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ABSTRACT: This study presents new insights into the potential
role of polyelectrolyte interfaces in regulating low friction and
interstitial fluid pressurization of cartilage. Polymer brushes
composed of hydrophilic 3-sulfopropyl methacrylate potassium
salt (SPMK) tethered to a PEEK substrate (SPMK-g-PEEK) are a
compelling biomimetic solution for interfacing with cartilage,
inspired by the natural lubricating biopolyelectrolyte constituents
of synovial fluid. These SPMK-g-PEEK surfaces exhibit a hydrated
compliant layer approximately 5 μm thick, demonstrating the
ability to maintain low friction coefficients (μ ∼ 0.01) across a wide
speed range (0.1−200 mm/s) under physiological loads (0.75−1.2
MPa). A novel polyelectrolyte-enhanced tribological rehydration
mechanism is elucidated, capable of recovering up to ∼12%
cartilage strain and subsequently facilitating cartilage interstitial fluid recovery, under loads ranging from 0.25 to 2.21 MPa. This is
attributed to the combined effects of fluid confinement within the contact gap and the enhanced elastohydrodynamic behavior of
polymer brushes. Contrary to conventional theories that emphasize interstitial fluid pressurization in regulating cartilage lubrication,
this work demonstrates that SPMK-g-PEEK’s frictional behavior with cartilage is independent of these factors and provides
unabating aqueous lubrication. Polyelectrolyte-enhanced tribological rehydration can occur within a static contact area and operates
independently of known mechanisms of cartilage interstitial fluid recovery established for converging or migrating cartilage contacts.
These findings challenge existing paradigms, proposing a novel polyelectrolyte−cartilage tribological mechanism not exclusively
reliant on interstitial fluid pressurization or cartilage contact geometry. The implications of this research extend to a broader
understanding of synovial joint lubrication, offering insights into the development of joint replacement materials that more
accurately replicate the natural functionality of cartilage.

■ INTRODUCTION
Articular cartilage is a highly specialized avascular connective
tissue of mammalian diarthrodial joints, approximately 2−4
mm thick in human hip (acetabular-femoral) and knee
(tibiofemoral) joints.1 Within synovial joints, cartilage provides
extremely low friction coefficients, below 0.01, and withstands
high pressures up to 10−20 MPa across an 80 year lifespan.2,3

Comprising roughly a 20% collagen matrix and 80% water,
cartilage’s avascular nature limits its healing capacity after
trauma or osteoarthritis onset.4 As a result, the prevalence of
surgical interventions for joint repair (total joint arthroplasty)
is expected to surge, with projections indicating a doubling of
patient demand in OECD countries by 2050.5,6 This trend
presents a considerable challenge to global health systems.6,7

This is particularly concerning for younger patients, who face
higher risks of early prosthesis failure and subsequent complex
revision surgeries.8,9 Alternative conservative treatments, such

as focal cartilage repair or hemiarthroplasty using hard
engineering biomaterials like cobalt−chromium−molybdenum
(CoCrMo), frequently result in higher revision rates due to
excessive wear of cartilage.10−12 These approaches fail to
replicate cartilage’s unique multimodal lubrication and fluid
load support, crucial for protecting the collagen matrix.13,14

Focal repair of osteochondral lesions remains an ongoing
clinical challenge in orthopedics.15 Present tissue engineering
approaches fail to replicate the structural properties of cartilage
leading to inconsistent patient outcomes,16 requiring further
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development of materials that can emulate and support the
native tribology of articular cartilage.17

Synovial lubrication is highly responsive, modulating a high
degree of fluid pressurization and low coefficient of friction
(CoF, μ) through complex interactions between surface-bound
macromolecules, regulation of interstitial fluid flow due to
poroviscoelastic biomechanics, and elastohydrodynamic lubri-
cation borne through the congruence of articulating
surfaces.3,13 Figure 1 shows the multiscale tribological function
of cartilage. It has been mooted that interstitial fluid
pressurization can support upward of 90% of the joint
load.18 Experimental and theoretical evidence for the role of
cartilage interstitial fluid pressurization demonstrates the
equilibrium CoF during sliding conditions, denoted as μeq, is
a function of the friction from the solid phase (μs) and the

ratio of interstitial fluid load to the normal force ( )W t
F

( )f

Z
, as

described by references 14 and 19−21.14,− This relationship
demonstrates that for cartilage CoF to remain low, a high
degree of fluid load support [Wf(t)] must be maintained,
which can be inferred from a reduced cartilage strain [ϵ(t)] as
a ratio of strain with zero interstitial pressure (ϵ0),

14,21 whereas
boundary lubrication is expected to occur where pressurization
subsides and solid contact occurs with cartilage.3,19 This
aqueous lubrication boundary layer is an approximately ∼1−20
μm-thick gel-like macromolecular complex adsorbed on the
superficial surface of articular cartilage,22−26 composed of
specialized molecules in the synovial fluid including hyaluronic
acid, proteoglycan aggregates (hyaluronan-aggrecan), and
lubricin (proteoglycan-4), each characterized by large hydro-
philic charged domains with a high water carrying capacity.3,23

At the nanoscale level of cartilage tribology, sliding between
confined hydration shells leads to a mode of hydration
lubrication exhibiting CoF < 0.001, as shear forces are
dissipated through rapid exchange of water molecules between
adjacent shells.2,27−29
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Human synovial joints typically experience spatially averaged
and peak loads of between 0.75 and 20 MPa during gait and
activity2,30,31 and for sustained lifetime function are required to
recuperate interstitial fluid that is exuded during loading (eq
1). In vivo studies of tibiofemoral cartilage have measured
strain (ϵ) across a range of activities including half bodyweight
static loading (ϵ ∼ 12%);32 gait (ϵ ∼ 7−23%);33 10 min after
jogging (ϵ ∼ 4%);34 and knee bending (ϵ ∼ 3−8%).35

Cartilage has been shown to recover interstitial fluid due to
passive free swelling driven by the viscoelastic recovery of
cartilage when unloaded in a supine position34 and also during
physical activity between intermittent periodic loading as the
cartilage contact area migrates.36,37 The latter is akin to
experimental observations of a migrating contact area (MCA)
which can maintain low CoF < 0.02 and modulate high levels
of interstitial fluid pressurization as the contact migrates.38,39

Recent advances by Burris and Moore and Burris40 have
introduced a novel mechanism termed tribological rehydration
for cartilage interstitial fluid recovery. This process occurs
when sliding convex cartilage plugs with convergent stationary
contact areas (cSCA) generate a wedge effect at the contact
inlet, producing sufficient hydrodynamic pressures to drive
fluid recovery exhibited as a reduction of strain due to
augmentation of cartilage interstitial fluid pressurization.40,41

