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Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, Houston,
TX, United States
The transforming growth factor (TGF)-b superfamily has important physiologic

roles and is dysregulated in many pathologic processes, including pancreatic

cancer. Pancreatic cancer is one of the most lethal cancer diagnoses, and

current therapies are largely ineffective due to tumor resistance and late-stage

diagnosis with poor prognosis. Recent efforts are focused on the potential of

immunotherapies in improving therapeutic results for patients with pancreatic

cancer, among which TGF-b has been identified as a promising target. This

review focuses on the role of TGF-b in the diseased pancreas and pancreatic

cancer. It also aims to summarize the current status of therapies targeting the

TGF-b superfamily and postulate potential future directions in targeting the

TGF-b signaling pathways.
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1 Introduction

Cytokines mediate the body’s natural response to injury at a systemic level (1). These

cytokines can be subcategorized into the transforming growth factor (TGF)-b superfamily,

interleukins, interferons, chemokines, and the tumor necrosis factor (TNF) superfamily (2–5).

The TGF-b superfamily, one of the major groups, was first described as a family of growth

factors released by fibroblasts that stimulated cell growth (6). In 1981, further investigation into

these growth factors led to the purification of TGF-b, the first named member of the TGF-b
superfamily (7, 8).While studying the purification techniques of this protein, isoforms of TGF-b
were discovered, which were called TGF-b1, TGF-b2, and TGF-b3 (9–11). The role of these

proteins was further elucidated with the discovery of other members, including the bone

morphogenic proteins (BMP)s (12). Currently, 33 proteins are recognized in this superfamily,

with subtypes including TGF-bs, BMPs, growth differentiation factors (GDF)s, inhibins, and

activins (Table 1) (13–16). This mini-review focuses on the role of the TGF-b superfamily in
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TABLE 1 Members of the TGF-b superfamily.

Subfamily
Ligand
name

Associated
gene Other name

Receptors R-Smad

Type I Type 2

Transforming Growth Factor
(TGF)-b

TGF-b1 TGFB1 TGFBRI, ALK-5 TGFBRII Smad2/3

TGF-b2 TGFB2 TGFBRI, ALK-5 TGFBRII Smad2/3

TGF-b3 TGFB3 TGFBRI, ALK-5 TGFBRII Smad2/3

Bone Morphogenic
Protein (BMP)

BMP-2 BMP2 BMPRIA, BMPRIB
BMPRII,
ActRII, ActRIIB

Smad1/5/8

BMP-3 BMP3 ALK-4
BMPRII,
ActRII, ActRIIB

Smad2/3

BMP-4 BMP4 BMPRIA, BMPRIB
BMPRII,
ActRII, ActRIIB

Smad1/5/8

BMP-5 BMP5
BMPRIA, BMPRIB,
ALK-2

BMPRII,
ActRII, ActRIIB

Smad1/5/8

BMP-6 BMP6 Vgr1
BMPRIA, BMPRIB,
ALK-2

BMPRII,
ActRII, ActRIIB

Smad1/5/8

BMP-7 BMP7
BMPRIA, BMPRIB,
ALK-2

BMPRII,
ActRII, ActRIIB

Smad1/5/8

BMP-8A BMP8A
BMPRIA, BMPRIB,
ALK-2

BMPRII,
ActRII, ActRIIB

Smad1/5/8

BMP-8B BMP8B
BMPRIA, BMPRIB,
ALK-2

BMPRII,
ActRII, ActRIIB

Smad1/5/8

BMP-9 GDF2 GDF-2 ALK-1, ALK-2
BMPRII,
ActRII, ActRIIB

Smad1/5/8

BMP-10 BMP10 ALK-1, ALK-2
BMPRII,
ActRII, ActRIIB

Smad1/5/8

Growth Differentiation
Factor (GDF)

