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Commands in brain-computer interface (BCI) applications often rely on the

decoding of event-related potentials (ERP). For instance, the P300 potential

is frequently used as a marker of attention to an oddball event. Error-related

potentials and the N2pc signal are further examples of ERPs used for BCI control.

One challenge in decoding brain activity from the electroencephalogram

(EEG) is the selection of the most suitable channels and appropriate features

for a particular classification approach. Here we introduce a toolbox that

enables ERP-based decoding using the full set of channels, while automatically

extracting informative components from relevant channels. The strength of our

approach is that it handles sequences of stimuli that encode multiple items

using binary classification, such as target vs. nontarget events typically used

in ERP-based spellers. We demonstrate examples of application scenarios and

evaluate the performance of four openly available datasets: a P300-based matrix

speller, a P300-based rapid serial visual presentation (RSVP) speller, a binary

BCI based on the N2pc, and a dataset capturing error potentials. We show

that our approach achieves performances comparable to those in the original

papers, with the advantage that only conventional preprocessing is required

by the user, while channel weighting and decoding algorithms are internally

performed. Thus, we provide a tool to reliably decode ERPs for BCI use with

minimal programming requirements.
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1 Introduction

Brain-computer interfaces (BCIs) can be controlled using brain signals recorded with
noninvasive techniques such as electroencephalography (EEG) and have a wide range of
applications (Saha et al., 2021). Different EEG features can be used to distinguish between
user intentions, including the sensory motor rhythms (SMR) (Yuan and He, 2014), steady-
state visually evoked potentials (SSVEP) (Vialatte et al., 2010), or event-related potentials
(ERPs) (Fazel-Rezai et al., 2012; Chavarriaga et al., 2014). ERPs are characterized by
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deflections in the EEG that are locked to a stimulus event.
The most frequently applied ERP in BCIs is the P300 response,
elicited by a rare and unpredictable sensory stimulus (target or
oddball) embedded in a series of standard stimuli (nontarget).
An oddball stimulus correctly recognized as the target results in
a signal deflection 300–600 ms after stimulus onset in sensors
around the vertex. However, achieving a reliable detection of
brain signals, such as the P300, does not rely on a particular set
of sensors consistent across tasks and participants. This has led
to different approaches for channel selection, such as recursive
channel elimination (Rakotomamonjy and Guigue, 2008), mutual
information maximization (Lan et al., 2005) and methods based on
genetic algorithms and artificial neural networks (Yang et al., 2012).
An alternative to channel selection is the linear transformation of
the sensor space into a new surrogate sensor space, in which a
reduced number of sensors represent the informative signal with
reduced noise (Cohen, 2017). The advantage of such a spatial
filter approach is that the channel weights are determined from
training data and sensor selection is implicitly performed by down-
weighting irrelevant channels. As a result, relevant information for
signal classification is retained from all channels, and individual
participant variation or differences in electrode placement do not
result in loss of relevant information. The computational effort
of this approach is lower than repeatedly training and testing a
classifier for recursive feature elimination or for applying genetic
algorithms and is thus better suited to BCI use. Application
of such linear transformation methods for signal classification
includes the common spatial pattern (CSP) approach, a well-
established spatial filter for decoding SMRs (Blankertz et al., 2008;
Arpaia et al., 2022), and canonical correlation analysis (CCA) for
decoding SSVEPs (Lin et al., 2007). SMR and SSVEPs are oscillatory
signals, which are characterized by frequency, amplitude and phase
information, whereas feature extraction for BCIs is commonly
restricted to amplitudes, neglecting the phase information. ERPs
are time-locked signals and therefore feature extraction methods
used for ongoing oscillations, including SSVEP, are not suitable.
Nevertheless, CCA can be applied to ERP decoding using a
suitable model as a reference function and result in enhanced
decoding accuracies (Spüler et al., 2014). Including CCA has
also proved advantageous in decoding P300 signals from the
magnetoencephalogram (MEG) (Reichert et al., 2016, 2017) as well
as in decoding the N2pc for various EEG-based BCI applications
(Reichert et al., 2020a,b, 2022).

Open source toolboxes can make it easier for scientists
to implement established algorithms. Several general-purpose
toolboxes, which implement or provide an interface to several
algorithms, are available for processing EEG/MEG data (Delorme
and Makeig, 2004; Oostenveld et al., 2011) or for performing
benchmark tests using open BCI datasets (Jayaram and Barachant,
2018). Here we extend the variety of publicly available algorithm
implementations and introduce the ERPCCA toolbox1, which
implements CCA as a tool for extracting canonical ERPs. The
strength of the toolbox is the detection of a user’s intention that
results from a series of stimuli, such as in P300-based speller
applications (Rezeika et al., 2018; Maslova et al., 2023). Likewise, the
ERPCCA toolbox is suitable for binary single event decoding such

1 https://gitlab.com/christoph.reichert/erpcca

as the detection of error-related potentials. It is thus most suitable
for scientists whose intention is to implement a BCI based on ERPs
reflecting attention to sensory stimuli, but it is also useful for offline
investigation of BCI data sets and ERPs reflecting two conditions.
In this paper, we demonstrate the capabilities of the toolbox using
four openly available datasets and compare the decoding accuracies
of different classifier and feature set combinations.

