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Breast cancer (BC) is a heterogenous disease, with prognosis and treatment
options depending on Estrogen, Progesterone receptor, and Human Epidermal
Growth Factor Receptor-2 (HER-2) status. HER-2 negative, endocrine-
independent BC presents a significant clinical challenge with limited treatment
options. To date, promising strategies like immune checkpoint inhibitors have not
yielded breakthroughs in patient prognosis. Despite being considered archaic,
agents derived from natural sources, mainly plants, remain backbone of current
treatment. In this context, we critically analyze novel naturally-derived drug
candidates, elucidate their intricate mechanisms of action, and evaluate their
pre-clinical in vitro and in vivo activity in endocrine-independent HER-2 negative
BC. Since pre-clinical research success often does not directly correlate with
drug approval, we focus on ongoing clinical trials to uncover current trends.
Finally, we demonstrate the potential of combining cutting-edge technologies,
such as antibody-drug conjugates or nanomedicine, with naturally-derived
agents, offering new opportunities that utilize both traditional cytotoxic agents
and new metabolites.
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1 Introduction

Breast cancer (BC) in females has emerged as the most frequently diagnosed cancer,
comprising almost 12% of all new cases. Among women alone, BC resulted in nearly
650,000 deaths globally in 2020 (Caswell-Jin et al., 2018; Sung et al., 2021). BC subtypes
differ in terms of prognosis and treatment strategies. Depending on the expression of the
estrogen receptor (ER), progesterone receptor (PR), Ki67 antigen, and Human epidermal
growth factor receptor-2 (HER-2), BC can be divided into Luminal A&B (70% for HER-2
negative cases), HER-2 positive (around 15% including ER/PR + HER-2+ BC), and triple
negative (TNBC) (10%–15%). Around 30% of BC patients experience metastatic disease
during follow up (20%–30%) or de novo (5%–10%). BCmortality rates vary by subtype, with
TNBC at around 30%, luminal B at 20%–25%, HER-2-positive at 20%, and luminal A at
10%–15% (Hennigs et al., 2016; André et al., 2019; Gnant et al., 2022;Wynn and Tang, 2022;
Hassan and Ates-Alagoz, 2023). Patients with TNBC have the shortest survival. In contrary,
HER-2 negative Luminal BC carries a good prognosis. Patients with Luminal BC, who have
developed resistance to hormonal agents face an unfavorable situation and the course of
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TABLE 1 Drugs derived from natural resources used in the treatment of TNBC and hormonal-resistant HER-2 negative BC.

Drug Source Current
production
method

Formula Mechanism of
action

Side effects Indication -
examples

Ref.

Group Name Tradename Kingdom Species

Taxanes Paclitaxel Taxol Plant (shrubs
and trees) and
fungi

Taxus brevifolia Nutt.,
Taxaceae (bark), endophytic
fungi: Taxomyces andreanae
Strobel, A. Stierle, D. Stierle &
W.M. Hess 1993, Meruliaceae,
Pestalotiopsis microspora,
Pestalotiopsidaceae,
Tubercularia sp., Nectriaceae,
Phyllosticta citricarpa
(McAlpine) Aa 1973,
Phyllostictaceae

Semi-synthesis C47H51NO14 Prevents microtubule
depolymerization
leading to cell cycle
arrest

Allergic reaction Breast cancer Dogra and
Kumar (2023)

Bone marrow
suppression

Ovarian cancer

Peripheral
neurotoxicity

Esophageal and
gastric cancer

Liver toxicity Pancreatic cancer

Head and neck
cancer

Lung cancer

nanoparticle
albumin-bound
paclitaxel

Abraxane Nanoform of paclitaxel Albumin bound paclitaxel Neutropenia Breast cancer

Peripheral
neuropathy

Pancreatic cancer

Arthralgia/myalgia

Gastrointestinal
disorders

Docetaxel Taxotere Plant (shrubs
and trees)

Taxus baccata L., Taxaceae Chemical synthesis C43H53NO14 Alopecia Breast cancer

Liver toxicity Prostate cancer

Bone marrow
suppression

Lung cancer

Peripheral
neurotoxicity

Stomach cancer

Fluid retention

Vinca alcaloids Vinorelbine
tartrate

Navelbine Plant
(flowering
plant)

Catharanthus roseus (L.) G.
Don, Apocynaceae

Semi-synthesis C45H54N4O8 Prevents microtubule
polymerization

Bone marrow
toxicity

Breast cancer Dogra and
Kumar (2023)

Peripheral sensory
neuropathy

Lung cancer

Alopecia Lymphomas

Gastrointestinal
disorders

(Continued on following page)
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TABLE 1 (Continued) Drugs derived from natural resources used in the treatment of TNBC and hormonal-resistant HER-2 negative BC.

Drug Source Current
production
method

Formula Mechanism of
action

Side effects Indication -
examples

Ref.

Group Name Tradename Kingdom Species

Camptothecin
analogues

Irinotecan
(CPT-11)

Camptosar Plant (shrubs
and trees)

Camptotheca acuminata
Decne., Nyssaceae

Semi-synthesis C33H38N4O6 Topoisomerase I
inhibitor

Gastrointestinal
toxicity including
diarrhoea

Colorectal cancer Modi et al.
(2020), Pullaiah
and Raveendran
(2020), Rugo
et al. (2020)Bone marrow

suppression
Pancreatic cancer

Gastric cancer

SN-38 aTrodelvy As above Synthetic analogue
of CPT1

C22H20N2O5
aNeutropenia Breast cancer

Diarrhea

Nausea and
vomiting

Urothelial cancer

Allergic reactions

Deruxtecan **Enhertu C52H56FN9O13 **Lung interstitial
disease/
pneumonitis

Breast cancer

Neutropenia Gastric cancer

LVEF decrease

Anthracyclines Doxorubicin
hydrochloride

Adriamycin Bacterium Streptomyces
peucetius ssp. caesius,
Streptomycetaceae

Semi-synthesis C27H29NO11 Topoisomerase Cardiac toxicity Breast cancer Aloss and
Hamar (2023),
Kciuk et al.
(2023)

Bone marrow
suppression

Leukemias

Alopecia Lymphomas

Nausea and
vomiting

Sarcomas

Liposomal
doxorubicin
hudrochloride

Myocet Liposomal form of doxorubicin Liposomal
doxorubicin

II inhibition Bone marrow
suppression

Breast cancer

Mucositis Ovarian cancer

Cardiac toxicity Kaposi’s sarcoma

Epirubicin
hydrochloride

Ellence Bacterium Streptomyces peucetius,
Streptomycetaceae

Chemical semi-
synthesis from
daunorubicin

C27H29NO11 Generation of free
radicals

Bone marrow
suppression

Breast cancer

Mucositis Lymphomas

Alopecia Sarcomas

Cardiac toxicity

(Continued on following page)
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TABLE 1 (Continued) Drugs derived from natural resources used in the treatment of TNBC and hormonal-resistant HER-2 negative BC.

Drug Source Current
production
method

Formula Mechanism of
action

Side effects Indication -
examples

Ref.

Group Name Tradename Kingdom Species

Podophyllotoxin
derivative

Etoposide Vepesid Plant
(flowering
plants)

Podophyllum peltatum L.,
Berberidaceae (root)

Semi-synthesis C29H32O13 Topoisomerase II
inhibitor

Myelosuppression Lung cancer Dogra and
Kumar (2023)

Nausea and
vomiting

Testicular cancer

Alopecia Leukemias

Secondary
neoplasms

Lymphomas

Neuroblastoma

Polyketides
Epothilone
derivative

Ixabepilone Ixempra Bacterium
(Myco-
bacterium)

Sorangium cellulosum,
Polyangiaceae

Semi-synthesis C27H42N2O5S Prevents microtubule
depolymerization
leading to cell cycle
arrest

Peripheral sensory
neuropathy

Breast cancer Ibrahim (2021)

Fatigue

Asthenia/
myasthenia

Alopecia

Nausea and
vomiting

Hand-foot
syndrome

Myelosupression

Macrocyclic
ketone analogue

Eribulin
mesylate

Halaven Animal
(marine
sponge)

Halichondria okadai Kadota,
1922, Halichondriidae

Synthetic analogue
of halichondrin B

C41H63NO14S Prevents microtubule
polymerization

Bone marrow
suppression

Breast cancer Sekar et al.
(2022)

Peripheral
neuropathy

Liposarcoma

Gastrointestinal
toxicity

Mucositis

adata for sacituzumab govitecan-hziy, ** data for Fam-trastuzumab deruxtecan-nxki Abbreviations: 1CPT, camptothecin.
bLVEF, left ventricular ejection fraction.
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such endocrine-resistant BC is more like TNBC (André et al., 2019;
Hassan and Ates-Alagoz, 2023). This cluster of endocrine-
independent HER-2 negative BCs represents an unresolved
clinical challenge, characterized by a dearth of treatment
alternatives based on chemotherapy agents (Cardoso et al., 2020;
Cortes et al., 2020; Modi et al., 2020; Bardia et al., 2021; Corti et al.,
2021; Michalak and Püsküllüoğlu, 2022; Püsküllüoğlu andMichalak,
2022; Siddiqui et al., 2022). Majority of currently used drugs serving
as a backbone to the most effective approved options are naturally
derived (Table 1, based on product characteristics, accessed on 5th
September 2023) (Cortes et al., 2020; Modi et al., 2020; Pullaiah and
Raveendran, 2020; Rugo et al., 2020; Bardia et al., 2021; Corti et al.,
2021; Ibrahim, 2021; Michalak and Püsküllüoğlu, 2022;
Püsküllüoğlu and Michalak, 2022; Sekar et al., 2022; Siddiqui
et al., 2022; Aloss and Hamar, 2023; Dogra and Kumar, 2023;
Kciuk et al., 2023).