GDF-1 GDF1 ALK-7
BMPRII,
ActRII, ActRIIB

Smad2/3

GDF-3 GDF3 Vgr2 ALK-7
BMPRII,
ActRII, ActRIIB

Smad2/3

GDF-5 GDF5 BMP-14 BMPRIB
BMPRII,
ActRII, ActRIIB

Smad1/5/8

GDF-6 GDF6 BMP-13 BMPRIB
BMPRII,
ActRII, ActRIIB

Smad1/5/8

GDF-7 GDF7 BMP-12 BMPRIB
BMPRII,
ActRII, ActRIIB

Smad1/5/8

GDF-8 MSTN myostatin none ActRIIB Smad2/3

GDF-9 GDF9 ALK-5
BMPRII,
ActRII, ActRIIB

Smad2/3

GDF-9B BMP15 BMP-15 ALK-5
BMPRII,
ActRII, ActRIIB

Smad2/3

GDF-10 GDF10 BMP-3B ALK-4
BMPRII,
ActRII, ActRIIB

Smad2/3

GDF-11 GDF11 BMP-11 ALK-4, ALK-5 ActRIIB Smad2/3

GDF-15 GDF15 MIC-1 unknown unknown unknown

Nodal Nodal Nodal BMP-16 ALK-7
BMPRII,
ActRII, ActRIIB

Smad2/3

Inhibin Inhibin A INHA, INHBA none ActRII, ActRIIB none

(Continued)
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pancreatic diseases, including pancreatic ductal adenocarcinoma

(PDAC), and the current therapeutics targeting these pathways.
1.1 Physiologic role of TGF-b superfamily

TGF-b is produced in a latent form. Activation of the latent form

is initiated by regulatory T cells with a transmembrane protein,

glycoprotein A repetitions predominant (GARP), which binds and
Frontiers in Oncology 03
cleaves pro-TGF-b to produce latent TGF-b. The latent form is

activated by integrins (Figure 1A) (17, 18). BMPs, GDFs, and Lefty A

and B are produced and processed similarly, with inactive precursors

being cleaved and activated by proteases (Table 1) (19–21). The

activins and inhibins are composed of common subunits and are

formed by cleavage of dimerized subunits; inhibins are ab
heterodimers, and activins are bb homodimers (Table 1) (16). The

TGF-b superfamily is essential in physiologic functions, including

tissue development and differentiation, regulation of immunologic
TABLE 1 Continued

Subfamily
Ligand
name

Associated
gene Other name

Receptors R-Smad

Type I Type 2

Inhibin B INHA, INHBB none ActRII, ActRIIB none

Activin

Activin A INHBA ALK-4, ALK-7 ActRII, ActRIIB Smad2/3

Activin B INHBB ALK-4, ALK-7 ActRII, ActRIIB Smad2/3

Activin AB INHBA, INHBB ALK-4, ALK-7 ActRII, ActRIIB Smad2/3

Lefty
Lefty A LEFTY2 none ActRII, ActRIIB none

Lefty B LEFTY1 none ActRII, ActRIIB none

Anti-Mullerian Hormone AMH AMH
Mullerian-
inhibiting substance

BMPRIA, BMPRIB,
ALK-2

AMHRII Smad1/5/8
Adapted from (13–16).
TGFBRI, Type I TGF-b receptor; TGFBRII, Type II TGF-b receptor; BMPRIA, Type IA BMP receptor; BMPRIB, Type IB BMP receptor; ActRII, Type II Activin receptor; ActRIIB, Type IIB
Activin receptor.
B

C

A

FIGURE 1

The TGF-b superfamily signaling pathway and the potential therapeutic targets in pancreatic cancer. (A) The TGF-b superfamily members. (B) TGF-b
receptors and the phosphorylation/activation of the intracellular mediators of SMAD2/3 and SMAD1/5/8. (C) Downstream of the phosphorylated
SMAD2/3 and SMAD1/5/8. Therapeutics (indicated in green boxes) targeting specific steps in the TGF-b superfamily signaling pathway are currently
under investigation. Created using BioRender.com.
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responses, and tissue healing (13). These members activate

physiologic activities through canonical and non-canonical

signaling (22). Canonical signaling occurs through the SMAD

pathway, where receptor-activated (R) SMAD1/5/8 and SMAD2/3

are phosphorylated by receptors following ligand binding (Figure 1B).

