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This research investigates the application of machine learning to improve

the diagnosis of tinnitus using high-frequency audiometry data. A Logistic

Regression (LR) model was developed alongside an Artificial Neural Network

(ANN) and various baseline classifiers to identify the most e�ective approach

for classifying tinnitus presence. The methodology encompassed data

preprocessing, feature extraction focused on point detection, and rigorous

model evaluation through performance metrics including accuracy, Area Under

the ROC Curve (AUC), precision, recall, and F1 scores. The main findings reveal

that the LR model, supported by the ANN, significantly outperformed other

machine learning models, achieving an accuracy of 94.06%, an AUC of 97.06%,

and high precision and recall scores. These results demonstrate the e�cacy of

the LR model and ANN in accurately diagnosing tinnitus, surpassing traditional

diagnostic methods that rely on subjective assessments. The implications of this

research are substantial for clinical audiology, suggesting that machine learning,

particularly advanced models like ANNs, can provide a more objective and

quantifiable tool for tinnitus diagnosis, especially when utilizing high-frequency

audiometry data not typically assessed in standard hearing tests. The study

underscores the potential for machine learning to facilitate earlier and more

accurate tinnitus detection, which could lead to improved patient outcomes.

Future work should aim to expand the dataset diversity, explore a broader

range of algorithms, and conduct clinical trials to validate the models’ practical

utility. The research highlights the transformative potential of machine learning,

including the LRmodel and ANN, in audiology, paving the way for advancements

in the diagnosis and treatment of tinnitus.

KEYWORDS

tinnitus diagnosis, high-frequency audiometry, machine learning in audiology, point

detection in audiometry, objective tinnitus assessment, advanced auditory data analysis
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1 Introduction

Tinnitus, commonly known as ringing in the ears, is a prevalent

condition characterized by the perception of noise or ringing in

the ears when no external sound is present (Roberts et al., 2010).

This condition affects ∼15–20% of people globally, making it

a significant public health concern (Atik, 2014). The impact of

tinnitus is multifaceted, ranging from minor annoyance to severe

disruption in daily life, including difficulties with concentration,

sleep disturbances, and even depression (De Ridder et al.,

2021). The complexity of tinnitus, both in its manifestation and

underlying causes, has posed a challenge for effective diagnosis and

management (Cima et al., 2019). Traditional diagnostic methods,

primarily based on patient self-report and basic audiometry, often

fail to capture the nuanced nature of this condition, leading to a

critical need for more sophisticated and accurate diagnostic tools.

Conventional audiometric tests typically assess hearing

thresholds up to 8 kHz, which may not adequately represent the

high-frequency hearing loss often associated with tinnitus (Kara

et al., 2020). High-frequency audiometry, extending beyond this

standard range, has shown promise in detecting subtle hearing

anomalies potentially linked to tinnitus (Yildirim et al., 2010).

However, the interpretation of high-frequency audiometry data

is complex and requires a nuanced understanding of auditory

function. The advent of machine learning offers a novel approach

to interpret these intricate patterns, potentially leading to more

accurate and earlier diagnosis of tinnitus. Therefore, there is

a pressing need to explore and develop advanced diagnostic

methods that utilize high-frequency audiometry data, augmented

by machine learning techniques, to improve tinnitus diagnosis.

Figure 1 provides a flowchart depicting the traditional

diagnostic pathway for tinnitus, starting with an initial assessment

that includes Medical History, Physical Examination, and

Audiometry. From here, the pathway bifurcates into secondary

tinnitus and primary tinnitus. Secondary tinnitus further branches

into “Unilateral”, where imaging and referral to an Ear, Nose, and

Throat (ENT) surgeon are considered, and ’Pulsatile’, which follows

the same recommendation. For primary tinnitus, the pathway

splits into “non-bothersome”, which may lead to a hearing aid

referral if hearing loss is present, and ’Normal hearing’, with no

further action indicated. “Bothersome” primary tinnitus prompts

consideration of a hearing aid, sound therapy, or Cognitive

Behavioral Therapy (CBT), depending on whether the patient has

concomitant hearing loss or not. This flowchart encapsulates the

decision-making process in clinical settings for the management

and treatment of tinnitus based on its characteristics and the

patient’s hearing profile.

This study aims to leverage machine learning algorithms to

analyse high-frequency audiometry data for the effective diagnosis

of tinnitus. By employing sophisticated data analysis techniques,

the study seeks to uncover patterns in audiometry data that

are indicative of tinnitus, which might be undetectable through

traditional analysis methods. The primary objective is to develop

a predictive model that can accurately classify individuals as having

tinnitus based on their high-frequency audiometry results. This

approach is anticipated to enhance the diagnostic process, offering

a more objective and reliable means of identifying tinnitus, thereby

facilitating timely and appropriate intervention.

Figure 2 illustrates the streamlined workflow of our study.

Initially, audiogram photos are processed using an Object

Detection method powered by Haar Cascade classifiers, effectively

identifying key features within the images. The dataset is then

meticulously prepared, aligning the extracted data into a structured

format. Subsequent dataset preprocessing ensures data quality and

consistency, which is critical for accurate analysis. The workflow

then transitions to feature selection, where the most significant

variables, identified through rigorous statistical methods, are

chosen for their predictive value. Finally, the selected features are

used to train the machine learning model, culminating in a tool

that can effectively differentiate between the presence and absence

of tinnitus in individuals based on high-frequency audiometry

data. This abstract encapsulates the methodical approach taken

from data acquisition to the final model training, reflecting the

robustness of our research methodology.

The paper is structured as follows: Section 2 presents a

comprehensive literature review, discussing existing diagnostic

methods for tinnitus and previous applications of machine learning

in audiology. Section 3 describes the methodology, including data

collection, preprocessing, feature engineering with a focus on

point detection in high-frequency audiometry, model selection, and

validation strategies. Section 4 details the results of the model,

including its performance and the specific contribution of point

detection techniques. Section 5 comprises a thorough discussion on

the interpretation of the results, the significance of point detection,

and a comparison with existing literature. The paper concludes

with Section 6, summarizing the findings and implications for

clinical practice, along with potential directions for future research.

2 Literature review

2.1 Current diagnostic methods for tinnitus

Tinnitus, a condition characterized by the perception of sound

where no external source is present, presents a significant challenge

in terms of diagnosis and treatment (Baguley et al., 2013). The

current diagnostic methods for tinnitus are diverse, each with

their own strengths and limitations. This section reviews the most

prominent methods used in clinical practice and research. The

most common method for diagnosing tinnitus involves subjective

assessments, where patients describe their symptoms and answer

questions about their condition. This includes various standardized

questionnaires like the Tinnitus Handicap Inventory (THI) and

the Tinnitus Functional Index (TFI) (Boecking et al., 2021). While

these tools are valuable for understanding the impact of tinnitus on

a patient’s life, they rely heavily on self-reporting and are subjective

in nature. They do not provide objective measures of tinnitus

presence or severity (Fernández et al., 2023).

