hα(t)Wα(t)Φα(t), Φα(0) = I, (12)

where

Kα(t) = i[Ṗα(t), Pα(t)]. (13)

It is a classical fact that the following relations hold,

Wα(t)Pα(0) = Pα(t)Wα(t), (14)

Φα(t)Pα(0) = Pα(0)Φα(t). (15)

The first identity is proven by showing that both operators satisfy the same differ-

ential equation with the same initial condition, exploiting the relation

Pα(t)Kα(t)Pα(t) = 0, (16)

which is a consequence of (10), see e.g. [19]. The second identity follows from the

fact that, by construction, the generator of Φα(t) commutes with Pα(0).

We have

Theorem 2.1. (Adiabatic Theorem) Assuming the Regularity and Gap hypotheses

above, we have for any (t, α) ∈ [0, 1]× [0, 1],

Uα(t) =Wα(t)Φα(t) +O(ε), (17)

where the error term is uniform in α ∈ [0, 1].

Remarks. (i) As stated, the theorem dates back to [26], [27] and was generalized

by [4] to the unbounded case. The fact that the error term is uniform in α ∈ [0, 1]

is a straightforward consequence of our Regularity Assumptions and of the Gap

hypothesis which is uniform in α ∈ [0, 1].

(ii) In case σα(t) consists of a single eigenvalue Eα(t), the theorem says

Uα(t)Pα(0) = e−
i
ε

R
t
0
Eα(s)dsPα(t)Wα(t) +O(ε). (18)

This is the statement proven by Kato in [19].

(iii) Further assuming Eα(t) is nondegenerate and the time-dependent Hamiltonian

is periodic in time, of period 1, we get the geometric or Berry phase out of this

formula as follows:

Let ϕα(0) = Pα(0)ϕα(0), be a normalized eigenvector associated with Eα(0).

Then, property (14) implies that ∀ (α, t) ∈ [0, 1]2

ϕα(t) =Wα(t)ϕα(0) satisfies Hα(t)ϕα(t) = Eα(t)ϕα(t) (19)



July 5, 2010 13:45 WSPC/S1793-7442 251-CM S1793744210000156

Abstract Adiabatic Charge Pumping 165

and (11) together with (16) yield

〈ϕα(t)|ϕ̇α(t)〉 = 0. (20)

By periodicity, ϕα(0) and ϕα(1) differ only by a phase

ϕα(1) = e−iβαϕα(0), (21)

where βα is the geometric or Berry phase. Therefore we finally get

Uα(1)ϕα(0) = e−
i
ε

R
1
0
Eα(s)dse−iβαϕα(0) +O(ε). (22)

This shows concretely that the operatorWα(t) carries the geometrical content of the

adiabatic theorem. Note finally that if t �→ ψα(t) is another choice of instantaneous

normalized eigenvector associated with Eα(t) which is periodic in time, these vectors

differ from ϕα(t) by a phase for any time

ϕα(t) = e−ibα(t)ψα(t). (23)

Using (20), we get an explicit expression for bα

bα(t) = bα(0)− i

∫ t

0

〈ψα(s)|ψ̇α(s)〉ds. (24)

Therefore ϕα(1) = e−
R 1
0
〈ψα(s)|ψ̇α(s)〉dsϕα(0) and

βα = −i
∫ 1

0

〈ψα(s)|ψ̇α(s)〉ds. (25)

Coming back to the charge operator, we see that in order to estimate Qα(t)

up to errors of order O(ε) vanishing in the adiabatic limit, we need to control the

evolution to order O(ε2), see (4). This can be achieved as follows, see e.g. [27, 4,

18, 28], etc.

Let

H(1)
α (t) = Hα(t)− εKα(t), (26)

which satisfies the gap assumption (8) for ε small enough sinceKα(t) is bounded, i.e.

σ(H(1)
α (t)) = σ(1)

α (t) ∪ σ(1)
α (t). (27)

Hence we can define the corresponding spectral projectors P
(1)
α (t) by (9) and

P
(1)
α (t) = I− P

(1)
α (t). By perturbation theory we have for ε small enough

(H(1)
α (t)− z)−1 = (Hα(t)− z)−1 + (Hα(t)− z)−1εKα(t)(Hα(t)− z)−1 +O(ε2),

(28)
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where the remainder term is C2 in (t, α) and of order ε2, as a uniformly convergent

Neumann series. The same is true for the perturbed projector expressed using (9)

with the same path γ for ε small enough,

P (1)
α (t) = Pα(t)− εRα(Kα)(t) +O(ε2), (29)

where, for any bounded operator B,

Rα(B)(t) =
1

2iπ

∮

γ

(Hα(t)− z)−1B(Hα(t)− z)−1dz (30)

with γ is a loop encircling σ
(1)
α (t), which can be chosen locally independently of

