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The direct utilization of low-light images hinders downstream visual tasks. 
Traditional low-light image enhancement (LLIE) methods, such as Retinex-based 
networks, require image pairs. A spiking-coding methodology called intensity-
to-latency has been used to gradually acquire the structural characteristics of an 
image. convLSTM has been used to connect the features. This study introduces 
a simplified DCENet to achieve unsupervised LLIE as well as the spiking 
coding mode of a spiking neural network. It also applies the comprehensive 
coding features of convLSTM to improve the subjective and objective effects 
of LLIE. In the ablation experiment for the proposed structure, the convLSTM 
structure was replaced by a convolutional neural network, and the classical 
CBAM attention was introduced for comparison. Five objective evaluation 
metrics were compared with nine LLIE methods that currently exhibit strong 
comprehensive performance, with PSNR, SSIM, MSE, UQI, and VIFP exceeding 
the second place at 4.4% (0.8%), 3.9% (17.2%), 0% (15%), 0.1% (0.2%), and 4.3% 
(0.9%) on the LOL and SCIE datasets. Further experiments of the user study in 
five non-reference datasets were conducted to subjectively evaluate the effects 
depicted in the images. These experiments verified the remarkable performance 
of the proposed method.
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1 Introduction

The lack of illumination leads to the loss of image information, which severely affects the 
execution of visual tasks, e.g., face recognition, object detection, dataset preparation, and 
autonomous driving (Li J. et al., 2021; Liu et al., 2021; Tang et al., 2022; Guo et al., 2023). 
Capturing images in low-light conditions poses a challenge owing to the limited aperture size, 
demand for instantaneous processing, and limited memory resources. To mitigate the issues 
of structuring and the high expense of research and development associated with hardware, 
refining images in low-light settings through minimalistic software algorithms aligns better 
with predictable requirements.

In low-light image enhancement (LLIE), the first effective methods were based on 
histogram equalization, the Retinex model, gamma transform, and fusion. Fusion-based 
methods achieve better performance in terms of image indicators, such as brightness and 
color, through exposure-splicing fusion methods. This method is typically synthesized by 
collecting images under different exposure conditions (Wang et al., 2016). Another method 
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fuses the illumination map of night and day to enhance the image 
(Rao et al., 2010); however, such processing generally renders a poor 
visual effect.

The method based on the Retinex model divides the low 
illumination image into reflection and illumination components or 
adds a noise component by constructing a suboptimal problem. The 
estimated reflection component is considered the result of 
enhancement. Previous attempts to improve Retinex replaced the 
logarithmic solution with a typical enhanced Lagrange solver to 
enhance the image with a long image processing time. However, the 
variational optimization algorithm has a high computational cost. 
Moreover, it introduces unnecessary pseudo-details in the image.

The adaptive GAMMA transform can improve an image’s 
contrast; however, most algorithms of this class still cause local 
overexposure or underexposure in the enhanced result. As most 
images are captured in non-uniform lighting conditions, Chen et al. 
(2022) proposed a naturalness- and information-preserving method 
for processing them. The MEMBHE algorithm (Dar and Mittal, 2020) 
improved the functionality of the transform through histogram 
equalization after multiple exposure smoothing. Nevertheless, it 
overconsumes memory and requires arduous incremental updates.

Several methods for achieving LLIE with deep learning (DL) have 
been researched. Among them, supervised learning, a mature and 
informative DL method typically constructed by an end-to-end 
network, was the first to be applied to an LLIE field. Low-light net 
(LLNet) (Lore et al., 2017) was the first end-to-end LLIE network 
established by constructing a deep auto-encoder structure. MBLLEN 
(Lv et al., 2018) uses three subnetworks to extract rich image features 
of different levels and introduces a regional loss function into the 
network loss function to employ different loss weights for high- and 
low-light regions. In the same vein, Li et al. (2021) determined that 
enhancing the low-frequency layer of a low-light image with noise was 
easier than directly enhancing the whole image. Progressive recursive 
networks (Cai et al., 2018) were used to perform staging, which is a 
more efficient method for preserving image details and removing 
noise. In that method, each subnetwork could better achieve its own 
function, which was eventually enhanced by gradually improving the 
quality of the image.

Ke et al. (2020) established an SCIE multiexposure dataset (Ke 
et al., 2020) consisting of low-contrast images with different exposure 
levels and their corresponding high-quality reference images. 
Furthermore, they introduced the high- and low-frequency 
components of images as prediction targets. A double-exposure fusion 
algorithm (Ying et al., 2017) was proposed to design the weight matrix 
of image fusion using an illuminance-estimation technique. Then, a 
camera response model was introduced to synthesize the 
multiexposure images. Low- and high-exposure images can also 
be  used to estimate the perceptual gain, signal strength, signal 
structure, and mean intensity. Perceptual gain suits an underexposed 
image. The feature fusion and recalibration module (FFRM) (Singh 
et al., 2024) was proposed to recalibrate and merge the features to 
provide an enhanced output image. Intrinsic image decomposition 
(Zhang and Ma, 2023) can be applied to the fusion of multiexposure 
to generate HDR images.

