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To monitor the moisture content of agricultural products in the drying process in

real time, this study applied a model combining multi-sensor fusion and

convolutional neural network (CNN) to moisture content online detection. This

study built a multi-sensor data acquisition platform and established a CNN

prediction model with the raw monitoring data of load sensor, air velocity

sensor, temperature sensor, and the tray position as input and the weight of

the material as output. The model’s predictive performance was compared with

that of the linear partial least squares regression (PLSR) and nonlinear support

vector machine (SVM) models. A moisture content online detection system was

established based on this model. Results of the model performance comparison

showed that the CNN prediction model had the optimal prediction effect, with

the determination coefficient (R2) and root mean square error (RMSE) of 0.9989

and 6.9, respectively, which were significantly better than those of the other two

models. Results of validation experiments showed that the detection system met

the requirements of moisture content online detection in the drying process of

agricultural products. The R2 and RMSE were 0.9901 and 1.47, respectively,

indicating the good performance of the model combining multi-sensor fusion

and CNN in moisture content online detection for agricultural products in the

drying process. The moisture content online detection system established in this

study is of great significance for researching new drying processes and realizing

the intelligent development of drying equipment. It also provides a reference for

online detection of other indexes in the drying process of agricultural products.
KEYWORDS

convolutional neural network, predictionmodel, multi-sensor fusion, moisture content,
online detection
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1 Introduction

As an essential parameter in the drying processing of

agricultural products, moisture content characterizes the drying

rate and signals the end of drying (Yu et al., 2023). Achieving online

detection of moisture content in the drying process is essential to

optimize the drying process and realize the automation of drying.

At present, material moisture content online detection methods

include the dielectric properties method (Celik et al., 2022), model

prediction method (Dalvi-Isfahan, 2020), spectral imaging method

(Cho et al., 2020), and weighing method (Pongsuttiyakorn et al.,

2019). The dielectric property method is a moisture content

detection method based on the correlation between the dielectric

properties of the material and the moisture content. The dielectric

properties of the material are greatly affected by temperature, and

performing accurate moisture content detection when the material

is dried at different temperatures is not easy. The model prediction

method is suitable for moisture content detection of specific

materials under a specific drying environment. When the material

or drying environment changes, the model needs to be re-

established to detect moisture content. The spectral imaging

method is expensive and requires computer vision technology,

which is complicated to operate, not applicable to the agricultural

product drying industry with low added value. The weighing

method can detect the moisture content of different materials

with high versatility, low cost, and simple operation, and is an

essential method of moisture content online detection.

The weighing method is a method for real-time acquisition of

the weight of the material during the drying process, according to

the principle of constant dry matter, combined with the initial

moisture content of the material to achieve moisture content online

detection. The key to the weighing method is accurately acquiring

the material weight by using the load sensor. The complex drying

environment, the vibration of equipment, the impact and

disturbance of airflow, and the variation of drying temperature

will bring severe errors to the detection of the load sensor, which

will affect the accuracy of the moisture content detection. Ju et al.

(2023) stopped the blower to avoid airflow’s influence on the load

sensor’s detection during moisture content detection but ignored

the error caused by temperature variation. Yang et al. (2023a)

similarly achieved moisture content detection by using the stop-

air detection strategy and corrected the detection error caused by

temperature change, improving moisture content detection

accuracy. However, in different drying programs, the temperature

variation range is far beyond the linear calibration interval of the

load sensor, and achieving accurate measurement by simply

compensating the error due to temperature change is difficult.

Wang et al. (2014) while using a stop-air detection strategy at the

same time, carried out linearization calibration of the detection

results of the load sensor at different temperature sections and load

ranges. The scheme effectively avoids the influence of temperature

on the detection of the load sensor. Reyer et al. (2022) directly

installed the load sensor in the drying chamber outside, more

effectively eliminating the measurement error caused by

temperature. However, this scheme destroyed the sealing of the

drying chamber, which increased the difficulty of controlling the
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temperature and humidity in the drying chamber. The above

moisture content online detection scheme was implemented

under the stop-air detection strategy.

