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Abstract. Accurate software profiling is an essential step in the devel-
opment of embedded systems. The accuracy of profiling data collected is
critically important for embedded systems that operate under fixed tim-
ing constraints, which if not met, could lead to system failure. Existing
profiling solutions targeting embedded systems introduce an overhead to
the running application that distorts the collected profiling data. This
paper proposes AccProf for System on Chips with integrated FPGAs.
AccProf is a FPGA-assisted profiling framework combining compiler ex-
tensions and bespoke hardware. AccProf is composed of (1) an LLVM
pass which inserts lightweight instrumentation into the application bi-
nary running on general purpose processors , and (2) FPGA-based hard-
ware capable of performing offloaded profiling. Offloading part of the pro-
filing task, and supporting data-structures to the FPGA, reduces pollu-
tion of the collected profiling data leading to higher accuracy. This paper
addresses on control graph profiling and evaluates AccProf on a range
of benchmarks ported to SeL.4 microkernel running on the AMD Zynq
MpSoC. We measure performance metrics of these benchmarks across a
range of processor statistics including cycles, instruction and data cache
misses. We show that the impact for certain metrics is reduced for up to
5x when compared against an equivalent software-based framework.

Keywords: Embedded systems - Profiling framework - Performance
counters - Sel.4.

1 Introduction

Applications targeting embedded systems have their design and performance im-
proved through iterative re-engineering aided by profiling tools. Profiling is an
essential step, providing programmers with fine grained low-level information,
e.g. cache misses. Software-based profiling tools typically generate call-graphs of
instances of functions [10] [11], with each vertex in the graph annotated with
a wider set of programmer-selected information. [7] [9] [16]. Additionally other
hardware-based approaches report real-time execution or clock cycles, moni-
tor context switches on multi-task applications or report loop statistics [20] [4]
[17] [19] [20]. The problem with existing profiling solutions is that for software-
based, instrumentation imposes significant overhead generating additional ac-
cesses to shared hardware resources, such as TLBs and Caches. While hardware
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approaches do not have that overhead and produce in general more accurate
results, they are built as processor extensions and are not widespread.

Given the growing popularity of System-on-Chip (SoC) with integrated FP-
GAs (AMD Zynq and Intel Aria SoC products) for embedded systems, this pa-
per introduces AccProf, a flexible hardware assisted profiling framework. AccProf
uses the FPGA to reduce the profiling intrusion and perturbation on the running
application. AccProf identifies each function call and uses standard performance
counters to gather events, such as processor cycles, Data and Instruction Cache
statics. It also generates the call-graph and associates to each node (function
call) the collected event counts. AccProf offloads both call graph generation and
profiling data structure management to a flexible FPGA IP block utilising local
and dedicated memory (BRAM memory in the FPGA). As a result, the instruc-
tions required for storing the profiling information as a call-graph along with
the data itself, are not inserted as extra instrumentation into the application.
Thus AccProf can produce more accurate profiling data by introducing reduced
perturbation of the instrumented application. AccProf uses a custom instrumen-
tation engine leveraging the LLVM plugin framework [14]. The instrumentation
engine inserts into the profiled application additional instructions that gather
user selected statistics from the hardware performance counters that are sent to
the FPGA IP block to be processed. For out initial experimentation we inte-
grated AccProf with the popular SeL4 [12] operating system.

Sel4 is a verified microkernel, but at the current time has limited profiling fa-
cilities. To enable the evaluation of FPGA assisted profiling, we also implemented
AccProf as a software-only profiling framework herafter refer to as AccProf-soft.
Several benchmarks with different configurations are used to evaluate both pro-
filing tools. We show that AccProf can reduce application interference up to 5x
for Level 1 Data/Instruction Cache refills. This is achieved while not introduc-
ing any additional noise or overhead on other information collected. When we
consider applications with very simple call graphs which do not benefit AccProf,
we do not impose any additional overhead compared to AccProf-soft.

2 Related Work

AccProf uses an instrumentation engine based on the LLVM framework, and pro-
files user-specified functions of an application running on embedded processors.
It collects low-level information of those functions using the hardware perfor-
mance counters provided by the underlying architecture. It stores information
for every function in the form of a call-graph. AccProf’s key characteristic is
that the processing and storing of collected information is moved from the in-
strumentation engine, to the FPGA. The net result is fewer instrumentation
instructions are added to the profiled application resulting in reduced pollution
of the collected statistics.