Medications such as check point inhibitors or targeted drugs
have not yielded the anticipated breakthrough in therapy, while
newly registered antibody-drug conjugates (ADC) still rely on

chemotherapy agents derived from living organisms (Cortes
et al., 2020; Modi et al., 2020; Pullaiah and Raveendran, 2020;
Rugo et al., 2020; Bardia et al., 2021; Corti et al., 2021; Ibrahim,
2021; Michalak and Püsküllüoğlu, 2022; Püsküllüoğlu andMichalak,
2022; Sekar et al., 2022; Siddiqui et al., 2022; Aloss and Hamar, 2023;
Dogra and Kumar, 2023; Kciuk et al., 2023).

In the recent years, there has been a significant advancement in
the development of novel natural-derived drug candidates aimed at
tackling the unmet challenges in treating TNBC and HER-2
negative, endocrine-resistant BC. The pathway from metabolite
identification to drug registration (Figure 1) is a multistep and
long process. Majority of metabolites showing potential in pre-
clinical setting will fail to meet endpoints in clinical trials. In this
review we aim to show that the recent development in this field can
be attributed to each step of this translational process: from bench to
bedside (Berdigaliyev and Aljofan, 2020; Choudhari et al., 2020;
Kaushik et al., 2021). We present natural resources that can be a
source of biologically active metabolites and the significant pre-
clinical activities exhibited by these metabolites, offering insights

FIGURE 1
Bench-to-bedside journey: natural metabolites for endocrine-independent HER-2 negative breast cancer treatment (Berdigaliyev and Aljofan,
2020; Choudhari et al., 2020; Kaushik et al., 2021) (created with BioRender).
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into their intricate mechanisms suggested in recently published
studies. Moreover, we identify trends in ongoing clinical trials
that incorporate naturally-derived drugs. We also shed light on
the potential role of cutting-edge technologies like antibody-drug
conjugates or nanomedicine in diminishing the toxicity and
improving efficacy of old and newly discovered naturally-derived
agents making predictions about future directions.

2 The current paradigms in
the treatment

2.1 General treatment guidelines

Systemic treatment in TNBC radical setting is recommended for
tumors larger than 5 mm or node-positive disease. Preferred
regimens involve anthracycline-based and taxane-based therapies,
capecitabine and, in some cases, novel agents in the (neo)adjuvant
setting (NCCN Clinical Practice Guidelines in Oncology, 2023;
Triple-negative Breast Cancer, 2023).

2.2 Single agent schemes

In patients with metastatic endocrine-independent HER-2-
negative BC with minor cancer-related symptoms and with a
limited tumor burden, sequentially used single-agent schemes
are preferred (Cardoso et al., 2020; NCCN Clinical Practice
Guidelines in Oncology, 2023). The order of agents is not
established and depends on numerous factors, for example,
previous treatment received in adjuvant and metastatic setting,
the risk of cross-resistance, Breast Cancer gene 1/2 (BRCA1/2)
mutation status, or comorbidities. Typical options include
(Cardoso et al., 2020; NCCN Clinical Practice Guidelines in
Oncology, 2023; ER-positive HER2-negative, Breast Cancer,
2023; Triple-negative Breast Cancer, 2023):

• Taxanes: docetaxel, paclitaxel or nanoparticle albumin-bound
(nab)paclitaxel.

• Anthracyclines: doxorubicin hydrochloride (doxorubicin) or
its pegylated, liposomal form; epirubicin hydrochloride
(epirubicin).

• Capecitabine (an oral prodrug of fluorouracil).
• Vinca alkaloids: vinorelbine tartrate (vinorelbine) as
intravenous infusion or oral capsules.

• Gemcitabine hydrochloride (gemcitabine).
• Eribulin mesylate.
• Etoposide as oral form.
• Platinum agents: cisplatin, carboplatin.
• Ixabepilone, not available in Europe.

Other agents used include:

• The Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib
in BRCA1/2 mutated patients.

• ADC Fam-trastuzumab deruxtecan-nxki (T-DXd) for
pretreated patients with HER-2 low status (1+ or 2+ in
immunohistochemistry and in situ hybridization negative

status) as per the Destiny-Breast04 study in ER/PR-positive
and ER/PR-negative BC (Modi et al., 2020).

• ADC sacituzumab govitecan-hziy (SG) for metastatic and
pretreated HER-2 negative ER/PR-positive BC as per the
TROPiCS-02 study (Rugo et al., 2020) and for TNBC as
per the ASCENT trial (Bardia et al., 2021).

• Pembrolizumab, anti-Programmed cell death protein 1 (PD1)
monoclonal antibody (mAb) as per the KEYNOTE 355 study
in TNBC in combination with chemotherapy (Cortes
et al., 2020).

2.3 Combination regiments

For patients who require combination regimens due to rapidly
progressing disease, symptoms or large tumor burden, there are
numerous drug combinations available (Cardoso et al., 2020;
NCCN Clinical Practice Guidelines in Oncology, 2023; ER-
positive HER2-negative, Breast Cancer, 2023; Triple-negative
Breast Cancer, 2023):

• Anthracycline-based schemes (with taxanes,
cyclophosphamide and fluorouracil).

• Taxane-based regimens (with gemcitabine, capecitabine).
• Platinum-based regimens (with taxanes, gemcitabine or
vinorelbine).

• Ixabepilone with capecitabine.
• An old scheme known as CMF (cyclophosphamide,
methotrexate and fluorouracil).

2.4 Naturally-derived agents

Numerous of the above-mentioned drugs have been derived
from natural sources as secondary metabolites (Michalak and
Püsküllüoğlu, 2022; Püsküllüoğlu and Michalak, 2022; Siddiqui
et al., 2022). ADC such as T-DXd and SG, used in the discussed
indication, can also be included in this group. The drugs conjugated
with mAbs (trastuzumab directed against HER-2 for T-DXd and
sacituzumab directed against Trophoblast cell-surface antigen
2 [TROP-2] for SG) are camptothecin derivatives (deruxtecan for
T-DXd and SN-38 for SG) (Corti et al., 2021).

There is a long history of folk medicine with the usage of
species being a source for anticancer naturally-derived agents. For
example, the Himalayan yew (Taxus wallichiana Zucc., Taxaceae)
bark and leaves are used in traditional medicine for steam baths
(rheumatism), paste application (fractures, headaches), and
medicinal hair oils. In Pakistan, stem decoction treats
tuberculosis. Unani medicine uses them for Zarnab, addressing
various conditions, while Ayurveda employs young shoots for a
tincture treating headache, feeble pulse, giddiness, diarrhea, and
severe biliousness (Juyal et al., 2014). Within the Ayurvedic
medicinal system, various metabolites of periwinkle
(Catharanthus roseus (L.) G. Don, Apocynaceae) are employed
in traditional herbal medicine to address a range of health
conditions, including diabetes, cancer, stomach disorders, liver,
kidney and cardiovascular diseases (Kumar et al., 2022). The
extract containing podophyllotoxin has been historically noted
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for its effectiveness as a laxative and as a treatment for diverse
medical conditions, including tuberculosis, gonorrhea, menstrual
disorders, dropsy, psoriasis, syphilis or venereal warts (Shah
et al., 2021).

3 Secondary metabolites as
anticancer agents

Research into natural metabolites with anticancer properties
began in the 1960s and is still ongoing (Michalak and Püsküllüoğlu,
2022; Püsküllüoğlu and Michalak, 2022). Extracts obtained from
plants, algae, fungi and lichens are a challenge because they are
multi-component mixtures of active, partially active and inactive
substances. Their composition may vary depending on the plant raw
materials used; parts used (aerial parts, roots, bark, etc.); form of the
biomass–fresh, dried, fermented; area, season, date, time of
harvesting, etc., and the method of preparing these extracts
(Heinrich et al., 2022) imitations can also include restricted
availability of natural raw materials; structural complexity of
secondary metabolites; stability concerns; purification, isolation
and characterization difficulties; synthetic limitations or
formulation hurdles. In order to ensure the reproducibility and
interpretation of the results of pharmacological and clinical tests,
Heinrich et al. (2022) proposed recommendations regarding the
reporting of plant material and its method (stages) of processing.

