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ABSTRACT 

In Vitro and In Vivo Activation of the Pituitary-Adrenal Axis by 

Corticotropin-Releasing Factor, Vasopressin (VP), and Two VP 

Analogs. (August 1993) 

Jeffery A. Carroll, B. S. , Texas A&M University 

Chair of Advisory Committee: Dr. Thomas H. Welsh, Jr. 

This project's objectives were to: 1) compare the relative 

potency of a VP analog with that of CRF and VP in terms of ACTH 

secretion by cultured bovine corticotrophs; 2) evaluate a VP analog 

as an antagonist of VP-induced ACTH secretion by cultured bovine 

corticotrophs; 3) evaluate the ability of CRF and VP to induce ACTH 

secretion in vivo in cattle; and, 4) evaluate the ability of the 

antiglucocorticoid, RU486, to block the inhibitory effects of 

dexamethasone (DEX) on CRF- and VP-induced ACTH secretion in vitro. 

Bovine and porcine adenohypophyses were enzymatically 

dispersed to yield cells for primary culture. On Day 5 of primary 

culture, bovine and porcine corticotrophs were challenged for 3 h 

and 4 h, respectively, with medium alone (Control) or various 

combinations and concentrations of bCRF, VP, the two VP analogs, { 
VPB: [Deamino'(D-3-(Pyridyl) Alaz, Arga)-VP]; and VPP: [d(CHz)q, D- 

Try(Et)z, Val4, Cits-VP]f, DEX and RU486. Medium concentration of 

ACTH was determined by RIA. Bovine CRF, VP, and the VP analogs 

each increased (P & . 05) ACTH secretion by bovine corticotrophs. 



Maximal increases in ACTH secretion occurred in response to . 1P. M 

bCRF (S. l-fold) and 1PM VP (3. 7-fold), relative to Control. VP and 

VPB were more potent than VPP in terms of stimulating secretion of 

ACTH. RU486 and DEX, added either alone or together to bovine or 

porcine corticotrophs did not affect (P & . 10) basal concentration of 

ACTH. DEX reduced (P & . 01) CRF-stimulated secretion of ACTH by 

68%. Concurrent addition of RU486 negated 62% of the inhibitory 

effect of DEX on CRF-stimulated secretion of ACTH. 

Cows were randomly assigned to one of four groups (n = 8 

cows/group): 1) Control (saline); 2) bCRF (. 3 pg/kg BW); 3) VP (1 

gg/kg BW); and 4) bCRF (. 3 pg/kg BW) + VP (1 p, g/kg BW). Jugular 

blood samples were collected at 15-min intervals for 4 h pre- and 

for 6 h post-treatment; samples also were taken at 1, 5 and 10 min 

post-treatment. Plasma concentration of ACTH and cortisol did not 

differ among the groups for the 4-h pre- injection period. At 1 min 

post-injection, bCRF + VP, VP, and bCRF increased ACTH secretion 

22. 4-, 9. 6-, and 2. 2- fold respectively, relative to Control (. 03 

ng/ml). Maximal plasma concentration of ACTH occurred at 5, 10, 

and 15 min for VP (1. 02 ng/ml), bCRF + VP (1. 4 ng/ml), and bCRF (. 32 

ng/ml), respectively. 

These data demonstrate that the two VP analogs are agonistic 

ACTH secretagogues in vitro. RU486 partially blocks DEX's inhibition 

of ACTH secretion of ACTH in vitro. VP acutely activates the bovine 

pituitary-adrenal axis whereas the ACTH response mediated by CRF 

is slower in onset longer duration. 
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INTRODUCTION 

When an animal is exposed to a stressor, neurotransmitters are 

activated which mediate the secretion of corticotropin-releasing 

factor (CRF) and vasopressin (VP) by specific hypothalamic neurons. 

These two neurohormones (CRF and VP) stimulate the corticotrophs 

in the adenohypophysis to release adrenocorticotropic hormone 

(ACTH) which in turn stimulates the adrenal cortex to release 

glucocorticosteroids (cortisol and corticosterone; Figure 1). The 

secretion and plasma concentration of these stress-related 

hormones (e. g. , ACTH and cortisol) have been used as classical 

diagnostic tests or bioiogical endpoints to assess the functional 

integrity of the adrenal axis and/or characterize responsiveness to a 

stressor or stressful enviroment. 

Elevated cortisol (CS) in response to a stressor has long been 

associated with detrimental effects on reproduction and animal 

productivity (e. g. , average daily gain, milk production) and more 

recently with a compromised immune system. It has been estimated 

that shipping stress, a condition associated with increased secretion 

of ACTH and CS during transportation and marketing of beef cattle 

can be linked to approximately 80% of all feedlot deaths (McKercher, 

1978; Hutcheson and Cole, 1986) resulting in a loss of $700 million 

per year for the beef industry. 

Citations on the following pages follow the style of Journal of 
Animal Science. 
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In order to combat the detrimental biological and economic 

effects of stress, we must first identify and understand the factors 

that compromise the pathway of the hypothalamic-pituitary-adrenal 

axis (HPA). CRF and VP both stimulate the release of ACTH, however, 

the relative potency of these neurohormones is species specific. In 

cultured bovine corticotrophs, CRF is more potent, whereas in 

cultured ovine corticotrophs, VP is more potent. Recently, an analog 

of VP has been shown to be 1/36 as potent as VP in stimulating the 

release of ACTH by cultured ovine corticotrophs (Schwartz et al. , 

1991). The regulatory action of CRF and VP on the synthesis and/or 

secretion of CRF and/or VP is still under investigation. However, 

Aguilera et al. (1993) provided some insight when they reported that 

water deprivation-induced VP decreased CRF mRNA and increased the 

accumulation of CRF in the paraventricular nucleus of the rat. Apple 

et al. (1993) have also recently evaluated additional factors such as 

serum calcium and electrolytes in restraint-stressed sheep. 

Although there are several VP analogs available, (some reported to 

have antagonist activity peripherally) there has not been an analog 

reported which has antagonistic activity at the pituitary. 

Dexamethasone, however, has been utilized successfully to inhibit 

both CRF- and VP-induced release of ACTH (Wagner, 1987). 

Therfore, the objectives of this study were to: 

1) compare the relative potency of a VP analog with that of CRF 

and VP in terms of ACTH secretion by cultured bovine 

corticotrophs; 



2) evaluate a VP analog as an antagonist of VP-induced ACTH 

secretion by cultured bovine corticotrophs; 

3) evaluate the ability of CRF and VP to induce ACTH 

secretion in vivo in cattle; 

4) evaluate the ability of the antiglucocorticoid, RU486, to 

block the inhibitory effects of dexamethasone on CRF- and 

VP-induced ACTH secretion in vitro. 



LITERATURE REVIEW 

Background. The physiological consequences of stress on the 

body have been of scientific interest for many years. The first 

scientist to introduce the term "stress" into the medical community 

was Hans Selye during the 1930s. Selye proposed that regardless of 

the stimuli, the body would respond in the same physiological 

manner. Selye's work attracted the interest of several other 

scientists into this field of study who strived to link the endocrine 

system to the stress response of the body (Sapolsky, 1988). 

Early investigators concluded that the regulation of the 

secretion of glucocorticoids by the adrenal cortex depended on a 

linkage of the hypothalamus and pituitary gland. For example, Harris 

(1948), after studying factors which regulated the pituitary gland, 

suggested that neurons of the hypothalamus regulate the secretion of 

hormones from the adenohypophysis. Harris' findings led to further 

investigation into the hypothalamic-pituitary axis. In the 1950s, 

several others had provided convincing evidence that one of the 

factors produced in hypothalamic neurons regulated the secretion of 

adrenocorticotropic hormone (ACTH) from the adenohypophysis 

(Saffran et al. , 1955; Guillemin and Rosenberg, 1955; Porter and 

Jones, 1956). According to conventional nomenclature, Saffran et al. 

(1955) named this adenohypophyseal regulator corticotropin- 

releasing factor. 

During this same period, other scientists were conducting in 

vivo stress studies with VP in the rat (Martini and Morpurgo, 1955; 



I4cCann, 1957). Initially, VP was thought to be the putative CRF. 

This led to a controversy in the scientific community as to which 

substance, CRF or VP, was the primary factor responsible for the 

regulation of ACTH secretion. Throughout the 1960s and 1970s, the 

controversy continued, although there was increasing evidence that 

VP was indeed not the primary stimulator of ACTH secretion 

(Arimura et al. , 1967; Portanova and Sayers, 1973). 

In addition to CRF and VP, there are at least two other 

regulatory factors that have been reported to induce ACTH secretion 

from the adenohypophysis; epinephrine (E; Giguere and Labrie, 1983) 

and oxytocin (OT; Link et al. , 1993). The presence of high affinity 

receptors for both E (Petrociv et al. , 1983) and OT (Antoni, 1986) 

have been identified in the rat pituitary. However, the focus of this 

report will be on the CRF and VP-induced ACTH secretion. 

