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ABSTRACT

In addition to a physical comprehension of the world, humans possess a high social intelligence—the intelligence that senses
social events, infers the goals and intents of others, and facilitates social interaction. Notably, humans are distinguished from their
closest primate cousins by their social cognitive skills as opposed to their physical counterparts. We believe that artificial social
intelligence (ASI) will play a crucial role in shaping the future of artificial intelligence (Al). This article begins with a review of ASI
from a cognitive science standpoint, including social perception, theory of mind (ToM), and social interaction. Next, we examine the
recently-emerged computational counterpart in the Al community. Finally, we provide an in-depth discussion on topics related to

ASI.
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hat is artificial intelligence (AI)? In contrast to the
Werroneous belief that AI is solely an engineering
subject, it has been a science subject since its inception;
John McCarthy defined Al as “the science and engineering of
making intelligent machines, especially intelligent computer
programs’™. Al like all other scientific disciplines, investigates

natural phenomena; in this context, Al focuses on both the
physical and social aspects of intelligence.

1 Dawn of Artificial Social Intelligence

Despite controversies”, the measuring of Al has a long history of
employing human-like behavior tests, originating from the Turing
test (originally called the imitation game)": a test is administered
to determine whether a person is conversing with a real person or
a computer program simulating a human. Herbert Simon defined
Al similarly with a focus on human-like behaviors: “We call
programs intelligent if they exhibit behaviors that would be
regarded as intelligent if they were exhibited by human beings.”"
Although modern AI has achieved human-level intelligence in
some tasks using data-driven methods", it continues to advocate
human-like tasks and evaluations'".

Computationally, efforts towards human-like intelligence can
be divided into physical intelligence and social intelligence!”,
analogous to the developmental psychology ideas of intuitive
physics and intuitive psychology®'. In the literature, physical
intelligence™ " has been studied systematically and extensively in
A", not only in terms of intuitive physics’’ ™ and its
applications to challenging AI problems (e.g, in computer
vision” ! and robotics®"), but also in terms of more abstract
forms of physical knowledge®”—causality™™ and problem-
solving”*~,

Despite its rapid growth in psychology’>”, artificial social
intelligence (ASI) has been mostly disregarded in the AI

community, with only scattered applications. Notably, cognitive
skills for interacting with the social world rather than the physical
world distinguish 2.5-year-old human children (prior to reading
and schooling) from chimpanzees"’; humans exhibit significantly
more advanced social-cognitive skills than their closest animal
cousins. Thus, the research of ASI is essential for the future
generation of AL

To address the aforementioned deficiency, this article highlights
a promising Al direction, the ASI, from a computational
perspective. In contrast to the mechanical and abstract nature of
physical intelligence, ASI involves many subfields that are
currently studied separately, such as social perception, theory of
mind (ToM), and social interaction>*’, with varying emphasis on
perception, cognitive components, behavior, and even
psychometric methods to measure social skills*!. We intend to
provide a comparative and holistic perspective on (1) the gap
between existing Al systems and human intelligence, (2) current
issues, and (3) future directions by examining human social
intelligence and recent efforts on building computational models.

1.1 Unique challenges of context

ASI is distinct and challenging compared to our physical
understanding of the world; it is highly context-dependent”. This
view is shared by Defense Advanced Research Prejects Agency
(DARPA), which believes that the future generation of Al should
include the human-like skill of contextual adaptation®—the
capacity to reason about and adapt to various contextual inputs.
Here, context could be as large as culture and common sense or as
little as two friends' shared experiences™. This unique challenge
prohibits standard algorithms from tackling ASI problems in real-
world environments, which are frequently complex, ambiguous,
dynamic, stochastic, partially observable, and multi-agent.

ASI is comprised of numerous social signals that are frequently
overloaded and ambiguous“®. This difficulty does not even begin
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at the level of verbal or so-called natural language; rather, it begins
with nonverbal communication. Given different contexts, the
same gesture (e.g., pointing to a cup) might convey different
meanings. Pointing to a cup may indicate its shape, color,
capacity to hold water, or a request for assistance in retrieving
some water. Consequently, addressing ASI requires a
comprehensive approach; improving specific components of an
ASI system would not always result in improved performance®.

1.2 Overview of the article

Multidisciplinary ~research, including philosophy, cognitive
science, neurology, computer science, applied mathematics,
statistics, system engineering, and robotics, informs and inspires
ASI. In Section 2, which covers social perception, theory of mind,
and social interaction, we begin with experimental evidence and
theoretical hypotheses of human social intelligence from the
standpoint of cognitive science. In Section 3, we present the Al
community’s computational counterpart, focused on social
perception, theory of mind, and social interaction, with an added
topic on social robot and cognitive architectures. In Section 4, we
explore significant challenges that impede the development of the
ASI and recommend potential future trends. Section 5 gives the
conclusion.

2 Human Social Intelligence

Evolutionarily, social intelligence development is advantageous for
human adaptation to more complex social situations. As a result,
studying human social intelligence provides insight into the
foundation, curriculum, points of comparison, and benchmarks
required to develop ASI with human-like characteristics™*.

We concentrate on the three most important aspects of social
intelligence: social perception, ToM, and social interaction. We
select these themes not just because they are grounded in well-
established cognitive science theories but also because there are
readily available tools for developing computational models in
these areas (to be discussed in Section 3).

Social perception is the basis for ToM and social interaction. It
consists primarily of the perception of social features, such as
animacy and agency, and provides low-level, automatic,
instantaneous, and non-conscious visual perception”. ToM, in
contrast, is concerned with sophisticated, analytic, and logical
cognitive reasoning, involving a general cognitive system with
several essential components, including belief, intent, and desire.
Social interaction emphasizes more multi-agent interactive
activities, such as communication and cooperation, than social
perception and ToM.

2.1 Social perception

What factor is the most fundamental and influential in
determining social perception? Contrary to intuition, motion cues
composed of simple geometry may suffice”. According to
Michotte™, ... the specifying factors—gestures, facial expressions,
speech—are innumerable and can be differentiated by an infinity
of nuances. However, they are all additional refinements
compared with the key factors, which are the simple kinetic
structures.” Heider-Simmel stimuli” is perhaps the most seminal
work (see the redrawing in Fig. 1). Participants were instructed to
watch a film depicting three simple 2D geometric shapes (a large
triangle, a small triangle, and a small circle) roaming in the vicinity
of a rectangle. Even when told explicitly that these are merely
simple shapes, participants still make a rapid, spontaneous, and
consistent perception of animate social agents with various
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Fig.1 Heider-Simmel stimuli”. Humans can perceive complex mental

states and social interactions based solely on the motion of simple geometric
shapes.

complex mental states, including desires, goals, emotions,
personalities, and coalitions. These mental states combine to form
a narrative-like description of the display, such as a hero rescuing
a victim from a bully. This interpretation of simple moving shapes
as animated agents is a remarkable demonstration of how the
human visual system can infer complex social relationships and
mental states from simple motion cues with minimal visual
characteristics. Even though they involve impressions typically
associated with higher-level cognitive processing, such
interpretations appear to be predominately perceptual in nature,
ie, relatively rapid, automatic, irresistible, and highly stimulus-
driven.