With the development of automation and intelligence in the

drying industry, drying equipment needs to make real-time

adjustments to the temperature and humidity in the drying

chamber according to the drying rate, and it needs to detect the

moisture content more frequently. In this context, stopping the blower

to detect moisture content will undoubtedly break the continuity of

drying and further increase energy consumption and drying time.

Therefore, the existing moisture content online detection technology

cannot meet the needs of the current drying process.

Multi-sensor fusion technology is an information processing

method that uses computer technology to automatically analyze

and synthesize information and data from multiple sensors or

sources under specific guidelines to obtain the required decisions

and estimates (Xie et al., 2022). Factors affecting load sensor

detection, such as vibration of equipment, impact and disturbance

of airflow, and temperature variation, can be detected by the

sensors. Multi-sensor fusion technology can fuse the load sensor

signal with other sensor signals, make regression prediction of the

real weight of the material in the drying process, and further detect

the moisture content of the material. Regression prediction based

on multi-sensor fusion technology has been widely used in other

industries, such as the remaining life prediction of aviation engines

(Li et al., 2022b), tool wear prediction (Meng et al., 2021), air

pollution level prediction (Ari and Alagoz, 2022), and wheel

odometry prediction (Zhu et al., 2021). Kirsanov et al. (2021)

used PLSR to relate the sensor signals to the values of different

water quality parameters, which enabled the accurate detection of

various water quality parameters. Li et al. (2019) has applied SVM

in multi-sensor fusion to assess green tea quality accurately.

The complex dry environment causes all kinds of sensor signals

to fluctuate and behave randomly. Raw sensor signals are difficult to

transform into a stable output value after filtering. At the same time,

the filtering process removes essential information hidden in the

raw signals that are correlated with the output. Deep learning has

been introduced into multi-sensor fusion prediction to obtain the

correlation and causality hidden in raw monitoring data (Xu et al.,

2020). Deep learning is a specific machine learning type consisting

of a stack of multilayer nonlinear processing units (Samaras et al.,

2019). Deep learning techniques have more powerful

representational learning capabilities than traditional machine

learning techniques. They can learn complex functions that map

inputs to outputs directly from raw data (Wang et al., 2021).

Convolutional neural network (CNN), a class of feed-forward

neural networks that include convolutional computation and have

a deep structure, are one of the representative algorithms for deep

learning (Tong et al., 2023). CNN have also been widely used in

solving regression prediction problems with multi-sensor fusion

and have contributed to many tasks with state-of-the-art accuracy

(Arvidsson et al., 2021; Zeng et al., 2021; Wan et al., 2022; Li et al.,

2022a; Gao et al., 2023).

Given the air-impingement dryer’s fast drying speed and high heat

transfer coefficient, this study built a moisture content online detection

system in the air-impingement dryer (Yang et al., 2023c). The tray
frontiersin.org
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position needs to be added to the prediction model as an input

variable because of the particularity of the structure of the air-

impingement dryer. Overall, this study applied multi-sensor fusion

technology to the moisture content online detection process and used

the CNN prediction model to fuse the raw signals from the weight

sensor, air velocity sensor, temperature sensor, and the tray position to

accurately obtain the real weight of the material in the drying process.

According to the initial moisture content of the material, the current

moisture content was obtained, and finally, the regression prediction

model of moisture content was established. A moisture content online

detection system was built based on this model.

In summary, this study (1) completed the construction of a

multi-sensor data acquisition platform; (2) carried out cantaloupe

slice drying experiments to obtain the raw monitoring signals of

multi-sensors used for CNN training; (3) established a material

weight prediction model based on CNN and compared it with the

traditional prediction model; and (4) established a moisture content

online detection system based on the CNN prediction model. The

technology roadmap is shown in Figure 1. This study built a

moisture content online detection system and will provide new

technical support for drying process optimization and promote the

intelligent development of drying equipment.
2 Principles and methods

2.1 Principles

In this study, the online detection system was built in the air-

impingement dryer and realized the online detection of the material

moisture content based on the weighingmethod. The following sections

show the operating principle of air-impingement dryer and the

principle of moisture content detection based on the weighing method.