Assemblies of polymer chains tethered at one end onto a
substrate, polymer brushes, have attracted significant attention
as potential cartilage replacement materials and as tunable
biomimetic polyelectrolytes to explore superficial macro-
molecular complexes.3,31,42−48 Polymer brush systems can
provide a stable aqueous lubrication interface with CoF as low
as 0.001 at physiological loads of up to 10 MPa,2,3,27,47 owing
to their high affinity for water and brush-like structure resisting
deformation through electrostatic and osmotic repulsion.3,47

Due to their biocompatibility, tunable mechanical properties,
superior lubrication, hydration control, and chemical function-
alization possibilities, various orthopedic applications of
polymer brushes have been explored, including as viscosup-
plementation;49,50 direct attachment to cartilage; and51,52

bioinspired lubricious surface coating for acetabular hip
replacement surfaces53−55 and as brush-terminated hydrogels

Figure 1. Schematic showing the multiscale tribological function of cartilage. Synovial joint: covered with approximately 4 mm of articular
cartilage.1 Interstitial fluid pressurization: upward of 90% of an articular joint’s load is borne over interstitial fluid pressure.14,19 Superficial
macromolecular complex: ∼1−20 μm-thick gel-like complex of hyaluronic acid, proteoglycan aggregates (hyaluronan-aggrecan), and lubricin
(proteoglycan-4) adsorbed on the superficial osteochondral surface.3,22,23
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designed to mimic cartilage.44,56,57 Polymer brushes comprised
of poly(2-methacryloyloxyethyl phosphorylcholine) (MPC)
attached to CoCrMo surfaces have demonstrated potential as
cartilage-mimetic interfaces, exhibiting physiological coeffi-
cients of friction (μ < 0.01) and reduced collagen degradation
relative to unmodified surfaces across a limited data set of 100
reciprocating cycles.58 Notably, investigations of this nature are
scarce in the literature.

Recently, polymer brush-functionalized surfaces consisting
of 3-sulfopropyl methacrylate potassium salt (SPMK) grafted
onto a PEEK substrate (SPMK-g-PEEK) have been developed
to provide sustained low friction coefficients of <0.02 on
cartilage at physiological loads (0.75 MPa).31,42,59 SPMK-g-
PEEK surfaces also possess a unique ability to halve overall
cartilage strain throughout 2.5 h of sliding, empirically
demonstrated through the use of a flat SCA cartilage,
specifically designed to negate any contributions from known
mechanisms of MCA or cSCA interstitial fluid recovery.14,31

Such findings indicate a novel mechanism of enhanced
rehydration attributable to the SPMK polyelectrolyte inter-
face.31 While the sustained low friction can be ascribed to
tethered hydrophilic polyelectrolytes providing a high degree
of solvent confinement in the contact to provide an effective
boundary lubrication layer,3,27,31,46 the role of polyelectrolyte-
enhanced tribological rehydration remains poorly understood.

The primary objective of this study is to deepen the
understanding of cartilage−polyelectrolyte tribology by inves-
tigating the role of polymer brushes in facilitating tribological
rehydration.31 This research hypothesizes that cartilage−
polyelectrolyte interfaces, characterized by surface-grafted
polyelectrolytes that maintain hydration under mechanical
load,3,27 exhibit high compliance,47 and increase aqueous film
thickness,60−62 may generate elevated fluid pressures at the
interface. Such pressures are theorized to support the recovery
of cartilage interstitial fluid.31,42 This supposition underpins
our examination of friction and tribological rehydration within
a hydrodynamic framework, necessitating a detailed tribo-
logical analysis of cartilage−SPMK interfaces across various
speed and load conditions. Specifically, this study seeks to
identify and quantify the critical speed and load parameters
that facilitate observable strain recovery in cartilage interfaced
with SPMK-g-PEEK, thereby providing evidence of tribological
rehydration. Second, this study aims to explore the current
mechanistic arithmetic41 and empirical models40 for tribo-
logical rehydration alongside interstitial fluid pressurization to
form a hypothesis on the mechanism of polyelectrolyte-
enhanced tribological rehydration. Experiments will use a SCA
cartilage contact, for which no demonstration of tribological
rehydration exists.14 This seeks not only to elucidate the
underlying principles of polyelectrolyte-enhanced tribological
rehydration but also to contribute to the development of
functional biomimetic cartilage repair materials and deeper
insights into the potential mechanisms of adsorbed bio-
polyelectrolytes within the superficial macromolecular com-
plex.

■ METHODS
Sample Preparation. Materials. PEEK 450G (Victrex, UK)

sheets (5 mm thick, cut into 25 × 25 mm squares) were sourced from
RS Components, UK. These were polished using a graded series of
abrasive papers and suspensions to achieve an arithmetic surface
roughness Ra ∼ 100 nm, confirmed with a Talysurf PGI NOVUS
profilometer. The SPMK monomer (>98% purity) and phosphate-

buffered saline (PBS) tablets were obtained from Sigma-Aldrich, UK,
and used as received. For all experiments, SPMK-g-PEEK interfaces
are explored in the context of biomedical implant materials and hence
in an isotonic PBS environment to mimic physiological ion
concentrations and osmolarity, containing 137 mM sodium chloride
(Na+Cl−), 10 mM phosphate buffer (K+), and 2.7 mM potassium
chloride (K+Cl−) with a pH of approximately 7.4.

SPMK-g-PEEK. To produce SPMK-g-PEEK, polished PEEK
samples were initially cleaned with acetone and isopropanol, then
immersed in a 1 mol L−1 solution of SPMK in deionized water. This
solution was purged of oxygen. The samples underwent UV
photopolymerization in an Analytik Jena UVP Cross-linker CL-
3000L at a wavelength of 365 nm for 90 min, amounting to a total UV
exposure of 27 J cm−2 to initiate a graf ting f rom process for
synthesizing high density SPMK polymer brushes on the PEEK
surface (SPMK-g-PEEK).3 This one-step photoinitiated radical
polymerization utilizes PEEK’s benzophenone units for self-initiation,
thus eliminating the need for additional photoinitiators.63−65 The
resultant SPMK-g-PEEK surfaces had a polyelectrolyte thickness of
approximately 350 nm31 and feature highly hydrophilic anionic
sulfonic acid groups, enhancing water retention and lubricity for
biotribological applications. Further details on this method and its
underlying chemistry are provided in a previous publication.31

Cartilage Samples. Flat SCA bovine cartilage plugs (⌀ 4.0 mm and
⌀ 7.2 mm diameter) were extracted from the patellofemoral grooves
of bovine (age ∼2 years) stifle joints sourced from John Penny &
Sons, Leeds, UK. The extraction used a high-speed rotary tool cooled
with a steady stream of PBS. Plugs with surface irregularities or a
height slope exceeding 0.2 mm were discarded. Samples were
cryopreserved at −18 °C and prior to testing were thawed 12 h
before being acclimatized to room temperature for 2 h in PBS.
Surface Analysis. An NPFLEX (Bruker, USA) optical interfer-

ometer was used to measure the surface roughness of the polished
unfunctionalized PEEK and SPMK-g-PEEK samples using a non-
contact vertical scanning interferometry method, analyzing surface
reflections to create interference fringes at a 50× optical
magnification. Three different 250 × 250 μm areas of each sample
were scanned using a high-intensity monochromatic green light to
enhance reflection and minimize data loss. Optical profilometry data
was processed using Bruker Vision64 software to calculate the mean
arithmetic roughness (Ra) for each sample area.

