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Abstract. The Atmospheric Radionuclide Transport Model (ARTM) operates at the meso-γ scale and simulates
the dispersion of radionuclides originating from nuclear facilities under routine operation within the planetary
boundary layer. This study presents the extension and validation of this Lagrangian particle dispersion model
and consists of three parts: (i) a sensitivity study that aims to assess the impact of key input parameters on
the simulation results, (ii) the evaluation of the mixing properties of five different turbulence models using the
well-mixed criterion, and (iii) a comparison of model results to airborne observations of carbon dioxide (CO2)
emissions from a power plant and the evaluation of related uncertainties. In the sensitivity study, we analyse
the effects of the stability class, roughness length, zero-plane displacement factor, and source height on the
three-dimensional plume extent as well as the distance between the source and maximum concentration at the
ground. The results show that the stability class is the most sensitive input parameter as expected. The five
turbulence models are the default turbulence models of ARTM 2.8.0 and ARTM 3.0.0, one alternative built-in
turbulence model of ARTM, and two further turbulence models implemented for this study. The well-mixed
condition tests showed that all five turbulence models are able to preserve an initially well-mixed atmospheric
boundary layer reasonably well. The models deviate only 6 % from the expected uniform concentration below
80 % of the mixing layer height, except for the default turbulence model of ARTM 3.0.0 with deviations of
up to 18 %. CO2 observations along a flight path in the vicinity of the lignite power plant Bełchatów, Poland,
measured by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Cessna aircraft during the Carbon Dioxide
and Methane Mission (CoMet) campaign in 2018 allowed for evaluation of model performance for the different
turbulence models under unstable boundary layer conditions. All simulated mixing ratios are of the same order of
magnitude as the airborne in situ data. An extensive uncertainty analysis using probability distribution functions,
statistical tests, and direct spatio-temporal comparisons of measurements and model results help to quantify the
model uncertainties. With the default turbulence setups of ARTM versions 2.8.0 and 3.0.0, the plume widths
are underestimated by up to 50 %, resulting in a strong overestimation of the maximum plume CO2 mixing
ratios. The comparison of the three alternative turbulence models shows good agreement of the peak plume
CO2 concentrations, the CO2 distribution within the plumes, and the plume width, with a 30 % deviation in the
peak CO2 concentration and a less than 25 % deviation in the measured CO2 plume width. Uncertainties in the
simulations may arise from the different spatial and temporal resolutions of simulations and measurements in
addition to the turbulence parametrisation and boundary conditions. The results of this work may help to improve
the accurate representation of real plumes in very unstable atmospheric conditions through the selection of
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distinct turbulence models. Further comparisons at different stability regimes are required for a final assessment
of model uncertainties.

1 Introduction

Atmospheric dispersion models (ADMs) are widely used by
the scientific community and authorities. They are applied to
a variety of problems, such as the study of the impact of pol-
lutant emissions on air quality (Gariazzo et al., 2007; Stohl
et al., 2007; Berchet et al., 2017; Lonati et al., 2022; Shupe
et al., 2022) or the dispersion of radioactive discharges to the
air (Chino et al., 2011; Connan et al., 2013; Draxler et al.,
2015; Arnold et al., 2015), and they can operate at the full
meteorological scale, ranging from the microscale (shorter
than 1 km) to the mesoscale (1 km to 1000 km) up to the
synoptic or global scale (larger than 1000 km).

The Atmospheric Radionuclide Transport Model
(ARTM), analysed in this study, belongs to the class of
models operating at the micro-β to meso-γ scales (approx.
0.5 to 20 km). It is a Lagrangian particle dispersion model
(LPDM) designed for the dispersion of radionuclides from
nuclear facilities under routine operation in the planetary
boundary layer (PBL).

However, any ADM has to demonstrate its applicability
to the system of study. The most important method to con-
firm this is validation (Kleijnen, 1995; Schlesinger et al.,
1979). This includes (i) sensitivity analysis, which relates
the model’s response to variations in the model’s input pa-
rameters, and (ii) a comparison with observations, revealing
whether a model is an accurate representation of the system
and whether simulation results are, to a certain degree, in
agreement with observations (Kleijnen, 1995; Rao, 2005).

Concerning ARTM, Hettrich (2017) performed a sensitiv-
ity study to analyse the effect of input parameters (e.g. emis-
sion rate, source geometry, stability class, and particle num-
ber) on concentrations at selected locations near the ground.
Hanfland et al. (2022) provided an overview of the physical
basis and mathematical formulations of the model and pre-
sented a qualitative description of the influences of different
input parameters on three-dimensional plume characteristics
for a general simulation setup. However, both lack in quanti-
fying sensitivities.

Here we expand these former studies with a more system-
atic and quantitative sensitivity analysis. Different sensitivity
coefficients are calculated, which describe the dependence of
the simulation output on the input parameter stability class
(SC), roughness length (z0), zero-plane displacement factor
(d), and source height (hs) within the whole simulated PBL
and rank them according to their effects on the model output.

Publications presenting comparisons of ARTM’s mixing
ratio simulation results with measurements are rare. Hettrich
(2017) compared ARTM simulation results with measure-

ments at a few selected locations near the surface, showing
discrepancies which are related to complex orography or lo-
cal thermal-induced winds that are not covered by ARTM’s
wind field model TALdia. Martens et al. (2012) studied the
influence of a single large building close to the source on
the dispersion, showing that at distances larger than 4 km the
influence decreases. These comparisons covered only a few
atmospheric conditions and were limited to near-surface con-
centration measurements.

Brunner et al. (2023) presented an intercomparison of six
different atmospheric transport models, including ARTM,
with airborne in situ and remote sensing carbon dioxide
(CO2) measurements, sampling the exhaust plume of the
Bełchatów lignite power plant in Poland under very un-
stable atmospheric conditions (Fix et al., 2018). The data
set comprises a considerable number of plume transects at
different distances from the source and heights within the
PBL, is characterised by a strong contrast between back-
ground and plume CO2 mixing ratios, and provides a three-
dimensional description of the mixing ratio field. The spa-
tial extent of the area covered by measurements is around
the maximum domain size ARTM can tackle. In the Brunner
et al. (2023) study, ARTM simulations are performed using
the default turbulence model of ARTM version 2.8.0, includ-
ing a workaround for meandering plumes because the simu-
lated plume appeared to be too narrow under very unstable
atmospheric conditions.

ARTM’s dispersion depends on the turbulence model used
(Hanfland et al., 2022), and since the three-dimensional data
set facilitates further analysis of the model, we investigate
whether the modelled plume could become more realistic by
using different turbulence models. Two new turbulence mod-
els were implemented based on the ideas of Hanna (1982)
and Degrazia et al. (2000) in addition to three built-in mod-
els of ARTM. The same workaround for meandering plumes
based on the default turbulence model of ARTM 2.8.0, as pri-
marily presented in Brunner et al. (2023), is also included in
this study. Furthermore, all five turbulence models are evalu-
ated concerning turbulence model characteristics and mixing
efficiency and are compared with measurements.

The structure of this study is as follows: Sect. 2 gives
a short description of the atmospheric dispersion model
ARTM. Section 3 introduces several different sensitivity
analysis methods and presents the sensitivity of typical
model simulation outputs to key input parameters. Section 4
presents the five turbulence models and assesses their per-
formance with respect to the well-mixed condition. Sec-
tion 5 shows the comparison and evaluation of ARTM sim-
ulation results for the five turbulence models with the three-
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dimensional airborne data. Section 6 concludes the results of
this paper.

2 ARTM

The Atmospheric Radionuclide Transport Model is an
LPDM developed specifically for the dispersion of radioac-
tive emissions from nuclear facilities in an area of typically
10 km× 10 km. Its purpose is to provide annual activity con-
centration fields in the area around nuclear facilities under
routine operation in slightly structured non-urban terrain,
which are used in a follow-up step to calculate the additional
exposure of the population (Hanfland et al., 2022).