These phosphorylated SMADs then complex with SMAD4 and

translocate to the nucleus to regulate the expression of the target

genes (Figure 1C) (13). Non-canonical pathways can be activated

upon the ligand binding to the receptors, such as Erk, involved in

epithelial-mesenchymal transition (EMT), and JNK/p38, involved in

EMT and apoptosis (23).

These signaling pathways play an essential role in proliferation and

in controlling the growth of specific cell types, including epithelial cells,

endothelial cells, immune cells, and neuronal cells, through growth

inhibition and induction of apoptosis (24). BMPs are specifically

involved in developing and maintaining skeletal tissues and are

regulated extracellularly by antagonists, including Noggin, Chordin,

and Gremlin1 (Grem1) (Figure 1A) (14). Additionally, activin A is a

critical mesoderm-inducing factor (25), and GDFs are primarily

involved in developmental processes (26). Inhibins antagonize activin

signaling, and lefty inhibits phosphorylation of SMAD2 and

subsequently regulates downstream signaling (Table 1) (16, 27).

TGF-b also plays a role in immunoregulation by inhibiting T-

lymphocyte proliferation and promoting T-cell differentiation (28–30).

Additionally, these proteins play an essential role in fibroblast activation

and are involved in routine wound healing; TGF-b1 is secreted by the

platelets forming the hemostatic plug and is a chemoattractant for

monocytes and fibroblasts essential to tissue repair (31–34).
1.2 Pathologic role of TGF-b superfamily

In addition to the essential role of TGF-b in physiologic

mechanisms, aberrantly increased TGF-b has been shown to

contribute to excess fibrosis (35). Administration of exogenous

TGF-b leads to fibrosis in subcutaneous tissues, lung parenchyma,

and hepatic tissue (36–38). Furthermore, dysregulation of the TGF-

b signaling pathway contributes to carcinogenesis (39). For

example, tumor cells have been shown to evade the growth

regulation of TGF-b through mutations in the TGF-b receptors

and SMAD family (40, 41).

PDAC is currently the third leading cause of cancer-related

death (42). Poor outcomes can be attributed to both late diagnosis

and a fibrotic tumor microenvironment that surrounds the cancer

cells, creating a chemo-resistant barrier. Further understanding of

the role of the TGF-b superfamily may elucidate potential targets

for novel therapies that could improve patient outcomes.
2 Role of TGF-b superfamily in
pancreatic disease

TGF-b activity is paradoxical in pancreatic diseases, promoting

or suppressing disease progression. The TGF-b superfamily

modulates acute pancreatitis (AP) by regulating inflammation

and apoptosis through canonical or non-canonical signaling. The
Frontiers in Oncology 04
TGF-b superfamily also plays distinct roles in the progression of

chronic pancreatitis (CP) and PDAC through effects on pancreatic

stellate cells (PSCs) and the extracellular matrix (ECM) production.
2.1 Acute pancreatitis

AP results from injury to the pancreatic acinar cells, leading to

premature activation of pancreatic enzymes and causing pancreatic

autodigestion and tissue inflammation (43). Apoptosis and suppression

of proliferation have been reported to limit the inflammatory cascade

in response to the insult in AP (44). TGF-b is released by various cells

at the site of injury and induces apoptosis and suppress the

proliferation of pancreatic acinar cells (45). However, this was

contradicted by a study showing the induction of apoptosis upon

suppressing the TGF-b signaling pathway in pancreatic epithelial cells

(46). Additionally, our group has demonstrated that BMP signaling is

upregulated in AP and causes dysregulation of autophagic processes.

Administration of a BMP antagonist Noggin in vivo in a mouse model

attenuated AP inflammation, suggesting a proinflammatory role of

BMP signaling in AP (47).