A Tescan Amber X plasma focused ion beam-scanning electron
microscope (FIB-SEM) was used to measure the hydrated
polyelectrolyte height of the SPMK-g-PEEK surfaces. SPMK-g-
PEEK samples were hydrated by submerging in PBS for 10 min
before being placed in a Quorum PP3010 cryo-preparation chamber
and frozen in slushed nitrogen (∼−210 °C) before being transferred
to the SEM under vacuum to prevent ice formation.66 The SPMK-g-
PEEK samples were then sputter-coated with a 20 nm-thick platinum
layer before FIB was used to mill a 100 L × 40 W × 100 D μm cross
section. Cross-section images were taken using the SEM to identify
the SPMK layer which was validated using energy-dispersive X-ray
spectroscopy (EDX) to locate sulfonic acid groups. PBS was
specifically used to model the hydrated thickness of SPMK-g-PEEK
in isotonic environments, where the polyelectrolyte layer will be
sensitive to the presence of ionic species, partially collapsing the brush
structure due to screening out of electrostatic repulsion along with
exclusion of water from the brushes.61,67,68

A Bruker dimension icon atomic force microscope (AFM) was
used to map the elastic modulus of swollen SPMK-g-PEEK samples
submerged in PBS. Measurements were performed using SAA-SPH-
10UM (Bruker AFM Probes, USA) AFM probes due to their low
precalibrated 0.25 Nm−1 spring constant and large 10 μm probe
radius suitable for measuring soft samples in the sub-kPa range.
Indentation force measurements were performed in a 16 × 16 grid
(256 total) over a 50 × 50 μm area, and two force maps were each
performed on two SPMK-g-PEEK samples. Each force−displacement
curve was performed with a ramp size of 5.0 μm at a 2 μms−1

indentation velocity, as used in similar soft contact research.69,70 Data
was analyzed using a custom Python script to identify the contact
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displacement at which the probe engaged with the surface indicated
by a reduction in noise and subsequently identify the data region that
complies with Hertzian contact theory to calculate elastic
modulus.69,71 The elastic modulus was calculated for only the first 1
μm of indentation to isolate substrate effects.
Mechanical Testing. To understand the tribological behavior of

SPMK-g-PEEK, speed sweep experiments analogous to Stribeck
analysis72 were conducted to explore SCA cartilage over a short 5 min
loading period, in order to mitigate the effects of rising friction
contributions due to the time-dependent loss of interstitial fluid
pressurization. Figure 2a shows the pin-on-disk configuration of an
MTM (Micro Traction Machine, PCS Instruments, UK) which was
used to perform speed sweep analysis of a flat ⌀ 4.0 mm SCA cartilage
plug against unfunctionalized PEEK and SPMK-g-PEEK disks. Both
increasing speed sweeps of 1−200 mm/s and decreasing sweeps of
200−1 mm/s were performed three times for each test condition. A
15 N constant load was applied throughout the test, which for a ⌀ 4.0
mm cartilage plug corresponds to a ∼ 1.2 MPa contact pressure
assuming full contact over the SCA contact. Three repeats were
performed for each test condition. To ensure a physiological isotonic
gradient, all testing was performed fully submerged in PBS. The CoF
(μ, eq 2), the ratio of the tangential force (FX) to the applied load
(FZ), is recorded throughout the test at a frequency of 1 Hz.

F
F

X

Z
=

(2)

Figure 2b shows the UMT TriboLab (Bruker, USA) equipped with
a reciprocating linear drive and custom-built lubricant bath used to

measure the compression and subsequently strain recovered due to
tribological rehydration of a flat ⌀ 7.2 mm SCA cartilage plug sliding
against SPMK-g-PEEK. Throughout testing, samples remained fully
submerged in PBS and closed-loop PID control maintained constant
FZ loading with an accuracy of ±0.5 N and concurrently measured
changes in cartilage compression [h(t)]. The full details of this test
setup are described in a previous publication.31 A rehydration cycle,
lasting 3600 s, was conducted to evaluate the tribological rehydration
of SCA cartilage interfacing with SPMK-g-PEEK under varying
conditions of load and sliding speed. The cycle was divided into two
phases: an initial phase of unconfined compression (no sliding) for
1800 s, followed by a 1800 s sliding phase under a constant normal
load. The experiments were conducted under three load conditions:
FZ = 10 N, FZ = 30 N, and FZ = 90 N which correspond to contact
pressures of 0.25, 0.74, and 2.21 MPa, respectively, assuming uniform
contact across the cartilage surface, representative of the physiological
pressures encountered by tibiofemoral articular cartilage during
human gait.73 To assess the impact of sliding speed on tribological
rehydration, specifically focusing on compression recovery during
sliding due to cartilage interstitial fluid recovery, each load condition
was tested across a range of speeds (ν) set at 0.1, 0.5, 1, 2, 5, and 10
mm/s each linearly reciprocating across a 20 mm sliding distance.
CoF (eq 2) was recorded only for the FZ = 30 N load condition, as
this scenario optimally aligned with the calibrated ranges of tangential
load cells available.

Following testing, each cartilage plug was placed in PBS for 1 h to
free-swell and recover the compressed height and then stored in a
phosphate buffered formalin solution. The uncompressed height of

Figure 2. (a) MTM pin-on-disc configuration showing the PEEK/SPMK-g-PEEK sample disk submerged in PBS and a ⌀ 4.0 mm SCA cartilage
plug mounted in the pin holder. (b) UMT pin-on-plate configuration showing the affixed sample plate in a bath of PBS linearly reciprocating over a
distance of 20 mm against a ⌀ 7.2 mm SCA cartilage plug. A constant normal load, FZ, is applied throughout the rehydration cycle, regulated via
PID control. Additionally, a displacement transducer is employed to record variations in cartilage height [h(t)] throughout testing.