2 Materials and methods

2.1 Decoding approach

2.1.1 Analyzing brain signals using CCA
Canonical correlation analysis (CCA) (Hotelling, 1992) is a

statistical approach for maximizing the correlation of two sets of
canonical variates U and V by determining the matrices A and
B, that linearly transform two sets of random vectors, denoted in
matrix form as X and Y :

(U,V) = argmaxA,B corr (XA,YB) (1)

An implementation that solves this optimization problem is
available in the MATLAB R© Statistics and Machine Learning
ToolboxTM (canoncorr), which is required for using the ERPCCA
toolbox. We apply CCA to a set of training data where we assign
X as a matrix of brain signals of size n × d1 and Y as a matrix
of model signals of size n × d2, where n is the number of sample
points, d1 is the number of sensors or electrodes comprising the
brain signals, and d2 is the number of model signals. This results in
the canonical coefficients A of size d1 × d that linearly weight the
brain signals and serve as a spatial filter, and B of size d2 × d that
linearly weight the model signals and reflect the contribution of a
model signal to a specific component. The number of components
d depends on d1 and d2 and is the minimum of the ranks of
X and Y . Furthermore, the components i = 1···d are sorted by
their correlation ρi(ui, vi) in descending order. Both X and Y
are concatenations of epochs. An epoch is an interval following
a single event, for example, a visual stimulus, and comprises
multiple time-varying signals, for example, EEG signals. While
X is a concatenation of individual epochs of electrophysiological
recordings, Y is a concatenation of template epochs that are
repeated according to their condition, for instance, target and
nontarget events.

However, the definition of model signals is a challenge, since
the ground truth ERPs are unknown, especially for an individual
person performing a specific task. As the assumption is that the
stimulus signal is directly reflected in the brain response, a common
approach in SSVEP BCIs is to model Y using sine and cosine
functions of the same frequency as the flicker stimuli and their
harmonics. In a study investigating the stimulus-response mapping
of continuous auditory stimuli, the authors used the envelope of
the auditory stimulus as the model signal (de Cheveigné et al.,
2018). Here, however, the focus is on ERPs, which reflect higher
cognitive functions such as attention, and not only the sensory
input. One approach is to use the average ERP signal as the model
signal (Spüler et al., 2014). The advantage is that noise-reduced
individual brain responses are directly used as the model signal.
Our approach in previous work was to use identity matrices of
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size m × m, where m is equal to the sample points in a single
epoch (Reichert et al., 2016). The advantage of this approach is
that the canonical components in V are not limited to linear
combinations of defined time courses, as with average ERPs, but
they can result in arbitrary time courses, because each model signal
can be considered an impulse function responsive to one sample
point in the epoch, and the canonical coefficients directly mirror
the time course of the optimal model signals, since ImB = B.
In the ERPCCA toolbox, we implement both approaches, using
average signals and impulse functions as model signals, which can
be selected as an option.

2.1.2 Using the learned model
Once we have determined the canonical coefficients in matrices

A and B from the concatenated set of training data, we can use these
filters to extract features from new, unseen test data. Commonly,
only a few components are informative for discriminating event-
related brain responses. Therefore, only the k first components
in A and B are used to extract the features. The component
limit is an option in the toolbox that can be set to a fixed
number k or to a p-value resulting in selecting the most
significant components as obtained from statistics available from
the canoncorr function. A single trial can be composed of a
sequence of epochs, e.g., epochs following target and nontarget
events to identify one letter for a speller. The test data are
transformed to a matrix X̂ of size n̂ × d1 where n̂ is the
number of sample points after concatenating the epochs in a
sequence. Furthermore, for each class c (e.g., spellable character),
a sequence of model signals Ŷc of size n̂ × d2 is generated. Ŷc
can be composed of only model signals related to target events
or involve the nontarget events as well. In the latter case, the
model signals determined from nontarget events are multiplied
by −1, which leads to optimizing the spatial filter subject to the
difference wave of target and nontarget epochs. Consequently,
the common signal (usually the sensory input) is subtracted
and only the difference is preserved (the intention, generated by
cognitive processing).

2.1.3 Meaning of canonical coefficients
To interpret the estimated canonical components with respect

to underlying cognitive processes, we take a closer look at the
linear weight matrices A and B. The canonical coefficients in A
serve as spatial filters, since they linearly combine the channels
in X. However, high values in A do not necessarily reflect a high
resemblance of these channel signals with the respective canonical
variate. Instead, we can calculate the inverse of A, which can be used
to transform the backward model U = XA (see Equation 1) to
the forward model X = U(A−1)

T
+ ε (Haufe et al., 2014). A−1

is referred to as the activation pattern, or simply the pattern, as it
characterizes the spatial pattern of the activity in the components in
U (Blankertz et al., 2008). We will refer to an activity pattern of the
jth ranked canonical component as j, where j is the jth column
vector in

(
A−1)T .

