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As the upstream region of the Asian summer monsoon, the Bay of Bengal
summer monsoon (BOBSM) system has impacts on rainfall patterns in East
Asia. In this study, we investigate the impact of the interannual variability
of the BOBSM retreat on China precipitation in early summer (June) of the
following year. When the BOBSM retreat occurs earlier in the previous year,
we find enhanced rainfall in both the northeastern and eastern parts of
China. Conversely, when the retreat of the BOBSM is delayed in the previous
year, there is a tendency for decreased rainfall in most of northeastern and
eastern China, while rainfall in the northern part of the Taiwan island region
tends to increase. Statistical analysis demonstrates the co-variability between
China’s June precipitation anomalies and preceding wind anomalies in the
eastern Bay of Bengal. The results indicate a strong relationship between the
preceding BOBSM retreat and China precipitation anomalies in the following
June. Furthermore, the analysis suggests that the BOBSM retreat is more of an
independent signal rather than modulated by an Indian Ocean Dipole event.
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Bay of Bengal summermonsoon,monsoon retreat, interannual variability, IndianOcean
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1 Introduction

In summer, the onset of the monsoon brings abundant water vapor from the
ocean inland, resulting in more frequent heavy precipitation. For instance, India is
one of the countries most impacted by monsoonal rainfall, with the Indian summer
monsoon (ISM) from June to September accounting for 70%–90% of the annual
precipitation (Varikoden and Preethi, 2013; Hrudya et al., 2021). The rainfall in
monsoon regions typically shows considerable interannual variability, which profoundly
impacts agriculture in these areas and, consequently, the overall economy. Therefore,
obtaining a better understanding of monsoon cycles can contribute not only to
disaster prediction and the improvement of human development but also to our
comprehension of the complex relationship between monsoons and precipitation.
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Similar to India, the Asian summer monsoon also brings
abundant precipitation to China every summer season. If we
categorize the ISM and the Bay of Bengal summer monsoon
(BOBSM) as parts of the ISM system, and classify the South China
Sea summer monsoon (SCSSM) as part of the East Asian summer
monsoon, it can be considered that the Asian summer monsoon
system is roughly divided into two independent and interacting
subsystems, both of which contribute to summer rainfall in different
parts of China (Wang and Chen, 2012; Ding et al., 2016). The ISM
plays a crucial role in the variation of precipitation in Southern
China by transporting moisture from the Indian Ocean as part of
the southwesterly branch, and the Bay of Bengal (BOB) serves as one
of the main pathways for transporting tropical water vapor (Zhou
and Yu, 2005; Zhang et al., 2021). Compared to the ISM, the impacts
of the BOBSM and SCSSM on China’s summer rainfall are more
direct and significant after the onset of the summer monsoons, with
the warm and humid airflows penetrating northward to mainland
China. When the onset of the BOBSM occurs earlier than the
climatological mean (late April), strong convective activity happens
earlier over the BOB, which can cause rainfall in South China to be
suppressed inMay (Xing et al., 2016; Mao andWu, 2007). Following
the onset of the BOBSM, the onset of the SCSSM changes the
precipitation pattern in SouthChina fromanotable drying trend to a
wetting trend, which has been proven to strengthen its interdecadal
relationshipwith the onset of the BOBSM (Zeng et al., 2021; Li et al.,
2022). On the other hand, the retreat of the Asian summermonsoon
has great impact on the precipitation in China, there is a significant
positive correlation between the interannual variation in SCSSM
retreat and September to October rainfall in Southern China
(Hu et al., 2020). This may be associated with the retreat of the
East Asian summer monsoon accompanied by the rainband moving
southward (Chang, 2004; Chen et al., 2022). However, whether the
retreat of the BOBSM is related to the subsequent rainfall in China
has not received much attention. In this study, we attempt to reveal
the relationship between the retreat of the BOBSMand the following
June rainfall in China and provide some insights for rainfall
prediction.

The rest of this paper is structured as follows. Section 2
provides an overview of the datasets and methodologies used
in this study. Section 3 describes the relationship between
the retreat of the BOBSM and China precipitation in the
following June. Discussion and conclusion are presented
in Section 4.

2 Data and methods

In the present study, observational and reanalysis datasets
are used. Rainfall data come from version 2.3 of the monthly
precipitation dataset of the Global Precipitation Climatology
Project (GPCP, Adler et al., 2018), which is on a 2.5° × 2.5° grid
from 1980 to 2022, and the National Oceanic and Atmospheric
Administration’s Precipitation Reconstruction over Land (PREC/L;
Chen et al., 2002), which has a 0.5° × 0.5° horizontal resolution
for the same period. The observational precipitation data from
China, CN05.1 dataset is also used in this study (Wu and Gao,

2013), which has a 0.25° ×0.25° horizontal resolution interpolated
from over 2,400 station observations. Three-dimensional variables,
including zonal and meridional winds, are obtained from the
European Centre for Medium-Range Weather Forecasts (ECMWF)
and have a horizontal resolution of 0.25° × 0.25° (Hersbach et al.,
2023), covering the same time period. The Indian Ocean Dipole
Mode Index (DMI, Saji et al., 1999) is derived from the HadISST
datasets provided by the Met Office Hadley Centre, which
has a 1° × 1° spatial resolution and ranges from 1979 to
2022 (Rayner et al., 2003).