Figure 3. Left: CryoSEM image of swollen SPMK-g-PEEK cross section showing the area of EDX analysis. Right: EDX analysis of carbon (red),
oxygen (purple), and sulfur (yellow) corresponding to the PEEK substrate, frozen water, and SPMK layers, respectively, measuring a swollen
polyelectrolyte layer of approximately 5 μm.
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each cartilage plug (h0) was then measured using a calibrated Keyence
VHX-7000 optical microscope with a 20× magnification; the
measurement protocol is detailed in a previous publication.31 This
enabled calculation of the cartilage compression in terms of the
overall strain [ε(t) = h(t)/h0]. Strain recovery (εr), defined in eq 3,
was quantified as the difference in total strain observed at the
conclusion of the 1800 s compression phase [εc = ε(t = 1800 s)] and
the strain measured at the end of the 3600 s sliding phase [εs = ε(t =
3600 s)]. This calculation facilitates a direct comparison of the strain
recovery capabilities of the cartilage attributable to tribological
rehydration facilitated by the SPMK-g-PEEK interface under varying
speed and load conditions.

t t( 1800 s) ( 3600 s)r c s= = = = (3)

■ RESULTS
Surface Analysis. Surface roughness of the unfunctional-

ized PEEK measured a mean roughness of Ra = 101 ± 9.8 nm
(N = 3), and mean roughness of the SPMK-g-PEEK measured
Ra = 304 ± 10.9 nm (N = 3). The increase in the Ra value for
SPMK-g-PEEK indicates that grafting of SPMK has markedly
altered the topography of PEEK specifically introducing
additional surface features along with increasing the prom-
inence of existing ones. Once hydrated, the SPMK surface
features will become obscured as the hydrophilic polymer
chains swell to provide an aqueous interface.

Figure 3 presents the Cryo-FIBSEM imaging and EDX
analysis conducted to determine the swollen height of the
SPMK layer on the PEEK substrate. SEM imaging alone fails
to distinctly delineate the SPMK interlayer, obscured by the

Figure 4. (a) Histogram of elastic modulus values, mean E = 505 ± 111 Pa. Range: 166−1055 Pa. Interquartile range: 140 Pa. Count corresponds
to the number of indentation curves (out of 256) exhibiting compliance with Hertzian contact mechanics and is hence retained for analysis. (b)
Elastic modulus measured in a 16 × grid across a 50 × 50 μm area of SPMK-g-PEEK submerged in PBS (count = 224). (c) Force−displacement
indentation curve for a 10 μm-radius colloidal probe indenting SPMK-g-PEEK submerged in PBS, showing the region which is compliant with
Hertzian contact fitting for calculating elastic modulus.
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presence of frozen water and density variations in the swollen
SPMK.74 The thickness of the SPMK layer is identified by the
region exhibiting the highest sulfur content, attributed to the
sulfonic acid groups within the polyelectrolyte layer, with an
estimated height of approximately 5 μm. This region lies
beneath an oxygen-rich area indicative of frozen water and
above a carbon-rich zone representing the PEEK substrate.
The spatial resolution limit of EDX composition analysis,
typically around 1 μm due to the volumetric interaction of the
electron beam,75 implies that the measured height of the

SPMK layer, while indicative, cannot be precisely quantified
through EDX, rendering the derived height as an approximate
estimate rather than an exact measurement.

The elastic moduli of the swollen polyelectrolyte interfaces
submerged in PBS for SPMK-g-PEEK were determined using
AFM force mapping to be E = 505 with a standard deviation of
±111 Pa. This value indicates variability in the mechanical
properties, with the observed range spanning from 166 to 1055
Pa, as depicted in Figure 4a. This analysis was based on 1024
indentation measurements conducted across two samples of

Figure 5. SPMK-g-PEEK (N = 3) and PEEK (N = 3) disc versus flat ⌀ 4 mm SCA cartilage plug for (a) increasing speed sweep from 1 to 200 mm/
s and (b) decreasing speed sweep from 200 to 1 mm/s.
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SPMK-g-PEEK. Specifically, Figure 4b shows a representative
50 × 50 μm area, where the elastic moduli were assessed in a

16 × 16 grid. During the evaluation process, any force−
displacement curves that either did not align with Hertzian

Figure 6. Strain evolution during the compression and sliding phases under an applied load of 90 N of ⌀ 7.2 mm SCA cartilage sliding against
SPMK-g-PEEK at (a) 10 and (b) 0.1 mm/s.

Figure 7. (a) Evolution of mean strain recovery [εr(t)] for the 30 N load during the sliding phase of the rehydration cycle for all sliding speeds.
Error bars are omitted for clarity. (b) Strain recovery (εr) for all test conditions (Table 1) plotted for each speed condition with standard deviation
error bars shown. (c) Mean CoF (μ) for the 30 N load during the sliding phase of the rehydration cycle for all sliding speeds with standard
deviation error bars shown (Table 2).
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contact mechanics or demonstrated significant error were
excluded. Consequently, a total of 792 modulus measurements
were retained for analysis. A representative force−displace-
ment indentation curve is presented in Figure 4c, indicating
that indentation depths of 1 μm consistently resulted in forces
below 5 nN. Moreover, the curves did not adhere to Hertzian
contact theory at forces approximately lower than 0.5 nN. The
accurate determination of surface contact for soft materials
poses a significant challenge, requiring the mathematical
delineation of the indentation range that accurately fits the
Hertz model (Figure 4c).69,71

SPMK and PEEK Speed Sweep Analysis. Figure 5a,b
shows the CoF evolution for SCA cartilage against SPMK-g-
PEEK and unfunctionalized PEEK during sweeps of increasing
speed 1−200 mm/s and decreasing speed 200−1 mm/s,
respectively. In both scenarios, SPMK-g-PEEK demonstrated a
remarkable stability of CoF, exhibiting minimal variation with a
mean CoF of μ = 0.012 ± 0.002 and μ = 0.011 ± 0.002 for the
decreasing and increasing speed sweeps, respectively. Con-
versely, the CoF response of unfunctionalized PEEK exhibited
significant variation dependent on the speed sweep direction.
For the increasing speed case, CoF rises steadily up to a
maximum μ = 0.11 ± 0.036 and begins to reduce at speeds
above 120 mm/s to a final CoF of μ = 0.071 ± 0.025. In
contrast, for the decreasing speed sweep, the CoF increased
steadily, starting from μ = 0.034 ± 0.004 at a sliding speed of
200 mm/s and reaching a peak of μ = 0.22 ± 0.068 at 5 mm/s,
before exhibiting a slight decrease when the sliding speed
further reduced to 1 mm/s.
Strain Recovery and Tribological Rehydration. The

representative strain datum [ε(t)] for the 90 N rehydration
cycles is shown in Figure 6 for the 10 mm/s (Figure 6a) and
0.1 mm/s (Figure 6b) conditions, demonstrating εr ∼ 11% and
εr ∼ −5%, respectively, during the sliding phase. During the
first 30 min of unconfined compression, the cartilage interstitial
fluid exuded at a decaying rate toward a static equilibrium.
Upon the onset of sliding, rehydration of the cartilage can
occur, reducing the overall compression as fluid is reimbibed
by the cartilage, which is clearly observed for the 10 mm/s
condition (Figure 6a).