The Heider-Simmel experiment demonstrates two essential
aspects of human social perception: the perception of animacy
and agency. Animacy denotes that the perceived entities are
animate as opposed to inanimate (e.g., physical objects), whereas
agency refers to animate beings who are goal-oriented and capable
of planning to achieve their goals rationally and efficiently. Below,
we concentrate primarily on these two properties (i.e., animacy
and agency).

Animacy. Experiments have demonstrated that infants can
distinguish between animate and inanimate motion characteristics
as early as six months of age™. Children ages 3 to 4 can accurately
distinguish between mental and physical actions”™. How can such
complex social phenomena be perceived so early?

Michotte™ describes a seminal experiment that yielded the
initial evidence. In this experiment, participants were shown two
small squares separated by several inches and arranged in a line.
In the first scenario, the first square (A) moves in a straight line
until it reaches the second square (B), at which point A stops
moving and B begins moving in the same direction (also called
the launching effect). In case two, the first square (A) approaches
the second square (B). While A approaches, B moves away from
A quickly and stops when it is several inches away again. In the
first instance, observers observe A physically causing B's motion
(also termed as phenomenal causality or the illusion of causality).
In contrast, in the second case, A and B are perceived as alive with
their own intentions, ie., A attempting to capture B and B
attempting to escape, even though all that is occurring in such
films is simple kinematics.

Scholl and Tremoulet™ provide a comprehensive review of a
series of causal perception and animacy experiments conducted
by Michotte” and Heider and Simmel™. Michotte's experiments
and subsequent variations reveal that the spatiotemporal
parameters mediate causal perceptions, such as relative velocity,
speed—-mass interaction, path length, and spatial and temporal
gap. Minor manipulations, such as a brief spatial or temporal gap,
could quickly transform the perceptions from physical causality to
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animated interaction””. Overwhelming evidence indicates that
human perception of animacy appears hardwired into the visual
system and is therefore implicit, automatic, and distinct from
higher-level cognitive interpretations.

Agency. We now know that humans can automatically
perceive complex social phenomena as early as six months of age.
A natural follow-up question would be: How can we distinguish
between social events and physical phenomena? The solution lies
in the notion of agency™. An agent is rationally controlled
because it has an internal energy source, whereas an object is not.

Similar to animacy, the social perception of agency is primarily
associated with motion kinematics as opposed to featural
properties. Gergely et al”™ and Csibra et al.*’ find that relatively
simple motion sequences, without self-initiated movement to cue
animacy, can elicit an impression of goal-directed behavior in
infants aged nine months.

The perception of agency is frequently studied in tandem with
animacy for more complex social phenomena. Gao et al.” study a
particularly salient form of perceived animacy and agency via
tasks based on dynamic visual search (the Find-the-Chase task)
and a new type of interactive display (the Don't-Get-Caught! task).
They used two cues to evaluate the objective accuracy of such
perceptions: (1) chasing subtlety—the degree to which the wolf
deviates from a perfectly heat-seeking pursuit, and (2)
directionality—whether and how the shapes face each other. Gao
et al™ present the wolfpack effect, a novel social cue to perceived
animacy that could effectively, irresistibly, and subtly influence
human visual performance and interactive behavior. The study of
chasing investigates how the visual system maintains and updates
the dynamic social perception of animacy and agency over time
and motion™; the researchers discovered that temporal dynamics
could lead the visual system to either construct or actively reject
interpretations of chasing.

What are these perceptions’ underlying units? In other words,
are these social perceptions identifiable as discrete objects without
the necessary movement properties? van Buren et al.* depict one
disc (the “wolf’) pursuing another disc (the “sheep”) amidst
several distractor discs that are moving. Lines were visible between
each pair of discs. In the Unconnected condition, both lines
connected distractors in pairs. In the Connected condition,
however, one line connected the wolf to a distractor, and the other
line connected the sheep to a different distractor. Observers in the
Connected condition were markedly less likely to describe these
behaviors in terms of mental state. According to the outcomes of
their experiments, discrete visual objects are the fundamental units
of social perception.

Summary. Does the human visual system have a natural
tendency to recognize animacy and agency? The aforementioned
experimental findings support the hypothesis that specific bottom-
up perceptual processing is specialized and difficult to be
“penetrated” by higher-level cognition[”. This type of social
perception may be at the intersection of perceptual and cognitive
processing, where basic stimuli are transformed into causal,
animate, or even intentional qualities, which are strongly linked to
higher-level cognitive processing.

2.2 ToM

ToM is an additional crucial aspect of social intelligence. In their
study examining ToM abilities in chimpanzees, Premack and
woodruff*” first establish the term and idea of ToM. The
chimpanzee Sarah was shown a brief clip of an experimenter
attempting to perform simple tasks. Subsequently, Sarah observed
images of several objects, one of which solved the experimenter’s
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dilemma. Sarah could select the correct photograph,
demonstrating that she comprehended the task and the problem
at hand, i.e,, to depict the current scenario and the experimenter's
intentions. Their findings highlight two essential components of
ToM: a representation of the affair state and a representation of an
individual's motivational link to the state, ie, belief and
intention®.

Formally, ToM entails attributing mental states (such as beliefs,
intents, or desires) to oneself and others, as well as acknowledging
that people's perspectives and mental constructs may differ from
those of the natural world and from one another™. Perspective
taking in an internal simulation process is one of the defining
characteristics of ToM™, as understanding another agent requires
not peering into the agent's brain chemistry or soul, but rather
putting onself in the agent's shoes in order to comprehend the
agent’s copy of world™' beyond one’s own egocentric perspective.
The infamous Sally-Anne test™”, a classic first-order false belief
task, is a well-known experiment on perspective taking.

ToM is replete with noteworthy experimental findings from
cognitive development research. ToM formation around age 4 is
one of the most important developmental milestones of early
childhood™. Infants begin to exhibit gaze-following behaviors,
identify themselves and others as agents who perform deliberate
actions, and are capable of subjectively experiencing the
environment by the end of their first year®*”. These behaviors are
indicative of early development in ToM. Children follow another
agent’s gaze at approximately 14 months of age, move to acquire
visual information, and visually confirm (check back and forth)
that the other agent is experiencing the same reality as
themselves*”. By 14-18 months, the infant begins comprehending
the mental states of desire, intention, and the causal relationship
between emotions and goals through gaze direction™. Around the
ages of 3-4, children begin to comprehend the differences
between their own beliefs and knowledge and those of others, and
thus begin to comprehend false beliefs; however, this ability does
not become fully stable until the ages of 5-6". Later in the
development trajectory® is the establishment of second-order
ToM, which entails predicting what one person thinks or feels
about what another person thinks or feels™*.

