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Serine protease inhibitors (serpins) are the most numerous and widespread
multifunctional protease inhibitor superfamily and are expressed by all eukaryotes.
Serpin E2 (serpin peptidase inhibitor, clade E, member 2), a member of the serine
protease inhibitor superfamily is a potent endogenous thrombin inhibitor, mainly
found in the extracellularmatrix andplatelets, andexpressed in numerousorgans and
secreted bymany cell types. Themultiple functions of serpin E2 aremainlymediated
through regulating urokinase-type plasminogen activator (uPA, also known as PLAU),
tissue-type plasminogen activator (tPA, also known as PLAT), and matrix
metalloproteinase activity, and include hemostasis, cell adhesion, and promotion
of tumor metastasis. The importance serpin E2 is clear from its involvement in
numerous physiological and pathological processes. In this review, we summarize
the structural characteristics of the Serpin E2 gene and protein, as well as its roles
physiology and disease.
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Introduction

Serpin peptidase inhibitor, clade E, member 2 (serpin E2) is considered an extracellular
matrix (ECM) protein, but can also be distributed in the cell membrane and cytoplasm. The
molecular weight of the serpin E2 protein is in the range 45–50 kDa, and it is encoded by a
gene on human chromosome 2q99-q35 (Sommer et al., 1987). Serpin E2 belongs to the
nexin protease family, and it is also known as protease nexin-1 (PN-1) (Yang et al., 2018),
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which is highly expressed in the human brain, platelets, gonads, and
bone (Crisp et al., 2000).

Serpin E2 was initially reported in 1978, after its detection in
glial cell culture media as a neurite-promoting factor (Barde et al.,
1978). The expression of serpin E2 is broadly distributed throughout
the brain, and particularly strong in the hippocampus and amygdala.
Serpin E2 can regulate neuronal activity, and the characteristics of
synapses between neurons are influenced by its expression levels
(Lüthi et al., 1997; Meins et al., 2010). Further, Serpin E2 is
associated with fear regulation and regression (Meins et al.,
2010), epilepsy occurrence (Lüthi et al., 1997), and prevention of
cerebral ischemia in mice (Mirante et al., 2013).

A wide range of signaling pathways involving Serpin E2 have
significant roles in the development of various diseases. Serpin E2 is
a crucial biomarker for the diagnosis and prognosis of various
malignancies, and recent research has focused on its function in
the development of diverse tumors (Gao et al., 2008; Nagahara et al.,
2010; Zheng et al., 2013.). Moreover, deletion or overexpression of
Serpin E2 is frequently associated with the occurrence or
progression of various diseases (François et al., 2018; Li L.
et al., 2019).

In this article, we briefly review the known functions of serpin
E2 and introduce its roles in physiological and pathological
processes, as well as the signaling pathways involved.

Serpin E2 expression and structure

All serpins have the same tertiary structure, which includes three
β folds (A, B, C) and nine α helices (hA–hI) (Law et al., 2006).
Serpins bind to the active sites of their target proteins through an
exposed reactive center loop (RCL), which, in contrast to other
inhibitors, is mobile and can freely enter and exit Aβ folding
conformation (Hopkins et al., 1993). When target proteases bind
to serpins in an intermediate, metastable state (instead of their most
stable conformation) in the cell, they cleave the reaction center of
serpins, leading to rapid mobility of the RCL, which forces target
protease binding to serpins (Carrell and Lomas, 1997; Law et al.,
2006). Since they mediate irreversible inhibition, serpins are
considered primary inhibitors of intracellular and extracellular
proteolysis pathways (Huntington et al., 2000).

Among the serpins, serpin E2 is a powerful alkaline protein that
has the same secondary structure as other serpins. Serpin E2 also
follows the classical folding structure of serpin family; however, the
helix direction in serpin E2 is different from that of other serpins.
Further, unlike other serpins, serpin E2 is neither synthesized in the
liver nor does it circulate in the blood, and it is barely detectable in
plasma (Li and Huntington, 2012). Nevertheless, serpin E2 is
expressed in multiple organs and by various cell types, including
macrophages, astrocytes, smooth muscle cells, vascular cells, and
platelets (Choi et al., 1990; Bouton et al., 2003; 2012; Mansilla et al.,
2008; Li and Huntington, 2012).

