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This study explores the synchronization of multimodal physiological data

streams, in particular, the integration of electroencephalography (EEG) with a

virtual reality (VR) headset featuring eye-tracking capabilities. A potential use case

for the synchronized data streams is demonstrated by implementing a hybrid

steady-state visually evoked potential (SSVEP) based brain-computer interface

(BCI) speller within a fully immersive VR environment. The hardware latency

analysis reveals an average o�set of 36 ms between EEG and eye-tracking data

streams and a mean jitter of 5.76 ms. The study further presents a proof of

concept brain-computer interface (BCI) speller in VR, showcasing its potential

for real-world applications. The findings highlight the feasibility of combining

commercial EEG and VR technologies for neuroscientific research and open new

avenues for studying brain activity in ecologically valid VR environments. Future

research could focus on refining the synchronization methods and exploring

applications in various contexts, such as learning and social interactions.
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1 Introduction

In cognitive neuroscience research, the acquisition of multimodal physiological signals

has gained prominence in exploring the relationships between behavior and associated

cortical activity. This development is promoted by advances in computer science,

increasing the accessibility and precision of associated technologies. Fields such as vision

research, mobile brain imaging (MoBi), neurorehabilitation, and neuromarketing use

multimodal physiological data, achieving ecologically valid insight into the underlying

cortical processes (McMullen et al., 2014; King and Parada, 2021; Pereira et al., 2021; Zhu

and Lv, 2023).

One frequently employed modality used within cognitive and neuroscience research is

optical eye-tracking. This technique allows for the non-invasive tracking of eye movements

and gaze fixations, as well as pupillometry using optical sensors like video cameras (Punde

et al., 2017). Thus, eye-tracking is a valuable instrument for analyzing behavioral metrics

and cognitive processes such as attention, cognitive workload, emotional processing,

and memory (Lim et al., 2020; Ryan and Shen, 2020; Vehlen et al., 2021; Pradhan

and Kumar, 2022). Beyond its research applications, optical eye-tracking finds utility
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in clinical contexts, such as systematically evaluating stroke-

related neurologic deficits, aiding in designing treatment strategies

and predicting therapy results (Kaiser et al., 2022). Besides eye-

tracking specialized for medical and research applications, which

achieve high temporal and spatial accuracy, the market has seen

a proliferation of cost-effective commercial products (Kapp et al.,

2021). In particular, current XR headsets often provide integrated

eye-tracking, initially to enhance immersion in gaming experiences

(Adhanom et al., 2023). However, open-source solutions exist

to access the integrated eye-tracking system for other purposes

directly (Tobii, 2023; ValveSoftware, 2023).

In addition to their eye-tracking capabilities, commercial

Extended-Reality (XR) headsets are considered valuable tools to

provide realistic and, thus, ecologically valid environments within

the confines of a laboratory. The headset can generate the illusion of

a three-dimensional world by providing distinct two-dimensional

images for each eye. Additionally, the system actively tracks the

user’s head position and orientation in space, thus enhancing the

immersive experience (Parsons, 2015). Hand-held controllers or

hand-tracking technologies ultimately allow for interaction with

the virtual environment (Buckingham, 2021). Such immersive

displaying techniques increase the user’s engagement toward the

visual paradigm and allow for investigating cortical processes

within ecologically valid environments (Parsons, 2015; Gall et al.,

2021). Thus, it sees increased use for medical applications, such as

motor rehabilitation and mental disorders (Srivastava et al., 2014;

Feitosa et al., 2022).