(t, α). Let us also note here for future reference that

Pα(t)Rα(Kα)(t)Pα(t) = 0, (31)

as a consequence of the fact that the resolvent and the spectral projectors of Hα(t)

commute and of (16). We set

K(1)
α (t) = i[Ṗ (1)

α (t), P (1)
α (t)] = Kα(t) +O(ε), (32)

where, again, the error term can be differentiated without harm. We define W
(1)
α (t)

and Φ
(1)
α (t) by

iẆ (1)
α (t) = K(1)

α (t)W (1)
α (t), W (1)

α (0) = I, (33)

iεΦ̇(1)
α (t) = W (1)

α

−1
(t)

(
H(1)
α (t) + εD1

α(Kα(t)
)
W (1)
α (t)Φ(1)

α (t), (34)

Φ(1)
α (0) = I,

where, for any bounded operator B, D1
α(B) = P

(1)
α BP

(1)
α + P

(1)
α BP

(1)
α . One gets

that the relations equivalent to (14), (15) hold with superscript“(1)” at the relevant

operators.

The point of this construction is that it gives a

Theorem 2.2. (Second Order Adiabatic Theorem) Under the hypotheses of The-

orem 2.1, we have for any (t, α) ∈ [0, 1]× [0, 1],

Uα(t) =W (1)
α (t)Φ(1)

α (t) +O(ε2), (35)

where the error term is uniform in α ∈ [0, 1].

Remarks. (i) If the Hamiltonian is regular enough in the t variable, it is possible

to get arbitrary order adiabatic theorems.

(ii) These adiabatic theorems further yield the perturbative estimate

W (1)
α (t)Φ(1)

α (t) =Wα(t)Φα(t) +O(ε). (36)

(iii) This result can be found under various guises in [27, 4, 18, 28], . . . . As such, it is

stated and proven in [16], Theorem 3.3.1, p. 38 (for α fixed). Again, the uniformity

in α of the error term is easily checked.
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As a consequence of this second theorem, we have the approximation

Qα(t) =
1

ε

∫ t

0

Φ(1)
α

−1
(s)W (1)

α

−1
(s)∂αHα(s)W

(1)
α (s)Φ(1)

α (s)ds+O(ε). (37)

We point out again that the analog of the formula above with operators Wα and

Φα in place of W
(1)
α and Φ

(1)
α yields an error term of order one, instead of O(ε).

We are interested in the matrix elements of Qα(t) with vectors belonging to

the spectral subspace Pα(0)H, so that from now on, we focus on the operator

Pα(0)Qα(t)Pα(0). The goal is to express the information in (37) in terms of more

familiar quantities, like dynamical phases and geometric phases, in certain cases.

The next technical result says that we can express Pα(0)Qα(t)Pα(0) as a leading

term (of order 1/ε) that corresponds to the replacement of Uα(t) by its second order

adiabatic approximation with P
(1)
α (0) in place of Pα(0) and ∂αH

(1)
α (t) in place of

∂αHα(t) plus a term of order ε0 which will give rise to the geometric contribution:

Proposition 2.1. Under the hypotheses of Theorem 2.1, we have for any (t, α) ∈
[0, 1]× [0, 1],

Pα(0)Qα(t)Pα(0)

= Pα(0)

(
1

ε

∫ t

0

Φ(1)
α

−1
(s)W (1)

α

−1
(s)

×P (1)
α (s)∂αH

(1)
α (s)P (1)

α (s)W (1)
α (s)Φ(1)

α (s)ds

)
Pα(0)

+Pα(0)

(∫ t

0

Φ−1
α (s)W−1

α (s)∂αKα(s)Wα(s)Φα(s)ds

)
Pα(0) +O(ε).

(38)

Proof. Plugging the relations

Pα(t) = Pα(t)
2 = Pα(t)(P

(1)
α (t)− εRα(Kα)(t)) +O(ε2) (39)

and

∂αHα(t) = ∂αH
(1)
α (t) + ε∂αKα(t) (40)

into the expression (37), and making use of the properties ofW
(1)
α and Φ

(1)
α together

with (36), we get

Pα(0)Qα(t)Pα(0)

= Pα(0)

(
1

ε

∫ t

0

Φ(1)
α

−1
(s)W (1)

α

−1
(s)P (1)

α (s)

× ∂αH
(1)
α (s)P (1)

α (s)W (1)
α (s)Φ(1)

α (s)ds

)
Pα(0)

+Pα(0)

(∫ t

0

Φ−1
α (s)W−1

α (s)∂αKα(s)Wα(s)Φα(s)ds

)
Pα(0)
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−Pα(0)

(
Rα(Kα)(0)

∫ t

0

Φ−1
α (s)W−1

α (s)∂αHα(s)Wα(s)Φα(s)ds

+

∫ t

0

Φ−1
α (s)W−1

α (s)∂αHα(s)Wα(s)Φα(s)dsRα(Kα)(0)

)
Pα(0) +O(ε).