Since the canonical coefficients in B are used to linearly
combine the model signals, their meaning depends on Y . In the
case of setting the model signal to the average across epochs,
B again can be considered a spatial filter. In contrast, impulse
model signals enable the direct interpretation of B as comprising

component time courses. Each column in I corresponds to one
sampling point in an epoch. When two conditions are involved,
such as target and nontarget events, the columns in B signify
event-related canonical difference waves. Conversely, when only
one condition is involved, the columns in B represent event-
related canonical potentials. We will therefore refer to the jth
ranked canonical difference wave, obtained by using impulse model
functions and involving two conditions, as bj, where bj is the jth
column vector in B.

2.1.4 Feature spaces and classifiers
We implemented two kinds of feature space. The first feature

space is composed of the Pearson correlation coefficients of
the canonical components, i.e., the columns in Û = X̂A and
V̂c = ŶcB. We refer to this k-dimensional feature space as R.
The second feature space is composed of the canonical variate Û
by concatenation of the time series of each component, resulting
in k ·m features. If one trial is composed of several repetitions,
canonical epochs that correspond to the event of the currently
considered class, e.g., the stimulus of a letter in a spelling paradigm,
are averaged. We refer to this feature space as U.

Finally, to decode the brain responses, different classifier
approaches may be used to determine the user’s intention based
on the extracted features. We implemented four types of classifiers
in the toolbox: support vector machine (SVM), linear discriminant
analysis (LDA), and naïve Bayes classifier (nB), which are based
on the implementations in the Statistics and Machine Learning
ToolboxTM, as well as an approach which is based on maximum
correlation values and was first presented for CCA-based ERP
decoding in Reichert et al. (2015). Hyper parameters that have an
impact on the classification result, are internally estimated from
the training data. For the SVM’s box constraint parameter C, we
used the approach suggested by Joachims (2002),2 and for the LDA
regularization parameter, we set the default value as implemented
in the MVPA-light toolbox3 (Treder, 2020). Alternatively, using
Matlab’s concept of function handles, arbitrary classifiers, including
the definition of their parameters, can be applied. The ability
to specify function handles also opens up the possibility of
programming custom classifier functions and interfaces to other
machine learning toolboxes.

Once a classifier is trained using a training dataset, a user’s
intention can be predicted from test data. In this toolbox, ERP
decoding relies on binary classification. The intended class is
determined by identifying the class with the highest probability of
exhibiting responses to target events. This probability is obtained
through the Posterior Probability generated by the predict function
of SVM, LDA, and nB. For the maximum correlation classifier,
this probability is linked to the correlation coefficient in the R
feature space. Consequently, the class is directly determined by
identifying the maximum of averaged correlation coefficients across
the k components. This classifier is only applicable to the R feature
set. In contrast, SVM, LDA and nB are applicable to both R
and U feature sets.

2 https://www.cs.cornell.edu/people/tj/svm_light

3 https://github.com/treder/mvpa-light

Frontiers in Human Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1358809
https://www.cs.cornell.edu/people/tj/svm_light
https://github.com/treder/mvpa-light
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1358809 March 5, 2024 Time: 7:42 # 4

Reichert et al. 10.3389/fnhum.2024.1358809

FIGURE 1

Processing steps. Data preparation is a prerequisite. Epoch data
should have three dimensions (number of channels, number of
samples and number of events). For each event, identifiers indexing
the current stimulus, target, and trial/sequence are required. The
ERPDecoder concatenates the epochs and model signals
accordingly, and performs CCA and classifier training. Arrows
indicate the flow of input and output data.

2.2 General usage of the toolbox and
data preparation

We implemented the algorithm described above such that
users can apply it on a low level. Essentially, only two functions
must be called to perform the decoding: fiterpcca, which returns
a trained ERPDecoder object, and the predict function, which
is applied to that object. Furthermore, we provide a function
crossvalerpcca, which performs cross-validation. Below we describe
how to prepare the data to successfully apply the toolbox, which is
I–Data preprocessing and II–Event indexing. See Figure 1, as well
as the examples in the repository1 for reference.

I—Data preprocessing. The brain data must be presented as a
three-dimensional array of size [number of channels × number
of samples × number of events]. Each epoch refers to the
brain response to a single event. To achieve good results, we
recommend bandpass filtering the data between 1.0 and 12.5 Hz
to remove slow signal drifts and irrelevant fast fluctuations. If one
trial consists of several events, as in speller paradigms, the trial
might be filtered before final epoching to prevent edge effects.
To reduce computational load, we suggest resampling the data
to around 50 Hz.

II—Event indexing. Since stimulus information is essential for
training the decoder, three vectors providing details of events are
required. The stimulus identifier (stimID) denotes the stimulus that
was presented, i.e., a number ranging from 1 to c if c classes were
available, and is provided as a column vector. If multiple events
occurred simultaneously, e.g., in a matrix speller where several
characters are highlighted simultaneously, stimID can instead be
specified as a matrix with one column per simultaneous event.
In another column vector, the target stimulus identifier (trgtID)
is required to indicate which of the c classes was the target
class in that trial/sequence, i.e., all epochs that correspond to one
trial/sequence should have the same value in trgtID. Finally, one
column vector is required, which indicates a sequence identifier
(seqID), i.e., all epochs that correspond to one trial/sequence of

stimuli, should have identical values in seqID. The identifiers 1···s
are recommended, where s is the number sequences.

