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Trafficking of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)
protein is a complex process that starts with its biosynthesis and folding in the
endoplasmic reticulum. Exit from the endoplasmic reticulum (ER) is coupled with
the acquisition of a compact structure that can be processed and traffic through
the secretory pathway. Once reaching its final destination—the plasma
membrane, CFTR stability is regulated through interaction with multiple
protein partners that are involved in its post-translation modification,
connecting the channel to several signaling pathways. The complexity of the
process is further boosted when analyzed in the context of the airway epithelium.
Recent advances have characterized in detail the different cell types that
compose the surface epithelium and shifted the paradigm on which cells
express CFTR and on their individual and combined contribution to the total
expression (and function) of this chloride/bicarbonate channel. Here we review
CFTR trafficking and its relationship with the knowledge on the different cell types
of the airway epithelia. We explore the crosstalk between these two areas and
discuss what is still to be clarified and how this can be used to develop more
targeted therapies for CF.
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1 Introduction

Cystic Fibrosis (CF) is caused by mutations in the gene that encodes the CF
Transmembrane Conductance Regulator (CFTR) protein, which functions as a
chloride and bicarbonate channel at the apical membrane of epithelial cells (Bear
et al., 1992; Poulsen et al., 1994). CFTR is responsible for the regulation of the water
content covering epithelia, and when defective causes the accumulation of a thick
mucus in the airways (the main affected organ) leading to bacterial infections and
respiratory failure.

More than 2,100 variants have been reported in the CFTR gene, over 700 of which are
characterized as disease-causing. Mutations can cause CF by several mechanisms (reviewed
in (Farinha, 2018)), being the major one impairment of CFTR trafficking—which is the case
for p.Phe508del, the most common-disease causing mutation that leads to intracellular
retention and early degradation of the mutated protein that fails to reach the plasma
membrane (PM).

CFTR trafficking is a complex process and, as modulator therapies target the basic
defect caused by mutations, refinement of those—to cover more mutations—and
introduction of novel approaches—to target those variants that do not respond to
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current drugs—are challenged by understanding the mechanisms
that drive CFTR expression, processing and function in the correct
cell types—particularly in the airways. Recent data has
revolutionized our knowledge on the airway cell types that
express CFTR and on their relative contribution to its total
function. In this review, we review the current knowledge on its
expression in the different cell types and address the main events
related to CFTR trafficking (and function) and, ending with the
discussion of what is missing as we aim to address trafficking in
specific cells and how this can—or needs to—be clarified to design
novel—and better—therapies.

2 CFTR expression in the human airway
epithelium

The human airway epithelium is a complex and cellularly
diverse tissue that has a critical role in mucociliary clearance, the
primary defense mechanism of the lungs against atmospheric
contaminants, a process that is compromised in CF (Deprez
et al., 2020; Goldfarbmuren et al., 2020). This pseudostratified
epithelium consists of more abundant (basal, ciliated, and
secretory) and rarer cell types (tuft, pulmonary neuroendocrine,
and ionocytes) (Table 1; Figure 1A) (Plasschaert et al., 2018;
Goldfarbmuren et al., 2020). The development of new techniques
such as single-cell mRNA sequencing (scRNAseq) has helped to
understand the diversity of cells present in the airway epithelium by
revealing the gene expression profiles for tens of thousands of
individual cells, creating a molecular cell atlas of this tissue
(Montoro et al., 2018; Plasschaert et al., 2018).

2.1 Basal cells

Basal cells are located at the base of the epithelium and count for
one-third of all cells (Travaglini and Krasnow, 2018; Deprez et al.,
2020; Goldfarbmuren et al., 2020). These are progenitor cells that
give rise to Club cells and to the rarer cell types (Montoro et al., 2018;
Travaglini and Krasnow, 2018). Marker genes (summarized in
Table 1) associated to basal cells are keratin 5 (KRT5) and tumor
protein 63 (TP63), but these cells can be grouped in 3 cell
populations which are distinguished by the expression of genes
involved respectively in proliferation, differentiation and squamous
metaplastic response to injury or stress (Deprez et al., 2020;
Goldfarbmuren et al., 2020). Proliferating basal cells are enriched
in the expression of genes involved in the cell cycle, indicating a
proliferative state. Differentiating basal cells have a reduced
expression of KRT5 and increased expression of Hes Family
BHLH Transcription Factor 1 (HES1), keratin 7 (KRT7) and
Secretoglobin Family 3A Member 2 (SCGB3A2), indicating active
differentiation to other epithelial fates (Travaglini et al., 2020).
Examples of genes involved in the response to injury or stress
are keratin 14 (KRT14) and keratin 13 (KRT13) (Goldfarbmuren
et al., 2020). CFTR expression is low in basal cells (Montoro et al.,
2018), but overall, they are the second major contributor to CFTR
mRNA content in the airway epithelium (Okuda et al.,
2021) (Figure 1B).

2.2 Ciliated cells

Ciliated cells are the most abundant airway epithelial cells in the
proximal airways and have been reported as significantly decreased
in CF compared with control samples (Montoro et al., 2018; Scudieri
et al., 2020). Fully differentiated ciliated cells express high levels of
Forkhead Box J1 (FOXJ1), a transcription factor involved in
ciliogenesis and ciliary maintenance (Deprez et al., 2020;
Goldfarbmuren et al., 2020). Other ciliated cells markers are
Tubulin Polymerization Promoting Protein Family Member 3
(TPPP3), and Sentan (SNTN). Deuterosomal cells, the precursors
of ciliated cells, express the specific markers Deuterosome Assembly
Protein 1 (DEUP1), Forkhead Box N4 (FOXN4), and Cell Division
Cycle 20B (CDC20B). These cells carry protruding structures called
cilia that swirl to clear mucus and debris (Travaglini and Krasnow,
2018). Even though ciliated cells have been hypothesized to be the
major source of CFTR in the proximal airway and the vastly more
abundant cells, they only express 1.5% of total CFTR (Montoro et al.,
2018; Plasschaert et al., 2018), positioning them among the smallest
contributors to total CFTR content in the airway epithelia (Okuda
et al., 2021) (Figure 1B). This apparent contradiction was clarified by
a recent report showing that the strong immunofluorescence
staining observed of CFTR in ciliated cells is possibly due to
cross detection of the protein rootletin located at the bases of
motile cilia (Sato et al., 2021).