(41)

We want to show that the last two terms are actually of order ε, by integration by

parts. We consider the last term only, since the previous one can be dealt with in

a similar fashion. Using property (31), the integrand of this term is

Pα(0)Φ
−1
α (s)W−1

α (s)Pα(s)∂αHα(s)Pα(s)Wα(s)Φα(s)Pα(0). (42)

Differentiating the following identity with respect to α

Hα(s) = Pα(s)Hα(s)Pα(s) + Pα(s)Hα(s)Pα(s), (43)

we get

Pα(s)∂αHα(s)Pα(s) = Pα(s)Hα(s)∂αPα(s)Pα(s) + Pα(s)∂αPα(s)Hα(s)Pα(s)

= Pα(s)[Hα(s), ∂αPα(s)]Pα(s). (44)

Hence, together with (11), we can write

(42) = Pα(0)Φ
−1
α (s)W−1

α (s)[Hα(s), ∂αPα(s)]Wα(s)Φα(s)Pα(0)

= Pα(0)Φ
−1
α (s)[W−1

α (s)Hα(s)Wα(s),W
−1
α (s)∂αPα(s)Wα(s)]Φα(s)Pα(0)

= −iε∂s
(
Pα(0)Φ

−1
α (s)W−1

α (s)∂αPα(s)Wα(s)Φα(s)Pα(0)
)

+ iεPα(0)Φ
−1
α (s)∂s

(
W−1
α (s)∂αPα(s)Wα(s)

)
Φα(s)Pα(0). (45)

Thus, since Wα(s) and Pα(s) are independent of ε, and Φα(s) is unitary, when

integrated between 0 and t ∈ [0, 1], this yields a contribution of order ε.

Remark. We can get an alternative expression for the zeroth order term by making

use of the identity

Pα(s)∂αKα(s)Pα(s) = iPα(s)∂α[Ṗα(s), Pα(s)]Pα(s)

= iPα(s)[Ṗα(s), ∂αPα(s)]Pα(s). (46)

We want to focus now on the situation σα(t) = {Eα(t)}, that is when Pα(t) cor-
responds to an isolated eigenvalue Eα(t), not necessarily simple, possibly associated

with an infinite dimensional spectral subspace. Which means that

Hα(t) = Eα(t)Pα(t) + Pα(t)Hα(t)Pα(t), (47)

(Hα(t)− z)−1 =
Pα(t)

Eα(t)− z
+ Pα(t)(Hα(t)− z)−1Pα(t), (48)

where the reduced resolvent Pα(t)(Hα(t) − z)−1Pα(t) is holomorphic for all z’s

inside the loop γ of the definition (9) of Pα(t).
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This case allows one to distinguish nicely contributions from the dynamical

phase and from the geometric phase in the usual adiabatic language, in the periodic

case. This comes as a simple

Corollary 2.1. Assume σα(t) = {Eα(t)}, then

Pα(0)Qα(t)Pα(0) = Pα(0)

(
1

ε

∫ t

0

∂αEα(s)ds+ iW−1
α (t)∂αWα(t)

)
Pα(0) +O(ε).

(49)

Remarks. (i) We do not use periodicity in any of the variables yet.

(ii) The form of the order zero term is similar to (5), which allows one to interpret

it as the geometrical charge transported in the adiabatic process. This is supported

by the fact that this term is determined by the spectral projector Pα(t) only.

Proof. We will approximate P
(1)
α (t)H

(1)
α (t) by Eα(t)P

(1)
α (t) by perturbation theory

in ε. By means of the Riesz formula (9) for P
(1)
α (t) we can write

P (1)
α (t)(H(1)

α (t)− Eα(t)) = − 1

2πi

∫

γ

(H(1)
α (t)− z)−1(H(1)

α (t)− Eα(t))dz

= − 1

2πi

∫

γ

(z − Eα(t))(H
(1)
α (t)− z)−1dz. (50)

We used
∫
γ I dz = 0. Introducing the perturbed resolvent (28), we get

P (1)
α (t)(H(1)

α (t)− Eα(t))

= − 1

2πi

∫

γ

(z − Eα(t))(Hα(t)− z)−1dz

− ε

2πi

∫

γ

(z − Eα(t))(Hα(t)− z)−1Kα(t)(Hα(t)− z)−1 +O(ε2), (51)

where the remainder keeps being of order ε2 when differentiated. By making use of

(48) and by the fact that the reduced resolvent is analytic inside γ, one gets from

the Cauchy formula that the first term of the right-hand side is zero whereas the

second yields

− ε

2πi

∫

γ

(z − Eα(t))(Hα(t)− z)−1Kα(t)(Hα(t)− z)−1 = εPα(t)Kα(t)Pα(t). (52)

This term is zero due to (16), hence

P (1)
α (t)H(1)