Retinex was combined with DL for enhanced performance (Chen 
et al., 2018; Zhang Y. et al., 2019; Tang et al., 2023). The attention 
mechanism was combined with the Retinex model to construct DL 

networks for enhancement (Chen et  al., 2022). A decomposition 
network (Liu et al., 2023) was developed with a self-supervised fine-
tuning strategy that achieved promising performance without manual 
hyperparameter tuning. Different sensitivities relate to different 
regions. The low-rank regularized Retinex model (Bao et al., 2022) can 
represent the image as low-rank decomposition, preserve the image 
details and high-frequency information, and improve the visual 
quality of the image. A plug-and-play framework for image 
enhancement and noise removal based on the Retinex theory (Wu 
et al., 2023) was introduced. Inspired by guided filtering and using 
synthetic data for network training, Li et  al. (2018) designed a 
lightweight network architecture based on the Retinex theory. By 
including the unsettling V channel image component in the HSV 
color space, the component was converted to a reflection component 
using a DL network (Jiang Z. et al., 2021). Owing to their significant 
worth, their Retinex and DL-based methods were applied in image 
dehazing and underwater image enhancement (Xu et al., 2022; Shen 
et al., 2023).

The development of LLIE in DL is not limited. Creative thinking 
models, such as those based on unsupervised learning, represented by 
the unsupervised learning method (Zhu et al., 2020; Li et al., 2021), 
generative network architecture (Jiang Z. et al., 2021), and normalizing 
flow (Wang et al., 2022), show the immense research potential of 
LLIE. The strategy network learns the local exposure sequentially 
using reinforcement learning for a segmented subimage (Rong et al., 
2018). In the generated adversarial network architecture, global–local 
discriminators (Jiang Z. et al., 2021) were used to ensure that the 
enhanced results resemble real normal light images. With the strong 
capability of image generation, diffusion models were applied to 
LLIE. For example, the pyramid diffusion model (Zhou et al., 2023) 
was constructed to solve the RGB shift. Moreover, the inference speed 
of the diffusion model was accelerated. As a scientific structure for 
image feature extraction, transformers have become some of the most 
prevalent network structures in vision processing. The regional 
distributions have been effectively managed, and the histogram loss 
has been designed in a stage transformer-guided network (Jiang et al., 
2023). Half-wavelet attention block and hierarchical M-Net were 
utilized to improve computation consumption and reserve context 
information, aided by the DAU block and discrete wavelet 
transformation (Fan et al., 2022).

Spiking neural networks (SNNs) are frequently employed in 
numerous pixel-level classification tasks (Martinez-Seras et al., 2023), 
such as object detection (Zhang et al., 2023b), image segmentation 
(Zhang et al., 2023a), and anomaly detection (Yusob et al., 2018). 
Research centered on SNNs includes methods for neural network 
learning, data coding, and hardware platforms. The learning 
approaches for SNNs can be  divided into supervised and 
unsupervised learning, which are represented by spike-timing-
dependent plasticity (STDP). Spiking encoding, which involves 
utilizing discrete pulsed signals to convey information, is a method 
of signal transmission. Neuroscience computing has access to 
specialized offline or online application-specific integrated circuit 
platforms, as well as neuromorphic computing cores that can support 
various learning rules and neuronal models. Nonetheless, spiking 
neural network research continues to confront significant barriers. 
The training of the transformed SNN still relies on the 
backpropagation algorithm of artificial neural networks (ANNs). As 
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the performance difference between the SNN and the core ANN is 
small, the former cannot provide significant advantages. Moreover, 
generative tasks, such as LLIE, image patching, multimodal image 
generation, and network deployment, present significant challenges. 
As a new neural network structure, the SNN’s internal algorithm can 
be implemented in LLIE.

The main contributions of this study are as follows: (1) According 
to the progressive output results with the specified number concluding 
the embodiment of the image structure characteristics, the application 
of the SNN in a spiking encoding method for LLIE has distinct 
advantages in extracting structural features from images (the 
intensity-to-latency encoding outputs multiple feature maps with 
structure and specified steps); and (2) a convLSTM structure that can 
better absorb the features from multiple feature maps. Based on 
unlabeled, unsupervised, and unpaired image training via simplified 
DCENet, the proposed structure is improved by spiking encoding and 
the convLSTM module. The research introduces spiking encoding, 
which concludes the image’s backbone information to describe the 
hierarchical information. The rest of the paper follows this structure: 
Section 2 describes the proposed enhancement method. Section 3 
describes the user study and ablation experiment carried out in the 
study and compares the performance of the proposed method with 
the state-of-the-art network structure based on seven objective 
indicators. Section 4 concludes the study and discusses the 
potential applications.

2 Proposed method

2.1 DCENet structure

The DCENet structure, as the primary structure used for 
unsupervised enhancement, divides the LLIE into a high-order 
iterative process, i.e., the input dark light image is finally enhanced 
through several iterations of the same operation. Figure 1 depicts the 
overall enhancement process and part of the ablation study, which 
can also have a description in literal form. The input passes through 
the spiking encoding module and ConvLSTM described in 
subheadings 2.2 and 2.3, respectively, and then through the 
convolution module containing skip links. The sum module in 
Figure 1 means a direct overlay between the ConvLSTM’s final output 
and the input dark light images. The resulting features select the 
feature graph of a certain channel in order and combine the matrix 
of the same size in the length and width scale of the output and input 
images with the initial input tensor according to Equation (1). The 
matrix is used as the input for the next iteration, and the feature 
graph of the next channel is selected as needed for the next 
iteration operation.