2.1.1 Operation principle of air-
impingement dryer

The air-impingement dryer is a technology that realizes drying

by impinging and heating the material with pressurized hot air

(Zheng et al., 2023). Figure 2 shows the operation principle diagram
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of the air-impingement dryer. The air-impingement dryer is divided

into the inner chamber and the outer chamber. Six infrared heating

tubes are evenly installed on the top of the inner chamber, with a

total power of 0–2 KW. The infrared heating tubes heat the

materials placed on the tray with infrared radiation. The fan

draws air from the inner chamber into the outer chamber. The

air is cooled in the outer chamber, and the wet air is discharged

from the outer chamber through a wet discharge valve. The fan

blows the air into the inner chamber through the nozzle to realize

internal circulation of the air in the equipment. When the air

through the nozzle is squeezed, it forms a high-pressure airflow and

impacts the material, removing the moisture on its surface. The

material is dried under the double effect of infrared radiation

heating and airflow impact.

The dryer regulates the air velocity of the fan through a

frequency converter. The dryer is not equipped with an air

velocity sensor, which cannot achieve closed-loop regulation of

the air velocity, so there are large fluctuations in the airflow in the

inner chamber. A temperature sensor is installed at the nozzle,

which is used to detect the temperature of the air in the inner

chamber. The equipment achieves closed-loop control of the air

temperature in the inner chamber by adjusting the power of the

infrared heating tube. The temperature of the outer chamber is

significantly lower than that of the inner chamber due to the lack of

heating by the infrared heater. The internal circulation of air

increases the difficulty of temperature control in the inner chamber.

2.1.2 Principle of moisture content detection
based on the weighing method

Moisture content detection based on the weighing method is a

method to calculate the moisture content based on the initial weight

and the real-time weight during the drying process under the default

condition that the initial moisture content of the same batch of

material is the same. The formula for calculating the moisture content

based on the weighing method (wet basis) is shown in Equation 1

(Liu et al., 2021):

wt =
mt −m(1 − wi)

mt
� 100% (1)
FIGURE 1

Technology Roadmap.
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where wt is the moisture content (wet base) of the material at

time t, %; mt is the weight of the material at time t, g; m is the initial

weight of the material, g; and wi is the initial moisture content (wet

basis) of the material, %.

A load sensor usually needs to be installed at the bottom of the

rack to obtain the weight of the material at time t. During the actual

drying process, the load sensor has difficulty outputting a stable

weight signal due to airflow disturbances and equipment vibration.

The impact of airflow and temperature variation also causes

measurement errors in the load sensor. During the air-

impingement drying process, people often change the tray

position on the rack to obtain different drying quality and drying

rates of the material (Chang et al., 2022). Preliminary experiments

found that the tray position also significantly affects the load

sensor’s measurement results. The tray position here indicates the

distance between the tray and the nozzle.

The drying temperature, air velocity, tray position, and material

weight set by the drying process of different materials vary greatly.

Therefore, the error caused by the complex dry environment to the

detection value of the load sensor needs to be eliminated. In

addition to the tray position, other influencing factors can be

detected by the sensor. The air velocity sensor can detect the

airflow speed, and its raw signal can also reflect the airflow

fluctuation. The temperature sensor can detect the temperature

value that affects the measurement value of the load sensor. The

device’s vibration will also be reflected in the raw signal of the

load sensor.
2.2 Multi-sensor data acquisition

The monitoring data from the three sensors during the drying

process need to be collected for model training to establish a

moisture content online detection model with the raw signals

from load sensor, air velocity sensor, temperature sensor, and the

tray position as inputs and the real weight of the material as outputs.
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2.2.1 Multi-sensor data acquisition
platform construction