2.3 Secretory cells

Club and goblet cells are both known as “secretory cells” as these
2 cell populations cluster together differing only by the levels of
expression of mucin genes MUC5AC and MUC5B (Deprez et al.,
2020). In fact, Club cells are known to be the precursors of Goblet
and ciliated cells (Montoro et al., 2018). The Nuclear Factor I A (NFIA)
is a transcription factor reported as enriched in Club cells (Montoro
et al., 2018). This factor regulates Notch signaling, which is required for
Club cell maintenance. Other markers enriched in secretory cells vary
according to thematurity levels. The least-mature cells express basal cell
transcripts such as KRT5 and TP63while the most-mature cells express
MUC5B (Plasschaert et al., 2018).

Secretory, as well as ciliated cells, are the 2 cell types responsible
to removing inhaled particles from the upper airways (Travaglini
and Krasnow, 2018; Deprez et al., 2020; Goldfarbmuren et al., 2020).
Secretory cells secrete the components of the mucus, including
mucins, antimicrobial and immune modulatory proteins,
impeding particles from reaching deeper lung zones. Secretory
cells regulate the composition of the airway surface liquid (ASL)
covering the epithelium, without ASL the ciliary beating and
mucociliary clearance would be compromised (Sato et al., 2023).
Although CFTR levels in secretory cells are low (Montoro et al.,
2018), secretory cells are the most common CFTR-expressing cells
and thus they give the major contribution to total CFTR content in
the airway epithelia—with a prominent role for the subtype
Secretory 1 cells (Okuda et al., 2021) (Figure 1B). As secretory
cells cover a large fraction of the airway surface, expression of CFTR
in these cells has an important role in local control of airway surface
hydration, which is in turn essential for mucus clearance.
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TABLE 1 Airway cell type-enriched markers.

Cell type Cell type-enriched marker References

Abundant cell types

Basal Keratin 5 (KRT5) Deprez et al. (2020), Goldfarbmuren et al. (2020), Travaglini
et al. (2020)

Tumor Protein 63 (TP63)

Differentiating Basal Hes Family BHLH Transcription Factor 1 (HES1)

Keratin 7 (KRT7)

Secretoglobin Family 3A Member 2 (SCGB3A2)

Squamous Metaplastic Keratin 14 (KRT14)

Keratin 13 (KRT13)

Ciliated Forkhead Box J1 (FOXJ1) Deprez et al. (2020), Goldfarbmuren et al. (2020)

Tubulin Polymerization Promoting Protein Family Member 3
(TPPP3)

Sentan (SNTN)

Deuterosomal Deuterosome Assembly Protein 1 (DEUP1)

Forkhead Box N4 (FOXN4)

Cell Division Cycle 20B (CDC20B)

Secretory Montoro et al. (2018), Plasschaert et al. (2018)

Club Nuclear Factor I A (NFIA)

MUC5AC

Goblet MUC5B

Rare cell types

Tuft Achaete-Scute Family BHLH Transcription Factor 2 (ASCL2) Montoro et al. (2018), Goldfarbmuren et al. (2020)

POU Class 2 Homeobox 3 (POU2F3)

Pulmonary Neuroendocrine (PNEC) Proprotein Convertase Subtilisin/Kexin Type 1 Inhibitor
(PCSK1N)

Deprez et al. (2020)

Secretagogin (SCGN)

Nebulin (NEB)

Homeobox B1 (HOXB1)

Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1)

Forkhead Box A2 (FOXA2)

Ionocytes Forkhead Box I1 (FOXI1) Montoro et al. (2018), Plasschaert et al. (2018), Deprez et al.
(2020)

Cystic Fibrosis Conductance Transmembrane Regulator
(CFTR)

Sodium Channel (Enac) Beta Subunit

Clc Chloride Channel Subunit Barttin (BSND)

Sodium/Potassium/Chloride Cotransporter Type 1 (NKCC1,
SLC12A2)

Subunits Of The Vacuolar Proton Pump (V-Atpase)

Calcium-Activated Potassium Channel (KCNMA1)

Slc9 Family Member Of Na+/H + Exchangers (NHE7)

Cochlin (COCH)
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2.4 Rare epithelial cells

Several studies identify low abundance clusters expressing
markers enriched in Tuft cells, pulmonary neuroendocrine and
ionocytes, which correspond to less than 1% of all epithelial cells
(Deprez et al., 2020; Goldfarbmuren et al., 2020).

2.4.1 Tuft cells
Tuft cells are suggested to be the precursors of the rare cell

lineage given the similarity of Tuft-like genes expression to those of
basal cells (Goldfarbmuren et al., 2020). Tuft cells-enriched markers
include the Achaete-Scute Family BHLH Transcription Factor 2
(ASCL2) and POU Class 2 Homeobox 3 (POU2F3) (Montoro et al.,
2018; Goldfarbmuren et al., 2020). To support the idea that Tuft cells
are the precursors of the other rare cell types, Goldfarbmuren and
colleagues developed a POU2F3 KO cell line that when cultured in
air-liquid interface (ALI) show a significantly decrease expression in
Tuft-like, ionocyte, and PNEC marker genes (Goldfarbmuren et al.,
2020). Tuft cells express prostaglandin E2 (PGE2) and are known to
have an important role in type 2 airway inflammation. The Forkhead
Box I1 (FOXI1) transcription factor, the ionocytes marker as
described below, is also detected in POU2F3+ cells however,

contrary to ionocytes, Tuft cells lack detectable CFTR expression
(Goldfarbmuren et al., 2020) (Figure 1B).

2.4.2 Pulmonary neuroendocrine
Pulmonary neuroendocrine cells (PNECs) have a sensory

function and release neuropeptides and transmitters in response
to various stimuli (Sato et al., 2023). These cells express the
neurotransmitter associated genes Proprotein Convertase
Subtilisin/Kexin Type 1 Inhibitor (PCSK1N), Secretagogin
(SCGN), and Nebulin (NEB). The PNEC-specific regulatory units
Homeobox B1 (HOXB1), Achaete-Scute Family BHLH
Transcription Factor 1 (ASCL1), and Forkhead Box A2 (FOXA2)
have also been identified as enriched in this cell type (Deprez et al.,
2020). Along with neurotransmitter associated genes, the human
PNECs also express voltage-gated cation channels (Deprez
et al., 2020).

