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Abstract. Many physical questions in fluid dynamics can be recast in terms of norm constrained optimisation
problems; which in-turn, can be further recast as unconstrained problems on spherical manifolds. Due to the non-
linearities of the governing PDEs, and the computational cost of performing optimal control on such systems,
improving the numerical convergence of the optimisation procedure is crucial. Borrowing tools from the optimisa-
tion on manifolds community we outline a numerically consistent, discrete formulation of the direct-adjoint looping
method accompanied by gradient descent and line-search algorithms with global convergence guarantees. We nu-
merically demonstrate the robustness of this formulation on three example problems of relevance in fluid dynamics
and provide an accompanying library SphereManOpt.
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1. Introduction

Applications of norm constrained, nonlinear optimal control abound in fluid dynamics: spanning from
the improvement of transport and mixing efficiencies in complex fluids (e.g. [12, 16]), to the stability
analysis of thermo-acoustic oscillations (e.g. [27]), the modeling of transitions between a dynami-
cal system’s multiple basins of attraction (e.g. [28, 33]) or the forecasts of oceanographic systems
(e.g. [4, 42, 53]). Because the governing partial differential equations (PDEs) are fully nonlinear, so-
lutions to the corresponding optimisation problems must in general be calculated numerically. Due
to the large dimension of both the control and state vectors and the significant cost of direct nu-
merical simulations, efficient optimisation routines must be applied to address such problems. As our
motivation is essentially numerical, we will restrict our attention to finite-dimension problems in what
follows.

Given a discretised set of equations describing the evolution of the state vector X ∈ Rn, a general
formulation of such norm-constrained problem is as follows

min
X0

J(X,X0),

s.t. G(X,X0) ≡
{

dX
dt − F (X, t) = 0,

X0 − X(t = 0) = 0,
c(X0) ≡ ∥X0∥2 − E0 = 0,

(1.1)
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where X0 ∈ Rn is the control variable we seek to optimise, and E0 its energy. The objective function
J(X,X0) is a quantity of interest to be minimised (or maximised), and F (X, t) is a nonlinear operator
describing how the system evolves in time. For example, X0 can be the initial velocity field of kinetic
energy E0, yielding optimal mixing over a finite time window t ∈ (0, T ] as the flow evolves according to
its governing equations. In this case, well-mixedness can be achieved by minimising some measure of
the fluid heterogeneity (such as the scale-sensitive mix-norms [24, 38, 54]). In the context of stability
analysis, X0 can be the initial perturbation, which, for a given energy input, maximises for example
the nonlinear growth of perturbations - thus allowing for a better characterisation of laminar-turbulent
transitions in shear flows [28, 46]. Although (1.1) assumes control of the initial condition only, this
can be easily modified to consider a time-dependent forcing or an alternative control variable.

1.1. Adjoint formalism

To solve the optimisation problem (1.1) one formulates the Lagrangian L, related to the pure objective
functional, as

L(X,X0; q, λ) ≡ Ĵ(X0) + λc(X0) = J(X,X0) +
∫ T

0
⟨q,G(X,X0)⟩ dt+ λ(∥X0∥2 − E0), (1.2)

where q, λ denote the Lagrange multipliers (also termed adjoint variables) used to enforce these con-
straints, ⟨a, b⟩ denotes a vector inner product and ∥a∥2 = ⟨a,a⟩ the associated norm. Here we choose
to denote the pure objective functional by Ĵ(X0), thus assuming X(X0) is implicitly defined for
all X0 by the constraint equations. Any stationary point of L satisfies the following Euler-Lagrange
equations:

δL
δλ

= ∥X0∥2 − E0 = 0, (1.3)

δL
δq

= G(X,X0) = 0, (1.4)

δL
δXT

= δJ

δXT
+ qT = 0, (1.5)

δL
δX

= ∂G

∂X

†
q + δJ

δX
= 0, (1.6)

δL
δX0

= δJ

δX0
− q0 + 2λX0 = 0, (1.7)

where XT , qT refers to the vectors at the final time, while † notation is used to denote the adjoint
operator such that ⟨x, Ly⟩ = ⟨L†x, y⟩. In general, reaching a stationary point of (1.2) demands an
iterative procedure, whereby we solve (1.3) to (1.7) from top to bottom as given. That is: a random
initial vector X0 is normalised to be of norm E0, and the PDE constraint equations are solved forward
in time from t = 0 → T using an appropriate time-stepping scheme [2, 3], whilst simultaneously
calculating Ĵ(X0). Subject to the final time condition (1.5), the adjoint equations (1.6)(

∂

∂t
+ ∂F

∂X

†
)

q = δJ

δX
, (1.8)

are then solved backwards from t = T → 0. Denoting the current and subsequent iterates of a gradient
descent procedure by k, k+ 1 respectively, the control parameter is finally updated, using the gradient
at iteration k (1.5), via

Xk+1
0 = Xk

0 − α
δL
δX0

k

(λ), (1.9)
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where α ∈ R+ is an appropriately chosen step-size to ensure descent [59] and λ is determined to enforce
∥Xk+1∥2 = E0.

The first challenge when performing gradient descent is to accurately and efficiently estimate the
gradient δL

δX0

k(λ). Using open-source automatic differentiation (AD) to obtain discrete gradients is
one possible solution [23]. While this approach works well on forward codes written so as to be
amenable to AD, such as dolfin-adjoint for example [13, 40], it can otherwise consume large amounts
of memory and be extremely challenging to debug [43, 44]. Moreover, using AD to differentiate MPI-
parallel codes also raises important difficulties regarding how to manage communication dataflow
and dependencies [39, 56], which in practice hinders its applicability to computationally expensive
fluid dynamics problems. When impractical to use AD for some of the reasons mentioned above, the
alternative approach is to derive analytically the discrete adjoint equations using summation by parts.
This approach, albeit established in the optimisation literature [20, 61], has been less discussed until
recently in the aeronautics [18, 60] and fluid dynamics literature [14, 30, 51, 57].

Even when armed with an accurate gradient however, we must move in the correct direction and
use an efficient gradient descent routine. Typically one enforces the equality constraint c(X0) using
a Lagrange multiplier λ as outlined above. Given however that this constraint naturally restricts
X0 ∈ Rn to the spherical manifold Sn−1 = {X0 | ∥X0∥2 = E0}, we can implement a consistent and
therefore more efficient routine by exploiting this structure [1, 48], which we recall in Section 3.

1.2. Issue 1: Discrete versus continuous

To highlight the inconsistencies that typically arise when discretizing the previous (continuous) deriva-
tion, we recall that, although a linear operator L = ∂xx acting on function u(x),−1 ≤ x ≤ 1 with
boundary data u(±1) = 0 is self-adjoint with respect to

∫ 1
−1 pLudx =

∫ 1
−1 Lpudx, its corresponding

matrix operator although dependent on the discretization used L†
i,j ̸= Li,j seldom conserves this prop-

erty [25, 34]. Similarly, integration by parts of the temporal derivative followed by discretisation, does
not generally commute with discretisation followed by discrete integration by parts. To clarify this is-
sue we consider the following discrete Lagrangian consisting of a linear constraint equation Xt = LX,
discretised using a Crank-Nicolson temporal scheme

L(X,X0; q, λ) = J(X,X0) − ⟨q,MX − f⟩ + λ(∥X0∥2 − E0), (1.10)

where ∆t = T/N,X = (X0, · · · ,XN ) and the constraint equations MX = f (incorporating the
constraint on the initial condition) now in discrete form read



I 0 · · ·

b a
. . .

0 . . . . . . . . . ...
... . . . . . . . . . 0

· · · 0 b a





X0
X1

...

...
XN


=



X(t = 0)
0
...
...
0


, (1.11)
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where a, b = ( I
∆t − L

2 ),−( I
∆t + L

2 ). Taking variations with respect to X we obtain M †q = δJ
δX + 2λX0

which in component form reads

I b† 0 · · ·

0 a† . . . ...
... . . . . . . . . . 0

. . . . . . b†

· · · 0 a†





q0
q1
...
...

qN


=



δJ
δX0

+ 2λX0
δJ

δX1...
...