The dispersion model propagates numerical particles rep-
resenting radioactive tracers in space and time according
to wind and turbulence fields obtained by a diagnostic ap-
proach. Meteorological data from measurements in the vicin-
ity of the nuclear facilities are used to calculate a mass-
conserving diagnostic wind field. The turbulence is obtained
by a Markov process, which uses wind speed fluctuations and
Lagrangian correlation times as input parameters, both de-
pending on the Obukhov length as a turbulence parameter.
This static diagnostic approach employed by ARTM is sim-
ilar to that of, for example, SWIFT/micro-SWIFT or CAL-
MET (Cox et al., 2005; Moussafir et al., 2004; Scire et al.,
1998) but differs from other larger-scale LPDMs, such as
FLEXPART, STILT, NAME, or HYSPLIT, which use prog-
nostic meteorological fields from a numerical weather pre-
diction model to drive the particle propagation (Hanfland
et al., 2022; Lin et al., 2003; Stohl et al., 2005; Ryall and
Maryon, 1998; Draxler and Hess, 1998). The advantage of
this static diagnostic approach is its high computational effi-
ciency with typical applications from 10 km to a few hundred
kilometres for horizontal extent, depending on the number of
meteorological measurement locations and the terrain (Ratto
et al., 1994). Since ARTM works with one single meteo-
rological measurement location, its simulation domain can
horizontally extend to up to a few tens of kilometres de-
pending on the terrain. The simulation domain is divided into
grid cells for which the average activity concentration for the
whole simulation period is calculated. A detailed model de-
scription is given in Hanfland et al. (2022).

3 Sensitivity study

Sensitivity analysis (SA) is a method to study the model’s
response to variations in input parameters in a systematic
way, and it may answer the following questions. How does
the uncertainty in input parameters influence the model out-
put? Which parameters require additional research in order
to reduce output uncertainty? Which parameters are the most
significant or insignificant for the model’s output? And does
the model behave as expected when varying a certain input
parameter (Hamby, 1994; Frey and Patil, 2002; Rao, 2005;

Saltelli et al., 2008)? SA methods are either local or global
depending on the sampled input parameter space (Saltelli
et al., 2008; Morio, 2011; Zagayevskiy and Deutsch, 2015).

The results of the methods may differ depending on the
shape of the input parameter space. Thus, the application of
several methods is recommended (Iman and Helton, 1988;
Hamby, 1995). In this work, several different local and global
SA methods are therefore applied to ARTM 2.8.0 using its
default turbulence model (Hanfland et al., 2022). A descrip-
tion of the turbulence model for unstable atmospheric con-
ditions is given in Sect. 4.1. The application of several SA
methods provides a comprehensive assessment of the re-
sponse of ARTM to different input parameters.

3.1 Local sensitivity analysis methods

Local SA focuses on one single point in the input pa-
rameter space. The output of a model is represented by
Y = g(X1, . . .,Xk), where the random variables Xi with i =
1, . . .,k denote the different input parameters. The represen-
tations (or values) of Xi are denoted with xi . The input pa-
rameters Xi are varied one at a time, while all the other pa-
rameters are held constant at their reference values xref

i . This
local SA approach is similar to estimating the partial deriva-
tive ∂Y

∂Xi
and characterises the effect of the input parameter

Xi on Y at one reference point Xref
= (xref

1 , . . .,xref
k ) (Morio,

2011).

3.1.1 Sensitivity index

The sensitivity index described by Hoffman and Gardner
(1983) uses the parameters at the reference point where each
parameter is varied one at a time by their full range. The sen-
sitivity index is calculated as

SIi =
Yi,max−Yi,min

Yi,max
, (1)

where Yi,max (min) indicates the maximum (minimum) output
value. The sensitivity index is a value between 0≤ SIi ≤ 1
and gives the fraction of output variation caused by the varied
input parameter (Hamby, 1994).

3.1.2 One-at-a-time sensitivity measure

The one-at-a-time sensitivity measure calculates the varia-
tion in the model output normalised to the largest output
variation 1Ymax that had been observed for the different in-
put parameters. Starting from the default parameter set, the
parameters are varied one at a time by a percentage α. The
sensitivity coefficient for the input parameterXi is calculated
as

SMα
i =
|Yi,+α −Yi,−α|

1Ymax
, (2)

where 1Ymax =max(|Yl,+α −Yl,−α|)∀l ∈ i (Link et al.,
2018). In this work the percentages ± 25 % and ± 50 % are
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used for α. SMα
i is a value between 0≤ SMα

i ≤ 1, where
unity identifies the input parameter with the biggest effect
on the model output Y .

3.2 Global sensitivity analyses

Global SAs sample the whole input parameter space, which
leads to a broader representation of the sensitivity compared
to local methods but also increases computation time. A gen-
eral discussion about global SAs can be found in Saltelli et al.
(2008).

3.2.1 Sobol' indices

The variance-based Sobol' indices use variance decomposi-
tion to calculate indices of different orders (Sobol’, 1993).
Usually, only two key Sobol' indices are determined: the first-
order index Si and the total-effect index STi .

For the first one, the conditional expected value of the
model output EX∼i (Y |Xi) with a constant value of Xi and
varying values for every other input parameter X∼i is com-
puted. For different realisations of Xi , VXi [EX∼i (Y |Xi)] re-
flects the variance of the model output Y originating from a
variation in the input parameter Xi . The first Sobol' index is
then given by

Si =
VXi [EX∼i (Y |Xi)]

V (Y )
, (3)

where V (Y ) is the unconditional variance of the output where
all Xi values are varied. VXi [EX∼i (Y |Xi)] cannot be larger
than V (Y ), and thus for the sensitivity coefficient 0≤ Si ≤ 1
is valid. This index is called the first-order sensitivity index as
it does not take higher-order effects (i.e. interactions between
different input parameters) into account (Saltelli et al., 2008).

The second index considered here is the total-effect index.
It takes higher-order terms into account, which might be im-
portant depending on the model. The total effect is calculated
as

STi = 1−
VX∼i [EXi (Y |X∼i)]

V (Y )
, (4)

where VX∼i [EXi (Y |X∼i)] = VX∼i [EXi (Y |X1,X2, . . .,Xi−1,
Xi+1, . . . , Xk)] ≤ V (Y ) is the total variance of all input pa-
rameters except Xi . As the first-order index, this total-effect
index is a value between 0 and unity, where a value of 0 in-
dicates no influence of Xi on the output Y , while unity in-
dicates a strong influence (Saltelli et al., 2008). A compre-
hensive description of the method is given by Saltelli et al.
(2008).

For the analysis presented here, the Python library SALib
(Herman and Usher, 2017) is used for the quasi-random sam-
pling with low discrepancy in the input parameter space, af-
ter Joe and Kuo (2008), as well as for the calculation of the
Sobol' indices. It furthermore allows for the estimation of the
95 % confidence intervals (Herman and Usher, 2021).

3.2.2 δ method

In comparison with the Sobol' indices, the δ method takes
the complete density distribution of the model output into ac-
count, which ensures the conservation of all the information
of the output density distribution (Borgonovo, 2007). The
probability density function of Xi is denoted fXi (xi). The
sensitivity coefficient δi for the input parameter Xi is calcu-
lated using the marginal density distribution of the input pa-
rameter fXi (xi) and the difference between the unconditional
and the conditional density functions fY (y) and fY |Xi (y) of
the model output with fixed representation Xi = xi as (Bor-
gonovo, 2007)

δi =
1
2

∫
fXi (xi)[

∫
|fY (y)− fY |Xi (y)|dy]dxi . (5)

δi represents the total effect of an input parameter Xi on Y .
It can take a value between 0 and unity (0≤ δi ≤ 1), where
0 means that the output is independent of Xi (Plischke et al.,
2013). The same library (SALib; Herman and Usher, 2017)
was used to apply the δ method and estimate the 95 % confi-
dence interval.

3.3 Model setup for sensitivity analyses

For the SA a simple model setup with a single source and
constant wind was chosen. Figure 1 illustrates the simula-
tion domain with the plume sampled at a height of 20.5 m
above ground level (a.g.l.). The simulation domain has an
extent of 10 km× 1.5 km× 1.5 km in the x, y, and z direc-
tions. The x direction is defined in a west–east orientation
and the y direction in a north–south orientation. The domain
is divided into grid cells with a horizontal resolution of 50 m.
Vertically, the 1.5 km high simulation domain is divided into
19 levels of varying thickness gradually increasing from the
lowest layer (3 m thick) to the top simulation layer (300 m
thick). The level thicknesses are shown in Table S1 in the
Supplement. The point source is located at the coordinates
(x= 25 m; y= 25 m). The vertical position is varied during
the SAs. A constant westerly wind (270°) was used for the
entire simulation period of 24 h with a velocity of 1 ms−1

at 10 m height. In order to focus on the evolving disper-
sion pattern, the topography is assumed to be a flat surface.
The gaseous krypton isotope 85Kr with a decay constant of
λdecay= 2.05× 10−9 s−1 was used as a tracer. This results
in a decay of less than 0.02 % within the simulation period
and can therefore be neglected. The emission source is rep-
resented as a source with a constant activity rate of 1 Bqs−1.