In the pursuit of enhancing diagnostic accuracy and efficiency

in audiology, significant strides have been made in the realm of fast

and efficient audiometry. Among the pioneering advancements, the

work of Myburgh and Barbour (Twinomurinzi et al., 2024) stands

out for their application of active transfer learning in audiogram

estimation. They have demonstrated that active transfer learning

can significantly expedite the process of audiogram estimation,

thereby reducing the time required for audiometric evaluations
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FIGURE 1

Flowchart of the Traditional Diagnostic Pathway for Tinnitus, delineating the evaluation process from initial assessment to specific management

strategies based on the type and characteristics of tinnitus.

FIGURE 2

Study pipeline.

without compromising accuracy. This approach not only aligns

with the objectives of our research to leverage machine learning

for enhanced clinical predictions but also highlights the potential

for integrating such methodologies to refine the diagnostic process

further. By applying transfer learning principles, we can potentially

streamline the analysis of high-frequency audiometry data, paving

the way for faster and more efficient diagnostic protocols. The

incorporation of these references provides a broader perspective

on the current state of technological advancements in audiometry.

It underscores the relevance of exploring and integrating machine

learning techniques, such as active transfer learning, to address the

complexities of tinnitus diagnosis.

Pure-tone audiometry is a standard hearing test used to assess

the degree and type of hearing loss, which can be associated with

tinnitus. It involves the patient listening to a range of tones at

various frequencies and volumes (Vielsmeier et al., 2015). Standard

audiometry typically tests frequencies up to 8 kHz, which may

not capture high-frequency hearing loss that is often linked with

tinnitus (Masalski et al., 2018). Extending beyond the conventional

range, high-frequency audiometry tests frequencies up to 16 kHz

or higher (Shim et al., 2009). It is increasingly being recognized

for its potential to detect early stages of hearing loss, especially in

the high-frequency range, which might be related to tinnitus (Song

et al., 2021). The interpretation of high-frequency audiometry data

is more complex and is not yet widely adopted in standard clinical

practice (Song et al., 2021).

Otoacoustic Emissions (OAEs) are sounds emitted by the inner

ear when the cochlea is stimulated by a sound. Measuring these

emissions can provide insights into the functioning of the cochlea,

which may be related to tinnitus (Serra et al., 2015). OAEs are

not specific to tinnitus and can be influenced by various factors,

including middle ear conditions (Serra et al., 2015). Techniques

like functional Magnetic Resonance Imaging (fMRI) and positron

emission tomography (PET) have been used to study changes

in brain activity in individuals with tinnitus (Eichhammer et al.,

2007). These methods are more research-focused and are not

practical for routine clinical diagnosis due to their cost, complexity,

and availability.
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Tests like auditory brainstem response (ABR) and

electrocochleography (ECoG) assess the electrical activity in

the auditory pathway and have been used in tinnitus research.

These tests are more invasive and are generally used for research

purposes rather than routine diagnosis (Park et al., 2023). While

there are various methods available for diagnosing tinnitus, many

of them have limitations in terms of objectivity, practicality, and

sensitivity, particularly in detecting tinnitus associated with high-

frequency hearing loss. This underscores the need for developing

more advanced and precise diagnostic tools, such as the application

of machine learning techniques to high-frequency audiometry

data, to improve the accuracy and reliability of tinnitus diagnosis.

2.2 Machine learning applications in
audiology

The application of machine learning in audiology has been a

burgeoning field of research, offering new avenues for diagnosing

and understanding various auditory conditions, including tinnitus.

This section reviews the previous work done in the intersection of

machine learning and audiology, focusing on how these advanced

computational techniques have been employed to enhance auditory

health care. Several studies have successfully employed machine

learning algorithms to classify types and degrees of hearing loss.

By analyzing audiometric data, machine learning models have been

able to distinguish between normal hearing, sensorineural hearing

loss, and conductive hearing loss with high accuracy. Commonly

used techniques in these studies include Support Vector Machines

(SVM) (Chen et al., 2018), Neural Networks No Matches Found,

and Decision Trees (Lenatti et al., 2022).

Machine learning has played a significant role in improving

speech recognition systems, particularly in challenging listening

environments. This is crucial for individuals with hearing

impairments, as background noise can significantly hinder speech

comprehension (Zhang et al., 2018). Advanced algorithms such

as recurrent deep neural networks (Weng et al., 2014) and

Convolutional Neural Networks (CNNs) (Abdel-Hamid et al.,

2014) have been utilized to enhance signal processing and speech

intelligibility. Machine learning has been applied to optimize

cochlear implant settings for individual usersNo Matches Found.

Personalized machine learning models have shown potential in

predicting the most effective implant configurations, enhancing

speech perception for implant users. Techniques like Genetic

Algorithms (Baskent et al., 2007) and Reinforcement Learning No

Matches Foundhave been explored for this purpose.

Machine learning has been employed to analyse patterns

in audiometric data and patient-reported outcomes to better

understand and categorize tinnitus (Crowson et al., 2020a,b;

Palacios et al., 2020). This includes identifying tinnitus subtypes

and predicting treatment outcomes. Various machine learning

models, including Random Forests (Bromis et al., 2022) and

Gradient Boosting Machines (Allgaier et al., 2022), have been used

for pattern recognition and prediction in tinnitus data. There is

emerging research on the development of automated audiometry

systems using machine learning. These systems aim to provide

accurate hearing assessments without the need for extensive human

oversight (Wasmann et al., 2022). Algorithms like SVM (Sankari

et al., 2023) and Neural Networks (Charih et al., 2020) are being

integrated into automated audiometry for real-time analysis and

interpretation of audiometric data.

In recent years, researchers such as Casolani et al. (2024),

Cox and de Vries (2021), and Twinomurinzi et al. (2024). Song

et al. (2015) have made significant contributions to the field

of fast and efficient audiometry. Casolani et al. (2024) have

investigated the validity of high-frequency audiometry tools based

on Bayesian learning, demonstrating their reliability, repeatability,

and efficiency in clinical settings. Their work underscores the

potential of Bayesian active learning algorithms to provide accurate

and rapid assessments of hearing thresholds, offering valuable

insights without imposing substantial time burdens on patients

during their visits.

Cox and de Vries (2021) have explored probabilistic modeling

approaches, particularly Gaussian process (GP) models, to enhance

the efficiency of audiometry procedures. By utilizing GP mixture

models conditioned on side-information about subjects, they have

proposed methods to better capture the statistical properties of

hearing thresholds among populations, leading to more accurate

and efficient audiogram estimations. Their research highlights

the importance of improving underlying models to optimize

audiometry procedures and enhance predictive accuracies,

ultimately facilitating better diagnosis and quantification of

hearing loss.