3.1 The main groups of secondary
metabolites

The main groups of secondary metabolites reported to have
anticancer properties in endocrine-independent HER-2-negative
breast cancer are phenolics, alkaloids, and terpenoids (Raman
et al., 2018; Ding et al., 2020; Lee et al., 2020; Mazzei et al.,
2020; Maungchanburi et al., 2021; Noh et al., 2021; Lin et al.,
2022; Qi et al., 2022; Sancha et al., 2022; Youssef et al., 2022;
Thilagavathi et al., 2023). Phenolics include simple phenols
(phenolic acids and coumarins) and polyphenols (flavonoids
and non-flavonoids such as tannins, lignans, and stilbenes).
Examples of alkaloids, low-molecular-weight nitrogenous
metabolites, are atropine, caffeine, capsaicin, cocaine, daturin,
hiosciamin, lysergic acid, nicotine, strychnine, quinine (Alamgir,
2018; Thilagavathi et al., 2023). Terpenoids or terpenes, the major
metabolites of essential oils, are classified as hemiterpenes (C5),
monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20),
sesterterpenes (C25), triterpenes (C30), and tetraterpenes/
carotenoids. This group of secondary metabolites includes
aromatic oils, carotenoids, resins, steroids, waxes, and others
(Alamgir, 2018; Thilagavathi et al., 2023).

3.2 Optimizing anticancer metabolite
extraction

The key stage of research is the selection of biomass, which is
a potential source of these anticancer metabolites. Subsequently,
appropriate extraction techniques should be used to isolate

metabolites of interest. In addition to simple extraction
techniques, such as mixing/shaking, maceration or continuous
extraction in the Soxhlet apparatus, novel extraction techniques,
such as supercritical fluid extraction, sonication, ultrasound- and
microwave-assisted extraction (Shin et al., 2017; Raman et al.,
2018; Ding et al., 2020; Lee et al., 2020; Mazzei et al., 2020; Noh
et al., 2021; Youssef et al., 2022) are in demand. The extraction
process is usually carried out at room temperature in order to
protect biologically active metabolites from degradation. Extracts
derived from the biomass typically provide low yields of bioactive
chemicals, which makes their isolation and purification time-
consuming and expensive (Mazzei et al., 2020; Lin et al., 2022).
Therefore, the selection of the appropriate extraction process,
experimental conditions, and solvent seems to be of paramount
importance. Finally, a detailed characterization of the obtained
extract, which is a concentrate of biologically active metabolites,
is required, or the isolation of metabolites from the extract
showing desired anticancer properties specific to a given
cancer type. The overriding goal is to search for extracts rich
in bioactive substances that have an inhibitory effect on the
proliferation and viability of cancer cells, while being
comparatively safe for normal cells (Raman et al., 2018).
Therefore, further fractionation of the extract is needed using
the column chromatography separation. The purity of the active
metabolites can be confirmed by a High-Performance Liquid
Chromatography (HPLC). For the identification of different
metabolites within an obtained fraction, gas chromatography
coupled with mass analysis (GC-MS) can be applied. The
functional groups in the isolated metabolites can be
determined by Fourier Transform Infrared (FT-IR)
Spectroscopy and the structure can be identified using Proton
Nuclear Magnetic Resonance Spectroscopy (1H NMR) and other
spectroscopic data (Maungchanburi et al., 2021; Heinrich et al.,
2022; Qi et al., 2022; Sancha et al., 2022; Youssef et al., 2022).

The conducted research shows that not all extracts/extracted
metabolites are cytotoxic to tested BC cell lines (Supplementary
Table S1). For example, alliacane sesquiterpenes–purpuracolide B
and purpuracolide C extracted from edible fungus Gomphus
purpuraceus (Iwade) K. Yokoy. 1989 are inactive against MDA-
MB-231 cell line (He et al., 2022). This shows how time-consuming
and tedious it can be to work on the selection, extraction and testing
of a metabolite that may have cytotoxic properties against cancer
cells. Another challenge is the selectivity of the natural extracts/
extracted metabolites produced in relation to the tested cancer cell
lines. For example, Alsaraf et al. (2019) showed that the methanolic
extract produced from plantain (Plantago lanceolata L.,
Plantaginaceae) leaves significantly inhibits the proliferation of
TNBC CAL51 cells but demonstrate minor effect on the MDA-
MB cells (Alsaraf et al., 2019). It also indicates that the heterogenicity
of BC or even BC subtypes like TNBC cannot be neglected (Marra
et al., 2020).

In the future, it is crucial to conduct comprehensive
characterization of the obtained extracts to determine their
chemical composition and to identify specific metabolites
possessing anticancer properties. Some studies have already
conducted fractionation of natural extracts and identified
metabolites (e.g., pancratistatin (Youssef et al., 2022), lupeol
(Sánchez-Valdeolívar et al., 2020), oleuropein aglycone (Zwartsen
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et al., 2019; Mazzei et al., 2020;), pyoluteorin (Ding et al., 2020),
atranorin (Harikrishnan et al., 2021)) showing potential activity
against endocrine-independent HER-2 negative hormone-
pretreated BC.

4 Pre-clinical data

While clinical guidelines recognize the overlap in features
and treatment of TNBC and endocrine-resistant BC (Moy et al.,
2021), studies in molecular biology and pharmacology often
overlook the issue of endocrine-resistant BC. Consequently,
there is a scarcity of pre-clinical models and studies exploring
these subtypes, with a predominant focus on TNBC in other
available reviews.

In this chapter we provide a perspective on recent advances in
the primary literature showing limitations of pre-clinical models.
We also stress the significance of investigating endocrine-
independent HER-2-negative BC subtypes collectively similarly to
the approach in clinical guidelines.

4.1 In vitro studies

Last years have yielded numerous publications regarding in vitro
studies on natural metabolite derivatives in TNBC, but also a certain
amount of research in HER-2 negative endocrine-pretreated BC.
Currently, the majority of promising metabolites are derived from
plants (e.g., phytochemicals), but fungi and algae/seaweeds are
tempting sources as well (Supplementary Table S1).

4.1.1 Defining cell line models
Defining a proper in vitro cell line model for both: TNBC and

HER-2 negative endocrine-resistant BC is a challenging and
neglected task (Cheng et al., 2022; Soosainathan et al., 2022).
Attempts to create hormone-resistant model usually involve
growing a cell line (originally from the Luminal BC cell line) that
has developed resistance to a particular type of hormone therapy,
such as tamoxifen (selective estrogen receptor modulator),
fulvestrant (ER antagonist) or aromatase inhibitors. Authors
usually focus on inducting hormonal resistance in the commonly
used endocrine-sensitive MCF-7 cell line, which only partially
mimics real heterogenous clinical scenario (Cardoso et al., 2020;
Soosainathan et al., 2022) (Supplementary Table S1). What is more,
in case of in vitro studies with hormone-pretreated BC cell line
models, the efforts are commonly directed at reversing the
hormone-resistance using natural metabolites, not at showing
potential effects of new chemotherapeutics (Wang et al., 2021).
Regarding TNBC cell lines: MDA-MB-231, MDA-MB-468, and
CAL51 are most commonly used. Among the cell lines
mentioned, MDA-MB-231 are the most frequently applied TNBC
model in in vitro studies (Supplementary Table S1). Considering
high heterogenicity in TNBC (Marra et al., 2020) using a cell line
characterized by mutation in V-Raf murine sarcoma viral oncogene
homolog B1 (BRAF) and Neurofibromatosis 1 genes does not reflect
potential response to the treatment in all TNBC subtypes
(Wagner, 2022).

Whenmetabolites are evaluated in conventional cell linemodels,
the scenario parallels the topical application of a ‘candidate
medication’, as these compounds do not undergo the full
spectrum of Absorption, Distribution, Metabolism, and Excretion
(ADME) pharmacokinetic processes.

4.1.2 Improving cell line models
Overall, these in vitro models possess numerous limitations.

Improved in vitro pre-clinical models, such as organoids, organ-on-
a-chip, tissue-on-a-chip, bioengineered tissue models and multi-
cellular spheroids may hold superiority over simpler patient-derived
cell lines for identifying novel classes of drugs. Nevertheless, even
with these advancements, these models exhibit significant
limitations, including restricted physiological relevance,
challenges in standardization and reproducibility and high costs
(Xu et al., 2021b; Yadav et al., 2021).

In vitro metabolism techniques, which utilize liver fractions or
other metabolically capable systems such as primary hepatocytes or
recombinant enzymes, represent a significant advancement. These
innovative approaches not only facilitate the dissection of biological
processes but also accelerate drug development and enhance the
efficiency of toxicology studies (Ooka et al., 2020).

What is more, the potential benefit of using novel delivery
techniques, e.g., drug nanoform is difficult to be examined in
in vitro studies as potential benefits of these drugs can result
from improved solubility or obtaining more comfortable route of
administration.

4.2 In vivo studies

4.2.1 Currently applied in vivo models
In vivo studies in mice with anticancer metabolites face

numerous limitations in terms of translatability to humans,
capturing the complexity of tumor heterogeneity, and accurately
reflecting human immune responses. The application of the natural
products in mice injected with MDA-MB-231 cells results in
decrease in the tumor size/volume and tumor weight (Utage
et al., 2018; Collard et al., 2020; Luo et al., 2022). Recently
published data from in vivo researches suggest that natural
products derived from various sources have the potential to
inhibit tumor growth, reduce angiogenesis, proliferation, and
modulate the tumor microenvironment in TNBC and HER-2
negative hormone-pretreated BC. However, the efficacy and
interactions of these natural products may vary. Further research
is needed to elucidate the underlying mechanisms and optimize their
therapeutic application (Supplementary Table S2).