Localization of CRF and VP. Vale et al. (1981) characterized 

the chemical structure and sequenced ovine CRF as a 41-amino acid 

hypothalamic peptide with intrinsic ACTH-releasing activity. Land 

et al. (1982) isolated and sequenced the DNA complementary to the 

specific mRNA for vasopressin. Gillies et al. (1982) demonstrated 

that VP enhanced the ACTH-releasing potential of CRF. In women, Liu 

et al. (1983) demonstrated that VP and CRF acted synergistically in 

regard to stimulation of ACTH secretion. Eventually, with the use of 

immunohistochemical staining techniques, CRF was identified in 

various regions of the hypothalamus with the primary source 

localized in the parvocellular neurons of the paraventricular nucleus 



(PVN; Bugnon et al. , 1982; Merchenthaler et al. , 1982; Olschowka et 

al. , 1982; Figure 2). 

These CRF neurons can be subdivided into two types: 1) a VP- 

containing neuron and 2) a VP-deficient neuron. The axons which 

transport CRF from these neurosecretory cells originate in the 

medial parvocellular subdivision of the PVN and project to the 

external zone of the infundibulum in the tuberohypophyseal tract 

where CRF is released into extracellular space around the 

fenestrated capillaries of the hypothalamo-hypophyseal portal 

system (Guillaume et al. , 1992). Vasopressin has been localized in 

two regions of the hypothalamus, the magnocelllular neurons of both 

the PVN and the supraoptic nucleus (SON; Zimmerman et al. , 1977; 

Figure 2). The neurons that synthesize VP in the PVN and SON project 

their axons in the paraventriculohypophyseal and 

supraopticohypophyseal tracts, respectively, and terminate in the 

neural lobe of the neurohypophysis (Figure 3). 
The pathway by which magnocellular neuron synthesized VP 

reaches the corticotrophs in the adenohypophysis of the pituitary is 

still unresolved. Two of the most widely accepted viewpoints are 

provided by Holmes et al. (1986) and Oliver et al. (1977). Holmes et 

al. (1986) contend that VP is released from preterminal axons in the 

internal zone of the infundibulum. The other possible pathway 

proposed by Oliver et al. (1977) suggests that VP is transported by 

retrograde blood flow from the neurohypophysis to the portal system 

which facilitates delivery of VP to the adenohypophysis. 
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CRF and VP Receptors. As of 1984, there were two types of 

peripheral vasopressin receptors identified (i. e. , Vl and V2 

receptors). The Vl receptor is located on smooth muscle and liver 

cells. The V2 receptor, however, has been shown to be responsible 

for the antidiuretic activities induced by VP in the kidneys. Although 

the V2 receptor transduction signal is via the adenylate cyclase 

system, the Vl receptor does not seem to be mediated through this 

particular second messenger pathway (Knepel et al. , 1 984). 

Many scientists agreed with the theory of two separate VP 

receptors. The concept they did not agree upon, however, was which 

receptor was responsible for the CRF-like induced ACTH secretion. 

While some reported considerable evidence that the CRF-like activity 

of VP paralleled pressor potency (Mormede, 1983; Knepel et al. , 

1982), others had previously reported results which were in conflict 

with these findings (Doepfner et al. , 1963; Arimura et al. , 1969). 
Jard et al. (1988) provided more insight into this controversy when 

they suggested the presence of a pituitary vasopressin receptor with 

its own distinct form. They contended that this pituitary 

vasopressin receptor retained some of the Vl receptor properties 

and thus named it the Vlb receptor (Jard et al. , 1988). 

As molecular biologists continue their work to isolate and 

identify this and other possible VP receptors with CRF-like activity, 

endocrinologists and physiologists continue the task of learning how 

stress affects the body. 

The CRF receptor was identified in the brain (Wynn et al. , 1984) 

and the anterior pituitary (Leroux and Pelletier, 1984) of the rat. 



However, further investigation into the localization of CRF receptors 

has demonstrated the existence of the receptor in extra- 

hypothalamic tissues of the body (Herkenham, 1987). 

Mechanism of Action for CRF and VP. CRF and VP are both 

polypeptide hormones that bind to their respective membrane bound 

receptors in the pituitary gland (DeSouza et al. , 1985; Lutz-Bucher 

and Koch, 1983). Both receptors exhibit similiar properties in that 

they are desensitized and down-regulated in response to chronic 

stimulation by their specific ligand (Reisine and Hoffman, 1983; 

Koch and Lutz-Bucher, 1985). 

When CRF binds to its specific receptor, it activates protein 

kinase A which is coupled to adenylate cyclase to produce 3', 5' cyclic 

AMP (cAMP; Labrie et al. , 1982). VP on the other hand has been shown 

to activate protein kinase C and does not directly stimulate the 

production of cAMP. However, Abou-Samra et al. (1987) did report 

that VP would augment the production of cAMP in CRF-stimulated 

corticotrophs. 

It has been proposed, however, that increases in cAMP activate 

calcium channels in a variety of cells (Luini et al. , 1985; Armstrong 

and Eckert, 1987). In 1988, Luini and DeMatteis reported a study in a 

permeabilized corticotroph mouse pituitary tumor cell line (AtT-ZO), 

a homogenous ACTH-secreting cell line, that showed exocytotic 

release of ACTH is calcium dependent and that cAMP had no direct 

effect on ACTH release from corticotrophs. Also, it has been shown 

that stimulation of corticotrophs with both CRF and VP results in 

increased intracellular calcium. Stimulation with CRF results in a 
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calcium influx from cytosolic origin whereas VP mobilizes calcium 

from intracellular stores. Therefore, Link et al. (1993) postulated 

that it may be the release of intracellular pool of calcium which is 

the main regulatory signal that activates ACTH release irrespective 

of the secretagoges. 

ACTH and Corticotrophs. ACTH in the porcine, bovine, 

ovine, and human is a single-chain polypeptide that consists of 39 

amino acids (Evans et al. , 1966). The N-terminal amino acids 

numbered 1 through 24 are identical in each of the aforementioned 

species. This particular portion of the amino acid sequence is 

responsible for the full biological activity of the complete molecule. 

The major difference among species is in the C-terminus amino acids 

25-33. ACTH is synthesized in corticotrophs of the pars distalis of 

the adenohypophysis (Baker, 1974). 

Corticotrophs are classified as basophils due to their intense 

blue staining with aldehyde thionin and are diffusely distributed 

throughout the pars distalis. The percentage of all cells in the pars 

distalis that are corticotrophs is varible. However, most reports 

concur with Baker et al. (1969) that corticotrophs represent 4% of 

the cell population in the pars distalis. The corticotroph has been 

described as having: a cytoplasm of low electron opacity; sparse 

electron-opaque secretory granules approximately 200 mp in 

diameter in a single row beneath the cell membrane; immature 

granules in the Golgi apparatus separated from their enveloping 

membranes by a clear halo; slender mitochondria with cristae that 

are often parallel to the long axis of the cell; Golgi complexes 



scattered throughout the cytoplasm; and a modest amount of rough 

endoplasmic reticulum (Baker et al. , 1969). 

The identification of corticotrophs, however, is not a simple 

task. Other investigators have reported cell characteristics for the 

corticotroph that are inconsistent with the description by Baker et 

al. (1969). Kurosumi et al. (1962) described the corticotroph in the 

rat as having a dense core of secretory granules surrounded by a less 

dense zone and an outer limiting membrane. Also, according to 

Rennels and Shiino, the secretory granule in the corticotroph ranges 

from 126 to 154 mp. in diameter which is inconsistent with the 

report by Baker et al. (1974). 

Mechanism of Action for Dexamethasone. The exact mechanism 

by which cortisol and dexamethasone (DEX), a synthetic 

glucocorticoid, inhibit CRF- and VP-induced ACTH secretion remains 

elusive. It has been demonstrated by use of a clonal cell line that 

intracellular receptors mediate the actions of glucocorticoids by 

modulating nuclear events in corticotrophs (Svec, 1984). Two 

classes of glucocorticoid receptors (i. e. , Type I and Type II) have 

been reported (Canny et al. , 1990) in the central nervous system. The 

Type I receptors have a high affinity for aldosterone, corticosterone 

and cortisol, but not for DEX. The Type I receptors are concentrated 

in the hippocampus and dentate gyrus (Reul et al. , 1985). 

Type II glucocorticoid receptors are quite different as 

compared to the Type I receptors. Type II receptors are the classical 

DEX-binding receptors and are abundant in the hypothalamus and the 
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anterior pituitary where they are clearly implicated in the control of 

ACTH secretion (Dallman et al. , 1987). 