Many serpin E2 functions are related to its inhibitory effect on
plasminogen activator (PA), including regulation of hemostasis, cell
adhesion, and promotion of tumor metastasis (Czekay and
Loskutoff, 2009; Bharadwaj et al., 2021; Bianchini et al., 2021).
There are two types of PA in humans: uPA and tPA (Danø
et al., 1985; Vassalli et al., 1991).

Serpin E2 in Physiological Processes

Serpin E2 plays a significant role in the
nervous system

Serpin E2 is thought to regulate neurite outgrowth in the adult
nervous system. The timing and rate of neurite outgrowth are critical
for neuronal cell differentiation, which is linked to maturation of the
nervous system (Monard, 1988). Schwann cells respond to injury by
proliferating and differentiating into myelinating cells, which form
the myelin sheaths of myelinated nerve fiber axons in the peripheral
nervous system (Kioussi and Gruss, 1996). In rats, serpin E2 mRNA
and protein in Schwann cells increases momentarily and
significantly after sciatic nerve injury at the distal end of the
injury site, while only modest amounts of serpin E2 are
detectable in intact rat sciatic nerves (Meier et al., 1989; Kioussi
and Gruss, 1996). Serpin E2 levels increase by 5–6 times during
in vitro simulated sciatic nerve injury, compared with before the
injury. Moreover, serpin E2 expression levels are negatively
correlated with those of angiotensin Ⅱ receptor subtype AT1. It
was speculated that nerve injury reduces AT1 expression, resulting in
a sharp increase of serpin E2 (Bleuel and Monard, 1995). Overall,
there is strong evidence that serpin E2 has an important role in
myelinated nerve fiber axonal injury repair.

Sonic hedgehog (SHH) is a morphogenetic protein with a crucial
role in vertebrate organ development regulation, and the primary
signal for proliferation of cerebellar granular neuron precursors
(CGNPs) (Kenney and Rowitch, 2000, 1; Sagai et al., 2019). In
animal studies, serpin E2 inhibited SHH-induced CGNP
proliferation during mouse cerebellum development, reducing the
ensuing rise in mature cerebellar cells. Hence, the interaction
between serpin E2 and SHH is very important for mouse
cerebellar development (Vaillant et al., 2007). In another study
on lzheimer’s mice (AD mice), it was mentioned that PN-1 can
inhibit the activation of SHH pathway in AD mice to affect the
development of Alzheimer‘s disease in mice (Li et al., 2021). SHH
can also stimulate hippocampal neural stem cell proliferation, and
regulates the differentiation of hippocampal neural progenitor cells
into neurons (Lai et al., 2003).

As a thrombin inhibitor, serpin E2 is consider crucial for
inhibiting thrombin-mediated ischemic neuronal death in the
central nervous system (de Castro Ribeiro et al., 2006). In
addition to the hippocampus, serpin E2 defects also alter the
amygdala, which is responsible for emotional responses (such as
fear, anxiety, etc.) and memory processing (Ferry et al., 1999;
Feinstein et al., 2011). Fos protein is considered a marker of fear
extinction, and in situations that promote fear extinction, Fos
immunoreactivity in the basal ganglia of wild-type (WT) mice is
considerably higher than that in serpin E2-defective mice (Meins
et al., 2010). Thus, serpin E2 represents a potential new target for
treatment in a range of anxiety and stress-related diseases.

Serpin E2 plays an anticoagulant role in
hemostasis

Hemostasis is a complex physiological process. In general, rapid
thrombus formation is typically necessary to stop the bleeding after
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vascular injury, and the thrombus cannot affect the blood flow
through the blood vessel (Leslie, 2010; Garmo et al., 2022). Serpin
E2, a member of the serine protease inhibitors superfamily, is a part
of the humoral anticoagulation system (Garmo et al., 2022), which
can inhibit multiple serine proteases, including trypsin, thrombin,
and activated protein C (Bouton et al., 2012). Serpin E2 binds to
glycosaminoglycans on the surface of platelets in blood, and is stored
in platelet α granules (Boulaftali et al., 2010, 1), and on binding to
glycosaminoglycan, serpin E2 inhibits thrombin (Richard
et al., 2006).