The data acquisition system consists of an upper computer, a

weight acquisition module, an air velocity acquisition module, a

temperature acquisition module, and a 485 communication module

as shown in Figure 3. The upper computer adopted the Legion

Y7000P computer from Lenovo, which was responsible for human–

computer interaction and data storage. The upper computer

adopted the MODBUS communication protocol and connected

with each slave unit via three RS485 buses to form a data acquisition

network. In the weight acquisition module, the cantilever beam

pressure sensor (HYPX017, Hengyuan Sensor Technology Co., Ltd.,

Bengbu, China) with a range of 3 kg was selected to collect the

weight signal of the material in the drying process. In the air velocity

acquisition module, a thermal air velocity sensor (WM4200,

Chaozhi Reed Technology Co., Ltd., Changchun, China) with a

range of 20 m/s was used to acquire the air velocity. The air velocity

sensor was installed in the air duct of the outer chamber with a

lower temperature to increase the service life of the air velocity

sensor and to reduce the influence of temperature on the

measurement results of the air velocity sensor. The dimensions of

the air duct were 60mm × 50mm. The dimensions of the tray were

400mm × 350mm. Temperature variations in the elastic substrate of

the load sensor are the leading cause of measurement errors. In the

temperature acquisition module, a temperature sensor (PT100,

Songdao Heating Sensor Co., Ltd., Shanghai, China) with a range

of −45°C to 125°C was selected to collect the temperature signal of

the load sensor elastic substrate. The temperature sensor was fixed

to the elastic substrate by using thermally conductive silicone. A 485

communication module was used to communicate between the

three sensors and the upper computer. The signals of each sensor

were not filtered to obtain the correlation hidden in the raw

monitoring data of the sensors.

2.2.2 Design of single-factor experiment
A single-factor experiment was carried out to investigate the

effect of air velocity, temperature, and tray position on the measured
FIGURE 2

Operation principle diagram of air-impingement dryer. (1) Air velocity adjustment knob; (2) temperature control touch panel; (3) fan; (4) wet
discharge valve; (5) tray; (6) temperature sensor; (7) outer chamber; (8) air nozzle; (9) infrared heating tube; (10) material; (11) inner chamber.
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data from the load sensor. First, air velocity was used as a single-

factor variable for the experimental design. The load sensor

measurement data were obtained continuously under a constant

load of 500 g with a sampling interval of 1 s and duration of 300 s,

load sensor substrate temperature of 25°C, tray position of 80 mm,

and air velocity varying in the range of 4–16 m/s. The load sensor

substrate temperature was set to a zero point temperature of 25°C.

The zero point temperature of the load sensor refers to the

temperature at which the output voltage of the load sensor is zero

at no load, and the weighing value at this temperature is the

standard value. In the experiment with load sensor substrate

temperature as the single factor variable, the fan stopped running,

the constant load was 500 g, the tray position was 80 mm, the

temperature varied in the range of 25°C–70°C, the sampling interval

was 10 s, and the sampling duration was 80 min. In the experiment

with tray position as the single factor variable, the constant load was

500 g, the load sensor substrate temperature was 25°C, and the air

velocity was set at 16 m/s. The load sensor data were collected at 80,

120, and 160 mm tray positions with a sampling interval of 1 s and a

sampling duration of 180 s.

2.2.3 Experimental design for multi-sensor
data acquisition

The data acquisition experiments were carried out under different

drying environments to thoroughly investigate the correlation

between the input variables and the weight of the material and

improve the prediction model’s accuracy. The temperature setting

range in the drying of agricultural products is usually 40°C–70°C. The

maximum air velocity of the outer air duct in the air-impingement

dryer is 16 m/s. The tray position is determined by the structure of the

rack, which has three layers in total, and the distances between the tray

and the nozzle are 80, 120, and 160 mm, respectively. In summary, the

data acquisition experiments were carried out at different

temperatures (40°C, 50°C, 60°C, and 70°C), different air velocities

(4, 8, 12, and 16 m/s), and different tray positions (80, 120, and

160 mm). Each group drying experiment randomly obtained 10

groups of data, and each group of data sampling interval was

greater than 5 minutes, thus obtaining a total of 480 groups of data
Frontiers in Plant Science 05
(4 × 4 × 3 × 10). Each sampling time lasted 8 s, and the sampling

frequency was 8 Hz.

Data acquisition experiments were conducted during the

cantaloupe slice drying experiment. Fresh, undamaged cantaloupe

was peeled, deseeded, and sliced into 30 × 50 × 7 mm slices. For

each set of experiments, 1000 g of cantaloupe slices were weighed

and placed on the tray. The cantaloupe slices were removed from

the tray, weighed immediately after each data acquisition, and

quickly returned to the tray. The weight of the cantaloupe slices

was the output value of this dataset.
2.3 Prediction model of moisture content
online detection

2.3.1 Convolutional neural network
CNN is a deep learning model or a multilayer perceptron

similar to artificial neural network. In this study, the CNN was

used for regression analysis to mine potential information in the

raw monitoring data of load sensor, air velocity sensor, temperature

sensor, and tray position to achieve weight prediction and complete

the study of moisture content online detection.