There have been several hypotheses as to what cellular 

event(s) is(are) mediated by DEX to directly inhibit secretion of 

ACTH by the corticotroph cells of the anterior pituitary. Reports on 

the effects of glucocorticoids on cAMP production are controversial 

(Link et al. , 1993). Also, the aforementioned studies reported in the 

section on mechanism of action for CRF and VP which refer to 

intracellular calcium involvement have recently been refuted (Clark 

and Kemppainen, 1993). Clark and Kemppainen (1993) have suggested 

that glucocorticoid negative feedback occurs at a step (s) prior to 

the influx of extracellular calcium. 

Glucocorticoid Receptors and RU486. Glucocorticoid receptors 

(GR) have been localized at multiple sites in the body including the 

hippocampus region of the brain, CRF producing neurons of the PVN 

and the anterior pituitary corticotrophs (Horiba et al. , 1993). These 

locations provide the pathway by which cortisol feeds back to the 

hypothalamus and the anterior pituitary to inhibit further CRF and 

VP-induced ACTH secretion. Recent results (Pacak et al. , 1993; 

Figure 1) suggested that glucocorticoids do indeed feedback to the 

PVN of the hypothalamus to inhibit the release of CRF and decrease 

hypothalamic turnover of catecholamines which are involved in 

regulation of CRF release. 

The search for an effective antisteroid which would block the 

negative feedback of glucocorticoids with high affinity for the GR 

led scientists from Roussel Uclaf to the discovery of RU38486 
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(RU486) or mifepristone. RU486 exhibits both antiprogestin and 

antiglucocorticoid properties, however, a higher dosage is required 

to achieve the antiglucocorticoid effect (Baulieu, 1986). Both, in 

vitro and in vivo studies demonstrate that, RU486 possesses GR 

blocking activity without exhibiting agonistic corticoid effects 

(Gagne et al. , 1985). The uniqueness of this particular antisteroid 

was that its affinity for the GR was three times greater than that of 

the synthetic glucocorticoid, dexamethasone. Experiments in humans 

and some animal models demonstrated that RU486 has the ability to 

block the inhibitory effect of CS on ACTH secretion in a dose-related 

manner (Spitz and Bardin, 1993). Sufficient evidence that may still 

be lacking however, is whether RU486 has the ability to block the 

negative feedback of CS on both CRF and VP-induced ACTH secretion 

especially in domestic farm animals. Therefore, development of an 

antistress agent would benefit the livestock industry. 

Consequences of Stress. The concept that stress imposes some 

detrimental effects on the body is not novel. One of the first adverse 

conditions associated with stress was the development of ulcers in 

experimentally stressed monkeys in the 1950s (as reviewed by 

Sapolsky, 1988). Even as early as the late 1960s, researchers were 

linking elevated levels of glucocorticoids to damage of the 

hippocampal cells of the brain (Sapolsky, 1988). Other adverse 

conditions that have been associated with stress include reduced 

rates of reproduction, lower production (e. g. , average daily gain, milk 

output) and a compromised immune system. 



The detrimental effects associated with reduced reproduction 

seem to be connected to the inhibition of the release of luteinizing 

hormone-releasing hormone (LHRH) from the infundibulum (Ono et al. , 

1984). In males, the inhibitory effect of cortisol on the secretion of 

luteinizing hormone (LH) and testosterone appears to be species 

dependent. Increased CS in the male rat (Vreeburg et al. , 1984), the 

bull (Welsh et al. , 1979), and man (Doerr and Pirke, 1976) has been 

reported to decrease both LH and/or testosterone. However, in the 

male Rhesus monkey (Hayashi and Moberg, 1987) and the boar (Liptrap 

and Raeside, 1975; Juniewicz and Johnson, 1981), increases in ACTH 

and/or CS are associated with an increase in plasma concentration of 

LH and testosterone. Although an increased plasma concentration of 

cortisol has been reported to have inhibitory effects in both males 

and females, it appears that females are more susceptible to stress. 

Some studies describe a greater stress-induced secretion of ACTH in 

females than in males. Moberg suggested that female reproduction is 

more susceptible due to the dependency of successful reproduction 

on carefully timed hormonal secretions (Moberg, 1991). If the female 

is subjected to stressors near the time of ovulation, the elevation of 

plasma cortisol can diminish the release of LHRH, this may inhibit 

the release/surge of LH from the adenohypophysis that is needed for 

ovulation. 

Reduced animal productivity and a compromised immune 

system are considered together for the purpose of this review. 

When an animal's immune system is compromised, it will usually 

become sick, and therefore, there is reduced production for that 
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animal [i. e. , lower average daily gain, lower milk yield, etc. (Friend, 

1991)]. In 1976, Selye described how stress affected not only the 

nervous and endocrine systems, but also the immune system (Selye, 

1976). Stress-induced effects on the immune system stem from the 

hormonal secretions of the hypothalamic-pituitary-adrenal axis 

(Livnat et al. , 1985). Several in vitro studies have demonstrated 

this connection by showing that CRF directly suppresses human 

peripheral blood natural killer cell activity (Pawlikowski et al. , 

1988) and monocyte chemotaxis (Stepien et al. , 1987). Also, when 

the immune system is suppressed due to stress, animals are more 

susceptible to conditions such as shipping fever/bovine respiratory 

disease (McKercher, 1978) and viruses that cause infectious bovine 

rhinotracheitis (Narita et al. , 1981). 
Summary. Previous studies provide ample scientific evidence 

to warrant further research regarding the endocrinology and 

physiology of "stress" in domestic animals. In order to efficiently 

combat the detrimental effects associated with stress, we must 

first have a thorough and complete understanding of how stress 

interacts with the body's nervous, endocrine, and immune systems. 

The intent of the proposed research was not to address all of these 

areas. The main focus of this thesis project was on the endocrine 

system. Therefore, the outlined objectives were proposed to gain 

further insight into the interactions of CRF and VP as activators of 

the stress response in cattle and how these factors may be negated. 
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MATER)ALS AND METHODS 

Experiment 1: In Vitro Regulation of CRF- and VP-induced ACTH 

Secretion 

Tissue. The pituitary glands were recovered from 30 

slaughtered steers, 2 heifers and 3 six-month old boars at the Texas 

ASM University Rosenthal Meat Sciences and Technology Center 

within 10-20 min following stunning of the animals. The tissues 

were transferred immediately to a tissue culture room in the 

adjacent Kleberg Center. After exsanguination, the head was 

removed at the occipitoatlantal joint and transferred to a processing 

room where a band saw was used to expose the brain. The brain was 

removed from the neurocranium to expose the pituitary gland. The 

pituitary gland was removed with a sterile scalpel and hemostats, 

placed in a sterile plastic bag, and then transferred immediately to 

the tissue culture room in the adjacent Kleberg Center. Upon arrival 

at the culture room, the pituitary gland was split mid-sagitally and 

separated under sterile conditions into the pars distalis of the 

adenohypophysis (PDA) and neurohypophysis (with pars intermedia). 

The pars distalis (see Appendix A for weights) was weighed and 

prepared for cell culture (Appendix 8); the weight of the 

neurohypophysis was recorded prior to disposal. 
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Ce/I Culture. The pars distalis was sliced into 1 mm thick 

sections with a Stadie-Riggs tissue slicer and placed into a 1X 

solution of Dulbecco's Modified Eagle Medium (DMEM) tissue culture 

medium until further processing. The slices were then minced into 

approximately 1 mm cubic portions with the blade of the tissue 

slicer and the pieces washed two times in 1X DMEM. Tissue from all 

steers, heifers and boars on a given culture day were pooled by 

species/sex class and enzymatically dispersed in 1X DMEM solution 

which contained 0. 3% collagenase (350 units/mg of tissue; Sigma 

Chemical Co. , St. Louis, MO) for 1 hour (37 &C water bath with the 

solution being mixed with a magnetic stir bar). After dispersal, the 

solution was filtered through a single layer of sterile gauze and the 

filtrate was then centrifuged for 15 min at 200 xg to precipitate the 

cells. The liquid was aspirated and the pellet of cells was 

resuspended in 1X DMEM and then centrifuged. This washing portion 

of the procedure was repeated three times. 

After the third wash, the cells were resuspended and the 

concentration of cells determined using a hemocytometer. Viability 

of the cells was assessed by trypan blue stain exclusion (viability 

averaged 7996). The cells were then diluted to a concentration of 

400, 000 viable cells/ml (200, 000 each for heifers and boars) in 1X 

DMEM containing 1. 0 M L-glutamine (Gibco Laboratories, Chagrin 

Falls, OH) and 10% fetal calf serum (Whittaker M. A. Bioproducts, Inc. , 

Walkerville, MD). The cell suspension was then dispensed in 1-ml 

fractions into 35 mm x 10 mm polystyrene 6-well tissue culture 

dishes (Corning Glass Works, Corning, NY. ) and placed into a 37 &C 
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incubator (95% humidified air and 5'%%d%%d carbon dioxide). The day of 

plating the cells was designated as Day 0 of the culture. 