2.4.3 Ionocytes
Pulmonary ionocytes were named after the cells with the same

name found in fish gills, due to the overlap of the gene-expression
profile of the 2 cell types (Travaglini and Krasnow, 2018). In fish,
these cells are responsible to maintain the normal solute

FIGURE 1
Different cell types in the airway epithelium. (A) Scheme depicting an airway epithelium and the different cell types that are present. (B) Relative CFTR
expression in terms of individual cell types and of total contribution for global CFTR expression. Created with Biorender.com.
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concentration by regulating ion (Na+, Cl−, Ca2+) exchange between
the animal tissue and the surrounding water environment
(Travaglini and Krasnow, 2018). In mammalian cells, the
ionocyte function has not been clarified yet, but the expression of
multiple ion-transport genes in this cell type suggests its
involvement in fluid regulation at the epithelial interface
(Montoro et al., 2018; Travaglini and Krasnow, 2018).

Ionocytes are characterized by the high expression of the
transcription factor FOXI1 and CFTR (Plasschaert et al., 2018;
Deprez et al., 2020). In fact, the highest levels of CFTR
expression—assessed by single cell RNAseq—occur in these low
abundant cells (<0.5%), being over 500-fold higher in ionocytes than
in any other cell type (Montoro et al., 2018; Goldfarbmuren et al.,
2020; Sato et al., 2023) (Figure 1B). It is estimated that the ionocyte
contribution to total CFTR transcripts in the airway epithelia ranges
between 11% and 54%. Other studies characterized the presence and
CFTR expression of ionocytes across large and small airways, and
concluded, that although exhibiting high levels of CFTR expression,
ionocytes contribute less to total CFTR mRNA content than
secretory or basal cells (Okuda et al., 2021). Furthermore,
ionocyte presence was observed as reduced in small compared to
large airways, suggesting that in small airways most CFTR
expression is in fact mediated by secretory cells (Okuda et al., 2021).

Other ion transporters genes enriched in ionocytes include
subunits of the epithelial sodium channel (ENaC) beta subunit,
ClC chloride channel subunit barttin (BSND), sodium/potassium/
chloride cotransporter type 1 (NKCC1, SLC12A2), subunits of the
vacuolar proton pump (V-ATPase), the calcium-activated
potassium channel (KCNMA1) and the Slc9 family member of
Na+/H+ exchangers (NHE7) (Plasschaert et al., 2018). COCH is
another gene specifically expressed in ionocytes. This gene
encodes a secreted protein, cochlin, that confers antibacterial
activity against the two most prominent pathogens in cystic
fibrosis lung disease (Montoro et al., 2018).

3 CFTR trafficking

3.1 CFTR biosynthesis and folding

CFTR biogenesis occurs through the secretory pathway—the
common route through which proteins synthesized in ribosomes
attached to the endoplasmic reticulum (ER) are exported to the
Golgi and subsequently to their target destination in the cell, which
can be the lysosomes, extracellular medium or the PM as is the
case for CFTR.

As it starts emerging from ribosome, CFTR is co-translationally
inserted into the ER membrane (Lu et al., 1998), due to the presence
of a signal sequence of around 7–25 mainly apolar amino acid
residues (von Heijne, 1985). The signal recognition particle (SRP)
recognizes and binds this sequence, directing the polypeptide and
the attached ribosome to the ER membrane where it binds the SRP
receptor. Then, the ribosome is anchored to the translocon channel,
and, after release of the SRP and the SRP receptor, the signal
sequence enters this channel leading to the co-translational
transfer of the polypeptide chain into the ER membrane.
Simultaneously to its ER membrane insertion, the nascent CFTR
undergoes glycosylation in two asparagine residues of the fourth

extracellular loop. An oligosaccharide with 14 residues (containing
two N-acetylglucosamine, three glucose and nine mannose
residues), which is synthesized in the ER, is transferred to each
asparagine residue (Enquist et al., 2009) as they are located within
the N-linked glycosylation consensus sequence Asn-X-Ser/Thr
(Pless and Lennarz, 1977). This glycosylation event in the ER is
catalyzed by a specific oligosaccharyltransferase and it originates a
core-glycosylated or immature form of the CFTR protein, also
known as band B CFTR, being band A CFTR the non-
glycosylated form of the protein—that can only be detected after
treating CFTR with a glycosidase that trims glycans (Cheng et al.,
1990). Core-glycosylated CFTR has a fast turnover rate, with a half-
life of around 30 min (Lukacs et al., 1994). Additionally, the
modification of immature CFTR to the mature form following
the secretory pathway is not a fully efficient process (Lukacs
et al., 1994). Only around 20%–40% of the newly synthesized
CFTR protein acquires the native conformation (Ward and
Kopito, 1994), while the remaining is rapidly degraded before
exiting the ER, meaning that CFTR folding and processing is less
efficient in comparison to other ABC transporter proteins (Chang
et al., 1997). Nevertheless, this is dependent on cell type, as it has
been reported that CFTR processing is much more efficient in
human epithelial cells (Varga et al., 2004).

3.2 ER quality control and exit

CFTR undergoes a stringent ER quality control system (ERQC)
with at least four checkpoints, which are responsible for recognizing
non-native or abnormal membrane and secretory proteins and
rapidly targeting them for degradation via the ubiquitin-
proteasome pathway (Farinha and Amaral, 2005; Farinha et al.,
2013; Canato et al., 2018). Within the ERQC machinery, molecular
chaperones play a central role by facilitating correct protein folding
in vivo through controlled binding and release of their substrate or,
when this is not achieved, retaining misfolded proteins or
unassembled subunits (Ohtsuka and Hata, 2000). Thus,
chaperones are essential in facilitating domain assembly of CFTR
and also in controlling how the glycosylation state affects CFTR
trafficking.