Options that define which model signal, feature space, classifier,
etc., is used can be assigned as name-value pairs. These values
depend on the task at hand and can have a substantial impact
on the results. One useful option is to define an alphabet which
assigns characters to the classes 1···c. This results in readable
predictions, e.g., spelled words rather than a series of stimulus
identifiers. Another potentially useful option is the possibility of
enabling/disabling the involvement of non-target events in the
CCA. If the contrast parameter is set to 0, only target events
are involved in the estimation of spatial filters. Otherwise, non-
targets are involved as well, and model signals for non-targets
are calculated as described in 2.1, resulting in contrasting the
conditions. Note that this applies only to the CCA step. For
classification, the spatial filters are applied to all epochs. All
parameters and options are described in the help text of a function
and in the documentation of the ERPCCA repository1.

2.3 Application to open datasets

2.3.1 Dataset I—Matrix speller
The first dataset can be accessed on the BNCI Horizon 2020

webpage4 under the name “12. Visual P300 speller (003-2015).”
It includes 10 subjects who participated in a short matrix speller
session. The dataset provides 8 channels of EEG recordings and 10
trials per subject, a five-character word for training and another for
testing. Each of the 36 characters was highlighted 15 times per trial.
More details about the experiments, including the preprocessing,
which was performed analogously here, can be found in the
corresponding publication (Guger et al., 2009). Specifically, we
applied a 4th order Butterworth band pass filter (0.5–30 Hz),
performed baseline correction using the 116 ms interval before
stimulus onset as the baseline, sampled the data to a 64 Hz
sampling rate, and set the analysis window to 0–800 ms after
stimulus onset. We performed 10-fold cross-validation involving all
available trials and using different feature/classifier combinations.
In contrast to the maximum correlation classifier and naïve
Bayes classification, LDA and SVM are suitable for classifying
data in high dimensional feature spaces. Consequently, we used
feature/classifier combinations R/max, R/nB, R/SVM, R/LDA,
U/SVM and U/LDA. We kept only three canonical components
for the feature space calculations. Furthermore, we investigated
the difference between using the impulse and the average model
functions and also the impact of involving non-target epochs or
not. Finally, we determined the decoding accuracy as a function of
stimulus repetitions (5, 10 and 15 stimuli per trial) and performed
a simulation of online sessions using the same training and test sets
as during the BCI sessions.

2.3.2 Dataset II—RSVP speller
Similarly to the first dataset, the second dataset was also

recorded during spelling and is based on oddball events inducing
a P300 response. However, it is gaze-independent since the stimuli

4 http://bnci-horizon-2020.eu/database/data-sets
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were presented focally. It is available from the BNCI Horizon
2020 webpage (see text footnote 4) under the name “19. RSVP
speller (010-2015).” The study, which uses RSVP to perform
the BCI spelling task, involved 12 subjects equipped with 63
electrodes. Each of the 30 characters was presented 10 times
per trial. Only sessions with 83 ms stimulus onset asynchrony
(SOA) are available in the dataset although data with longer SOA
were also recorded according to the corresponding publication,
where classifier features were determined from averages within
predefined time intervals (Acqualagna and Blankertz, 2013). Here
we performed the preprocessing as follows. We applied a 4th order
Butterworth band pass filter (0.01–20 Hz), performed baseline
correction using the 116 ms interval before stimulus onset as
baseline, downsampled the data to a 50 Hz sampling rate and
set the analysis window to 0–800 ms after stimulus onset. We
performed 10-fold cross-validation using the same feature/classifier
combinations, model signals, and parameters as we did with dataset
I. Finally, we determined the decoding accuracy as a function
of stimulus repetitions (2, 4, 6, 8 and 10 stimuli per trial) and
performed a simulation of online sessions using the same training
and test sets as during the BCI sessions.

2.3.3 Dataset III—Visual spatial attention
The third dataset5 includes 14 subjects who responded as

to whether an auditorily presented number was even or not by
directing their attention to a target color, associated with the
intended response. Both colors, red and green, were presented 10
times per trial in a random order, one of them in either visual
hemifield. In total, 144 trials per subject are available, including
EEG from 12 occipital electrodes as well as the vertical and
horizontal electrooculogram. Conceptually, the dataset differs from
the first two datasets in how ERPs are extracted and how target
detection is achieved. The main difference is that the target is
present in each stimulus event, such that ERPs differ only with
regard to spatial information pertaining to the target location rather
than in the presence of a target. Consequently, with this dataset it
only makes sense to contrast the conditions and set the contrast
parameter accordingly. This is in line with what is typically done
with this kind of data, which is to consider the difference wave
of contralaterally vs. ipsilaterally presented targets. Similarly to the
approach in the corresponding publication (Reichert et al., 2022),
we filtered the data between 1.0 and 12.5 Hz, downsampled them
to 50 Hz and considered 0–750 ms after onset as the analysis
interval. We performed 10-fold cross-validation using the same
feature/classifier combinations and model signals as we did with
dataset I but did not vary the contrast parameter for the reason
explained above. Finally, we determined the decoding accuracy as
a function of stimulus repetitions (2, 4, 6, 8 and 10 stimuli per
trial) and performed a simulation of online sessions using the same
training and test sets as during the BCI sessions.