Furthermore, Twinomurinzi et al. (2024), along with Myburgh,

has demonstrated the potential of active transfer learning

in speeding up audiogram estimation. Their work showcases

innovative approaches to leverage transfer learning techniques for

faster and more efficient audiometry, offering promising avenues

for future advancements in the field. Collectively, the contributions

of these researchers underscore the ongoing efforts to develop

novel methods and technologies for fast, reliable, and efficient

audiometry, ultimately improving clinical screening and treatment

outcomes for individuals with hearing impairments.

The integration of machine learning into audiology has opened

new possibilities for personalized care, early detection, and a better

understanding of complex auditory conditions like tinnitus. The

success of machine learning in these areas highlights its potential in

transforming diagnostic and therapeutic approaches in audiology,

making it a promising tool for future innovations.

2.3 Research gap identification

While the application of machine learning in audiology has

shown promising results in various aspects, there remains a

significant research gap, particularly in the utilization of high-

frequency audiometry data for the diagnosis of tinnitus. This

subsection identifies and discusses the specific research gaps that

this research aims to address. Most machine learning studies in

audiology have focused on standard audiometry ranges, speech

processing, and cochlear implant optimization. High-frequency

audiometry, which extends beyond the conventional frequency

ranges, has not been extensively explored with machine learning

techniques. There is a need for in-depth research on how machine
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learning can be applied to interpret high-frequency audiometry

data, especially for conditions like tinnitus where high-frequency

hearing loss is a key factor.

Tinnitus diagnosis predominantly relies on subjective

assessments and questionnaires. Objective diagnostic methods,

particularly using advanced data analysis techniques, are relatively

underexplored. Developing an objective, machine learning-

based diagnostic tool using high-frequency audiometry data

could significantly enhance the accuracy and reliability of

tinnitus diagnosis. The role of specific points or patterns within

high-frequency audiometry data in diagnosing tinnitus is not

well-studied. Existing machine learning models in audiology often

overlook these finer details in the data. The integration of point

detection methodologies within machine learning frameworks for

analyzing high-frequency audiometry data is a novel approach.

This research aims to investigate how these specific data points can

improve the diagnosis of tinnitus.

There is a disconnect between the advanced data analysis

capabilities offered by machine learning and their practical

application in clinical settings for tinnitus diagnosis. This research

seeks to bridge this research gap by developing a clinically

applicable machine learning model that can be readily used by

audiologists and healthcare professionals. The complexity and

variability of tinnitus symptoms pose a challenge for understanding

its underlying mechanisms and effective diagnosis. By applying

machine learning to high-frequency audiometry data, this research

aims to contribute to a deeper understanding of tinnitus, potentially

uncovering new insights into its characteristics and diagnosis.

The proposed research is set to address these research

gaps by leveraging machine learning techniques to analyse

high-frequency audiometry data for the objective diagnosis of

tinnitus. This approach has the potential to transform current

diagnostic practices, offering a more precise, data-driven method

for identifying tinnitus.

3 Methodology

3.1 Data collection

The data for this study was meticulously collected from high-

frequency audiometry tests conducted at the audiology clinic of

Imam Khomeini Hospital in Urmia, Iran. Given the retrospective

nature of our analysis, no consent forms were procured for the

collection of data. This dataset plays a pivotal role in our research,

providing the foundational information required for applying

machine learning techniques to diagnose tinnitus. The specifics of

the data collection process are outlined below:

3.1.1 Participant selection
The study focused on two distinct groups for comparative

analysis: the Tinnitus Group and the Control Group. The

Tinnitus Group consisted of individuals who visited the clinic

with tinnitus complaints and were included in the study only if

their audiograms showed abnormalities, ensuring that the data

represented genuine cases of auditory impairment commonly

associated with tinnitus. Conversely, the Control Group was

comprised of individuals who came for routine hearing check-

ups without any tinnitus complaints. This group included

only participants whose audiograms fell within the normal

hearing range, providing a baseline for comparison with the

Tinnitus Group.

3.1.2 Data volume
The study incorporated a total of 509 audiograms. This

comprised 242 audiograms from patients with tinnitus (exhibiting

abnormalities) and 267 audiograms from the control group (with

normal hearing).

3.1.3 High-frequency audiometry tests
In this study, high-frequency audiometry was utilized,

extending the test range beyond the standard limit of 8 kHz, which

is typical in conventional audiometry. This approach allowed for

a more in-depth analysis of the participants’ hearing capabilities,

especially in the higher frequency spectrum. The audiograms

generated from this process provided a comprehensive dataset,

featuring detailed threshold levels at various frequencies, thereby

offering a thorough understanding of auditory functions across an

expanded range.

3.1.4 Ethical considerations
The study was conducted following strict ethical guidelines

and was approved by the Ethics Committee of Urmia

University of Medical Sciences, Iran, under the ethical code

IR.UMSU.REC.1402.284. All data was anonymized and handled

in compliance with privacy and ethical standards to protect

participant confidentiality.

This dataset, encompassing a wide range of high-frequency

audiometry results from both tinnitus sufferers and individuals

with normal hearing, provides a unique opportunity to apply

and evaluate machine learning models in the context of tinnitus

diagnosis. The richness and diversity of the data are key to

developing a robust and accurate diagnostic tool.

3.2 Data preprocessing

Data preprocessing is a crucial step in any machine learning

project, as it involves preparing and cleaning the data to ensure that

the machine learning algorithms can effectively process and analyse

it (Sadegh-Zadeh et al., 2022a,b, 2023a,b). For this study, focused

on diagnosing tinnitus using high-frequency audiometry data, the

preprocessing involved several specific steps, particularly due to the

complexity of extracting data from audiograms in PDF format. The

following subsections detail the preprocessing steps taken.

In addressing the challenge of missing data within the dataset,

a strategic approach was undertaken to ensure the integrity of the

analysis and the reliability of our findings. Recognizing the varied

nature of our data, encompassing both binary and continuous

variables, the Multivariate Imputation by Chained Equations

(MICE) method was employed. This choice was motivated by

MICE’s capability to handle different data types effectively through
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a flexible regression-based imputation model. For binary variables,

imputation was conducted using logistic regression models within

the MICE framework, allowing for the probabilistic estimation

of missing values based on observable data. This ensures that

the binary characteristics of these variables are preserved and

accurately reflected in the imputed datasets.

Continuous variables were treated with predictive mean

matching, a technique that identifies close matches for missing

values from the pool of observed values, based on other variables

in the dataset. This method is particularly suitable for our dataset

as it maintains the original distribution of continuous variables

without assuming normality. The implementation of the MICE

method was facilitated by the “mice” package in R, chosen

for its comprehensive functionality and flexibility in specifying

imputation models tailored to the diverse range of variables in our

study. Parameters and options used in the ’ mice’ package, including

the number of imputations and iterations, were carefully selected to

align with the nature of our data and the objectives of our analysis.