The first checkpoint of the ERQC system occurs while the
emerging CFTR polypeptide chain is being inserted into the ER
membrane. During this, the exposed chain in the cytosol interacts
with the cytosolic molecular chaperone Hsp70 and its co-chaperone
Hdj-2 which facilitate the early steps of CFTR domain assembly and
folding (Meacham, 1999; Farinha et al., 2002) and also regulate its
early targeting to degradation (Kim Chiaw et al., 2019). Co-
expression of Hsp70 and Hdj-1 stabilize the immature form of
wt-CFTR but not of p.Phe508del-CFTR, suggesting that the amount
of these molecular chaperones is not a limiting step for CFTR exit
from the ER (Farinha et al., 2002). For mutant p.Phe508del-CFTR, it
appears to become trapped in a stronger interaction with the
chaperone Hsp90 and its co-chaperone Aha1, suggesting a
relevant role of this complex in its retention in the ER (Hutt
et al., 2012). If CFTR is retained too long in this chaperone trap
it is targeted for degradation by replacement of the productive co-
chaperones with pro-degradative ones. Chaperone mediated
delivery to degradation systems has been suggested to play a role
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in the response of CFTR variants to modulators, with more
responsive mutations exhibiting decreased interactions with the
proteasomal and autophagy degradation machineries (McDonald
et al., 2022; Kim et al., 2023).

The second checkpoint assesses CFTR folding through its
glycosylation status. The core 14-unit oligosaccharide is
processed by removal of the first two glucose units by
glucosidase I and this intermediate structure is recognized by
chaperone lectin calnexin (and calreticulin) which allows the
progress of CFTR folding (Hammond et al., 1994). The last
glucose is removed by glucosidase II, decreasing affinity for
calnexin (Hammond et al., 1994). If CFTR folding is
unproductive, the protein becomes a target of UDP-glycoprotein
glucosyltransferase, which promotes its re-glycosylation, beginning
a new round of chaperone binding, de-glycosylation and folding
assessment (Hammond et al., 1994). If retained for too long in this
cycle, CFTR is targeted for glycoprotein-ER associated degradation
(Farinha and Amaral, 2005; Farinha and Canato, 2017).

These first two checkpoints of the ERQC system occur in the
early steps of CFTR biogenesis and processing, being considered
ERQC folding checkpoints. Conversely, the third and fourth
checkpoints are considered ERQC trafficking checkpoints. The
third checkpoint involves the recognition of abnormally exposed
arginine-framed tripeptides (AFTs). AFTs are transient retention/
retrieval motifs, with a Arg-X-Arg sequence, that couple ER exit to
the assembly and folding of multimeric membrane or secretory
proteins (Zerangue et al., 1999). AFTs only act as retrieval signal
when exposed in misassembled or misfolded proteins, suggesting
that the motifs are buried in assembled proteins. The masking of
AFTs in native proteins is the mechanism that allows these motifs to
act as retrieval signals in quality control and not as constitutive
retention signals (Zerangue et al., 1999). CFTR has at least four
AFTs, including Arg29-Gln30-Arg31 located at the N-terminal,
Arg516-Tyr517-Arg518 and Arg553-Ala554-Arg-555 located at
the nucleotide binding domain 1 (NBD1) and Arg764-Ala765-
Arg766 located at the regulatory domain (RD). Exposure of these
motifs has been shown to lead to retention of p.Phe508del-CFTR,
while simultaneous abrogation of the motifs by substitution of
arginine residues 29, 516, 555, and 766 with lysine residues,
allows p.Phe508del-CFTR to evade this ERQC checkpoint
without acquiring the native conformation and function at the
cell surface (Chang et al., 1999; Roxo-Rosa et al., 2006; Farinha
et al., 2013). Additionally, it has also been shown that the
introduction of these variants alters the p.Phe508del-CFTR
interactome, eliciting a possible mechanism for CFTR rescue
from ER retention (Canato et al., 2018).

The fourth ERQC checkpoint involves the packing of CFTR into
coat complex (COP) II coated vesicles that are destined for delivery
to the ER-Golgi intermediary compartment (ERGIC). This process
is dependent on the interaction between COPII proteins with
specific positive export signals, with the better characterized
motif for CFTR being the diacidic code Asp565-Ala566-Asp567
(DAD), which is located in NBD1 (Nishimura and Balch, 1997).
This motif acts as a positive cargo signal required for Sec24-
mediated COPII packaging into the vesicles (Nishimura and
Balch, 1997), while its disruption has been shown to decrease
both association with Sec24 and exit from the ER (Wang et al.,
2004) and complete abrogation has been shown to prevent CFTR

processing (Farinha et al., 2013) while also partially affecting its
folding (Im et al., 2023). By successfully overcoming the ERQC
CFTR is finally packed into COPII coated vesicles to traffic firstly to
the ERGIC and then to the Golgi apparatus.

3.3 Golgi processing and possible
quality control

Native CFTR traffics through the different cisternae of the
Golgi complex (from the early cis-Golgi to the media and then
trans-Golgi) in COPI vesicles. During this process, CFTR’s
ER-characteristic high-mannose glycan moieties undergo
further processing by multiple Golgi glycosyltransferases and
glycosidases that remove glycan units and add new ones
characteristic of trans Golgi (fucose, neuraminic acid or sialic
acid), forming complex structures (in vitro resistant to the
activity of endoglycosidase H) (Amaral et al., 2016). These
modifications originate a fully-glycosylated or mature form of
CFTR with increased molecular weight, also known as band C
CFTR (Cheng et al., 1990). After this, CFTR traffics out of the
trans-Golgi for delivery at the apical PM in a process that may
occur through three distinct paths: 1) directly to the membrane
via transport vesicles; 2) firstly to the basolateral membrane
followed by transcytosis to the apical membrane; 3) initially to
apical recycling endosomes (AREs) and from there to the apical
membrane. Taken together, the described processes form the
conventional CFTR trafficking pathway.