δJ
δXN


. (1.12)

Comparing these discrete Euler-Lagrange equations (1.12) with their continuous counterpart (1.5)–
(1.7) one notices that: (1) the adjoint reverses the direction of information propagation, (2) the discrete
adjoint of a centered differencing scheme (here for the temporal derivative) would remain consistent
with its continuous adjoint if and only if L = L† and (3) the discrete terminal/compatibility conditions
at t = 0, T differ from their continuous counterpart at n = 0, N . As we will show in this paper, the
later issue is compounded for higher order schemes which contribute additional variations to more of
the top and bottom rows. Throughout the remainder of this paper the term discrete gradient will be
used to refer to the approach where the adjoint numerical scheme is obtained by differentiating the
already-discretized direct equations. Conversely continuous gradient will be used here to refer to the
approach where the adjoint equations are first derived from the continuous problem, then discretized.
A scheme for which the solutions to both approaches coincide is termed adjoint/dual consistent [5, 22].

1.3. Issue 2: Constrained gradient update

The second issue is that we still have a norm-constrained update step (1.9). For every choice of step-
size α we must apply the normalisation constraint to choose a corresponding λ. This relegates the
applicability of line-search algorithms for unconstrained optimisation, which allow us to choose step-
sizes α guaranteeing descent [59]. Aside from the in-applicability of standard line-search algorithms
however, further issues exist with the Lagrange multiplier approach. Using ∇f = δf

δX0
to denote the

variational derivative, it follows that for an optimum to exist, a necessary condition is that a λ exists
such that

δL
δX0

= ∇Ĵ(X0) + λ∇c(X0) = 0, (1.13)

implying that the gradient of the constraint equations ∇Ĵ(X0) and norm constraint ∇c(X0) are
parallel. To render this condition sufficient requires that λ satisfy the Karush-Kuhn-Tucker (KKT)
conditions [59], which in-turn requires computing the Hessian of (1.13). If ∇Ĵ(X0),∇c(X0) are not
parallel, (1.13) is not satisfied and we ideally, according to a first order approximation, choose a search
direction d such that ∇Ĵ(X0)T d < 0 and ∇c(X0)T d = 0. A good candidate which also defines the
gradient on the spherical manifold S [6], is the tangent-vector

−d = ∇Ĵ(X0) −
(∇c(X0)T ∇Ĵ(X0)

∥∇c(X0)∥2

)
∇c(X0), (1.14)

as it satisfies the previous inequality and equality constraints but crucially is independent of λ. Thus
by restricting X0 to S and updating X0 on geodesics of S for all values of the step size α [11], we can
omit the equality constraint in (1.2). Furthermore ∇Ĵ(X0) = 0 now provides a necessary condition
for a local minimiser [6].

What remains, following [48, 49], is to appropriately adapt the existing line-search algorithms such
that updating Xk

0 leads to global convergence, and to assess their efficiency on a suite of non-trivial
fluid dynamics examples. Aside from the Pymanopt library for optimisation on matrix manifolds [55],
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SLSQP [31] presents the only alternative for problems with equality constraints. Owing to the con-
struction, storage O(n2) and inversion O(n3) of the Hessian matrix SLSQP is however numerically too
demanding to handle high-dimension control variables [26, 59]. Conversely while Pymanopt implements
computationally efficient methods, its linesearch does not satisfy the necessary conditions in order to
guarantee global convergence [49].

In what follows, we address the previously highlighted issues and test their numerical remedy against
a suite of physical problems. Given the additional complexity represented by the derivation of a con-
sistent, discrete adjoint numerical scheme, compared to a continuous gradient approach (where the
same numerical scheme is used to discretize the forward and backward equations), we also conduct
a systematic numerical comparison between discrete and continuous adjoint optimisation, which ex-
cluding the studies of [57] and [15] is currently lacking. To this end, we first derive the discrete adjoint
equations in Section 2; following [48] we then outline a consistent gradient update with guaranteed
global descent in Section 3; and finally we combine these developments in Section 4 to demonstrate
their superior performance. Perspectives for further work are then discussed in the conclusive section.

2. Discrete adjoint equations

A set of spatially discretised coupled evolution equations can be written as

M∂tX + LX = F(X, t), (2.1)

where X is the vector of unknowns, M,L are linear operators encompassing both the constraint
equations and system boundary conditions and the right hand side F encompasses all nonlinear
and non-autonomous terms. Then we can write a general s-step multistep implicit-explicit (IMEX)
method [3] as

s∑
j=0

ajMXn−j +
s∑

j=0
bjLXn−j =

s∑
j=1

cjFn−j , (2.2)

where index n denotes the nth time step, j the internal stages and the right hand side is evaluated
and treated as a vector. Notably when initiating time-stepping from a single initial condition, we have
insufficient data to use 2nd or higher order schemes directly and must revert to a first order scheme.
While diagonally implicit Runge-Kutta (DIRK/SDIRK) integration schemes [2] solve this issue and
are L-stable, their numerical overhead, both in terms of CPU and memory, is much higher however
and their discrete adjoint derived by [20, 47, 57, 60] complexifies faster.

We first present the discrete adjoint equations in their full generality, and subsequently consider
their numerical performance on particular examples by making comparisons with their continuous
formulation. As multistep schemes of order s > 2 are not A-stable and objective functions can be
time-integrated with O(∆t2) accuracy at best, higher order schemes are not considered. We note
that the adjoint of a subclass of IMEX schemes known as backward differencing schemes (BDF) has
previously been derived up to third order by [45].
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2.1. A second order IMEX scheme

Partitioning the time interval t ∈ (0, T ] as tn = n∆t, n ∈ (0, N = T/∆t] the discrete Lagrangian, with
normalisation constraints omitted, is given as

L = J(X) − ⟨q0,X0 − X(x, t = 0)⟩
− ⟨q1,M(ã0X1 + ã1X0) + L(b̃0X1 + b̃1X0) − c̃1F(X0)⟩

−
N−1∑
n=1

〈
qn+1,M(ã0Xn+1 + ã1Xn + a2Xn−1) + L(b̃0Xn+1 + b̃1Xn + b2Xn−1)

−
[
c̃1F(Xn) + c2F(Xn−1)

]〉
,

(2.3)

where tilde notation is used to denote the coefficients retained if considering a first order scheme only,
and the objective function is for example given by either

J(X) = ∆t
2
(
⟨X0,WX0⟩ + ⟨XN ,WXN ⟩

)
+ ∆t

N−1∑
n=1

⟨Xn,WXn⟩, (2.4)

or JT (X) = ⟨XN ,WXN ⟩ where W is a known matrix operator. Taking variations with respect to the
adjoint variables qn and setting δL

δqn
= 0 we recover the initial condition and the constraint equations,

while with respect to the primal variables Xn we obtain

N∑
n=0

〈
δXn,

δL
δXn

〉
=

N∑
n=0

〈
δXn,

∂J

∂Xn

〉
− ⟨δX0, q0⟩

− ⟨δX1, ã0M†q1 + b̃0L†q1⟩ −
〈
δX0, ã1M†q1 + b̃1L†q1 − c̃1

∂F

∂X0

†
q1

〉

−
N∑

n=2
⟨δXn, ã0M†qn + b̃0L†qn⟩

−
N−1∑
n=1

⟨δXn, ã1M†qn+1 + b̃1L†qn+1⟩

−
N−2∑
n=0

⟨δXn, a2M†qn+2 + b2L†qn+2⟩

−
N−1∑
n=1

〈
δXn,−c̃1

∂F

∂Xn

†
qn+1

〉
−

N−2∑
n=0

〈
δXn,−c2

∂F

∂Xn

†
qn+2

〉
,

(2.5)

where we have permuted the indices in each of these terms and ∂F
∂Xn

is used to denote the Jacobian of
the nonlinear term. Grouping terms of (2.5) by their indices and setting them equal to zero we obtain
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the discrete Euler-Lagrange equations for n = N,N − 1, N − 2 ≥ n ≥ 1 and n = 0 respectively
(
ã0M† + b̃0L†)qN = ∂J

∂XN
, (2.6)

(
ã0M† + b̃0L†)qN−1 +

(
ã1M† + b̃1L†)qN − c̃1

∂F

∂XN−1

†
qN = ∂J

∂XN−1
, (2.7)

(
ã0M†+b̃0L†)qn+

(
ã1M†+b̃1L†)qn+1+

(
a2M†+b2L†)qn+2− ∂F

∂Xn

†[
c̃1qn+1+c2qn+2

]
= ∂J

∂Xn
, (2.8)

q0 +
(
ã1M† + b̃1L†)q1 +

(
a2M† + b2L†)q2 − ∂F

∂X0

†[
c̃1q1 + c2q2

]
= ∂J

∂X0
. (2.9)

The solution of the O(∆t) accurate counterpart of these equations using a preconditioned scheme, ap-
plicable for example to discretisations of wall bounded domains is given in Appendix A. Concentrating
on the minor and feasible modifications of simple schemes which help achieve accurate convergence,
we have implemented primarily first order schemes in this paper.