Compared with the mathematical relationship represented by the 
previous gamma transform, the DCENet structure changes the training 
coefficient of the second term of the right-hand side of Equation (1) into 
a training coefficient matrix with the same dimensions as those of the 

FIGURE 1

DCENet structure with spiking encoding and convLSTM.
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input image. This can restrain the problem of over-enhancement or 
under-enhancement of the image to a certain extent. Finally, the normal 
brightness area in the image is maintained, and the low illumination area 
is restored. A  is the output of the network, which can be divided into 
several pieces denoted by An . Based on the number of iterations n, the 
final output enhancement result is xn .

 
x x A x xn n n n n= + −( )− − −1 1

2
1

 
(1)

2.2 Spiking encoding method

In this study, spiking encoding from the overall DCENet structure 
equals the intensity-to-latency transform (Mozafari and Ganjtabesh, 
2019), as illustrated in Figure 2. First, the intensity-to-latency transform 
requires an initial parameter, i.e., time step S. Then, the grayscale image, 
which corresponds to a matrix with shape (H,W), is reshaped to a vector 
with H × W dimensions by R(·) as illustrated in Equation (2). We named 
this original vector V. For the next step, the vector was arranged in 
descending order. This procedure generated two vectors with the same 
dimensions: the first vector is the descending order vector Vd, while the 
second one is the index vector Vi, corresponding to the index in V and this 
relation is represented by Equation (3).

 
V H W R I H W1, ,∗ =  ( )

 
(2)

 
V V D Vd i, = ( )  

(3)

where K is the number of non-zero elements in an original vector 
V. The split parameter θ is set in Equation (4). Vd and Vi are split into 
small vector pieces; θ decides the shape of these pieces. The small 
vector piece returns to the dimension H × W, which is called the 
spiking encoding vector Tm in Equation (5), with the complementary 
element filled with 0. The small label m ranges from 0 to the time step 
S. The start time step T0 is composed of the value in the first split piece, 
and the value in T0 is rearranged to the original position in V 
according to Vi. The second time step T1, which is based on T0, adds 
the second small piece, and the value in the second piece is adjusted 
to the original position in the same way. Thus, the intensity-to-latency 
transformation is complete. The sequence of outputs Tm is reshaped to 
similar dimensions as those of the input image, which are denoted by 
Em, with the dimensions of (S,H,W). This procedure is formulated as 
Equation (6). R*(·) means the reverse calculation manipulation of R(·). 
(Considering the length of the paper, its time step in the figure is 
set to 6.)

 

θ =
>

≤










K
S

K
S

K
S

,

,

2

2 2
 

(4)

 
T split Vm d= ( ),θ

 
(5)

FIGURE 2

Intensity-to-latency encoding data-flow schematic diagram.
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E R T Vm m i= ( )∗ ,

 
(5)

2.3 ConvLSTM

The features extracted by the intensity-to-latency transform have 
certain similarities and differences. These features will constitute an 
image sequence with fluent features. The convLSTM structure is 
applicable in this scenario. ConvLSTM is proposed for precipitation 
nowcasting (Shi et al., 2015), the backbone of which is the recurrent 
neural network (RNN) for spatiotemporal prediction with 
convolutional structures. This design is convenient for video and 
image sequence-related tasks. ConvLSTM is similar to LSTM, which 
is also called FC-LSTM, and its block structure is illustrated in 
Figure 3.

The convLSTM computation method is based on LSTM’s gate 
relationship. The distinction between its different layers is the 
input and output dimensions. The core of convLSTM is the 
convLSTM cell, which represents one convLSTM layer. ConvLSTM 
cell is an RNN-like structure; therefore, a specific hidden-layer 
parameter called hidden state is required. In every convLSTM 
layer, the hidden state is initialized with a zero element of 
dimensions (C1,H,W). One of the input sequence time step 
tensors I, which is another input of convLSTM and the outputs 
from spiking encoding, with dimensions (C,H,W), were 
concatenated with δ. It outputs a combined tensor with dimensions 
(C + C1,H,W), corresponding to the concatenate calculation 
represented by concat in Equation (6), which needs two different 

variables. The convLSTM cell accepts this combined tensor and 
outputs the tensor with dimensions (4 × C1,H,W). The outputs 
were divided into four tensors with dimensions (C1,H,W) for the 
outputs of different gates: input, forget, and output gates, and a 
new δ for the subsequent layer and input time step. This divided 
single step is represented by the split. The calculation procedure 
is summarized in Equations 6–10 and Figure 2.

 
mid conv concat It t1 1 1 1= ( ) =( )− −δ , ,dim

 
(6)

 
c c c c split mid hiddeni f o g, , , dim= =( )1 1, ,

 
(7)

 
a S c a i f o g A ct a t g= ( ) = = ( ), , , ;

 
(8)

 η ηt t t t tf i g= ° + °−1  (9)

 
δ ηt t to A= ° ( )  

(10)

In the convLSTM structure, δ and η, which are output by one 
convLSTM cell, pass to the next cell at a certain time. This time 

FIGURE 3

ConvLSTM block data-flow schematic diagram.
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corresponds to the next time step in the same layer. This RNN-like 
network structure will preserve the main features from the previous 
time step image feature. The δ is also output to the convLSTM cell, 
combined with the new hidden states δ` and η` in the next layer in the 
same time step. The overall output of the convLSTM module is the 
tensor with dimensions (1,C`,H,W), which is labeled output in 
Figure 2. The time step dimension is eliminated with the convLSTM 
module and S(·), sigmoid activation function, and A(·), tanh 
activation function.