The BOBSM retreat index used the definition that is based
on the areal mean zonal wind field at 850 hPa within the eastern
BOB (90° ∼ 100°E, 5° ∼ 15°N, hereafter U850; Li et al., 2023). By
defining thewestward airflow as the positive direction, the definition
of the retreat index is the first day after 1st October which also
need satisfy the following criterions: (1) A shift in areal mean zonal
wind from westly to easterly with a magnitude surpassing 1 m/s,
(2) the magnitude of the average U850 over the subsequent 10 days
(including the first day) must be less than −2 m/s, and (3) U850
should keep negative for at least 13 days within the following 15 days
(including the first day).

Kinds of statistical methods including correlation, partial
correlation, composite analysis and singular value decomposition
(SVD) are used in this study. The formula of the correlation analysis
is Eq. 1 as follows:

rx,y =
∑n

i=1
(Xi −X)(Yi −Y)

√∑n
i=1
[(Xi −X)]

2 ∙∑n
i=1
[(Yi −Y)]

2
(1)

where Xi and Yi represents the retreat index and precipitation
anomalies at each grid point respectively, X and Y represent
the mean retreat index and climatological June precipitation
respectively, n is the total year number. Partial correlation
is employed to study the isolate impact of retreat of the
BOBSM and the following June precipitation which removes
the IOD signals. And formula of the partial correlation
is Eq. 2 as follows:

rAB,C =
rAB − rACrBC

√1− r2AC ∙√1− r
2
BC

(2)

Here, rAB,C means partial correlation coefficient between
variables A and B after removing the influence of variable C,
rij represents the linear correlation coefficient between two
variables. In this study, variable A represents the BOBSM
retreat index, variable B represents the June precipitation
anomalies in the following year, and variable C represents
the averaged DMI in previous SON season. The degrees of
freedom for the t-test are n-3 (Ashok et al., 2007; Ding et al.,
2016). On the other hand, the SVD analysis is utilized to
extract the coupled modes between preceding wind anomalies in
previous October and precipitation anomalies in following June
(Bretherton et al., 1992; Zhang T. et al., 2022). The significance
levels for correlation, partial correlation, and composite are tested by
Student’s t-test.
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FIGURE 1
(A) Composite map for climatological mean wind fields at 850 hPa (vector, unit: m/s) and precipitation rate (shaded, unit: mm/day) for June during
1980 ∼ 2022. (B) The BOBSM retreat index from 1980 to 2022 in Julian calendar and 7th October corresponds to 280 days. The red dot line represents
the climatological mean retreat date and green shade line represents within one standard deviation (10 days). (C) Composite map for following June
precipitation anomalies (shaded, unit: mm/day) and 850 hPa wind fields (vector, unit: m/s) after early retreat of BOBSM year, the scatter area passed the
95% significance level estimated by Student’s t-test; (D) same as the (C) but under a late BOBSM retreat situation.

3 Results

3.1 Features of precipitation in June
associated with BOBSM retreat

In June, climatological precipitation is mainly concentrated in
the southern part of China. Figure 1A depicts the climatological
wind pattern and precipitation rate for June during the period
from 1980 to 2022, showing that southwesterly winds exceeding
3 m/s prevail over the Bay of Bengal (BOB) and flow eastward,
reaching the South China Sea. Heavy rainfall occurs in the
northwestern part of the Indo-China Peninsula, with precipitation
rates exceeding 20 mm/day. The main precipitation belt is primarily
concentrated in the Southern China, while precipitation in
Northeast China is relatively weak due to the evolution of the
summer monsoon.

At the interannual timescale, rainfall in China during June
exhibits significant variability (Li et al., 2018; Zhao et al., 2018). As
the first onset of the Asian summer monsoon, the BOBSM also
shows interannual variation (Li et al., 2018), especially in its retreat
phase. The BOBSM retreat index, shown in Julian calendar days, is
listed in Figure 1B. It is noted that the retreat date of the BOBSM
exhibits obvious interannual variation. The climatological retreat

date of the BOBSM is October 26th (Julian day 299), as shown by
the red dotted line. Assuming one standard deviation (10 days) as
the criterion to judge the significant retreat year of the BOBSM, we
define the selection criteria as follows: an early retreat event occurs
when the Julian day number is smaller than 289. Conversely, a late
retreat event occurs when the Julian day number is greater than 309.
Using this criterion, significant early/late retreat events are identified
as occurring in 1990, 1997, 2008, 2014, and 2019/1981, 1986,
1996, 2005, and 2016, respectively. The corresponding following
years are 1991, 1998, 2009, 2015, and 2020/1982, 1987, 1997, 2000,
2006, and 2017.