On Day 2 (48 hours after plating cells), the medium was 

aspirated from the culture wells with sterile glass pipettes and a 

new 1 ml fraction of the supplemented 1X DMEM added to the well 

(medium was added gently to prevent dislodging of the cells from the 

culture wells). The medium was changed again on Days 3 and 4 as 

described above for Day 2. On Day 5, the cells were washed twice 

with serum-free medium prior to adding treatments. After the 

second wash, the medium was aspirated and a 1-ml fraction of 

serum-free 1X DMEM containing the treatment was added to the 

appropriate well and allowed to incubate for 3 h for primary cultures 

from the steers and the heifers, and 4 h for primary cultures from 

boars. After the 3-h and 4-h incubation periods, the medium was 

collected with plastic pipette tips, dispensed into polypropylene test 

tubes and stored at -20 &'C until medium concentration of ACTH was 

determined by radioimmunoassay (RIA) (Wagner, 1987). Primary cell 

cultures orginating from boar pituitaries had a new 1 ml fraction of 

1X DMEM plus serum added and continued in culture as described 

above until Day 14 at which time the cells were again treated as on 

Day 5 of the culture. After a 4-h incubation period, the medium was 

collected and analyzed as described above. 

Cell Culture Treatments. Dosages used for bCRF (Penninsula 

Laboratories, Inc. , Belmont, CA. , Cat. ¹8568), VP (Calbiochem, La 

Jolla, CA. , Cat. ¹676435) and DEX (Steraloids Inc. , Wilton, NH. , Cat. 
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¹P500) were based on previous results from our laboratory (Wagner, 

1987; Welsh et al. , 1989) and ranged from 10-» M to 10s M for CRF, 

10-s M to 10-s M for VP, and 10-io M to 10-7 M for the VP analog. In 

order to evaluate the efficiency of the two VP analogs (Figure 4) as 

potent agonists or antagonists at the level of the pituitary, dose 

concentrations were chosen to parallel those of the VPP analog 

(Manning et al. , 1992). The RU486 (17B-hydroxy-1 1 B- [4- 
dimethylaminophenyl-1]-1 7u [prop-1-ynyl]-estra-4, 9-diene-2-one) 

dose concentration chosen by our laboratory to evaluate its 

antiglucocorticoid effect was 10-s M (donated by Roussel-Uclaf). 

Ce/I Culture Medium. The cell culture medium was prepared by 

supplementing Dulbecco's Modified Eagle Medium with the following 

constituents: 1) 50 ml of 50X MEM; 2) 50 ml of 100X MEM non- 

essential amino acids; 3) 5 ml Fungizone (Amphotericin-B 250 

mg/ml); 4) 5 ml penicillin-streptomycin (10, 000 U/ml penicillin, 

10, 000 mg/ml streptomycin); 5) 18. 5 g HEPES (Gibco Laboratories, 

Chagrin Falls, OH); and 6) 18. 5 g sodium bicarbonate (Fisher 

Scientific, Fair Lawn, NJ). and 7) 5 ml of glutamine as an energy 

source. In order to sterilize the medium, it was passed through a 

filtration system fitted with a . 2 micron filter. 
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Experiment 2: In Vivo Activation of the Bovine HPA axis by bCRF and 

VP 

Animals and Plasma Samples. The ability of CRF and VP to 

enhance plasma concentration of ACTH was studied in eight docile, 

proestrous Jersey cows (500 kg BW and 6 yr old) at the Texas AlkM 

University Dairy Center. These particular cows had been exposed 

previously to extended periods of halter restraint and handling for 

teaching purposes. Blood samples were collected on four days during 

the experiment. Approximately 10 mls of blood were collected at 

each sampling time followed by an infusion of heparin (. 07 g/liter; 

Sigma, St. Louis, MO. , Cat. ¹H9133) and physiological saline (0. 9%) to 

replace fluid volume. 

Days 1 and 2 of the experiment were consecutive days after 

which the cows had a two-wk recovery period prior to the 

consecutive sampling on Days 3 and 4 of the experiment. Indwelling 

jugular cannulae were inserted in the cows 24 h prior to the onset of 

sample collection and remained intact for samples collected on the 

consecutive day. Blood samples were collected via jugular vein at 

15-min intervals for 4 h prior to treatment (PRE) and for 6 h after 

treatment (POST). Blood samples were also collected at 1, 5, and 10 

min POST. 

At time of treatment (Time 0), each cow received a 5-ml 

injection which consisted of one of the following four treatments in 

a saline vehicle: 1) Control (5 ml of saline alone; Control); 2) bCRF 

( 3 Pg/kg BW) 3) VP (1 ug/kg BW); and 4) bCRF ( 3 ILg/kg BW) + VP (1 

pg/kg BW). Cows were randomly assigned to treatment groups with 2 
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cows/treatment for each of the four treatment days. Days 1 and 2 

(Experiment 2a) were separated from d 3 and d 4 (Experiment 2b) in 

order to maintain the cows in the proestrous phase of the estrous 

cycle during all four days of the experiment. Blood samples were 

centrifuged (2820 xg) for 30 min at 4 oC at the Dairy Center to 

recover plasma which was then transferred to laboratory facilities 

in the Kleberg Center for analysis of ACTH and CS by RIA. 

in Vivo Treatments. To determine the ability of CRF and VP to 

induce secretion of ACTH in vivo, the cows were challenged with one 

of the following four treatments: 1) Control (saline alone); 2) 

bovine CRF (bCRF; 0. 3 pg/kg BW); 3) arginine vasopressin (AVP; 

1pg/kg BW); or 4) bCRF + AVP (0. 3 pg/kg BW and 1 u. g/kg BW, 

respectively). Each cow was evaluated with each of the four 

treatments on separate sampling days to allow for individual 

response variations. The experiment utilized cows in the proestrous 

phase of the estrous cycle; therefore, Experiments 2a and 2b were 

separated by at least 30 days. 

Radioimmunoassays. Cell culture medium and plasma from 

blood samples were used to determine the concentration of ACTH by 

using a modified version (Wagner, 1987) of a double antibody 

radioimmunoassay (Appendix C) developed by Nicholson et al. (1984): 

1) the first antibody was IgG-ACTH-1 rabbit anti-(1-24)ACTH (IgG 

Corporation, Nashville, TN) supplied at a dilution of 1:40 and diluted 

to 1:2000 for use; 2) the second antibody was goat anti-rabbit 

gamma-globulin (Calbiochem, La Jolla, CA. , Cat. ¹539845) diluted to 
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1:20; 3) &asl h(l-24)-ACTH (INC Biomedical, Carson, CA. , Cat. 

¹07106126) was reconstituted in double-distilled water to yield 

10, 000 cpm/100 pl and is used as the radioactive antigen, and 4) the 

standards were serially diluted (50 pg/100 Ij, l to . 0781 pg/100 P. l) 

from h(l-24)-ACTH (Peninsula Laboratories, Inc. , Belmont, CA. , Cat. 

¹8741). The primary antiserum does not crossreact with other 

peptides with a structure similar to that of ACTH (i. e. , lipotropin, 

melanotropin, or endorphin). In addition, hormones used in these 

experiments (i. e. , vasopressin, CRF, dexamethasone) do not interfere 

with the ability of the antiserum to bind radiolabeled ACTH. The 

sensitivity of the ACTH RIA was 2 pg/tube and the intra- and inter- 

assay coefficients of variation were 6 and 10%, respectively. The 

total volume of unknown assayed was 200 pl; the plasma or medium 

samples containing a higher quantity of ACTH needed to be diluted 

with assay buffer. 

Plasma samples were also assayed for CS using a primary 

antibody assay procedure (Appendix D) with the following 

components (Anderson et al. , 1986): 1) primary antibody was rabbit 

anti-cortisol antiserum received at a dilution of 1:400 and diluted 

further to 1:2500 (Pantex, Santa Montica, CA. , Cat. ¹P44); 2) the 

standards (4-pregnen-11B, 17, 21-triol-3, 20-dione; Steroids Inc. , 

Wilton, NH. ) were made by serial dilutions (4000 pg/500 p, l to 3. 9 

pg/500 p. l); 3) the tracer used was &H-Hydrocortisone (1, 2-~H; NEN, 

Boston, MA. , Cat. ¹NET-185) and 4) the liquid scintillation fluid was 

Ecolume (ICN, Irvine, CA. , Cat. ¹882470). The assay sensitivity was 

62 pg/assay tube and the antibody crossreacted 60, 48, 0. 01 and 
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0. 01% with corticosterone, deoxycorticosterone, progesterone and 

estradiol, respectively. Intra- and inter-assay coefficients of 

variation were 8 and 1296, respectively. 

Statistical Analysis. The concentration of ACTH and cortisol in 

unknowns was determined using the computer program Assay Zap 

(Biosoft, Cambridge, UK. ) which utilizes a four parameter model [ y= 

a-d/1+(x/c)~ + d ]. All in vitro and in vivo data were arrayed and 

analyzed by Excel 4. 0 (Microsoft Corporation) and Statview 1. 04 

(Abacus Concepts, Inc. , Berkley, CA. ). The Excel program was used to 

calculate means and the area under the hormone profile curves. 