2.3.4 Dataset IV—Error monitoring
Finally, we analyzed a dataset available from the BNCI Horizon

2020 webpage (see text footnote 4) under the name “22. Monitoring
error-related potentials (013-2015).” The paradigm was designed
to evoke error-related potentials following simulated BCI feedback

5 https://doi.org/10.5281/zenodo.8188857

and comprises 64-channel EEG data recorded from six participants,
each of whom performed two sessions on different days with
varying time differences between the recording sessions. According
to the corresponding publication (Chavarriaga and Millán, 2010),
erroneous feedback was provided in 40 and 20% of trials, but
the openly available dataset comprises only blocks with 20%
error probability and on average 536 (σ = 31) trials per session.
Conceptually, the dataset differs from the datasets described above
in that no sequence is available to enable benefit from repetitions of
the same event to improve the signal-to-noise ratio, and that there
is no target/nontarget associated with events that occur at different
locations or different points in time. Our toolbox is designed to
deal with this kind of binary single trial detection as well. In this
case, the input variable trgtID is to be set as empty and stimID
equals the classifier labels, which we set to 1 for error trials and to
2 for correct trials. We filtered the data between 1.0 and 10.0 Hz,
in line with the original study, downsampled the data to a 32 Hz
sampling rate, and considered 0–600 ms after onset as the analysis
interval, after subtracting the baseline of the interval 250 ms
before stimulus onset. We performed 10-fold cross-validation using
the same feature/classifier combinations and model signals as we
did with dataset I. Finally, we performed a simulation of online
sessions using the same training and test sets as employed in the
corresponding publication. Note that this was an offline analysis
investigating the across-session accuracy of a classifier detecting
error-related potentials with potential application to BCI.

3 Results

3.1 Dataset I—Matrix speller

With the P300-based matrix speller data (Guger et al., 2009),
the cross-validation of the tested combinations of feature spaces
revealed an average decoding accuracy of 93.0% (σ = 10.6%) for
the maximum correlation classifier (R/max), while the highest
accuracy was achieved with R/LDA (µ = 95.0%, σ = 9.7%). All
accuracies are shown in Figure 2A. Pairwise Wilcoxon signed-rank
tests showed that none of the feature space/classifier combinations
were significantly different from each other (p > 0.05). Figure 2A
also shows the results of using only 5 and 10 stimulus repetitions
compared with the full number of 15 repetitions using the
R/max approach. A Wilcoxon signed-rank test revealed that 10
repetitions still achieve high accuracies (µ = 89.0%, σ = 16.0%),
not statistically significantly different from using 15 repetitions
(µ = 93.0%, σ = 10.6%). In contrast, involving only 5 repetitions
significantly decreases the accuracy (µ = 71.3 %, σ = 26.0%). We
repeated the analyses using the R/max approach and using average
model functions instead of impulse model functions and found no
differences in accuracies. Furthermore, we involved the non-target
events by setting the contrast parameter accordingly, which did
not result in significantly different decoding accuracies. Finally, we
tested the R/max approach in a simulation, which uses the same
training and test data as in the original experiment. This analysis
resulted in an average decoding accuracy of 90.0% (σ = 19.4%).
Note that only 5 characters per subject were available in either
subset, training set and testing set. Online accuracies achieved

Frontiers in Human Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1358809
https://doi.org/10.5281/zenodo.8188857
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-18-1358809 March 5, 2024 Time: 7:42 # 6

Reichert et al. 10.3389/fnhum.2024.1358809

FIGURE 2

Cross-validation results for datasets I-III. (A–C) Decoding accuracies obtained with different feature space/classifier combinations (upper panels)
and with the R/max approach involving different numbers of stimuli per trial (lower panels). Colored circles indicate single subject performances.
Error bars show the mean accuracies and the standard error of the mean.

during BCI control, which could potentially serve as a benchmark,
were not documented in the dataset or elsewhere.