2.4 The loss items of the DCENet structure

Four loss items, namely spatial consistency loss, color constancy 
loss, exposure control loss, and illumination smoothness loss, were 
considered for the convergence of the network. The loss function used 
by the network is represented by Equation (12). The spatial consistency 
loss item was calculated by Equation (13). The purpose of setting the 
spatial consistency loss item was to maintain the difference between 
the original image and the adjacent area of a pixel in the enhanced 
image as small as possible. The X  represents the tensor X  after 
channel averaging and average pooling for every 4 × 4 area. K  is the 
number of pixels after average pooling in one feature map channel. 
These pixels are separated by a distance of 1, which corresponds to a 
point assemble called R i( ) . This difference logic will enhance the 
pixel neighborhood within the same spatial structure. By introducing 
the sum item, the pixel neighborhood consistency can be promoted 
to the spatial position consistency of the whole image. The setting of 
this loss item will maintain the spatial consistency of the image before 
and after enhancement.

 
L L L W L W Lspa col col tv tv= + + +exp  

(12)

 

L
K

E E O Ospa
i

K

j i
i j i j= − − −( )

= ∈ ( )
∑ ∑1

1

2

R  

(13)

To ensure the overall improvement in brightness, the exposure 
loss was established as Equation (14). The average value of pixels in 
the pixel block corresponding to the gray-level image of the output-
enhanced image should meet certain size requirements, and the 
reference average value was set to 0.7. Em

′  represents the mth pixel 
value after image channel mean processing and pooling for the 
enhancement of the final result. The pooling operation may have 
different parameters. Hence, quotes were added to distinguish it from 
the spatial consistency loss term. The number of pixels after pooling 
was set to M.

 
L

M
E

m

M

mexp .= −( )
=

′∑1 0 7
1

2

 
(14)

The value of one color channel of the image should not 
significantly exceed that of the other channels. Hence, the loss of color 
was set to a constant value represented by Lcol  represented by 
Equation (15). This loss should go through all pairings in the three 
color channels. To better satisfy this condition, the spatial average of 

the enhanced image is calculated, and a three-channel difference loss 
term was constructed to satisfy this conclusion. (c1,c2) traverses all 
pairwise combinations in the three RGB color channels. Ec1  and Ec2  
represent the enhancement result’s mean value of one RGB channel.

 

L E E c R G G B B Rcol
c c c

c c= −( ) = ( ) ( ) ( ){ }
∀( )∈
∑
1 2

1 2 2

,
, , , , ,,

 

(15)

Different from the final enhanced image result, A is the network 
output. In Equation (16), N, which equals to H W×  dimensioned by 
An , represents the shape of the input. d  represents the gradient of 

A; for instance, Aiy
d  relates to the longitudinal gradient of A in the ith 

iteration. The illumination smooth loss Lillu  was established here.

 
L

N
A Aillu

i

n

d
ix
d

iy
d= +( )

=
∑∑1

0  
(16)

Considering that the brightness change between adjacent pixels is 
not significant, the gradient term was introduced to the network 
output to ensure a monotonic relationship between adjacent pixels. 
No texture was introduced in the network output. Instead, it was 
introduced from the original image through the relationship. As a 
common loss term for LLIE, the estimation of the illumination 
smooth loss term is similar to the calculation of light smoothness loss 
in Zhang Y. et al. (2019).

3 Experiments and evaluation

3.1 Experimental setup

The hardware part adopts an 11 GB GTX 1080 Ti. The software is 
PyTorch framework 1.10.0 v. The spiking encoding convLSTM-
augmented LLIE model was constructed using the Python 3.7 library 
of PyTorch and trained using datasets consisting of unpaired images. 
The optimization process of the proposed network employed the 
ADAM optimizer with default parameters and a fixed learning rate of 
1 × 10−4. The weights Wcol and Wtv were set to 0.5 and 20, respectively. 
These parameters remained constant in all experiments.

The datasets, i.e., LLIE fields, were divided into referenced and 
unreferenced image datasets. Typical referenced image datasets 
include LOL, SCIE, and MIT-Adobe FiveK, while unreferenced 
datasets include VV, NPE, and LIME. The LOL dataset has a 
considerably different degree of underexposure from the rest, which 
is suitable for the comparison of the overall performance of LLIE 
algorithms. The SCIE dataset is a multiexposure image sequence 
dataset with rich illumination information, which is highly suitable 
for algorithm debugging. Hence, we  selected the LOL and SCIE 
datasets for the experiments. We retained the original training and test 
dataset distributions for the LOL dataset. In each image sequence of 
the SCIE dataset, the first image was chosen as the low-light image to 
be enhanced, whereas the most suitable one was chosen as the high-
light reference image among the third, fourth, and fifth images. 
We used a user study to evaluate five common unreferenced datasets, 
namely VV, NPE, LIME, DICM, and MEF. We hypothesized that the 
key performance of LLIE should lie in the size of the space occupied 
by its running process, which can influence the integration of related 
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tiny systems. This feature represents the application’s ability to 
integrate with other functions and algorithms of the testing process 
and of the model itself.