Statview tests included in the analyses were: 1) unpaired T-test; 2) 

analysis of variance; 3) Fisher's r to z correlations; 4) Spearman's 

test for correlations; and 5) stepwise regression for prediction 

equations. The ANOVA models included time, culture replicate and 

interactions as sources of variation. Treatment differences with a P 

value less than or equal to . 05 were considered statistically 

significant. Correlation analyses were used to describe temporal 

relationships between ACTH and cortisol. 
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RESULTS AND DISCUSSION 

Experiment 7: ln Vitro Regulation of CRF and VP-induced ACTH 

Secretion 

CRF-induced ACTH Secretion. Five individual primary pituitary 

cell cultures were established from the 30 steers, as described in 

the Materials and Methods section, to investigate the ACTH releasing 

activity of bovine CRF. The following data are based on the 

treatment mean plus the standard error of the mean (S. E. M. ) for 6-8 

wells/culture. Figure 5 represents the stimulatory action of various 

concentrations of CRF (10-» M to 10-7 M). Secretion of ACTH by cells 

treated with 10-sM CRF did not differ (P & . 10) from that of Control 

cells (284. 9 g 14. 9 pg/ml). 

Secretion of ACTH was increased by treating cells with 10-a M 

CRF (3. l-fold increase; P & . 0001 relative to Control). Medium 

concentration of ACTH was further enhanced (P & . 0001) by treatment 

with 10-r M CRF (1577. 5 ~ 98. 6 pg/ml; a 5. 5-fold increase relative to 

Control). These results differ from those reported by Wagner (1987) 
in which ovine CRF-induced secretion of ACTH was increased by 2. 2- 

, 3. 3-, and 3. 7-fold, at 10-s M, 10-a M, and 10-7 M, respectively. A 

possible explanation for the diffences reported between the 

stimulatory effects of bovine and ovine CRF in cultured bovine 

corticotrophs may reside in the recognition of the ligand by the CRF- 
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Figure 5. Ability of CRF to stimulate ACTH secretion by 
steer anterior pituitary cells (400, 000 viable cells/well). 
Cells challenged on Day 5 of culture for 3 h (n = 6 
wells/treatment/culture). 



binding protein (i. e. , CRF BP). In a recent study, Woods et al. (1993) 
demonstrated that ovine CRF does not bind appreciably with human 

CRF BP and therefore does not dimerize to form the CRF-CRF BP 

complex which may be associated with the clearance rate of the 

ligand. The cells which synthesize the CRF BP have not been 

identified at this time. Therefore, the possible presence of these 

CRF binding proteins in our culture system could explain the 

different degrees of ACTH secretion in response to ovine versus 

bovine CRF. If the ovine CRF is not being bound by CRF BP with an 

affinity equivalent to that for bovine CRF, it would be reasonable to 

assume that there is more ligand that can interact with its receptor. 

Gibbs and Vale (1983) reported CRF concentration in the 

hypothalamic-hypophyseal portal blood of the rat to be 

approximately 1 ng/ml. In the ovine, Engler et al. (1989) reported 

that basal CRF concentration in the hyppophysial-portal circulation 

ranged from 18 g 8 pmol/I to 127 g 14 pmol/I. Given that in vitro 

studies for both the bovine and rat corticotroph demonstrate that 

CRF is a more potent stimulator of ACTH secretion than VP, it is 

possible that the concentration of CRF in the hypothalamic- 

hypophyseal portal blood of the bovine would be within the 1 ng/ml 

range. These levels are consistent with the reported Kd of CRF. 

Therefore, the stimulatory action of CRF 10-a M may indeed be 

physiologically relevant in the bovine. 

VP-induced ACTH Secretion. The stimulatory action of VP was 

also examined at various concentrations (10-'o M to 10-s M) as 

represented in Figure 6. Neither 10-&o M, 10-s M nor 10-a M increased 
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Figure 6. VP-induced ACTH secretion by cultured 
steer anterior pituitary cells (400, 000 viable cells/well). 
Cells challenged on Day 5 of culture for 3 h (n = 6 
wells/treatment/culture). 
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terms of stimulating secretion of ACTH. Medium concentration of 

ACTH was further enhanced (P & . 001) with 10-s M VP (1115. 45 g 79. 4 

pg/ml). 

The coupling of these data ( e. g. , comparison of CRF- and VP- 

induced secretion of ACTH) with the data of Wagner (1987), 
indisputably demonstrates that CRF is indeed the more potent 

stimulator of ACTH secretion in cultured bovine corticotrophs. The 

minimum stimulatory concentration of VP (10-7 M) is similar to the 

concentration reported in the hypothalamic-hypophyseal portal blood 

of the sheep (50-2000 pmol/liter; Engler et al. , 1989), the monkey 

(11-16 ng/ml; Zimmerman et al. , 1973), the rat (1 ng/ml; Gibbs and 

Vale, 1983) and in the horse (25 pmol/liter; Alexander et al. , 1991). 
ACTH Secretion Induced by 1/P Analogs. Both VPB AND VPP have 

been reported to possess antagonistic activity peripherally. At the 

onset of the present study it was known that the VPB analog also 

demonstrated agonistic activity at the pituitary in terms of 

stimulating ACTH secretion. We evaluated whether the VPP analog is 

an antagonist to VP at the level of the pituitary gland. We 

determined that VPP is an agonist rather than an antagonist to VP at 

the level of the pituitary. Figure 7 represents a comparison of VP 

with two analogs of VP (i. e. , VPP and VPB; see Materials and Methods 

for details). Relative to Control, medium concentration of ACTH 

increased for cells treated with 10-7 M VP, VPP and VPB. At 

equilmolar concentration (10 r M), VP and VPB were more potent than 

VPP in terms of stimulating secretion of ACTH. At 10-s M, the VPP 

analog tended to be less effective (P & . 05) than 10-s M VP. 
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Figure 7. Stimulatory action of VP and two VP analogs 
at various concentrations in steer anterior pituitary cell 
cultures. Cells (400, 000 viable cells/well) were 
challenged on Day 5 of culture for 3 h (n = 6 
wells/treatment/culture). 
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medium concentration of ACTH relative to Control (P & . 10). At 10. 7 

M, the stimulatory action of VP was apparent with a 2. 5-fold 

increase (P & . 0001) over Control (284. 9 ~ 14. 9 pg/ml). At an 

equimolar concentration of 10-7 M CRF was more potent than VP in 

Interestingly, the results obtained by treating the cells with 

the VPB analog do not concur with the potency report for this analog 

as compared to VP (Schwartz et al. , 1991) in sheep. Schwartz 

demonstrated that VPB was only 1/36 as potent as VP in terms of 

stimulating secretion of ACTH in sheep. The present results, 

however, demonstrate that in cultured bovine corticotrophs the ACTH 

stimulating ability of VPB is equivalent to VP at 10-7 M. The 

dissimilarity in the activity of VPB in these two studies is 

especially interesting given that VP is more potent in terms of 

stimulating secretion of ACTH by ovine corticotrophs. The 

discrepancy in the action of this analog may stem from the existence 

of receptor subtypes (e. g. , Vl, Vlb and V2; Jard et al. , 1988). It is 

conceivable that in the pituitary of the sheep there is a greater 

concentration of the Vlb subtype receptor, compared to the bovine 

pituitary. 

Time Course of CRF- and I/P-induced ACTH Secretion. To 

determine the temporal aspect of CRF- and VP-induced secretion of 

ACTH by cultured bovine anterior pituitary corticotrophs, the cells 

were challenged for 15, 30 or 120 min with medium alone, each 

neurohormone alone or a combination of the two neurohormones 

(Figure 8). By 15 min post-challenge, VP (10-s M), CRF (10-7 M) and 

the combination of CRF + VP each enhanced (P & . 05) medium 
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Figure 8. Temporal profile of ACTH secretion induced 
by CRF, VP and the combination of CRF + VP in steer 
anterior pituitary cell culture (400, 000 viable cells/well). 
Cells were challenged on Day 5 of culture for either 15, 
30 or 120 minutes. 
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cells treated with either CRF or VP alone. By 30 min post-challenge, 

secretion of ACTH induced by CRF (10-7 M) and VP (10-s M) were 

equivalent (P & . 10). However, medium concentration of ACTH for 

cells treated with the combination of CRF and VP was greater (P & 

. 05) than the medium concentration of ACTH for cells that were 

treated with either CRF or VP alone. 

By 120 min post-challenge, medium concentration of ACTH for 

the cells treated with the combination of CRF and VP increased 3. 3- 

fold relative to Control and was greater than (P & . 001) medium 

concentration of ACTH for cells treated with CRF and VP alone. 