In addition to this route, CFTR can traffic through possible
alternative pathways from the ER to the PM, which rely on export
from the ER without packaging into COPII coated vesicles or on
bypassing the Golgi complex. One of the reported unconventional
pathways, has been shown to occur in a cell type-specific manner,
where CFTR follows a non-conventional early secretory pathway
(Yoo et al., 2002). This route is insensitive to characteristic Golgi
adaptors Arf1, Rab1a/Rab2 GTPases or the SNAP receptor (SNARE)
component syntaxin 5. On the other hand, it depends on the late
endosomal target-SNARE syntaxin 13, eliciting a possible role in
CFTR maturation for recycling through a late Golgi/endosomal
system (Yoo et al., 2002). These studies should however be seen
with caution as they were performed in cells overexpressing CFTR.
Another non-conventional secretory pathway reported is a Golgi
reassembly stacking protein (GRASP)-dependent pathway, that
bypasses the Golgi, and occurs only under induction of ER stress
allowing the delivery of core-glycosylated CFTR, both wild type and
p.Phe508del, to the PM (Gee et al., 2011). Phosphorylation of a
specific site of GRASP followed by relocalization of GRASP to the ER,
as well as the PDZ-based interaction of GRASP and CFTR are crucial
events for this non-conventional surface trafficking pathway (Gee
et al., 2011; Kim et al., 2016). More recently, another unconventional
secretory pathway that also bypasses the Golgi complex has been
reported for CFTR. This pathway is dependent on the activation of the
IRE1α kinase-mediated signaling cascade (Park et al., 2020), which is
one of the three major signaling branches of the unfolded protein
response, a cellular response mechanism activated under ER stress
conditions (Cox et al., 1993; Shen et al., 2001). It has been shown that
IRE1α activation can promote p.Phe508del-CFTR traffic to the PM
(Park et al., 2020).
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3.4 Membrane stability—regulation by PTMs,
protein-protein interactions and links to
signaling pathways

After processing in the Golgi complex, mature CFTR is
transported to the PM where it anchors. Evidence suggests that
up to 50% of surface CFTR in airway epithelial cells exists in an
immobile pool, tethered to filamentous actin which emphasizes the
relevance of cytoskeleton structures in CFTR regulation (Haggie
et al., 2006). CFTR anchoring and stability at the PM depends on the
interaction with several proteins, among which PDZ-domain
containing proteins (Figure 2A). These proteins, especially Na+/
H+-exchanger regulatory factor isoform-1 (NHERF1), play an
essential role of promoting interactions anchoring appropriate
targets to the cytoskeleton through a multiprotein complex
(Cushing et al., 2008). The CFTR-NHERF1 complex is locked in
a static actin-tethered state through the interaction of NHERF1 with
the actin-binding adaptor protein ezrin, preventing CFTR
endocytosis. A role for NHERF1 has also been implicated in a
diversity of processes, namely targeting exosome/endosome CFTR
to the apical membrane of epithelial cells, promoting CFTR
dimerization and enabling interactions that regulate CFTR
conformation and activity (Short et al., 1998; Swiatecka-Urban
et al., 2002; Haggie et al., 2006). While NHERF1 and
NHERF2 stabilize CFTR at the PM, another PDZ-domain
containing protein, CFTR-associated ligand (CAL), promotes
CFTR endocytosis and degradation (Cheng et al., 2004), an
interaction that has been assessed with the aim of identifying
inhibitors that may prevent CFTR targeting to degradation (Zhao
et al., 2018). Other proteins involved in CFTR stabilization at the PM
link the channel to relevant signaling pathways in the cell, such
cAMP signaling or regulation through phosphorylation by different
kinases (reviewed in (Farinha et al., 2016)).

Regulation of CFTR trafficking by cAMP relies mainly on its
interaction with the cAMP sensor exchange protein directly
activated by cAMP 1 (EPAC1). It has been shown that
EPAC1 and CFTR co-localize and interact mediated by
NHERF1 in airway epithelial cells (Lobo et al., 2016).
EPAC1 activation by cAMP promotes the EPAC1-NHERF1-
CFTR interaction, that stabilizes the latter promoting an increase
in its PM levels (Lobo et al., 2016; Ferreira et al., 2022), due to a
decrease in endocytosis (Lobo et al., 2016). As EPAC1 is activated
and linked to cAMP signaling, this interaction highlights a two-level
regulation of the channel by cAMP—low concentrations of cAMP
activate protein kinase A (PKA) to regulate CFTR function whereas
high cAMP levels promote EPAC1-dependent increase of its PM
levels (Lobo et al., 2016; Ferreira et al., 2022). More recently, several
actin cytoskeleton dynamics regulators were identified in the
macromolecular complexes elicited by EPAC1 activation at the
PM (Santos et al., 2020)—among which the inverted formin 2
(INF2), a member of the formin family with the unique ability to
accelerate actin filament depolymerization, in addition to the
nucleation and elongation activities common to all formins
(Chhabra and Higgs, 2006; Chhabra et al., 2009), and the
F-actin-capping protein subunit alpha-2 (CAPZA2), which is a
component of a heterodimeric CapZ protein that cap the fast
growing barbed ends of actin filaments, terminating elongation
(Caldwell et al., 1989; Barron-Casella et al., 1995). It has been

reported that both these actin cytoskeleton regulators interact
with CFTR and do not influence the EPAC1-NHERF1-CFTR
interaction, suggesting that although not being key elements of
the macromolecular complex they have an additional role in
CFTR anchoring and stability at the PM (Santos et al.,
2020) (Figure 2B).

cAMP-driven phosphorylation of CFTR triggers its association
with 14-3-3 proteins, which contribute to facilitate CFTR trafficking
along with enhancing its channel activity (Liang et al., 2012; Bozoky
et al., 2013). cAMP effect on CFTR trafficking (and function) can
also be modulated through inhibition of phosphodiesterases. By
sustaining a localized pool of cAMP in CFTR vicinity, this allows an
increase in CFTR levels at the PM and of its function. Selection
inhibition of PDE4D—the most relevant phosphodiesterase in
CFTR regulation (Blanchard et al., 2014)—with a mimetic
peptide targeting the anchoring of PKA via the A-kinase
anchoring protein PI3Kγ triggers CFTR function, possibly by also
contributing to its PM stabilization (Ghigo et al., 2022) (Figure 2A).

Anterograde transport (traffic from the trans-Golgi to PM),
endocytosis and recycling are the three mechanisms that act together
to determine the amount of CFTR channels at the PM. These
processes, particularly recycling and endocytosis, are finely
regulated to control the levels of CFTR in the cell surface.
Moreover, assessment of CFTR folding through the peripheral
quality control mechanism also controls its total amount at the
PM (Okiyoneda et al., 2010). An assortment of CFTR interacting
proteins, namely Rab family small GTPases, PDZ domain-
containing proteins and myosins, as well as specific trafficking
motifs in the CFTR protein, participate in the regulation of
trafficking turnover and retention of the protein at the PM.