The mean strain recovery (εr, eq 3) was calculated for each
speed and load condition with a sample size of N = 3 for each
group. Figure 7a shows the evolution of the mean strain
recovery [εr(t)] throughout all sliding phases for the 30 N load
condition. The overall mean strain recovery for each condition
is plotted in Figure 7b and aggregated in Table 1 along with

the mean strain at the end of the compression phase (εc) for
each load condition. Figure 7b shows that across all load
conditions, an increase in strain recovery (εr) was observed in
correlation with increments in sliding speed. Notably, at a
minimal speed of ν = 0.1 mm/s, the overall cartilage strain
persistently augmented throughout the sliding phase, culmi-
nating in a negative recovery strain of approximately εr ∼ − 5%
across all load conditions. Strain recovery due to tribological
rehydration became pronounced at speeds exceeding ν = 1
mm/s, with the highest strain recovery for each condition
being attained at the highest speed, ν = 10 mm/s. The analysis
revealed that samples subjected to a 10 N load exhibited the
least overall strain recovery at ν = 10 mm/s, with εr = 8.87 ±
0.79%, whereas the 30 and 90 N conditions demonstrated
comparably higher maximum strain recoveries of εr = 11.24 ±
0.68% and εr = 11.46 ± 0.29%, respectively. The variability in
cartilage strain recovery, indicated by a standard deviation
range of ±0.11−2.37%, aligns with findings from prior studies
exploring tribological rehydration-induced strain recovery in
bovine cartilage.76,77 This observed strain error represents the
inherent mechanical, poroviscoelastic, and thickness variations
in cartilage samples harvested across a range of bovine
specimens and patellofemoral locations.78

The observation of strain recovery and subsequent cartilage
rehydration increasing with sliding speed demonstrated
consistency across all compressive stresses applied to the
cartilage, quantified as εc = 26.1 ± 1.3, 42.0 ± 1.4, and 51.8 ±
3.0% for the 10, 30, and 90 N load conditions, respectively, as
summarized in Table 1. Analyzing net strain recovery (εr),
Figure 7b illustrates that at lower sliding speeds of ν ≤ 1.0
mm/s, the 10 N condition facilitated a greater recovery of
cartilage strain. A transition is evident at higher speeds,
specifically ν ≥ 5.0 mm/s, where enhanced strain recovery is
observed under the higher 30 and 90 N load conditions. This
trend underscores the role of sliding speed, and subsequently
hydrodynamic effects, in augmenting cartilage interstitial fluid
recovery, evidenced by the increased cartilage strain recovery
attributed to tribological rehydration facilitated by the
polyelectrolyte SPMK interface.

Figure 7c shows the mean sliding phase CoF (μ) for the FZ
= 30 N load condition, with the data aggregated in Table 2.
For all sliding speeds, SPMK-g-PEEK facilitated low friction
with μ < 0.016 throughout the sliding cycle, aligning with
previous research demonstrating the lubricating efficacy of
polyelectrolyte−cartilage contacts.31 For increasing speeds
between 0.5 and 10 mm/s, a decrease in CoF was observed

Table 1. Summary of Strain Recovery (εr) Calculated across Each Specified and Load Condition with a Sample Size of N = 3
for Each Groupa

Load Compression Rehydration, εr (%)

FZ (N) εc (%) 0.1 mm/s 0.5 mm/s 1 mm/s 5 mm/s 10 mm/s

10 N 26.1 ± 1.31 −4.63 ± 0.93 1.63 ± 0.11 6.15 ± 0.88 7.89 ± 1.62 8.87 ± 0.79
30 N 42.0 ± 1.39 −5.72 ± 0.24 −0.79 ± 0.39 4.36 ± 2.37 10.23 ± 1.46 11.24 ± 0.68
90 N 51.8 ± 2.91 −5.23 ± 0.52 −1.97 ± 2.18 3.73 ± 0.65 8.54 ± 1.87 11.46 ± 0.29

aAlong with the cartilage strain at the end of the compression phase (εc) for each load condition, with a sample size of N = 15 for each group.

Table 2. Summary of Mean CoF (μ) of the 30 N Load Condition at Speeds of 0.1−10 mm/s with a Sample Size of N = 3 for
Each Group

Load CoF, μ (−)

FZ (N) 0.1 mm/s 0.5 mm/s 1 mm/s 5 mm/s 10 mm/s

30 N 0.010 ± 0.001 0.016 ± 0.003 0.013 ± 0.003 0.008 ± 0.001 0.005 ± 0.001
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from a maximum of μ = 0.016 ± 0.003 to a minimum of μ =
0.005 ± 0.001. This is commensurate with enhanced
interstitial fluid pressurization evidenced by greater strain
recovery across the increasing speed range (Figure 7a) and
broadly aligns with the interstitial fluid pressurization
hypothesis (eq 1).

■ DISCUSSION
The interface between SPMK-g-PEEK and cartilage represents
a significant advancement in the development of biomaterials
aimed at mimicking the natural lubrication and mechanical
properties of supramolecular complexes adsorbed on cartilage.
This section explores the structural characterization of SPMK-
g-PEEK, highlighting the swollen height, mechanical proper-
ties, and polyelectrolyte conformation designed to mimic
synovial biopolyelectrolytes. Analysis of the tribological and
strain recovery behavior of cartilage interfaced with SPMK-g-
PEEK reveals sustained low friction akin to physiological levels
and the ability to augment interstitial fluid load support, both
necessary for maintaining the long-term function of cartilage.
These findings are contextualized within the broader scope of
cartilage lubrication models, culminating in a new hypothesis
of polyelectrolyte-enhanced tribological rehydration.
SPMK-g-PEEK Interface. The swollen height of SPMK

measured in this study was ∼5 μm (Figure 3), an order of
magnitude greater than the Ra ∼ 100 nm roughness of PEEK,
which protects interfacing cartilage from hard asperity contact
and hence provides a lubricious compliant interface. This is
similar to the measured ∼1−10 μm MPC polymer brushes on
steel66 and polyethylene79 substrates in the context of
biomedical implants. Previous measurement of the dry height
of the SPMK layer grafted to PEEK using FIB-SEM measured
a 397 ± 47 nm-thick polyelectrolyte layer,31 meaning that the
SPMK exhibits a swelling ratio of approximately 12×. The
measured SPMK thickness demonstrates that swelling and
compression of the polyelectrolyte is too small to contribute to
the overall strain recovery of articular cartilage. Typical
cartilage thickness was approximately 1200 μm which when
considering strain recovery in the region of εr ∼ −5−12%
corresponds to an approximate height change of 60−200 μm.