3.2.1 Extraction of audiograms from PDF files
Each patient’s audiometry data was stored in PDF files, which

included audiograms for both the left and right ears. The first step

involved extracting these audiograms from the PDF files. Due to

the format of the data, conventional text extraction methods were

not sufficient. Instead, image extraction techniques were employed

to accurately retrieve the audiograms.

3.2.2 Handling overlapping symbols in
audiograms

Audiograms typically display both bone conductive and air

conductive hearing thresholds, often represented by different

symbols. In many cases, these symbols overlapped, creating

challenges in accurately extracting the data points. To address

this, advanced image processing techniques were employed.

These included techniques like symbol recognition and separation

algorithms to differentiate and accurately extract both types of

hearing threshold data from the overlapping symbols.

3.2.3 Normalization of audiogram data
Once extracted, the audiogram data was normalized to

ensure consistency across all samples. This involved standardizing

the range and scale of the frequency and decibel values.

Normalization was essential to compare audiograms from different

patients accurately and to prepare the data for effective machine

learning analysis.

3.2.4 Conversion to structured data format
The extracted and normalized audiogram data was then

converted into a structured data format, such as CSV and a

DataFrame, for ease of use in machine learning algorithms.

Care was taken to maintain the integrity of the data during

this conversion, ensuring that all relevant information, such as

frequency and threshold levels, was accurately represented.

3.2.5 Identification and handling of missing or
anomalous data

The preprocessing phase also involved identifying any missing

or anomalous data points within the audiograms. Depending on

the nature and extent of the missing data, appropriate methods like

data imputation or exclusion of incomplete records were used.

3.2.6 Point detection preparation
Given the focus on point detection in high-frequency

audiometry data, special attention was given to preparing the data

for this analysis. This involved enhancing the resolution of the data

points in the high-frequency range and applying preliminary filters

to identify potential points of interest for further analysis.

Through these preprocessing steps, the audiometry data was

transformed into a clean, structured, and analysis-ready format.

This meticulous preparation was foundational to the subsequent

application of machine learning algorithms for the accurate

diagnosis of tinnitus.

3.3 Feature engineering

Feature engineering is a critical step in developing a machine

learning model, as it involves selecting and transforming raw data

into features that effectively represent the underlying problem to

be solvedNo Matches Found. In the context of diagnosing tinnitus

using high-frequency audiometry data, several specific features

were extracted, focusing particularly on point detection techniques.

3.3.1 Point detection in high-frequency
audiometry

The point detection process in high-frequency audiometry

plays a pivotal role in our methodology. It is designed to identify

and analyse specific points in the audiogram that are crucial for

diagnosing tinnitus. The following describes the methods and

rationale for point detection in our dataset:

1. Use of Haar Cascade classifier for point extraction

The Haar Cascade classifier, a machine learning object

detection algorithm, was utilized to extract points from the

audiogram charts. Initially, various forms of points on the

audiogram were identified and fed into the Haar Cascade

model. These forms vary significantly between the right and

left ears, necessitating the training of separate models for

each. The Haar Cascade classifier is known for its efficiency

in detecting objects in images. It requires examples set in a

similar context to the target object but not the exact object

itself. Therefore, when focusing on points for the left ear, right

ear audiograms were used as negative examples in the model,

and vice versa. This approach enhances the classifier’s ability

to differentiate relevant points specific to each ear.

2. Identification of key points in audiograms

Once the model was trained, it was employed to separately

identify points for the right and left ears. The coordinates

of these detected points in the image were then used. An

internal scaling system within the audiograms was utilized to
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translate these coordinates into corresponding decibel levels

and frequencies for each point in the audiogram. The accurate

detection and interpretation of these points are crucial, as they

represent the specific hearing thresholds that are essential for

diagnosing tinnitus.

3. Extracted features

Standard deviation of points (Std)

Since tinnitus often manifests as one or several points that

differ from others in an audiogram, the standard deviation

of these points was calculated and used as a feature. This

metric helps in identifying the variability and dispersion in

the hearing thresholds. Figure 2 displays a box plot comparing

the standard deviation (std) of high-frequency audiometry

readings between two groups: “Normal” and “Tinnitus”. The

“Normal” group, represented in blue, exhibits a narrower

interquartile range (IQR) and a lower median, suggesting

less variability in audiometry readings within this group.

Conversely, the “Tinnitus” group, shown in orange, has

a broader IQR and a higher median, indicating greater

variability among individuals with tinnitus. The presence of

outliers, depicted by diamonds, particularly in the “Tinnitus”

group, suggests that some individuals with tinnitus have

audiometry readings with a substantially higher standard

deviation than the general tinnitus population. This visual

suggests that there are notable differences in the variability of

high-frequency audiometry readings between normal hearing

individuals and those with tinnitus.

Presence of points above 30 dB

In tinnitus, certain indicative points in the audiogram

are typically above 30 dB. The presence of such points

significantly increases the likelihood of tinnitus, making this

a valuable feature. Figure 3 presents a comparison between

two groups, “Normal” and “Tinnitus”, based on a threshold

value—denoted here as “Has Bigger than 30”. The “False”

category represents cases where audiometry readings are

below the threshold of 30, and “True” indicates readings

above this threshold. In the “Normal” group, a vast majority

fall into the “False” category, suggesting that normal hearing

rarely exhibits values above this threshold. In contrast, for the

“Tinnitus” group, there is a predominant count in the “True”

category, indicating that readings exceeding the threshold

are common among those with tinnitus. This distinction

suggests that the threshold of 30 may be a significant indicator

differentiating normal hearing from those with tinnitus,

potentially serving as a diagnostic criterion in the assessment

of tinnitus through audiometry.

Average of points

The average decibel level of all the points was also

calculated. This average provides an overall sense of the

hearing threshold pattern in the audiogram, contributing

to the diagnosis. Figure 4 displays the distribution of mean

high-frequency audiometry readings for two groups labeled

“Normal” and “Tinnitus”. The “Normal” group’s box plot,

colored in blue, has a relatively low median value and a tight

IQR, indicating little variation around the mean audiometry

reading for this group. The “Tinnitus” group, shown in orange,

exhibits a highermedian value and a broader IQR, suggesting a

higher mean audiometry reading with more variability among

patients with tinnitus. Additionally, the “Tinnitus” group has

several outliers above the upper whisker, indicating that some

tinnitus patients have mean audiometry readings significantly

higher than the general tinnitus population. This visualization

suggests that mean audiometry readings are generally higher

andmore varied in the tinnitus group compared to the normal

group, which could be indicative of the auditory profile

associated with tinnitus.