Comparing expressions (2.6)–(2.9) with their continuous counterpart (1.5)–(1.7), we see that while
the time-stepping scheme is unaffected for s ≤ n ≤ N − 1, the compatibility conditions demand the
inversion of non-local linear operators at n = N, t = T and an explicit evaluation at n = 0, t = 0. For
a fully periodic domain discretised using a self-adjoint Fourier basis the error is likely to be small, but
for wall bounded domains where boundary layers are present, such as the optimal mixing example
presented in 2.2.3, the error is potentially significant.

2.2. Numerical performance

To validate the adjoint of the discrete equations and justify the additional complexity of its imple-
mentation we now report numerical experiments on three example cases that showcase its superior
performance. The consistency of the adjoint is checked by testing the Taylor remainder, i.e. verifying
that for any arbitrary perturbation δX of the initial condition,

lim
h→0

|Ĵ(X0 + hδX) − Ĵ(X0)| → 0, at O(|h|), (2.10)

and

lim
h→0

∣∣∣∣Ĵ(X0 + hδX) − Ĵ(X0) − h

〈
δX,

δL
δX0

〉∣∣∣∣ → 0, at O(|h|2). (2.11)

An additional test of interest is that the first difference in (2.11), divided by h, is equivalent to the
inner product in the last term, to a number of decimal places. This is preferable when h ≪ 1 as
it avoids multiplying very small and large numbers. In all tests which follow we generate X0, δX0
randomly and re-scale such that ∥X0∥2 = ∥δX0∥2 = 1. In practice, it is strongly advised whenever
possible to also choose X0 close to a representative state of interest of the problem studied, as this
ensures consistency of gradient definition with respect to problem relevant parameter vectors.

2.2.1. First test-case: a dynamo problem

In many astrophysical objects, magnetic fields are generated by the motions of electrically conducting
fluids, through a process known as the dynamo effect [32]. A dynamo optimisation problem first
considered by [58], comprises finding the velocity field U and the initial magnetic field B0 (constrained
by some energy budget), which maximise the magnetic field’s growth by some target time T in a triply
periodic box. Here the velocity field is assumed to be frozen, i.e. independent of time and the evolution

7



Paul M. Mannix, Calum S. Skene, et al.

of the magnetic field. Following [58], this optimisation problem is written in dimensionless form as

max
B0,U

ĴT (B0,U) = ⟨BT ,BT ⟩ ≡ 1
V

∫
B2

T dV,

s.t. ⟨B0,B0⟩ = 1, ⟨U ,U⟩ = 1,
∂B

∂t
− ∇ ×

(
U × B

)
− ∇Π −Rm−1∇2B = 0,

∇ · B = 0, ∇ · U = 0,

(2.12)

where V is the volume of the box and Rm (the magnetic Reynolds number) is a control parameter
quantifying the relative strength of electromagnetic induction compared to ohmic dissipation. Due
to the domain periodicity the problem can be spatially discretised using a Fourier basis. Spatial
differentiation amounts to multiplication by ik in Fourier space (where k is the wavenumber) such
that integration by parts discretely or continuously yield the same adjoint operators. As a result, only
errors associated with the temporal discretization can arise in the gradient estimation.

Equation (2.12) and its adjoint (C.2) are time-integrated in the open-source code Dedalus [8] using
a Crank-Nicolson Adams-Bashforth 1 (CNAB1) scheme. The problem setup and numerical resolutions
are the same as in [58] and the dimensionless control parameters are here both set to Rm = T = 1.
First we test the gradient with respect to the magnetic field δL/δB0, holding U fixed as prescribed
in [58], and subsequently the gradient with respect to the velocity field δL/δU by holding B0 fixed.
Table 2.1 compares the gradient approximation obtained from the continuous adjoint equations (C.2)
with that of the discrete adjoint equations (C.6)–(C.11). Both are derived in terms of a Lagrangian
formulation of (2.12) in Section 2. To calculate the order of convergence when assessing the validity
of (2.11), we assume that for any hi

W(hi) =
∣∣∣∣Ĵ(X0 + hiδX) − Ĵ(X0) − hi

〈
δX,

δL
δX0

〉∣∣∣∣ ≊ C|hi|γ , (2.13)

where C and the exponent γ are constants. Making the approximation (2.13) for two different hi we
estimate

γ ≊
log

(
W(h1)/W(h2)

)
log(|h1|/|h2|) . (2.14)

In all tables a significant improvement is seen when using the discrete adjoint while the continuous
formulation cannot provide the mathematically consistent approximation demanded by (2.11).

2.2.2. Second test-case: Swift-Hohenberg multi-stability

The Swift-Hohenberg equation constitutes a paradigm for studying pattern formation in physics. It
is known to have multiple stable solutions coexisting for the same parameter values, characterized by
different energy levels [29]. This naturally raises the question of triggering transition from one stable
state to another. Following [33] we consider the problem of selecting an initial condition u0 = u(x, t =
0) of energy E0, which when added to the stable, zero-energy equilibrium u = 0 induces a transition
to a new, higher-energy equilibrium. This can be achieved by considering

max
u0

Ĵ(u) =
∫ t=T

t=0

∫
x

|u(x, t)|2 dx dt,

s.t.
∫

x

1
2 |u0|2 dx = E0,

∂tu+ (1 + ∂2
x)2u− au = 1.8u2 − u3,

(2.15)

on a periodic domain of dimensionless length L = 12π with parameter a = −0.3 and target time
T = 50 following [33]. These values ensure that the zero-energy state u = 0 is linearly stable to
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Table 2.1. Comparison of the continuous and discrete gradient forNx,y,z = 24 Fourier
modes, time-step ∆t =1e-03 as per [58]. (a) The velocity field U as given in [58] is held
fixed. (b) The initial magnetic field B0 is randomly chosen and held fixed. In both
cases the vectors B0, δB, δU of unit norm are generated by time-stepping vectors of
noise a small number of iterations and then re-normalising. This ensures the boundary
and divergence free conditions are satisfied whilst it avoids biasing the initial data.

(a) Continuous Discrete O(∆t)
h |Ĵ(B0 + hδB) − Ĵ(B0)|/h |⟨δB, δL

δB0
⟩| Order γ |⟨δB, δL

δB0
⟩| Order γ

5.00e-05 5.60377e-03 5.60419e-03 0.41015 5.60363e-03 1.9999
2.50e-05 5.60370e-03 5.60419e-03 0.77621 5.60363e-03 2.0000
1.25e-05 5.60367e-03 5.60419e-03 0.89991 5.60363e-03 1.9999
6.25e-06 5.60365e-03 5.60419e-03 0.95244 5.60363e-03 2.0000

(b) Continuous Discrete O(∆t)
h |Ĵ(U + hδU) − Ĵ(U)|/h |⟨δU , δL

δU ⟩| Order γ |⟨δU , δL
δU ⟩| Order γ

5.00e-05 2.65775e-05 2.60762e-05 1.0024 2.65767e-05 2.0002
2.50e-05 2.65771e-05 2.60762e-05 1.0012 2.65767e-05 2.0009
1.25e-05 2.65769e-05 2.60762e-05 1.0006 2.65767e-05 2.0039
6.25e-06 2.65768e-05 2.60762e-05 1.0003 2.65767e-05 2.0226

infinitesimal perturbations, but unstable to some finite-amplitude perturbations which can drive the
system away to a different stable state. Discretising the spatial operators using a Fourier basis we once
again ensure that only temporal errors can contaminate the gradient estimate. Equation (2.15) and
its discrete adjoint (B.5) are time-integrated in Dedalus using a first order backwards differencing
(SBDF1) scheme.