The input parameters stability class SC, roughness length
z0, zero-plane displacement factor d, and source height hs are
assumed to be the key parameters of ARTM. The zero-plane
displacement d0 depends on d as d0 = d·z0. When using d in-
stead of d0 the input parameters for the SA are independent.
This allows for the analysis of the unbiased effects of input
parameter variations. These parameters and their ranges are
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Table 1. Input parameters and their values and ranges. The default parameters for local SAs are marked with ∗.

Parameter Values/range

Stability class (SC)1 very stable, stable, neutral∗, indifferent, unstable, very unstable
Roughness length (z0) 1 0.10 m, 0.20 m, 0.50 m∗, 1.00 m, 1.50 m, 2.00 m
Zero-plane displacement factor (d) 2 3 . . . 6∗ . . . 15
Source height (hs) 3 10 m . . . 20 m∗ . . . 120 m

1 For the global SAs the given values are sampled. 2 For the global SAs the values are sampled continuously within the range. 3 For the
global SAs the values are sampled with a resolution of 1 m within the range.

Figure 1. The x–y plane of the simulation domain for the sensi-
tivity analyses with the activity concentration at a height of 20.5 m.
The generic plume is simulated for SC (neutral), z0 (0.5 m), d (6),
and hs (20 m) with a wind speed of 1 ms−1 from the west at 10 m
height and an emission rate of 1 Bqs−1. The activity concentration
distribution in Bqm−3 is given in a logarithmic scale.

summarised in Table 1. Only a discrete set of six SCs is al-
lowed in ARTM. The range of z0 values allowed by ARTM
is limited to the roughness lengths that correspond to typ-
ical land covers in the vicinity of German nuclear facilities.
German authorities recommend a value of d = 6 for the zero-
plane displacement factor (TA Luft, 2002; VDI 3783 part 8,
2017). The range for the variation in d is centred on this value
and limited to forest canopy heights typical of mixed forest
(Lang et al., 2022). In Table 1, the parameter values for the
reference point for the local SAs are marked with a * symbol.
For global sensitivity analyses, the whole parameter range is
sampled.

The target quantities of the SAs are two important char-
acteristics of the plume: (i) the plume volume, which is a
measure of the tracer dispersion and is closely linked to the
maximum mixing ratio, and (ii) the distance between the lo-
cation of the maximum activity concentration and the source
position at ground level, which is of special interest for radi-
ation exposure assessment.

3.4 Results of the sensitivity analyses

The results of the calculations of the local and global sen-
sitivity coefficients are summarised in Table 2. Concerning
the plume volume, all SA methods compute the highest SA
coefficients for the stability class. Although less prominent,

this is also observable for the distance between the source
and maximum concentration at the ground level, except for
sensitivity index SIi .

For SM25
z0

no value can be calculated because a variation of
± 25 % from the reference roughness length value does not
lead to a change in the categorial z0 value. For the other pa-
rameters, the two different ranges of variation (α = 25 and
α = 50) for SMα

i provide valuable additional information.
For example, it can be seen from Table 2 that the deviations
between the coefficients of SM25

i and SM50
i are small for the

plume volume, while they are large for the distance between
the source and the maximum concentration. The influence of
the input parameters seems to be rather linear for the plume
volume but highly non-linear for the distance between the
source and maximum concentration at the ground.

For the global SA methods, both target quantities show a
distinct importance not only of first-order (direct influence of
one single input parameter) but also of higher-order (includ-
ing interactions of two or more input parameters) effects. A
small difference between Si and STi shows a large first-order
effect, as can be seen for the plume volume. On the contrary,
a large difference reveals a small first-order effect rather than
a higher-order effect, as can be seen for the distance between
the source and maximum concentration at ground level. This
agrees with the conclusions that can be drawn from the δi
coefficients. The sum of the sensitivity coefficients for the
plume volume

∑
iδi = 1.05± 0.01∼= 1 indicates that the ef-

fects of variation in the input parameters on variation in the
plume volume are separable; i.e. interactions between in-
put parameters play a minor role. For the distance between
the source and maximum concentration, the sum of the sen-
sitivity coefficients

∑
iδi = 0.690± 0.008 1 indicates the

important role of cross-interactions between the input pa-
rameters (Borgonovo, 2007). Contrary to the findings of the
Sobol' indices that some input parameters have negligible in-
fluences, the δ method suggests that the output characteris-
tics are sensitive to all parameters. This difference could be
due to the different amounts of information processed by the
two methods. While the Sobol' indices compare conditional
and unconditional variances of the output distribution, the δ
method takes the entire output distribution into account.

Some of the global SA coefficients have very large rela-
tive confidence intervals and cannot be distinguished from 0
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Table 2. Sensitivity coefficients of local and global sensitivity analyses for the plume volume and for the distance between the source and
the maximum concentration at the ground level. For the Sobol' indices (Si and STi ) and the δ method (δi ) 95 % confidence intervals are
given as well. Coefficients with very large relative confidence intervals are marked with ∗, and coefficients of one method, which cannot be
distinguished within their confidence intervals, are marked with †.

Parameter Plume volume

SIi SM25
i

SM50
i

Si STi δi

SC 0.987 1 1 0.981± 0.032 0.99± 0.04 0.666± 0.009
z0 0.718 – 0.202 0.005± 0.006 ∗ 0.017± 0.002 0.130± 0.001
d 0.291 0.022 0.027 (0.3± 8) · 10−4 ∗ (28± 5) · 10−5 0.126± 0.002 †

hs 0.119 0.004 0.004 (0.9± 9) · 10−4 ∗ (39.5± 2.3) · 10−5 0.126± 0.002 †

Distance between source and maximum concentration

Parameter SIi SM25
i

SM50
i

Si STi δi

SC 0.884 1 1 0.16± 0.06 0.90± 0.06 0.328± 0.005
z0 0.769 – 0.158 0.00± 0.04 ∗ 0.75± 0.07 † 0.118± 0.003 †

d 0.222 0.250 0.053 0.00± 0.01 ∗ 0.06± 0.02 0.115± 0.003 †

hs 0.971 0.750 0.211 0.02± 0.04 ∗ 0.74± 0.07 † 0.129± 0.004

Table 3. Ranking of the influence of the input parameters on the plume volume and on the distance between the source and the maximum
concentration at ground level for local and global sensitivity analysis methods.

Parameter Plume volume

SIi SM25
i

SM50
i

Si STi δi 6 Rank

SC 1 1 1 1 1 1 6 1
z0 2 3 2 3 2 2 14 2
d 3 2 3 3 4 3.5 18.5 3
hs 4 4 4 3 3 3.5 21.5 4

Parameter Distance between source and maximum concentration

SIi SM25
i

SM50
i

Si STi δi 6 Rank

SC 2 1 1 1 1 1 7 1
z0 3 3 3 3 2.5 3.5 18 3
d 4 4 4 3 4 3.5 22.5 4
hs 1 2 2 3 2.5 2 12.5 2

(marked with ∗). Others cannot be distinguished from each
other within their confidence intervals (marked with †). In-
creasing the sample size of 24 576 further would be neces-
sary to get smaller confidence intervals, but this would also
increase the computation time (Herman and Usher, 2021).

Based on the coefficients from Table 2, the input param-
eters were ranked according to their importance as sum-
marised in Table 3. The rankings obtained for the individual
SA methods differ not only for the two target quantities but
also between different methods. The overall ranking, which
is simply computed as the sum (6) of the different methods,
is provided in the second-last column.