4.2.2 Improving in vitro models
Advanced in vivo studies (e.g., patient-derived xenograft models

or humanized mouse models) can improve data quality but also
come with ethical concerns, limited predictive power and high costs
(Xu et al., 2021b; Yadav et al., 2021).

While number of the presented studies can be considered
cutting edge research in pre-clinical setting the effectiveness of
these chemotherapies as new and highly efficient therapeutic
options should be further examined in clinical trials.
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5 Mechanistic findings for novel
naturally-derived drugs

5.1 The main mechanisms responsible for
the anticancer activity of naturally-derived
metabolites

An overview of numerous effects of natural metabolites in TNBC
and HER-2 negative endocrine-resistant BC indication is presented in
Figure 2. Most registered chemotherapeutic agents used in BC

treatment act through inhibition of mitosis, lead to cell cycle arrest,
influence deoxyribonucleic acid (DNA) replication processes, and thus
induce apoptosis through well-known mechanisms (see Table 1).

5.1.1 Cell death induction
Programmed cell death is a broad and intricate concept

encompassing a diverse array of mechanisms, including
apoptosis, which occurs as a consequence of numerous changes
in cancer cells. Some of these mechanisms have been identified for
naturally-derived drugs (Alsaraf et al., 2019; Cheng et al., 2019; Guo

FIGURE 2
An overview of mechanistic effects of natural metabolites in endocrine-independent HER-2 negative breast cancer (created with BioRender). (A)
Diagrammatic representation of the mechanistic findings: cell death induction (Cheng et al., 2019; Guo and Pei, 2019; Nguyen et al., 2019; Zhang et al.,
2019; Ding et al., 2020; Ho et al., 2020; Liu et al., 2020; Sánchez-Valdeolívar et al., 2020; Harikrishnan et al., 2021; Maungchanburi et al., 2021; Noh et al.,
2021; Fouzat et al., 2022; Lin et al., 2022; Luo et al., 2022; Sancha et al., 2022; Sangpairoj et al., 2023), antiproliferative activity (Alsaraf et al., 2019;
Zwartsen et al., 2019; Collard et al., 2020; Jaglanian and Tsiani, 2020; Kalebar et al., 2020; Lee et al., 2020; Mazzei et al., 2020; Yang et al., 2021; Lin et al.,
2022; Youssef et al., 2022; Kombiyil and Sivasithamparam, 2023) antimetastatic activity (Hsu et al., 2020; Lee et al., 2020; Chen et al., 2022; Luo et al.,
2022); antiangiogenic activity (Utage et al., 2018; Hsu et al., 2020; Zunica et al., 2021), disrupted cancer cell metabolism (Raman et al., 2018; Guerra et al.,
2021; Yang et al., 2021; Chen et al., 2022; Ke et al., 2022), immunomodulation (Kim et al., 2018; Zhao et al., 2020; 2021; Deng et al., 2021; Chen et al., 2022;
Fouzat et al., 2022; Lv et al., 2022). (B) Each mechanism of anticancer activity is described in details and recently studied organisms as a source of
secondarymetabolites are presented (full species names including authorities and family are presented in Table 1; Supplementary Table S1. Abbreviations:
AKT, protein kinase B; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; Bcl-w, B-cell lymphoma 2-like protein; Bcl-xL, B-cell lymphoma-
extra-large; BC, Breast cancer; bFGF, basic fibroblast growth factor; CDK, cyclin-dependent kinase; EGFR, epidermal growth factor receptor; EGF-A,
epidermal growth factor A; EMT, epithelial mesenchymal transition; ERK, extracellular signal-regulated kinase; HER-2, human epidermal growth factor
receptor-2; IGF-I, insulin-like growth factor-I; IL, interleukin; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; miRNA,
microRNA; MMP, matrix metalloproteinase; NAD+, nicotinamide adenine dinucleotide (oxidized form); NADH, nicotinamide adenine dinucleotide
(reduced form); NF-κB, nuclear factor-kappa B; PARP, poly (ADP-ribose) polymerase; PI3K, phosphatidylinositol-3-kinase; PD-L1, programmed death-
ligand 1; p53, tumor protein 53; PTEN, phosphatase and tensin homolog; ROS, reactive oxygen species; STAT3, signal transducer and activator of
transcription 3; TNF-α, tumor necrosis factor-alpha; VEGF, vascular endothelial growth factor; Wnt, wingless-related integration site.
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and Pei, 2019; Mendonca et al., 2019; Nguyen et al., 2019; Zhang
et al., 2019; Ding et al., 2020; Ho et al., 2020; Jaglanian and Tsiani,
2020; Lee et al., 2020; Mazzei et al., 2020; Sánchez-Valdeolívar et al.,
2020; Harikrishnan et al., 2021; Maungchanburi et al., 2021; Noh
et al., 2021; Yang et al., 2021; Fouzat et al., 2022; Ke et al., 2022; Lin
et al., 2022; Luo et al., 2022; Sancha et al., 2022; Sangpairoj et al.,
2023) (Figure 2). The exact mechanism leading to cell death is
essential to be defined as it can predict drugs’ toxicity, efficacy or
suggest potential effects of combining with other medications such
as synergistic or complementary effect. In a study aimed at assessing
the cytotoxic properties of secondary metabolites isolated from
Aspergillus niger soil fungus (Aspergillaceae), pyoluteorin was
observed to arrest the cell cycle of TNBC cells at the G2/M
phase. Further experiments suggested that pyoluteorin’s apoptotic
effect was linked to a decrease in mitochondrial membrane potential
and an accumulation of reactive oxygen species (ROS). (Ding et al.,
2020). ROS can react with a variety of biological molecules like
DNA, proteins, lipids inducing their damage and initiate apoptosis
of cancer cells (Alsaraf et al., 2019; Mendonca et al., 2019). Increased
oxidative stress and decreased mitochondrial membrane potential
were also observed in in vitro and in vivoHER-2 negative BCmodels
for the following extracts: the common hibiscus (Hibiscus rosa-
sinensis L., Malvaceae) (Nguyen et al., 2019), sea daffodil
(Pancratium maritimum L., Amaryllidaceae) (Sancha et al.,
2022), lichen Parmotrema rampoddense (Nyl.) Hale 1974,
Parmeliaceae (Harikrishnan et al., 2021).

Interfering with the ability to repair nucleic acids is another
mechanism leading to the death of cancer cells. Combining cisplatin
with triptolide, a natural metabolite derived from a Chinese
herb–Tripterygium wilfordii Hook. f. (Celastraceae) for treating
TNBC caused DNA damage and arrested TNBC cells in the S
phase of the cell cycle, making them more sensitive to cisplatin
treatment. Triptolide decreased the levels of The Poly (ADP-ribose)
polymerase (PARP1) and X-ray repair cross complementing protein
1 (XRCC1), which are involved in repairing single-strand breaks and
base excision, on protein level (Zhang et al., 2019).

Inhibition of survival pathways is one of the key mechanisms by
which natural metabolites provoke apoptosis. Among these
signaling pathways: phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha/protein kinase B (PI3K/AKT) and
nuclear factor-kappa B (NF-κB) can be named (Yang et al., 2021; Ke
et al., 2022).

The inhibition of anti-apoptotic proteins B-cell lymphoma 2 (Bcl-
2) and B-cell lymphoma 2 (Bcl-xL) and activation of pro-apoptotic
proteins Bcl-2-associated death promoter (Bad) and Bcl-2-associated
X protein (Bax) that regulate mitochondrial pathway and lead to
altered caspase pathway expression is the next mechanism. Extract
from Kaffir lime (Citrus hystrix DC., Rutaceae) leaves contain
citronellol and citronellal. These metabolites have been shown to
inhibit the expression of Bcl-2 and activate pathway dependent on
caspase-3 in TNBC in vivomodel (Ho et al., 2020). Similar results for
caspase-3 activation were observed for Prunella vulgaris L.
(Lamiaceae) extract (Luo et al., 2022). Another plant extract
obtained from red guava (Psidium guajava L., Myrtaceae) induced
apoptosis through caspase-3, but also through PARP signaling (Liu
et al., 2020). Induction of numerous caspases activity was obtained in
vivo on BC lines with Piper cubeba L. f. (Piperaceae) seeds extract
(Maungchanburi et al., 2021). The Elaeagnus angustifolia L.