To examine the rainfall anomaly distribution in the year
following a significant BOBSM retreat, composite analysis is
performed, as shown in Figures 1C, D. Figure 1C presents the
composite map of precipitation anomalies in June following an
early retreat of the BOBSM. Strong precipitation is observed
in the northeastern and eastern parts of China, with abnormal
southwesterly winds appearing at the lower level of 850 hPa in
Eastern China. In contrast, Figure 1D shows the distribution of
abnormal June precipitation following a late BOBSM retreat. There
is a significant decrease in precipitation in Northeastern China,
the Yangtze River valley in East China, and the northern part of
the Beibu Gulf. Conversely, there is an increase in precipitation in
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FIGURE 2
(A) Spatial distribution of the correlation between BOBSM retreat index (from 1980 to 2021) and the following June precipitation anomalies (from 1981
to 2022). (B) Same as the (A) but for detrend June precipitation anomalies. (C) Partial correlation between the retreat index and the June precipitation
anomalies in the following year after removing IOD signals. The significance level is over 90% in the shaded area examined by Student’s t-test.

FIGURE 3
Spatial patterns of the first couple mode of (A) October winds anomalies (vectors) in eastern BOB at 850 hPa level, (B) rainfall anomalies in following
June (contour, units: mm/day) and (C) the time series of wind filed and rainfall expansion coefficients respectively. The wind filed and rainfall are over
periods of 1980–2021 and 1981–2022, respectively. The wind field was re-interpolated to a horizontal resolution of 2.5° ×2.5°.

FIGURE 4
Conceptual map shows the area’s following June precipitation effected by the retreat of the BOBSM. “D” means dry and “W” means wet. (A) Denotes
the late retreat of the BOBSM. (B) Denotes the early retreat of the BOBSM.

and around Taiwan Island, accompanied by a cyclonic circulation
anomaly at lower levels. Previous studies have also indicated that
the aforementioned regions suffered significant drought or wet

conditions in June following the alteration of the retreat time of
the summermonsoon (Zhang et al., 2001;Wu et al., 2010;Guo et al.,
2016; Zhang et al., 2017; Lee et al., 2023; Henny et al., 2023).
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3.2 Relationship between BOBSM retreat
and the following rainfall in June

In order to gain a deeper understanding of the relationship
between the formal retreat of the BOBSM and the ensuing
June precipitation in China, the Pearson correlation coefficient is
calculated between the retreat index and the June precipitation
anomalies in China. A negative correlation suggests that a delayed
retreat of the BOBSM is associated with decreased rainfall, while an
early retreat correlates with increased rainfall in the following June.
Conversely, a positive correlation suggests that a delayed retreat is
associated with increased rainfall, and an early retreat is associated
with decreased rainfall in the following June. The correlation maps
are shown in Figures 2A, B. To examine the role of IOD events,
a partial correlation analysis is performed, and the results are
presented in Figure 2C, and we will discuss in Section 4. Figure 2
demonstrates that the correlation between the retreat index and June
precipitation in China is similar to the results of the composite maps
(Figures 1C, D). The regions of Northeast and East China, as well
as the northern part of the Beibu Gulf area, show a clear negative
correlation, while a significant positive correlation is observed in
the areas around Taiwan Island, consistent with the precipitation
distribution revealed in the composite results. Additionally, similar
results are confirmed by the analysis using the PREC/L andCN05.01
datasets (Supplementary Figure S1).

Considering the effect of abnormal circulation on the early or
late retreat of the BOBSM in October, further analysis is conducted
to explore the relationship between the abnormal wind field in the
eastern BOB and the precipitation in the following June in China.
By analyzing the covariance matrices of the wind field in the eastern
BOB and the subsequent June precipitation, the SVD analysis is used
to investigate the potential connection between June precipitation
in China and the retreat date of the BOBSM. The results of the
SVD, reveal that the first two modes explain 84.9% and 6.8% of
the total variance, respectively. The cumulative variance explained
by the first two modes is 91.8%, indicating that these modes
(referred to as SVD1 and SVD2) effectively capture the dominant
patterns of interaction between the retreat of the BOBSM and June
rainfall. The first mode of SVD, as shown in Figure 3, accounts for
84.9% of the total variance in June precipitation anomalies over
China. The time series corresponding to the first SVD mode of the
wind field and June precipitation is illustrated in Figure 3C, with
a correlation of 0.62 over the 42-year period. The wind field in
the eastern BOB and precipitation exhibit consistent fluctuations
during the study period (Figures 3A, B). And the SVD results
indicate that when the corresponding time coefficient is positive,
an abnormal northeasterly wind anomaly occurs in the eastern
BOB, leading to an early retreat of the BOBSM. Concurrently, the
associated precipitation mode is characterized by a tripole pattern
over Northeastern China, Eastern China, and the northern part of
the Beibu Gulf.