Intent. Among all the cognitive components of ToM, we
concentrate on the intent component and examine the evidence of
the development of human intent in greater depth. Since humans
can inversely infer the underlying intents of others through social
contact and act to fulfill those intents based on their beliefs and
desires, intent may be the most crucial component of ToM". In
fact, research has shown that humans do not encode the entirety
of action details but rather observe and interpret actions in terms
of their intentions and store these interpretations for later
retrieval”. As a fundamental organizing principle that regulates
how we comprehend one another and act in the environment, the
concept of intent has been awarded a central position within social
intelligence and should thus be an essential component of future
AL

The developmental psychology literature indicates that six-
month-old infants view human actions as goal-directed
behavior™. By the age of 10 months, infants segment continuous
behavior streams into discrete units that correspond to what
adults would perceive as distinct goal-directed acts®”'. After
their first birthday, infants begin to comprehend that an agent
may explore multiple plans to achieve a goal and choose one
based on environmental conditions™". 18-month-old children can
deduce and reproduce an action’s intended purpose, even if the
activity frequently fails to achieve the aim"”. In addition, infants
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can replicate behaviors rationally and effectively based on an
evaluation of the environmental restrictions, as opposed to just
duplicating movements, indicating that they understand the
relationships between the environment, action, and underlying
intent"”,

Typically, intentions are hierarchically arranged across
extensive spatiotemporal ranges as a sequence of goals”. Infants
are already capable of perceiving intentions on multiple levels,
including concrete action goals, higher order plans, and
collaborative goals"*. Young children can offer assistance based
on the inferred intentions of others derived from observing their
behaviors (including failed efforts)™*. Figure 2 depicts a toddler as
young as 18 months old who, upon watching an adult with both
arms full of books repeatedly knocking into a cabinet with closed
doors, infers that the adult intends to store books inside the
cabinet and then walks over to open the cabinet for the adult"*.

Categorization. Understanding ToM’s categorization may also
assist our understanding, given that ToM is a vast topic of a
general system. Cognitive ToM emphasizes explicit perspective-
taking, representing, and strategic reasoning regarding another
person’s beliefs, intentions, and generating causal inferences and
predictions of the other’s behavior. In contrast, affective ToM is
more associated with the representation of emotional states and
feelings and typically does not emphasize goal states or valuations
of possible actions™; Roiser and Sahakian"” employ the words
cold cognition (unemotional) and hot cognition (emotion-laden).
Cognitive ToM can be further divided into ToM for motivation
(ie., another organism’s valuation, intention, purpose, and goal)
and ToM for knowledge (i.e., another organism's belief states or
taught schemas/scripts)®.

Individual differences in cognitive strategies are also present™.
The theory-theory method™ and simulation-theory approach”
are examples of these diverse ToM strategies. The theory-theory
approach may be based on a set of intrinsic rules or on causal and
probabilistic reasoning models, which may be analogous to cold
cognition™ in which mental states are inferred through
intellectual processes. The simulation-theory approach relies on
the individual’s own motivations and deductive reasoning".

Challenges. Despite the many approaches used to investigate
ToM (such as behavioral analysis, neuroimaging, and neural
signal analysis), a coherent picture of what ToM is, how humans
and other species engage in it, and what neurological systems
contribute to its functioning is still largely unknown""".

2.3 Social interaction

We continue by introducing several concepts and significant
studies of social interaction in human social intelligence. Studying
social cues, phenomena, rules, and mechanisms in human social
interaction could equip ASI with more sophisticated human-like
communication and collaboration capabilities.

Social cues. Whiltshire et al"” defined a taxonomy of social
cues and signals, which includes the following five categories of

-
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Fig.2 Altruistic helping in human infants. Human infants as young as 18
months readily help others achieve their goals in a range of contexts,
requiring both an understanding of others' goals and an altruistic desire to
assist!*,
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social cues: paralinguistic (voice prosody and non-language
sounds), facial expression (motion and position of facial muscles),
gaze (motion and position of the eyes and predicted sight-line),
kinematics (motion, position, and posture of the body), and
proxemics (use of interpersonal space)™”.

Gaze communication. Psychological evidence"” suggests that
eyes are stimuli with distinct “hardwired” neural pathways in the
brain for their interpretation. Humans have the unique capacity to
infer the intentions of another based on gazes. Gaze
communication is a primitive form of human communication
whose underlying social-cognitive and social-motivational
infrastructure serve as a psychological platform upon which
diverse linguistic systems might be constructed™". Thus, gaze
communication plays a crucial role in expressing concealed
mental states and enhancing verbal communication in social
interactions™.

Joint attention. Fan et al’” thoroughly delineated two
hierarchical layers of human gaze communication dynamics:
atomic-level and event-level. Event-level gaze communication
refers to high-level, complex social communication events, such as
non-communicative, mutual gaze, gaze aversion, gaze following,
and joint attention. Each gaze communication event is a temporal
composite of a few gaze communications at the atomic level.
Atomic-level gaze communication describes the granular
structures of human gaze interactions, including single, mutual,
avoid, refer, follow, and share.

Joint attention is the most advanced sort of gaze
communication, as it requires two agents (1) to have the same
intention to share attention on common stimuli and (2) to be
aware that they are sharing a common ground"”. Typically, joint
attention requires a mutual gaze to establish a communication
channel, a refer gaze to direct attention to the target, a follow gaze
to examine the referred stimuli, and a final mutual gaze to
guarantee that the experience is shared"">"”. In addition to this top-
down approach that forms joint attention, there is also a bottom-
up approach whereby two agents are drawn to the same stimuli
and are familiar with one another. At 48 months of age, infants
develop joint attention with mental attribution to represent their
own perception, that of an agent, and the object"'”. The formation
of shared attention is a vital initial step toward social interaction
and imitation, a predecessor to ToM, and the basic foundation of
social intelligence*".

Pointing. In social communication, pointing is another
essential social cue. According to Tomasello", pointing is one of
the earliest forms of communication exclusive to the human
species (the other is pantomiming). Pointing is also an indicator of
particular cognitive abilities, such as being an intentional actor and
having ToM"". Bates et al."” and Brinck!” are credited with
introducing the distinction between imperative pointing and
declarative pointing. Declarative pointing is primarily inter-
subjective with a signaling function, whereas imperative pointing
is based on behaviorally motivated regularities and is used to
request the addressee to do something for the subject.