(Elaeagnaceae) flower extract induced pro-apoptotic proteins such
as: Bax and cleaved caspase-8 and reducing the anti-apoptotic Bcl-2
(Fouzat et al., 2022). Alkaloids obtained from sea daffodil (Pancratium
maritimum L.) also increased Bax expression, and decreased Bcl-xL
expression (Sancha et al., 2022). The dichloromethane extract from a
tree Ficus crocata (Miq.) Mart. ex Miq. (Moraceae) was found to have
apoptotic effects on MDA-MB-231 cells, leading to increased
expression of tumor suppressor protein p53, as well as procaspase-
8, and procaspase-3 (Sánchez-Valdeolívar et al., 2020). It has been
found that the treatment with lichen (Physconia hokkaidensis Kashiw.
1975; Physciaceae) extract resulted in the downregulation of Bcl-2,
p-AKT and adenosine monophosphate-activated protein kinase
(AMPK) and while significantly upregulating the levels of cleaved
caspase-9, cleaved caspase-3, and cleaved-PARP. Physconia
hokkaidensis Kashiw. 1975 extract showed selective cytotoxicity
toward TNBC lines, but not luminal BC lines (Noh et al., 2021).
The extract obtained from common selfheal (Prunella vulgaris L.,
Lamiaceae) triggered cell apoptosis by enhancing nuclear DNA
damage and augmenting the expression of cleaved caspase-3 (Luo
et al., 2022). The lichen Parmotrema rampoddense (Nyl.) Hale
1974 contains a metabolite called atranorin, which has
antimicrobial properties, but a study of Harikrishnan et al. (2021)
found that atranorin can also have anticancer properties–it
significantly decreased the levels of anti-apoptotic proteins such as
AKT, Bcl-2, Bcl-xL, and B-cell lymphoma 2-like protein (Bcl-w),
while increasing the levels of pro-apoptotic protein Bax and caspases-
3 activity in breast cancer cells. This effect was even greater than that
of the AKT inhibitor ipatasertib (Harikrishnan et al., 2021).
Resveratrol, a polyphenol derived from numerous fruit plants,
induced apoptosis in TNBC cells by reducing DNA polymerase
delta 1 (POLD1) expression. This mechanism involved decreased
levels of anti-apoptotic proteins like Proliferating cell nuclear antigen
and BCL-2, increased expression of Cleaved-PARP1 and Cleaved-
Caspase3, and potential binding of resveratrol to POLD1 functional
domains (Liang et al., 2021).

The metabolite known as oleuropein aglycone was created by
using enzymes to break down oleuropein found in olive leaves. This
substance was found to have pro-apoptotic effects on two different
types of cancer cells: MDA-MB-231 and Tamoxifen-resistant MCF-7
(Mazzei et al., 2020). Icariin, a major metabolite extracted from a
Chinese herb Epimedium brevicornum Maxim. (Berberidaceae)
showed potential to overcome tamoxifen resistance in MCF-7/
TAM cells. It induced cell cycle arrest in the G0/G1 phase,
apoptosis, and inhibited autophagy. At the molecular level, icariin
treatment resulted in the downregulation of CDK2, CDK4, Cyclin D1,
Bcl-2, Microtubule-associated protein light chain 3 (LC3-1, LC3-II),
Autophagy-related protein 5 (AGT5), and Beclin-1, but upregulated
the expression of caspase-3, PARP, and p62 (Cheng et al., 2019).
Tetrandrine, an alkaloid extracted from the Chinese herbal
medicine–Stephania tetrandra S. Moore (Menispermaceae) root
targeted autophagy genes LC3-II/LC3-I, p62/SQSTM1, and Beclin-
1, inhibited PI3K/AKT/mTOR signaling and increased Phosphatase
and tensin homolog (PTEN) expression in TNBC cell lines (Guo and
Pei, 2019). The extract obtained from red alga Halymenia durvillei
Bory de Saint-Vincent (Halymeniaceae) was also found to increase the
expression of LC3 (an indicator of autophagic cell death) (Sangpairoj
et al., 2023). Extract from dandelion (Taraxacum formosanumKitam.,
Asteraceae) induced another interesting mechanism that can lead to
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cell death in BC cell lines: ribotoxic stress. Ribotoxic stress refers to a
cellular pathway that reacts to errors in translation, triggering the
activation of p38 and c-JunN-terminal kinases. This response leads to
cell cycle arrest, the generation of inflammatory cytokines, and the
initiation of apoptotic signaling (Lin et al., 2022). Ferroptosis is an
iron-dependent programmed cell death, distinct from apoptosis. It
involves the metabolism of unsaturated fatty acids, leading to lipid
peroxidation and eventual cell death. This mechanism seems to be
caused by both well-known drugs (such as doxorubicin), but also by
plant-derived metabolites, e.g., curcumin (Cao et al., 2022; Kciuk
et al., 2023).

5.1.2 Antiproliferative and antimetastatic activity
Other important mechanisms include inhibition of cells’

proliferation (Alsaraf et al., 2019; Zwartsen et al., 2019; Collard
et al., 2020; Jaglanian and Tsiani, 2020; Kalebar et al., 2020; Lee
et al., 2020; Mazzei et al., 2020; Yang et al., 2021; Lin et al., 2022;
Youssef et al., 2022; Kombiyil and Sivasithamparam, 2023) and
metastatic potential (Avila-Carrasco et al., 2019; Hsu et al., 2020;
Lee et al., 2020; Chen et al., 2022; Luo et al., 2022) (Figure 2). Ability to
inhibit the growth and division of cancer cells is a hallmark of anti-
cancer treatment. By inhibiting cancer cell growth mainly through
interfering with signaling pathways, such as the Epidermal growth
factor receptor (EGFR)-Mediated Extracellular signal-regulated
kinases/Mitogen-activated protein kinases (ERK/MAPK), Wnt/β-
catenin or PI3K/AKT/mTOR (partially overlapping with these
responsible for proapoptotic, antiangiogenic or antimetastatic
potential) natural metaboliteshave the potential to prevent the
cancer progression and improve the efficacy of cancer treatments
(Cumaoglu et al., 2018; Yang et al., 2021; Kombiyil and
Sivasithamparam, 2023). For instance, pre-treatment with extracts
derived from shrubs’ Lycium barbarum L. and Lycium ruthenicum
Murray (Solanaceae) fruit has been shown to inhibit the
phosphorylation of EGFR and ERK in MDA-MB-231 cells
stimulated with epidermal growth factor (Cumaoglu et al., 2018).
The methanolic extract of hawthorn (Crataegus oxyacantha L.,
Rosaceae) berry, which is rich in polyphenols, was observed to
have toxic effects on TNBC cell lines by exhibiting a significant
downregulation of the transcriptional and translational expression
of Wnt pathway agonists, as well as an upregulation of Wnt
antagonists (Kombiyil and Sivasithamparam, 2023). Seaweed–Ulva
fasciata Delile (Ulvaceae) has been found to exhibit inhibitory effects
on the signaling pathway involving EGFR/PI3K/AKT, resulting in the
induction of cytotoxicity in TNBC cells (Pragna Lakshmi et al., 2017).

Muscadine grapes extract has showed its antiproliferative
activity in vitro and in vivo (was given to nude mice with human
TNBC tumors for 4 weeks). It decreased TNBC size and reduced the
markers Ki67 and cyclin D1 in in vivo studies on nude mice and
reduced c-Met and inhibited ERK/MAPK and AKT signaling,
leading to decreased cyclin D1 and cell cycle arrest in in vitro
experiments (Collard et al., 2020). Another study has demonstrated
that the aqueous extract of Solanum macranthum Dunal fruit (the
potato tree from Solanaceae) could potentially hinder the growth of
MDA-MB-231 cells when it was dissolved in water (Kalebar et al.,
2020). The use of Plantago lanceolata L. leaf extract on BC cells
showed a significant ability to inhibit the growth of CAL51 cells,
which are classified as TNBC. However, the extract had only a minor
effect on other types of breast cancer cells. Moreover, at higher doses,

it caused visible morphological changes to the cells (Alsaraf et al.,
2019). Another investigation involved analysis of sea daffodil
(Pancratium maritimum L.), a member of the Amaryllidaceae, as
a potential anticancer agent. Pancratistatin, a bioactive metabolite,
was isolated and its growth inhibitory effects were assessed on
MDA-MB-231 cells (Youssef et al., 2022). Oleuropein aglycone
derived from olive leaves displayed antiproliferative activity
against both TNBC MDA-MB-231 and Tamoxifen-resistant
MCF-7 call lies (Mazzei et al., 2020). Other natural metabolites
that reduced proliferation of TNBC cell lines in vivo and in vitro
were derived from: dandelion (Taraxacum mongolicum Hand.-
Mazz., Asteraceae) (Lin et al., 2022), fungus Aspergillus
sp. (Zwartsen et al., 2019), rosemary (Rosmarinus officinalis L.,
Lamiaceae) (Jaglanian and Tsiani, 2020), herb–Centipeda minima
(L.) A. Braun & Asch., Asteraceae (Lee et al., 2020), or mushroom
Antrodia salmonea T.T. Chang &W.N. Chou, Polyporaceae (Chang
et al., 2017).