There are five assessment indices for image objective evaluation, 
namely peak signal-to-noise ratio (PSNR), structural similarity index 
measure (SSIM), mean square error (MSE), universal image quality 
index (UQI) (Wang and Bovik, 2002), and visual information fidelity 
(VIF) (Sheikh and Bovik, 2006). The calculated evaluation indices are 
listed in Table 1. In this table, h,r corresponds to H’s and R’s results of 
the Laplace filter. The nonzero (*) function realizes 0 to 1. ∑gauss 
represents the summation of the results of different Gaussian filter 
parameters. Gaussian filtering was used for H and R. The number n 

depicts the Gaussian filtering times. For instance, 
2

1nR +  indicates that 
the square calculation was performed first, followed by Gaussian 

filtering. 1
2

nR +  indicates that Gaussian filtering was performed first, 
followed by square calculation. x  represents the uniform filter for x. 
PSNR and MSE are non-negative. Test images with reference images 
were calculated to get the PSNR value. The larger the PSNR, the less 
the image noise and the better the image quality, and SSIM reflects 
structural similarity. It is typically used to measure whether the image 
backbone of the image recovered by the LLIE has also been restored. 

The SSIM ranges from 0 to 1; only when two sets of identical image 
data converge will the SSIM reach 1. The indicator, UQI, reflects the 
measure of the degree of linear correlation, the closeness of the mean 
luminance, and the similarity of contrast between the enhanced result 
and the reference image. VIF combines a natural image statistical 
model, an image distortion model, and a human vision system model. 
Compared to the PSNR, SSIM, and other indicators, because the 
numerator of the VIF index calculation formula is the information 
fidelity criterion (IFC), VIF has a higher consistency with subjective 
vision. The higher its value, the better the image quality.

3.2 Ablation study

As the proposed method is based on the DCENet structure, the 
change in the enhancement properties after introducing the 
spiking+convLSTM structure must be  considered. The study 
demonstrates the influence of each loss term of the loss function on 
the enhancement results under different loss combinations. In the 
ablation experiment, different loss combinations were used for 
retraining. The necessity of each loss item was retested using the 
proposed DCENet-based method to prevent the negative effects of 
spiking encoding and convLSTM.

TABLE 1 A calculation of the objective image evaluation index.

Image evaluation index Mathematical expression Range Trend for better

PSNR
( )

10log
2

10
MAX H

MSE

[0,+∞) To positive infinity

SSIM
( ) ( )

( )

ˆ ˆ2 1 2 21
3 ˆ ˆ[ 1 ( ) 2

2 2

22 2 2 2 2

RH K MAX H RH K MAX H

R H K MAX H R H K MAX Hchannel

   + × + + ×      
 + + × + + ×  

∑

[0,1] Closer to 1

MSE

( )
( )1

,
R H

H W ab ab
a b I

−
×

∈
∑

[0,+∞) Smaller

UQI

( )( )
ˆ ˆ4
ˆ ˆ2 2 2 2

RHRH

R H R H+ +

[−1,1] Closer to 1

VIF

( )
log 1

2

2 22
10

,

H Hg
svsqgauss a b I

 − +
+  ∈

∑ ∑
[0, +∞] Closer to 1

TABLE 2 The performance comparison of the ablation study for different substructures (red bold for the best, black bold for the second best).

Detection 
methods

datasets PSNR SSIM MSE UQI VIF

SimpleDCE LOL 17.1200 0.5969 0.0309 0.7694 0.8564

SCIE 15.4942 0.6036 0.0337 0.8047 0.5617

Spiking + CNN LOL 17.2140 0.5999 0.0291 0.7689 0.9394

SCIE 15.1792 0.6007 0.0353 0.7945 0.5856

Proposed 

(Spiking+convLSTM)

LOL 18.3374 0.5974 0.0227 0.8369 1.1019

SCIE 16.7519 0.7289 0.0221 0. 8,413 0.5358

Proposed + CBAM LOL 16.9693 0.5968 0.0315 0.7653 0.8539

SCIE 15.3300 0.6026 0.0347 0.8010 0.5635
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FIGURE 4

Ablation study by three substructures (obvious areas for specific differences) (A) CBAM (B) spikingCNN result (C) the simple dce structure (D) the result 
obtained by proposed structure.

TABLE 3 Different loss function assemblies of ablation study in the LOL and SCIE datasets (red bold for the best, black bold for the second best).