The most unambiguous result is that all SA methods show
the plume volume to be the most sensitive to the SC. The
ranks for the other input parameters, in contrast, are not the

same. At this point we want to mention that the ranking of
SM25

i given in Table 3 is the average of all possible rank-
ings for this method when taking into account that there is
no coefficient for SM25

z0
. The rankings of the remaining local

SA methods, SIi and SM50
i , are in agreement with each other

for the plume volume, while the rankings of the global SA
methods disagree. Compared to the rankings for the plume
volume, those for the distance between the source and maxi-
mum concentration at the ground level are less uniform.

The overall rankings for both target quantities differ from
each other, which emphasises that different target quantities
are not necessarily sensitive to the same input parameters.
Both target quantities are the most sensitive to the SC, which
is thus a potential source of high uncertainty. The source
height hs has little influence on the plume volume, but it is the
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second most important parameter for the distance between
the source and maximum concentration at the ground level.

4 Turbulence models for unstable conditions and
their performance in the well-mixed test

In LPDMs the turbulent motion is described via a Markov
chain approach in the form of a Langevin equation (Lin and
Gerbig, 2013). ARTM uses the wind speed fluctuation σ and
Lagrangian correlation time TL as input parameters for this
Markov chain approach (Hanfland et al., 2022). The turbu-
lence model specifies these two parameters and thus influ-
ences the tracer dispersion and hence the simulated mixing
ratio field (Katharopoulos et al., 2022).

4.1 Description of turbulence models

The turbulence model implemented in ARTM 2.8.0 as the
default model is not widely used in the scientific commu-
nity. Besides this, it has been reported by Janicke and Jan-
icke (2011) that it sometimes underestimates plume dis-
persion. Therefore, they introduced a modified turbulence
model, leading to stronger dispersion, which can optionally
be activated in ARTM. In 2022, the new version (3.0.0) of
ARTM was released. It implements a new turbulence model
according to the Association of German Engineers (VDI)
guideline VDI 3783 part 8 (2017). All three models devi-
ate from the model suggested by Hanna (1982), which is
quite widely used and thoroughly tested against tracer re-
lease experiments. However, in this model the turbulence
may abruptly change between SCs. To overcome this issue
of discontinuity, Degrazia et al. (2000) proposed a continu-
ous description of the turbulence throughout all atmospheric
conditions. Since the measurement data set used for the com-
parison of simulations and observations was collected under
unstable atmospheric conditions, the following analyses fo-
cus on unstable stratification. The wind speed fluctuation σ
and the Lagrangian correlation timescale TL of the five tur-
bulence models are presented in Eqs. (6)–(26) for unstable
stratification, and their profiles are displayed in Fig. 2. For
the following quantities we define the x components along
the average horizontal wind direction, the y components per-
pendicular to it in the horizontal plane, and the z components
in the vertical direction. Although the zero-plane displace-
ment is used in ARTM (GRS, 2015) to displace the wind
profile vertically to account for the influence of obstacles,
for the sake of simplicity it is not included in the following
equations.

The first model, the default boundary layer model (BLM)
of ARTM 2.8.0, was initially suggested by Kerschgens et al.
(2000) and is based on the work of Lenschow et al. (1980),
Panofsky et al. (1977), Hicks (1985), and Gryning et al.
(1987). It describes profiles for the wind speed fluctuations

as
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(
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−hm
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) 1
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· exp

(
−z

hm

)
, (6)
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−hm
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3
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−z
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)
, (7)

and

σz = 1.3 · u∗

[(
1− 0.8

z
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)3

·
−z

κL
+ exp

(
−z

hm

)3
] 1

3

, (8)

where u∗ is the friction velocity, hm is the mixing layer
height, κ = 0.4 is the von Kármán constant,L is the Obukhov
length, and z is the height above ground level (VDI 3783 part
8, 2002; Hanfland et al., 2022). This model is called ARTM2
in the following.

The second turbulence model available in ARTM is based
on ARTM2 with a modification in the exponents and in the
prefactor of the crosswind component as follows (Janicke
and Janicke, 2011):

σx = 2.4 · u∗
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−hm

κL

) 1
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, (9)
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+ exp
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hm

)3
] 1

3

.

(11)

This model leads to wider plumes and is called PRFMOD in
the following.

In addition to the two previous models, we added a tur-
bulence model to ARTM based on ARTM2 modified with
formulations used in other ADMs (Stohl et al., 2005). This
model uses σz from ARTM2 given in Eq. (8), but the hori-
zontal wind speed fluctuations

σx = σy = u∗

(
12+

hm

2|L|

) 1
3

(12)

are equal to the equations suggested by Hanna (1982). The
aim of this modification is to increase the turbulent kinetic
energy and to analyse the effect of the horizontal wind speed
fluctuations on the dispersion. In the following, this model is
called MODHANNA.

The Lagrangian correlation times of the three models are
given according to Kolmogorov’s theory as (Luhar and Brit-
ter, 1989)

TLi =
2 · σ 2

i

C0 · η
, (13)
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Figure 2. Vertical profiles of the model characteristics of the five turbulence models, ARTM2, ARTM3, PRFMOD, MODHANNA, and
DEGRAZIA, under very unstable atmospheric conditions. Wind speed fluctuation σ : (a) along-wind direction σx , (c) crosswind direction
σy , and (e) vertical direction σz against the normalised height (normalised to the boundary layer height). The corresponding Lagrangian
correlation time TL is shown in (b), (d), and (f). The turbulent kinetic energy per unit mass TKE is shown in (g).

with the Kolmogorov constant C0 = 5.7 and the dissipation
rate of the turbulent kinetic energy
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The fourth model is the default model of the new version
of ARTM (3.0.0) with the wind speed fluctuations given as

(VDI 3783 part 8, 2017)
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The Lagrangian correlation timescales are calculated via the
turbulent diffusion coefficient Ki as

TLi =
Ki

σ 2
i

, (18)

with

Kj = 0.9
u(z) ·hm

100 · u∗
σj (19)

for the horizontal component j and
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)4 9z
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+ exp

(
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hm

)] 1
2

(20)

for the vertical component (VDI 3783 part 8, 2017). This
model is called ARTM3 in the following.

We implemented a fifth model, which, in contrast to the
previous four turbulence models that are based on similarity
theory, is based on the spectral distribution of the turbulent
kinetic energy of the boundary layer and was presented by
Degrazia et al. (2000). For very unstable boundary conditions
the wind speed fluctuations are given as
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) 1
3
, (21)
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with the Lagrangian correlation time

TLi =
li

σi
, (24)

where li is the Lagrangian correlation length given as
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In this work this turbulence model is denoted as DE-
GRAZIA.

The turbulent kinetic energy per unit mass is determined
as (Stull, 1988)

TKE=
1
2

(
σ 2
x + σ

2
y + σ

2
z

)
. (27)

4.2 Evaluation of turbulent mixing

The degree of preservation of well-mixed conditions is a key
quality indicator for any LPDM, similar to the preservation
of mass in an Eulerian model. It tests whether an initially
uniform distribution of a tracer in an incompressible flow re-
mains uniform as postulated by the second law of thermo-
dynamics (Sawford, 1986; Thomson, 1987; Lin and Gerbig,
2013; Bahlali et al., 2020). Exactly fulfilling this criterion
is challenging, but it is important to quantify the degree of
deviation from this ideal behaviour to judge the magnitude
of systematic model biases and whether these biases are ac-
ceptable. In this work the tests of the turbulence models are
limited to the case of very unstable atmospheric conditions
because the observations that are used for the comparison
were collected under very unstable atmospheric conditions,
too.

The well-mixed condition test can characterise the vertical
mixing homogeneity of a model. For these tests, simulation
domains with periodic horizontal boundaries and reflecting
vertical boundaries are used. This virtually expands the sim-
ulation domain to infinite extent and prevents the simulation
from losing tracer mass. The whole simulation domain serves
as a volume source where 115 200 numerical particles are
inserted uniformly within the first simulation hour because
ARTM does not take into account the changing density with
height. The domain size is 2000 m× 2000 m× 1100 m in x,
y, and z directions, with a horizontal (vertical) resolution of
200 m (25 m). The vertical extent of the domain is equal to
the assumed mixing depth. A temporally constant wind pro-
file for unstable atmospheric conditions, as described in Han-
fland et al. (2022), with a wind speed of 2.3 ms−1 at 10 m
height and a direction of 270 ◦ (westerly) is used. The se-
lected wind speed originates from measurement sites under
very unstable stratification conditions in Germany. For the
evaluation, the hourly mean concentration and its standard
deviation were derived for each vertical level.