The majority of profiling tools generate call graphs of functions or basic
blocks. GProf is a classic profiling tool that collects execution time of every
function running on an application and outputs that time in seconds along with
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caller/callee relations of the profiled functions [10]. Hill et al. describe a call
graph profiling tool that measures imbalances on computation and communica-
tion costs of parallel programmes, and visualises them in a simple manner as if
they were sequential [11].

Other profiling solutions use the hardware performance counters in conjunc-
tion with other techniques, mainly to identify bottlenecks in parallel systems.
PerfExpert detects performance bottlenecks in procedures and loops and pro-
vides suggestions for performance improvements [7]. Diamond et al. examine
singlecore performance information, such as cache misses, and demonstrate how
they are misleading for multicore systems. They study performance bottlenecks
in multicore systems and introduce loop microfission that performs optimisa-
tions on these bottlenecks [9]. Paradyn measures performance on large scale
parallel programmes by using dynamic instrumentation [16]. All the aforemen-
tioned software-based approaches are fully-intrusive, resulting in the entirety of
the profiling algorithm being injected into the application, in turn polluting the
measurements of the hardware counters. In contrast, a big part of AccProf’s
algorithm is offloaded onto the integrated FPGA, reducing both the number of
profiling instructions and the impact of polution.

Previous work on profiling tools using FPGAs target soft processing cores.
Gordon-Ross et al. proposed a detector that is able to locate critical regions of
frequent loops for dynamic optimizations and report execution time [20]. LEAP
attains real-time cycle profiles of an FPGA soft-processor and uses a hashing
technique together with hardware counters for accurate results [4]. DAProf mon-
itors an applications backward branches, function calls and returns to provide
accurate loop execution statistics [17]. Later it was extended to monitor context
switches for multi-tasked applications [19]. SnoopP obtains clock cycle accurate
profiles of software programmes running on a soft-processor instantiated on an
FPGA [20]. Even though these profilers are implemented solely in hardware and
thus are non-intrusive, meaning they do not impose any instrumentation over-
head, they require large and complex circuitry on the hardware occupying a lot
of resources and they can only work with specific soft-processors, while AccProf
is compatible with a variety of general-purpose processors such as x86, Arm and
RISC-V by taking advantage of the API abstractions of Sel.4 that manage the
PMU counters.

Other notable references targetting software counters could also be supported
in AccProf. TEE-PERF is a platform independent performance measurement
tool for trusted execution environments [5]. That does not rely on hardware
counters to count program execution, rather it uses a software counter and out-
puts the results of the profiling application in the form of a flame graph. Beischl
et al. show their framework for profiling data-flow systems at higher abstraction
levels effectively linking low level results of traditional profiles to higher level
abstractions of the application [6].
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3 AccProf - Design and Implementation

AccProf is comprised of three main modules that collaborate to enable the profil-
ing of an application’s user specified functions, delivering a fine grained function
or basic block based call-graph combined with information collected from the
performance counters:

— A compiler source-instrumentation engine based on the LLVM plugin frame-
work [14] that makes use of the hardware performance counters of the un-
derlying architecture.

— A High-Level Synthesis (HLS) design on the on-chip FPGA that receives
data from the instrumentation engine regarding called functions and their
collected profiling information, to generate a call-graph.

— The Sel4 microkernel as an operating system to run its applications [12].
AccProf uses two key aspects of SelL4. First, The root task which is the first
thread instantiated by Sel.4 after boot and is able to map the HLS address
to the virtual address space of the instrumented applications. Second, the
software abstractions of Sel.4 for accessing performance counters which sup-
port x86, ARM and RISC-V architectures. An overview of AccProf design
is shown in Fig. 1.

Application SelL4
Source Source
\ 4 \ 4
Instrumentation | fnstrument instructions |instrumented .| Clang
Engine (LLVM) "1 Source " compiler
compile
\ 4
FPGA Sel4 Image
write data Application
BRAM
1 grant HLS
— dHI‘,S address
esign permissions
map HLS address |
< P root task
CPU

Fig. 1: An Overview of the AccProf profiling framework. The application source
is first parsed by the Instrumentation engine to produce an instrumented source.
This in combination with the Sel.4 OS code are compiled with Clang and the
output Image is loaded onto the CPU. The root task of the Image maps the HLS
address and grants permissions of that address to the instrumented application.
Finally the application writes profiling data to the HLS where the latter stores
them to a BRAM in the FPGA in the form of a call-graph.
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3.1 Instrumentation engine based on LLVM

AccProf’s instrumentation engine is based on the LLVM framework. The appli-
cation is instrumented at compile-time with instructions that access hardware
performance counters and communicate with the embedded system’s FPGA.

clang/LLVM [13] is a mature compiler infrastructure. The Clang front end
compiles C/C++ source code into a Intermediate Representation (LLVM-IR),
followed by the LLVM back end that transforms LLVM-IR into the specified
architecture binary. IR code has the benefit of being platform agnostic, so it can
be compiled to any supported architecture, and one can instrument additional
code to an IR source, using the LLVM compilation framework for programme
analysis and transformation [14].