Table 2.2. Test of gradient’s accuracy for N = 256,∆t = 0.05 and an SBDF1 time-
stepping scheme as per [33]. The discrete equations achieve a consistent gradient valid
to 5 decimal places, however smaller h will provide a yet more consistent approximation.

Continuous Discrete O(∆t)
h |Ĵ(u+ hδu) − Ĵ(u)|/h |⟨δu, δL

δu ⟩| Order γ |⟨δu, δL
δu ⟩| Order γ

5.000e-05 2.797111 3.171736 0.999860 2.797075 2.002582
2.500e-05 2.797093 3.171736 0.999930 2.797075 2.001365
1.250e-05 2.797084 3.171736 0.999965 2.797075 2.000622
6.125e-06 2.797080 3.171736 0.999982 2.797075 2.000059

Table 2.2 reports a comparison of the continuous and discrete gradient by considering a fixed pertur-
bations of noise for different h. While several digits of accuracy and a consistent gradient are obtained
using the discrete equations we were unable to obtain a consistent gradient using the continuous equa-
tions for any choice of ∆t or h. Having demonstrated the superiority of the discrete adjoint approach
on two spatially self-adjoint discretisations, we now consider a wall bounded problem in which both
the temporal and spatial discretisation can contaminate the gradient.

2.2.3. Third test-case: optimal mixing problem

In both the natural environment and industrial applications the mixing of fluids plays a crucial role. In
the ocean for example, the irreversible mixing which occurs is the consequence of a complex interplay
between density stratification and background shear playing out in a vast range of length-scales. A
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grand challenge in fluid dynamics community is to understand how the turbulent motions which ensue
from these effects transport warm saline water, biomass and organisms such as phytoplankton across
density surfaces in the oceans [9]. An idealised example of optimal mixing is the optimal stirring
strategy in a plane, pressure-driven channel flow [17, 24, 37]. This example considers what is, for
example, the most efficient way of mixing a stably stratified layer of hot and cold fluid? This question
may be posed as an optimisation problem, where the initial velocity perturbation u0 is determined
so as to optimise well-mixedness. This can be achieved by minimising the following mix-norm for the
density variation:

min
u0

Ĵ(u, b) = 1
2⟨|∇−1b(x, T )|2⟩,

s.t. 1
2⟨|u0|2⟩ = E0,

∂u

∂t
+ (U0 · ∇)u + (u · ∇)[U0 + u] − ∇p+Ribẑ − 1

Re
∇2u,

∂b

∂t
+ ([U0 + u] · ∇)b− 1

Pe
∇2b, ∇ · u = 0,

(2.16)

where the non-dimensional Reynolds and Péclet numbers Re, Pe = 500 characterise the strength
of flow inertia to viscous and thermal diffusion respectively and the Richardson number Ri = 0.05
quantifies the strength of buoyancy relative to the background shear. Although we do not present it
here, in SphereManOpt we include the additional test case where the time averaged kinetic energy is
maximised instead, as in [37]. We assume periodicity in the streamwise direction x ∈ [0, 4π] while in
the shearwise direction z ∈ [−1, 1] we impose no-slip velocity, the pressure gauge, the no-flux condition
on the deviation density and its accompanying gauge

u(x, z = ±1, t) = 0,
∫

V
p dV = 0, ∂zb(x, z = ±1, t) = 0,

∫
V
b dV = 0. (2.17)

The latter gauge is essential as it (1) ensures that the mix-norm is well defined [54] and (2) prevents
the optimisation from stalling due to an undefined gauge freedom. The background shear flow and the
initial density deviation profile are given by

U0 = (1 − z2)x̂, b(x, t = 0) = −1
2 erf

(
z

δ0

)
, with δ0 = 0.125, (2.18)

a value larger than that of previous studies to facilitate the use of a spectral method. Following [37]
the initial amplitude is set to E0 = 0.02 and the optimisation window to T = 5. This slightly shorter
optimisation window is chosen so as to avoid excessively small values of the mix-norm which were
found to induce rounding errors. (2.16) and its discrete adjoint (D.2) are time-integrated in Dedalus
using a first order backwards differencing (SBDF1). In contrast to the previous examples the spatial
operators are discretised using a Fourier basis to treat the streamwise direction and a Chebyshev basis
in the shearwise direction. Consequently the discrete operators appearing in (2.6)–(2.9) are no longer
self-adjoint, such that both temporal and spatial errors can now contaminate the gradient estimate.

Table 2.3 reports a comparison of the continuous and discrete gradient by considering a fixed
perturbations of noise for different h and for different objective functions. We find that several digits
of accuracy and a consistent gradient are obtained using the discrete equations while we were unable
to obtain a consistent gradient using the continuous equations for any choice of ∆t or h.

2.3. Run time

Table 2.4 reports the efficiency of this section’s gradient tests. The adjoint of the kinematic dynamo
problem having twice the forward solve’s dimension costs almost double as anticipated. The optimal
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Table 2.3. Test of gradient’s accuracy for Nx, Nz = 256, 128,∆t = 1e− 03 using an
SBDF1 scheme. The initial perturbation velocities u, δu of unit norm are generated by
time-stepping vectors of noise a small number of iterations and then re-normalising.

Continuous Discrete O(∆t)
h |Ĵ(u + hδu) − Ĵ(u)|/h |⟨δu, δL

δu ⟩| Order γ |⟨δu, δL
δu ⟩| Order γ

5.00e-05 7.51875e-03 1.4081e-02 1.0079 7.51848e-03 1.9999
2.50e-05 7.51862e-03 1.4081e-02 1.0040 7.51848e-03 1.9995
1.25e-05 7.51855e-03 1.4081e-02 1.0020 7.51848e-03 1.9974
6.25e-06 7.51852e-03 1.4081e-02 1.0010 7.51848e-03 1.9886

Table 2.4. Ratio of the adjoint integration time versus the forwards integration time
as computed using a single node with 2 AMD Epyc 7302 @ 3 GHz - 16 cores processors.
To minimise memory usage only the forwards solve in spectral space is stored.

Problem Forward Solve (cpu-s) Adjoint Solve (cpu-s) Ratio
Kinematic dynamo 50.432 91.94 1.823
Swift-Hohenberg 2.473 0.388 0.156
Optimal mixing 2794.185 2476.635 0.886

mixing and Swift-Hohenberg problems cost equal or substantially less. Computations require the
forwards solve in coefficient space only, thus minimising memory usage as compared with automatic
differentiation.

3. Gradient descent on a spherical manifold

In the previous section we detailed how to obtain a numerically consistent approximation of the
gradient of the pure functional Ĵ(X0). Extending this further we now consider

min
X̂0∈S

Ĵ(X̂0) = J(X(X̂0), X̂0), (3.1)

where
S = {X̂ | ∥X̂∥2 = E0}, (3.2)

such that, by restricting X̂0 to the spherical manifold S, the equality constraints are built-in. By
defining (3.1) as an unconstrained optimisation problem we can now proceed in outlining an appro-
priate gradient descent procedure, either by using the rotation method [11] (also termed exponential
map in the literature on optimisation on Riemannian manifolds [1]) which moves X̂0 along geodesics
of S in the search direction dk, or using the retraction formulae of [1] which is computationally simpler
and easily generalises to the consideration of Lp norms [50] (our discussion concentrates exclusively
on L2-norms).