4 Discussion and conclusion

Previous studies have indicated that prior El Niño and Indian
Ocean Dipole (IOD) events have a significant impact on summer
precipitation in China, both El Niño and IOD can stimulateWestern

North Pacific anti-cyclonic circulation which form a favorable
circulation pattern for June precipitation in China with different
SST distributions. For instance, a strong positive IOD event with
weak El Niño recorded in 2019 which contribute to extreme Yangtze
River Valley flooding in 2020 by generating westward-propagating
oceanic downwelling Rossby wave along the equator, result in a
deepened thermocline favor for Indian Ocean warming from spring
to summer in 2020, and the Indian Ocean warming forces an
anomalous anticyclone in the lower troposphere over the Western
North Pacific leading to heavy summer rains in Yangtze River
Valley. (Li et al., 2007; Zhang et al., 2020; Zhou et al., 2021; Zhang
Y. et al., 2022). Meanwhile, IOD events have a closely relationship
with SouthAsian summermonsoon systems, a normal (late) SCSSM
onset is associated with the previous positive (negative) IOD which
also contribute to enhance (suppress) summer rainfall in China.
(Yuan et al., 2008; Jiang et al., 2022). Furthermore, the interannual
variation of the BOBSM retreat is also found to be modulated by
IOD events, changes in the retreat of the BOBSM often coincide
with the occurrence of IOD events, the early or delayed retreat of the
BOBSM is related to a positive or negative IOD event, respectively
(Li et al., 2023). Figures 2, 3 suggest a strong relationship between
the anomalous wind field in the eastern BOB in the preceding
October and the subsequent June rainfall in China. This raises the
questions: How does the signal from the retreat of the BOBSM
can persist 8 months to modulate the rainfall in China? Does the
abnormal precipitation in June result primarily from IOD events, or
from the relatively independent impact of the BOBSM retreat?

The spatial distribution pattern of the partial correlation
(Figure 2C) is quite similar to that in Figure 2A. Northeast China
and eastern part of Yangtze River Valley have a significant negative
correlation with the BOBSM retreat index, which means heavy
rains occur to these regions accompanying by the late retreat of
the BOBSM in the previous year, and vice versa (Figures 1C, D,
Figures 3c). Corresponding to obvious change in the retreat of
the BOBSM, significant SST anomalies occur in the Indian Ocean
and Pacific Ocean. SST may play an important role of modulating
rainfall in the ensuing summer. SST warming in tropical Western
North Pacific can modulate the retreat of the SCSSM tend to be
late on one hand, and also resemble the developing phase of a La
Niña which induce an anomalous cyclone over South China Sea at
low-level via a Rossby wave-type atmospheric response, result in
heavy rain in southern China from September to October (Hu et al.,
2019; Hu et al., 2020; Chen et al., 2022; Hu et al., 2022). Similarly,
late retreat of the BOBSM is accompanied by a La Niña and a
negative IOD (Li et al., 2023). One possible dynamic mechanisms
for explaining the linkage between the BOBSM retreat and summer
rainfall in China is that when late retreat of BOBSM appeared with
negative IOD, the late onset of the SCSSM next year will suppress
the summer rainfall. However, this mechanism can only explain
the precipitation in southern China, but not work on the abnormal
precipitation in the Northeast China and the northern part of the
Beibu Gulf occurring simultaneously. It suggests that the BOBSM
retreat may be an independent factor impacting the subsequent June
rainfall, rather than being solely influenced by IOD events, which
potentially brings a tripole pattern of rainfall in China during the
following June.

In this study, we explore the relationship between the retreat
of the BOBSM and the subsequent June precipitation in China.
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The statistical results indicate that the BOBSM retreat index is
associated with the following June rainfall in China. An early retreat
of the BOBSM can lead to increased precipitation in Northeastern
China, Eastern China, and the northern part of the Beibu Gulf
in the following June (Figure 4B). In contrast, a late retreat of the
BOBSM can suppress precipitation in Northeastern and Eastern
China but increase it in the Taiwan Island region (Figure 4A).
This research reveals the relationship between the BOBSM retreat
and the subsequent June rainfall, and the mechanism responsible
for this correlation is still under investigation. Further work will
be undertaken to elucidate the physical processes behind this
correlation in the future.
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