In addition to involvement with apoptosis, TGF-b mediates the

inflammatory response in AP through T-cell activation. Specifically,

TGF-b induces the differentiation of both Th9 and Th17 cells, which

are proinflammatory (48, 49). Th17 cells are known to secrete IL-17,

associated with increased inflammatory markers and severity of

AP (50).
2.2 Chronic pancreatitis

CP results from repeated injury to the pancreas from recurrent

bouts of AP, which leads to the replacement of normal pancreatic tissue

with fibrotic scarring (51). This is primarily facilitated by the activation

of PSCs, which secrete growth factors and chemokines such as TGF-b
and produce excess ECM (52). The TGF-b secreted by activated PSCs

is directly related to the characteristic fibrosis of CP (53). This fibrosis

results from increased ECM production by PSCs (54) and inhibition of

matrix metalloproteinases, which are involved in ECM degradation

(55). Our group has shown that BMPs oppose the fibrogenic function

of TGF-b on PSCs in CP by activating the SMAD1/5/8 pathway, which

inhibits SMAD2 (56, 57).

Other modulators of TGF-b superfamily pathways are also

involved in CP pathophysiology. Our group has shown that

Grem1, an endogenous BMP antagonist, is pro-fibrogenic in a CP

mouse model (58). Additionally, SMAD7, a known inhibitory

SMAD, suppressed TGF-b signaling and modulated CP fibrosis

through decreased ECM deposition and decreased inflammatory

cell response in an in vivo mouse model (59).
2.3 Pancreatic ductal adenocarcinoma

The TGF-b superfamily plays dual roles in PDAC, promoting

tumorigenesis in some capacities while acting as an inhibitor in

others (60). In the early stages of PDAC, TGF-b has been shown to
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suppress tumor progression by promoting apoptosis and regulation

of the cell cycle and promoting the stroma’s development by

activating PSCs and increasing stromal production (61).

Additionally, BMP2 expression is increased in pancreatic cancer

and has variable mitogenic effects on pancreatic cancer cell lines,

with a greater capacity to stimulate growth in cell lines with SMAD

mutations (62). BMP signaling has also been shown to play a role in

EMT through canonical BMP signaling, mediated by Grem1

inhibitory feedback, resulting in a maintenance of heterogeneity

(63). Our group has also shown that activated fibroblasts express

Grem1 and that increased expression is associated with a more

severe tumor stage (64).
3 Genetic alterations in PDAC

PDAC is associated with several common mutations in

oncogenes and tumor suppressor genes, including mutations in

KRAS, TP53, CDKN2A, and SMAD4. These mutations can affect

TGF-b signaling pathways at various points, including the

intracellular signaling molecules and receptors (65).
3.1 SMAD4 mutation

SMAD4 mutations are common in PDAC and are identified in

approximately 60% of cases (66). Interestingly, an isolated SMAD4

mutation does not independently cause cancer; it must be paired

with another mutation, such as KRAS (67). SMAD4 is part of the

intracellular signaling pathway that complexes with activated and

phosphorylated SMAD2/3 and SMAD1/5/8 in response to TGF-b
and BMP binding their respective receptors (68). Mutation of

SMAD4 results in loss of the tumor suppressor function of

canonical TGF-b signaling (69). Loss of SMAD4 results in

decreased T-cell recruitment and a suppressed immune response

(70). Additionally, knockout of Smad4 in a PDACmouse model has

increased tumor sensitivity to host immune control and induced

DNA damage (71).
3.2 Receptor mutations

Mutations in TGF-b receptors have been identified as

disruptions of TGF-b signaling pathways that result in the loss of

TGF-b suppressive effects. Studies have shown that mutations in

TGFBR1, which encodes TGF-b type I receptor (TGFBRI), occur in

approximately 1% of cases, and mutations in TGFBR2, which

encodes TGF-b Type II receptor (TGFBRII), appear in

approximately 4% of patients (72). Type III TGF-b receptor

mutations also occur and result in increased EMT-associated

increased motility and invasiveness (73).

Disruption in the expression of other receptors has also been

reported. Deletion of ACVR1B, which encodes the ALK-4 receptor for

activin A, is associated with a more aggressive cancer phenotype (74).