AccProf uses the LLVM compilation framework as an instrumentation engine.
It injects instructions to the application source code during compilation by using
an LLVM pass. The pass retrieves a list of functions supplied by the developer
that need to be profiled, and up to 6 events that need to be counted for every
function. First it adds a basic block in the beginning of main that instantiates
the counters and sets them to specific events. It then traverses each function and
injects IR code in the beginning and in the end of each function. The pass also
traverses every part of the code and searches for calls to the profiled functions,
where it inserts an additional basic block before and after each call instruction.

An example of injected code by the AccProf instrumentation engine in an
application is shown in Fig. 2a. In the prologue of main, counters are initialised
with the specified events. In the beginning of each profiling function the corre-
sponding performance counters are started /reset, and in the end the results are
written to a virtual address pointing to the FPGA of the MpSoC. The reason we
also inject instructions before and after the call instructions of these functions,
is because if a profiling function (caller) is called by another profiling function
(callee), the callee will reset the counters at its prologue. In that case the caller
needs to store current event counts, and reset the counters once the callee has
returned to continue counting its own events.

3.2 FPGA Hardware - HLS driven

AccProf is a less intrusive profiling framework, since part of its computation is
implemented as a Hardware IP block on the FPGA. To increase the flexibility
for the software developer, we use High Level Synthesis (HLS) to generate the
FPGA IP block of AccProf. HLS abstracts hardware design details by providing
the capability to synthesise hardware using C/C++, rather than hardware de-
scription languages [8]. That abstraction also simplifies porting to other devices
of different specifications, although the clock frequency and the Lookup Table
(LUT) usage may need reconfiguration. In our case, the total design occupies
7093 Configurable Logic Block (CLB) LUTSs out of 274080 total or 2.59%, while
the amount of Block Ram (BRAM) tiles used, are 65 out of 912 total or 7.13%.
The HLS-generated design is responsible for retrieving the performance infor-
mation of profiled functions gathered by the counters in the PMU, and then
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Fig.2: AccProf instrumentation engine example on the left and a function call
tree example on the right.

organise and store them in such a way, that later they can be read in the form
of a function call-graph.

The information (e.g. events and processor cycles) of the profiled functions,
the function IDs and the event IDs, are stored by the HLS design formatted
as a call-graph in a BRAM inside the FPGA fabric. The process of call graph
generation is shown in Fig. 2b. The left image shows a call-graph tree example at
the top with a number of functions A-F which can be profiled by AccProf. The
bottom visual array displays how that call-tree is stored in BRAM by the HLS-
generated design. Functions are stored in chunks by the order they are called.
Each chunk contains the function id and level in order to make associations at
the end. Profiling Functions of the highest call level are assigned to level 1. In
this case functions A and B. Direct callees of each function are assigned to a level
determined based on their callers level. The design does not need to traverse the
BRAM every time it requires to find the caller of the currently operated function.
Instead it uses a stack to push function IDs when they are called, and pops them
when they return. So the caller and its level can be accessed immediately with
a simple stack peek.

The HLS-generated design has two phases of operation. The first when it
receives data from the instrumented application at the prologue of a profiling
function and then a second at the functions epilogue. The design exposes to
the software eight 64-bit configuration registers. Seven of these are used for the
application to write profiling information which include the number of processor
cycles and up to six events specified by user. The eighth is used to store the
function ID and the IDs of the 6 events to count. Event IDs to the currently
supported architectures do not take up more than a byte, so six bytes are used
for the event IDs. Another byte is reserved to write the function ID. AccProf
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associates each profiling function with a positive integer ID. The hardware design
uses another byte of the last word to store that ID. The remaining byte is not
written by the application, but is used by the design to compute the function
level based on the call tree that has been created up to that point. Below we
explain the two sequences according to Fig. 3.