3.2 Dataset II—RSVP speller

With the P300-based RSVP speller data (Acqualagna and
Blankertz, 2013), the cross-validation of the tested combinations
of feature spaces revealed an average decoding accuracy of 93.8%
(σ = 4.6%) for the maximum correlation classifier (R/max) while
the highest accuracy was achieved with U/SVM (µ = 95.6%,
σ = 2.7%). All accuracies are shown in Figure 2B. Pairwise
Wilcoxon signed-rank tests showed that none of the feature
space/classifier combinations were significantly different from each
other (p > 0.05). Figure 2B also shows the results of using only 2,
4, 6 and 8 stimulus repetitions compared with the full number of 10
repetitions using the R/max approach. A Wilcoxon signed-rank test
revealed that 8 repetitions still achieve high accuracies (µ = 92.3%,
σ = 4.1%), not statistically significantly different from using 10
repetitions (µ = 93.8%, σ = 4.6%). In contrast, involving only 2, 4
and 6 repetitions significantly decreases the accuracy (µ = 61.5%,
σ = 6.3%; µ = 80.6%, σ = 6.8% and µ = 88.8%, σ = 5.8%). We
repeated the analyses using the R/max approach and using average
model functions instead of impulse model functions and found
no differences in accuracies. Furthermore, we involved the non-
target events by setting the contrast parameter accordingly, which
resulted in significantly higher decoding accuracies when using
impulse model functions (µ = 96.4%, σ = 2.5%) and significantly
lower decoding accuracies when using average model functions
(µ = 80.9%, σ = 19.8%). Finally, we tested R/max in a simulation,
which uses the same training and test data as in the original
experiment. This analysis resulted in an average decoding accuracy

of 93.8% (σ = 5.4%). Average online accuracy achieved during BCI
control, was 93.6% for the open dataset (including only Color 83 ms
blocks) according to the corresponding publication.

3.3 Dataset III—Visual spatial attention

In contrast to the previous two datasets, where targets and non-
targets were presented at different time points, in the visual spatial
attention (VSA) task, targets and non-targets were presented at
the same time but in different visual hemifields (Reichert et al.,
2022). Consequently, the position of a target can only be detected
in the difference wave of left vs. right presented items, which
can be modeled by setting the contrast parameter accordingly (a
target-only model is not applicable). The cross-validation of the
tested combinations of feature spaces revealed an average decoding
accuracy of 94.7% (σ = 3.8%) for the maximum correlation classifier
(R/max), while R/nB (µ = 96.2%, σ = 2.9%), R/SVM (µ = 96.5%,
σ = 2.7%) and R/LDA (µ = 96.3%, σ = 2.7%) revealed significantly
higher accuracies (p < 0.05). Figure 2C shows all accuracies
achieved with feature space/classifier approaches as well as the
results of using only 2, 4, 6 and 8 stimulus repetitions compared
with the full number of 10 repetitions using the R/max approach.
A Wilcoxon signed-rank test revealed that 10 repetitions achieve
significantly higher accuracies than using less than 10 repetitions.
We repeated the analyses using the R/max approach and using
average model functions instead of impulse model functions and
found a strong decrease (µ = 63.7%, σ = 16.0%), similar to that
which we found analyzing the RSVP task. Finally, we tested R/max
in a simulation, which uses the same training and test data as in the
original experiment. This analysis resulted in an average decoding
accuracy of 93.9% (σ = 5.6%). Average online accuracy achieved
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during BCI control was 90.1% (σ = 6.0%) for the open dataset
according to the corresponding publication.

3.4 Dataset IV—Error monitoring

The final dataset (Chavarriaga and Millán, 2010) contains
error-related potentials, which can only be decoded following
a single event. The toolbox is designed not only to decode
sequences of target and nontarget events but also accepts binary
decoding tasks. Since the class sizes of the dataset are extremely
imbalanced (20% error potentials), we report accuracies separately
for both classes, as was done in the corresponding publication,
to consider potential overfitting to the larger class. We observed
a bias toward the larger class with the R/max approach, which
revealed a total cross-validation accuracy of 87.4% (σ = 3.7%),
while error trials contributed 57.4% accuracy (σ = 15.5%) and
correct trials 94.9% accuracy (σ = 1.4%). All other approaches
showed smaller biases toward the larger class. Highest decoding
accuracies were achieved using the U/LDA approach (µ = 76.6%,
σ = 10.0% for error trials; µ = 89.3%, σ = 5.4% for correct
trials). Figure 3 shows all accuracies achieved with different feature
space/classifier approaches. We repeated the analyses using average
model functions instead of impulse model functions and found a
significant accuracy decrease (µ = 73.2%, σ = 8.5% for error trials;
µ = 86.0%, σ = 5.9% for correct trials) similar to the RSVP and VSA
tasks. Both approaches outperformed the method introduced in
the corresponding publication, where according to reconstruction
from the figure showing within-subject cross-validation results
[Figure 3 in Chavarriaga and Millán (2010)], the accuracies were
around 60.0% for error trials and 77.0% for correct trials on average.
Furthermore, we included only error trials in the CCA-based
feature extraction by setting the contrast parameter accordingly,
which resulted in not significantly different decoding accuracies.
Finally, we tested U/LDA using impulse model functions in a
simulation, which uses the same training and test data as in the
original experiment. Note that this was a cross-session approach,
where the second session, which was recorded many days later, was
used as the test set. This analysis resulted in an average decoding
accuracy of µ = 66.2% (σ = 15.8%) for error trials and µ = 74.1%
(σ = 31.1%) for correct trials. Standard deviation is high, because
subject 4 showed a bias toward correct trials and subject 6 showed
a bias toward the error trials. Nevertheless, the average accuracy is
comparable to that of the corresponding publication (µ = 63.2%,
σ = 9.1% for error trials; µ = 75.8%, σ = 6.8% for correct trials).