Interestingly, mutations in BMPRI are described in patients with

hereditary juvenile polyposis. BMPRI and BMPRII mRNA levels are
Frontiers in Oncology 05
upregulated in pancreatic cancers, and cells with higher levels have

been shown to have more significant metastatic potential (75, 76).
3.3 Other mutations

KRAS is frequently mutated in human carcinomas and

approximately 85% of PDAC cases (77). KRAS mutations are

often detectable early in disease progression (78). GREM1 is

upregulated in hereditary mixed polyposis syndrome, where

duplications of the gene result in increased antagonism of BMP

signaling (79). Similar mutations are observed in sporadic intestinal

polyps (80). However, mutations in GREM1 have not been reported

in cases of PDAC.
4 Therapeutic potential of targeting
the TGF-b superfamily

Management options for pancreatic cancer depend primarily on

the stage of the cancer when it is diagnosed. Distant metastasis,

retroperitoneal invasion, and invasion of the mesenteric root are

contraindications to surgical resection. Chemotherapy is the

standard of care for metastatic pancreatic cancer. Gemcitabine

was considered the first line for a couple of decades following a

randomized control trial showing more favorable outcomes than

fluorouracil. However, survival for patients treated with

gemcitabine was still dismal, with a median survival of 5.65

months (81). This regimen has been improved following the

PRODIGE and MPACT studies, which evaluated FOLFIRINOX

and albumin-bound paclitaxel plus gemcitabine, showing

significant improvement in survival time compared to

gemcitabine alone (82, 83). Despite these improved regimens,

outcomes remain poor, leading to a focus on the potential of

other treatment modalities, including immunotherapy.

Interestingly, chemotherapy has been shown to alter the tumor

microenvironment through reprogramming and increased

synthesis of chemokines, including TGF-b (84). Thus, TGF-b
appears to be involved in the resistance to chemotherapy.

Inhibiting TGF-b has become a focus of therapeutic intervention

and shows promising results in treating PDAC.
4.1 Inhibition of TGF-b signaling

Because of the complexity of the TGF-b signaling pathway,

numerous potential targets are under investigation (Figure 1).

Therapeutic strategies include antisense oligonucleotides,

neutralizing antibodies, ligand traps, and small molecule kinase

inhibitors. Many of these therapies are being investigated in several

cancers, including pancreatic cancer.

4.1.1 Antisense oligonucleotides
Trabedersen (AP12009), specific for TGFB2 mRNA, reduced

TGFB2 expression in human pancreatic cancer cell lines, resulted
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in decreased proliferation and migration, and reversed

immunosuppressive effects (Figure 1A) (85). A phase 2 clinical

study showed a good safety profile, with the only identified adverse

effect being transient thrombocytopenia and a mean survival of 13.4

months for 61 patients with pancreatic cancer (86). Further clinical

trials have yet to be published.

4.1.2 Neutralizing antibodies
In preclinical studies, SRK-181, which specifically targets latent

TGF-b1, countered TGF-b-mediated resistance to cancer

checkpoint blockade therapy (Figure 1A) (87). It is currently

under investigation in the DRAGON trial (NCT04291079), a

phase 1 clinical trial investigating it as a monotherapy or in

combination with anti-PD-L1 in patients with solid tumors,

including pancreatic tumors, which has shown no dose-limiting

toxicity and adverse effects limited to fatigue, anorexia, and nausea.

One patient with pancreatic cancer who was treated with SRK-181

as a monotherapy showed stable disease (88).

Livmoniplimab (ABBV-151) targets GARP-TGF-b1 and

prevents the release of active TGF-b1 (Figure 1A). It is currently

under investigation in a phase 1 trial (NCT03821935), investigating

it as a single agent or combined with Budigalimab in patients with

locally advanced or metastatic solid tumors. This clinical trial is still

in the recruiting phase, and preliminary results are not yet

available (89).

PLN-101095 targets integrin avb8 and avb1 and prevents

activation of TGF-b (Figure 1A). It has shown enhanced response

to standard chemotherapy regimens in preclinical studies (90) and

is currently in a phase 1 clinical trial (91). Additionally, 264RAD

inhibits integrin avb6 and has shown promising results in

preclinical trials (92); however, further clinical trials have not

been pursued.