The concentration profiles of the different turbulence mod-
els for very unstable PBL conditions are shown in Fig. 3. The
concentrations of the state of mixing after 1 (red line) and 2 h
(dashed blue line) are shown. Concentration values are nor-
malised to the mean concentration (c c−1), and the height is
normalised to the mixing depth (zh−1

m ). We used the same
initial numerical particle distribution for all turbulence mod-
els to eliminate possible differences arising from different
initial distributions.

The concentration profiles after 1 h differ from the uni-
form distribution c c−1

= 1. This indicates a certain degree
of segregation of the numerical particles, but most deviations
are less than 5 % (vertical dashed lines). The largest devi-
ations can be found at the top of the PBL for the ARTM3
model (> 35 %) and the DEGRAZIA model (> 15 %). The
profiles of the ARTM2 and MODHANNA turbulence mod-
els are very similar since they both contain the same vertical
turbulence parametrisation. The PRFMOD turbulence model

https://doi.org/10.5194/acp-24-2511-2024 Atmos. Chem. Phys., 24, 2511–2534, 2024



2520 R. Hanfland et al.: ARTM – sensitivity studies and evaluation using airborne measurements

Figure 3. Profiles of the concentration normalised to the mean concentration c c−1 (a–e) of the different turbulence models, ARTM2,
ARTM3, PRFMOD, MODHANNA, and DEGRAZIA, after 1 (red lines) and 2 h (dashed–dotted blue lines) for periodic lateral simulation
domain boundaries and reflecting bottom and top boundaries. In (b) the x-axis scale changes at c c−1

= 0.9. (f) Time series of the normalised
concentration at normalised height zh−1

m ≈ 0.3 for the ARTM2 model, which is indicated by the dashed horizontal line in (a). The x-axis
scale changes at 10 h.

differs slightly from the ARTM2 model due to modifications
described in Eq. (11). The profile of ARTM3 shows trends
of dilution and accumulation similar to ARTM2, PRFMOD,
and MODHANNA but magnified in its extent. The profile of
the DEGRAZIA turbulence model shows a different shape
because of its different formulation of the turbulence param-
eters (see Eqs. 23, 24, and 26).

By t = 2 h, the dilution of the concentration has further
increased at the bottom and top of the PBL, and the accu-
mulation at zh−1

m ≈ 0.3 (horizontal dashed black line) has
further increased partly beyond 5 % but well below 10 %
deviation for ARTM2, PRFMOD, MODHANNA, and DE-
GRAZIA. For ARTM3, the dilution at the ground almost
vanishes, while the dilution above zh−1

m = 0.8 increases to

40 %, and the accumulation in the middle of the PBL in-
creases to 18 %. After the second hour, no further changes
are observed, as can be seen in Fig. 3f for the ARTM2 tur-
bulence model at zh−1

m ≈ 0.3. Time series for other heights
and other turbulence models show similar behaviour and are
given in Sect. S2 in the Supplement.

This well-mixed condition test shows that the simulation
result systematically overestimates the concentration val-
ues at zh−1

m ≈ 0.3 for the ARTM2, PRFMOD, and MOD-
HANNA models after the second hour. Near the surface,
which is important for estimation of exposure to the popu-
lation, the concentration values are underestimated. In both
cases, the errors are only 5 %–6 %. At the top of the PBL,
the models underestimate the expected concentration signifi-

Atmos. Chem. Phys., 24, 2511–2534, 2024 https://doi.org/10.5194/acp-24-2511-2024



R. Hanfland et al.: ARTM – sensitivity studies and evaluation using airborne measurements 2521

cantly. The ARTM3 turbulence model shows the smallest de-
viation from the mean domain concentration near the ground,
but it overestimates the concentration in the middle of the
PBL before substantially underestimating the mixing layer
top. Below zh−1

m = 0.8 the DEGRAZIA turbulence model
performs the best. At the top of the PBL the model decreases
well below the expected concentration. All the tested turbu-
lence models can be assumed to be acceptable for simula-
tions in very unstable atmospheric conditions, but the partly
large deviations of the concentration from the expected val-
ues at certain heights have to be taken into account when in-
terpreting model results. Under low-wind conditions (1 ms−1

at 10 m height), the deviation from the uniform concentration
is similar (see Sect. S2 in the Supplement).

5 Comparison of ARTM simulation with airborne
observations

The comparison of atmospheric dispersion simulation results
with measurements near the ground is not sufficient to de-
rive any conclusions about the three-dimensional structure
of simulated emission plumes. To study the agreement of
simulated and observed plume dispersion it is inevitable to
use observations that resolve the structure of the real plume.
Since ARTM simulates the emissions of nuclear facilities
with source heights of mainly 100 to 200 m, it is useful to
choose observational data originating from similar height
levels. In this work, we present a comparison of ARTM sim-
ulations with airborne CO2 observations within the PBL. In
such a case, the comparison is challenging because of the
turbulent character of the PBL. As pointed out by Brunner
et al. (2023), observations only provide snapshots of the real
world, while simulations provide one realisation of a mul-
titude of stochastic representations of the real world. Sim-
ulations with slightly perturbed initial conditions could re-
sult in different dispersion patterns of the plume. Further-
more, simulation results and observations may have differ-
ent spatial and temporal resolutions and uncertainties, which
complicates the comparison of simulations with observations
(Farchi et al., 2016). Thus, in this work, the comparison of
simulation results with observations for the five turbulence
models is given using rather general plume characteristics,
such as the plume width per transect and maximum mixing
ratios.

5.1 Observational data

The aircraft observations used for this investigation originate
from the Carbon Dioxide and Methane Mission (CoMet 1.0)
(Fix et al., 2018; Luther et al., 2019; Fiehn et al., 2020;
Gałkowski et al., 2021; Wolff et al., 2021; Krautwurst et al.,
2021; Andersen et al., 2023; Brunner et al., 2023). The
campaign took place in May and June 2018 and involved
three aircraft performing in situ and remote sensing measure-
ments. The objective was to study CO2 and methane (CH4)

Figure 4. Map showing the flight path of the DLR Cessna air-
craft in the vicinity of the Bełchatów lignite power plant (blue star),
colour-coded by the in-situ-measured CO2 values. Transects were
performed both east (upwind side) and west (downwind side) of the
emitting power plant. The red box indicates the simulation domain.

emissions from different sources in Europe, including power
plants, and to compare the different observational methods.

For the evaluation of ARTM, airborne in situ CO2 mea-
surements in the vicinity of the Bełchatów lignite power
plant in Poland were used (Fiehn et al., 2020; Kostinek et al.,
2021). An overview map with the CO2 mixing ratios along
the flight path is shown in Fig. 4. The in situ measure-
ments were performed on 7 June 2018 between 13:00 and
15:00 UTC aboard the DLR Cessna Grand Caravan 208B.
One transect on the upwind side of the emitter was performed
at the beginning in order to derive the mean background CO2
mixing ratio cCO2 = 401.2 ppmv. The exhaust plume of the
power plant was probed during several transects on the down-
wind side at heights between 500 ma.g.l. and 1.7 kma.g.l.
They form two wall patterns at meridional distances of ap-
prox. 13 km (wall 1) and 23 km (wall 2) and a single transect
at approx. 6 km from the source.

CO2 was measured with a cavity ring-down spectroscopy
analyser (G1301-m, Picarro) specifically modified for the air-
borne deployment operating at 0.5 Hz. The CO2 measure-
ment uncertainty is± 0.15 ppmv, and the temporal resolution
was increased to 1 s by interpolation to make the data compa-
rable with other data collected during the campaign. Details
of the measurement equipment and related uncertainties are
described by Klausner et al. (2020). The sampling repetition
and the velocity of the aircraft result in a spatial distance of
about 140 m between the 0.5 Hz data points. The Picarro in-
strument measures CO2, methane, and water vapour sequen-
tially, and thus the values are representative of the last third
of the measurement interval. Observational data for wind di-
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Table 4. Input parameters needed by ARTM that are constant during the simulation run.