α (t) = Eα(t)P
(1)
α (t) +O(ε2), (53)

where the remainder term can be differentiated. Therefore

∂αH
(1)
α (t) = ∂α(Eα(t)P

(1)
α (t) + Pα(t)H

(1)
α (t)Pα(t)) +O(ε2) (54)
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and we get

P (1)
α (t)∂αH

(1)
α (t)P (1)

α (t) = P (1)
α (t)∂αEα(t) +O(ε2). (55)

This allows us to further simplify the first term in the expression of Proposition 2.1,

making use of (29) and (31) to get

Pα(0)

(
1

ε

∫ t

0

Φ(1)
α

−1
(s)W (1)

α

−1
(s)P (1)

α (s)∂αH
(1)
α (s)P (1)

α (s)W (1)
α (s)Φ(1)

α (s)ds

)
Pα(0)

= Pα(0)
1

ε

∫ t

0

∂αEα(s)P
(1)
α (0)dsPα(0) +O(ε)

= Pα(0)
1

ε

∫ t

0

∂αEα(s)ds+O(ε). (56)

The last term in the expression of Proposition 2.1 is dealt with as follows. The

condition (47) implies

Φ±1
α (t)Pα(0) = Pα(0)e

∓ i
ε

R t
0
Eα(s)ds (57)

so that we are left with

Pα(0)

(∫ t

0

W−1
α (s)∂αKα(s)Wα(s)ds

)
Pα(0). (58)

The argument leading from (4) to (5) depends only on the differential equation sat-

isfied by Uα(t), and thus also applies, mutatis mutandis, to Wα(t), whose generator

is Kα(t). This ends the proof of the corollary.

Further specializing to the periodic case we get

Corollary 2.2. Assume σα(t) = {Eα(t)} and suppose t �→ Hα(t) is periodic in t,

of period 1. Then,

(i) if Eα(t) is nondegenerate

〈ϕα(0)|Qα(1)ϕα(0)〉 =
1

ε

∫ 1

0

∂αEα(s)ds+ ∂αβα + O(ε), (59)

where ϕα(0) is any normalized eigenvector at t = 0 and βα is the corresponding

geometric or Berry phase,

(ii) if Eα(t) is degenerate and {ϕ(r)
α (0)| r ∈ N} denotes an orthonormal basis of

Pα(0)H, we have

〈ϕ(r)
α (0)|Qα(1)ϕ(s)

α (0)〉 = 1

ε

∫ 1

0

∂αEα(s)ds+ i〈ϕ(r)
α (t)|∂αϕ(s)

α (t)〉|10 +O(ε), (60)

where ϕ
(r)
α (t) =Wα(t)ϕ

(r)
α (0), r ∈ N,
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(iii) if Eα(t) is finitely degenerate, and if {ψ(r)
α (t), | r ∈ {1, 2, . . . , N}} denotes a

C1, 1-periodic orthonormal basis of Pα(t)H, we can write

〈ϕ(r)
α (0)|Qα(1)ϕ(s)

α (0)〉 = 1

ε

∫ 1

0

∂αEα(s)ds

+ i


∑

q,q′

Bq
′,r
α (1)Bq,sα (1)〈ψ(q′)

α (0)|∂αψ(q)
α (0)〉

+
∑

q

Bq,rα (1)∂αB
q,s
α (1)− 〈ψ(r)

α (0)|∂αψ(s)
α (0)〉


+O(ε),

(61)

where Bα(t) solves the ODE

Ḃα(t) = Γα(t)Bα(t), Bα(0) = I, (62)

with Γα(t) defined by its matrix elements in the basis {ψ(r)
α (0)}r=1,...,N

〈ψ(s)
α (0)|Γα(t)ψ(r)

α (0)〉 = −〈ψ(s)
α (t)|ψ̇(r)

α (t)〉. (63)

Remarks. (i) An explicit quantity for the geometric part of the charge transported

is always available in the nondegenerate case only, see (25). In the degenerate case,

the geometric part is determined by the solution to a (second order at least) ordinary

differential equation. No explicit solution is available in general and, moreover, the

equation is parameter free which forbids an asymptotic analysis. However, as we

explain below, there are special cases of interest in which an explicit expression is

available for this geometric contribution.

(ii) The third point is a mere restatement of the second one, making use of an

a priori time-dependent basis of the eigenspace provided by an independent spectral

analysis.