Serpin E2 can be detected in resting platelet extracts after
washing to separate them, while platelet secretion products
(i.e., the supernatant) lack thrombin inhibition activity and
serpin E2. After treatment with a strong platelet agonist in the
resting state, serpin E2 cannot be detected in platelet extract but is
found in platelet secretion products, and the results obtained after
treatment with weak platelet agonists are opposite to those obtained
with strong platelet agonist. Further, when activated platelet
secretory products and thrombin are combined, thrombin is
almost completely inhibited; however, this inhibitory effect
disappears when serpin E2 blocking antibody is added (Boulaftali
et al., 2010, 1). These data indicate that serpin E2 is secreted during
platelet activation and act as a thrombin inhibitor after its secretion.

Fucoidan and low and high molecular weight (HMW) heparin
both effect serpin E2 activity and distribution (Richard et al.,
2006). Fucoidan, a molecule extracted from brown algae, has a
various biological functions (Fitton et al., 2015), including as an
anticoagulant, antithrombotic (Li B. et al., 2019), anti-tumor, and
anti-inflammatory factor (Takahashi et al., 2017). Unfractionated
heparin and HMW fucoidan can accelerate the inhibitory effect of
serpin E2 on thrombin by creating a ternary complex. The
anticoagulant effect of serpin E2 is more potent than that of
antithrombin (AT), and some in vitro studies have shown that
serpin E2 inhibits thrombin approximately 100 times more
quickly than AT (Wallace et al., 1989). Further, the
anticoagulant effect of serpin E2 is stronger than that of AT
regardless of whether or not heparin is present. The powerful
anticoagulant function of serpin E2 makes it a protect factor for
venous thromboembolism (Li et al., 2023). In addition, due to its
anticoagulant properties, blocking serpin E2 can improve
coagulation dysfunction in patients with mild to moderate
hemophilia (Aymonnier et al., 2019; 2021).

The role of serpin E2 as an endogenous thrombin inhibitor in
vascular physiology is an underappreciated though the three-
dimensional structure of serpin E2 and its interaction mechanism
with heparin have been reported (Bouton et al., 2012; Li and
Huntington, 2012). Nevertheless, targeted therapy for serpin
E2 is predicted to become more common in clinical practice as a
result of research into its anticoagulant properties.

The role of serpin E2 in angiogenesis

Angiogenesis is the development of new blood vessels from
existing blood vessels, due to endothelial cell proliferation and
migration. Various signal transduction pathways are involved in
angiogenesis, which is regulated by numerous factors. Angiogenesis
can also occur in adults under certain physiological conditions, such

as wound healing or in the menstrual endometrium, while
angiogenesis in specific disease states often indicates negative
consequences (Selbonne et al., 2015; Apte et al., 2019). Serpin
E2-deficient mice have more arteries/veins in their retinas and
more muscle blood vessels than WT mice (Selbonne et al., 2015).
Further, Matrigel embolization assays also showed that there was
more angiogenesis in emboli from serpin E2-deficient mice
(Selbonne et al., 2012).

In a study on skeletal muscle ischemia in mice, serpin E2-
deficient mice had a faster rate of femoral artery reperfusion after
femoral artery ligation to create hindlimb ischemia than WT
mice. Capillary density was then analyzed in the two different
mouse strains and neovascularization was stronger in serpin E2-
deficient mice than that inWTmice, indicating that lack of serpin
E2 was beneficial to blood flow reperfusion in ischemic muscles.
Lack of serpin E2, resulting in angiogenesis, may be responsible
for the observed rise in MCP-1(Monocyte chemoattractant
protein-1) level and increased leukocyte recruitment (Selbonne
et al., 2021).