The classification results of all parameter combinations for all
analyzed data sets are summarized in Supplementary Table 1.

3.5 Exploring the canonical coefficients

For the two P300 datasets, we tested both involvement of only
target events and also involvement of target and nontarget events in
performing CCA. When we involved only the target events using
the average model signals, in all cases A perfectly correlated with
B (ρ = 1), where A only differed by a constant factor from B.
This can be explained by the fact that the average was calculated
from the same data in X that were combined to correlate with YB.

FIGURE 3

Cross-validation results for dataset IV. Decoding accuracies
obtained with different feature space/classifier combinations using
dataset IV for the first (upper panel) and second (lower panel)
recording session. Colored circles indicate single subject
performances, downward triangles and upward triangles indicate
the accuracy for error trials and correct trials, respectively. None of
the accuracies achieved with feature/classifier combinations
differed significantly between recording sessions 1 and 2. Error bars
show the mean accuracies and the standard error of the mean.

Furthermore, when using only target events and the average across
epochs as the model signal, the canonical coefficients in A perfectly
correlated with those when using only target events and impulse
model signals, i.e., the same spatial filter was determined although
model signals differed. This can also be explained mathematically,
because multiplication of any epoch with I does not change the
epoch. Multiplying the concatenated brain signals in X with a
concatenation of I is therefore equivalent to summing all target
epochs, which is correlated with the average across target epochs.
These properties are not valid when we involve the nontarget
epochs, which have negated model signals to calculate difference
waves, i.e., to contrast the conditions. In this case, A showed a high
correlation with B (ρ = 0.94) when utilizing average model signals in
the matrix speller dataset but a very low correlation (ρ = −0.02) in
the RSVP dataset. This suggests that the ERPs in nontarget epochs
are lower compared to the target epochs in the matrix speller but
not in the RSVP speller. This is supported by comparing A when
using average model signals with A when using impulse model
signals, resulting in ρ > 0.99 for the matrix speller and ρ = 0.38
for the RSVP speller.

In Figure 4, we show selected components obtained by using
impulse model signals as well as averaged ERPs and difference
waves of specific electrodes of individual participants for each
dataset. Note that the components are composed of different
electrodes, influenced by several sources, and can therefore strongly
vary between subjects in terms of their shape, their ranking, and
their orientation.

Figure 4A, D illustrate that in the matrix speller, the first
canonical component b1 resembles activity at electrode Oz, and its
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FIGURE 4

Selected canonical components as obtained with impulse model functions for datasets I-III. (A–C) Model signal coefficients (upper panels) and the
corresponding activation patterns (second row) of an individual participant selected from datasets I-III. Units of bj and j are arbitrary. Positive values
in j indicate similar shape in that channel as in bj, negative values indicate a reversed shape. (D–F) Average signals and difference waves of selected
electrodes. The signals correspond to the same participants as shown in (A–C). The electrodes are selected to show the ERPs that are commonly
thought to control the BCI. The shown components for datasets I-III were taken from participants s2, VPgcf, and P14.

activity pattern 1 shows highest activity in occipital regions. This
indicates that the sensory input, i.e., the foveal stimulation, is the
main driving component. The P300 component is reflected in the
second component, b2, and resembles activity at Cz. The difference
wave at Oz resembles the ERP, indicating that nontarget activity is
low compared to target activity. This is in line with the findings that
canonical coefficients and decoding accuracies were not different
with involvement of nontarget epochs in this dataset, indicating
that the nontarget epochs have almost no impact on CCA-based
feature extraction.

In contrast, Figure 4B, E indicate that in the RSVP speller, the
highest ranked component is related to a P300-like response as
reflected in b1, resembling activity at Cz, and its activity pattern

1. Importantly, Oz shows not the early negative ERP followed by
the target stimulus but, specifically visible when not subtracting the
nontarget epochs, a steady-state visually evoked potential induced
by each single foveal stimulus (83 ms SOA).

In the VSA experiment, no nontarget events are present
but the target switches between the left and right periphery.

Figure 4C shows that the first canonical component b1 resembles
the difference wave (target left-target right) at PO7 and in a reversed
shape at PO8 (Figure 4F). The negative deflection 200 ms after
target presentation contralateral to the respective electrode location
is typically found in visual search experiments and known as the
N2pc.

Finally, Figure 5A shows an example where the second and
third components shows properties of error-related negativity,
as reflected by b2, b3, 2, 3 and activity at the FCz electrode
(Figure 5B).