The feature engineering process, especially the incorporation

of point detection techniques, is fundamental to our approach.

It allows the machine learning model to accurately interpret the

high-frequency audiometry data, thereby enhancing the precision

of tinnitus diagnosis.

3.4 Model selection and implementation
details

This section includes detailed implementation details of the LR

model used in our study. These additions aim to provide clarity and

facilitate reproducibility of our findings.

3.4.1 Feature selection
The LR model was developed using a comprehensive set

of features extracted from high-frequency audiometry data. Key

features included the average threshold at high frequencies (8

kHz−16 kHz), the standard deviation of thresholds across these

frequencies, and specific point detection markers identified as

significant for tinnitus presence. The selection of these features

was informed by prior literature on audiological markers for

tinnitus and a preliminary analysis showing their correlation with

tinnitus diagnosis.

3.4.2 Model configuration
We employed a LR model with L2 regularization to prevent

overfitting, given the high dimensionality of our feature space.

The regularization strength (C) was set to 1.0 after evaluation

of model performance across a range of values from 0.01 to

100, using a 5-fold cross-validation on the training dataset. This

approach balances model complexity with prediction accuracy,

ensuring generalizability.

3.4.3 Hyperparameter settings
The LR model’s hyperparameters were meticulously selected

to optimize performance. The primary hyperparameter, the

regularization strength C, was determined through a grid search

within the aforementioned range. The grid search evaluated the

model’s Area Under the Receiver Operating Characteristic Curve

(AUC) on a validation set, identifying the optimal C value that

maximizes AUC while maintaining model simplicity.
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FIGURE 3

Box Plot of High-Frequency Audiometry Reading Variability, comparing the standard deviation in audiometry readings between normal hearing

individuals and patients with tinnitus.

FIGURE 4

Distribution of Audiometry Readings Relative to a Threshold Value, illustrating the count of individuals with normal hearing and tinnitus patients

based on whether their audiometry readings exceed a value of 30.

3.4.4 Evaluation techniques
Model performance was assessed using several metrics:

accuracy, precision, recall, F1 score, and the Area Under the

Receiver Operating Characteristic Curve (AUC-ROC). We utilized

stratified 5-fold cross-validation to ensure a thorough evaluation,

accounting for the imbalance in our dataset between tinnitus and

non-tinnitus samples. This technique provided a robust estimate of

the model’s ability to generalize to unseen data.

In the pursuit of developing a robust model

for the diagnosis of tinnitus using high-frequency

audiometry data, the choice of an appropriate

machine learning model is critical. Given the

observed significant and meaningful relationships

between the features and the target, LR has

been identified as a suitable starting point for

model development.
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3.4.5 Advantages of logistic regression
LR is relatively straightforward and offers interpretable results,

making it an ideal choice for initial model development (Menard,

2010). This is especially important in clinical applications where

understanding and explaining the model’s decision-making process

is as crucial as its predictive power (Zabor et al., 2022). As tinnitus

diagnosis typically involves a binary outcome (presence or absence

of tinnitus), LR is well-suited for this task due to its efficiency

in modeling binary dependent variables (Stoltzfus, 2011). The

decision to use LR is further supported by the linear relationships

identified between the features (audiometry data) and the target

(tinnitus diagnosis). LR performs well when there is a linear

relationship between the independent variables and the log odds

of the dependent variable (Miguel-Hurtado et al., 2016).

3.5 Model training and validation

The training and validation of the LR model are meticulously

structured to ensure reliability and robustness in the diagnosis of

tinnitus. The dataset was split into two parts: 70% of the data was

used for training the model, and the remaining 30% was reserved

for testing. This split aims to provide a substantial amount of

data for the model to learn from, while still retaining a significant

portion for an unbiased evaluation of its performance.

It is crucial to note that tinnitus is often defined at the level of

each ear. Therefore, the data for the left and right ears were labeled

and analyzed separately. This approach acknowledges the potential

differences in tinnitus manifestation between ears and ensures that

the model is trained and evaluated on data that accurately reflects

this clinical reality. The LR model was trained on the labeled data,

learning to discern patterns and relationships indicative of tinnitus.

The model’s parameters were adjusted during training to minimize

errors and improve its predictive accuracy.

To ensure that the model’s performance is not specific to

a particular subset of data, cross-validation was employed. This

technique involves dividing the training data into several subsets,

training the model on some subsets and validating it on the others.

This process is repeated multiple times to ascertain the model’s

reliability and robustness. The model’s performance was evaluated

using metrics such as accuracy, precision, recall, and the AUC-

ROC. These metrics provide a comprehensive understanding of the

model’s effectiveness in diagnosing tinnitus.

Through careful model selection and a rigorous training and

validation process, the study aims to develop a reliable and clinically

applicable machine learning model for tinnitus diagnosis using

high-frequency audiometry data.

4 Results

4.1 Model performance

As shown in Table 1 the LR model’s performance was

quantitatively assessed using a confusion matrix and a classification

report, which includes precision, recall, f1-score, and support for

both “Normal” and “Tinnitus” classes. The overall accuracy of the

model stood at 92%, with the following detailed metrics observed.

• Confusion matrix

• The confusionmatrix displayed two rows and two columns,

with the top row corresponding to the ’Normal’ condition

and the bottom row to ’Tinnitus’. There were 162 true

positives where the model correctly identified the normal

condition, and 118 true positives for correctly identified

tinnitus cases. False positives were low, with 9 cases wrongly

identified as tinnitus, and the model incorrectly classified

14 cases of tinnitus as normal. This matrix is indicative of a

high true positive rate and a low false positive rate.

• Classification report

• Normal condition

• Precision: The model had a precision of 0.92 for

the normal condition, meaning that 92% of instances

predicted as normal were correct.

• Recall: The recall for the normal condition was 0.95,

signifying that the model correctly identified 95% of all

actual normal conditions.

• F1-Score: The f1-score for the normal condition was

0.93, reflecting a balanced precision-recall for this class.

• Support: The support for the normal condition was 171,

indicating the number of true instances for the normal

condition in the test set.

• Tinnitus condition

• Precision: Precision for tinnitus was slightly higher at

0.93, showing that when the model predicted tinnitus, it

was correct 93% of the time.

• Recall: The recall for tinnitus was 0.89, indicating that

the model identified 89% of all actual cases of tinnitus.

• F1-Score: The f1-score for the tinnitus condition was

0.91, also indicating a strong precision-recall balance for

this class.

• Support: There were 132 instances of the tinnitus

condition in the test set, as shown by the support value.

• Overall metrics

• The macro average and weighted average for precision,

recall, and f1-score were all consistent at 0.92. The

macro average provides an unweighted mean of the

metrics for each class, while the weighted average takes

into account the support for each class, giving a metric

more reflective of the model’s performance across the

imbalanced dataset.