In the fluid mechanics community, the rotation method was first used to perform norm-constrained
optimisation on a nonlinear PDE problem by [16] who combined it with a Polak-Ribière conjugate gra-
dient method [21]. They achieved faster convergence with the rotation method than with the Lagrange
multiplier method. More recently [52] highlighted this link and utilised Riemannian optimisation tech-
niques for performing a unit-norm constrained linear optimisation problem. In what follows we outline
the recent theoretical developments concerning steepest descent [6] and conjugate-gradient descent
developed by [48, 49]. This is followed by our numerical validation of their formulae, which using a
stringent line-search is shown to provide convergence consistent with theoretical guarantees.
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3.1. Conjugate gradient formulation

Following [6, 48] we denote the parameter vector at iterate k by X̂k, the Euclidean gradient of the
objective function by ∇Ĵ(X̂k) and the tangent-gradient of the objective function (i.e. its gradient on
the spherical manifold S) by

gk =
(
I − X̂kX̂

T

k

∥X̂k∥2

)
∇Ĵ(X̂k). (3.3)

Starting from an initial guess X̂0, restricted to S, gradient descent proceeds via the recurrence

X̂k+1 =
(
X̂k + αkdk

)
∥X̂k + αkdk∥

√
E0,

dk = −gk + βk sk TX̂k

(
dk−1

)
,

(3.4)

where βk is the conjugate-gradient update parameter [48, 49] and the step size αk is determined using
a line-search procedure in order to find an improved minimum of Ĵ(X̂0). For steepest-descent βk = 0
is set, while in the conjugate-gradient method we use a combined Riemannian Polak-Ribière and
Fletcher-Reeves type update following a general formulation put forward by [49], who demonstrated
that the following choice of βk yields global convergence of the conjugate-gradient algorithm:

βk = max
{
0,min

{
βR−P R

k , βR−F R
k

}}
, (3.5)

with

βR−P R
k =

⟨gk, gk − TX̂k
(gk−1)⟩

∥gk−1∥2 , βR−F R
k = ∥gk∥2

∥gk−1∥2 . (3.6)

The vector transport operator

TX̂k
(dk−1) =

√
E0

∥X̂k∥

(
I − X̂kX̂

T

k

∥X̂k∥2

)
dk−1, (3.7)

and scaling coefficient

sk =


∥dk−1∥

∥TX̂k
(dk−1)∥ , if ∥TX̂k

(dk−1)∥ > ∥dk−1∥,

1, if ∥TX̂k
(dk−1)∥ ≤ ∥dk−1∥,

(3.8)

are used to account for the following: (1) vector addition on the manifold S only makes sense if the
vectors live in the same tangent space, and (2) the inequality (3.8) must be satisfied for convergence
of (3.4); that is the transport operator must not increase the vectors norm [49]. In all cases the iterative
procedure repeats until the gradient residual

r = ∥gk∥ = ∥∇Ĵk∥ sin(θk), where cos(θk) = ⟨X̂k,∇Ĵk⟩
∥X̂k∥ ∥∇Ĵk∥

, (3.9)

involving the measure of the angle between the parameter vector X̂k and Euclidean gradient ∇Ĵk,
becomes less than some numerically prescribed tolerance, meaning that no further progress can be
made without departing too much from the constraint manifold. We note that this measure provides
an immediate connection to, both the Lagrangian method (1.13) and to the Armijo condition (3.10)
when dk ≈ −gk.
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3.2. Conditions on the step size

Convergence guarantees on the scheme (3.4) can be achieved by imposing conditions on the step-size
α [48, 49]. Assuming that Ĵ(X̂K) is continuously differentiable, bounded from below and that the
gradient is Lipschitz continuous for all X̂k ∈ S, the (Riemannian) strong Wolfe-conditions

Ĵ(X̂k+1(αk)) ≤ Ĵ(X̂k) + c1αk⟨gk,dk⟩, (3.10)
|⟨gk+1(αk), TX̂k+1

(dk)⟩| ≤ c2|⟨gk,dk⟩|, (3.11)

with 0 < c1 < c2 < 1/2 ensure global convergence to a stationary point [49]. Here we have used
the notation X̂k+1(αk) to denote the step-size dependent choice of parameter vector and gk+1(αk) to
denote its corresponding tangent-gradient. In contrast to Euclidean gradient descent, the Riemannian
Wolfe-conditions include an additional transport of the search direction TX̂k+1

(dk) to ensure that the
inner product, which is now a metric on S, remains well defined.

3.3. Principle component analysis

To assess the efficacy of the update procedure and the practical cost of enforcing (3.10), (3.11), we
solve

min
X

Ĵ(X) = −1
2XTMX,

s.t. ∥X∥2 = 1, where M = MT , XTMX > 0,
(3.12)

which is equivalent to principle component analysis (PCA) or if M corresponds to the discretisation
of a self-adjoint linear operator, finding its leading eigenvector. Assuming an exact line-search, the
rate of convergence of gradient descent to a stationary point follows analytically from the condition
number κ(M) = λn/λ1 of the Hessian where λ1, λn refers to the smallest/largest eigenvalue of M
respectively. Denoting the solution of (3.12) by X∗ the result of [35] states for steepest descent

Ĵ(X̂k+1) − Ĵ(X∗) ≤ r2[Ĵ(X̂k) − Ĵ(X∗)
]
, where r ∈

]
κ− 1
κ+ 1 , 1

[
, (3.13)

for large k, such that X̂k → X∗ at a linear rate. To test this bound we generate random M ∈ RN×N

and perform gradient descent. For N = 100 we calculate (κ(M)−1/κ(M)+1)2 = 0.9799 and using the
slope of (Ĵk+1 − Ĵ∗)/(Ĵk − Ĵ∗) = 0.9187, showing that the calculated estimate obeys the bound (3.13)
and monotonic linear convergence is observed. Performing the same optimisation using the conjugate
gradient method (3.4) subject to the strong Wolfe conditions we obtained super-linear convergence as
shown in Table 3.1 and Figure 3.1.

To facilitate the application of the descent routine outlined in this section, we have combined the
update formula of Section 3.1 with an implementation of an Armijo (3.10) line-search based on cubic
interpolation and an implementation of a strong Wolfe condition line-search (3.11) following [41, 59].
This is available in the companion package to this paper SphereManOpt [36] which also contains all
examples presented in this paper. In contrast to the libraries manopt and pymanopt [7, 55], our library
focuses exclusively on spherical manifolds of variable radii (as desirable in fluid dynamics applications)
and implements a line-search routine satisfying the strong Wolfe conditions. Such a line-search while
necessary to ensure global convergence of the conjugate gradient method [48] is currently unavailable
in manopt or pymanopt [7, 55].
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Figure 3.1. Convergence history of the optimisation (3.12) using steepest-descent
with an Armijo line-search (solid line), conjugate-gradient with an Armijo line-search
(chained line) and conjugate-gradient with a Wolfe I & II line-search (dotted line)
method. The absolute value of the objective function |Ĵk| is shown in red and the gradi-
ent residual rk in blue. Despite conducting a more expensive line-search the conjugate-
gradient method, which exhibits super-linear convergence, ultimately requires fewer
iterations to converge (see Table 3.1).

Table 3.1. Comparison of the steepest descent and conjugate gradient methods ap-
plied to (3.12). We set the max step-size αmax = 1 and terminate optimisation when
r ≤ 1e-06 or when iterations > 200. Star ∗ denotes a stalled run. Despite conducting
a more expensive line-search the conjugate-gradient routine converges super-linearly
thus requiring fewer evaluations as shown in Figure 3.1.

Routine Size N line-search Obj evals Ĵ Grad evals ∇Ĵ Residual r
Gradient descent 10 Armijo 105 102 9.2117e-07

Conjugate gradient 10 Armijo 95 92 9.6906e-07
Conjugate gradient 10 Wolfe I & II 51 34 6.2045e-07
Gradient descent 100 Armijo 205 200 *2.9087e-05

Conjugate gradient 100 Armijo 205 200 *1.5407e-04
Conjugate gradient 100 Wolfe I & II 94 66 7.4820e-07

4. Numerical performance

Having outlined the calculation of a consistent gradient estimate in Section 2 and a line-search follow-
ing [48, 49] with global convergence to a stationary point in Section 3, we now combine the develop-
ments of these sections and apply them to solving for the optimal solution of the examples previously
considered in Section 2.

4.1. Swift-Hohenberg multi-stability

For the choice of parameters given in Section 2 the Swift-Hohenberg equation has four stable equilibria.
Following [33], we find the smallest perturbation u0 of energy M2 which, when added to the zero-
energy state O, triggers a transition to the next least-energy state uT of energy S2. (In practice, M2 is
determined by repeatedly computing the optimal u0, of gradually decreasing energy M , that maximises

14



A robust, discrete-gradient descent procedure

the energy growth by target time T . Since larger energies characterize the searched-for transition, M2
corresponds to the smallest value of M for which the optimal u0 still triggers the transition.)

Figure 4.1 compares amplitudes of the perturbation M2 and stable equilibrium S2 with the results
of [33]. All steady equilibrium are correctly identified to four digits of precision while the perturbation
amplitudes are correct to one digit. The differences with the result of [33] are explained by the fact
we performed a small number of runs initiated from random noise, to probe a cost functional with
numerous local minima. In contrast they perform several hundred runs so as to explore many possible
basins of attraction.