The role of serpin E2 in vascular biology was not investigated
until the last decade. Various studies have demonstrated that
serpin E2 has an anti-angiogenesis role, because it interacts
with numerous molecules involved in angiogenesis, including
VEGF, MCP-1, and Smad5, among others (Selbonne et al.,
2015; Apte et al., 2019; Madjene et al., 2021). By restricting the
growth of new blood vessels under pathological conditions, serpin
E2 plays an essential role in maintaining angiogenesis homeostasis
under physiological conditions in adults and in healthy human
physiology.

The role of serpin E2 in
reproductive processes

Serpin E2 is widely expressed in the placenta and uterus in
both humans and mice (White et al., 1993; Hofmann et al., 1994;
Teesalu et al., 1998), and plays an important role in reproductive
processes, being associated with breastfeeding, pregnancy, and
the estrous cycle in mice (Chern et al., 2010; 2011; Liu et al.,
2023). In immature human oocytes, high serpin E2 levels can
downregulate hyaluronan synthase 2 and versican expression by
binding to uPA in cumulus cell ECM, reducing the hyaluronic
acid content of the matrix. Additionally, serpin E2 inhibits
cumulus expansion and hinders oocyte maturation, and
exogenous serpin E2 can significantly reduce oocyte maturity;
however, in mature oocytes, serpin E2 expression was
considerably lower than that in immature oocytes, and serpin
E silencing or overexpression had little effect on cumulus-oocyte
complexes (Lu et al., 2013). Serpin E2 was also found to be highly
expressed in the apical and glandular epithelium of the
endometrial lumen in the middle and late secretory phases of
the menstrual cycle, but weakly expressed in the proliferative
phase of the endometrium. Further, serpin E2 is thought to play a
role in embryo implantation, because of its high expression
during the secretory phase and can regulate the proteolytic
degradation and fibrinolysis of extracellular matrix in
endometrial cells, which is crucial for decidualization and
trophoblast invasion during implantation, and its function in
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the human uterus may be related to tissue remodeling regulated
by PA (Lee et al., 2011; AbdelHafez et al., 2023; Do et al., 2023).

Serpin E2 affects decapacitation factors during sperm
capacitation (Lu et al., 2011; Guidobaldi et al., 2017; Li et al.,
2018). Sperm from the tail of the epididymis of male mice were
divided into two groups: one incubated with BSA only for
capacitation, and the other with BSA followed by serpin E2.
After treatment, sperm capacitation was observed and samples
treated with serpin E2 had significantly inhibited sperm
capacitation compared with control group sperm treated with
BSA alone (Figure 1) (Lu et al., 2011). Further capacitated sperm
in the oviduct of female mice were treated with serpin E2 3 h after
mating, then A23187 ionophore applied to induce the acrosome
reaction. The acrosome response in the experimental group was
significantly inhibited compared to the control group (without
serpin E2 treatment) (Li et al., 2018). These findings suggest that
serpin E2 can reversibly regulate mouse sperm from capacitation to
non-capacitation both in vivo and in vitro.

Sperm activity can be regulated by the PA molecules, tPA and
uPA, which are widely distributed in the male reproductive tract
(Gunnarsson et al., 1999; Martinez-Soto et al., 2018). Further,
male fertility can be reduced by plasminogen-fibrinolytic system
disorder (Ebisch et al., 2007). According to some studies, oocytes
release PA when sperm bind to the oocyte extracellular layer via
surface receptors, impairing the ability of sperm to adhere and

reducing human fertility. As a serine protease inhibitor, serpin
E2, can affect sperm motility by regulating the activities of tPA,
uPA, and other serine proteases in semen (Coy et al., 2012).
Deletion of the serpin E2 gene can lead to infertility in male mice
(Murer et al., 2001, 1); therefore, plasminogen-plasmin system
homeostasis in semen is critical (Maier et al., 1991; He et al.,
1999). This principle can also be used for contraception and
assisted reproductive technology, and future breakthroughs are
expected (Table 1).