Another commonly used modality for evaluating cognitive

processes is electroencephalography (EEG). Recently, it has been

used more frequently in combination with XR headset application,

chosen for its mobility, real-time capabilities, and low-cost point

(Ocklenburg and Peterburs, 2023). By amplifying the fast changes

in electrical cortical activity recorded over electrodes attached non-

invasively to the scalp, it becomes possible to derive corresponding

cortical processes at high temporal resolution (Jackson and Bolger,

2014). Cognitive neuroscience research using EEG often utilizes

specific stimuli or behavioral events to evoke an event-specific

cortical activity known as event-related potential (ERP) (Luck,

2012). Given that these events occur within milliseconds, the setup

demands exceptionally high temporal resolution. Furthermore, the

ERPs mentioned were also used in medical applications, such as

brain-computer interfaces (BCI). BCIs are often used as an assistive

communication tool e.g., for patients with locked-in syndrome,

such as in P300 spellers or steady-state visual evoked potential

(SSVEP) spellers that allow patients to communicate based on

their cortical response to a presented stimulus (Kundu and Ari,

2022). Eye tracking has been combined with EEG in several

studies in neuroscience (Langer et al., 2017; Zhu and Lv, 2023),

which often employed research-grade eye-tracking devices that

enabled seamless integration into the EEG recording with high

temporal and spatial accuracy. However, the question remains

whether this can be done with easily accessible commercial eye-

tracking devices, such as those integrated into XR headsets. The

use of XR additionally allows for the generation of ecologically

valid experimental tasks, which increases the applicability and

generalizability of the results (Parsons, 2015).

To fully harness the capabilities of these combined

technologies, a deep and comprehensive understanding of

the technical challenges in synchronizing and integrating

measurements is crucial. Although hybrid XR headsets with

integrated eye-tracking and EEG are being developed, as

Neurospec’s DSI-VR300 and OpenBCI’s Galea (AG, 2023;

OpenBCI, 2023), their cost and lack of flexibility, such as lack

of support to not manufacturer-endorsed applications or high-

density EEG, render them at times ill-suited for a variety of research

applications. Thus, various open-source methods were developed

recently to allow for synchronized multimodal recordings of

research-grade and commercial products, which sometimes lack

the capability of hardware synchronization via, e.g., transistor-

transistor logic (TTL) (Iwama et al., 2022). LabStreamingLayer

(LSL) is an often-used middleware ecosystem that enables the

streaming and synchronizing of multiple data streams via the

network (LabStreamingLayer, 2023). However, LSL can not take

the hardware’s intrinsic and the data transfer’s delay and jitter into

account. Thus, in cases where high temporal accuracy is required,

those delays must be evaluated before the experiment (Artoni

et al., 2018; Iwama et al., 2022). This study provides a method

for measuring and understanding hardware offset and eventual

limitations tailored toward an increasingly relevant combination

of EEG, VR, and Eye tracking. We particularly emphasize general

accessibility and flexibility through open-source solutions and the

use of off-the-shelf VR-integrated eye tracking.

The objective of this study is, therefore, threefold:

1. Present a method for setting up a synchronized measurement

of EEG and VR-headset-integrated eye movement and the

subsequent real-time processing of the data streams.

2. Present a method for evaluating the temporal accuracy of the

proposed setup.

3. Demonstrate a potential use case of the method using a hybrid

SSVEP speller in a fully immersive VR environment.

2 Method

The following section provides an overview of the two setups

used in this study. The first setup was utilized to calculate the

latency and jitter of the VR-integrated eye-tracker, while the second

setup was employed for the proof of concept SSVEP-Speller. For

calculating the hardware latency and jitter of the VR-integrated

eye-tracker, the temporal difference between the measured time

points of complete eye closure detected by the eye-tracker and the

EMG channel of the EEG amplifier was calculated. The calculated

hardware offset is then used for the implementation of a proof of

concept SSVEP speller, which uses the eye-tracker to make a pre-

selection of a relevant subsection of a virtual 3D keyboard and the

SSVEP response to select a specific letter.

2.1 Hardware latency evaluation

2.1.1 Experimental setup
The experimental setup for the hardware latency analysis based

on eye blinks comprised two computing devices, both running

Windows: one desktop computer (PC1; AMD Ryzen 9 5950X,

an RTX 3090, and 32GB of DDR4 RAM) running Unity and
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Neuropype, and one laptop (PC2) running EEG Recorder (Brain

Vision Recorder) software.