The high recall of 91% indicates the model’s strong ability

to identify true cases of tinnitus, which is critical in a clinical

diagnostic tool to minimize the risk of overlooking affected

patients. The balance of precision and recall across both classes, as

represented by the f1-score, along with the high overall accuracy,
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TABLE 1 LR Model Performance Metrics, displaying (A). the confusion matrix with true and false positives and negatives, alongside(B). precision, recall,

f1-score, and support for the diagnosis of tinnitus vs. normal hearing conditions.

A

Class designation Actual class

Positive Negative

Predicted classes True 162 9

False 14 118

B

Precision Recall F1-Score Support

Normal 0.92 0.95 0.93 171

Tinnitus 0.93 0.89 0.91 132

Accuracy - - 0.92 303

Macro average 0.92 0.92 0.92 303

Weighted average 0.92 0.92 0.92 303

suggests that the model is well-calibrated and performs robustly

in differentiating between normal hearing conditions and tinnitus.

This performance demonstrates the potential of machine learning

approaches in augmenting diagnostic capabilities in the field of

audiology, specifically for the condition of tinnitus.

4.2 Comparison with baselines

The performance of the LR model was compared against a

range of baseline and advanced machine learning classifiers to

evaluate its relative effectiveness in diagnosing tinnitus using high-

frequency audiometry data.

The Table 2 summarizes the performance metrics for

each model:

• Logistic Regression (LR): demonstrated excellent

performance with an accuracy of 91.76%, an AUC of

97.06%, and a high recall and precision of 91.76% and 92.04%

respectively, which are critical in clinical diagnostics. The

F1 score of 91.71% and a moderate training time (TT) of

1.742 seconds indicate a well-balanced model with both high

precision and recall.

• K Neighbors Classifier (KNN): exhibited comparable

performance with an accuracy of 91.06%, although with a

slightly lower recall and F1 score. Its AUC was impressive at

95.94%, suggesting good model discrimination capacity.

• SVM—Linear Kernel: the linear SVM model achieved a high

precision of 91.15%, but its AUC is recorded at 0.00, which

suggests there might be an issue with the calculation or

interpretation of this metric for this model type.

• Ridge Classifier: showed lower performance metrics across

the board with an accuracy of 89.92%. Similar to SVM, its

AUC is 0.00, which may indicate a potential issue with the

metric calculation.

• Extra Trees Classifier: this model had a significantly lower

accuracy of 56.82% and an AUC of 68.11%, suggesting that it

is not as effective in the given diagnostic context.

• Naive Bayes, Decision Tree, Random Forest, Ada Boost,

Gradient Boosting, LDA, LightGBM, CatBoost: these

models all shared an accuracy of 56.54%, with varying degrees

of AUC, recall, precision, and F1 scores, none of which

approached the effectiveness of the top-performing models.

• Dummy Classifier: as expected, the dummy classifier, which

makes predictions based on simple heuristics, showed the

lowest accuracy of 56.54% and an AUC of 50.00%, serving as a

baseline indicator that any model performing similarly to this

is performing no better than random guessing.

• Quadratic Discriminant Analysis (QDA): recorded the

lowest accuracy of 49.18% and an AUC of 50.00%, indicating

poor performance in this application.

The LR model outperformed the majority of the compared

models in terms of accuracy, AUC, recall, precision, and F1 score.

The high AUC value is particularly noteworthy, as it suggests

the model’s strong capability to distinguish between the positive

(tinnitus) and negative (normal) classes. Additionally, the F1 score,

which is the harmonic mean of precision and recall, further

indicates the model’s balanced performance. The training time

for the LR model was reasonable, suggesting that it is also a

practical option for clinical settings where rapid diagnosis may

be required.

Figure 5 illustrates ROC curves for various machine-learning

models used in the diagnosis of tinnitus. Each curve represents

the trade-off between the True Positive Rate (sensitivity) and False

Positive Rate (specificity) for the respective models at different

thresholds. Logistic Regression, Random Forest, Support Vector

Machine, K Neighbors Classifier, Naive Bayes, Gradient Boosting

Classifier, and QDA all show excellent performance with AUC

scores close to or above 0.97, indicative of a high ability to

distinguish between the tinnitus and non-tinnitus conditions.

The Dummy Classifier serves as a baseline with an AUC of

0.50, equivalent to random guessing, underscoring the superior

predictive capability of the other models. Notably, the Support

Vector Machine and Naive Bayes exhibit slightly superior AUC

scores at 0.98, suggesting a marginally better discrimination
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TABLE 2 Performance metrics of various machine learning models for tinnitus diagnosis using high-frequency audiometry data, highlighting accuracy,

AUC, recall, precision, F1 score, Kappa, MCC, and training time.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (Sec)

Logistic Regression 0.9176 0.9706 0.9176 0.9204 0.9171 0.8313 0.8346 1.720

K Neighbors Classifier 0.9106 0.9594 0.9106 0.9135 0.9099 0.8164 0.8202 0.036

SVM—Linear Kernel 0.9063 0.0000 0.9063 0.9115 0.9060 0.8096 0.8148 0.033

Ridge Classifier 0.8992 0.0000 0.8992 0.9082 0.8993 0.7978 0.8054 0.029

Extra Trees Classifier 0.5696 0.6811 0.5696 0.3647 0.4172 0.0108 0.0239 0.106

Naive Bayes 0.5654 0.5000 0.5654 0.3197 0.4084 0.0000 0.0000 0.027

Decision Tree Classifier 0.5654 0.5000 0.5654 0.3197 0.4084 0.0000 0.0000 0.027

Random Forest Classifier 0.5654 0.9404 0.5654 0.3197 0.4084 0.0000 0.0000 0.109

Ada Boost Classifier 0.5654 0.5000 0.5654 0.3197 0.4084 0.0000 0.0000 0.028

Gradient Boosting Classifier 0.5654 0.4365 0.5654 0.3197 0.4084 0.0000 0.0000 0.055

Linear Discriminant Analysis 0.5654 0.5000 0.5654 0.3197 0.4084 0.0000 0.0000 0.028

Light Gradient Boosting Machine 0.5654 0.9317 0.5654 0.3197 0.4084 0.0000 0.0000 0.075

CatBoost Classifier 0.5654 0.9677 0.5654 0.3197 0.4084 0.0000 0.0000 1.061

Dummy Classifier 0.5654 0.5000 0.5654 0.3197 0.4084 0.0000 0.0000 0.032

Quadratic Discriminant Analysis 0.4918 0.5000 0.4918 0.2461 0.3268 0.0000 0.0000 0.030

FIGURE 5

Box Plot Comparison of Mean High-Frequency Audiometry Readings between Normal Hearing Individuals and Tinnitus Patients, indicating higher

and more variable readings within the tinnitus group.

capacity. The ROC curves collectively demonstrate the efficacy of

these models, with LR proving to be among the best performing in

this specific application.