CFTR endocytosis and internalization occurs in clathrin-coated
vesicles (Bradbury et al., 1994; Lukacs et al., 1997), and is dependent on
the recognition of specific motifs by endocytic adaptor proteins. These
endocytic signals, usually 4-7 residue long sequences that are located in
cytoplasmic domains of membrane proteins (Prince et al., 1999), are
mainly localized in the C-terminus of CFTR (at least one tyrosine-based
motif and one dileucine-basedmotif (Hu et al., 2001; Peter et al., 2002)).
These signals are recognized by the μ2 subunit of the adaptor protein
assembly polypeptide-2 (AP-2), and subsequently the β2 subunit,
which binds to clathrin, forms a complex that initiates the CFTR
internalization from the PM (Swiatecka-Urban et al., 2004; Madden
and Swiatecka-Urban, 2012). After internalization, AP-2 and clathrin
dissociate, recycling back to the PM, and the uncoated vesicles traffic
through early endosomes (Swiatecka-Urban et al., 2004). At this stage
of intracellular membrane trafficking, an intricate protein network is
involved including the cytoskeleton, motor proteins and also protein
kinases. The Rab and Rho subfamilies of Ras small GTPases emerge as
key players in the regulation of protein vesicular transport between the
different organelles of the secretory and endocytic pathways. Rab
proteins are also responsible for regulating the interaction between
motor proteins and cell membranes, enabling vesicle motility, and
coordinating docking and fusion of vesicles with the correct target
membranes. Many Rab proteins have been shown to regulate CFTR
traffic through different mechanistic pathways (reviewed in (Farinha
and Matos, 2018)). Rab5 regulates entry into early endosomes, from
where CFTR can be rapidly recycled back to the PM in a mechanism
that involves Rab4 (Gentzsch et al., 2004), accounting for around 50%
of internalized CFTR (Cholon et al., 2010). Additionally, CFTR can be
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directed to recycling endosomes, fromwhere it can follow an alternative
recycling pathway to the PM dependent on Rab11 or it can be
transported to late endosomes promoted by Rab7 (Gentzsch et al.,
2004). It is reported that 15%–20% of internalized CFTR remains in the

recycling pool reaching a steady state (Holleran et al., 2013). A return to
the trans-Golgi can also occur guided by Rab9 (Gentzsch et al., 2004;
Swiatecka-Urban et al., 2005). Myosins are cytoskeletal motor proteins
that also participate in CFTR trafficking through interaction with Rab

FIGURE 2
Regulation of CFTR trafficking and relationwith signaling pathways. (A)CFTR anchoring at the plasmamembrane and regulation by PDZ proteins and
PKA. (B) Regulation of CFTR plasmamembrane stability by EPAC1 and interconnections with cytoskeleton regulators. (C) Regulation of PM CFTR through
phosphorylation by SYK and link to MAPK pathway. Created with Biorender.com.
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proteins. Myosin VI is involved in the early endocytic stages,
participating in the clustering of CFTR in clathrin-coated pits and
also in the formation of clathrin-coated vesicles. This role in apical
membrane endocytosis is due to movement towards the F-actin minus
end, oriented away from the PM, which is uncharacteristic for most
myosins (Swiatecka-Urban et al., 2004). A complex of adaptors
Disabled-2 (Dab-2), AP-2 and myosin VI forms at the PM
promoting actin-dependent CFTR endocytosis (Swiatecka-Urban
et al., 2004; Collaco et al., 2010; Fu et al., 2015). Myosin Vb also
interacts with CFTR and specifically with the isoform Rab11a,
depending on the recognition of the Rab-binding sites located at its
tail domain (Swiatecka-Urban et al., 2007). This interaction facilitates
CFTR recycling to the apical membrane of airway epithelial cells
(Swiatecka-Urban et al., 2007). The other Rab11 isoform, Rab11b,
also regulates CFTR recycling to the PMbut in intestinal epithelial cells,
eliciting a tissue-specific role for Rab11 in CFTR trafficking (Silvis et al.,
2009). Altogether, recycling of internalized CFTR to the PM is
considered to be the main mechanism for sustaining a functional
pool of CFTR at the cell surface.

For p.Phe508del-CFTR the amount of protein at the PM is also
regulated by the peripheral quality control mechanism, which links
the folding status of CFTR to its internalization. This process targets
misfolded proteins that reach the PM, either naturally or through
pharmacological manipulation, including rescued p.Phe508del-
CFTR (Okiyoneda et al., 2010). The cytoplasmic region of
conformationally unstable rescued p.Phe508del-CFTR at the PM
is selectively recognized by the heat shock cognate 70 kDa protein
(Hsc70), in concert with other co-chaperone proteins (Okiyoneda
et al., 2010). The prolonged interaction with the Hsc70/co-
chaperone complex allows the recruitment of the E3 ubiquitin
ligase CHIP (C terminus of Hsc70 interacting protein), leading to
ubiquitination of the conformationally defective rescued
p.Phe508del-CFTR at the PM. After ubiquitination, the protein is
rapidly endocytosed and signaled for delivery into the degradative
lysosomal compartment (Okiyoneda et al., 2010). More recently, a
mechanism that allows misfolded rescued p.Phe508del-CFTR to
evade the peripheral quality control has been described (Loureiro
et al., 2015). This process is dependent on a conformational change
of NHERF1 which is triggered by interaction with the actin-binding
adaptor protein ezrin (Loureiro et al., 2015) and can be inhibited by
the protease calpain (Matos et al., 2019).