Nanomechanical analysis of the SPMK-g-PEEK demon-
strated that the SPMK-g-PEEK surface submerged in PBS has a
modulus of E = 505−111 Pa, exhibiting a highly compliant
surface consistent with extended polyelectrolyte chains with a
high fluid content.71 This reflects the highly compliant 1−20
μm-thick22,24−26 superficial macromolecular complex adsorbed
on cartilage with a modulus of E = 9 ± 2 kPa.26 The SPMK
surface moduli are markedly lower than those in previous
literature exploiting biomedical applications of polyelectrolytes.
AFM force mapping of brush-terminated hydrogels designed to

mimic hydrophilic proteins native to corneal or synovial
surfaces exhibits moduli of E ∼ 3−44 kPa.71,80,81 These are
orders of magnitude lower than previously reported biomedical
applications of MPC grafted to rough polyethylene (Ra = 650
μm) hip replacement implants with swollen MPC height
∼1400 nm thick and AFM nanomechanical studies measuring
a variable modulus of E = 73 ± 72 kPa due to varying substrate
effects.79

The observed low moduli and ∼5 μm swollen height
demonstrate that graf ting f rom of the SPMK monomer (Figure
8a) onto PEEK substrates yields a dense end-tethered polymer
surface (Figure 8b) enriched with sulfonic acid groups.31,67

The sulfonic acid groups possess hydrophilic and ionizable
characteristics, enabling them to dissociate in aqueous
environments leaving negatively charged sulfonate ions
(SO3

−) tethered to the polymer backbone, the same hydrophilic
functional groups present on proteoglycans in synovial fluid.2

Electrostatic repulsion among the negatively charged SO3
−

groups and osmotic pressure of hydrated counterions around
the charged chains cause the polymer chains to extend away
from the substrate and form a brush-like configura-
tion.2,47,82−84 The highly hydrophilic sulfonate groups form
tight hydration shells contributing to the solvation of the
polymer brush supporting its extended formation and
facilitating hydration lubrication.28 Such polymer brush
structures can resist deformation under compressive loading
due to the conformational entropy and exclude the volume
effect of the hydrated SPMK polyelectrolyte causing a repulsive
force under loading.84,85

SPMK-g-PEEK−Cartilage Tribology. This study clearly
demonstrates SPMK-g-PEEK’s tribological efficacy as a
cartilage counterface under physiological loads of 0.75−2.21
MPa. Hydrated SPMK provides a highly lubricious surface
capable of maintaining an invariably low CoF of μ ∼ 0.01
across a speed range of 1−200 mm/s and mechanism to
augment cartilage strain recovery of up to ε ∼ 11.5%. Under
constant loading, the rehydration cycle demonstrates that the
recovery of cartilage interstitial fluid increases with sliding
speed (Figure 7b), evidenced by the increasing strain (eq 1),
highlighting the role of hydrodynamics in facilitating
polyelectrolyte-enhanced tribological rehydration. At higher
sliding speeds, greater strain recovery appears to facilitate
lower friction coefficients, as shown by the CoF trend analysis
for FZ = 30 N (Figure 7c) which exhibits the lowest μ = 0.005
± 0.001 at the high speed condition of ν = 10 mm/s along with
the greatest strain recovery εr = 11.24 ± 0.68%. Maintenance
of low friction and the reduction of cartilage strain position
SPMK-g-PEEK as a promising material for maintaining
cartilage health. Effective rehydration of articular cartilage is
important to maintain cell viability86 and provide fluid flow for

Figure 8. (a) SPMK monomer. (b) Polymer brush conformation of SPMK-g-PEEK showing the presence of bound hydration shells on the sulfonic
acid groups.
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solute transport and removal of metabolic waste from the
tissue.87,88 Furthermore, both effective rehydration and high
lubricity are crucial for shielding the collagen matrix from high
shear and normal forces to prevent wear.4,89

Speed sweep analysis (Figure 5) of unfunctionalized PEEK
is representative of the current understanding of SCA models,
exhibiting the lowest CoF μ ∼ 0.02−0.04 at the start of sliding
and hence at the point of the minimum strain, irrespective of
the 1 mm/s and 200 mm/s starting speeds. For PEEK, the
increasing 1−200 mm/s speed condition shows a peak CoF μ
∼ 0.11 at speeds of 120 mm/s recovering slightly at higher
speeds likely due the onset of a soft-EHL regime,90 whereas for
the decreasing speed condition, the peak CoF μ ∼ 0.22
occurred at the end of testing corresponding to maximum
temporal strain. SPMK-g-PEEK demonstrated invariably low
CoF for both increasing and decreasing speed sweeps with μ <
0.012 in both scenarios, maintaining high lubricity that is
unaffected by variations in loading time (i.e., contact strain),
speed, or lubrication regime. Highlighting that for aqueous
lubrication systems with the ability to hold water at the surface,
friction cannot necessarily be associated with a change in the
lubrication regime.3 Similar speed-independent CoF (μ ∼ 0.02,
ν = 0.1−50 mm/s) has been shown for the aqueous lubrication
of hydrophilic poly(ethylene glycol) brushes91,92 and brush-
terminated hydrogels in self-mated Gemini contacts.93,94 This
has been attributed to an elastoviscous regime, where the
extended polymer chains can influence the interfacial viscosity
which has a net smoothing effect to damp frictional transitions
between boundary and fluid film lubrication regimes.94

Furthermore, at low speeds in confined interfaces, high
polyelectrolyte concentration can increase effective viscosity
and produce substantially higher film thickness than expected
for conventional elastohydrodynamic theory at low speeds,
giving rise to a low speed (≥0.1 mm/s) onset of fluid film
lubrication.60,62,72,91 The lubricating efficacy of SPMK-g-PEEK
is attributed to the confined polyelectrolyte behaving as a
viscous lubricant to produce lubricating fluid films at low
speeds.60,62,91 When considering the high roughness of
cartilage (Ra ∼ 500 nm95), it is likely that this is a localized
phenomenon in regions of cartilage asperity contact. Notably,
CoF decreases with increasing speed in tandem with an
increasing strain recovery during longer-term testing of the
rehydration cycle (Figure 7c), demonstrating that polyelec-
trolyte-enhanced lubricating fluid films exhibit shear-thinning
behavior96 and can promote low friction synergistically with
maintenance of interstitial fluid pressurization.