Proof. To get the second statement, we compute

i〈ϕ(r)
α (0)|W−1

α (t)(∂αWα(t))ϕ
(s)
α (0)〉

= i〈ϕ(r)
α (0)|(W−1

α (t)(∂αWα(t)ϕ
(s)
α (0))−W−1

α (t)Wα(t)∂αϕ
(s)
α (0))〉

= i〈ϕ(r)
α (t)|∂αϕ(s)

α (t)〉 − i〈ϕ(r)
α (0)|∂αϕ(s)

α (0)〉. (64)

The first statement follows from ϕ
(s)
α (t) = ϕ

(r)
α (t) = ϕα(t) together with the expres-

sion (21). Finally, the third statement is proven as follows. Let us introduce

ϕ(r)
α (t) =Wα(t)ψ

(r)
α (0) and ψ(r)

α (t) = Vα(t)ψ
(r)
α (0), r = 1, . . . , N, (65)

which defines the unitary Vα(t). The link between these two bases will be made by

means of the unitary operator Bα(t) defined by

Bα(t) = V −1
α (t)Wα(t). (66)
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By construction, [Bα(t), Pα(0)] = 0 for any t ∈ [0, 1], so that [Ḃα(t), Pα(0)] = 0 as

well. We compute

Ḃα(t) = Bα(t)W
−1
α (t)Ẇα(t) + V̇ −1

α (t)Vα(t)Bα(t), (67)

where the first term of the right-hand side is zero due to (16). Hence, introducing

Γα(t) = V̇ −1
α (t)Vα(t) = −V −1

α (t)V̇α(t) (68)

whose matrix elements in the basis {ψ(r)
α (0)}r∈{1,2,...,N} read

〈ψ(s)
α (0)|Γα(t)ψ(r)

α (0)〉 = −〈ψ(s)
α (t)|ψ̇(r)

α (t)〉, (69)

we get that Bα(t) is indeed determined by the ODE

Ḃα(t) = Γα(t)Bα(t), Bα(0) = I. (70)

Writing Wα = VαBα, we compute

〈ϕ(r)
α (t)|∂αϕ(s)

α (t)〉 = 〈ϕ(r)
α (0)|∂αϕ(s)

α (0)〉
+ 〈ψ(r)

α (0)|B−1
α (t)V −1

α (t)(∂αVα(t))Bα(t)ψ
(s)
α (0)〉

+ 〈ψ(r)
α (0)|B−1

α (t)(∂αBα(t))ψ
(s)
α (0)〉. (71)

With the short hand Bq,rα (t) = 〈ψ(q)
α (0)|Bαψ(r)

α (0)〉, we have

Bα(t)ψ
(s)
α (0) =

∑

q

ψ(q)
α (0)Bq,sα (t), (72)

Vα(t)Bα(t)ψ
(s)
α (0) =

∑

q

ψ(q)
α (t)Bq,sα (t) (73)

and

(∂αVα(t))Bα(t)ψ
(s)
α (0) =

∑

q

Bq,sα (t)((∂αVα(t)ψ
(q)
α (0))− Vα(t)∂αψ

(q)
α (0))

=
∑

q

Bq,sα (t)(∂αψ
(q)
α (t)− Vα(t)∂αψ

(q)
α (0)), (74)

(∂αBα(t))ψ
(s)
α (0) =

∑

q

∂α(B
q,s
α (t)ψ(q)

α (0))−Bα(t)∂αψ
(s)
α (0).

Inserting these expressions in (71), we get

〈ϕ(r)
α (t)|∂αϕ(s)

α (t)〉 − 〈ϕ(r)
α (0)|∂αϕ(s)

α (0)〉

=
∑

q,q′

Bq
′,r
α (t)Bq,sα (t)〈ψ(q′)

α (t)|∂αψ(q)
α (t)〉+

∑

q

Bq,rα (t)∂αB
q,s
α (t)

−〈ψ(r)
α (0)|∂αψ(s)

α (0)〉, (75)

which yields the result.
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Note. The operator Bα(t) and its generator Γα(t) depend of course on the choice

of orthonormal basis {ψ(r)
α (t)}r=1,...,N . It is not difficult to check that if one

makes another choice of orthonormal basis {χ(r)
α (t)}r=1,...,N such that χ

(r)
α (t) =

Sα(t)ψ
(r)
α (0), then the corresponding generator denoted by Σα(t) is related to the

previous one by means of Cα(t) = S−1
α (t)Vα(t) according to

Σα(t) = Cα(t)Γα(t)C
−1
α (t) + Ċα(t)C

−1
α (t). (76)

3. Example

We consider here an explicit class of Hamiltonians which, on the one hand, display

permanent degeneracies, and, on the other hand, allow in some cases for explicit

computations. Moreover, the physical situation considered in [10] is governed by a

Hamiltonian of this class.

Let {z1, z2, . . . , zn} be a set of n complex numbers, which we denote by the

vector z = (z1, . . . , zn)
T ∈ Cn, and let E ∈ R. Let us denote the standard scalar

product in Cn by 〈 · | · 〉. We consider the self-adjoint Hamiltonian

H(z) =




E z̄1 · · · z̄n
z1 0 · · · 0
...

...
. . .

...

zn 0 · · · 0


 ≡

(
E 〈z|
|z〉 0

)
on Cn+1 
 C⊕ Cn, (77)

relative to the canonical basis {e0, e1, . . . , en} of Cn+1. We made z explicit in the

notation because these parameters will become time-dependent below.