The ability to create metastatic disease is one of later steps in
cancer development. It requires additional molecular alterations
such as epithelial-mesenchymal shift in the metastatic cascade to
allow cancer cell to move and develop as metastasis. Among the
mechanisms already described in Section 7.4, increased expression
of MMPs and disrupted expression of adhesive molecules (e.g.,
increased N-Catherin, β-Catenin and decreased E-Catherin) are
noted (Wilusz and Majka, 2008; Avila-Carrasco et al., 2019).
Ebushicao (Centipeda minima (L.) A. Braun & Asch.) extract in
TNBC cell line led to decreased MMP-9, PI3K/AKT/mTOR and
STAT3 pathways activation, resulting in an inhibited metastatic
process (Lee et al., 2020). Another extract from medicinal fungus
Ganoderma lucidum (Curtis) P. Karst (Ganodermataceae)
inhibited the release of Interleukins (IL8, IL6), MMP-6 and
MMP-9 and reduced TNBC cell migration (Barbieri et al.,
2017). Fucoidan from brown seaweed Laminaria japonica
Areschoug, 1851 (Laminariaceae) can also significantly reduce
the ability of TNBC cells to metastasize (Hsu et al., 2020).
Antimetastatic activity in this BC setting was also noted for
extract derived from: common selfheal (Prunella vulgaris L.),
green alga Chlamydomonas reinhardtii (CC-124) from
Chlamydomonadaceae, and soursop (Annona muricata Linn)
from Annonaceae (Syed Najmuddin et al., 2016; Kamble et al.,
2018; Chen et al., 2022; Luo et al., 2022).

5.2 Tumor microenvironment role

The tumor microenvironment holds significant importance in
pre-clinical research on naturally-derived agents. It consists of a
complex interplay of cellular and non-cellular components
surrounding the tumor, including immune cells, extracellular
matrix, signaling molecules or blood vessels. These factors
profoundly influence tumor growth, invasion, and how the tumor
responds to various agents.

When exploring mechanisms related to tumor
microenvironment role in endocrine-independent HER-2
negative breast cancer antiangiogenic activity (Hsu et al., 2020;
Zunica et al., 2021), metabolism shift (Lin et al., 2019; Zhao
et al., 2020; 2021; Deng et al., 2021; Chen et al., 2022; Fouzat
et al., 2022; Lv et al., 2022) and immunomodulation (Guerra
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et al., 2021; Yang et al., 2021; Chen et al., 2022; Ke et al., 2022)
(Figure 2) are presented.

5.2.1 Antiangiogenic activity
As an example, fucoidan, extracted from brown seaweed

Laminaria japonica Areschoug, 1851, has been shown to inhibit
Mitogen-activated protein kinase and PI3K/AKT pathways, as well
as the expression of several pro-angiogenic factors including:
Epidermal growth factor A (EGF-A), Insulin-like growth factor I
(IGF-I), Basic fibroblast growth factor (bFGF), Metalloproteinases
2 and 9 (MMP-2 and 9) and Vascular endothelial growth factor
(VEGF) leading to diminished formation of capillary-like structures
(Hsu et al., 2020).

5.2.2 Immunomodulation
Berberine is a plant derivative that influences BC immunity

through several mechanisms, including reduced expression of IL-6
and Tumor necrosis factor-α (TNF-α) weakening the inflammatory
processes induced by TNBC cell lines (Zhao et al., 2020). Another
example is a flowering plant–dandelion (Taraxacum mongolicum
Hand.-Mazz.) extract that inhibited IL-10/Signal transducer and
activator of transcription 3 (STAT3)/PD-L1 signaling pathway as
well as shifted from the tumor-associated macrophages phenotype
M2 toM1 (Deng et al., 2021). Narciclasine, an antimitotic metabolite
derived from daffodil (Narcissus L.) bulbs from Amaryllidaceae was
able to degrade STAT3 in a specific manner in tamoxifen-resistant
MCF-7 cells through the proteasome pathway (Lv et al., 2022).

5.2.3 Metabolism shift
Eucalyptus bark extract used in TNBC cell lines resulted in

hydrolysis of cholesterol esters and triglycerides, leading to shift to
mitochondrial respiration, which was reflected by increase in
Nicotinamide adenine dinucleotide (NAD+, oxidized form) to
Nicotinamide adenine dinucleotide (NADH, reduced form) ratio
(Guerra et al., 2021). This provides cancer cells with a more efficient
energy source and lowers ROS production (Guerra et al., 2021). The
extract from the aromatic shrub–Lippia origanoides Kunth
(Verbenaceae) was found to hinder the metabolic activity of cells
by reducing the expression of tricarboxylic acid cycle enzymes and
inhibiting mitochondrial amino acid and lipid metabolic pathways.
It also disrupted the process of mitochondrial oxidative
phosphorylation by inhibiting the expression of multiple subunits
of Complex I (Raman et al., 2018).

Further investigation is required to understand the role of the
tumor microenvironment and its longitudinal changes during drug
treatment, particularly in relation to drug resistance.

5.3 Other mechanisms

Natural metabolites effects on cellular or molecular level in BC
treatment are also explored in many other aspects than simply using
them as potential drugs, e.g., for chemoprotection. One example is
protection of hematopoiesis by extract derived from a perennial
plant–Polygonatum sibiricum Redouté (Liliaceae) (Xie et al., 2021).
Polysaccharides contained in this herb are claimed to inhibit activity
of myeloid cells in immune tumor infiltrating cells and in spleen (in in
vivo studies with mice with TNBC) at the same time protecting bone-

marrow hematopoiesis (Xie et al., 2021). Other effects include:
deactivating the stromal microenvironment by reducing tumor
associated fibroblasts (Xu et al., 2020), reversing resistance to
chemotherapy (Wang et al., 2020; Yi et al., 2021), and acting on
cancer stem cells (Wang et al., 2020; Ke et al., 2022). Some natural
metabolites do not act as medications by themselves, but increase
sensitivity to currently available treatment options. In the case of
hormone-pretreated tumors the efforts are directed at overcoming the
endocrine resistance (e.g., Wang et al., 2021). Resveratrol overcomes
endocrine resistance in tamoxifen-resistant MCF-7/TR cells by
influencing the transforming growth factor-beta (TGF-β)/Smad
signaling pathway (Shi et al., 2013). or TNBC tumors studies are
aimed at chemotherapy resistance mechanisms (e.g., (Suarez-Arroyo
and Martinez-Montemayor, 2018)). Natural raw materials are also
known to serve as carriers of many secondary metabolites that have
been reported to have anticancer properties in both in vitro and in vivo
experiments, especially metabolites belonging to phenolics, alkaloids,
and terpenoids (Püsküllüoğlu and Michalak, 2022).

With all the enthusiasm accompanying these metabolites there is
always a risk of increased toxicity or drugs interaction, e.g., in
research by Zunica et al. (2021) moringa seed extract (Moringa
oleifera Lam., Moringaceae) used in in vivo experiment on mice with
TNBC and obesity has shown a negative interaction when used as a
concurrent systemic treatment (Zunica et al., 2021).

6 Advancing drug delivery: novel
technologies

A rapid advancement within the domain of targeted delivery of
cytotoxic agents is observed. Examples of clinically applied strategies
in endocrine-independent HER-2-negative breast cancer include
nanotechnology and ADCs.

The composition of ADCs presents distinctive hurdles in the
characterization of pharmacokinetics and pharmacodynamics. This
arises from the necessity for a comprehensive grasp of these
processes’ attributes across various molecular entities (such as the
conjugate, unbound payload and antibody) within diverse tissues (Li
et al., 2020).

6.1 Nanotechnology

Nanocarriers offer enhanced drug activity and utility through
controlled release, extended circulation, and targeted delivery to
cancer cells. Encapsulating drugs in nanoparticles can enable
alternative administration routes. These nanocarriers utilize passive
and active targeting mechanisms. Among others, nanoforms of
taxanes, anthracyclines, camptothecins or eribulin mesylate have
recently been tested (Yap et al., 2021; Miguel et al., 2022;
Püsküllüoğlu and Michalak, 2022). Nanoparticles can be obtained
from natural sources by themselves acting as immunomodulators,
drugs, or in cancer prevention or cytoprotection (Püsküllüoğlu and
Michalak, 2022). Next to clinically applied nanoforms of drugs new
options are tested in pre-clinical and clinical setting (see below).
Example of recently published pre-clinical study involves
doxorubicin-loaded magnetite nanoparticles in TNBC in vitro cell
line model (Markhulia et al., 2023).
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6.2 Antibody-drug conjugates

Currently, the greatest group of targeting agents seems to be
ADCs with SG and T-DXd being already approved in this indication
(Cardoso et al., 2020; Püsküllüoğlu et al., 2023). ADC selectively
recognizes and binds to specific cancer cells. The linker acts as a
bridge, connecting the antibody to the cytotoxic payload, which
exerts its effect by inducing cell death in the targeted cancer cells.
The phenomenon where neighbouring cancer cells, not directly
targeted by the drug, are still affected by the cytotoxic payload is
called bystander effect. Ideal ADC payloads should have high
cytotoxicity, low immunogenicity, and high stability. They should
also possess modifiable functional groups for conjugation, promote
bystander killing effects, have proper water solubility, and target
intracellular sites for effective tumor cell penetration (Püsküllüoğlu
et al., 2023; Wang et al., 2023). ADCs including naturally-derived
agents that are tested in clinical trials in endocrine-independent
HER-2-negative BC are presented in the next chapter. For pre-
clinical setting a good example is ADC consisting of humanized
MUC1 antibody linked to monomethyl auristatin (MMAE) and
showing activity in cell line model (Li et al., 2023). MMAE is an
antimitotic agent derived from sea hare (Dolabella auricularia
[Lightfoot], 1786) from Aplysiidae that is too toxic to be used on
its own, but linking to mAb allows toxicity to be limited
(Püsküllüoğlu and Michalak, 2022).