Roles of serpin E2 in
pathological processes

Effect of serpin E2 on osteoarthritis

Osteoarthritis (OA), the most common rheumatic disease, is a
degenerative condition that damages articular cartilage and the
synovium, ligaments, and tendons around the joints (Santoro
et al., 2015; Gratal et al., 2022; Wu et al., 2022). The knee is the
joint most frequently affected by OA, followed by the finger and hip
joints (Favero et al., 2022). Cartilage tissue is composed of abundant
ECM and cells, mainly chondrocytes, but has no blood vessels or
innervation. Under normal circumstances, chondrocytes are very
stable cells that can maintain ECM stability by balancing the

FIGURE 1
Effects of Serpin E2 on murine sperm capacitation.
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synthesis and degradation of some matrices; however, this balance is
disturbed during OA, and pro-inflammatory cytokines (such as IL-
1α and IL-1β, among others) induce expression of matrix
metalloproteinase (MMP) molecules in chondrocyte matrix,
resulting in ECM degradation (Goldring and Marcu, 2009;
Santoro et al., 2015).

Interactions between serpin superfamily proteins andMMPs are
crucial in OA occurrence. MMP activity in synovial fluid from
patients with OA is increased compared with that in healthy people,
leading to the inactivation of serpins (Jones et al., 1998), including
serpin C1 (Jones et al., 1998) (also known as AT III), serpin G1
(Sanrattana et al., 2019), serpin E1 (Sadowski and Steinmeyer, 2001;
Freeberg et al., 2018), and serpin E2 (Sadowski and Steinmeyer,
2001), among others. Serpin E1 is the serpin with the most similar
sequence to that of serpin E2, with 41% homology between them
(Sommer et al., 1987). MMP13 is among the collagenases that are
primarily associated with progressive cartilage degradation in
patients with OA. In exploring the mechanism by which
recombinant serpin E2 inhibits MMP13 and the downstream
transcription factor, NF-κB, researchers identified a pathway
related to MMP13 that can trigger OA (Figure 2) (Santoro et al.,
2015). Serpin E2 has also been found to inhibit cartilage degradation
in rabbits (Stevens et al., 1993). In addition, Shen et al. (Shen et al.,

2019) confirmed circSERPINE2 as a key circRNA involved in OA
downregulation by deep sequencing circRNA molecules expressed
in OA and control cartilage tissue in vitro and in vivo experiments.

There are currently no effective drugs available to treat OA in
clinical practice. Since this disease is chronic and degenerative, it
causes considerable physical and psychological harm to patients.
Over the last decade, research into OA pathogenesis has become
increasingly in-depth, and serpin E2 has been discovered to play a
prominent role, making it a promising target for clinical therapy of
OA in the near future (Maciejewska-Rodrigues et al., 2010).

High expression of serpin E2 affects tumor
occurrence and development

Serpin E2 is expressed in normal cells and plays a vital role in
many tumors. Moreover, serpin E2 is overexpressed in many
cancers, including liver cancer (Hou et al., 2019; Zhang X. et al.,
2020), non-small cell lung cancer (Dokuni et al., 2020; Zhang et al.,
2022), breast cancer (Tang et al., 2019), osteosarcoma (Mao and
Wang, 2016), bladder cancer (Li F. et al., 2020), and melanoma
(Perego et al., 2018), among others; this overexpression can promote
tumor proliferation, metastasis, and colony formation (Liu et al.,

FIGURE 2
Serpin E2 improves OA by inhibiting MMP13 activity.

TABLE 1 Serpin E2 in physiological processes.

Signaling pathway Physiological function References

AT1 Repair damaged myelinated nerve fiber axonal Bleuel and Monard (1995)

SHH Mouse cerebellar development Vaillant et al. (2007)

Fos Promote fear extinction (Meins et al., 2010)a

Glycosaminoglycan Anticoagulation Richard et al. (2006)

MCP-1 Anti-angiogenesis Selbonne et al. (2021)

uPA Reduce oocyte maturity Lu et al. (2013)

Plasminogen-fibrinolytic system Decrease sperm motility Murer et al. (2001), Coy et al. (2012)
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2019), which are characteristics related to the tumor
microenvironment (TME) (Bejarano et al., 2021).