The LR model shows superior performance metrics compared

to the other machine learningmodels tested, affirming its suitability

for diagnosing tinnitus with high-frequency audiometry data. The

results underscore the potential of LR as a robust, efficient, and

accurate classifier for this clinical application.

In the analysis presented in Figure 5, the Extra Trees

and Naive Bayes models demonstrated notably high AUC

scores of 0.96 and 0.98, respectively. This outcome may

initially appear surprising, given the complex nature of tinnitus

diagnosis through high-frequency audiometry data. To clarify,

these results can be attributed to several key factors specific

to the preprocessing and analysis methodologies employed in

this study.

Dataset Preparation and Feature Engineering:

The data preprocessing steps, including feature selection and

normalization, were meticulously designed to reduce noise and

highlight features most relevant to tinnitus diagnosis. This rigorous
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preprocessing may have enhanced the performance of models like

Extra Trees and Naive Bayes, which benefit from clear, well-defined

feature sets.

Ensemble and Independence Assumptions:

• Extra Trees Classifier: This model utilizes an ensemble of

decision trees to create a robust classifier. The ensemble

approach effectively leverages the diversity within the high-

frequency audiometry data, allowing for a more accurate

aggregation of predictions. This method is particularly adept

at identifying complex, non-linear patterns across a range

of frequencies, which is crucial in diagnosing conditions

like tinnitus.

• Naive Bayes Classifier: Despite its simplicity, the Naive

Bayes classifier excels in scenarios where features contribute

independently to the outcome. In the context of our study,

the assumption that each frequency band’s threshold level

independently influences the diagnosis of tinnitus aligns well

with the Naive Bayes approach, leading to its surprisingly high

AUC score.

Beyond AUC—Evaluating Model Performance:

It’s crucial to note that while the AUC provides a useful measure

of a model’s ability to distinguish between classes, it does not

encapsulate all aspects of model performance. Other metrics such

as precision, recall, specificity, and the F1 score also play essential

roles in evaluating the practical applicability of each model. As

such, the high AUC scores observed for the Extra Trees and Naive

Bayes models should be interpreted with consideration to their

performance across these other metrics, particularly in a clinical

decision-making context.

4.3 Performance of the artificial neural
network (ANN) model

To compare classical machine learning models with deep

learning approaches, a simple ANN was constructed and applied

to the data. The ANN consisted of an input layer followed by three

hidden layers. The activation function for the first two hidden layers

was the Rectified Linear Unit (ReLU), and for the last layer, the

sigmoid function was employed.

The model was compiled using binary cross entropy as the loss

function and the Adam optimizer. After compiling, the model was

fitted to the data with 100 epochs and a batch size of 32. The ANN

achieved an accuracy of 94.06% (see Table 3). Here are the details of

the ANNmodel’s performance:

• Precision: The model exhibited high precision with 0.93 for

class 0 (Normal) and 0.94 for class 1 (Tinnitus), indicating a

high likelihood that the model’s predictions are correct.

• Recall: The recall was 0.96 for class normal and 0.91 for class

tinnitus, showing that the model has a high ability to detect the

relevant class.

• F1-Score: The F1-scores were 0.94 for normal and 0.92

for tinnitus, suggesting a well-balanced model in terms of

precision and recall.

• Support: The support, or the number of true instances for

each class, was 114 for class normal and 88 for class tinnitus.

The overall accuracy of the model was 94%, with a macro

average and weighted average of 0.94 across precision, recall, and

the F1-score. This demonstrates that the ANNmodel is competitive

with classical models, offering a deep learning approach to tinnitus

diagnosis with high-frequency audiometry data. Additionally, the

performance of the proposed ANN model was assessed using

cross-validation with KFold, yielding a result of 90.3%. This

cross-validation performance confirms the model’s robustness and

generalizability across different subsets of data.

Figures 6–8 provides a comprehensive overview of the

performance metrics for various machine learning models in

classifying tinnitus. Each model is evaluated on six metrics:

Accuracy, AUC, Recall, Precision, and F1 Score. The models range

from traditional algorithms like LR to more complex ones like a

Simple Neural Network (ANN). Across the board, we observe a

mixture of performances; however, certain models stand out with

particularly high scores in specific metrics. For instance, SVM

with Linear Kernel and the Simple Neural Network exhibit high

Accuracy and AUC, indicating strong overall performance and the

ability to distinguish between classes effectively. On the other hand,

models like the Dummy Classifier lag significantly behind in all

metrics, serving as a control to indicate the baseline performance

level. The variance in height for each metric across models suggests

that no single model excels in all areas, emphasizing the need for

careful model selection based on the specific performance metric of

interest for tinnitus diagnosis.

4.4 Feature importance of the LR model

In our LR model for tinnitus diagnosis, the feature importance

scores are quantitatively depicted in the accompanying bar chart.

It illustrates that ’std’, the standard deviation of high-frequency

audiometry thresholds, holds the most significant coefficient value

of 0.38, suggesting that variability in hearing threshold is a

powerful indicator of tinnitus. ’Mean’, the average threshold level,

with a coefficient value of 0.21, also shows substantial relevance,

indicating that average hearing ability at high frequencies is a strong

predictor of the condition. These scores provide insight into the

key factors contributing to the presence of tinnitus, underlining

the importance of both the consistency and variability of hearing

thresholds in the clinical assessment of the disorder.

5 Discussion

The results obtained from the implementation of various

machine learning models, including a LR classifier and an ANN,

provide a comprehensive overview of the potential of these

algorithms in the diagnosis of tinnitus using high-frequency

audiometry data. The LR model demonstrated a high degree of

accuracy (91.76%) and an impressive AUC of 97.06%. The high

recall (91.76%) and precision (92.04%) indicate that the model is

adept at correctly identifying both the presence and absence of

tinnitus with few false positives or negatives. These metrics suggest
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TABLE 3 (A) Confusion matrix of the ANN Model for Tinnitus Diagnosis, detailing, (B) precision, recall, f1-score, and support for each class.

A

Class designation Actual class

Positive Negative

Predicted classes True 109 5

False 8 80

B

Precision Recall F1-Score Support

Normal 0.93 0.96 0.94 114

Tinnitus 0.94 0.91 0.92 88

Accuracy - - 0.94 202

Macro average 0.94 0.93 0.93 202

Weighted average 0.94 0.94 0.94 202

FIGURE 6

ROC Curves for Machine Learning Models in Tinnitus Diagnosis, showing the True Positive Rate vs. False Positive Rate and the AUC for each model,

highlighting their diagnostic accuracy.

that the LR model is a strong candidate for clinical use, where

high sensitivity and specificity are crucial. The ANN model was

constructed to compare deep learning techniques with classical

machine learning approaches. With an accuracy of 94.06%, the

ANNmodel slightly outperformed the LR in terms of raw accuracy.