Because the recipient must use context to imagine, discern, and
reason about the communicator's communication intentions, the
interpretation of pointing is highly context-dependent.
Tomasello™ presented an intriguing example (see Fig.3): one
agent points to a bicycle outside the library to her companion, and
depending on the environment, this pointing gesture could have
entirely different communication intentions. The common
ground between agents is an essential element of social
communication and collaboration. All human communication,
including linguistic communication, is only possible when the
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Context Intent

A and B mutually know that
the bicycle belongs to B's
boyfriend C.

“C is in the library. Let’s go to
find him! ”

A and B mutually know that
B broke up with C yester-day.

(&)
o) B

L
Fig.3 Importance of context in social signal interpretation™. Two girls
spot a bicycle outside the library, and one of them, A, points it out to the
other, B. Given that A and B are aware that the bicycle belongs to B’s
boyfriend C, B could take A’s statement as “C is at the library; let’s go find
him!” Given that A and B are aware that B broke up with C yesterday, B
could understand A’s statement as “C is already in the library, therefore we
should probably avoid it.”

“C is already in the library, so
perhaps we should skip it.”

-,
~g

agents involved have established a common ground composed of
shared attention, shared experience, and common cultural
knowledge.

Levinson'*' developed the concept of interaction engine, which
allows communication intentions to be conveyed and recognized
in both linguistic and nonlinguistic encounters. This interactive
nature substantially impacts how young children coordinate social
interactions with peers'”. This article does not cover verbal
communication studies. Nonetheless, it is essential to note that the
basic skills required for effective language communication could
be derived from the more rudimentary structures provided here
for action control, nonlinguistic communications, and joint
actions”.

Cooperation. Cooperation is a type of social interaction that is
more complex than simple communication, as it requires a
psychological infrastructure of shared intentionality. This
infrastructure is comprised of two crucial factors: (1) social-
cognitive skills for creating common conceptual ground with
others, such as joint attention and joint intention, and (2)
prosocial motivations and norms to help and share with others™.

Cichocki and Kuleshov'*! examined the precise distinctions
between the four notions of communication, coordination,
cooperation, and collaboration. By this rigorous definition, com
refers to the exchange of information between agents,
coordination refers to the alignment of multiple agents towards
the achievement of specific common goals through the efforts of
individual agents, cooperation means that each individual
agent/robot exchanges relevant information and resources in
support of each other’s goals, rather than a shared common goal,
and collaboration requires agents to exchange information and
knowledge in support of a shared task.

Tomasello"” presents a comprehensive analysis and discussion
of cooperation. According to his idea of collaboration, “shared
cooperative actions” have two essential characteristics: (1) the
participants have a joint goal in the sense that we (in mutual
knowledge) do X together; and (2) the participants coordinate
their interdependent roles—their plans and sub-plans of action,
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including helping one another as needed in their respective roles.
The agents engaging in the cooperation are in We-mode instead
of I-mode, i.e., they are imagining a “We”."*""*! Tomasello"”" also
proposed a dual-level attentional structure (the shared focus of
attention at a higher level, differentiated into perspectives at a
lower level) and a dual-level intentional structure (shared goal
with individual roles), arguing that the former is directly parallel
to the latter and may ultimately derive from it. Fig. 4 illustrates the
core idea.

2.4 Summary

This section provides a glimpse into the realm of human social
intelligence from the perspective of cognitive science, covering
three essential topics: social perception, theory of mind, and social
interaction, with growing social interactivity and cognitive
complexity. For social perception (Section 2.1), we have explored
(1) two most significant concepts (i.e., animacy and agency), (2)
what may be the most fundamental, distinguishing, and
determining aspect of social perception, and (3) where social
perception fits within the human cognitive mechanism. Regarding
ToM (Section 2.2), we have discussed its evolution and defining
traits. Specifically, we have investigated (1) the findings of one of
ToM’s most essential components, and (2) the classification of
ToM, and (3) its applied cognitive strategies. As for social
interaction (Section 2.3), we (1) provided a detailed analysis
spanning several most important aspects of social interaction (i.e.,
gaze communication, joint attention, pointing, cooperation), (2)
discussed why these problems are significant, and (3) the theory
underlying the social interaction.

It is essential to highlight that these three fundamental aspects
of human social intelligence are not isolated but are inextricably
linked. Social perception is the foundation for the formation of
ToM; they both play crucial roles in human social interaction.
Only with well-functioning abilities of social perception and ToM
can humans interpret the latent meaning of social cues,
understand other agents’ mental states (e.g., belief and intent),
and cooperate tacitly in a shared task, which are the requirements

Individual perspective and role

“WNE”

Shared attention and goal

Shared cooperative activities

1. Social-cognitive skills
2. Prosocial motivations and norms

Fig.4 A theory of cooperation by Tomasello"”. Agents engaged in
cooperation think and act in We-mode rather than I-mode. They have a
joint goal and coordinate their roles. For shared cooperative tasks, social-
cognitive skills and prosocial incentives and norms are two crucial
components™.
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of ASL In the following section, we describe the computational
efforts devoted to these three aspects with a fourth aspect, the
social robot and cognitive architectures.

3 Artificial Social Intelligence

In this section, we introduce social intelligence from a
computational perspective and highlight some computational
works on social perception (in simulated and real-world
scenarios), ToM, social interaction (i.e., social communication and
cooperation), and social robot. The first three parts are in the
same order as in the last section; we add a subsection on social
robot and cognitive architectures because this field encompasses
the other three aspects of social intelligence and leads to the
development of future applications.

3.1 Social perception in simulated scenarios

Since humans possess an innate ability to perceive social cues
from extremely simple stimuli, we investigate ways to
computationally model social perception in simulated scenarios,
akin to the Heider-Simmel stimuli introduced in Section 2.1.

Shu et al" present a unified theory that describes the
interrelationships between the perception of physical and social
events (see Fig. 5). They employed a simulation-based approach to
generate various animations depicting rich behavioral patterns.
Through human studies, these animations reveal that the
perception of dynamic stimuli transitions gradually from physical
to social events and vice versa. In addition, they devise a learning-
based computational framework to account for human
judgments. Specifically, the model learns to identify latent forces
by inferring a family of potential functions capturing physical laws
and value functions of agent goals, thereby projecting the
animations into a sociophysical space with two psychological
dimensions: an intuitive sense of whether physical laws are
violated and an impression of whether an agent possesses
intentions to perform goal-directed actions.