The CNN used in this study consisted of the input layer,

convolutional layer, batch normalization layer, average pooling

layer, fully connected layer, and output layer, and its structure is

shown in Figure 4. The function of the input layer was mainly to

normalize the input data, which can improve the model’s

generalization ability and increase the training speed (Hu et al.,

2023). The convolutional layer uses convolutional operations to

filter out redundant information in the original data, enhance the

information related to the output, and achieve automatic feature

extraction (Wang et al., 2022). The convolution kernel size was set

to 3 × 3, the convolution mode was set to “same,” and the step size

was set to 1. The number of convolution kernels needed to be

adapted to the structure of the training data, which was determined

by a trial-and-error method based on the performance evaluation

index of the model (Ma et al., 2023). The activation function in the

neural network structure can make a nonlinear mapping of the
FIGURE 3

Multi-sensor data acquisition system.
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output, which is particularly important for the accuracy of the

prediction model (Guan et al., 2022).

The CNN model was trained using the rectified linear unit

(ReLU) function, the hyperbolic tangent (tanh) function, and the

sigmoid function to select the best activation function. The most

appropriate activation function was selected based on the model

performance evaluation index. The average pooling layer was

located after the convolutional layer, and its function was to

accomplish the parameter degradation and maintain translation

invariant properties, which can be achieved to reduce the feature

map while preserving the critical features in the input to some

extent (Zhong et al., 2023). The size of the average pooling matrix

was set to 2, and the step size was set to 2. Adding a batch

normalization layer between the convolutional layer and the

average pooling layer allowed the inputs of each neural network

layer to maintain the same distribution during neural network

training, thus reducing the internal covariate shift, improving the

gradient mobility, and achieving the regularization effect (Tan et al.,

2021). A dropout layer was set before the fully connected layer. In

the dropout layer, some input elements were randomly changed to

zero with a probability set to 0.05. The dropout layer randomly

rendered 5% of the elements non-functional, thus avoiding

overfitting (Zhao et al., 2023). The fully connected layer flattened

the feature map into a one-dimensional vector for final feature

integration and output prediction. The role of the output layer was

to output the predicted result, which in this study was the real

weight of the material.

A total of 480 sets of data were randomly sorted, and 70% of the

data (336 sets) were used as the training set, 15% of the data (72 sets)

were used as the validation set, and 15% of the data (72 sets) were

used as the test set. During the training of the CNN, the network

parameters were updated according to the loss function for each

training batch, and the batch size was set to 16. The training set had

336 sets of data, and one iteration was completed for every 21 updates

of the network parameters. The maximum number of iterations was

set to 50. The root mean square error (RMSE) between the real values

and the predicted values of the validation set was used as the loss

function, which was calculated by Equation 2. Model training was

performed in a Legion Y7000P computer from Lenovo with

MATLAB R2021a software.
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Loss = RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(byi − yi)
2

n

s
  (2)

Where n is the number of samples in the validation set, ŷi and yi
are the predicted value and real value of the ith sample.

2.3.2 Evaluation of model performance
The performance of the prediction model was evaluated in

terms of the RMSE of the training set (RMSETr), validation set

(RMSEVe), and test set (RMSETe), and the coefficients of

determination (R2) of the training set (R2Tr), validation set (R2Ve),

and test set (R2
Te). RMSE and R2 represent the deviation and degree

of fitting between the real and predicted values, respectively. RMSE

focuses on the magnitude of the error, with smaller values

indicating greater accuracy of the model. R2 focuses on the ability

of the model to explain the variation in the data, with values closer

to 1 indicating a better fit of the model. These evaluation parameters

were calculated by Equation 3 and Equation 4 (Wang et al., 2023):

R2
Tr ,R

2
Ve,R

2
Te = 1 − on

i=1(cyi−yi)2
on

i=1(yi − ym)
2 (3)