If z �= 0, the rank of H(z) is equal to two, so that its kernel is of dimension

n− 1, for any value of the parameters. If z = 0, the kernel of H(0) is of dimension

n. Actually, it is easy to see that

σ(H(z)) =

{
1

2
(E −

√
E2 + 4‖z‖2), 0, 1

2
(E +

√
E2 + 4‖z‖2)

}
, (78)

where ‖z‖2 =∑n
j=1 |zj |2, and where the eigenspace corresponding to the (n−1)-fold

degenerate eigenvalue 0 is given by

ker(H(z)) =








a0
a1
...

an


 ∈ Cn+1 s.t. a0 = 0 and

n∑

j=1

z̄jaj = 0




. (79)

We can rewrite with a = (a1, . . . , an)
T ∈ Cn

ker(H(z)) = {0} ⊕ {a ∈ Cn s.t. 〈z|a〉 = 0} = {0} ⊕ z⊥, (80)

where z⊥ denotes the subspace orthogonal to z ∈ Cn. It is now easy to express

the projector P (z) on the degenerate spectral subspace ker(H(z)) in Cn+1. Let

ẑ = z/‖z‖ ∈ Cn and |ẑ〉〈ẑ| be the projector on the vector ẑ in Cn. Hence,

P⊥(z) = ICn − |ẑ〉〈ẑ| (81)
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is the projector on z⊥ in Cn. Thus, expressed in block diagonal form in Cn+1 

C⊕ Cn, we can write P (z) as

P (z) =

(
0 0

0 P⊥(z)

)
. (82)

Hence, with the same notations, P (z) can be written as

P (z) =

(
1 0

0 |ẑ〉〈ẑ|

)
, (83)

so that the range of P (z) is generated by the orthonormal basis

RanP (z) = span

{(
1

0

)
,

(
0

ẑ

)}
≡ span {e0, z̃} . (84)

Let us assume now that z = z(t) is time-dependent, in such a way that [0, 1] �
t �→ z(t) ∈ Cn is C3. By changing the phase of z(t) if necessary, we can assume

〈ẑ(t)| ˙̂z(t)〉 = 〈z̃(t)| ˙̃z(t)〉 ≡ 0. (85)

It is now straightforward to check that the parallel transport operator W (t) is

generated by the self-adjoint operator K(t) = i[Ṗ (z(t)), P (z(t))], with

K(t) = i(| ˙̃z(t)〉〈z̃(t)| − |z̃(t)〉〈 ˙̃z(t)|). (86)

Recall that z̃ = (0, ẑ)T is a normalized a vector of Cn+1. Note that condition (85)

is equivalent to saying

z̃(t) =W (t)z̃(0) and

(
1

0

)
=W (t)

(
1

0

)
. (87)

Thus the determination of W restricted to Ran P is complete. With these pre-

liminaries behind us, we can turn to the interesting task from our point of view,

i.e. the determination of W restricted to Ran P . From (84) above, it is clear that

we can restrict attention to Cn 
 e⊥0 , where RanP (z) ∪ e⊥0 
 Cẑ.
Let {ϕ1, ϕ2, . . . , ϕn−1} be an orthonormal basis in Cn of ẑ(0)⊥. Then, using the

same notation for ϕj ∈ Cn and (0, ϕj)
T ∈ Cn+1, we have for any j = 1, . . . , n, and

any t ∈ [0, 1],

ϕj(t) = W (t)ϕj ∈ Cn+1 ⇔
{
ϕ̇j(t) = −|ẑ(t)〉〈 ˙̂z(t)|ϕj(t)〉 ∈ Cn

ϕj(0) = ϕj ∈ Cn.
(88)

Actually, computing the parallel transport operator W (t) restricted to

ker(H(z(t))) for the model (77) where z(t) ∈ Cn is given, amounts to determining
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n− 1 vectors ϕj(t) in Cn such that for all j, k = {1, . . . , n− 1}2 and all t ∈ [0, 1],

〈ϕj(t)|ẑ(t)〉 ≡ 0, (89)

〈ϕj(t)|ϕk(t)〉 ≡ δjk, (90)

〈ϕj(t)|ϕ̇k(t)〉 ≡ 0. (91)

Indeed, if (88) is satisfied, the conditions above are met. Conversely, if the first two

conditions above are satisfied, we get that {ẑ(t), ϕ1(t), . . . , ϕn−1} form an orthonor-

mal basis, for all t’s. Moreover, the third condition implies that ϕ̇j = c0(t)ẑ(t),

for some coefficient c0(t) ∈ C. Differentiation of 〈ϕj(t)|ẑ(t)〉 ≡ 0 yields a0(t) =

−〈 ˙̂z(t)|ϕj(t)〉, so that Eq. (88) is true.

Even though the generator of W restricted to P (z(t)) is rather simple, these

equations cannot be explicitly integrated in general. We present some special cases

of interest which allow for explicit formulas.