Lcol Ltv Lspa Lexp Datasets PSNR SSIM MSE UQI VIF

  LOL 10.7278 0.3607 0.0940 0.3944 0.2599

SCIE 9.7752 0.3467 0.1326 0.2811 0.2252

  LOL 10.8758 0.3745 0.0908 0.4175 0.2800

SCIE 10.2279 0.3660 0.1241 0.3243 0.2342

  LOL 12.4312 0.4727 0.0670 0.7956 0.5626

SCIE 13.1966 0.4463 0.0602 0.7650 0.7316

  LOL 11.0469 0.4633 0.0844 0.7478 0.4725

SCIE 11.3607 0.4384 0.0793 0.7144 0.6979

  LOL 8.0262 0.3444 0.1657 0.5044 0.4472

SCIE 8.6462 0.3565 0.1435 0.4935 0.8410

  LOL 10.9274 0.3682 0.0909 0.4029 0.2717

SCIE 9.8145 0.3491 0.1317 0.2844 0.2273

   LOL 14.2867 0.5006 0.0470 0.8284 0.4368

SCIE 14.3752 0.4610 0.0437 0.7912 0.8286

   LOL 8.1473 0.3512 0.1607 0.5078 0.4504

SCIE 8.6934 0.3591 0.1417 0.4963 0.7412

   LOL 10.7671 0.3631 0.0932 0.3984 0.2608

SCIE 9.8145 0.3491 0.1317 0.2844 0.2273

   LOL 13.0447 0.5859 0.0693 0.8047 0.1875

SCIE 14.9476 0.5691 0.0335 0.8125 0.7470

    LOL 18.3374 0.5974 0.0227 0.8369 1.1019

SCIE 16.7519 0.7289 0.0221 0.8413 0.5358
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Another ablation experiment should also be considered, which 
focuses on spiking encoding and convLSTM itself. Thus, three ablation 
study experiments, whose network is made up of the only light 
DCENet structure, the structure with the CBAM attention mechanism, 
or the CNN structure that replaces the convLSTM, have been 
considered for comprehensively verifying the proposed structure’s 
necessity. In the two ablation studies, the training parameter did not 
change. The SCIE dataset was applied for specific calculations.

Only light DCENet structure: Without the proposed spiking 
encoding and convLSTM structure, the enhancement is only realized 
by DCENet.

Structure with CBAM attention mechanism: Based on the only-
light DCENet structure, the CBAM attention mechanism is set after 
the first layer.

CNN structure that replaces convLSTM: The enhancement was 
running using a CNN structure instead of convLSTM. The dimensions 
of the spiking encoding image sequence were trimmed, and the image 
sequence was superimposed to form a feature map.

The ablation study about the importance of spiking encoding and 
convLSTM is summarized in Table  2. Compared with the basic 
DCENet structure, spiking combined with the CNN structure 
revealed that the integration of spiking encoding alone improved the 

FIGURE 5 (Continued)
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performance. Specifically, the VIF parameter showed significant 
increments of 9.7 and 4.3% on the LOL and SCIE datasets, respectively. 
However, when considering other indicators, the objective evaluations 
of the LOL and SCIE datasets demonstrated a contrary trend. This 
suggests that the combination of spiking and CNN methods may not 
be beneficial for enhancing model generalization stability. To improve 
upon this, the study adopted the classic CBAM attention mechanism 
as a representative approach for introducing attention mechanisms. 
Data suggest that incorporating attention mechanisms alone reduced 
the number of essential evaluation criteria, such as PSNR, SSIM, and 
UQI. Additionally, the combination of convLSTM and spiking 
encoding not only elevated the evaluation index on the SCIE dataset 
but also surpassed the effect of the convolutional network 

combination. In addition, we identified only minor differences in the 
subjective effects of the methods under the ablation experiments. 
These effects are presented in Figure 4.

Ablation experiments assess the impact of different loss function 
terms on the image enhancement quality. The proposed approach 
employed four loss function terms. Their pairwise and three-way 
combinations and the corresponding image evaluation index 
parameters are listed in Table  3. Of the six paired combination 
parameters, color constant loss and exposure loss substantially 
enhanced image quality, followed by spatial consistency loss and 
exposure loss. Consequently, we infer that exposure loss is the most 
crucial loss item, followed by color constant loss and spatial 
consistency loss, which exert the least impact on light smoothness loss.

FIGURE 5

The loss function assembly in LOLdataset (A) original low-light image (B) color constancy loss and exposure loss (C) illumination smooth loss, 
exposure loss (D) color constancy loss, spaital consistency loss, (E) spaital consistency loss, exposure loss, (F) illumination smooth loss, color 
constancy loss, (G) illumination smooth loss, spaital consistency loss (H) illumination loss, exposure loss and color constancy loss (I) color constancy 
loss, exposure loss and spatial consistency loss (J) illumination loss, color constancy loss and spatial consistency loss (K) illumination loss, exposure 
loss and spatial consistency loss.
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The study revealed a consistent trend among the four pairs of 
three-way combination parameters. The method that incorporated 
exposure loss, color constant loss, and spatial consistency loss 
outperformed all others in the overall index. However, in terms of 
UQI, the method combined with exposure loss, color constant loss, 
and illumination smooth loss performed similarly to the rest. Notably, 
all four loss functions operated simultaneously. In other words, the 
index value corresponding to the method proposed in Table 1 is still 
the best. However, in both the LOL and SCIE datasets, UQI and VIF 
were marginally inferior to the composite approach of exposure loss, 
color constant loss, and spatial consistency loss. This highlights the 
indispensability of using four loss functions. Figures 5, 6 illustrate the 
influence of each loss function on the image enhancement effect. As 

observed, exposure loss directly controls image enhancement, while 
color constant loss mainly controls image distortion 
after enhancement.

3.3 Performance comparison

After gaining an understanding of the proposed LLIE method, 
we conclude that the LLFLOW (Wang et al., 2022), BIMEF (Ying et al., 
2017), RRDNet (Zhu et  al., 2020), zero-DCE (Guo et al., 2020a), 
DRBN (Yang et al., 2020), EXCNet (Zhang Y. et al., 2019), Lightennet 
(Zhang et  al., 2019), Enlighten Anything (Zhou et  al., 2023), 
EnlightenGAN, DSLR (Ignatov et al., 2017), BREAD (Hu and Guo, 

TABLE 4 The performance comparison of the ablation study in the SICE dataset (red bold for the best, black bold for the second best).