2.1.1.1 Set up for collecting electrophysiological data

Electrophysiological data was collected using a Brain Products

LiveAmp and Brain Products Trigger Extention Box with a

single-channel EMG. The EEG channels were irrelevant for

evaluating the hardware latency, as they were recorded using

the same hardware. The EEG system operated at a sampling

rate of 500 Hz. The participant wore three EMG electrodes

at the following positions: one positioned beneath the left eye,

one on the temple, and a ground electrode placed under the

right ear (Figure 1). The EEG/EMG data stream was consistently

transmitted using BrainProduct’s LSLBrainAmpSeries (https://

github.com/brain-products/LSL-BrainAmpSeries) at a sampling

rate of 500 Hz from the EEG recorder. Wearing only the EMG and

VR headset during synchronization was deemed necessary as the

EEG data would not be utilized at this stage, resulting in the final

setup seen in Figure 1.

2.1.1.2 Setup for collecting behavioral data

Behavioral data was measured using a commercially available

HTC VIVE Pro Eye VR headset with an integrated Tobii eye-

tracker recording at a sample rate of 120 Hz. The eye-tracker’s

data stream was transmitted at a sampling rate of 250 Hz from

the Unity software environment utilizing LSL4Unity integration

(https://github.com/labstreaminglayer/LSL4Unity/, cloned April

2023). The eye-tracking data stream contained five channels of

interest, with three of them representing binary values denoting the

state of each eye (left, right, or both) in terms of closure, where a

value of 1 signified complete closure. The remaining two channels

provided decimal values indicating the degree of eye openness

of each eye, with a value of 1 indicating complete eye aperture.

This data was retrieved through the TobiiXR (v3.0.1) and SRanipal

(1.3.6.8) APIs, respectively.

2.1.1.3 Data handling

The LSL streams, transmitted from Unity (PC1) and the EEG

recorder (PC2), were received and processed by PC1. Following

this, a dejittering process was applied to these streams to remove

irregularities in the timestamps of the data points (Intheon, 2022),

facilitated by the dejittering function provided by NeuroPype

(Academic Edition v2022.0.1). Subsequently, the processed data

streams were saved into files formatted as Extensible Data Format

(XDF), also using the NeuroPype software. As part of the data

preprocessing, the EEG stream was downsampled from its original

sampling rate of 500 Hz to 250 Hz before storing it. This

downsampling operation was performed using the downsampling

function within the NeuroPype software.

2.1.2 Data acquisition
The dataset utilized in this study consists of 661 blinks and

was obtained from 4 different participants, who received specific

instructions to engage in natural blinking with both eyes. The

participants were instructed to synchronize the eye blinks with a

metronome at a tempo of 60 beats per minute (BPM). This was

introduced to enhance the interpretability and ease of analysis of

the recorded data.

Blink data was collected in sets of 10–20 consecutive blinks.

Multiple sets of blinks were captured within a single recording

session, and the eye-tracking system underwent recalibration

between each successive recording session to maintain data

accuracy and consistency. Each recording session captured around

ten sets. A few blinks were excluded from the analysis due to

instances where the EMG curve was distorted, or the blinks were

considered outliers, with a value of more than three times the STD.

An example of a distorted EMG curve (Figure S1) can be seen in

the Supplementary data.

2.1.3 Data analysis
Preprocessing of the EMG stream included filtering the EMG

signal by applying a zero-phase Butterworth filter (0.75–5 Hz, 3rd

order) (Sharma et al., 2020). The entire analysis was performed

using Python (3.11). The signal stream filtering achieves a signal

curve that excludes frequencies outside the predefined frequency

range. These frequencies would introduce noise and interfere with

the accuracy of the signal analysis (Leske and Dalal, 2019). The

zero-phase version was applied to correct any signal distortion

created by the normal Butterworth filter (Leske and Dalal, 2019).