3.1. Special case

We consider here a special case for n = 3 that is of interest for the physics of charge

pumping, [10]. Let us consider the Hamiltonian

H(z0, z1, z2) =




E z̄0 z̄1 z̄2
z0 0 0 0

z1 0 0 0

z2 0 0 0


 with z = (z0, z1, z2), (92)

in the canonical basis. We assume that

|z1|2 + |z2|2 > 0, (93)

so that a set of normalized eigenvectors corresponding to the degenerate subspace

of energy zero is given by

|ψ1〉 = N1(z2 e2 − z1 e3), (94)

|ψ2〉 = N1

[
(z21 + z22) e1 − z0(z1 e2 + z2 e3)

]
, (95)

with

N1 = 1/
√
|z1|2 + |z2|2, (96)

N2 = 1/
√
|z21 + z22 |2 + |z0|2(|z1|2 + |z2|2). (97)

We now compute the differentials of these eigenvectors, in order to get the

generator of the non-Abelian transformation. At this level, we allow all param-

eters to vary, with the condition that (93) holds. Straightforward computations

yield the (negative of) the matrix elements of the matrix Γψ, with respect to this
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instantaneous basis of eigenvectors of kerH

〈ψ1|dψ1〉 = iN2
1 Im (z1dz̄1 + z2dz̄2),

〈ψ2|dψ2〉 = iN2
2 Im

{
2(z21 + z22)(z̄1dz̄1 + z̄2dz̄2)

+ |z0|2(z1dz̄1 + z2dz̄2) + (|z1|2 + |z2|2)z0dz̄0
}
, (98)

〈ψ2|dψ1〉 = N1N2z0(z2dz̄1 − z1dz̄2),

〈ψ1|dψ2〉 = −〈ψ2|dψ1〉.

We can simplify this matrix further by passing to the time-dependent basis

χj(t) = ψj(γ(t))e
iβj(t), βj(t) = i

∫ t

0

〈ψj |dψj〉(γ(s))ds, (99)

where the integral is taken along a path [0, 1] � t �→ γ(t) in the parameters space.

The matrix Γχ corresponding to the basis {χ1, χ2} of eigenvectors of kerH now

reads

Γχ =

(
0 −ei(β2−β1)〈ψ1|dψ2〉

e−i(β2−β1)〈ψ1|dψ2〉 0

)
. (100)

Setting

x(t) = e−i(β2(t)−β1(t))〈ψ1|dψ2〉(γ(t)), (101)

so that

Γχ(t) =

(
0 −x(t)
x(t) 0

)
, (102)

we have to solve the ODE Ḃ(t) = Γχ(t)B(t), see (70), to determineW (t). In general,

no explicit solution to (70) with such a matrix can be obtained.

However, in case x(t) = ρ(t)eiϑ, where ϑ is constant in time, Γχ(t) = ρ(t)M ,

where M =
(

0 −e−iϑ

eiϑ 0

)
and B(t) is explicitly given by

B(t) = e
R t
0
ρ(s)dsM =




cos

(∫ t

0

ρ(s)ds

)
− sin

(∫ t

0

ρ(s)ds

)
e−iϑ

sin

(∫ t

0

ρ(s)ds

)
eiϑ cos

(∫ t

0

ρ(s)ds

)


 . (103)

We consider below a case of this type, which allows us to determine explicitly the

geometric part of the charge transported over a period. Moreover, we express the

geometric content if the parallel transport within the permanently degenerate kernel

of H as a solid angle in the space of parameters, in a similar fashion to what is

done for the Berry phase, in case of nondegenerate eigenvalues.

Let us assume that

zj = eiθjrj and dzj = eiθjdr j , (104)
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that is, only the moduli of the complex numbers zj vary with time. Plugging this

into (98) yields

〈ψ1|dψ1〉 = 0,

〈ψ2|dψ2〉 = 2iN2
2 sin(2(θ1 − θ2))r1r2(r1dr2 − r2dr1), (105)

〈ψ2|dψ1〉 = N1N2r0e
iθ0

(
e−i(θ1−θ2)r2dr1 − ei(θ1−θ2)r2dr2

)
,

with

N1 =
1√

r21 + r22
, N2 =

1√
(r21 + r22)r

2
0 + (r41 + r42 + 2r21r

2
2 cos(2(θ1 − θ2)))

. (106)

Further assuming

θ1 = θ2 = 0, (107)

we finally get

Γψ =
r0(r1dr2 − r2dr1)

(r21 + r22)
√
r20 + r21 + r22

(
0 −e−iθ0
eiθ0 0

)
, (108)

which is of the form (102). The argument of the sines and cosines in (103) after a

period characterized by a loop γ in the space of parameters is denoted by

Ω =

∫

γ

−r0(r1dr2 − r2dr1)

(r21 + r22)
√
r20 + r21 + r22

(109)

so that

B(1) =

(
cos(Ω) sin(Ω)e−iθ0

− sin(Ω)eiθ0 cos(Ω)

)
. (110)

Similarly, if z1 and z2 are as above and z0 = t1e
iθ0 + t2 with t1, t2 real and

dr1 = dr2 = dθ0 ≡ 0, with r21 + r22 > 0, we have

Γψ = i sin(θ0)(t1dt2 − t2dt1)/(t
2
1 + t22 + 2t1t2 cos(θ0))

(
0 0

0 1

)
. (111)

3.2. Geometric interpretation of Ω

The explicit computation of Ω possesses a nice geometric interpretation, see (119),

as we now explain.