The classification report indicates high precision and recall for
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FIGURE 7

Performance Evaluation of Various Machine Learning Models for Tinnitus Classification, showcasing accuracy, AUC, recall, precision, and F1 score for

each algorithm.

FIGURE 8

Feature Importance Scores for the Logistic Regression Model in Tinnitus Diagnosis.

both classes, which translates to high confidence in the model’s

predictions and its ability to identify true cases of tinnitus.

The ANN’s slightly superior performance in accuracy

compared to the LR could be attributed to its ability to capture

non-linear relationships in the data through its multiple layers

and non-linear activation functions. However, the complexity

of ANN models can lead to longer training times and may

require more computational resources, which is a critical

consideration in clinical settings. Additionally, ANN models

generally require larger datasets to perform optimally and avoid

overfitting. The cross-validation result of 90.3% for the ANN

model, while slightly lower than the accuracy obtained on

the test set, still indicates a robust model. Cross-validation is

essential to ensure that the model generalizes well and is not

overly fitted to the training data. Both models demonstrate the

potential to enhance diagnostic accuracy for tinnitus, which can

lead to better patient outcomes. The high performance of the

models suggests that machine learning could be integrated into
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audiological assessment tools, providing a valuable aid to clinicians

in diagnosing tinnitus.

The incorporation of point detection in the analysis of

high-frequency audiometry data represents a significant

advancement in the diagnostic process for tinnitus. Point

detection refers to the identification of specific data points or

patterns within the audiometric frequency spectrum that are

crucial for the diagnosis of tinnitus. This section discusses the

enhancement of diagnostic capabilities through point detection.

High-frequency audiometry data contains subtle nuances that

standard audiometric evaluations may not capture. Point detection

algorithms can identify these subtle changes in the auditory

thresholds that may be indicative of early-stage tinnitus or mild

cases that would otherwise go unnoticed. This sensitivity is

particularly important for a condition like tinnitus, where early

detection can lead to more effective management. Tinnitus is

often characterized by its presence in specific high-frequency

ranges. Point detection allows for the precise identification of

frequency-specific hearing loss, which is a common correlate

of tinnitus. By focusing on these points, the model can

differentiate between tinnitus-related hearing loss and other

types of auditory impairments, improving the specificity of the

diagnosis. One of the traditional challenges in tinnitus diagnosis

is its subjective nature, relying heavily on patient self-report and

their perceived severity of the condition. The objectivity that

points detection provides allows for a measurable and quantifiable

approach to diagnosis, reducing the variability introduced by

subjective reporting.

The LR model’s ability to incorporate point detection has

shown to be predictive of tinnitus presence. This predictive

power is not only important for individual diagnosis but

also for understanding the progression of tinnitus, as point

detection might identify the specific frequencies that are most

likely to be affected as the condition develops. From a clinical

perspective, the use of point detection in machine learning models

translates to more accurate assessments without significantly

increasing the diagnostic burden. It enables clinicians to quickly

identify tinnitus with confidence, thereby facilitating timely

and appropriate therapeutic interventions. The significance

of point detection in enhancing tinnitus diagnosis also opens

avenues for future research. It suggests that further exploration

into more sophisticated point detection algorithms could

yield even greater improvements in diagnostic accuracy.

Moreover, it sets a precedent for the application of similar

methodologies to other auditory conditions where high-frequency

data is relevant.

The study, while yielding promising results, is not

without limitations that must be acknowledged. These

limitations include:

• Data diversity and volume:

The models were trained on a dataset that, although

high in quality, may not fully represent the global diversity

of tinnitus characteristics. Furthermore, the volume of data

available for high-frequency audiometry is relatively limited

compared to standard audiometry datasets.

• Model generalizability:

The robust performance of the LR model was validated

within the context of this study; however, the generalizability

of these findings to other populations or to datasets with

different distributions remains to be tested.

• Feature selection and engineering:

The study focused on point detection within high-

frequency audiometry data as a novel feature engineering

approach. However, the potential exists for the development

of additional features that could further enhance

model performance.

• Machine learning interpretability:

Although LR is known for its interpretability, the complex

nature ofmachine learningmodels canmake them challenging

to interpret in a clinical context, which could limit their

acceptance by practitioners.

The results of the study align with the broader findings within

the literature, suggesting that machine learning can significantly

enhance the diagnostic process for tinnitus. The high accuracy

and AUC values achieved by the LR model are consistent with

previous studies that have demonstrated the efficacy of machine

learning in various audiological applications, particularly in pattern

recognition tasks. The findings also support the notion that

machine learning models can provide a substantial advancement

over traditional tinnitus diagnostic methods, many of which rely

heavily on subjective self-report measures and lack the objectivity

that machine learning can provide. The study contributes to the

literature by specifically focusing on high-frequency audiometry

data, an area that is underrepresented in current research. The

results suggest that machine learning models, particularly those

that can interpret complex patterns in high-frequency data, have

significant potential for improving the diagnosis of tinnitus. The

limitations observed in the study reinforce the literature’s call for

comprehensive models that can handle the nuanced nature of

tinnitus and the complexity of auditory data.

The discussion highlights the potential of the applied machine

learning model while acknowledging that further research is

necessary to overcome its limitations and fully realize its clinical

potential. It also situates the study within the existing body of

literature, confirming the value of machine learning in audiology

and emphasizing the novel contribution of utilizing high-frequency

audiometry data.

6 Conclusion

The research findings indicate that the LR model applied

to high-frequency audiometry data for tinnitus diagnosis yielded

promising results, achieving a high accuracy of 91.76%, an AUC of

97.06%, and balanced precision and recall scores, surpassing other

machine learning classifiers. This approach represents a significant

advancement from traditional subjective diagnostic methods,

offering a more objective and quantifiable means of diagnosing

tinnitus. In clinical settings, these findings are noteworthy as the

model’s high recall rate reduces the risk of false negatives, ensuring

accurate identification of tinnitus patients and appropriate care.

Additionally, its precision minimizes false positives, alleviating
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patient stress and reducing healthcare system burden. Utilizing

high-frequency audiometry data, which extends beyond standard

hearing tests, could lead to earlier and more precise tinnitus

diagnoses, potentially improving patient outcomes. Future research

should address limitations by expanding datasets, exploring

alternative algorithms and feature engineering, conducting clinical

trials, and fostering interdisciplinary collaboration with healthcare

professionals. In conclusion, the application of machine learning,

especially Logistic Regression, to high-frequency audiometry

data holds great potential for enhancing tinnitus diagnosis and

patient care, laying the foundation for further development in

clinical audiology.
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