Parameter Value Reference

Stability class very unstable (KTA 1508, 2017)
Roughness length 0.50 m (TA Luft, 2002)
Zero-plane displacement 6 · 0.50 m (TA Luft, 2002)
Mixing layer height 1650 m –
Stack heights 300 m (SkyscraperPage, 2023)
Plume rise (western stack) 202 m –
Plume rise (eastern stack) 74 m –
Emission rate (western source) 1002.0 kgs−1 (Brunner et al., 2023)
Emission rate (eastern source) 501.0 kgs−1 (Brunner et al., 2023)
Orography SRTM3 data (Farr et al., 2007)

rection, wind speed, and flight height are shown in Sect. S3
in the Supplement.

5.2 Model setup

We chose a simulation domain of 33.3 km× 33.3 km
× 1.9 km that covers the horizontal extent of the flight trajec-
tory and vertically extends beyond the mixing layer depth by
four simulation levels. The horizontal resolution was 150 m.
The extent of the simulation domain with the location of
the emission source (two stacks over a distance of 300 m)
is shown in Fig. 4. Vertically, the grid spacing gradually in-
creases from 3 to 35 m until 100 m height is reached. Above,
50 m level thickness was used. All level thicknesses are given
in Table S2 in the Supplement.

ARTM requires several input parameters: SC, z0, d0, orog-
raphy, several source-specific parameters, and wind speed
and direction at one location in the simulation domain. Since
there were no stationary ground-based wind measurements
available, wind direction, wind velocity, SC, and mixing
layer height were derived from the airborne measurements.
The actual emission rates are unknown. However, Brunner
et al. (2023) estimated the overall CO2 emission rate accord-
ing to the generated electrical power of the power plant, re-
sulting in 1503.0 kg s−1 during the measurement flight. This
corresponds to 123 % of the annual mean emission rate of
38.4 Mt CO2 reported by the power plant to the European
Pollutant Release and Transfer Register (E-PRTR) for the
year 2018. The description of the derivation of SC, z0, d0,
and the plume rise as well as the orography data are given
in Sect. S4 in the Supplement. The parameter values and the
origin of the orography data are summarised in Table 4.

ARTM requires radionuclide emission rates in Bqs−1;
thus we chose CO2 consisting of the radioactive isotope 14C
for the simulations. Its decay constant λ= 5730± 40 years
leads to a decay of 5.5× 10−6 %, which is negligible within
the simulation period. Thus, ARTM’s internal emission rates
in Bqs−1 can be used as an equivalent for a mass rate in
kgs−1 and to convert activity concentration into mixing ra-
tio.

The wind speed (4.4 ms−1) and directions driving the sim-
ulation were derived from one flight transect (13:28:03 to
13:33:14 UTC) at a distance of ≈ 13 km to the west of the
power plant at a height of ≈ 600 ma.g.l. This transect is lo-
cated close to the middle of the simulation domain and is
therefore assumed to be representative. The histogram of the
wind directions of the transect is shown in Fig. 5. Based on
this histogram, two different setups of the model were se-
lected:

i. A single wind direction of 120° (mean of the distribu-
tion) was selected, assuming that the wind fluctuations
are part of the turbulence spectrum and should there-
fore be represented by the turbulence parametrisation of
ARTM.

ii. Two different wind directions were used alternatingly to
drive ARTM, a direction of 106° (mean of all directions
< 120°) and a direction of 134° (mean of all directions
> 120°). This assumes that part of the wind variation is
due to mesoscale variability that cannot be resolved by
ARTM’s turbulence scheme.

The first setup was applied to all turbulence models, while
the second setup was only tested for ARTM2. The hourly
sequence of wind inputs for the model is summarised in
Sect. S5 in the Supplement.

5.3 Horizontal dispersion

The mixing ratio maps simulated with the five turbulence
models at a height of 750 to 800 m are shown in Fig. 6 to-
gether with the observations between 700 and 800 m. We
subtracted the background CO2 mixing ratio of 401 ppmv
from the observations to make them comparable to the simu-
lation results.

The simulated and observed mixing ratios of the plumes
are of the same order of magnitude. The simulated plumes
show the mean wind direction to be in agreement with the
observed one; however, the meandering behaviour of the real
plume can be observed at transects 1, 2, and 3 in Fig. 6, re-
vealing that this behaviour is not covered by all turbulence
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Figure 5. Histogram of the wind directions of the transect chosen
for the determination of the wind direction and wind velocity. The
transect covers a duration from 13:28:03 to 13:33:14 UTC with the
mean position 53.31° N, 19.15° E. The mean measurement height
is 599 ma.g.l. The mean value of the wind direction is 120° (red
line). The mean value of the wind directions below 120° is 106°
and above 120° is 134° (dashed blue lines).

models. The mixing ratio profile in the lateral (crosswind)
direction simulated by ARTM resembles a Gaussian distri-
bution. This is expected for a constant wind direction and
wind speed (Thykier-Nielsen et al., 1999).

The different turbulence models clearly affect the simu-
lated plume widths. The ARTM2 turbulence model simu-
lates the narrowest plume. The ARTM3 model results in a
slightly wider plume, but compared to the observations both
are too narrow. The PRFMOD and DEGRAZIA turbulence
models show much broader plumes that cover the observed
one to a large extent. The widest plume is simulated by the
MODHANNA turbulence model and is in good agreement
with the observed plume width. The width of the plumes of
the turbulence models is mainly attributed to the horizon-
tal wind speed fluctuations and Lagrangian correlation times
displayed in Fig. 2. The highest values for σy and TLy are
simulated by MODHANNA, PRFMOD, and DEGRAZIA
followed by ARTM3 and ARTM2 in the upper half of the
PBL, in agreement with the simulated plume width.

Figure 7 shows the simulated and observed plumes of the
different turbulence models together with the flight height
above ground level along the flight path. Transects 1, 2, and 3
are shaded in grey. Data above the simulated boundary layer
top are excluded from the figures. In Fig. 7, the simulated
maximum CO2 mixing ratios of ARTM2 are larger at all
transects compared to the observations. Within the simulated
boundary layer, this deviation reaches 300 % at 14:08 UTC
and is attributed to the too-narrow simulated plume. With
increasing plume width of the different turbulence models,
the maximum mixing ratios decrease (see Fig. 7a–e). The
ARTM3, PRFMOD, MODHANNA, and DEGRAZIA turbu-
lence models simulate mixing ratio peaks similar to or below

the observed values. Due to dispersion the mixing ratio max-
imums decrease with increasing distance from the source for
all models, in agreement with the observation. It is impor-
tant to point out that simulated mixing ratio values are highly
dependent on the emission rates.

The simulation gives 1 h averages of the exhaust plume,
which is expected as the mean of several realisations of me-
andering plumes. It is not expected that simulated values are
much larger than the observed ones but can occur if the width
of the simulated plume or the mixing layer depth are under-
estimated or the emission rate is overestimated.

An alternative to modelling the meandering behaviour via
the turbulence is the usage of alternating wind directions
for subsequent simulation hours for the ARTM2 turbulence
model to explicitly simulate the meandering plume (Figs. 6f
and 7f). Simulation results from subsequent hours are com-
bined by calculating the average concentrations. The wind
direction derivation is explained in Sect. 5.2. This method
generates the widest plume covering the observations and
mimics the structure of two maxima at transect 1. However,
these two observed maxima originate from snapshots of the
meandering plume and are not expected to be reproduced by
the time-averaged simulation. Moreover, physically unreal-
istic plateaus of mixing ratios are simulated in wall 1 and a
single narrow mixing ratio peak in wall 2, which is a result
of the alternating wind directions. Mixing ratio maps of sim-
ulations and observations at other selected heights are given
in Sect. S6 in the Supplement.

5.4 Vertical dispersion

For the analysis of the vertical plume behaviour, the cross
sections of the simulated plumes at wall 1 are presented in
Fig. 8. The narrowest simulated plume is obtained by the
ARTM2 model and underestimates the width of the observed
plume at heights from 600 m to 1400 ma.g.l. The plume of
the ARTM3 model is slightly wider throughout the PBL. In
both the ARTM3 and the PRFMOD model, the values of
σy (TLy) decrease (increase) with height (see Fig. 2). While
these opposing trends cancel each other out for the ARTM3
model, they lead to a slight increase in lateral dispersion with
height for the PRFMOD model. The vertical profiles of σy
and TLy of the MODHANNA model shown in Fig. 2c and
d appear to lead to a slightly increasing dispersion, too. The
DEGRAZIA model, in contrast, shows a constant behaviour
for both σy and TLy . Below 200 m the widths of all five sim-
ulated plumes decrease towards the surface.