Early cadaveric hip pendulum studies to simulate gait show
that for human joints, CoF was typically between a range of μ
∼ 0.01 and 0.0497−99 and are corroborated by recent benchtop
cartilage−cartilage tribology studies showing CoF as low as μ
∼ 0.001−0.015.4,39 However, the current state of research
applies a reductionist approach to discern between three
modes of MCA, cSCA, and SCA tribological rehydration.14,100

Studies using a hard impermeable counterface (i.e., glass,
PEEK) show that during sustained sliding MCA and cSCA
cartilage conditions, friction can remain consistently as low as
μ ∼ 0.03 as a result of maintaining low cartilage strain and high
interstitial fluid pressurization (eq 1).39,40 MCA cartilage on
glass exhibits low CoF values of 0.01−0.07 between speed
ranges of 0.05 and 4.5 mm/s, maintaining a fluid load support
of W t

F
( )

Z

f ∼ 0.85−0.9.38,39,101 Tribological rehydration of cSCA

cartilage is shown to only occur at speeds above 30 mm/s

when hydrodynamic pressures are sufficient to promote
interstitial fluid recovery, demonstrating low CoF μ ∼ 0.01−
0.03 at high speeds of 80 mm/s (W t

F
( )

Z

f 0.9) and high CoF

values of μ ∼ 0.1−0.4 at lower speeds of 1−20 mm/s below
the speed threshold for effective interstitial fluid recov-
ery.40,76,102 SCA cartilage sliding experiments are analogous
to cartilage in unconfined compression, exhibiting no evidence
of fluid imbibition to compete with the interstitial fluid efflux
during loading.31,39 At low speeds of 1 mm/s, SCA cartilage
exhibits a CoF of μ ∼ 0.19,39 increasing up to μ ∼ 0.3−0.5 at
speeds of 80 mm/s.40,102 The CoF observed in the presented
rehydration cycles consistently remains low (μ ∼ 0.01),
reflecting the physiological friction coefficients present in
synovial joints.4,39,97−99 This study’s observation of SCA
cartilage maintaining low friction at low velocities (ν = 0.1−
10 mm/s) diverges from extant cartilage rehydration frame-
works, demonstrating tribological and rehydration dynamics
akin to those elucidated in MCA and cSCA cartilage
models,38−40,101,102 which highlights an unexplored avenue of
tribological rehydration facilitated by polyelectrolyte boundary
lubrication interfaces, mirroring the configuration of endoge-
nous superficial macromolecular complexes, yet neglected by
prevailing MCA and cSCA paradigms.

The mean strain recovery (εr) for all speed and load
conditions (7b) shows that as speed increases, the recovered
strain and subsequently the interstitial fluid pressurization
increase. Compared to cSCA tribological rehydration which
only occurs at speeds of above 30 mm/s,40,76,102 the
polyelectrolyte-enhanced tribological rehydration demon-
strates a net recovery of strain even in low speed conditions
of ν = 0.1−0.5 mm/s. This is hypothesized to be underpinned
by the low speed affinity of polyelectrolytes for enhanced fluid
film formation60,62,91 promoting hydrodynamic pressurization
and restoration of interstitial fluid. Strain recovery (εr)
becomes asymptotic in all speed conditions, corroborating
similar findings that an equilibrium is reached between the
interfacial and interstitial pressure fields.40,76,77 Maximum
strain recovery (εr) observed at ν = 10 mm/s is lower for
the FZ = 10 N condition (εr = 8.76 ± 0.79%) compared to the
higher load conditions of FZ = 30 and 90 N which exhibit εr ∼
11%, which intuitively demonstrate that at greater loads,
greater fluid pressurization occurs, leading to greater strain
recovery.72 A transition around ν = 1 mm/s is observed; below
this threshold, greater strain recovery occurs for the 10 N load,
whereas above this transition, the strain recovery rate for 30
and 90 N load conditions becomes greater than that at FZ = 10
N. The permeability of cartilage is inversely proportional to
compressive strain,103 which for low loads will mean that the
net fluid flow of cartilage can occur at a greater rate following
Darcy’s law.104. The speed transition observed in Figure 7b
corroborates the previous hypothesis of greater fluid
pressurization at higher speeds, yielding a greater rate of
interstitial fluid recovery toward equilibrium.
Hypothesis of Polyelectrolyte-Enhanced Tribological

Rehydration. Coupling of hydrodynamic and interstitial fluid
pressure fields has been developed for explaining tribological
rehydration of cSCA cartilage.40,41 Specifically, this has been
undertaken as a percolation-based approach to mixed
lubrication of cartilage treated as a porous material.41,105

Within this interface, modeling of hydrodynamic forces
induced by a wedge effect hypothesizes fluid pressure peaks
at the contact inlet, facilitating interstitial fluid recovery.
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Additionally, rehydration within the loaded contact zone
occurs as fluid trapped at asperity contacts becomes
pressurized, forming localized rehydration channels.41 This
process leverages the intrinsic roughness of cartilage to create
percolating channels. Compliant tribological systems such as
cartilage have been shown to flatten at moderate pressures,
which is advantageous for reducing friction in hydrodynamic
lubrication.96,106 The percolation approach models cartilage as
a material with multiple roughness scales, postulating that the
microroughness of cartilage must be present at the contact
interface to maintain lubrication and facilitate rehydration.105

Understanding the lubrication of SPMK-g-PEEK−cartilage
interfaces necessitates an adaptive multimode lubrication
model107 due to the dominating role of interstitial fluid
pressurization in supporting the majority of applied load,19,21,23

along with the boundary lubrication expected to occur when
pressurization subsides and cartilage contact occurs.3,19 To the
authors’ knowledge, there have been no theoretical or
experimental studies on the role of biological or synthetic
polyelectrolytes for cartilage rehydration. Experimental108,109

and modeling22 approaches have explored the role of the
presence of polyelectrolytes on cartilage, showing that the
adsorbed superficial zone acts as a low permeability barrier,
providing flow resistance to sustain cartilage interstitial
pressure which is congruent with our initial published
studies.31 However, this does not explain the net strain
recovery observed at the onset of sliding (Figure 7b). Any
potential cushioning effect of the ∼5 μm-thick low modulus
SPMK interface providing rehydration through passive swelling
is contradicted by previous studies that have shown no notable
reduction in cartilage strain when comparing PEEK and
SPMK-g-PEEK31 and passive swelling rates being slower than
tribological rehydration110 suggesting a reduced load-speed
dependency than observed (Figure 7b). Instead, cartilage

rehydration is an active process onset by sliding (Figure 6a)
that competes with fluid exudation under loading.40