Detection 
methods

PSNR SSIM MSE UQI VIF

RRDNet 12.4675 0.5469 0.0594 0.5713 0.3487

zero-DCE 16.0794 0.6618 0.0365 0.8208 0.6829

DRBN 15.8745 0.4667 0.0290 0.8008 0.2575

EXCNet 16.0427 0.6006 0.0334 0.7626 0.3675

LightenNet 11.2150 0.3216 0.0810 0.7228 0.4736

DSLR 15.1002 0.5996 0.0318 0.7839 0.3348

BIMEF 15.7917 0.5904 0.0326 0.7936 0.3678

LLFLOW 15.0300 0.5830 0.0364 0.7918 0.4452

Enlighten anything 14.9228 0.6193 0.0443 0.8393 0.4487

Proposed 

(Spiking+convLSTM)

16.7519 0.7289 0.0221 0. 8,413 0.5358

EnlightenGAN 16.6135 0.6219 0.0260 0.8306 0.5310

BFSA 12.0203 0.4419 0.0721 0.5401 0.5002

Bread 16.0787 0.6209 0.0292 0.7962 0.6295

TABLE 5 The performance comparison of the ablation study in the LOL dataset (red bold for the best, black bold for the second best).

Detection 
methods

PSNR SSIM MSE UQI VIF

RRDNet 13.1360 0.5598 0.0695 0.5286 0.4951

zero-DCE 17.5592 0.5750 0.0228 0.8355 1.0560

DRBN 17.2850 0.5174 0.0238 0.7222 0.5668

EXCNet 14.8137 0.5539 0.0643 0.7010 0.4894

LightenNet 10.5513 0.1243 0.1183 0.6142 0.1467

DSLR 16.1505 0.6273 0.0389 0.6932 0.5073

BIMEF 17.0586 0.5565 0.0254 0.7792 0.4692

LLFLOW 15.5407 0.5625 0.3552 0.7353 0.5331

Enlighten Anything 16.8056 0.5646 0.0280 0.8678 0.5288

Proposed 

(Spiking+convLSTM)

18.3374 0.5974 0.0227 0.8369 1.1019

EnlightenGAN 17.2322 0.6945 0.0287 0.8189 0.7589

BFSA 11.0324 0.4429 0.1031 0.3894 0.3573

Bread 17.6990 0.6530 0.0273 0.7888 0.8823
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2022), and BFSA (Long et al., 2023) algorithms have strong robustness 
and potential applications. The proposed method was compared with 
two referenced datasets in the LLIE field based on five performance 
indicators. Figure 7 directly demonstrates the enhancement effect. 
Tables 4, 5 list the performance index values of the proposed method 
and several of the most popular enhancement methods in the two 
reference image datasets. The proposed method yielded the best 
values, with the PSNR, SSIM, MSE, UQI, and VIFP exceeding the 
second place at 4.4% (0.8%), 3.9% (17.2%), 0% (15%), 0.1% (0.2%), 
and 4.3% (0.9%), respectively. The numbers inside parentheses 

represent the increase in the SCIE dataset. In addition, we  also 
measured the parameters related to the actual application 
characteristics of the resulting algorithm. In the actual application of 
the image algorithm, the hardware space occupied by the model and 
the space occupied by the test process warrant attention.

Enlighten Anything performs similarly to the EXCNet method. 
However, it has a good research starting point, which is combined 
with the large segmentation pretrained model algorithm (Kirillov 
et  al., 2023). Although the LightenNet method meets the 
characteristics of lightweight, it yields several poor indices. The 

FIGURE 6 (Continued)
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performance of EXCNet methods is relatively moderate compared to 
other state-of-the-art methods. The model occupies a relatively large 
space. In the performance evaluation, the proposed methods, 
zero-DCE and EnlightenGAN, ranked the highest. The primary role 
of LLIE methods is to assist with enhancing the realization of other 
algorithmic functions. Generally, the model and testing process 
should occupy less space for better integration with other product 
features. As indicated in Table 6, the space occupied by the proposed 
algorithm in the test process ranks second, which is only larger than 
the poorly performing RRDNet, while the space occupied by the 
model itself reaches 151 KB, which is more than half of the space 
occupied by the second place.

3.4 User study

Certain LLIE-related datasets have no reference images 
corresponding to normal light, only images under dark lighting 
conditions, and therefore it was difficult to use objective 
evaluation indicators, such as PSNR, to evaluate image quality. 
To make the performance comparison clearer, more intuitive, and 
more efficient for these non-reference image datasets, a user 
study was performed to assess the human perception of the 
proposed method. The images tested by the user study included 
various image contents in different environments, including 
animals, exterior scenes, and buildings. Based on the user 

FIGURE 6

The loss function assembly in SCIE dataset (A) original low-light image (B) color constancy loss and exposure loss (C) illumination smooth loss, 
exposure loss (D) color constancy loss, spaital consistency loss, (E) spaital consistency loss, exposure loss, (F) illumination smooth loss, color 
constancy loss, (G) illumination smooth loss, spaital consistency loss (H) illumination loss, exposure loss and color constancy loss (I) color constancy 
loss, exposure loss and spatial consistency loss (J) illumination loss, color constancy loss and spatial consistency loss (K) illumination loss, exposure 
loss and spatial consistency loss.
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FIGURE 7 (Continued)
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feedback data, we constructed a radar map with a maximum of 
100 score points for each index, which answered the following 
five questions:

 a. Are the details noticeable?
 b. Are the colors vivid?
 c. Is the result visually realistic?
 d. Do the results contain overexposed/underexposed artifacts or 

over-enhanced/under-enhanced regions?
 e. Do the results have unnatural texture and noticeable noise?