It is expected that both: new receptors and new natural
metabolites linked to targeting part will be further explored in
the nearest future. The emphasis will be placed on the

exploration of more specific targets for these BC populations.
Exosome-based carriers are another alternative for modern drug
delivery system (Song et al., 2021). However, the implementation of
exosomes in BC clinical settings has not yet been realized, resulting
in an uncertain assessment of their usefulness. Examples of other
options used to target cytotoxic agents include targeted small
molecules (Sun et al., 2021).

Figure 3 presents an overview of already applied and potential
delivery strategies for natural metabolites in endocrine-independent
HER-2 negative BC.

7 Trends in clinical trials

Clinical trials are crucial in drug development, even for effective
drugs in pre-clinical studies. They verify safety, efficacy, optimal
dosage, and long-term effects in diverse human populations. Due to
the pharmacokinetic and pharmacodynamic processes of naturally-
derived compounds administered orally or parenterally, their
biological effects on breast cancer cells and observed toxicity in
the human body can be associated with the activity of their
metabolites. Predicting such outcomes in pre-clinical trials is
sometimes impracticable. Ethical and regulatory compliance
mandates their use before widespread adoption. This section
gives authors perspective on trends in ongoing clinical trials in
endocrine-independent HER-2 negative breast cancer together with
comments regarding trials’ limitations and challenges. Currently,
studies are organized around four aspects: checking the safety and

FIGURE 3
Novel mechanisms for drug delivery (created with BioRender). Abbreviations: HER-2, human epidermal growth factor receptor 2; mAb, monoclonal
antibody; TROP2, trophoblast cell surface antigen 2.
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efficacy of new naturally-derived metabolites; exploring the
potential of drugs of natural origin nanoforms or targeting them
through systems such as ADC; investigating new schemes, routes of
administration or treatment sequences of already approved drugs
with natural origin. In contrast to the pre-clinical scenery, it is easier
to select and define hormone-resistant setting in clinical trials as
patients’ populations are clearly defined in inclusion and exclusion
criteria within the study protocols. Clinical trials, viewed as
experiments involving human subjects, are subject to a
significantly higher degree of regulations and legal safeguards
compared to pre-clinical studies. These include obligations
related to their registration (all trials discussed in this section
were registered in ClinicalTrials.gov and accessed on 4th
November 2023). Clinical trials are conducted in pre-defined
phases, during which safety, efficacy, and efficacy in comparison
to the existing standard of care are evaluated in a given indication.
Despite these regulations ensuring high standards and confidence in
the quality of results, the interpretation of clinical trial outcomes can
be challenging. For example, unplanned subgroup analyses may
provide a misleading sense of excessive certainty regarding the
quality of the obtained data. Furthermore, each type of study
poses specific challenges, as discussed in each section below.

7.1 Trials regarding novel metabolites

Undoubtedly, the highest expectations are placed upon this
particular group of studies. The pursuit of novel pharmaceutical
agents exhibiting no cross-resistance with previously employed
treatments and enhancing overall survival stands as the
paramount hope in the realm of clinical research. Challenges
may include lack of production standardization, limited access to
natural sources, and thus, cost of the treatment. Some naturally-
derived medications even when tested in clinical trials have no clear
definition of their components or the solvent. Efforts to better
control this issue are imperative, as it can lead to challenges in
reproducing clinical data, as well as pose a significant risk of drug
interactions. NCT04403529is the phase 3 randomized, double-blind
trial checking the efficacy of Traditional Chinese Medicine in TNBC
adjuvant setting. Primary endpoints are disease free survival (DFS)
and quality of life. Unfortunately, clinicaltrial.gov web page devoted
to that study does not explain which twelve herbal metabolites are
incorporated into that medicine. That issue is a certain limitation in
few ongoing clinical trials. In the phase 4 NCT02615457 trial, Huaier
granules are being evaluated for their efficacy in radically treated
TNBC. Huaier granules are a traditional Chinese medication
extracted from a mushroom Trametes robiniophila Murrill 1907
(Polyporaceae) applied in colitis, nephrosis, tuberous sclerosis, and
various cancers (Narayanan et al., 2023). Following international
guidelines all tumors greater than 5 mm should receive preoperative
systemic treatment (NCCN Clinical Practice Guidelines in
Oncology, 2023). As per protocol patients who completed
neoadjuvant treatment are excluded. As a result, a very low
recruitment rate or comparison to control arm receiving the
treatment inferior to current standard of care can be expected.
This is another limitation of these clinical trials. The phase 1/
2 NCT03387085 trial in metastatic TNBC setting tests
metronomic chemotherapy of numerous naturally derived agents

in terms of safety and ORR. Drugs such as: albumin-binding
prodrug of doxorubicin; a set of vaccines derived from
recombinant Saccharomyces cerevisiae yeast; nab-paclitaxel and
other chemotherapeutics and biological agents are included in
that trial. The phase 2 NCT05007444 study with P2Et (a
standardized extract of tara (Caesalpinia spinosa (Molina)
Kuntze, Fabaceae) in addition to standard neoadjuvant therapy is
being performed on BC patients (not eligible for anti-HER-
2 treatment) in order to assess optimal biological dose of P2Et
based on its toxicological profile and other parameters as secondary
endpoints. The phase 2 NCT05403333 trial is examining the efficacy
(PFS) of weekly utidelone in HER-2 negative inoperable or
metastatic BC (both TNBC and hormone-pretreated). This
metabolite, a modified epothilone (see Table 1 for ixabepilone
source) analog has already been tested in BC setting and
although positive, the previous study did not result in drug
approval (Xu et al., 2021a). An intriguing study, yet one that
raises many unanswered questions and concerns (e.g., about the
broad study population, which includes DCIS, and dosage, staging of
the disease), is the phase 1 trial (NCT05680662) examining herbal
titled “The Study of Quadruple Therapy Quercetin, Zinc,
Metformin, and EGCG as Adjuvant Therapy for Early, Metastatic
Breast Cancer, and Triple-negative Breast Cancer”. Quercetin,
present in foods like kale, berries, onions, cherries, red grapes,
broccoli, tea, and red wine, is traditionally used to prevent
diseases such as osteoporosis, lung and cardiovascular diseases,
and cancer. Epigallocatechin gallate (EGCG) is a polyphenol
present in green tea has been tested for its chemopreventive
activity (Du et al., 2012; Xu et al., 2019). Natural metabolites
have been also tested in other contexts such as primary or
secondary BC prevention and management of side effects.
Epidiferphane, a claimed neuroregenerative dietary supplement
(Steindler and Reynolds, 2017), is being evaluated alongside
taxanes in BC to prevent peripheral neuropathy in the phase 1/
2 NCT05074290 trial. Pentoxifylline, a synthetic xanthine derivative
originally derived from coffee beans and tea leaves (Dastgheib et al.,
2022). Unfortunately, most studies in this context are expected to
yield negative results, as seen with soy protein for BC prevention in
the NCT00204477 trial or PSC 833 (a cyclosporine derivative from
the fungus Tolypocladium inflatum W. Gams 1971,
Ophiocordycipitaceae) for multidrug-resistance inhibition in BC
patients receiving taxanes (NCT00002826).

7.2 Trials regarding drugs’ nanoforms

Studies regarding nanoforms of existing medications and drugs
that are active, but too toxic to be used on their own are costly and
more likely to fail than traditional ones. What is more, the benefits of
introducing drug nanoform are difficult to prove in pre-clinical
studies. Nonetheless, that direction is constantly proving to be
effective in terms of obtaining better treatment outcomes,
diminishing toxicity, offers better solubility or a new route for
administration (Püsküllüoğlu and Michalak, 2022). In a single
arm phase 2 the PHENOMENAL study (NCT03328884)
nanoliposomal irinotecan is being tested for central nervous
system (CNS) ORR in HER-2 negative BC patients with brain
metastases. This drug is also being evaluated in combination with
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pembrolizumab in TNBC brain metastatic population in phase
2 NCT05255666 trial with CNS Disease Control Rate (DCR) as
the primary endpoint. While nanoforms of irinotecan are already
approved for use in other indications such as pancreatic cancer
(Wang-Gillam et al., 2019) docetaxel’s nanoforms have no
registration as of now. In phase 3 NCT03671044 study,
nanosomal docetaxel lipid suspension and a standard docetaxel
are compared for ORRs in later lines of palliative TNBC
treatment. Paclitaxel’s nanoforms have been approved for use in
few indications including metastatic BC or pancreatic cancer
(Samaan et al., 2019). In phase 3 NCT04137653 study, nab-
paclitaxel is being tested in radical treatment of TNBC.