4 Discussion

Here we introduced a toolbox for decoding sequences of ERPs.
Many BCIs that rely on attention processes use sequences of target
and nontarget events to encode different selectable choices and
enable a repetition of events to increase the signal-to-noise ratio.
The approach used in the toolbox is based on optimal channel
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FIGURE 5

Selected canonical components as obtained with impulse model
functions for dataset IV. (A) Model signal coefficients (upper panel)
and the corresponding activation patterns (second row) of
participant Subject03, session S1. Units of bj and j are arbitrary.
Positive values in j indicate similar shape in that channel as in bj,
negative values indicate a reversed shape. (B) Average signal and
difference wave at electrode FCz. The signals correspond to the
same session as shown in (A). The electrode was selected to show
the ERPs that are commonly thought to control the BCI.

weighting using CCA and was combined with classification based
on maximum correlation in previous work (Reichert et al., 2015,
2017, 2020a, 2020b, 2022). Optimal channel set selection is a
key factor in BCI performance and can be either a hypothesis-
(Chavarriaga and Millán, 2010) or data-driven selection (Lal et al.,
2004; Ghaemi et al., 2017). Hypothesis-driven selection takes the
same channels for each subject, neglecting individual differences.
Data-driven channel selection utilizing the classifier repeatedly
might be computationally expensive, and the approach might be
restricted to the specific task. Another approach is to visually
inspect the features of training data, after which an expert decides
which channels and time intervals are to be used (Biasiucci et al.,
2018). However, this approach is impractical and time consuming.
Here we used CCA to extract the components most predictive for
the task and used only three of them to serve as surrogate channels,
which resulted in decoding accuracies comparable to those reported
in the publications that refer to the datasets. The correlation-
based feature space was well suited for all four classifier approaches
implemented in the toolbox. Using the signals in surrogate channels
as the feature space was advantageous for SVM and LDA classifiers,
underscoring the high performance of these classifiers in high
dimensional feature spaces (Hastie et al., 2009).

We applied average model signals and impulse model signals
to estimate the spatial filters. Both resulted in identical spatial
filters when only target events were involved for their estimation.
For classification, the spatial filters were applied to all data and
consequently resulted in identical decoding accuracies for both
model signals. In contrast, when nontarget events were involved
in the estimation of spatial filters to model a difference wave,
in datasets II and III, impulse model signals resulted in higher
decoding accuracies compared to average model signals, taking
advantage of the arbitrary time course that they can model. This
advantage was specifically prominent when the nontarget events
evoked ERPs that had similarities with the ERPs of target events.
For example, in the VSA dataset, the N2pc is a small modulation of
the N2 potential, evoked in response to the visual stimuli, which
are identical for both conditions. Similarly, in the RSVP speller
dataset, ERPs are evoked after each centrally presented stimulus,
but only the attention to the target evokes additional activity. In
the matrix speller dataset, we did not find significant differences
when considering the difference waves, neither in the spatial filter
nor in the decoding accuracies. This indicates that not only the
P300 component but also the visual evoked potentials are absent
or negligible in non-target events. This supports the finding of
Treder and Blankertz (2010), where the accuracy of a matrix speller
dropped from almost 100% correct in overt mode to around 40% in
covert mode. A similar result was found by Brunner et al. (2010),
who demonstrated that the reason for the performance drop in
covert mode was the lack of an early response over visual cortex.
Altogether, the analysis of the first two datasets corroborates the
fact that gaze-dependent matrix spellers are primarily driven by the
visual input rather than attention processes.

In all datasets, the average model signals resulted in lower or
similar decoding accuracies compared to impulse model signals.
Finally, the choice of the model signal, along with other parameters,
depends on the experimental protocol. We conclude that the
contrast option should be enabled if the driving signal is a
modulation of ERPs and can be disabled if the ERP itself is
the driving signal. Impulse model signals should be selected, if
spatially distinct sources contribute to the discrimination of classes.
Average model signals lead to comparable results but have a lower
computational load, if the number of channels is lower than the
number of time points in the analysis window, and if the ERP itself,
rather than its modulation, is relevant. As a classification approach,
we would opt for the combination of the canonical component
feature space and LDA or SVM, as they showed consistently
high performance.

The results achieved with the ERPCCA approach were
comparable to the results achieved in the studies referring to
the data sets. We have not found studies that have so far also
analyzed datasets I-III. For dataset IV, different approaches have
achieved improved accuracy compared to the original work and
to our results (Rahimi et al., 2020; Yasemin et al., 2023). Recently,
convolutional neural networks (CNN) and related techniques have
been increasingly used to decode ERPs and were utilized to provide
insights into cognitive processing, e.g., Borra et al. (2022, 2023).
While some works have shown increased accuracy using CNNs
compared to standard techniques (Lawhern et al., 2018; Simões
et al., 2020), others argue that no advantage can be found if
appropriate feature extraction is performed (Farahat et al., 2019;
Vařeka, 2020). However, such deep learning approaches require
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a high volume of training data and high computational costs, which
makes them impractical for BCI use.

The analysis of the four datasets using the ERPCCA toolbox
demonstrated that the approach of applying CCA for ERP decoding
is effective for various types of brain responses used for BCI control.
The benefit compared to existing toolboxes for ERP decoding
is that it is not limited to classification of single epochs but is
especially suited for decoding sequences of ERPs and that no
channel selection is required. The approach is not limited to BCIs
but could be applied to any dataset incorporating ERPs of two
conditions. Furthermore, it is not applicable only to EEG but could
also be used with MEG, electrocorticograms, and related brain
signal representations as well. Importantly, the proposed toolbox
can be easily used after standard preprocessing, both for offline and
online analyses.
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