All turbulence models show a slight decrease in the mixing
ratio with increasing height at a constant distance from the
source (see Fig. 7), which agrees with observations. From
the cross sections at wall 1 (Fig. 8), the average horizontal
mixing ratio profiles are derived and shown in Fig 9. Ex-
cept for the DEGRAZIA model, the decreasing mixing ratio
with increasing height above 600 m can be recognised here
as well. However, in Fig. 7 the highest maximum mixing ra-
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Figure 6. Modelled CO2 mixing ratio for the case of one wind direction in (a) ARTM2, (b) ARTM3, (c) PRFMOD, (d) MODHANNA, and
(e) DEGRAZIA and two wind directions in (f) ARTM2. The wind directions and speeds are given in Table S3 in the Supplement; the input
parameters are given in Table 4. Mixing ratios of the simulated plume (averaged over the simulation time) at heights between 750 and 800 m
and the in situ data along the flight path between 700 and 800 m are shown in logarithmic scale in ppmv. The case of two wind directions
in (f) shows the mean CO2 mixing ratio of 2 subsequent hours for the duration of the measurement flight from 13:00 to 15:00 UTC. The
background CO2 mixing ratio of 401 ppmv is subtracted from the observation.
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Figure 7. Simulated (red line) and measured (black line) CO2 data along the flight path together with the flight height (dotted blue line)
within the simulation domain. The (a) ARTM2, (b) ARTM3, (c) PRFMOD, (d) MODHANNA, and (e) DEGRAZIA turbulence models and
the (f) ARTM2 turbulence model with two alternating wind directions. The transects shown in Fig. 6 are shaded in grey.
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Figure 8. Cross section of the simulated plumes at wall 1 of the observations for the different turbulence models: (a) ARTM2, (b) ARTM3,
(c) PRFMOD, (d) MODHANNA, and (e) DEGRAZIA. (f) The case of two wind directions for ARTM2. The x-axis y distance is in a
south–north orientation. The dashed line at 1650 ma.g.l. marks the simulated mixing layer top.

tios at wall 1 (13:25 to 14:10 UTC) occur at transect 2 for
the measurements. The simulations, having the highest con-
centration values, instead show very similar peaks at the two
lowest transects in wall 1.

In contrast to the Gaussian lateral mixing ratio distribution
of the plume in Fig. 8a, the ARTM2 turbulence model with
two alternating wind directions (Fig. 8f) shows the uniform

mixing ratio distribution in the plume’s core region (mixing
ratio > 1 ppmv), as shown in Fig. 7f.

The cross sections of wall 2 in Fig. S12 in the Supplement
show a similar behaviour of the plumes. The measured data
show a large variation in the plume width on the different
transects, emphasising the meandering and turbulent charac-
ter of the real plume. Furthermore, it can be recognised that
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Figure 9. Profile of the average horizontal mixing ratio of the
six simulation cases at wall 1 (see Fig. 8). The dashed line at
1650 ma.g.l. marks the simulated mixing layer top.

the real plume is not entirely recorded; the transects are too
short at this wall.

5.5 Validation and uncertainty evaluation

In order to quantify the simulations’ uncertainty, we inves-
tigate the deviations of the simulated and the observed CO2
mixing ratios in the plume through probability distributions
(PDs), comparisons of integrated plume mass, and point-to-
point mixing ratio comparisons.

The deviation of model results and measurements in a
plume can be accessed by the comparison of the PDs and
the cumulative probability distributions (CPDs) of simulated
and observed CO2 mixing ratios in the plume. The PDs of
the simulation and measurement are normalised to the max-
imum mixing ratio of the measurements with the integrals
of the simulated and measured distributions being equal. To
get rid of the mixing ratio fluctuation in the excess mixing
ratio of the measurement, mixing ratio values below 1 ppmv
are not taken into account. The PDs and CPDs of the five
different turbulence models and the observations for all tran-
sects below the simulated boundary layer top are given in
Fig. 10. The PDs of the simulated and measured plume show
the occurrence of mixing ratio values relative to the maxi-
mum mixing ratio of the measurements. There is an over-
estimation of the simulated maximum mixing ratios for the
ARTM2 and ARTM3 turbulence models. The high number
of data points at approx. 20 % of the maximum mixing ratio
of the measurements is due to the fine structure, shoulders
beside peaks, and broad indistinct peaks of the plume not
represented in the simulations. MODHANNA can be identi-
fied as the turbulence model that shows the best agreement
with the observations concerning the PDs and CPDs; i.e.
the occurrence of the mixing ratio values is the most sim-

Table 5. Z statistics, Kolmogorov–Smirnov (KS) statistics, and
Cramér–von Mises (CvM) statistics of the mixing ratio distributions
of the five turbulence models. The p values are given in brackets.
The significance level is 0.05.

Turbulence model Z statistic KS statistic CvM statistic

ARTM2 16.8 0.45 (0.00) 25.1 (0.00)
ARTM3 11.5 0.23 (0.00) 12.8 (0.00)
PRFMOD 13.5 0.24 (0.00) 15.5 (0.00)
MODHANNA 10.2 0.20 (0.00) 9.8 (0.00)
DEGRAZIA 15.5 0.27 (0.00) 19.8 (0.00)

ilar to that of the measurement. To quantify the similarity
and to decide whether simulations and measurements are sig-
nificantly different, three statistical test were applied: the Z
test, the Kolmogorov–Smirnov (KS) test, and the Cramér–
von Mises (CvM) test (Conover, 1980; Wilks, 2006; Univer-
sity of Oregon, 2020). The Z statistic represents the distance
between the means of two PDs normalised to the standard
error. Statistics below 2 indicate no significant difference be-
tween the distributions. Additional interpretation limits are
given in Sect. S7 in the Supplement. The KS statistic rep-
resents the supremum of the distance between two CPDs,
while the CvM statistic is proportional to the integral of the
distances between two CPDs. For both we assumed a sig-
nificance level of 0.05. The statistics and their p values (in
brackets) are summarised in Table 5. The three statistical
tests show that all simulated mixing ratio distributions differ
significantly from the observed one. Nevertheless, the statis-
tics can be used to rank the models. MODHANNA shows the
best agreement with the observations; i.e. the distribution of
mixing ratio values in the transects is the most similar to that
of the observations compared to the other turbulence mod-
els. The statistical tests rank ARTM3 second, but this may
be biased by the statistical tests being very sensitive to de-
viations in the regions of the PDs with high numbers of low
mixing ratio values. We want to point out that the results do
not mean that the MODHANNA model produces mixing ra-
tio peaks that are structured like the observed ones, but the
relative occurrence of mixing ratio values is the most similar.

To compare the simulation results, the integral of the mix-
ing ratio values along the flight path below the simulated
boundary layer top (see Fig. 7) within the plume is shown
in Table 6. We used the method above to get rid of the base-
line fluctuations in the excess mixing ratios to calculate the
integrals. This procedure is also applied to the simulations.
Except for ARTM3, there is good agreement between the
modelled and measured data: the deviation is less than 13 %.
Concerning ARTM3, there is a strong vertical gradient in the
simulated mixing ratios of the plume above 700 m, as is il-
lustrated in Figs. 8b and 9. Tracers are more strongly diluted
(accumulated) in the upper (lower) half of the PBL than in
the other turbulence models. This corresponds to the findings
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Figure 10. Probability distribution (bars) and cumulative probability distribution (lines) of the simulated and measured mixing ratios of
the five turbulence models. The PDs are normalised according to the maximum mixing ratio of the measurements, and the integral of the
simulated and measured PDs is equal. Mixing ratio values below 1 ppmv are not considered in the PDs and CPDs.

presented in Sect. 4. Since the flight path is mainly located in
the upper half of the PBL, the integral along the flight path
results in a lower value for ARTM3. The higher mixing ratios
in the lower half of the PBL might become important when
simulations are used for radiation exposure assessment. The
results suggest that the original assumption of the emission
rate may not deviate much from the actual value. However,
observations below 600 m are necessary to get a more com-
plete comparison of the simulated and actual plumes.