The synchronization algorithm operates by aligning two

distinct data streams utilizing a standard biological marker,

specifically the occurrence of an eye blink. This synchronization

event coincides with the peak observed in the EMG signal and

the initiation of a numeric value of “1” within the eye-tracker

data stream, signifying the full closure of the eyes. The peak of

the EMG curve was defined as the 90% amplitude maximum of

the curve, allowing more reliable peak detection corresponding

to a full closure of the eye. The TobiiXR API defines an eye as

closed when the numeric value of openness is less than 0.1. It is

crucial to emphasize that the analysis was conducted by comparing

two data streams, both sampled at a rate of 250 Hz. However, it

should be noted that due to the limitations inherent in the eye-

tracker equipment, achieving a higher temporal accuracy than an

index granularity of 8.33 ms (equivalent to 1/120th of a second)

was unattainable. The blink recording files often contained varying

quantities of samples. NeuroPype handled the recording of files,

and different trimming strategies were employed to address this,

where the strategy yielding the minimal STD was selected as the

approach for file recordings of different lengths.

2.1.3.1 Algorithm for finding the o�set of a single blink

This algorithm was applied to every blink within each

recording. The average offset from each recording session was

compared to determine the final estimated offset value.

1. Input: Data of a single blink in two streams—EEG/EMG and

eye-tracker.

2. Find the start index of the blink in the eye-tracker stream

by locating the first numeric value of 1 in the both_blinking

channel.

3. Filter the EMG channel in the EEG stream using the previously

specified Butterworth filter.
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FIGURE 1

Experimental setup of the synchronization pipeline, showing EEG data being recorded by BrianProducts to PC2 and transferred from PC2 to PC1

using LSL. Simultaneously, eye-tracking data is collected from the VR headset and transmitted directly to PC1 via Unity. PC1 is responsible for visual

and auditory output to the VR headset. The positions of the EMG electrodes are also shown, with the ground electrode placed under the right ear,

while the recording electrodes are positioned beneath the left eye, one on the temple. The electrode placement was taken from a study by López

(2015).

4. Locate the index corresponding to the peak of the filtered

EMG signal. To account for different slope lengths of the

different blinks, the peak was set to 90% of the peak of

the curve.

5. Calculate the difference between the indexes obtained in steps 2

and 4.

6. Multiply the index difference by the sampling rate to compute

the offset in milliseconds.

2.1.3.2 Algorithm to find mean o�set of a series of

multiple blinks

This algorithm was applied to all the valid blinks in every

recording to find an average offset and variance between the EEG

and eye-tracker.

1. Input: Eye tracking and EEG/EMG data as Python DataFrames.

2. Store index of every blink start by finding each sequence of 1’s in

the eye-tracking stream.

3. Split the DataFrames into pairs of both streams based on each

individual blink and add some data points as padding.

4. Use the algorithm for finding the offset in a single blink, for every

blink.

5. Use the different offsets to compute mean, STD, and average

offset for the entire blink recording.

6. Do this for multiple recordings that contain multiple blinks and

compute the offset.

2.2 Proof of concept—BCI speller

Based on the offset found for the synchronization, an SSVEP-

based hybrid BCI speller was created in an immersive VR

environment in Unity as a proof of concept. This demonstrates

a potential use case for the synchronized equipment while being

simple to implement. BCI spellers are widely employed BCI

applications, encompassing diverse setups. This particular speller

leverages SSVEP in conjunction with CCA, avoiding the need

for the synchronization of the eye-tracker and EEG to have

a millisecond-level precision (Bin et al., 2009; Zerafa et al.,

2018). Furthermore, BCI spellers offer the advantage of available

comparative results, making it easy to evaluate their performance.

Notably, these applications are also relatively straightforward to

implement, necessitating no more than a keyboard layout with

flickering letters, in contrast to the requirements of more intricate

gaming or application systems.

To accommodate the simultaneous use of the VR headset

and the EEG recording equipment, the Fp1, F3, F7, F4, F8, and

Fp2 electrodes were removed. Additionally, the ground electrode

was repositioned to a higher location on the electrode cap. These

adjustments were made to increase the comfort of the participant

while wearing the VR headset and the EEG cap simultaneously.

A participant might use the speller as shown in Figure 2B. The

setup of the speller interface was inspired by Du et al. (2019)

and Mannan et al. (2020), with clusters of letters that flew out

toward the user of the speller when looked at. Mannan et al.
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FIGURE 2

(A) Shows the speller setup in the immersive 3D VR environment where one of the clusters has been selected and has started to flicker. (B) Shows a

person using the speller by holding it up to their face, making sure not to a�ect the most critical electrodes over the occipital region.