CFTR stability at the PM relies also on its interaction with
membrane lipids, particularly cholesterol and sphingolipids, lipid
classes whose levels are affected in CFTR-deficient cells (reviewed
in (Cottrill et al., 2020)). In fact, it has been shown that CFTR
clusters with membrane lipids, and that the aggregation state and
dynamics of CFTR at the PM are dependent on cholesterol levels.
In fact, based on cholesterol abundance at the PM, CFTR
molecules can exist in two different populations—a more
confined and static one in high cholesterol domains and a more
abundant one that is less confined and more dynamic at lower
cholesterol regions (Abu-Arish et al., 2015). These domains also
bring CFTR in close association with the enzyme acid
sphingomyelinase and contribute to an enhancement of
transepithelial secretion with a possible role in inflammation
and mucosal immunity (Abu-Arish et al., 2019). More recently,
it was shown that this occurs independently of scaffolding proteins
(namely PDZ proteins and actin, as described above) and is driven

by lipid order (Abu-Arish et al., 2022). Interestingly, these
observations on the relationship between CFTR and membrane
lipids in the formation of microdomains at the PM that boost a
plethora of CFTR-dependent processes are aligned with recent
views and more general findings on membrane dynamics—that in
fact constitute an update on the classical Singer-Nicolson fluid
mosaic model for PM dynamics (Kusumi et al., 2023). Based on
two of the predominant components of the PM—cholesterol and
actin filaments, these CFTR-centered nanoclusters play an
important role not only in “securing” its PM stability and
abundance but also in the regulation of other membrane
channels and transporters and in the connection to signaling
pathways, as it has been shown for several other PM proteins
(Saha et al., 2022; Garcia-Parajo and Mayor, 2024).

Finally, phosphorylation is a major determinant in the
regulation of its trafficking (reviewed elsewhere in (Farinha et al.,
2016)). In most of the cases, CFTR phosphorylation triggers
interaction with specific protein adaptors—as was shown
recently, e.g., for the mechanism of CFTR PM regulation by
spleen tyrosine kinase (SYK). Known for long to regulate CFTR
PM levels (Luz et al., 2011; Mendes et al., 2011), SYK phosphorylates
CFTR prompting recognition by the adaptor protein SHC1, a key
regulator of MAPK pathway activity (Loureiro et al., 2020; Barros
et al., 2023) (Figure 2C).

The intricate mechanisms that govern CFTR trafficking have
been elucidated using a plethora of cellular models, each of which
gave relevant contributions to the overall picture but that may be
difficult to integrate. The challenge has increased significantly with
recent advances in identification of all the cell types in the airway
epithelium and their relative contribution to total CFTR
expression.

4 Cell type-specific regulation of CFTR

As mentioned above, the highest levels of CFTR expression in
the airway epithelium are detected in pulmonary ionocytes.
Consequently, understanding the regulation of CFTR in this cell
type would be critical for the development of new therapeutical
approaches for CF targeting either expression/trafficking or
function of CFTR.

However, the role of CFTR in pulmonary ionocytes is still poorly
understood. It has been demonstrated that FOXI1 overexpression is
sufficient to specify ionocytes-enriched cultures and, in agreement,
FOXI1 KO leads to cultures lacking ionocytes (Montoro et al., 2018;
Plasschaert et al., 2018). As these cells express high levels of CFTR, a
decrease in this gene would be expected in FOXI1 KO cultures.
However, the bulk CFTR expression is unaltered in FOXI1 knock-
down (KD) cultures, suggesting that other epithelial cell types
contribute to the overall CFTR expression (Goldfarbmuren et al.,
2020), namely secretory and basal cells identified as the major
contributors to total CFTR content (Okuda et al., 2021).
However, FOXI1 KD ALI cultures showed increased
transmembrane potential along with decreased conductance,
which is consistent with a reduction in ion transport in ionocyte-
depleted epithelia, suggesting that ionocytes contribute to the
maintenance of proper ion transport (Goldfarbmuren et al.,
2020). This observation confirms that while having a great
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contribution to CFTR expression and being critical for ion transport
homeostasis, CFTR activity in the human airway epithelium is not
exclusive from ionocytes. Altogether, these data raise the possibility
of a cell type-specific regulation of CFTR (Sato et al., 2023).

Another study shows contradictory results in ionocytes. High
levels of CFTR expression in ionocytes would suggest an increase in
the volume of ASL due to ionocyte liquid secretion. Nonetheless, Lei
and coworkers observed an increase in liquid absorption, and
consequently a decrease in ASL volume in ionocyte-rich cultures,
while a reduction in ionocyte abundance led to an increased liquid
secretion (Lei et al., 2023). A possible explanation for that is the
presence of basolateral barttin/Cl− channels in ionocytes. Barttin, as
previously mentioned, is a required subunit of human ClC-K Cl−

channels, whose expression is enriched in ionocytes. Disruption of
the BSND gene, which encodes barttin, increased the ASL volume
and decreased liquid absorption, indicating that ionocytes require
barttin/Cl− channels for apical-to-basolateral Cl− flux and ASL
absorption. These data suggests that ionocytes provide a pathway
for passive Cl− absorption through apical CFTR channels and
basolateral barttin/Cl− channels (Figure 3A). The major driving
force for Cl− absorption is the negative luminal voltage generated
by Na+ absorption. In fact, apical epithelial Na+ channels (ENaC)
inhibition by amiloride abolished the effect of ionocytes on liquid
absorption. Conversely, secretory cells might provide a pathway for
active Cl− secretion through apical CFTR channels. This idea is
supported by the fact that secretory cells lack barttin/ClC-K
channels, and when barttin/ClC-K channels are overexpressed in

these cells, liquid absorption increases. Once again, these data
suggest that CFTR is differentially regulated, with secretion and
absorption segregating between different cell types—with ionocytes
involved mainly in absorption and secretory and basal cells mainly
in secretion (Tümmler, 2023).

Studies performed in ferrets have further contributed to the
elucidation of ionocytes role. Using conditional genetics allowed the
identification of three subtypes of pulmonary ionocytes and the
confirmation of their CFTR-dependent function. In fact, this work
highlights the role of ionocytes in supporting a movement of Cl− and
HCO3

− that was found to be cell-autonomous, thus providing
unique layers in the regulation of ASL volume, PH and viscosity,
thus contributing to effective mucociliary clearance (Yuan
et al., 2023).