The TME is created by interactions between a tumor and tumor
stroma, which contains stromal cells, ECM, various secreted
proteins, and exosomes, among other factors (Bharadwaj et al.,
2021). The TME determines the occurrence, development, and
prognosis of tumors. Tumor stem cells, including those from
lung (Yan et al., 2022) and breast (Tang et al., 2019) cancers, can
differentiate into vascular endothelial cells to form new blood
vessels. In addition, there are many sources for tumor vascular
remodeling, including bone marrow-derived endothelial progenitor
cells that integrate into newly formed blood vessels or tumor cell
angiogenesis simulation (Weis and Cheresh, 2011). A study on oral
squamous cell carcinoma (OSCC) found that serpin E2 increases
angiogenesis and lymphangiogenesis in OSCC by binding to LEM
domain containing 1, a factor that promotes OSCC development
(Sasahira et al., 2021). In addition, serpin E2 is a factor in vascular
remodeling and is crucial for the invasion and metastasis of other
tumors (Wagenblast et al., 2015).

Breast cancer is among the most common malignant tumors in
women. Most patients die from breast cancer metastasis, rather than
from primary tumors (Tang et al., 2019). During breast cancer
occurrence and development, serpin E2 binds to its target protein,
uPA, through a covalent bond, to form a serpin E2/uPA complex.
Further, uPA and tPA overexpression during tumorigenesis
typically indicates tumor metastasis and poor prognosis (Fayard
et al., 2009; Duffy et al., 2014; Jevrić et al., 2019). The serpin E2/uPA
covalent complex is decomposed after binding to low-density
lipoprotein receptor-related protein 1 (LRP-1), stimulating ERK
activation, promoting MMP9 expression, and aggravating tumor
metastasis. Animal studies indicated that serpin E2 is unnecessary
for breast tumor growth, but essential for tumor metastasis, and
MMP9 is a key mediator of serpin E2-mediated tumor metastasis
(Buchholz et al., 2003; Fayard et al., 2009). MCF-7 cells, which are
rich in breast cancer stem cells, were treated with EGF, after
injection of sh-serpin E2 lentivirus into the tail vein of mice.
After 40 days, mice were sacrificed, and samples collected.
Hematoxylin and eosin staining showed that, compared with the
EGF-negative control group, the number and size of tumors in lung
and liver tissues from the transfection group animals were
decreased. The effect of serpin E2 breast cancer cell metastasis
was induced by EGF, as evidenced by the fact that the number of
lung and liver tumors in the transfection group was significantly

higher than that in the negative control group after injection of
MCF-7 cells overexpressing serpin E2 (Tang et al., 2019). In
addition, some studies have found that circSERPINE2 acts as a
communication medium in TME, mediating the positive feedback
loop between tumor cells and tumor-associated macrophages,
increasing the infiltration of tumor-associated macrophages and
promoting the progression of breast cancer in vivo. These findings
provide new strategies for nanotherapy of breast cancer (Zhou
et al., 2023).

Serpin E2 binds directly to B cell receptor-associated protein 31
(BAP31) and is regulated by BAP31 in Hep3b andMHCC97h cells,
thereby affecting ERK1/2 and p38, and controlling hepatocellular
carcinoma cell proliferation and colony formation (Zhang X. et al.,
2020). Serpin E2 overexpression in tumor cells also affects cancer
treatment and prognosis. In radiotherapy for non-small cell lung
cancer (NSCLC), DNA damage repair of tumor cells occurs
through the MRN-SERPINE2-ATM-RAD51 pathway, resulting
in radioresistance, leading to NSCLC radiotherapy failure (Hou
et al., 2019). In 2020, Dokuni et al. (2020) collected surgical
specimens from 74 patients undergoing complete surgical
resection of lung adenocarcinoma. Serpin E2 expression was
detected in cancer cells from 19 (26%) of the patients, and all
19 patients had metastatic lung adenocarcinoma. Overall survival
curve analysis showed that high serpin E2 expression was
associated with lower overall survival after lung
adenocarcinoma surgery. Serpin E2 is now recognized as a
marker of aggression (Perego et al., 2018; Tang et al., 2019) and
prognosis (Wang et al., 2015; Langer et al., 2018) in
multiple tumors.