0 1 2 3 4 5
x/Lc

0.5

0.0

0.5

1.0

u(
x)

M2 = 1
2 |u0|2 = 0.2159

S2 = 1
2 |uT|2 = 0.5164

Figure 4.1. Optimisation using the discrete gradient recovers the energies of the
initial condition M2 and equilibrium state S2 (inset). These are given in Figures 1 and
5 of [33] as M2, S2 = (0.2048, 0.5164).

4.1.1. Discrete vs. continuous adjoint

Having established that our code faithfully reproduces the results of [33] we now compare the perfor-
mance of the discrete and continuous gradient when optimising for the perturbation u0. The conver-
gence of these runs are reported in rows (a), (c) of Table 4.1. Both runs use steepest-descent (SD)
with an Armijo line-search and are initiated using random noise. While the continuous gradient seems
to converge faster to a small residual, this appearance is in fact misleading. By running the optimum
(found with the “continuous”, i.e. differentiate-then-discretize approach) once through the direct and
discrete adjoint solvers (i.e. discretize-then-differentiate), we obtain the corresponding “discrete resid-
ual” which is in fact much higher. This is highlighted in row (a) of Table 4.1 where the discrete residual
is 6 orders of magnitude greater that the continuous one, showing that only the discrete gradient can
accurately yield convergence to a stationary point. A further disadvantage of the continuous gradient
as shown in row (b) of Table 4.1 is that when supplied to the conjugate-gradient (CG) routine it stalls,
thus eliminating the possibility of super-linear convergence.

4.1.2. Line-search algorithms

With the superiority of the discrete gradient established we now consider the efficiency and convergence
behaviour of three different descent routines. The convergence of each routine is reported in rows (c)–(f)
of Table 4.1 and frames (c)–(f) of Figure 4.2. While all routines reach a small residual error, the most
commonly used routine, a backtracking line-search accompanied by an Armijo condition, performs the
worst. As anticipated the conjugate-gradient method implementing the strong Wolfe conditions and
thus enjoying super-linear convergence performs best.
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Table 4.1. Test summary and numerical cost of reaching a stationary point using
different descent routines as shown in Figure 4.2. We set the max step-size αmax = π
and terminate optimisation when r ≤ 1e-06 or when iterations > 200. Star ∗ denotes a
stalled run. In rows (a)–(c) we have reported the continuous residual as well as the
discrete residual.

Routine Gradient line-search Obj evals Ĵ(û0) Grad evals δL
δu0

Residual r
(a) SD Continuous Armijo 163 173 1.5190/9.2551e − 07
(b) CG Continuous Wolfe I & II 63 37 *1.4662/1.1718e − 01
(c) CG Continuous Armijo 217 200 *3.7429/2.8598
(d) SD Discrete Armijo 213 197 2.9400e-06
(e) SD Discrete Wolfe I & II 118 92 2.4488e-06
(f) CG Discrete Armijo 29 13 *3.8577e+01
(g) CG Discrete Wolfe I & II 91 44 1.6003e-06
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Figure 4.2. Convergence of the optimisation runs in rows (d)–(g) of Table 4.1, in
terms of the cost functional J (dotted, red) and gradient residual r (chained, blue),
to the perturbation M2 when initiated with random noise of the same amplitude. The
steepest descent (SD) methods (d), (e) converge linearly while the conjugate-gradient
(CG) method (g) super-linearly, thus demanding fewer iterations.

4.2. Kinematic dynamo

Having established the validity of the gradient in 2.2, where only the discrete adjoint gives a consistent
estimate, and similarly the validity of our code by comparison with [58](see Figure 4.3), we now first
demonstrate the superiority of the discrete gradient when optimising for fields U and B0. In contrast
to the previous examples this demands choosing a single step-size αk to simultaneously update all
n components of the parameter vector X̂k, whilst retaining a termination condition based on the
residual ri

k of each component. We argue that this is preferable to taking a summed quantity such
as rk =

∑n
i=0 r

i
k which could lead to over and under converged directions compensating one-another.

One weakness of the outlined approach is that when different components of X̂k converge at different
rates, we will limit the convergence rate by restricting ourselves to a single step-size. Preconditioning
the update step presents a possible solution to this problem [21].
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(a) Magnetic field BT (b) Velocity field U

Figure 4.3. The optimal (a) magnetic and (b) velocity field for Rm = T = 1 which
yield ⟨B2

T ⟩ = 0.4329. To be compared with Figures 1 and 2 of [58]. This optimum was
calculated using an Armijo based line-search corresponding to row (c) Table 4.2.

4.2.1. Discrete vs. continuous adjoint

Rows (a) and (c) of Table 4.2 compare the performance of the continuous and discrete gradient using
steepest descent (SD) combined with an Armijo line-search. While the continuous gradient appears
to converge in fewer gradient/function evaluations, we find that upon diverging after ∼ 25 iterations
it does so to a spurious solution characterised by a non-zero magnetic divergence and net magnetic
flux (Figure 4.4(a)). The optimisation using the discrete gradient by contrast converges monotonically
to the desired convergence criteria Figure 4.4(c). As previous it was not possible to avail of the
conjugate-gradient (CG) method when using a continuous gradient (row (b) in Table 4.2).

Table 4.2. Numerical cost of reaching a stationary point using different descent
routines as shown in Figure 4.4. We set αmax = 100 and terminate optimisation when
ri

k ≤ 1e-06 or when iterations > 200. Star ∗ denotes a stalled run, while ∗∗ a non-
physical solution. All rows are given in terms of their discrete gradient residual.

Routine Gradient Line-search evals Ĵ(B̂0, Û) evals δL
δU ,

δL
δB0

rB
k rU

k

(a) SD Continuous Armijo 42 37 **1.2519e-05 **3.0875e-06
(b) CG Continuous Wolfe I & II 2 7 *2.3210e-02 *2.0199e-03
(c) SD Discrete Armijo 48 44 2.9980e-06 9.4994e-06
(d) SD Discrete Wolfe I & II 53 53 2.4662e-06 6.9963e-06
(e) CG Discrete Armijo 55 42 3.1154e-06 9.7692e-06
(f) CG Discrete Wolfe I & II 61 57 2.3031e-06 6.6113e-06

4.2.2. Line-search algorithms

Having established the necessity of the discrete gradient, we now consider the efficiency of the strong
Wolfe line-search and conjugate-gradient routines when using a combined update approach. Columns
(d) and (f) of Table 4.2 repeat the same calculation using a strong Wolfe line-search with and without
the conjugate-gradient update. While both routines converge in fewer iterations when comparing
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Figure 4.4. Convergence history in terms of the residual errors rB
k (shown as c0) and

rU
k (shown as c1). Optimisation (a) used a continuous gradient and (c)–(f) a discrete

gradient while their routines and convergence cost are summarised in Table 4.2. While
the continuous gradient appears to converge faster it is in fact to a spurious solution
with non-zero divergence and net magnetic flux. Routines implementing the Wolfe
conditions converge in fewer iterations but their line-search procedures are slightly
more costly.

Figure 4.4(c) with Figures 4.4(d)(f) their total number of function and gradient evaluations is however
slightly larger.

4.3. Optimal Mixing

The previous examples demonstrate that our gradient descent algorithm efficiently achieves a high
degree of convergence, but that this is possible only when using the discrete gradient. We now combine
all this paper’s developments to treat a PDE discretised using a combined Fourier/Chebyshev basis,
as is required to solve the optimal mixing problem (2.16). As of yet adjoint optimisation studies with
a discrete gradient have used finite difference [57], finite element [40, 60] or finite volume methods [51]
and in doing so encountered some difficulties in treating boundary conditions and pressure gauge
conditions. By using the Dedalus code which treats the pressure and divergence free condition (and
similar integral conditions) alongside all other variables during a single time-step no splitting methods
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or complications arise in our implementation (A). Given the prevalence of flow features with large
gradients such as velocity boundary layers or density fronts, the accurate solution of control problems
using a Chebyshev pseudospectral method is an essential step.
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(a) b0 (bottom) and ∇ × u0 (top).
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Figure 4.5. The optimal (a) initial velocity perturbation (given in terms of the vor-
ticity ∇ × u0) and (b) the resulting deviation density and perturbation velocity fields
at T = 5 for Ri = 0.05. To be compared with Figure 2 of [37]. This optimum was cal-
culated using a Wolfe based line-search and conjugate gradient method corresponding
to Table 4.3(f).