CFTR regulation on the different epithelia cell types has been the
research focus of many research groups, and ionocytes are now in
the spotlight given their high CFTR expression. CFTR channel
activation is regulated by cAMP. Briefly, as a response to an
external stimulus, adenylyl cyclase is activated, increasing the
levels of cAMP inside the cell (Sheppard and Welsh, 1999;
Moran, 2010). cAMP activates protein kinase A (PKA), which
then causes the phosphorylation of serine residues within the
RD, activating CFTR (Sheppard and Welsh, 1999; Moran, 2010).
Then, ATP binds to both NBDs promoting their dimerization and
ATP hydrolysis (Sheppard and Welsh, 1999; Moran, 2010). This
process leads to a conformational change in the membrane-
spanning domains (MSDs) of CFTR, which allow Cl− anions to

FIGURE 3
Cell-type specific regulation of CFTR function and trafficking. (A) Regulation of Cl− transport by differential cellular roles in the airways (adapted from
Tümmler, 2023). (B) Possible explanations for the differences on CFTR expression and trafficking among cell types. Created with Biorender.com.
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flow through (Sheppard and Welsh, 1999; Moran, 2010). Sato and
colleagues showed that in ionocyte-rich cultures CFTR regulation by
cAMP is altered (Sato et al., 2023). Stimulation of ionocyte-rich
cultures with high doses of the adenylyl cyclase activator forskolin
did not increase total intracellular cAMP and, consequently, did not
increase CFTR response. Levels of adenylyl cyclase 5 (AC5)
transcripts were found increased in ionocyte-rich cultures. AC5 is
inhibited by PKA phosphorylation, which is then susceptible to a
feedback inhibition at high cAMP concentration, limiting CFTR
response (Sato et al., 2023).

The same authors found a 10-fold increase in the
Phosphodiesterase 1C (PDE1C) transcript levels in ionocyte-
rich cultures. PDE1C is a calcium/calmodulin-dependent
enzyme with high affinity for cAMP. Inhibition of PDE1C led
to an increase in global cAMP levels and to an increase in
short-circuit current (Isc), suggesting that PDE1C modulates
cAMP signaling and CFTR activity in ionocytes. PDE1C
inhibition with IBMX (that inhibits all PDEs except PDE8) and
PF-04957325 (PDE8 inhibitor) further increased Isc compared to
inhibition using IBMX alone, suggesting that CFTR activity is
modulated by different PDEs in different cell-types. In fact, other
PDE family members, such as PDE3, 4 (see above) and 5, have
already been implicated in CFTR regulation and the use of PDE
inhibitors has already been proposed as a potential therapy for CF
(Turner et al., 2021).

Focus on ionocyte development in CF and the relationship
between ionocytes and CFTR-dependent chloride secretion
identified a relatively high expression of ionocyte markers in the
nasal epithelium with a possible proximal-distal gradient along the
airways with a progressively decreasing number of ionocytes
(Scudieri et al., 2020), a finding also reported by others (Okuda
et al., 2021). Nonetheless, no difference was observed in the
percentage of ionocytes (FOXI1+ cells) in the nasal epithelium of
people with CF (PwCF) compared to controls, suggesting that the
lack of functional CFTR does not affect the abundance of these cells.
To understand if there was a relationship between the CFTR
genotype and CFTR protein expression in ionocytes, CFTR signal
in the apical membrane of ionocytes was compared in cells from
non-CF individuals with cells from two groups of CF individuals.
One group included individuals with CF and severe mutations
(p.Phe508del, p.Glu585Ter, p.Asn1303Lys, deletions, and
frameshift mutations), while the other group included those
individuals with milder mutations (p.Asp1152His, p.ArgR117His,
or the 5T/12 TG polymorphism). Interestingly, CFTR signal was
detected at the apical membrane of ionocytes from individuals with
milder mutations. Despite being lower than the signal in non-CF
cells, that signal was significantly higher than that in cells from
individuals with severe mutations. Assessment of the efficacy of
CFTR modulators to rescue mutant CFTR protein in ionocytes
showed that the two correctors, VX-809 and VX-445, markedly
increased CFTR function in bronchial epithelial cells from
p.Phe508del homozygous patients and that the corrector
treatment improved CFTR trafficking in ionocytes.

And what about cell-type specific regulation of CFTR processing
and trafficking? Recent years have seen enormous progress in the
elucidation of the cell types that express CFTR and of their relative
contributions to total content (and perhaps) function. Some light is
appearing over puzzling observations, suggesting a differential role

for CFTR in promoting either Cl− secretion or absorption
(Tümmler, 2023). However, very little (or nothing) is known
about how CFTR traffics to the cell surface, and how the
differences in individual content are not only related to
differences in CFTR mRNA levels but also in mRNA
transcription rates and stability, in CFTR translation, in its
membrane integration and folding, its trafficking through the
Golgi or its PM stability (Figure 3B).

Another relevant question is the targeting of individual cell
types. Although approval of modulators has revolutionized the CF
field, many individuals with CF bear genotypes that cannot be
treated with the approved drugs. Furthermore, inequalities in
access decrease the proportion of those that are under modulator
therapy to only 12% of estimated total of individuals with CF
worldwide (Guo et al., 2022). Thus, it is crucial to bring novel
(and more accessible and affordable) therapies to the CF community
and to target relevant cells.

When considering genetic-based therapies (cDNA, mRNA or
gene editing), three main aspects need to be considered: 1) the
cargo to be delivered; 2) the delivery methodology (e.g. viral vs.
non-viral) and 3) the cells to be targeted. The “obvious” target
would be basal cells, due to their ability to differentiate into the
other cell types. However, their location at the basis of the
pseudostratified epithelium makes them difficult to target.
Additionally, basal cell activation requires injury to the surface
epithelium to trigger their migration and proliferation, and basal
cell replication is much lower in CF than in healthy lung (Carraro
et al., 2021). Another hypothesis is thus to target specific cells.
Ionocytes could be a candidate—due to their high expression of
CFTR, but recent findings of their differential role (Tümmler,
2023) bring additional complexity to the question. Regarding
other cell types, it has been shown that secretory cells are
competent to correct CFTR function in CF cells (Okuda et al.,
2021), which is a very relevant observation. Despite these
advances, there are however many questions still to be solved
in this quest.

Finally, as the puzzle comes together, it will be relevant to
clarify if the balance of the different cell types (“individual”
CFTR expression versus contribution to total CFTR content) can
be changed and whether this will lead or not to a better
correction.
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