A single radar map can clearly compare the performance of 
different methods in various aspects of an unreferenced image dataset. 
The larger the area of the radar map, the better the subjective 
comprehensive evaluation of the method. Each angular direction, 
which ranges from 70 to 100 on the radar map, represents the user 
rating score for a specific problem. The five radar plots in Figure 8 
illustrate the distributions of scores evaluated on different questions 
for different LLIE methods, where the bright red lines in the radar 
map represent the proposed method. We compared the results of the 
proposed method for the user study with those of the other LLIE 

FIGURE 7

The performance comparsions for different combinations of loss function in SCIE dataset (A) original low-light image (B) RRDNet (C) zerodce 
(D) DRBN, (E) EXCNet (F) Lightennet, (G) DSLR, (H) BIMEF (I) LLFLOW (J) Enlighten Anything (K) EnlightenGAN (L) Proposed method (M) Bread 
(N) BFSA.
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FIGURE 8

User study for 5 non-reference LLIE datasets (A) VV (B) NPE (C) LIME (D) DICM (E) MEF (F) legend of radar map.

TABLE 6 Memory occupation of the model and testing process (red bold for the best, black bold for the second best).

Detection methods Testing memory Model memory

RRDNet 1,040,384 (1.04 MB) 511 KB

zero-DCE 29,149,184 (29.1 MB) 315 KB

DRBN 53,602,358 (53.6 MB) 2.2 MB

EXCNet 22.9 MB (in Tensorflow) 157.2 MB

LightenNet 366.6 MB (in MATLAB) 108 KB

DSLR 40,600,532 (40.5 MB) 3.2 MB

BIMEF 125.8 MB (in MATLAB) /

LLFLOW 239.6 MB 20.9 MB (smallest version)

Enlighten anything 137,830,912 (131.6 MB) 144 MB

Proposed (Spiking+convLSTM) 22,233,600 (22.23 MB) 151 KB

EnlightenGAN 590,612,992 (590.61 MB) 33,774 KB

Bread 2451.456 MB 6.6 MB

BFSA 3999.744 MB 230.1 MB
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methods using a paired t-test (Guo et al., 2020). The results revealed 
that the effect of EnlightenGAN was the least different from that of the 
proposed method, except for zero-DCE.

4 Discussion

The dark light image enhancement method proposed in this paper 
has been tested by ablation experiments of different image evaluation 
indices in different datasets and performance comparison 
experiments, which have verified its performance superiority. In terms 
of space proportion, the model in this study is a single model, which 
does not need to involve a pre-training model or other model 
framework fusion methods. Enlighten Anything involves the 
pre-training weight of the SAM model. Compared with EnlightenGAN 
and related reinforcement learning methods, the new method has 
relatively low training configuration requirements and difficulty. The 
limitation of this method is that it is time-consuming at an average of 
0.007 s, as determined by the LOL test dataset, which is marginally less 
than EnlightenGAN. After testing, it was found that the convLSTM 
structure occupied 0.006 s during testing. However, it still enhances 
images at 140 fps, which exceeds the real-time demand of 30 fps.

5 Conclusion

Originating from the further introduction of spiking coding 
mechanisms into DL, a novel network exhibits better performance 
based on DCENet by spiking encoding and convLSTM. Intensity-to-
latency conversion, which is a spiking-coding methodology, can 
be used to gradually acquire the structural characteristics of an image. 
The multiple subgraphs generated by this method relate to the time 
step defined by spiking coding, and convLSTM is suitable for solving 
the image sequence problem and introducing the relationship 
information between multiple images into the network structure. 
Furthermore, the simplified DCENet structure without supervision 
achieved a superior result in terms of improvement. The performance 
comparison of this method with nine conventional methods in terms 
of five metrics was validated. The ablation study proved the necessity 
of the various parts of the structure, such as network and training 
losses. The proposed method yielded the best values with PSNR, 
SSIM, MSE, UQI, and VIFP. The proposed model occupies only 
151 KB, which will better meet the algorithm integration and practical 
application requirements on a small chip.

6 Scope

The dark light enhancement method used in the study is closely 
related to the bionic neural networks and learning systems section of 
the special issue. The relationship between dark light enhancement 
and neural networks is that neural networks can be applied to tasks 
with dark light enhancement. Dark light enhancement is an image 
processing technique designed to improve the visibility of images 
taken in low-light conditions. By learning a large amount of training 
data, a neural network can automatically learn and extract the features 
in the image and perform enhancement processing on the image to 
improve the quality and visibility of the image.

By using a neural network, a dark light-enhanced model can 
be built, which is capable of receiving an input image and producing 
the enhanced image as output. The neural network can automatically 
learn and fit the mapping relationship between the input image and 
the output image through the connection and weight adjustment 
between the multiple layers of neurons. By training and optimizing 
the neural network, it can enhance the dark light image and have 
better generalization ability for different input images.
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