— Hardware checks the function ID. If it’s positive, the data was received from
the function’s prologue. Then the stack is peeked, and if a parent exists,
the function is assigned the parent’s level + 1 or 1 otherwise. The level and
metadata are stored in BRAM to the next available location indexed by a
register, and that index is pushed in the stack. The the register is incremented
to point to the next available index in BRAM. We move the index 64 bytes
forward to make enough room to store required information.

— Epilogue sequence: If the function ID is zero, the data was received from
the function’s epilogue. Initially the stack is popped. The top element of the
stack contains the index of the function we are currently profiling as it’s index
was pushed in the stack during its prologue. We assume top element of the
stack is the correct element as all direct callees of that function should have
returned before its epilogue. The last step is to store the profiling information
of the function in their corresponding location in the BRAM.

By moving part of the instrumentation code and profiling data storage to the
FPGA, several shared resources of the general purpose subsystem (and measured
with performance counters) are less affected by cache or TLB pollution. For
example, Level 1 Instruction (L1I) Cache will be accessed by fewer instructions
associated with AccProf when compared with a software-based profiling tool.
Similarly, Level 1 Data (L1D) Cache will not be accessed for reading or writing
the profiling data structures, since those are now located in the FPGA memory;
BRAM.

3.3 The SelL4 microkernel and Pass - HLS communication

Communication between the instrumentation engine and the HLS design is re-
alised by taking advantage of the SeL4 microkernel [12]. Sel4 is a formally
verified operating system microkernel aimed among others for safety-critical and
secure-critical systems [18]. After the kernel of Sel.4 boots, an initial root task
thread is started. That thread is responsible for instantiating any subsequent
thread. SeL4 uses the concept of software capabilities [1]. Capabilities give run-
ning threads permission to access entities in the system such as physical memory.

The root task is initially given access to all physical memory in the sys-
tem, and it is responsible for mapping memory and distributing it among other
threads that have been instantiated. In our testing framework, the root task
is considered part of our design, and any application that is set to run in the
system must be started by the root task. The root task will map the physical
address of the HLS configuration ports into the virtual address space of the ap-
plication that will be profiled. It is able to statically specify a virtual address
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Fig.3: Hardware design sequences. Top shows when data is received from the
instrumented application during the function prologue, and bottom show the
operation where data is received during the function epilogue.

which is also known by the instrumentation engine. The engine will instrument
loads and stores to that same virtual address to the profiling application during
compilation. The physical address of the HLS design is defined during the design
phase, which allows the root task to know which physical address needs to be
mapped.

4 Evaluation

The evaluation demonstrates the functionality of our profiling framework by ap-
plying it to several standard benchmarks. The key benefit of AccProf is that it
lowers the impact on performance counter gathered statistics such as data or in-
struction cache refills during profiling. It achieves this by offloading the storage
and processing of statistics and the call-graph to an FPGA IP block. Conse-
quently, the larger the call-graph, the greater the benefit of hardware assisted
profiling.

4.1 Testbed

AccProf was evaluated using the the Zynq UltraScale+ MPSoC ZCU102 Evalua-
tion Kit made by AMD Xilinx [3]. The kit contains the XCZUIEG-2FFVB11561
MPSoC and 4GB of DDR4 SODIMM. The MPSoC is composed of four A53
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ARM cores and associated two level cache system as well as an integrated FPGA
connected to the bus of the last level cache (L2 cache).
4.2 The STREAM benchmark

STREAM [15] measures memory bandwidth of applications. It instantiates three
arrays A, B and C of double type and then performs 4 simple algorithms:

Copy: A(i) = B()
— Scale: A(i) = q*B(i)

Add: A(i) = B(i) + C(i)
Triad: A(i) = B(i) + q*C(i)

Through in-code defines one can configure the number of times the above com-
putations can be executed and the size of the arrays. By default the four compu-
tations are executed raw in the main function or each within its own function.
We choose the latter since we want to call and profile as many instances of func-
tions as possible in order to generate a large call graph. We set the number of
times that the computations will run to 500. This equals to 2000 function calls.
As discussed in the Design section, each profiling instance of a function occupies
64 bytes in BRAM. 2000 function calls require almost 128 KBytes. Then we run
STREAM for 3 different array sizes. 1K (1000), 10K (10000) and 100K (100000)
elements. In our system a double is 8 bytes so these 3 configurations produce
a total dataset of 24K, 240K and 2.4M (2400000) bytes respectively. We then
modified STREAM to experiment on a different pattern which from now on we
will call STREAM-mod. In STREAM-mod, we call Scale and Add inside Copy,
then Scale and Add each call Triad twice. This pattern produces multiple three-
level call-graphs of seven nodes each. We ran copy 285 times which sums to 1995
instances of functions. We configured STREAM-mod for 1K, 10K and 100K ar-
ray sizes. We counted 6 performance counters related to memory accesses. Those
are:

— L1D (Level 1 Data) cache refills
— L1I (Level 1 Instruction) cache refills
— L1D (Level 1 Data) TLB refills
— L1I (Level 1 Instruction) TLB refills
— L2D (Level 2 Data) cache refills
— L2D (Level 2 Data) cache writebacks

We counted those metrics on all 6 configurations first using AccProf, then AccProf-
soft. We compiled all versions with -O0 flag in order to get the worst case over-
head on all cases, removing possible optimisations. Table 1 shows the results.
We observe around a 43% decrease in L1D cache refills for 1K array size in
the hardware version compared to software only instrumentation. This is due to
the memory of the array storing the call-graph, which is 128K bytes occupying
most of the host memory in the software version, since the three arrays occupy
only 24K bytes. This causes multiple cache evictions, while in the hardware
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version, the call-graph array is stored in the FPGA. In STREAM-mod for 1K
array size we count a 79.5% decrease in L1D cache refills, while we observe a
71% decrease in AccProf running on STREAM-mod compared to STREAM.
This is most likely due to how the arrays are accessed. Array C is accessed
more frequently in STREAM-mod causing fewer cache misses. Another reason is
when the call-graph array is accessed. In STREAM it is accessed in the function
prologue, then the function’s computation is performed, then the call-graph array
is again accessed in the epilogue where we use more indices of the array than in
the prologue to store the information. In STREAM-mod since we have nested
calls, the call-graph array is accessed consequently starting at the epilogue of
the second Triad of Add, causing fewer misses for the software version. When
we increase the three arrays’ size, refills are dramatically increased for both
implementations with only minimal differences. This is natural since STREAM’s
dataset becomes a lot larger than the call-graph, becoming the primary reason
for cache evictions.

For the cache refills, AccProf behaves similarly in STREAM and STREAM-
mod. All of the instructions required to access the call-graph array and stack
that keeps track of the active call instances have been moved to the FPGA. In
AccProf-soft, those instruction run on the host, polluting the instruction cache.
Again the reason that STREAM suffers from more refills lies with the access
pattern. The instructions that write the profiling information to the call-graph
array and pop the stack happen consequently starting at the epilogue of the
second Triad of Add, meaning that the instructions keep getting hits in the cache,
however in STREAM-mod, instructions interchange with profiling instruction
causing the L1I cache to continuously evict instructions. We see similar results
when we increase the array size, since this does not affect the pattern in which
the instructions are accessed.

When we examine the L1D and L1I TLB refills, we do not observe significant
differences between AccProf and AccProf-soft on any of the six configurations.
The reason is that the size of the call-graph array for Data TLB is not large
enough to cause many evictions since each translation of a memory address
corresponds to 4K bytes. Same goes for instructions. Counts are increased the
more we increase the three arrays’ size which is what primarily affects the TLB.

Regarding L2D cache refills and writebacks, L2 Cache is 1MB so presumably
it cannot be filled by 1K or 10K array size configurations or the call-graph array.
We observe less than 1000 refills for 1K array size and around 4000 for 10K due
to prefetching.

4.3 Embench Benchark Suite

Embench [2] is comprised of 22 different benchmarks that are designed to fit in a
small memory footprint of 64KB. The evaluation uses Embench benchmarks as
an example of embedded applications with very simple call graphs, that cannot
benefit from AccProf. The reason being that each benchmark is only ran on a
single function, producing a single-node call-graph. The differences between Ac-
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Fig. 4: Level 1 Data Cache refills for the 6 different STREAM configurations pro-
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Table 1: Profiling information gathered when running STREAM(500 runs) and
STEAM-mod (285 runs) on AccProf and AccProf-soft with 1K 10K and 100K

array configurations.