(2020) states that the addition of an eye tracker makes the speller

less tiring, and improves performance as compared to EEG only.

The eye tracker and clusters enable the reuse of the flickering

frequencies, only needing six frequencies for a six-letter cluster,

contrary to 30 frequencies for 30 letters and symbols in the speller.

Some differences were introduced, though. By taking a heuristical

approach, the frequencies 4 Hz, 5 Hz, 5.5 Hz, 6 Hz, 7 Hz, and 7.4

Hz were chosen for the flickering of the letters, (1) due to lower

frequencies eliciting stronger responses (Mannan et al., 2020) and

(2) to avoid conflicting harmonization. Though the Information

Transfer Rate (ITR) gets lower with lower frequencies, it was

deemed ok considering the performance of the speller was not the

main focus of this project. ITR is a common way to evaluate BCIs

and says something about how effective the system is (Liu et al.,

2012). Further, the layout of the keyboard was chosen to have a

traditional QWERTY layout with some minor differences to the

special characters (Figure 2A).

Some filtering techniques were implemented in a Python script

and applied to remove noise and artifacts from the EEG. These

include a notch filter (50 Hz) to remove the line nose, a band-

pass filter (1–15 Hz) to give a reasonable threshold for the chosen

flickering frequencies, and a zero-phase Butterworth filter of 3rd

order with some initial padding that was eventually removed to

return the signal to its original length. It should also be mentioned

that the only electrodes used for the EEG signal were O1, Oz, O2,

P3, P7, Pz, P8, and P4, as these are placed over the occipital region

of the brain. These electrodes recorded data of the visual stimuli,

which was later used to figure out which letter the participant was

looking at.

The filtered EEG data, along with the reference signal that was

calculated based on a data stream from Unity signaling when a

cluster was flickering, was put in a Canonical Correlation Analysis

(CCA) to calculate the similarities between the signals registered in

the brain and the plausible flickering values. The calculation was

based on the publication by Mannan et al. (2020) and is a robust

way to calculate the correlation between some input signal and a

given reference signal. This can be done without training data and

without phase sensitivity (Zerafa et al., 2018).

It’s essential to consider an ocular delay in the speller pipeline,

which requires adjusting the EEG data accordingly. This delay will

be added on top of the computed offset from the synchronization

of the pipelines. This additional delay was set to 100 ms, which was

retrieved from a study with a similar setup (Mannan et al., 2020),

and is necessary due to the time it takes a visual signal entering

the eye to be registered in the visual cortex (Li et al., 2015). When

applying CCA to assess signal correlations, it’s important to align

the signals based on their arrival at the visual cortex rather than at

the point when Unity displays the flickering. The speller was tested

in two rounds with the same participants, though with a slightly

modified setup in the latter round. Noteworthy improvement was

evident during the initial testing phase, leading to the decision to

keep the original speller configuration as the proof of concept.

3 Results

The following section presents the results from the analysis of

the blinking data, showing the difference in the time it takes to

sample a data point in the data streams, including the variance in

the mentioned time. Then, the accuracy and Information Transfer

Rate (ITR) found during testing of the BCI speller is presented.

A graphical explanation of the data stream shifting can be seen in

Figures 3A, B as before and after the shift, respectively.

The offset was computed on a dataset with 4 participants,

with a cumulative total of 661 individual blinks considered for

the analysis. A table containing the results for each participant

(Table S2) and the results plotted in a histogram (Histogram S3) can

be found in the Supplementary data.
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FIGURE 3

An eye blink recorded in both data streams before (A) and after (B), adjusting for o�set.
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TABLE 1 The average ITR and accuracies for the test round for all tested

flickering periods.