There was no difference (P & . 10) in medium concentration of ACTH 

for cells treated with CRF or VP alone. The 180 min post-challenge 

secretion of ACTH is represented in Figure 5 for CRF and Figure 6 for 

VP. By 180 min post-challenge, the stimulatory action of VP had 

reached a plateau whereas CRF continued to increase medium 

concentration of ACTH and surpassed (P & . 001) the stimulatory 

action of VP. 

These results demonstrate that the onset of VP action or 

response to VP is more acute than that of CRF and tends to plateau 

after 120 min. The stimulatory action of CRF however is slow 

initially but continues to increase medium concentration of ACTH 

beyond the stimulatory action of VP. Similar temporal profiles of 

plasma concentration of ACTH were observed when the two 

neurohormones were evaluated in vivo (see Figures 14 and 15). 

Recently, other investigators (Cantor et al. , 1993) have also reported 

similar temporal profiles for CRF- and VP-induce B-endorphin in 
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concentration of ACTH relative to Control (541. 6 ~ 61. 8 pg/ml). 

Medium concentration of ACTH was greater (P & . 05) at 15 min for 

VP-treated cells relative to the CRF-treated cells. At 15-min, the 

medium concentration of ACTH was greater (P & . 05) for the cells 

treated with the combination of CRF and VP relative to those 

perifused ovine anterior pituitary cells. There are at least two 

factors that could account for these temporal differences: 1) CRF 

and VP activate separate and different second messenger systems 

(i. e. , protein kinase A and protein kinase C, respectively) and 2) the 

mechanism(s) involved in transport of these two neurohormones is 

different. 

Oex-induced Inhibition of ACTH Secretion. The ability of the 

synthetic glucocorticoid, DEX, to suppress protein kinase A (CRF) 

mediated secretion of ACTH is represented by Figure 9. Addition of 

10-s M DEX alone to the cultured cells did not affect (P & . 10) medium 

concentration of ACTH relative to Control (284. 9 ~ 14. 9 pg/ml). 

Addition of CRF increased secretion of ACTH (P & . 0001) 5. 5-fold 

relative to Control. Concurrent treatment with DEX decreased CRF- 

induced secretion of ACTH by 52%. 

The ability of DEX to inhibit protein kinase C mediated 

secretion of ACTH is represented by Figures 10 and 11. Medium 

concentration of ACTH was increased (P & . 0001) by treating cells 

with VP, VPB and VPP (10-s M each). Medium concentration of ACTH 

was enhanced 3. 9-fold each for VP and VPB, and 2. 2-fold for VPP 

relative to Control (284. 9 ~ 14. 9 pg/ml). Concurrent treatment with 
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0 - DEX (10 M) 

~ + DEX (10 M) 

a, b, c (P c . 004) 

a 

CONTROL VP (10 M) CRF ( 10 M) 

Figure 9. Dexamethasone's inhibition of CRF- and 
VP-induced ACTH secretion by cultured steer anterior 
pituitary cells (400, 000 viable cells/well). Cells were 
challenged with CRF, VP and/or DEX for 3 h on Day 5 
of culture (n = 6 wells/treatment/culture). 
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0 - DEX 

~ + DEX (10 M) 

a, b (P c . 06) 
a, c (P c . 0003) 
c, d (P c . 05) T 

b, c 

t 

t 

CONTROL VPP (10 M) VPB (10 M) VP (10 M) 

TREATMENTS 

Figure 10. Ability of DEX to suppress protein kinase C 
mediated ACTH secretion induced by VP and the two 
VP analogs (i. e. , VPP and VPB) in steer anterior 
pituitary cell cultures. Cells (400, 000 viable cells/well) 
were challenged on Day 5 of culture for 3 h (n = 6 
wells/treatment/culture). 
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C3 - RU486 

~ + RU486 

1500 

CONTROL DEX (10 M) CRF (10 M) CRF + DEX 

Figure 11. Ability of the antiglucocorticoid RU486 to 
negate the inhibitory effect of DEX on CRF-induced 
ACTH secretion in steer anterior pituitary cell culture. 
Cells (400, 000 viable cells/well) were challenged on 
Day 5 of culture for 3 h (n = 6 wells/treatment). 
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DEX decreased VP-, VPB-and VPP-induced secretion of ACTH by 32%, 

2196 and 44%, respectively. 

It has been demonstrated previously that CRF action is 

mediated via the protein kinase A system and VP action is mediated 

via the protein kinase C system (Abou-Samra et al. , 1987; Wagner, 

1987). Present results indicate that the inhibitory action of the 

synthetic glucocorticoid (e. g. , DEX) is expressed in both the protein 

kinase A and protein kinase C mediated ACTH secretion by cultured 

bovine corticotrophs. However, total suppression of the stimulatory 

action of CRF and VP in terms of ACTH secretion is not achieved with 

DEX. Although the mode of action of DEX remains elusive, it appears 

to block futher secretion of ACTH, but does not negate the previous 

stimulatory effects on the cell. 

RV486 Negation of the Inhibitory Effects of DEX. The ability of 

the antiglucocorticoid (RU486) to block the inhibitory effect of DEX 

on CRF-induced ACTH secretion by bovine and porcine anterior 

pituitary corticotrophs is presented in Figures 11 and 12. Addition 

of 10-s M RU486 or co-treatment with 10-& M DEX did not affect (P & 

. 10) medium concentration of ACTH relative to Control (267. 5 g 25. 8 

pg/ml). An 8. 5-fold increase (P & . 0001) in medium concentration of 

ACTH occurred in response to treatment with 10-7 M CRF. Co- 

treatment with CRF plus DEX suppressed medium concentration of 

ACTH by 68. 196. However, when RU486 was added to the combination 

treatment of CRF plus DEX, RU486 was able to negate 62% of the 

inhibitory effect of DEX. 
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0 - RU486 

~ + RU486 

CONTROL OEX (10 M) CRF (10 M) CRF + DEX 

Figure 12. Ability of RU486 to negate the inhibitory 
action of DEX on CRF-induced ACTH secretion in 

porcine anterior pituitary cell culture. Cells (200, 000 
viable cells/well) were challenged for 4 h on Day 5 of 
culture (n = 6 wells/treatment). 
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The mechanism of action for RU486 at the glucocorticoid 

receptor remains elusive (Spitz and Bardin, 1993). The ability of 

RU486 to negate the suppressive action of DEX in porcine anterior 

pituitary corticotrophs is presented in Figure 12. Addition of 10-& M 

RU486 or co-treatment with 10-s M DEX did not affect (P & . 10) 

medium concentration of ACTH relative to Control (1605. 6 z 103. 6 

pg/ml). A 3. 2-fold increase (P & . 0001) in medium concentration of 

ACTH occurred in response to treatment with 10-7 M CRF relative 

toControl. Co-treatment with CRF plus DEX suppressed medium 

concentration of ACTH by 66%. Forty-two percent of this 

suppression was negated however when RU486 was added to the 

combination treatment of CRF plus DEX. 

The ability of RU486 to block the inhibitory action of DEX on 

CRF-induced secretion of ACTH in the bovine and porcine clearly 

demonstrates its antiglucocorticoid activity on anterior pituitary 

cells in vitro. Subsequent in vitro studies are in progress to 

evaluate the action of RU486 on the hypothalamus and infundibulum 

for both bovine and porcine tissues. Also, in vivo studies are being 

designed to investigate the ability of RU486 to inhibit the effects of 

DEX in the bovine. 

Experiment 2: Activation of the Bovine HPA Axis by bCRF and VP In 

Vivo 

In Vivo Experimental Design. There was no interaction (P & . 05) 

between effects of day of experiment and treatment; therefore, 



43 

values reported represent the means and S. E. M. for treatments pooled 

over all four days of the experiment. Standard error of the means are 

not represented to enhance the clarity of the graphs depicting the in 

vivo response to CRF and VP. There were no differences (P & . 10) 

among treatment means for any of the discrete time periods during 

the PRE period. Therefore only 1 h of the 4 h PRE period is 

illustrated in graphs along with representatives for the 6 h POST 

per lod. 

Control (Saline) Group. There was no difference (P & . 05) in 

plasma concentration of ACTH among cows (n = 8 cows) that received 

the saline alone treatment during the 4-h PRE period. At Time 0, 

cows were given a 5 ml injection of physiological saline. Saline 

injection had no affect (P & . 05) on plasma concentration of ACTH 

during the 6-h POST period (Figure 13). Therefore, the remaining 

treatment groups will be compared to Control. The mean plasma 

concentration of ACTH for all cows pooled over PRE and POST periods 

averaged 28. 2 g 1. 6 pg/ml. 

bCRF Treatment Group. During the PRE period plasma 

concentration of ACTH did not differ (P & . 10) among cows assigned 

to the bCRF treatment group (Figure 14). At Time 0, the bCRF 

treatment group did not differ (P & . 05) from Control. At 1 min POST, 

plasma concentration of ACTH was increased 2. 2-fold over Control 

(32. 7 ~ 7. 2 pg/ml) in cows challenged with bCRF. At 5 min POST, 

plasma concentration of ACTH was further increased 5-fold relative 

to Control. Maximal observed plasma concentration of ACTH (324. 8 ~ 
126. 2 pg/ml) was at 15 min POST. After 15 min POST, plasma 
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concentration of ACTH continually declined until 60 min POST at 

which time plasma concentration of ACTH for cows challenged with 

bCRF did not differ (P & . 05) from that observed for Control cows. 