Tang et al'® investigate the problem of simultaneously
perceiving physics and mind using a leash-chasing display, in
which a disc (“sheep”) is being chased by another disc (“wolf”)
that is physically constrained by a leash tied to a third disc
(“master”). They discover that (1) an intuitive physical system,
such as a leash, can significantly mitigate the detrimental effects of
spatial deviation and the diminishing objecthood on perceived
chasing, thereby enhancing its robustness, and (2) a mutual
dependency exists between physics and mind, where disrupting
one will inevitably impair the perception on the other, supporting

Object-object

Human-object

a joint perception of physics and mind.

Flatland is a new experimental paradigm introduced by Shu
et al."” for exploring social inference in physical situations. Results
demonstrate that human interpretations of interactive events in
Flatland can be accounted for by a computational model that
combines inverse hierarchical planning with a physical simulation
engine to reason about objects and agents.

Shu et al."*? examine the perception of social interaction using
decontextualized motion trajectories, in which stimuli are
extracted from drone-recorded aerial films of a real-world setting.
To account for human judgments of interactiveness between two
moving dots and the dynamic change of such judgments over
time, they construct a hierarchical model that represents
interactivity using latent variables and learns the distribution of
critical movement features that signal potential interactivity.
Intriguingly, the model can generalize to handle the original
Heider-Simmel animations”. In addition, the generative model
can also synthesize decontextualized animations with a controlled
degree of interactiveness. The temporal parsing of trajectories and
the conditional interactive fields for each sub-interaction are
depicted in Fig. 6.

To investigate the cognitive architecture of perceived animacy,
Gao et al.™*" devise Bayesian models that integrate domain-specific
hypotheses of social agency with domain-general cognitive
constraints on sensory, memory, and attentional processing. The
proposed model posits that perceived animacy combines a bottom-
up, feature-based, parallel search for goal-directed movements
with architecturally distinct processes that make perceived
animacy fast, flexible, and cognitively efficient. By distinguishing
target agents from distractor objects in the “wolf-chasing-sheep”
setting, they demonstrate that a Bayesian ideal observer model
may explain the efficacy of human perceived animacy with
realistic cognitive constraints.

3.2 Social perception in real-world scenarios

In addition to simulations, we further demonstrate computational
modeling of social perception in more challenging real-world
situations.

Fan et al"™ investigate the topic of inferring shared attention in
their collected third-person social scene video dataset VideoCoAtt
by employing a spatiotemporal neural network utilizing human
gaze directions and potential target boxes extracted from the
context. In their subsequent study”” (see Fig.7), the authors
systematically ~investigate the subject of human gaze
communication by constructing spatiotemporal graphs for real-
world social scenarios in the collected VACATION video dataset.
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Fig.6 Perception of human interaction from motion trajectories. The
bottom depicts the motion trajectories. The colored bars in the middle
represent the temporal parsing of the trajectories in terms of the sub-
interaction types (S). The top row depicts the change within a conditional
interactive field (CIF) in sub-interactions as the interaction progresses,
where the CIF represents the expected relative motion pattern conditioned
on the motion of the reference agent. Reproduced from Ref. [133] with
permission.

They devise a graph neural network and an event network for the
prediction of gaze communication at the atomic and event levels,
respectively.

To jointly infer human attention, intention, and task from
videos, Wei et al™ introduce a hierarchical model of human-
attention-object (HAO) and a beam search algorithm. According
to their definition, the intention consists of the human pose,
attention, and objects, whereas the task is represented as a series of
intentions. Xie et al."* offer an unsupervised method for localizing
functional objects and predicting human intents and trajectories
from surveillance footage of public places. Agents are influenced
by the attractive or repulsive “fields” of functioning objects,
referred to as “dark matter” (see Fig. 8). In addition to estimating
the agent’s intent, the model can also derive the agent’s trajectory
via agent-based Lagrangian mechanics.

Holtzen et al."” present a method that enables robots to infer a
person's hierarchical intent from partially observed RGB-D videos.

They represent intent as a novel hierarchical, compositional, and
probabilistic And-Or-Graph structure that describes a relationship
between actions and plans. Human intent is inferred by reverse-
engineering a person’s decision-making and action-planning
processes under a Bayesian probabilistic programming
framework. Experiments conducted in a 3D environment reveal
that the inferred human intent (1) corresponds well with human
judgment, and (2) provides useful contextual cues for object
tracking and action recognition.

3.3 ToM

The computational modeling of ToM may concentrate on
different components, such as belief, intent, and desire. Gonzalez
and Chang"* divide computational models of ToM into several
broad categories, including Game ToM"”, Observational (RL)"*,
Inverse RL™, and Bayesian ToM'”. These models contain
modules for representing the goals and desires of an agent,
inferring the mental states of other agents (e.g., beliefs, goals,
desires, intentions, and feelings), and integrating these goals and
mentalizing computations to generate optimal policies.

We start this section with some of the most representative
studies on different ToM components and modeling methods.
Yuan et al' jointly infer object states, robot knowledge, and
human beliefs using parse graphs, which accurately identify
human (false-)beliefs. Fan et al."*! (see Fig. 9) incorporate different
nonverbal communication cues (e.g, gaze, human poses, and
gestures) to infer agents’ mental states based solely on visual
inputs. By aggregating beliefs and physical-world states, their
approach effectively forms five minds during the interactions
between two agents. In particular, they construct a common mind
to avoid the infinite recursion commonly used in prior works. In
addition, they devise a hierarchical energy-based model that
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Fig.7 Human gaze communication dynamics. Fan et al." systematically study the dynamics of human gaze transmission at two hierarchical levels: the atomic
level and the event level. Atomic-level gaze communication describes the granular architecture underlying human gaze interactions. Event-level gaze
communication refers to complex social communication at the highest level. Each gaze communication event is a temporal composition of several gaze

communications at the atomic level. Reproduced from Ref. [115] with permission.

Fig.8 The “dark matter” that influences human trajectories. In this example, people driven by latent needs move towards functional objects (i.e., “dark
matter”) that can satisfy their needs. Reproduced from Ref. [136] with permission of IEEE, © 2017.
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Fig.9 Triadic belief dynamics in nonverbal communication*. In five minds, three sorts of communication events emerge from social interactions (bottom)
and causally construct agents' belief dynamics (top). Reproduced from Ref. [144] with permission.

simultaneously tracks and predicts social cues, social
communication events, and belief dynamics in five minds.
Arslan™ investigate how 5-year-olds choose and revise reasoning
strategies in second-order false belief tasks by constructing two
computational cognitive models of this process: an instance-based
learning model and a RL model. Oguntola®” develop an
interpretable modular neural framework for modeling the
intentions of other observed entities, demonstrating the model's
efficacy in a Minecraft search and rescue task. They also
demonstrate that, under the right conditions, integrating
interpretability can dramatically improve prediction performance.
Zeng et al'” suggest a brain-inspired model of belief ToM,
leveraging high-level knowledge of brain regions’ functions
relevant to ToM. Although tested on false belief tasks, such
cognitive architecture may be difficult to motivate at the
computational level®.