NIS793 binds and neutralizes active TGF-b with high affinity and
has been shown to decrease fibroblasts and enhance tumor cell

chemosensitivity (Figure 1B) (93). In a phase 1b trial

(NCT02947165), 120 patients, of which ten had pancreatic cancer,

were treated with NIS793 as a monotherapy or in combination with

spartalizumab. Partial response was observed in 2.5% of patients, and

stable disease was observed in 24.2% of patients. While no dose-

limiting toxicity was observed, nearly half experienced an adverse

event, most commonly rash (94). A phase 2 trial (NCT04390763) and

phase 3 trial (NCT04935359) are ongoing to evaluate the drug’s effect

in patients with metastatic pancreatic ductal adenocarcinoma.

LY3022859 targets the type II TGF-b receptor and inhibits

signaling activation (Figure 1B). A phase 1 trial (NCT01646203)

was discontinued due to patients developing uncontrollable

cytokine release syndrome (95).

4.1.3 Ligand traps
AVID-200 is explicitly designed to resemble the receptor

ectodomain for TGF-b1 and TGF-b3 and has been shown to

enhance the efficacy of immune checkpoint inhibitors in

preclinical trials (Figure 1B) (96, 97). It recently underwent a

phase 1 clinical trial (NCT03834662) for solid tumors, including

PDAC (98).
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Activated T-cells present PD-1 on the surface, which can be

exploited by tumor cells expressing PD-L1. PD-L1 binding to PD-1

inactivates the T-cells and prevents the T-cell-regulated destruction

of the tumor cells (99). Thus, the PD-1 signaling pathway has been

identified as a promising target for cancer immunotherapy (100).

Specific interest has arisen in dual inhibition of the PD-1 and TGF-

b signaling pathways, which is hypothesized to enhance the anti-

tumor activity (101). Bintrafusp alfa (M7824) is a bifunctional

fusion protein with a type II TGF-b receptor fused to an antibody

against PD-L1 (Figure 1B) (102), which has undergone a phase 1

clinical trial (NCT02517398) that included five patients with

pancreatic cancer. Three patients had a response of stable disease,

one of partial response, and one of progressive disease (103).

4.1.4 Small molecule kinase inhibitors
Galunisertib (LY2157299) is an oral drug that inhibits the type I

TGF-b receptor kinase and down-regulates the phosphorylation of

SMAD2 (Figure 1B) (104). In phase 1 and 2 clinical trials, a

combination of galunisertib and gemcitabine resulted in an

improved survival time of 8.9 months compared to 7.1 months in

patients treated with just galunisertib with minimal increase in

toxicity in patients with locally advanced or metastatic pancreatic

adenocarcinoma (105).

Vactosertib (EW-7197), a type I TGF-b receptor inhibitor, has

been shown to augment gemcitabine and decrease the expression of

ECM components, improving the sensitivity of pancreatic cancer

cells to gemcitabine (Figure 1B) (106). It also has synergistic effects

when combined with T1-44, an inhibi tor of PRMT5

methyltransferase (107). It has been investigated in a phase 1b

clinical trial in combination with FOLFOX in sixteen patients with

pancreatic ductal adenocarcinoma; three patients had a partial

response, and five had stable disease (108).

LY3200882, an oral type I TGF-b receptor inhibitor, was

investigated in a phase 1 clinical trial (Figure 1B). LY3200882 was

used in combination with gemcitabine and nab-paclitaxel in twelve

patients with pancreatic cancer. Six of the twelve patients had partial

responses, and all but one demonstrated decreased tumor size (109).
4.2 Other targets

In addition to TGF-b, other members of the TGF-b superfamily

are promising targets for cancer therapeutics. Interestingly,

ginisortamab (UCB6114), an antibody that neutralizes Grem1 and

blocks its antagonistic effects on BMP signaling, has been shown to

restore BMP signaling pathways in human colorectal cancer cell

lines and fibroblasts (Figure 1B) (110). It is currently being

evaluated by a phase 1/2 clinical trial (NCT04393298) in

advanced solid tumors, including pancreatic adenocarcinomas.