Flicker period Accuracy ITR (bpm)

6s 79.83% 25.26

5s 72.27% 24.79

4s 57.98% 20.43

3s 51.26% 20.71

2s 47.06% 23.85

3.1 Eye-tracker–latency and jitter

The data analysis method determined that the average offset

between the EEG and eye-tracker is 8–10 indices, equating to 36

milliseconds with the given sampling rate. To be more precise, the

eye-tracker was found to be 36 milliseconds faster than the EEG,

and thus should be adjusted for this delay accordingly. The STD

of the data at its lowest, measured 5.76 ms. This is lower than

greater than a single sample (8.33 ms) when considering the limited

sampling rate of the eye-tracker, which operates at 120 Hz.

3.2 BCI speller–accuracy and ITR

The speller was tested on 7 participants. Even with varying

results in accuracy and Information Transfer Rate (ITR), some of

the participants were able to use the speller with high accuracy

for every flickering length, which supports the proof of concept

that it is possible to utilize this combination in an immersive VR

environment. The results of the speller’s performance are presented

in Table 1. The speller results showed higher accuracy for the longer

flickering durations.

4 Discussion

The primary strength of this study is the utilization and

synchronization of two distinct and powerful off-the-shelf

equipment setups with different data processing pipelines,

which are all open source. The study demonstrates possible

applications for the synchronized equipment by implementing

a BCI application in an immersive VR environment, unlike

some other variants such as EYE-EEG toolbox which is a bundle

for synchronizing some standalone eye trackers with EEGs

(EYE-EEG, 2021). Such combined usage has the potential to

improve performances in a range of applications. For example, in

software engineering, this technology can assess a programmer’s

comprehension, as demonstrated in eye-tracking studies (Lin

et al., 2016). In engineering science, it measures cognitive load

across tasks and participant knowledge levels (Keskin et al.,

2020), identifies optimal learning approaches and efficiency

(Baceviciute et al., 2022). Beyond engineering, applications include

neuromarketing (Mashrur et al., 2023; Zhu and Lv, 2023), and

safety training utilizing VR, eye tracking, and EEG to evaluate

attitudes and learning abilities (Katona, 2014; Comu et al., 2021;

Huang et al., 2022).

For the comparison of different synchronization methods, to

our knowledge no study has yet presented a method for the

synchronization of EEG and VR-integrated eye trackers, thus

rendering a direct comparison of methods not applicable. There

are nonetheless related studies that evaluate the general hardware

delay of VR-integrated eye trackers. In a related study, researchers

used the Vive Pro Eye with TobiiSDK and electrooculography

(EOG) to quantify eye saccades, demonstrating a notable delay in

the eye-tracking system (Stein et al., 2021). Their study revealed

a mean offset of 50 ms latency in the eye-tracker, alongside an

end-to-end delay of 80 ms within their experimental setup (Stein

et al., 2021). Similar outcomes were identified in the present study,

where the presented setup displayed an end-to-end offset of 36

ms. The apparent 44 ms variability could potentially be caused by

transmission delays inherent in the differences in the experimental

setup. Another aspect of the proposed experimental setup worth

mentioning is the accessibility of the pipeline. This particular setup

utilized an EMG for recording blinks in the EEG pipeline, but if

no EMG is at hand, one could, for example, instead use the frontal

electrodes of the EEG to record the same motions. This makes the

experimental setup more accessible to a wider audience who might

not have all the dedicated equipment to warrant synchronized

usage. Given the increasingly widespread usage of BCI-VR systems

with eye-tracking (Wen et al., 2021), there will be more cases where

such synchronized usage is called upon. Our proposed method

presents a flexible and affordable way of synchronizing the needed

equipment.

The demand for precise synchronization varies from case to

case. A study on the synchronization of EEG-EMG movements

combined with motion capture found that even a 10 ms

temporal misalignment between the devices can affect causal

relationship investigations between EEG-EMG connectivity

(Artoni et al., 2018). However, for less strict analyses, such as

time-frequency transformations within 0.2 to 0.5-second time

windows, synchronization demands can be more relaxed (Artoni

et al., 2018). In Iwama et al. (2022), the authors attempted to

integrate an EEG and an eye-tracker within an experimental setup

similar to our study, and they underscored the importance of

synchronized equipment in online applications such as the proof

of concept speller, compared to offline analysis where one can

adjust the signals accordingly. Large latency between different

data streams fails to capture state-dependent differences in the

streams, while significant jitter in the variable latency can be fatal

if the application relies on external triggers, such as a P300 speller

(Iwama et al., 2022; Kundu and Ari, 2022). In our study, after

measuring the jitter of the setup, we chose a BCI speller based on

SSVEP, which is less susceptible to the effects of jitter. It can be

argued that an attempt to measure the latency and jitter between

equipment should be advocated almost irrespectively because it

can unearth and examine the underlining assumptions of hardware

performances that subsequently confine and frame the architecture

choices of the downstream applications.