Figure 4.5(a) shows the sharp initial density deviation b0 and optimal velocity perturbation (here
plotted as the vorticity ∇ × u0), which as shown Figure 4.5(b) allows the mixing process to unfold
via Taylor dispersion [37]. These figures, computed by solving (2.16) using the discrete gradient and
conjugate gradient method accompanied by a Wolfe line-search (Table 4.3(f)), also demonstrate that
our implementation faithfully reproduces the results of [37].

4.3.1. Discrete vs. continuous adjoint

With our code’s validity established we now compare the performance of the discrete and continuous
gradient when optimising for the perturbation u0. The convergence of these runs reported in Table 4.3,
establish that only the discrete gradient can satisfy the imposed convergence criteria. Although the
conjugate gradient method using the continuous gradient works well initially, it subsequently stalls
due to a poor gradient estimate. While both gradient estimates choose a dominant wavelength kx = 7
the discrete gradient consistently achieves a slightly better optimum than the continuous gradient.

4.3.2. Line-search algorithms

As shown in Figure 4.6 and Table 4.3 the discrete gradient allows us to use the conjugate gradient
algorithm and obtain fast convergence. Combining the discrete gradient with either a conjugate gradi-
ent method (e) or a strong Wolfe line-search (f) the imposed convergence criteria can also be satisfied,
albeit less efficiently. Comparing row (e) with (f) and row (c) with (d), it is also apparent that the
strong Wolfe line-search greatly influences convergence despite its greater cost.
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Table 4.3. Test summary and numerical cost of reaching a stationary point using
different descent routines as shown in Figures 4.5 and 4.6. We set αmax = 100 and
terminate optimisation when ri

k ≤1e-06 or iterations > 200. Star ∗ denotes a stalled
run. Rows (a), (b) report the continuous residual and (c)–(f) the discrete residual.

Routine Gradient Line-search evals Ĵ(u, b) evals δL
δu0

rk Ĵ(u, b)
(a) SD Continuous Armijo 209 200 4.9943e-04 1.2033e-02
(b) CG Continuous Wolfe I & II 65 61 *5.5593e-04 *1.2032e-02
(c) SD Discrete Armijo 209 200 1.0852e-04 1.2030e-02
(d) SD Discrete Wolfe I & II 258 248 7.5664e-07 1.2029e-02
(e) CG Discrete Armijo 209 200 9.5897e-07 1.2030e-02
(f) CG Discrete Wolfe I & II 123 116 7.6475e-07 1.2029e-02
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Figure 4.6. Convergence of the optimisation runs in rows (c)–(f) of Table 4.3, in
terms of the cost function J (dotted, red) and gradient residual r (chained, blue),
to the perturbation u0 when initiated with random noise. The steepest descent (SD)
methods (c), (d) converge sub-linearly while the conjugate-gradient (CG) method (f)
at least linearly, thus demanding fewer iterations.

4.4. Maximum step-size

For each problem considered we have prescribed a hyper-parameter αmax. For an Armijo line-search
it is the initial step-size α0 = αmax from which back-tracking begins, while in a strong Wolfe line-
search this constitutes the maximum admissible step-size. By reducing or increasing the number of
iterations required to achieve convergence, this parameter was found to have a substantial impact on
performance, in all problems considered. Typically as was the case in the PCA and Swift-Hohenberg
problems setting αmax ≈ 1 works well. In the kinematic dynamo and optimal mixing problems however
we found that the range of step sizes considered by the line-search must be larger, particularly when
using the strong Wolfe-conditions (αmin, αmax) = (10−6, 102); although steepest descent was also found
to converge in 20-40 fewer iterations when a large maximum/initial step-size was chosen for these
problems. We understand this behaviour to be a consequence of Ĵ(X̂k+1) being (informally speaking)
poorly bounded during initial iterations due to the unfavourable initial dynamo velocity field U or
mixing perturbation velocity field u. Consequently this requires selecting a larger than usual αk for
the Armijo condition (3.10) to become active and for (3.11) be easily satisfied. A further discussion of
this issue is given in the introduction of [41].
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5. Conclusion

In this paper we have focused on inconsistencies arising from the gradient estimation and application
of equality constraints in the numerical direct adjoint-based control procedure [28]; to show why these
issues occur and how they can be resolved on practical examples. Deriving the discrete adjoint equa-
tions of time-dependent PDE constraints for (preconditioned) multistep schemes [3], and considering
three example problems we demonstrated in Section 2 a consistent gradient approximation, readily
obtainable with minor code modifications. In Section 3 we recalled following [6, 48] how an equality
constrained problem can be solved as an unconstrained problem on a spherical manifold. Consider-
ing three examples, we numerically demonstrate that this procedure, available as SphereManOpt [36],
is capable of giving robust linear to super-linear convergence to stationary points with small resid-
ual error when both nonlinear PDE and multiple norm constraints are present. Useful extensions of
this work would consider the discrete adjoint of Runge-Kutta schemes, preconditioning schemes for
problems with multiple norm constraints and exploiting additional geometric structures of the opti-
misation problems considered. Further developments of SphereManOpt would include Lp norms and
the integration of an optimal checkpointing strategy [19].

Appendix A. Preconditioned first order scheme

Departing from (2.2) we write a general s-step multistep IMEX method as

(
a0Mp + b0Lp

)
X̂n

p =
2∑

j=1
cjF̂n−j

p − ajMpX̂n−j
p − bjLpX̂n−j

p , (A.1)

where X̂ = TX denotes the Chebyshev transform of the first kind and the matrix operators M,L are
assumed to be in spectral space such that X̂ corresponds to a vector of Fourier modes and Chebyshev
polynomial coefficients. For the purposes of parallelisation, the previous equation is separated into
pencils i.e. equations separable in Fourier modes such that only different Chebyshev modes couple. In
2D for example the number of pencils corresponds exactly to the number of Fourier modes divided
by two, owning to a complex to real conversion. We thus consider the solution procedure for indi-
vidual pencils as indexed by subscript p in (A.1), where only the right hand side couples different
Fourier/transverse modes.

To efficiently solve (A.1) Dedalus employs preconditioners PL
p , P

R with the former depending on
the pencil considered. By using: a first order formulation, converting from Chebyshev polynomials
of the first kind Tn(z) to Chebyshev polynomials of the second kind Un(z), performing Dirichlet
recombination and grouping by Chebyshev modes of the second kind rather than variables, all left
hand side (LHS) matrices are rendered sparse [8]. In practice these preconditioners are employed as(

a0Mp + b0Lp
)︸ ︷︷ ︸

Ap

(PR)−1X̂n
p︸ ︷︷ ︸

Ŷ n
p

= PL
p

s∑
j=1

cjF̂n−j
p − ajMpX̂n−j

p − bjLpX̂n−j
p︸ ︷︷ ︸

Bp

, (A.2)

with Mp = PL
p MpP

R to allow for a sparse inversion of the banded system

Ŷ n
p = A−1

p Bp, X̂n
p = (PR)Ŷ n

p . (A.3)

Similarly X̂n
p is easily recovered by left multiplication using PR. Using the recurrence relation 2Tn(z) =

Un(z) −Un−2(z) we have a relation between the two sets of polynomials. To convert between them we
use the left preconditioner PL

p . The above constitutes the solution method followed for the optimal
mixing problem (D.1) and what follows the method for computing its adjoint equations.
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To solve (2.6) to (2.9) using this formulation, we retain only the first order coefficients denoted by
a tilde, multiply by the corresponding left preconditioner PL

p , insert the right preconditioner and its
inverse so as to form Ap and finally form their corresponding adjoint equations at indices n = N ,
1 ≤ n ≤ N − 1 and n = 0 respectively

(
a0M†

p + b0L†
p
)
q̂N

p = (PR)† ∂J

∂X̂N

, (A.4)

(
a0M†

p + b0L†
p
)
q̂n

p = −
[(
ã1M†

p + b̃1L†
p
)

− (PR)†c̃1
∂F

∂Xn

†
(PL

p )†
]
q̂n+1

p + (PR)† ∂J

∂X̂n

(A.5)