RMSETr, RMSEVe, RMSETe =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(byi − yi)
2

n

s
  (4)

Where n is the number of samples in the corresponding set

(training set, validation set, and test set), ŷi and yi are the predicted

value and real value of the ith sample, and ym is the mean value of all

the samples.
2.4 System validation experiments

MATLAB software was used for data processing, model

prediction, and real-time display of moisture content in the

moisture content online detection system. First, the initial weight

and the initial moisture content of the material were set, and the

initial moisture content was measured by the oven method (Yang

et al., 2023b). The sensor cannot detect the tray position and is a

fixed value. Thus, this value also needs to be input into the software.
FIGURE 4

Structure of CNN.
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MATLAB processed the data obtained from the sensors to meet the

format requirements of the predictive model inputs. The processed

data were then fed into a trained prediction model, which outputted

the real weight of the material. The moisture content of the material

was calculated according to the initial weight and the initial

moisture content and displayed in real time.

The cantaloupe slice drying experiment in Section 2.2.3 was

repeated. The initial weight of cantaloupe slices was 1000 g, and the

initial moisture content was 90.19% (wet basis). The set values of air

velocity, temperature and tray position were randomized into five

experimental groups. The experimental design is shown in Table 1.

Where temperature refers to the air temperature in the inner

chamber, measured by the temperature sensor in Figure 2. Five

sets of experiments were conducted sequentially under the same set

of material conditions, with each set lasting 30 minutes. Three

sensors, including a load sensor, an air velocity sensor, and a

temperature sensor acquired data once at a random time during

each set of test cycles.
3 Results and discussion

3.1 Results and analyses of single-
factor experiment

Figure 5A shows the experimental results with air velocity as a

single factor variable. The monitoring signal of the load sensor

fluctuated greatly with more noise, which was due to the unstable

impact force of the airflow on the tray caused by the inhomogeneity of

the airflow. The vibration generated by the equipment operation made

the load sensor unable to acquire the data in a stable state. The

measured values of the load sensor in different air velocities had a

significant difference, and the variation range of the measured values

was from 519.34 g to 579.78 g, with a variation of 60.44 g. The wind

direction was perpendicular to the tray’s upper surface; thus, the load

sensor’s measured values showed a positive relationship with the air

velocity and the relationship had a strong transient nature.

Figure 5B shows the experimental results with temperature as a

single factor variable. The fluctuation range of the load sensor

measurement value was 500.03–506.15 g with a fluctuation

amplitude of 6.12 g in the temperature variation range of 26.26°C–

65.76°C. The monitoring value of the load sensor and the

temperature of the load sensor elastic substrate at a fixed load

showed a positive relationship. The load sensor used for moisture
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content detection was a resistance strain gauge pressure sensor.

Temperature can cause errors and noise in the measured values of

the load sensor by affecting the resistance strain gauges’ resistance

value and the elastic substrate’s elastic modulus (Burnos and Rys,

2017). The effect of temperature on the measured value of weight

sensors also had significant relationships with the load. Wang et al.

(2014) calibrated the measured values of weight sensors at different

temperature sections and load ranges, effectively avoiding the

influence of temperature on the detection of the load sensor.

Figure 5C shows the experiment results with the tray position as

a single factor variable. Under a constant load, the tray position

significantly affected the load sensor’s measurement value. The

fluctuation range of the load sensor measurements at the three

tray positions was 521.44–578.01 g, with a fluctuation range of

56.57 g. The smaller the distance between the tray and the nozzles,

the more concentrated the airflow from the nozzles, and the greater

the force exerted on the tray, which in turn increased the load

sensor measurements. The three layers of the tray were arranged

vertically so that the tray position did not affect the measured value

of the load sensor when the fan was stopped. Therefore, the tray

position’s influence on the load sensor’s measured value was very

much related to the air velocity.
3.2 Results and analyses of CNN training

3.2.1 Selection of activation function and number
of convolution kernels

The activation function and the number of convolutional kernels in

the CNN needed to be determined by trial-and-error method based on

the model performance index. The model performance test with

different activation functions and number of convolution kernels was

performed with the same training, validation, and test sets. The test

results are shown in Table 2. Table 2 shows that the model

performance of the ReLU activation function was significantly better

than that of the tanh and sigmoid functions. Li et al. (2022c) had

similar findings when applying CNNs to predictive modeling. At the

same activation function number (ReLU), a slight difference was found

in the model performance for different numbers of convolutional

kernels. The best model performance (R2 closest to 1 and minimum

RMSE) for the training, validation, and test sets occurred in the fourth,

fifth, and fourth groups, respectively. The test set did not participate in

the training process of the CNN, and its model performance was more

reliable. The results of the test set of the fifth group were significantly
TABLE 1 The design of system validation experiments.