GDF-15 has also been identified as a potential target. While the

exact signaling pathway has yet to be elucidated, recent studies have

identified a unique GDF-15 receptor glial cell-derived neurotrophic

factor family receptor a-like (GFRAL) and have shown that GDF-

15 inhibits leukocyte integrin activation and T cell migration, which

is reversed with neutralization of GDF-15 (111, 112). Visugromab
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(CTL-002), a neutralizing antibody of GDF-15, is currently under

evaluation in phase 2a of the GDFATHER trial (NCT04725474)

and is showing promising results in combination with nivolumab in

advanced non-small cell lung cancer and urothelial cancer.
5 Discussion

TGF-b and associated proteins undoubtedly play a role in the

development of pancreatic disease and disease progression from AP

to CP to PDAC. However, the heterogeneous nature of pancreatic

tissue and the dynamic role of the TGF-b superfamily and

associated signaling pathways result in nuanced implications for

therapeutics that target these pathways.

Systemic therapies such as chemotherapy have been the standard

of care for patients with pancreatic cancer following trials such as

PRODIGE 4/ACCORD 11 and MPACT; however, outcomes remain

very poor with short survival times (83, 113). This has led to an interest

in targeted therapies such as immunotherapy, which modulate a

patient’s immune system response. Such therapies have survival

benefits in several types of solid tumors, including upper

gastrointestinal tumors and colorectal cancers (114, 115). However,

similar benefits from these immunotherapies have not been seen in

pancreatic cancer, mainly because pancreatic tumors are

immunologically cold due to the unique immunosuppressive tumor

microenvironment with limited immune cells (116). Thus, current

strategies seek to target components of the microenvironment that

contribute to this immunosuppression to improve the responsiveness

of tumors to immunotherapy (117). Subsequently, TGF-b signaling

pathways became targets of interest, given the role of TGF-b in

immunosuppression and ECM production.

Several therapeutics that target TGF-b and associated pathway

molecules are currently under investigation in early clinical trials for

solid tumors, including pancreatic tumors. These targets include

modulating the TGF-b signaling pathway directly and targeting other

proteins in the superfamily, such as Grem1, which inhibits BMP

signaling. Additionally, antagonism of BMP has been suggested as a

potential target to block and reduce pancreatic cancer invasiveness

(118). However, due to the context-dependent manner of BMP

signaling, the efficacy of such therapeutics varies greatly, and further

investigation into the subtleties of BMP signaling in both oncogenic

and tumor-suppressive functions is warranted (119).

Because the TGF-b superfamily has heterogenous roles in

pancreatic tumor development, the effectiveness of these therapies

has yet to be fully elucidated. TGF-b signaling pathways are

involved in immunosuppression and ECM production, but TGF-

b pathways also regulate cell cycle progression. Regardless, data

from the recent clinical trials suggest hopeful results. Side effect

profiles were essentially minimal, but the potential adverse effects of

TGF-b targeting drugs when delivered systemically should be a

point of investigation in future studies, as blockage of the signaling

pathways has previously been shown to have contradictory effects

depending on cell type (120). Targeted drug delivery to the

pancreatic tumor microenvironment may help mitigate such effects.

Ultimately, definitive management of pancreatic disease will

likely require a multifaceted treatment plan due to the
Frontiers in Oncology 07
heterogeneous nature of the disease processes. TGF-b has been

shown to augment the microenvironment, which likely contributes

to the characteristic resistance and poor outcomes of PDAC.

Inhibition of these signaling pathways shows promising results in

boosting the effects of traditional therapeutics. Pairing modulators

of TGF-b signaling pathways with conventional systemic

treatments such as chemotherapy and other immune modulators

such as PD-1 inhibitors will address the mechanisms of resistance

that have contributed to the poor outcomes of pancreatic cancer

and allow for a more comprehensive treatment regimen.
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