∂L
∂X(t = 0) ≡ q̂0

p = −
[
(ã1M† + b̃1L†) − c̃1

∂F

∂X0

†]
(PL

p )†q1 + ∂J

∂X̂0
. (A.6)

The derivation shows that when implemented in Dedalus or an alternative code that avails of pre-
conditioning matrices an additional source of error arises from the non-commutative nature of the
Hermitian adjoint operation. To compute the variation of the objective function requires computing
the adjoint of the Chebyshev transforms to see why this arises we consider the O(∆t) accurate time
integration of the objective function

J(X̂) =
N∑

n=0

1
2V ⟨T−1X̂n,WT−1X̂n⟩∆t, (A.7)

where W = W †. Taking variations of the above we obtain〈
δX̂n,

∂J

∂X̂n

〉
=
〈
δX̂n, T

−†WT−1X̂n
∆t
V

〉
. (A.8)

Appendix B. Discrete adjoint of the Swift-Hohenberg problem

Writing the optimisation problem (2.15) as a minimisation problem in terms of the Lagrangian

L(u, u†) = −
∫ T

t=0
⟨u(x, t), u(x, t)⟩dt−

∫ T

t=0
⟨u†,M∂tu+ Lu− F(u, t)⟩dt, (B.1)

where ⟨f, g⟩ =
∫

x fg dx, M = I,L = (1 + ∂2
x)2 − a and F(u, t) = 1.8u2 − u3. The adjoint equations

and compatibility conditions corresponding to (B.1) give

−∂tu
† + (1 + ∂2

x)2u† − au† = (3.6u− 3u2)u† − 2u, u†(x, T ) = 0. (B.2)

Letting u(t) denote the spatial discretisation of u(x, t) and ũ = (u0, · · · ,uN ) its temporal discretisa-
tion such that tn = n∆t, 0 ≤ n ≤ N , its O(∆t) accurate discrete counterpart is given by

(ã0M + b̃0L)u†
N = −2uN , (B.3)

(ã0M + b̃0L)u†
n + (ã1M + b̃1L)u†

n+1 − c̃1
∂F
∂u

†
|nu†

n+1 = −2un, (B.4)

u†
0

∆t − (ã1M + b̃1L)u†
1 − c̃1

∂F
∂u

†
|0u†

1 = −2u0, (B.5)

for n = N, 1 ≤ n ≤ N − 1, n = 0 respectively, where ∂F
∂u

†|nu†
n+1 = (3.6un − 3u2

n)u†
n+1.

22



A robust, discrete-gradient descent procedure

Appendix C. Discrete adjoint of the kinematic dynamo problem

The continuous Lagrangian corresponding to (2.12) is given by

L = ⟨B2
T ⟩ −

∫ T

0
⟨B†,

∂B

∂t
− ∇ ×

(
U × B

)
− ∇Π −Rm−1∇2B⟩dt

−
∫ T

0
⟨Π†, (∇ · B)⟩dt−

∫ T

0
⟨P †, (∇ · U)⟩dt,

(C.1)

where B†,Π†, P † are the adjoint variables enforcing the constraint equations for the adjoint variables.
Taking variations with respect to the primal variables we obtain

δL
δB

= ∂B†

∂t
+Rm−1∇2B† + ∇Π† +

(
∇ × B†)× U = 0

δL
δΠ

= ∇ · B† = 0,

δL
δB0

= B†
0,

δL
δBT

= 2BT − B†
T = 0,

δL
δU

=
∫ T

0

[
B × (∇ × B†) + ∇P †]dt,

(C.2)

for which the last line can be replaced by

∂

∂t

(
δL
δU

)
= B × (∇ × B†) + ∇P †, ∇ · δL

δU
= 0, (C.3)

to ensure a divergence free gradient. The discrete counterpart of (C.1) is given by

L = ⟨XN ,MXN ⟩ − ⟨q0,X0 − X(x, t = 0)⟩

−
N−1∑
n=0

⟨qn+1,M(ã0Xn+1 + ã1Xn) + L(b̃0Xn+1 + b̃1Xn) − c̃1 (∇ × (U × Bn), 0)︸ ︷︷ ︸
F(Xn)

⟩∆t, (C.4)

where the vectors and operators are given by

Xn = (B,Π)T
n , qn = (B†,Π†)n, M = diag(I, 0), L =

(
−Rm−1∆ ∇

∇T 0

)
. (C.5)

Taking variations with respect to Xn we recover the discrete adjoint equations

(ã0M + b̃0L)qN = ∆t−12MXN , (C.6)

(ã0M + b̃0L)qn + (ã1M + b̃1L)qn+1 − c̃1
∂F
∂Xn

†
qn+1 = 0, (C.7)

q0∆t−1 − (ã1M + b̃1L)q1 − c̃1
∂F
∂Xn

†
q1 = 0, (C.8)

for n = N,N − 1 ≥ n ≥ 1, n = 0 respectively, where

∂F
∂Xn

†
qn+1 =

(
(∇ × B†

n+1) × U , 0
)
. (C.9)
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In the case where U is allowed to be updated, we take variations with respect to U directly in (C.4)
in order to obtain the additional equation

δL(XN , qN )
δU

=
N−1∑
n=0

[
−c̃1Bn × (∇ × B†

n+1) + ∇P †
n+1

]
∆t, (C.10)

which is time-stepped by re-writing the above as

(ã0M + b̃0L)wn + (ã1M + b̃1L)wn+1 = −c̃1
(
Bn × (∇ × B†

n+1), 0
)
, (C.11)

where wn = ( δL
δU , P

†)n and L is as above but with Rm−1 = 0 such that ∇P † is used to enforce
∇ · δL

δU
= 0. By enforcing both divergence free constraints at all times using the Lagrange multipliers

Π,Π†, P † we eliminates the need for projection steps including Chorin’s method which can complicate
gradient computations [10]. In all cases we apply the gauge condition that the zero’th Fourier mode
of each field fkx=0,ky=0,kz=0 = 0.

Appendix D. Discrete adjoint of the optimal mixing problem

The continuous Lagrangian corresponding to (2.16) is given by

L = J (u, b) −
∫ T

0

〈
u†,

∂u

∂t
+ (U0 · ∇)u + (u · ∇)[U0 + u] − ∇p+Ribẑ − 1

Re
∇2u

〉
dt

−
∫ T

0

〈
b†,

∂b

∂t
+ ([U0 + u] · ∇)b− 1

Pe
∇2b

〉
dt−

∫ T

0
⟨p†,∇ · u⟩ dt,

(D.1)

where u†, p†, b† are the adjoint variables enforcing the constraint equations for the dual variables.
Taking variations with respect to the primal variables we obtain the adjoint equations

∂u†

∂t
− 1
Re

∇2u† − ∇p† − (U0 · ∇)u† + u† · (∇U0)T = (u · ∇)u† − u† · (∇u)T − b†∇b,

∂b†

∂t
− 1
Pe

∇2b† +Riu† · ẑ − (U0 · ∇)b† = (u · ∇)b†, ∇ · u† = 0,
(D.2)

and compatibility conditions
u†(x, t = T ) = 0, b†(x, t = T ) = −∇−2b(x, T ), (D.3)

where b† follows from solving the linear boundary value problem

∇2ψ = b, s.t. ∂zψ(x, z = ±1) = 0,
∫

V
ψ dV = 0. (D.4)

Whilst the discrete adjoint for these equations can be computed in a similar manner following A, the
discrete implementation of this mix-norm cost functional, and its adjoint, merits special attention.
The mix norm cost functional takes the form

J = ⟨∇ψ,W∇ψ⟩, (D.5)
where W is an appropriate weight matrix and the symbol ∇ is now taken to mean the discretised
gradient operator. With this in consideration, the cost functional can be rewritten in terms of b as

J = ⟨∇∇−2b,W∇∇−2b⟩, (D.6)
giving the final-time condition

b†(x, T ) = (∇−2)†∇†W∇ψ. (D.7)
Note that in deriving (D.7) we have assumed that W † = W . Numerically we decompose ∇ as (∂x, ∂z)T

where ∂x and ∂z are the discrete x and z derivatives and denote by (∂†
x, ∂

†
z) their discrete-adjoint
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counterpart. The discrete adjoint for ∇−2 is found directly from the Dedalus implementation of (D.4).
In this manner, we find b†(x, T ) by solving (∇2)†b†(x, T ) = ∇†W†∇ψ.
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