The deviation between the simulations of the five turbu-
lence models and the observation at a specific position can

be assessed using density scatterplots as given in Fig. 11. All
mixing ratio values larger than 1 ppm along the flight path
below the simulated boundary layer top are considered. The
regression with slope m= 1 is shown with a dashed line and
represents the equality of the simulated and observed mix-
ing ratios. The deviation from this equality by a factor of
2 is confined by the dashed–dotted red lines. It is not ex-
pected to find a lot of data points at the regression m= 1
due to the fundamental differences in the data set properties
of the simulation and observation. However, a large number
of data points within a deviation of a factor of 2 decreases
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Figure 11. Density scatterplots of the simulated mixing ratios of the five turbulence models, ARTM2 (a), ARTM3 (b), PRFMOD (c),
MODHANNA (d), and DEGRAZIA (e), against the observations. Single data points in a bin are indicated with +; more data points in a bin
are colour-coded. The regression with slope m= 1 (dotted black line) represents the identification of the simulation with the measurement,
the dotted–dashed red line represents a deviation from the regression with m= 1 by a factor of 2, and the solid black line represents the
orthogonal linear fit to the data points. Fac2 gives the percentage of data points with deviations of not more than a factor of 2 from the
regression m= 1. The residual variance of the orthogonal fit is given by σ 2

res.

Table 6. Integrals of mixing ratio values (values below 1 ppmv are
not considered) along the flight path for simulation Asim and obser-
vationAobs within the simulated PBL (see Fig. 7) given in ppmvkm
and their ratio.

Turbulence model Aobs Asim AsimA
−1
obs [%]

ARTM2 1094 1186 108.4
ARTM3 1094 742 67.8
PRFMOD 1094 1194 109.2
MODHANNA 1094 1114 101.8
DEGRAZIA 1094 1236 112.9

the uncertainty. The percentage of data points within these
borders is represented as Fac2 (Fig. 11). Low Fac2 values
can also be explained by the large number of measurement
data points outside the simulated plume because they are

too narrow. The smallest Fac2 is derived for the ARTM2
model. This coincides with the unbalanced distribution of
the data points around the regression m= 1, with the sim-
ulation overestimating the observed mixing ratios and simul-
taneously simulating too-narrow plumes. This is represented
by the orthogonal regression of data points (black line) given
in the figure with a slope above 3. The residual variance
σ 2

res quantifies the scattering of data points. The large value
for ARTM2 indicates a less compact data point distribution.
ARTM3 shows more balanced and compact data but still dis-
tinctly overestimates mixing ratios and underestimates plume
widths. PRFMOD, MODHANNA, and DEGRAZIA show
similar properties with Fac2> 50 %; more compact, well-
balanced data; and less overestimated mixing ratios and un-
derestimated plume widths, with the MODHANNA model
performing slightly better for the given measurement and tur-
bulence conditions.

https://doi.org/10.5194/acp-24-2511-2024 Atmos. Chem. Phys., 24, 2511–2534, 2024



2530 R. Hanfland et al.: ARTM – sensitivity studies and evaluation using airborne measurements

The uncertainty in the CO2 measurement device of
± 0.15 ppmv is at least 1 order of magnitude smaller than the
measured enhanced CO2 concentrations. Thus, the measure-
ment uncertainty has only a minor impact on the evaluation
results.

6 Conclusions

In this work we present an extensive evaluation of ARTM
with three different elements: a sensitivity analysis, an analy-
sis of turbulence models, and a comparison with aircraft ob-
servations. Based on the sensitivity analysis, we identified
the stability class to be the most important input parame-
ter, followed by the roughness length, the source height, and
the displacement height factor. Therefore, special care has to
be taken to determine the stability class for a simulation be-
cause uncertainties in this parameter cause large uncertain-
ties in model results. This emphasises the general disadvan-
tage of the rather coarse stability class concept being used to
describe atmospheric turbulence. A finer classification or a
continuous parameter such as the Obukhov length could be a
better option but would generally require detailed measure-
ments of turbulence parameters such as friction velocity and
sensible heat flux.

In addition to the three turbulence models already imple-
mented in ARTM 3.0.0, two other turbulence models, the
MODHANNA model and the DEGRAZIA model, were im-
plemented and tested. Evaluation of the models by apply-
ing the well-mixed condition test showed that the ARTM2,
PRFMOD, and MODHANNA models produced a moderate
deviation of an initially uniform concentration profile under
unstable atmospheric boundary layer conditions. Underesti-
mations of the uniform concentration occur primarily at the
ground and at the top of the boundary layer with up to 10 %,
while overestimations occur in between with up to 7 % at
one-third of the PBL. Under the same conditions the ARTM3
model produces the strongest deviations: up to 4 times higher
than the other models. However, near the ground ARTM3
performs the best. The DEGRAZIA model showed a less in-
homogeneous profile with deviations from the uniform con-
centration of 5 % or less below z= 0.8hm. The discrepancies
under 6 % below 80 % of the boundary layer height show
good mixing properties of the unstable planetary boundary
layer for the ARTM2, PRFMOD, MODHANNA, and DE-
GRAZIA models.

Three-dimensional airborne in situ observational data
measuring a power plant emission plume were compared
to ARTM simulation results. The time resolution of ARTM
results is 1 h, which is larger than the expected timescale
of the observed meandering plume, and, therefore, ARTM
is expected to capture the time-integrated real plume and
not the fine structures on small scales. ARTM simulated the
mean wind in agreement with the observations throughout
the simulation domain. The different turbulence models sim-

ulate plume mixing ratios of the same order of magnitude
as the measurements, although the exact mixing ratio val-
ues depend on the emission rate. ARTM2 underestimates the
plume spread under very unstable conditions and overesti-
mates the maximum mixing ratio by a factor of 2 or more.
The ARTM3 model produces only slightly wider plumes in
the lateral direction but lower maximum mixing ratio val-
ues at the upper half of the PBL. This is attributed to the in-
homogeneous vertical mixing and the horizontal turbulence
parametrisation of the ARTM3 turbulence model under un-
stable conditions. The other turbulence models, PRFMOD,
MODHANNA, and DEGRAZIA, simulate a wider plume
spread in the range of the measurements. Maximum mixing
ratios are close to the measurements, and the integrals of the
mixing ratios of the simulations and observations along the
flight path are comparable. The models were evaluated with
measurements at heights larger than 600 m and hence do not
cover the heights below 600 m. The differences in the tem-
poral and local resolutions of the simulations and measure-
ments lead to differences in the distributions of mixing ratio
values. According to Fig. 10, under unstable conditions, all
turbulence models underestimate the occurrence of mixing
ratio values by around 20 % of the maximum mixing ratio
of the measurements, which is a result of the fine structure
of the plumes. The smallest deviations in PDs and CPDs
are found for MODHANNA. Using point-to-point compar-
isons, the ARTM2 model showed the largest deviations from
the measured plume; ARTM3 showed better agreement; and
PRFMOD, MODHANNA, and DEGRAZIA showed compa-
rable good performances, with MODHANNA matching the
measurements slightly better than the others.

With the results of this study we showed that ARTM is
able to simulate the extension and mixing ratios of a plume
under unstable stratification conditions when the proper tur-
bulence model is used. The ARTM3 model was shown to
be a suitable turbulence model for radiation exposure assess-
ment when conservative long-term simulations are requested.
However, the PRFMOD, MODHANNA, and DEGRAZIA
models simulate the exhaust plume closer to real exhaust
plumes under the given conditions and under the limitations
of temporal and spatial uncertainties. Within this validation
using the in situ data from the Bełchatów power plant, the
MODHANNA turbulence model performed slightly better.
However, this ranking cannot be generalised to other stability
conditions without further comparison studies. Further anal-
yses with known emission terms with different atmospheric
turbulence properties, stable and neutral conditions, are nec-
essary and can lead to better validation of ARTM. We encour-
age the comparison of other turbulence formulations, such as
the one suggested by Hanna (1982). This would also reveal
differences between the model of Hanna (1982) and the DE-
GRAZIA model and extends the analyses given by Carvalho
et al. (2002) to larger heights. The collection of measurement
data in the upper and lower half of the PBL and transects
sampling the entire extent of a plume are beneficial. More-
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over, the use of the Obukhov length as a measure of atmo-
spheric stability is encouraged.
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