Figure 9 presents a hypothetical mechanism of polyelec-
trolyte-enhanced tribological rehydration; a similar percolation
approach is considered by assuming that at the microscale
level, cartilage still exhibits some roughness,41 giving rise to
localized regions of compressed polyelectrolyte at cartilage
asperities. Upon the onset of sliding, there will be a lubricant
flow incurred, giving rise to a viscous fluid film enhanced by
polyelectrolyte elastohydrodynamic lubrication.60 Compres-
sion of the hydrated SPMK polyelectrolyte will reduce the
volume available for water molecules, and compounded by the
increased relaxation times of polymer brushes in compres-
sion,46 produce pressurized regions of water which overcome
the cartilage interstitial fluid pressure and facilitate rehydra-
tion.3,47 Increased strain recovery at greater speeds is expected
to be a convolution of enhanced fluid film formation due to the
polyelectrolyte,60,62,91 resulting in a greater quantity of fluid at
the interface, along with a greater percolating flux exposing the
cartilage asperities to more polyelectrolyte per unit time.41

Current cartilage models posit that interstitial fluid
pressurization is the dominant mechanism to maintain low
CoF in cartilage and overlooks the role of biological
polyelectrolytes.18,39−41 The holistic role of lubricating
biopolyelectrolytes found in synovial fluid remains a
contentious issue in biotribology research. Addition of synovial
fluid into MCA and cSCA contacts shows no statistically
significant reduction in friction or augmentation of interstitial
fluid pressure.39,76 In contrast, a cornucopia of tribological
research asserts the lubrication benefits of synovial fluid
macromolecular complexes demonstrated at the nanoscale,2−4

in SCA and MCA cartilage contacts,39,111−114 and in whole
joint models.115,116 However, these studies do not address the
potential mechanisms by which these complexes might
contribute to the rehydration of cartilage. The demonstration

Figure 9. Hypothesized mechanism of polyelectrolyte-enhanced tribological rehydration. This process is conjected to occur through localized
compression of the SPMK polyelectrolyte at cartilage asperities during sliding, which generates pressurized fluid regions within percolation channels
to facilitate cartilage rehydration. Low friction is expected to be maintained by a polyelectrolyte-enhanced elastohydrodynamic fluid film and the
highly hydrated SPMK boundary interface.
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of polyelectrolyte-enhanced tribological rehydration in this
study benefits from a precisely controlled chemical composi-
tion of direct attachment of SPMK to the substrate, whereas
the in vivo adsorbed macromolecular complex relies on
electrostatic interaction with the negatively charged cartilage
surface to remain attached,3,23 which inevitably becomes
challenging to maintain within the contact area during in
vitro tribology studies particularly during testing of unmatched
cartilage contacts.39,76 Engineering of surface-grafted polyelec-
trolytes provides a compelling solution not only to emulate the
in vivo performance of cartilage but also as a versatile model for
understanding the tribological phenomena of natural synovial
lubrication.
Future Work and Limitations. CryoSEM offers only an

approximate measure of the swollen height of the SPMK
polyelectrolyte while illustrating the distribution of the sulfonic
acid groups. However, the spatial resolution of EDX, limited to
1 μm,75 necessitates additional methods such as ellipsometry46

for precise measurement of the swollen height at the SPMK-g-
PEEK interface. Initial efforts to gauge the thickness of SPMK
under hydrated conditions have proved challenging. This
difficulty is largely due to the high water content and low
relative polymer content, which result in a minimal change in
polarization signals. Consequently, this measurement is still
under active investigation.

No discussion in this study has been made regarding the
potential interaction between the SPMK polyelectrolyte and
any adsorbed superficial macromolecular complex present on
the cartilage samples. Previous cartilage studies have shown
that extensive washing with PBS can diminish or remove the
superficial layer,26,117 and consideration of how the surface
would become degraded through exposure to PBS during
cutting, storage, or pretest free swelling in PBS was
unaccounted.

Discerning between the impact on friction due to the
SPMK-g-PEEK interface, which provides an unabating highly
lubricious sliding interface, and interstitial fluid pressurization
remains uncertain. The decrease in friction observed in this
study for increased states of cartilage rehydration (Figure 7c)
suggests that a synergy between cSCA and polyelectrolyte-
induced tribological rehydration is possible. Future studies
should explore the behavior of SPMK-g-PEEK using a cSCA
cartilage model.

The cartilage−SPMK-g-PEEK interface presented in this
study presents a challenging numerical modeling problem,
requiring interfacing the interstitial fluid flow and strain of
cartilage with the local fluid pressurization of compressed
polyelectrolyte chains, necessitating the combination of a
molecular dynamics problem118 coupled with a poroviscoe-
lastic cartilage model which accounts for the multimode
lubrication regime and strain-dependent cartilage topogra-
phy.13

■ CONCLUSIONS
Hydrophilic SPMK polymer brush surfaces tethered to PEEK
substrates have been developed as an advanced biomaterial to
interface directly with cartilage and support native biotribol-
ogy. These surfaces draw inspiration from the macromolecular
constituents of synovial fluid, aiming to replicate its lubricating
properties. The development of SPMK-g-PEEK surfaces,
featuring a hydrated tethered layer approximately 5 μm thick,
facilitates low friction coefficients (μ ∼ 0.01) over a broad
speed range (0.1−200 mm/s) under physiological loading

conditions (0.75−1.2 MPa). A pivotal finding of this study is
the discovery of a novel polyelectrolyte-enhanced tribological
rehydration mechanism capable of recovering cartilage
interstitial fluid under loads ranging from 0.25 to 2.21 MPa.
This recovery is attributed to the synergistic effects of fluid
confinement within the contact gap and the enhanced
elastohydrodynamic performance of the polymer brushes.

Going beyond prevailing theories that attribute cartilage
lubrication to interstitial fluid pressurization and tribological
rehydration through conformal geometries, our findings
demonstrate that physiological friction coefficients of SPMK-
g-PEEK interfaced with cartilage can occur independently of
interstitial fluid recovery and pressurization. This discovery
challenges existing paradigms and suggests a novel mechanism
of lubrication that does not solely rely on the established
models of interstitial fluid pressurization. The implications of
this research extend beyond the specific interactions of SPMK-
g-PEEK with cartilage, offering a broader understanding of
synovial joint lubrication. By synthesizing materials that
replicate the superficial macromolecular complex of cartilage,
we have elucidated a new mechanism for the regulation of
cartilage interstitial fluid. This advances our understanding of
joint lubrication and opens new avenues for the development
of joint replacement materials that more closely mimic the
natural function of cartilage.
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