VP Treatment Group. At Time 0, the VP treatment group did not 

differ (P & . 05) from Control. Although an acute difference (P & . 01) 

resulting from the VP challenge (9. 6-fold increase) was detected as 

early as 1 min POST relative to Control (Figure 15). At 5 min POST, 

plasma concentration of ACTH was increased 35. 5-fold relative to 

Control. Maximal plasma concentration of VP-induced ACTH 

secretion was observed at 5 min POST. The decline in VP-induced 

ACTH secretion was continuous after 5 min POST, however, it did not 

decline as rapidly as it had increased. At 60 min POST, the 

stimulatory effects of VP were no longer evident and plasma 

concentration of ACTH did not (P & . 05) differ from Control. 

bCRF plus l/P Treatment Group. At Time 0, the bCRF plus VP 

treatment group did not differ (P & . 05) from Control. Plasma 

concentration of ACTH for cows challenged with a combination of 

bCRF plus VP reflected not only an acute (within 1 min) response but 

also a prolonged (greater than 120 min) elevated plasma 

concentration of ACTH (Figures 16 and 17). At 1 min POST, plasma 

concentration of ACTH was increased Z2. 4-fold relative to Control 

(32. 7 ~ 7. 2 pg/ml). Maximal plasma concentration of ACTH (1399. 8 g 
Z60. 1 pg/ml) occurred at 10 min POST. Although the decline in 

plasma concentration of ACTH was continuous after 10 min POST, it 

remained elevated above Control for an additional 110 min. 
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The enhancement in plasma concentration of ACTH due to 

treatment with bCRF plus VP is consistent with the synergistic 

reports by Liu et al. (1983) in humans, Rivier et al. (1984) in the rat 

and Pradier et al. (1986) in sheep. The temporal aspects associated 

with plasma concentrations of ACTH observed for cows during the in 

vi vo portion of this study are undoubtly supported by the 

aforementioned in vitro results. Also, these data correspond to the 

real-time observations reported by Cantor et al. (1993) for ovine 

tissue. Other in vivo studies evaluating VP-induced secretion of 

ACTH in the bovine are not available at this time for direct 

independent comparisons of the in vivo action of VP. 

Plasma Concentration of Cortisol. An increase in plasma 

concentration of ACTH preceded the increase in plasma concentration 

of CS (Figures 13 through 16) irrespective of secretagogue. Areas 

under the hormone response curves (AUC) were calculated for plasma 

concentration of both ACTH and CS. Areas were utilized for 

correlation analysis during the PRE (PRE AUC) and POST (POST AUC) 

periods. Responsiveness of ACTH and CS (i. e. , POST AUC) were 

tightly coupled (r = . 71, P & . 0001). Cortisol POST AUC was 

positively correlated with CS PRE AUC ( r . 59, P & . 0003) but not 

with PRE AUC for ACTH (r = -. 31, P & . 08). Plasma concentration of 

CS at 0 min was lowly correlated with POST AUC for CS (r = . 32, P & 

. 08) and peak CS ( r = . 23, P & . 21). 

These data provide insight regarding the dynamics of ACTH and 

CS responsiveness to CRF and VP. These two neurohormones, CRF and 

VP, may be used to assess the pituitary-adrenal capacity in cattle. 
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However, due to the acute, transient response of ACTH and CS to the 

VP challenge, it is necessary that the sample collection window be 

narrower. Also, these hypothalamic neurohormones may be used in 

provocative tests to predict and(or) rank cattle with respect to 

relative secretion of ACTH and CS during stress-free periods. 
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IMPLICATIONS 

The pituitary-adrenal axis in the cow can be stimulated by the 

independent action of the endogenous neurohormones CRF and VP. 

Although VPP and VPB have been reported to be antagonists of VP in 

peripheral tissue, they both exert agonist activity on the bovine 

anterior pituitary. Our in vitro studies confirm that CRF is more 

potent than VP in terms of stimulating secretion of ACTH in the 

bovine corticotroph; however, direct in vivo comparisons of potency 

have not been reported at this time for cattle. 

There is a consistent and profound difference in acute and 

protracted ACTH response to CRF and VP in vitro and in vivo. 

Although CRF and VP mediate secretion of ACTH via two separate 

second messenger systems (protein kinase A and protein kinase C, 

respectively) the ACTH response induced by the combination of CRF 

and VP has both an acute phase and an extended response. Therefore, 

an animal's response to an exteroceptive stimulus, (e. g. , an acute 

response versus an extended response) is the consequence of 

integrated crosstalk between the protein kinase A and protein kinase 

C pathways. 

Further in vivo studies need to be conducted to confirm that 

bCRF rather than VP is the more potent stimulator of ACTH secretion 

in cattle. The present results from in vitro experiments suggest 

that CRF is the more potent stimulator of ACTH secretion in vivo; 

however, this remains to be established. It would also be relevant to 
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evaluate both VPP and VPB in vivo given the dual agonistlantagonist 

activities of these VP analogs. 

The initial results obtained with the antiglucocorticoid, 

RU486, need to be expanded to gain further insight into the hormonal 

mechanism(s) by which this antisteriod blocks DEX-induced 

suppression of CRF-induced secretion of ACTH. The ongoing studies 

evaluating the activity of RU486 at the levels of the hypothalamus 

and infundibulum should provide further insight into the sites of 

action of this antiglucocorticoid. 

Additional studies to quantitate the concentration of CRF and 

VP in portal blood of cattle during a physiologically stressful 

situation, such as during transportation, need to be undertaken. Also, 

there needs to be further investigation of the V1b subtype receptor 

and interactions between CRF and VP involved in the regulation of VP 

and CRF receptors. Finally, evaluation of genetic and gender 

diffences in the HPA axis of cattle needs to be addressed. 
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APPENDIX A 

Pars Distalis Weights 

Species Sex Class Slaughter Weight (Ibs) Pars Distalis (g) 

bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
bovine 
porcine 
porcine 
porcine 

steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
steer 
cow 
cow 
boar 
boar 
boar 

1 580 
1524. 5 
1 500 
1 830. 5 
1550. 5 
1431 
11 34. 5 
1281 
1573. 5 
1163. 5 
1175. 5 
1371 
1088 
1221 
1359 
1119. 5 
1123. 5 
1424 
1133 
1050 
1168 
1221 
975 
1175 
855 
855 
787 
914 
918 
811 
1100 
1060 
167 
210 
203 

1. 5003 
1. 4479 
1. 4248 
1. 7392 
1. 4730 
1. 3594 
1. 0494 
1. 1544 
1. 6149 
1. 4403 
1. 1845 
1. 5351 
1. 3179 
1. 7578 
1. 3121 
1. 2902 
1. 6933 
1. 7670 
1. 4389 
1. 1380 
1. 3961 
1. 1960 
1. 0852 
1. 2297 
0. 6521 
0. 6317 
0. 8693 
1. 0036 
0. 8872 
0. 8941 
1. 2080 
0. 9740 
0. 1 879 
0. 1720 
0. 1780 
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APPENDIX B 

PITUITARY CELL CULTURE PROCEDURES 

A. Cell Culture Methodology 

Animals are humanely stunned and decapitated. After 
exsanquitation, the head is removed at the 
occipitoatlantal joint and transferred to a processing 
room where a band saw is used to expose the brain. 

The brain is removed to expose the neurocranium to 
expose the pituitary gland. The pituitary gland is 
removed with a sterile scalpel and hemostats, placed in a 
sterile plastic bag, and transferred immediately to the 
tissue culture room. 

3. The pituiary gland is spit mid-sagitally and separated 
under sterile conditions in a laminar flow hood into the 
pars distalis of the adenohypophysis and neurohypophysis 
(with pars intermedia). 

The pars distalis is weighed and then sliced into 1 mm 
thick sections with a Stadie-Riggs tissue slicer. The 
slices are placed into a 1X solution of Dulbecco's Modified 
Eagle Medium (DMEM) tissue culture medium until further 
processing. 

The slices are minced into 1mm cubic portions with the 
blade of the tissue slicer and then washed two times in 

1X DMEM. 

Pieces are placed in sterile 125-ml Erelenmyer flasks 
(approximately 2 pars distalis/flask) containing 75 ml 
DMEM with . 3% collagenase (350 units/mg tissue). The 
flasks are immersed into a 37&C water bath and agitated 
with a magnetic stir bar for 1 hour. 