7.3 Trials regarding drugs linked to
targeting part

Among potential benefits of ADC: selective toxicity, increased
potency, reduced drug resistance can be named. The limitations in
these trials are an industry-sponsored bias and a risk of setting
endpoints that is not optimal, but easier to achieve. Additionally,
endocrine-independent HER-2-negative breast cancer lacks specific
therapeutic targets tailored to this subtype, potentially limiting the
efficacy of tested ADCs. Patritumab Deruxtecan is a camptothecin
derivative linked to anti-HER-3 mAb. In the phase
2 NCT04699630 trial, ORR and 6-month PFS are being assessed
in metastatic BC including two arms for HER-2 negative endocrine-
resistant patients. In another phase 2 NCT04965766 trial, the same
drug is being tested for ORR in the metastatic HER-2 negative
endocrine-resistant BC population. The phase 3 ANGLeD trial
(NCT03613181) covers HER-2 negative metastatic BC patients
with leptomeningeal disease and extremely unfavorable
prognosis. Paclitaxel trevatide (paclitaxel-Angiopep-2 conjugate)
is compared to other agents (including eribulin mesylate) to
check for OS. In the phase 2 NCT04742153 trial MR002, an
anti-HER2 mAb conjugated MMAE is being assessed for ORR in
HER-2 low metastatic BC. The phase 1/2 NCT04441099 trial
assesses the dose and anti-tumor activity of anthracycline-based
ADC targeting Receptor tyrosine kinase-like orphan receptor 1 in
few indications including metastatic TNBC (for the phase 2 part).
The TROPION-PanTumor02 phase 1/2 (NCT05460273) trial
explores the anti-TROP2 mAb linked to deruxtecan ADC
(Datopotamab- DXd) in terms of ORR in different BC cohorts.

7.4 Trials with currently approved agents

In number of trials, currently approved drugs are being tested to
search for better administration scheme or set standards in their
combination with other medicines or determine optimal therapy
sequences. The main limitation is the retrospective observational
design of these studies, driven by challenges in organizing
randomized controlled trials (RCTs) for non-patented drugs,
primarily due to financial constraints. Metronomic chemotherapy
uses low doses of drugs at regular short intervals, with
antiangiogenic and antineoplastic effects (Cazzaniga et al., 2021).
For example, the phase 2 NCT03071926 trial explores the outcomes
of metronomic pegylated doxorubicin in endocrine-resistant

advanced BC, while phase 2 NCT05747326 study checks 1-year
performance free survival (PFS) of capecitabine and vinorelbine in
HER-2 negative BC. An example of study that tries to set the place
for commonly used drugs in TNBC radical treatment setting is phase
4 NCT04136782 trial with carboplatin, nab-paclitaxel, epirubicin
and docetaxel.

Among the studies exploring new combinations of known drugs,
there are numerous examples: the KEYDOX phase 1/2 trial
(NCT03591276) studies the efficacy–objective response rate
(ORR) and safety of pembrolizumab (an anti-PD-1 mAb) with
pegylated liposomal doxorubicin in endocrine-resistant BC. In
NCT04039230 phase 1/2 study SG is tested in combination with
talazoparib (a PARP inhibitor) in metastatic TNBC. The same ADC
is tested together with PI3K inhibitor alpelisib in metastatic,
pretreated HER-2 negative BC in the phase 1 ASSET trial
(NCT05143229), and other ADC T-DXd is checked for its safety
when administered with nivolumab (an anti-PD1 mAb) in phase
1 NCT03523572 study including patients with BC.

Improving clinical trials involving natural-source medications is
crucial due to challenges like lack of standardization and limited
access to natural sources. Ambiguity in drug components and
solvents can hinder data reproducibility and pose drug
interaction risks. Addressing these issues through rigorous quality
control, standardized protocols, and drug characterization is
imperative for more reliable and effective clinical trial outcomes.
Improving clinical trials for nanoforms of existing medications and
toxic drugs requires addressing cost challenges and optimizing pre-
clinical data to enhance the chances of developing safe and effective
nanoform treatments. Enhancing clinical studies for drugs
composed of natural-source-derived metabolites attached to
targeting part requires addressing industry-sponsored bias and
carefully selecting clinically relevant endpoints. Transparent trial
design, independent oversight, and adaptive approaches can
enhance scientific validity and yield more reliable results.
Collaborative funding, innovative trial designs, and real-world
data utilization are potential approaches to address limitations in
clinical trials for currently approved drugs when searching for better
therapy sequence, administration scheme or drugs’ combinations.

8 Future directions

Endocrine-independent HER-2-negative breast cancer is a
condition known for its unfavorable treatment outcomes. Despite
the introduction of innovative therapies like immune checkpoint
inhibitors, the improvement in patients’ survival remains
unsatisfactory. As a result, chemotherapy, primarily based on
naturally-derived metabolites, remains the cornerstone of treatment.
There are numerous novel natural agents with suggested pre-clinical
and currently tested clinical activity in this BC subtype.

• Pre-clinical in vitro and in vivomodels used to assess efficacy of
the tested metabolites are far from perfection. The issue lies in
the usage of archaic models, such as patient-derived cell lines.
Additionally, it would be an overstatement to consider currently
available cell lines as good representatives for all TNBCs or for
endocrine-resistant HER-2-negative BCs. Regarding TNBC,
data are primarily based on 1 cell line, MDA-MB-231. Cell
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lines obtained from endocrine-pretreated samples also do not
adequately reflect numerous possible clinical scenarios. It is
essential to employ contemporary pre-clinical models to
accurately study the mechanisms, especially in the context of
tumor microenvironment and therapeutic effects of naturally-
derived agents. Advanced three-dimensional cell culturemodels
or organoid cultures offer relevant platforms for examining how
these agents interact with the organism and how they affect
disease progression. These advanced models closely mimic the
tumor microenvironment and provide a more precise reflection
of how individual patients may respond to these treatments.

• Defining the composition of medications, especially if they are
mixtures of different ingredients, including the material in
which they are dissolved. Some traditional medications even
when tested in clinical trials have no clear definition of their
components. this can result not only in difficult pre-clinical or
clinical data reproducibility, but also generates a risk of drug
interactions. Such risk is very high in cancer patients due to the
numerous other agents they take, including other anticancer
treatment, side effects prevention and treatment, comorbidities
treatment or supplements intake (van Leeuwen et al., 2011).

• Biomarkers are quantifiable indicators, including genetic
mutations or other molecular features, which furnish
valuable insights into the treatment response of a disease.
Biomarkers aid in identifying disease subtypes and forecasting
individual patient responses to particular naturally-derived
therapies. Their pivotal role lies in customizing personalized
treatment approaches, empowering healthcare providers to
make well-informed decisions and enhance therapeutic
outcomes. Investigating predictive factors for new
anticancer drugs enhances treatment effectiveness. In pre-
clinical research, biomarkers help assess treatment
effectiveness and safety in cell and animal studies. For
instance, monitoring changes in tumor growth-related
biomarkers provides insights into the agents’ mechanisms
of action. Each successful pre-clinical concept should be
followed by clinical trials, preferably incorporating
biomarker analysis in the trial design or planning
additional trials to explore specific patients’ groups, rather
than conducting post-hoc analyses. The final stage should
involve validating biomarkers/predictive factors through
appropriate tests applicable in clinical practice (Hughes
et al., 2011; Califf, 2018; Berdigaliyev and Aljofan, 2020;
Choudhari et al., 2020; Kaushik et al., 2021). Currently, the
available treatment options for endocrine-independent, HER-
2-negative breast cancer, except for immune checkpoint
inhibitors in metastatic TNBC and HER-2 low status for
T-DXd lack validated predictive factors similar to those for
anti-HER2 treatment. The absence of specific therapeutic
targets for this breast cancer subtype may limit the efficacy,
even if an agent is associated with targeting mechanism.

• Performing clinical trials and patenting natural metabolites
with anticancer activity requires extensive and time-
consuming research. Numerous trials are ongoing, but
successful studies in this area are relatively few, and
patenting issues can further complicate financing for costly
clinical trials (Sahoo et al., 2022). Therefore, we advocate for
the promotion of increased support for non-sponsored trials.

In summary, current treatment options offer insufficient
outcomes for patients with endocrine-independent HER-2-
negative breast cancer. There are favorable prospects for the
advancement of new naturally-derived drugs in this setting.
Nature is still an inexhaustible source of medications, their
prototypes, as well as an inspiration for medicines created in
the laboratory. Naturally-derived metabolites that have already
been rejected due to solubility issues or toxicity profile can come
back into play by using newmethods of their targeting and delivery
such as ADCs or creating their nanoforms. Furthermore, certain
studies have shown the synergistic impacts of combining
naturally-derived agents with standard therapies, suggesting
new approaches to overcome drug resistance and improve
treatment outcomes in this complex subgroup of breast cancer.
Considerable efforts are yet to be undertaken in unraveling the
intricacies of how effectively bring naturally-derived metabolites
from bench to bedside.
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