For notational convenience, let us introduce Cartesian coordinates (x, y, z) =

(r0, r1, r2). At the end of the loop γ, we have

Γ =

∫

γ

−z(xdy − ydx)

(x2 + y2)
√
x2 + y2 + z2

(112)

=

∫

γ

−z
(x2 + y2)

√
x2 + y2 + z2




−y
x

0


 ·



dx

dy

dz


 . (113)
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Applying Stokes’ theorem, we can replace the curvilinear integral above by the flux

of the curl of the corresponding vector through any surface Σ such that ∂Σ = γ,

oriented consistently with the orientation of γ.

We compute

curl
−z

(x2 + y2)
√
x2 + y2 + z2




−y
x

0


 = (x2 + y2 + z2)−3/2



x

y

z


 (114)

=
r

r3
, (115)

where

r =



x

y

z


 and r =

√
x2 + y2 + z2.

Hence we can write,∫

γ

−z(xdy − ydx)

(x2 + y2)
√
x2 + y2 + z2

=

∫

Σ

r

r3
· dσ. (116)

Consider the projection γ̂ of the loop γ on the sphere S2 described by the unit

vector r̂ = r/r along γ, and define Σ̂ ⊂ S2 such that ∂Σ̂ = γ̂. Now, we can choose

for Σ the surface which coincides with Σ̂, and joins γ̂ and γ along rays parallel to

the unit vector. Since the flux of r/r3 through the latter portions of Σ is zero, we

finally get ∫

γ

−z(xdy − ydx)

(x2 + y2)
√
x2 + y2 + z2

=

∫

bΣ
r

r3
· dσ (117)

=

∫

bΣ
dω, (118)

where we used the fact that on S2, dσ = dω r̂, with dω the differential of the solid

angle.

Therefore, we have obtained

Ω = Ω(Σ̂), (119)

where Ω(Σ̂) is the oriented solid angle described by γ through S2. If γ̂ is oriented

positively, Ω(Σ̂) ≥ 0, and, in any case, 0 ≤ |Ω(Σ̂)| ≤ 4π.
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12. M. Büttiker, H. Thomas and A. Prêtre, Current partition in multi-probeconductors

in the presence of slowly oscillating external potentials, Z. Phys. B 94 (1994) 133137.
13. R. Fazio, F. W. J. Hekking and J. P. Pekola, Measurement of coherent charge transfer

in an adiabatic Cooper-pair pump, Phys. Rev. B 68 (2003) 0545410.
14. M. Governale, F. Taddei, R. Fazio and F. W. J. Hekking, Adiabatic pumping in

a Superconductor-Normal-Superconductor weak link, Phys. Rev. Lett. 95 (2005)
256801.

15. G. Hagedorn and A. Joye, Recent results on non-adiabatic transitions in quantum
mechanics, in Recent Advances in Differential Equations and Mathematical Physics,
AMS Contemporary Mathematics Series, Vol. 412, eds. N. Chernov, Y. Karpeshina,
I. Knowles, R. Lewis and R. Weikard (Amer. Math. Soc., 2006), pp. 183–198.

16. A. Joye, “Geometrical and mathematical aspects of the adiabatic theorem in quantum
mechanics”, EPFL thesis No 1022, 1992. http://biblion.epfl.ch/EPFL/theses/1992/
1022/EPFL TH1022.pdf

17. A. Joye, General adiabatic evolution with a gap condition, Commun. Math. Phys.
275 (2007) 139–162.

18. A. Joye and C.-E. Pfister, Superadiabatic evolution and adiabatic transition proba-
bility between two non-degenerate levels isolated in the spectrum, J. Math. Phys. 34
(1993) 454–479.

19. T. Kato, On the adiabatic theorem of quantum mechanics, J. Phys. Soc. Jpn. 5 (1950)
435–439.

20. T. Kato, Perturbation Theory for Linear Operators (Springer, 1980).
21. S. Lang, Real Analysis (Addison-Wesley, 1973).
22. R. Leone, L. Levy and P. Lafarge, Cooper-pair pump as a quantized current source,

Phys. Rev. Lett. 100 (2008) 117001.
23. A. Messiah, Quantum Mechanics (Dover, 2000).
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