After dispersal, the solution is filtered through a single 
layer of sterile gauze. The filtrate is then dispensed into 



50-ml centrifuge tubes and centifuged at 200 xg for 15 
min to precipitate the cells. 
The liquid is aspirated and the pellet of cells is 

resuspended in 50-ml of 1 X DMEM and then centrifuged. 
This washing procedure is repeated three times. 

After the third wash, the pellet of cells is resuspended in 

20 ml of 1X DMEM. 100 pl of the cell suspension is 

pipetted into a sterile polypropylene tube containing 100 
p, l of trypan blue stain. The stained cell solution is then 
pipetted into a hemacytometer chamber. 

10. Concentration of viable cells is determined by counting 
the number of non-stained cells on the grid and inserting 
this number into the following equation: 

(desired concentration of cells/ml) 

11. The cells are the diluted to a concentration of 400, 000 
viable cells/ml (200, 000 each for heifers and boars) in 

1X DMEM containing 1. 0 M L-glutamine and 10% fetal calf 
serum. 

12. The cell suspension is then dispensed in 1-ml fractions 
into 35 mm x 10 mm polystyrene 6-well tissue culture 
dishes and placed into a 37&C incubator (95% humidified 
air and 596 carbon dioxide. 

13. The day of culture establishment is considered to be Day 
0 and spent medium is replaced with 1 ml fraction of 
supplemented 1X DMEM on Days 2, 3 and 4 (medium is 
added gently to the inner side wall to prevent dislodging 
of the cells). 

14. On Day 5, the cells are washed twice with serum-free 
medium and appropriate treatments added. The volume 
serum-free medium added is 1 ml minus 50 ml multiplied 
by the number of treatments added to a particular well. 
The final total volume in each well is 1 ml. 
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15. After the appropiate incubation period, 3-h for steers and 
4-h for cows and boars, the medium is collected in 

plastic pipette tips, dispended into polypropylene tubes 
and stored at -200C until medium concentration of ACTH 

is determined by RIA. 

B. Cell Culture Medium, Collagenase and Viocase 

1. 
a 

Cell Culture Medium 
To prepare 1 liter of 5X DMEM, add the contents of 5 
one-liter packages of DMEM to approximately 800 mls of 
doubled distilled water. 
Then add 50 ml each of 50X MEM amino acids with L- 
glutamine and 100X MEM non-essential amino acids 10 
mM. 
To this solution add 5 ml each of Funfizone 
(Amphotericin-8 250 mg/ml) and penicillin-streptomycin 
(10, 000 U/ml penicillin, 10, 000 mg/ml streptomycin). 
Dissolve 18. 5 g each of sodium bicarbonate and HEPES 25 
mM and then pH solution to 6. 8. After appropriate pH is 
obtained, adjust final volume of solution to 1 liter. 
Solution is then sterilized by passing through a filtration 
system equipped with a . 2 micron filter and store at 40C. 
Filtering solution will raise the final pH to approximately 
7. 0). 

d. To prepare 500 ml of 1X DMEM, add 100 ml of 5X DMEM to 
400 ml sterile double distilled water and store at 40C 
until day of culture at which time the medium should be 
heated in a water bath to 37'C. 
The supplemented cell culture medium is prepared by 
adding 5 ml of L-glutamine and 50 ml of fetal calf serum 
to 445 ml of the 1X DMEM. This solution may also be 
stored at 4oC, but should be heated to 37oC before using 
in the cell culture. 

2. 
a 

Preparation of Collagenase 
To prepare 150 ml of collagenase solution, dissolve 450 
mg of collagenase in 150 ml of 1X DMEM and stir with a 
magnetic stir bar until completely dissolved. 
Filter solution by passing through a . 45 micron filter 
system attached to a vaccum. 
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c. The solution can then be sterilized by passing through a . 2 
micron filter attached to a vaccum. This will provide 
enough collagenase solution to dissociate approximately 
4 grams of tissue. 

3. Preparation of Viocase solution 
a. To prepare 100 ml of the viocase solution, add 20 ml of 

double distilled water to a bottle of pancreatin 10X 
(25g/liter) and vortex. 

b. Add 10 ml of the pancreatin solution to 90 ml of 1X DMEM. 

c. To sterilize, pass solution through a . 2 micron filter 
system attached to a vaccum. 



APPENDIX C 

ACTH ASSAY PROCEDURES 

A. Assay Methodology 

Day 1 (During the entire procedure keep all tubes on ice or 
at 4K). 
Add 200 pl Buffer 8 to N tube in triplicate. 
Add 100 pl Buffer B to 0 tube in triplicate. 

C. 

d. 

e. 

Add 100 pl of standard or unknown to appropriately 
labelled polypropylene tubes. 
Add 100 pl of first antibody to all tubes except the N and 
T tubes and vortex. 
Incubate for 24 hours at 4K. 

Z. 
a. 

Day 2 
Add 100 pl of »sl-ACTH to all tubes, T tubes in 

triplicate and vortex. 
Incubate for 72 hours at 40C. 

3. 
a 

Day 5 
Add 100 pl of second antibody to all tubes except the T 
tubes. 
Incubate for 4 hours at 4K 
Add 1. 6 ml of cold separation buffer to each tube except T 
tubes and centrifuge immediately for 20 min at 6000 x g. 
Decant supernatant and blot tubes on absorbent paper. 
Make sure that tubes are maintained at 4K or in ice 
water bath during this portion of the procedure. 
Count precipitate for 2 min on gamma counter. 

B. Assay Solutions 

l. 
a 

Buffer A 
For 1 liter of Buffer A, dissolve 16. 84 g of NazHPO4, 4. 74 
g of NazEDTA and . 2 g NaNs in approximately 800 ml of 
deionizied distilles water. 
Adjust volume to 1 liter and pH with 1 M NaOH to 7. 4. 
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2. Buffer 8 
a. For 400 ml of Buffer 6, combine 400 pl of Triton x-100 

and 10 ml of Trasylol with 400 ml of Buffer A. This will 

provide enough Buffer 6 for approximately 800 tubes. 

3. Buffer C 
a. Buffer C is used for diluting the first antibody, therefore 

the amount needed depends on the number of assay tubes. 
Buffer C is made by adding 2% normal rabbit plasma to 
Buffer B. 

4. Buffer D 

a. Buffer D is used for reconstituting the first antibody and 
is made by adding 1% normal rabbit plasma to Buffer A. 

5. Separation buffer 
a. To make 2 liters of Separation buffer, add 50 g of 2. 5% 

bovine serum albumin to 2000 ml of Buffer A. 
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APPENDIX D 

CORTISOL ASSAY PROCEDURES 

A. Assay Methodo/ogy 

a. 

b. 
C. 
d. 

Sample preparation 
Pipet 50 p, l of sample into appropriately labelles glass 
tubes. 
Add 450 pl of PBSG to each tube and vortex. 
Cork tubes and place in 700C water bath for 1 hour. 
Allow samples to cool down to room temperature and 
then proceed with setting up the assay. 

a. 

b. 

C. 
d. 

Setting up assay 
Pipet 500 pl of standard into appropriately labelled glass 
tubes in triplicate. 
Add 100 Ij, l of antibody to all tubes except the T and N 

tubes. 
Add 100 Ij, l of trace to all tubes and vortex. 
Allow to incubate at 4K for 12 to 18 hours. An 
alternative method is to allow to incubate at room 
temperature for 1 hour then transfer to 40C for 3 hours. 

3. 
a. 

b. 

C. 

d. 

Day 2 
Add 5 ml of Ecolume cocktail to mini-vials and label 

caps for vials. 
This portion of the procedure should be carried out in the 
cold room at 4K. Make sure charcoal is thoroughly mixed 
and add 200 '. l of the charcoal to all tubes except the T 
tubes. Shake racks of tubes and allow to set for 15 min. 
Centrifuge for 10 min at 2282 x g. Put tubes on ice or 
place in cold room immediately after centrifuging. 
Decant supernatant into the mini-vials and count each 
vial for 1 min in beta counter. 
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B. Assay Solutions 

1. PBSG 
a. To make 1 liter of PBSG, dissolve the following 

chemicals in 900 ml of double distilled water: 8. 17 g of 
NaCI, . 856 g of NaHzPO4, . 54 g of NazHPOq, 3. 72 g EDTA and 
. 1 g thimersal. 

b. Adjust pH to 7. 4. 
c. Add 1 g of gelatin to a 1 liter bottle and then add the 

EDTA-PBS from part b to the bottle. 
d. Dissolve gelatin mixture in a magnetic stir/hot plate 

while heating at a low to moderate temperature for 
approximately 2 hours. 

e. After cooling to room temperature the PBSG is ready to 
use. Store remaining PBSG at 4K. 

Z. Charcoal solution 
a. Combine . 0625 g of Dextran Pharmacia T-70 with . 625 g 

of Charcoal Norit SPXX and 100 ml of PBSG in a 200 ml 

beaker and mix with a magnetic stir bar. Store at 4&&C for 
up to two weeks. 
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