Factor
Group

1 2 3 4 5

Air velocity (m/s) 12.6 6.3 8.4 14.1 9.7

Tray position (mm) 140 100 140 100 60

Temperature (°C) 68 43 50 56 63
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worse than those of the fourth group. Taken together, the best structure

of the CNN was the fourth group, the best activation function was

ReLU, and the ideal number of convolutional kernels was (16, 32).

3.2.2 Variable learning rate optimization
After the optimal activation function and number of

convolution kernels were determined, the RMSE of the model

was still high. An observation of the loss function curve during

the training process of the CNN showed that the loss function

showed regular oscillations at the late stage of training, but no

decreasing trend occurred. This is the phenomenon of gradient

disappearance caused by a too-large learning rate in the late training

period (Noppitak and Surinta, 2022). However, if the learning rate

was reduced, then the training time would be much longer, and

obtaining the global optimum would be difficult. This study set the

learning rate schedule to piecewise mode, which can adopt different

learning rates in different training stages. The initial learning rate

was set to 0.0001, the learning rate drop period was set to 50, the

learning rate drop factor was set to 0.25, and the maximum number

of iterations was set to 200. The loss function curve with variable

learning rate optimization was shown in Figure 6. The maximum

number of iterations was 200, the learning rate decreased every 50

iterations, and the loss function was updated 21 times per iteration

(number of training set samples/batch size). The loss function was

updated a total of 4200 times. In Figure 6, the loss function

oscillation amplitude decreased with each decrease in the learning
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rate, which was due to gradient reduction caused by the decrease in

the iteration step size. Every time the learning rate decreased, the

loss function decreased significantly, and the whole training process

showed a decreasing trend, which indicates that the iterative

gradient was restored and the training results were constantly

approaching the optimal value. The R2 and RMSE of the model

test set were 0.9989 and 6.9, respectively, and the prediction results

of the model test set are shown in Figure 7. Figures 7A, B show the

fitting degree and prediction error of the predicted value to the real

value, respectively. The maximum error was 0.042, and 85% of the

test data had a prediction error of less than 0.02. In conclusion, the

prediction model with variable learning rate optimization can more

accurately predict the material weight.
3.3 Model performance comparison

The CNNmodel is more complex than the other two prediction

models, and the combination with hardware is much more difficult.

Therefore, the performance of the classical linear and nonlinear

regression models PLSR and SSVM was tested to prevent model

performance excess. Figures 8A–C show scatterplots of real and

predicted values for the PLSR, SVR, and CNN models. The solid

line is a regression line that aids in analyzing the degree of deviation

of the predicted values relative to the real values. The closer the

scatter is to the regression line, the better the fit of the model.
BA

C

FIGURE 5

The results of single-factor experiment. (A–C) are the experimental results with air velocity, temperature and tray position as single
factors, respectively.
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Figure 8C shows that the sample points of the CNN model were

centrally distributed near the regression line, and the model had the

best fit. In contrast, the PLSR and SVR model sample points were

more dispersed, not exactly distributed near the regression line, and

shifted relative to the regression line. The RMSE of the test set for

the two models were 47.9 and 39.8, respectively, which cannot meet

the accuracy requirements of moisture content online detection.
3.4 Validation test results

The moisture content detection based on the weighing method

defaulted to the same initial moisture content of the same batch of

material. A deviation occurred between the moisture content of the

material used for the oven test and the drying experiment, which

will inevitably affect the accuracy of moisture content detection. The

validation test results are shown in Table 3. The RMSE of the five

validation experiments was 1.47, which indicated that the error

caused by defaulting to the same initial moisture content of the

same batch of materials was within the acceptable range. The results

of the five validation experiments showed that the fit of the moisture

content detection model based on the CNN established in this study

was acceptable, and the moisture content online detection system

can accurately detect the moisture content of materials in the

drying process.
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4 Conclusion

In this study, a multi-sensor data acquisition platform was set

up, and a CNN prediction model was established with raw
TABLE 2 Test results of different activation function and number of convolution kernels (shaded group is the optimal structure; bold font indicates
the optimal solution).