According to a study on osteosarcoma, high serpin
E2 expression can lead to drug resistance of osteosarcoma
cells, as well as accelerated cell proliferation and reduced
patient survival rates (Mao and Wang, 2016). Serpin
E2 promotes tumor metastasis in esophageal squamous cell
carcinoma by activating the bone morphogenetic protein,
BMP4 (Zhang J. et al., 2020). In a study on glioma cells, it
was found that circSERPINE2 can inhibit the apoptosis of
glioma cells and promote the proliferation, migration and
invasion of glioma (Li and Lan, 2021). These studies suggest
that serpin E2 can have a positive regulatory role in tumor
invasion and metastasis; however, another study showed that,
in prostate cancer, serpin E2 can reduce angiogenesis and block
prostate cancer development by inhibiting the Hedgehog

TABLE 2 Interactions of signaling pathways with serpin E2 in tumors.

Signaling pathway Disease References

MAPK HCC Zhang et al. (2020c)

EGF/MEK/ERK NSCLC Dokuni et al. (2020), Zhang et al. (2022)

MRN/ATM

EGF/PKC/MAPK/EGR1 Breast cancer Tang et al. (2019)

CDK4 Osteosarcoma Mao and Wang (2016)

Wnt/β-catenin Esophageal squamous cell carcinoma Zhang et al. (2020b)

Hedgehog Prostate adenocarcinoma McKee et al. (2012)
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pathway (McKee et al., 2012). The results of earlier investigations
of cancer stem cells are inconsistent with the role of serpin E2 in
angiogenesis.

There are two main theories for the mechanism by which serpin
E2 enhances tumor cell metastatic ability: 1) formation of covalent
complexes by binding to its target protein, which promotes the
expression of MMPs, thus degrading the ECM and mediating tumor
cell metastasis; and 2) promotion of angiogenesis in the TME,
leading to tumor metastasis. Tumor metastasis is a complex
process involving the activation of numerous signaling pathways
and formation of protein complexes. Serpin E2 has emerged as a
marker of tumor prognosis, and increasing numbers of studies have
investigated the mechanisms by which serpin E2 mediates tumor
metastasis and its therapeutic targets (Bergeron et al., 2010), which
has profound significance for the recovery of patients, prevention
and treatment of tumor recurrence, and improvement of patient
survival (Table 2).

Problems and perspectives

The role of serpin E2 in maintaining normal human
physiological functions has been widely studied, and the main
focus of research into its roles in various diseases has been on
interactions between serpin E2 and other proteins in the ECM
(Donovan et al., 1994; Cao et al., 2004).

As a serine protease inhibitor superfamily member, serpin
E2 can protect articular cartilage and prevent OA by inhibiting
serine proteases in the ECM, thereby inhibiting MMP activation. In
contrast, serpin E2 forms a complex in tumors by binding to its
target proteases, such as tPA. A “paradox” was reported in which
this complex promotes MMP activity and induces tumor metastasis.
A similar phenomenon was also described in a study of the serpin
E2 homolog, serpin E1 (Binder and Mihaly, 2008). It has been
speculated that this paradox is related to the TME (Smirnova et al.,
2016). Serpin E2 has also been shown to activate ERK1/2 and β-
catenin signaling pathways by interacting with LRP-1 and uPAR,
which in turn promotes collagen production in fibroblasts and
induces cardiac fibrosis (Li et al., 2022; Kmiotek-Wasylewska
et al., 2023). However, disease occurrence and development
involves complex processes, and there may be many protein
changes or protein interactions that have yet to be discovered.
Overall, the mechanism by which serpin E2 plays opposing roles
in different diseases has yet to be elucidated, and further research
is required.