One stream in ToM is based on Bayesian methods. Baker
et al." investigate the rational quantitative attribution of beliefs,
desires, and percepts in human mentalizing from agents'
movement in a local spatial environment (see Fig. 10). They devise
a Bayesian theory of mind (BToM) model in a partially observable
Markov decision process (POMDP) setting for rational planning
and state estimation, which extends classical expected-utility agent
models to sequential actions in complex, partially observable
domains. In two experiments, their model accurately captures the
quantitative mental-state judgments of human participants by
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Fig. 10 Experimental scenario and model schema for rational quantitative
attribution of beliefs, desires, and percepts in human mentalizing"*. (a) In
the experimental scenario, the agent leaves their office where they can see the
K truck (Frame 1). Next, the agent walks past it to the opposite side of the
building, where the L truck is parked (Frame 2). Finally, the agent returns to
the K truck (Frame 3). The bar charts illustrate the model and human
prediction of the agent's utility (i.e., which truck is the agent's preference)
and belief (i.e., which truck the agent initially believed to be parked on the
other side of the building). (b) The folk-psychological schema for ToM,
formulated as a generative action model based on the solution of a POMDP.
In this generative model, mentalizing is formulated as Bayesian inference
about unseen variables (beliefs, desires, perceptions) conditioned on
observed actions. Reproduced from Ref. [148] with permission of Nature
Publishing Group, © 2017.
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alternating numerous stimulus parameters over a large number of
stimuli. A family of simpler non-mentalistic motion features
reveals the value contributed by the model's component. BToM
appears particularly well-suited to model the inherent uncertainty
required to infer unobservable mental states and to capture the
judgments of human participants'*”. However, the scalability of
BToM is often problematic, only tested in scenarios that are
typically simple™.

RL represents another stream in ToM computational modeling;
Wen et al'™ and Moreno et al'™ are examples of recursive
reasoning models for higher-order ToM in a RL framework.
According to Skinner’s theory, Hakimzadeh™" contend that RL
plays a crucial role in human intuition and cognition, and theories
such as the language of thought hypothesis, script theory, and
Piaget’s theory of cognitive development offer complementary
approaches. They present a computational building block that
supports the principles of productivity, systematicity, and
inferential coherence for Piaget’s schema theory. Reference [152]
point out that ToM can indeed be formulated as an inverse
reinforcement learning (IRL) problem, where expectations for
how mental states produce behavior are represented by a RL
model. By simulating the hypothesized beliefs and desires, an RL
model predicts the actions of other individuals, and the mental-
state inference is accomplished by inverting this model. Overall,
RL models, such as IRL and multi-agent reinforcement learning
(MARL), are highly scalable but computationally intensive and
less interpretable.

Under a POMDP setting, Yuan et al’” argue that
misalignment of values could impede group performance in
cooperation; hence, communication plays a vital role during
which a robot needs to serve as an effective listener and an
expressive speaker. In the context of value alignment, they
investigate how to foster effective bidirectional human-robot
communications and propose an explainable artificial intelligence
(XAI) system in which a collection of robots anticipates human
values by using in-situ feedback while explaining their decision-
making processes to users (see Fig. 11). Their XAI system
integrates a cooperative communication model to infer human
values associated with multiple desirable goals, mimic human
mental dynamics, and predict optimal explanations using
graphical models.

A related direction is game ToM™, which leverages concepts
like Nash equilibria™. de Weerd et al."™**"* employ a combination
of computational agents and Bayesian model selection to
determine the extent to which individuals use higher-order ToM
reasoning in a particularly competitive game known as matching
pennies. Their findings suggest that humans do not primarily
employ their high-order ToM abilities. In a case study of the paper-
scissors-rock game, Kanwal et al."*! develop a ToM-based agent,
capable of using gestures for non-verbal communication.
Tejwani"” formalize a theory of social interactions, encompassing
cooperation, conflict, coercion, competition, and trade, by
extending a nested Markov decision process (MDP) where agents
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Fig. 11 Bidirectional human-robot value alignment"”. In a collaboration task, the values—the significance of various goals—are represented by pie charts. In
each interaction round, the machine receives signals from the physical environment and processes observations to generate an abstract environment state. Next,
the machine offers the processed map together with movement proposals and explanations to human users, who accept or reject the proposals according to the
given human values and the current state of the map. Finally, the machine updates its estimation of human values based on the user’s feedback and takes action

based on the new values. Reproduced from Ref. [153] with permission.

reason about arbitrary functions of each other's hidden rewards.
In a follow-up study, Tejwani"” expand the reward function to
incorporate both physical and social goals. Their method permits
more complex behaviors, such as politely hindering or
aggressively assisting another agent. Panella and Gmytrasiewicz"”
devise a new computational framework, interactive partially
observable Markov decision process (I-POMDP), wherein the
agent does not explicitly model the beliefs and preferences of other
agents but rather represents them as stochastic processes
implemented by probabilistic deterministic finite-state controllers
(PDFCs). Using Bayesian inference, the agent updates its belief
over the PDFCs models of other agents.

Deep learning (DL) is an effective means to approximate
complex ToM computations. Aru et al examine the difficulties
associated with applying DL to ToM problems. Although the
architectures and learning algorithms are not the ultimate brain-
like learning system, they argue that DL remains a solid solution
in large-scale tasks and could provide scientific models to aid our
comprehension of higher mental functions. They also point out
that the problems of existing DL methods are taking shortcuts
rather than learning ToM; the system may learn a much simpler
decision rule (see Fig. 12). DL for ToM is explored predominantly
with deep reinforcement learning (DRL), wherein the agent's
experiences and objectives are intertwined. Usually, the task's
reward structure determines what the agent accomplishes and
learns. However, in the case of ToM, there may not exist a
straightforward cost function or reward structure that would
necessitate the emergence of ToM. Crucially, Zhao et al'®
demonstrate in a multi-agent setting that rewards may simply be a
byproduct of ToM, not playing a causal role in establishing
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Fig. 12 ToM vs shortcut in artificial agents solving a perspective-taking
task. In the left example of an environment state, the dominating agent is
denoted by the red square, and the subordinate agent by the green square.
The colored dashed lines represent the visual fields of the corresponding
agents. If the solution used ToM, the agent in the green square should infer
that the dominant agent cannot see the banana, hence pursuing it. In
comparison, in the shortcut solution, the agent merely considers the
dominating agent's orientation and distance without inferring its
perspective. Reproduced from Ref. [69] with permission of Springer, © 2023.

effective coordination.