Despite limitations in the sampling rate of the equipment, the

proof of concept of the BCI Speller demonstrates the potential

of the integration of an eye-tracker and an EEG. The speller

drew inspiration from conventional SSVEP-based spellers with

a keyboard layout. The speller also introduced an eye-tracker

improvement by having fewer different flickering frequencies and
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placing the letters into clusters, resulting in reducing ocular and

cognitive strain (Kundu and Ari, 2022). While a previous study has

incorporated the combination of eye-tracking and EEG techniques

in a BCI speller (Mannan et al., 2020), it is noteworthy that

this has predominantly been confined to 2D computer screens.

Furthermore, the development of BCI spellers within a VR

environment has been documented, although without the inclusion

of eye-tracking (Du et al., 2019). This study distinguishes itself

because it combines a commercial EEG and a commercial VR

headset with eye-tracking capabilities within a hybrid BCI Speller,

set in a fully immersive VR environment. Both the accuracy and

ITR of the presented BCI speller are lower to comparable state-

of-the-art BCI spellers (Wen et al., 2021; Maslova et al., 2023).

However, the primary intention of the study is to display the

feasibility of the synchronized ecosystem, and this was also the

main concern when implementing the speller. Our results indicate

that longer flicker periods result in higher classification accuracy.

This is to be expected as a higher sample count increases the

certainty of the CCA’s prediction (da Cruz et al., 2015). However,

as longer flicker periods negatively impact the ITR, the length of

the flicker period must be carefully balanced. Besides a speller,

there are other applications that will benefit from the synchronized

acquisition of EEG, and eye-tracking in a VR environment, such as

observing human eyemovement and brain activity during learning,

social interactions, or other behavior studies that require an

ecologically valid environment but are hard to study “in the wild”.

4.1 Limitations

The presented SSVEP-Speller is merely a proof of concept

to show case possible application of synchronized EEG and VR-

integrated eye tracking. It was chosen due to its robustness and

simplicity compared to e.g., P300-Spellers. Retrospectively, our

SSVEP-Speller is not highly dependent on perfect hardware offset

compensation between the eye tracker and EEG.We, thus, strongly

encourage future research to investigate applications that are more

sensitive to correct hardware offset correction, such as fixation-

related potentials (Kamienkowski et al., 2012). Further, the impact

of correct hardware offset correction, should be quantified before

and after offset adjustment. The presented method for hardware

offset and jitter measurements, however, is suitable for different

applications and experimental setups, due to its flexibility.

It is also worth noting that this is a method paper, to show

how ET and EEG can be synchronized in VR, the exact number of

offsets we arrive at is of less importance, as it will likely differ when

other people use different hardware and setups. Future applications

should repeat the process, not just use the offset we arrive at, due to

hardware and inter-subject differences.

5 Conclusion and future scope

This study successfully demonstrates the possibility of

synchronizing the data streams of commercially available

equipment, in an accessible and easy-to-use manner with

synchronization results on par with similar setups, with a

computed jitter of less than 9 ms. To demonstrate the usability

of such synchronized equipment an online hybrid SSVEP-based

BCI Speller was implemented as a proof of concept. It is important

to note, however, that the method presented is developed for

accessibility, and may not be well-suited for more sophisticated

EEG and eye-tracking applications. Furthermore, the calculated

STD for both data streams exceeds a single sample by 0.44 ms. To

find the limitations of this method a more exhaustive investigation

using equipment characterized by a higher sampling rate is

encouraged.
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