Although serpin E2 is an ECM protein, it can also affect the
expression of intracellular proteins. Serpin E2 can regulate the
transcription of Wnt/β-catenin-independent target genes by
regulating the chromatin-related APC protein, which in turn
affects the prognosis of patients with colorectal cancer. Serpin
E2 expression levels can predict the progression stage of colorectal
cancer, but are not related to survival time in patients with this type
of malignancy. Therefore, research into the effect of serpin E2 on
intracellular protein expression may be of great significance and
inform future discoveries (Hankey et al., 2018). In addition to OA,
serpin E2 is associated with various other cartilage/bone-related
diseases. For example, serpin E2 expression is reduced in
degenerative disc diseases (Wu et al., 2016; Francisco et al.,

2023) and autosomal dominant osteosclerosis type II (ADO II).
ADO II is characterized by insufficient osteoclast activity; serpin
E2 is considered to serve a compensatory function in reducing
osteoclast absorption in ADO II (Del Fattore et al., 2008; Coudert
et al., 2014). Femoral head necrosis (FHN) is a hip joint disease
(Hopkins and Genant, 2020), and serpin E2 overexpression can
alleviate FHN caused by steroid hormones by increasing osteoblast
activity and reducing apoptosis (Yang et al., 2021). Hence, serpin
E2 also has potential to contribute greatly to regenerative
medicine, and this possibility warrants further discussion and
exploration.

Abnormalities occurring during transformation of a protein
three-dimensional structure can cause disorders including
bovine spongiform encephalopathy (Aguzzi, 2006),
Alzheimer’s (Mager et al., 2002), Parkinson’s (Watanabe et al.,
2020), and Huntington’s (Tran and Miller, 1999) diseases,
among others. During serpin binding, a target protease will
move from the upper pole of the serpin molecule to the lower,
and an extra chain is inserted into the A β-sheet (Huntington
et al., 2000). Hence the inhibitory function of serpins is
accompanied by conformational changes to the protease. The
protein structure of serpins is relatively conserved and point
mutations in serpin molecules can induce conformational
diseases. Mutations in the Z allele of serpin A1 (e.g., E342K)
cause its misfolding and aggregation, leading to cirrhosis and
chronic obstructive pulmonary disease (Jagger et al., 2020).
Further, a novel heterozygous missense mutation of serpin
C1 can lead to type I hereditary AT deficiency, resulting in
venous thromboembolism or severe dementia due, to
abnormal polymer retention in cells (Zhang F. et al., 2020). In
addition, mutation of serpin I1 (also known as neuroserpin) can
cause familial encephalopathy with neuroserpin inclusion bodies
(Davis et al., 1999; 2002; Crowther, 2002). There are no reports of
conformational disease caused by mutation of serpin E2 but,
given the structural characteristics of the superfamily, related
research findings are likely in the near future.

COVID-19 has spread worldwide and claimed millions of lives
to date. The degree of disease progression in patients with COVID-
19 is related to many factors, including age, the presence of
underlying disease, and genetic susceptibility (Li X. et al., 2020).
Serpin E2 inhibits the activity of furin protein and plasmin, and in
drug treatment for COVID-19, serpin E2 expression is increased
using a mineralocorticosteroid receptor antagonist, which reduces
plasmin and furin protein activity, thereby inhibiting proteolysis,
binding of COVID-19 to ACE2, and reducing viral infectivity
(Wilcox and Pitt, 2020).

In addition, a genome-wide association study and bioinformatics
analysis showed that serpin E2 gene polymorphism is associated with
susceptibility to chronic obstructive pulmonary disease; however, the
underlying mechanism has not been determined (Li L. et al., 2019;
Paci et al., 2020).

Overall, serpin E2 has an essential role in maintaining
normal physiological processes. Research on serpin E2 in
pathological processes to date has focused on tumors, due to
its widespread distribution and complex function; however, it is
also closely associated with the occurrence and development of
many other diseases and warrants further study in
these contexts.
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