STREAM, 500 function calls

Performance Cotnter 1K Arrays 10K Arrays 100K Arrays
AccProf|AccProf-soft | AccProf | AccProf-soft | AccProf |AccProf-soft

L1D Cache refills 8034 14187 1000917(1005146 9760997 (9786194

L1I Cache refills 1602 7760 1631 5618 1356 4957

L1D TLB refills 14 10 65 66 270347 |270025

L1I TLB refills 12 9 11 15 2155 2174

L2D Cache refills 986 967 4168 4201 46004152({46101908

L2D Cache writebacks|16 284 4875 5131 22139532(22142185

STREAM-mod, 285 function calls

Performance Cotnter 1K Arrays 10K Arrays 100K Arrays
AccProf|AccProf-soft | AccProf | AccProf-soft | AccProf |AccProf-soft

L1D Cache refills 2267 11076 1222654(1221552 12491279(12445746
L1I Cache refills 1366 1971 1430 1843 1031 2014

L1D TLB refills 15 13 60 67 294262 (294771

L1I TLB refills 11 14 14 13 1798 1669

L2D Cache refills 761 943 3849 3989 56476217|56489255
L2D Cache writebacks|64 242 4817 4712 23832926|23841567
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Fig.5: Level 1 Data (left) and Level 1 Instruction (right) Cache refills for the 22
benchmarks of the Embench suite profiled by the hardware version of AccProf
(blue) vs the software version (orange).

cProf and AccProf-soft are minor most probably caused by prefetching. Results
are shown in figures 5, 6 and 7.

Figure 5a shows L1D Cache refills. The biggest difference we observe is for
the sglib-combined benchmark. Sglib-combined uses the simple generic library
for C and performs an array sorting then manipulates different types of list such
as a linked list or a red black tree. The additional overhead in terms of memory
for AccProf-soft would be only 64 bytes required for the the function running
the benchmark. The difference between them is only slightly above 100 refills,
which is expected since the dataset surpasses the 32K bytes of the L1D Cache
size. Similarly for all other benchmarks the difference is negligible.

Figure 5b shows L1I Cache refills. In terms of instructions again the only
difference is that AccProf-soft accesses the call-graph array twice in the prologue
and epilogue of the benchmark’s function. The biggest difference is again on
sglib-combined which is slightly less than 400 refills. This degree of fluctuation
can easily occur due to the large amount of instructions added with the system
load interference, the hardware variability, cache eviction policy and so on.

For L2D Cache refills in Figure 7a, we can spot the biggest difference in ud,
sglib-combined, qrduino and picojpeg benchmarks. Those differences are mostly
slightly more than 200 refills which can be justified by similar reasons as the
L1D cache refills.

Regarding L1D and Instruction TLBs in Figure 6 and L2D Cache writebacks
in Figure 7b, we do not observe counts larger than the amount of 10, so there is
no actual difference between the two systems for that case.
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(a) Level 1 Data TLB refills (b) Level 1 Instruction TLB refills

Fig.6: Level 1 Data (left) and Level 1 Instruction (right) TLB refills for the 22
benchmarks of the Embench suite profiled by the hardware version of AccProf
(blue) vs the software version (orange).
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Fig. 7: Level 2 Data cache refills (left) and writebacks (right) for the 22 bench-
marks of the Embench suite profiled by the hardware version of AccProf (blue)
vs the software version (orange).
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4.4 Discussion

STREAM and Embench results illustrate the type of applications that can ben-
efit from a profiling framework that decouples profiling data processing from the
instrumentation. STREAM is an example of an application with a large number
of function calls each with a small number of computations. On the opposite side
of the spectrum, we encounter Embench. Each benchmark in Embench contains
the compute task in a single function call.

5 Conclusions

Applications running on embedded systems can be optimized by analyzing pro-
filing information. Current software profiling tools target mainly non-embedded
scenarios and impose a significant overhead in how they store and collect CPU
statistics. On the other hand, hardware solutions may be more accurate but only
work for the specific processor they have been implemented as an extension.

We have proposed AccProf, a hybrid profiler that instruments applications
in order to count metrics of specified functions using the hardware performance
counters of the underlying system. AccProf offloads profiling actions to a spe-
cialized hardware design to collect those metrics and create a call-graph of that
application in FPGA storage.

We have evaluated AccProf against an equivalent all-software profiler. When
offloading data processing and storage instructions from the instrumentation
engine to the FPGA, the profiling framework can collect more accurate CPU
statistics from the application since those instructions no longer run on the
CPU.

As future work we will look to extend AccProf to support multi-threaded
embedded applications. A more fine-grained design could also dynamically re-
distribute memory (BRAM) according to the runtime behaviour of each thread.
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