Group
Activation
function

Number of
convolution

kernels

Training set Validation set Test set

R2 RMSE R2 RMSE R2 RMSE

1

Relu

8, 16 0.9931 17.3 0.9860 31.4 0.9734 24.7

2 8, 32 0.9910 19.8 0.9888 22.1 0.9823 25.6

3 8, 64 0.9911 19.7 0.9892 21.7 0.9829 25.1

4 16, 32 0.9957 13.8 0.9876 23.2 0.9913 17.9

5 16, 64 0.9948 15.1 0.9908 20.0 0.9800 27.2

6 32, 64 0.9926 18.0 0.9867 24.1 0.9769 29.2

7

Tanh

8, 16 0.9314 54.7 0.9096 57.8 0.8710 75.0

8 8, 32 0.8904 69.2 0.8770 73.3 0.8795 66.8

9 8, 64 0.8892 53.4 0.8836 58.2 0.8854 58.0

10 16, 32 0.9439 49.5 0.8566 79.1 0.8625 71.3

11 16, 64 0.9377 40.9 0.9299 41.5 0.8947 56.8

12 32, 64 0.9248 57.3 0.8945 62.5 0.8891 69.5

13

Sigmoid

8, 16 0.9391 51.5 0.9229 53.4 0.9014 65.6

14 8, 32 0.9806 29.1 0.9749 33.1 0.9718 32.3

15 8, 64 0.9791 30.2 0.9644 39.4 0.9512 42.5

16 16, 32 0.9388 51.7 0.9214 53.9 0.8984 66.6

17 16, 64 0.9676 37.6 0.9630 40.2 0.9575 39.6

18 32, 64 0.9858 24.9 0.9714 35.3 0.9688 34.0
FIGURE 6

Loss function curve with variable learning rate optimization.
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monitoring data from the load sensor, air velocity sensor,

temperature sensor and the tray position as inputs and the real

weight of materials as outputs. The optimal activation function and

number of convolutional kernels for the prediction model were

selected. The optimal activation function was ReLU, and the

optimal number of convolutional kernels was (16, 32). The

training process of the CNN was optimized with a variable

learning rate to optimize the model performance further. The

final performance of the CNN prediction model was satisfactory

(with R2 and RMSE of 0.9989 and 6.9, respectively) and was

significantly better than that of the traditional linear PLSA model

(with R2 and RMSE of 0.9489 and 47.9, respectively) and the
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nonlinear SVR model (with R2 and RMSE of 0.9648 and 39.8,

respectively). A moisture content online detection system was

constructed based on the CNN prediction model. Validation

experiments were carried out, and the R2 and RMSE of the

validation experiments were 0.9901 and 1.47, respectively. The

validation experiments showed that the CNN prediction model

was fully applicable to moisture content online detection, and the

detection system based on this model fully met the accuracy

requirements of moisture content online detection.

In the moisture content online detection system proposed in this

study, the detection of initial moisture content still has errors. Future

research can use more advanced and convenient technology to detect
BA

C

FIGURE 8

Scatterplot of PLSR (A), SVM (B), and CNN (C) models.
A B

FIGURE 7

The prediction results of the CNN model test set. (A) and (B) are plots of fitting effects and prediction errors, in that order.
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the initial moisture content of materials quickly and effectively. In

addition, this system was built with computer as the host computer.

Scholars can compile the detection model into the microcontroller in

future research, which is conducive to the application and promotion

of the detection system in actual production.

Overall, this study established a moisture content online

detection system based on multi-sensor fusion and CNN

prediction model, realizing real-time moisture content detection

during agricultural products’ drying process. This study will provide

technical support for further optimization of the drying process and

will also promote the intelligent development of agricultural

product drying equipment.
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