3.4 Social communication and cooperation

Computational endeavors in modeling social interaction primarily
focus on social communication (both nonverbal and verbal) and
cooperation.

Nonverbal communication. Jiang et al“) model pointing as a
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communicative act between agents who have a mutual
understanding that the pointed observation must be relevant and
interpretable; the act of pointing is an invitation to jointly attend
to an object, which elicits mutual inference between agents of each
other's minds [67]. The proposed model measures relevance by
defining a Smithian value of information (SVI) as the utility gain
of a pointing signal. By integrating SVI into rational speech act
(RSA), their pragmatic model of pointing permits contextually
flexible interpretations. Tang et al.” demonstrate that agents can
successfully and robustly employ bootstrapping to converge to a
joint intention from randomness under an Imagined We
framework, leveraging a real-time cooperative hunting task subject
to various setting manipulations. Stacy et al'®’ propose a
computational account of overloaded signaling from a shared
agency perspective, which we refer to as the Imagined We for
communication. Within this framework, communication is a
means for cooperators to coordinate their perspectives, allowing
them to act in concert to achieve shared objectives (see Fig. 13). In
a series of simulations, the model performs effectively under
growing ambiguity and increasing levels of reasoning, highlighting
how shared knowledge and cooperative logic may perform the
majority of the heavy lifting in language.

Verbal communication. Studying social communication using
natural language in the wild is still challenging. Hence, researchers
tend to study verbal communication in a confined domain. Gao
et al.'” devise a novel XAI framework for attaining human-like
communication in human-robot collaborations, in which the
robot builds a hierarchical mind model of the human user and
generates explanations of its own mind as a form of
communication based on its online Bayesian inference of the
user's mental states. A user study using a real-time human-robot
cooking task demonstrates that the generated explanations
considerably enhance the collaboration performance and user
perception of the robot.

Cooperation. Cooperative tasks demand stronger ToM
reasoning in social communication. The notion of ToM-based
communication, which chooses information-sharing actions
based on relevance and estimation of human beliefs"*’, tackles the
question of when and what type of information humans require.
Wang et al" introduce ToM to build socially intelligent agents,
who can communicate and cooperate effectively to accomplish
challenging tasks. These agents determine when and with whom

to reveal their intentions and sub-goals based on the inferred
mental states of others. Poppel et al" study how efficient,
automatic coordination mechanisms at the level of mental states
(intentions, objectives), also known as belief resonance, may lead
to collaborative situated problem-solving. They describe a model
of hierarchical active inference for collaborative agent (HAICA)
that blends Bayesian ToM with a perception-action system based
on predictive processing and active inference. Belief resonance is
realized by allowing the inferred mental states of one agent
influence another agent's prediction beliefs regarding its own goals
and intentions, hence influencing the agent's task behavior
without explicit collaborative reasoning.

3.5 Social robot and cognitive architectures

The social robot is an interdisciplinary research field that requires
comprehensive studies of social perception, ToM, and social
interaction. We expect a social robot to be endowed with cognitive
and affective capabilities, in order to comprehend the feelings,
intentions, and beliefs of human agents, which are not only
directly expressed by the user but also shaped by bodily cues (e.g.,
gaze, posture, facial expressions) and vocal cues (e.g., vocal tones
and expressions)'“. A social robot is expected to (1) develop
adaptive behavioral models'”, (2) be socially adept, (3) establish a
natural, fluent, and effective human-like communication and
interaction with humans"®, (4) establish empathetic relationships
with humans and be perceived as a teammate or a colleague rather
than a tool, (5) offer proactive and parental help based on the
observations and understanding of the human situation, and (6)
build trust with humans®. Understanding robots’ decisions
promotes the growth of trust and is crucial for facilitating contact
between humans and social robots”.

However, there are still many obstacles to overcome before
constructing an ideal social robot"”. It is difficult to incorporate
behavioral adaption techniques, cognitive architectures, persuasive
communication strategies, and empathy into a single solution for
understanding nonverbal phenomena in social interactions, as
contexts are constantly changing. A common limitation of current
research is that researchers have focused on a particular aspect of a
social robot, such as (1) emphasizing a communication strategy,
(2) studying a particular behavior as a response to human action,
or (3) conducting experimental studies that include only partial
factors.
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minds produce predictable and rational joint actions under ToM reasoning, and (3) actions have well-defined expected utilities, derived through joint planning.
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Cognitive architecture. A cognitive architecture, as a software
implementation of a general theory of intelligence, is not a single
algorithm or method tackling a particular problem; rather, it is the
task-independent infrastructure that learns, encodes, and applies
knowledge to produce behavior'”. One of the challenges in
cognitive architecture design is to create a sufficient structure to
support coherent and purposeful behavior, while at the same time
providing sufficient flexibility to adapt to the specifics of its tasks
and environment. ASI in robotic agents relies heavily on the
construction of cognitive architecture, which involves both
abstract models of cognition and software instantiations of such
models". Researchers are working on developing cognitive
architectures that approach a fully cognitive state, embedding
mechanisms of perception, adaptation, and motivation"”. Next,
we briefly introduce three most common cognitive architectures.

Learning intelligent distribution agent (LIDA) cognitive
architecture!™ is an integrated artificial cognitive system that
models a broad spectrum of biological cognition, from low-level
perception and action to high-level reasoning. Two hypotheses
underlie the LIDA architecture and its corresponding conceptual
model: (1) Much of human cognition functions through cognitive
cycles, which are interactions between conscious contents,
memory systems, and action selection, occur frequently (10 Hz).
(2) Cognitive cycles serve as the cognitive atoms of which higher-
level cognitive processes are composed.

Soar. The Soar cognitive architecture’” is composed of
interacting task-independent modules, including short-term and
long-term memories, processing modules, learning mechanisms,
and interfaces between them. Since Soar hypothesizes that
sufficient regularities exist above the neural level to capture the
functionality of the human mind, the majority of knowledge
representations in Soar are symbol structures, with architecturally
maintained numeric metadata biasing the retrieval and learning of
those structures”. Soar also facilitates non-symbolic reasoning via
the spatial visual system, an interface between perception and

working memory.

Adaptive control of thought-rationale architecture (ACT-
R)"" includes modules such as (1) a visual module for
identifying objects in the visual field, (2) a manual module for
controlling the hands, (3) a declarative module for retrieving
information from memory, (4) a goal module for tracking current
goals and intentions, and (5) a central production system to
coordinate these modules. There are buffers within each module
that transmit information back and forth to the central production
system. The architecture assumes a mixture of serial and parallel
processing.

Cognitive architectures in social robots. We now discuss
some notable works that implement various cognitive
architectures in social robots. Wiltshire et al'® discuss the
problem of engineering human social-cognitive mechanisms to
enable robot social intelligence and provide an integrative
perspective of social cognition as a systematic theoretical
underpinning for computational instantiations of these
mechanisms. They also provide a series of recommendations to
facilitate the development of the perceptual, motor, and cognitive
architecture. Breazeal et al'™ provide an integrated socio-
cognitive architecture (see Fig. 14) to endow an anthropomorphic
robot with the ability to infer mental states such as beliefs, intents,
and desires from the observable behavior of its human partner via
simulation-theoretic techniques. Kennedy et al."” describe an
approach known as a like-me simulation, in which the agent uses
its own knowledge and capabilities as a model of another agent to
predict that agent’s actions. They present three examples of a like-
me mental simulation in a social context implemented in the
embodied version of the adaptive control of thought-rationale
architecture (ACT-R) cognitive architecture, ACT-R Embodied
(ACT-R/E), including perspective taking, teamwork, and
dominant-submissive social behavior. Moulin-Frier et al!™
suggest the DAC-h3 architecture, which incorporates a reactive
interaction engine, a number of state-of-the-art perceptual and
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motor learning algorithms, planning capabilities, and an
autobiographical memory. The architecture as a whole drives the
robot’s behavior to solve the symbol grounding problem, acquire
language capabilities, perform goal-oriented behavior, and
articulate a verbal narrative of its own experience in the world.
Franchi et al' present a brain-inspired architecture, the
intentional distributed robotic architecture (IDRA), which aims to
permit the autonomous development of new goals in situated
agents beginning with simple hard-coded instincts.

4 Discussions

4.1 Recent advances in datasets and environments

Datasets and environments are quintessential for developing
modern Al The past few years have witnessed a significant boom
of modern treatment. In this section, we provide a brief review of
recent notable works.

No previous dataset or benchmark has systematically analyzed
physically grounded perception of complex social interactions that
extend beyond short actions (e.g., high-five) or simple group tasks
(ie, gathering), until Netanyahu et al"™. They resemble a
collection of physically-grounded abstract social events (PHASE)
that simulates a wide variety of real-world social interactions by
incorporating social concepts, such as helping another agent.
PHASE is comprised of 2D animations of agent pairs, moving in
continuous space with multiple objects and landmarks, generated
procedurally by a physics engine and a hierarchical planner.

Inspired by intuitive psychology, Shu et al™' present a
benchmark consisting of a large dataset of procedurally generated
3D animations, Action, Goal, Efficiency, coNstraint, uTility
(AGENT), structured around four scenarios (goal preferences,
action efficiency, unobserved constraints, and cost-reward trade-
offs) that probe key concepts of core intuitive psychology.

Puig et al."” introduced watch-and-help (WAH), a challenge
for testing social intelligence in agents, wherein an Al agent is
tasked to help a human-like agent perform a complex household
task efficiently. They build VirtualHomeSocial, a multi-agent
household environment, and provide a benchmark including both
planning and learning-based baselines.

Sap et al.™ proposed a dataset to evaluate language-based
commonsense reasoning about social interactions, including
reasoning about motivation and about emotional reactions™.

Bard et al'™ propose the cooperative and imperfect
information card game, Hanabi, as a challenging benchmark. It
requires reasoning about the beliefs and the intentions of other
players, focusing on the ad-hoc setting where an agent has to
coordinate with a team they encounter for the first time.

4.2 Evaluation protocols

The evaluation of social intelligence is arguably the most
challenging problem in developing ASI. To answer the question
“are we at least making progress towards ASI?”, we need an
account of how the social intelligence of machines should be
measured"”. The evaluation can aid in testing and training
computational models*.

However, the formation of universally accepted criteria for the
design and implementation of ASI benchmarks and the
accompanying evaluation protocols is still in its infancy and
represents a significant barrier to the field's continued progress.
Because human judgments can be ambiguous and difficult to
express, many social intelligence tasks do not include
requirements that can be easily captured using hand-crafted rules.
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Hence, a balanced benchmark should likely involve humans
evaluating the performance of algorithms. Existing approaches for
assessing social intelligence in humans continue to have
shortcomings®’.

The Turing test is a test of a machine's ability to exhibit
intelligent behavior equivalent to or indistinguishable from that of
a human. However, current systems that perform well on these
tests typically do so by employing techniques that are not
generalizable to other problems. Other approaches for assessing
social intelligence competency are often derived from various
sources, such as peer-/superior-/self-ratings and observers’
behavioral assessments*™. Notably, the Animal-AI Olympics"’
is initiated by testing artificial agents on tasks derived directly
from animal cognition research in an effort to establish common
ground.

Typically, the evaluation of ToM in DL is based on the
performance of a task; however, this approach is problematic since
DL systems may exploit shortcuts—they learn to employ simpler
decision rules than recovering the underlying ToM“. An
important aspect of the ASI is to measure cognitive skills,
adaptability, and meta-level learning and reasoning ability rather
than specific problem-solving ability™. Using more abstract
cognitive processes, such as the ability to (1) transfer information
from one domain to another, (2) retain information for extended
periods, and (3) correct errors in performance, may be future
effective strategies for assessing ASI"*.

4.3 Future trends

In this section, we discuss future trends in ASI. We hope these
four directions inspire future works in ASL

A holistic approach. Cognitive and neuroscience research!
shows that while distinct brain regions are involved in specific
tasks, a core network is involved in all ToM tasks, suggesting that
humans take a more holistic approach to social intelligence than
existing computational models, which often focus on a single
aspect of the problem. Through multidisciplinary study spanning
psychology, neurology, cognitive science, computer science,
statistics, and mathematics, future progress could be accelerated.

Learning methods. Infants develop intelligence graduall
This suggests that learning, and in particular lifelong/continuous
learning™’, is a crucial path for developing ASI. The objective of
lifelong/continuous learning is to successively learn a model for a
large number of activities without forgetting the knowledge
acquired from the previous tasks. Other potentially effective
learning strategies include multi-task learning™"'"”, one-/few-shot
learning, and meta-learning™”.

Open-ended and interactive environment. Infants live in a
physical world, full of rich regularities that organize perception,
action, and ultimately thought"*. Infants” intelligence is dispersed
across their interactions and experiences with the physical world,
which serves to stimulate the development of higher mental
functions. In addition, infants behave and learn in a social
environment where more experienced partners facilitate learning
and provide support. An important aspect of human infants'
learning is that they explore; they move and act in extremely
unpredictable, random, and non-goal-directed ways. During
exploration, they uncover new issues and solutions, and
exploration makes intellect open-ended and inventive. Open-
endedness departs from the single-task paradigm to an
unbounded number of tasks, or even no task at all, simply a world
with different possibilities. Open-ended environments could
provide a fruitful playground where agents coordinate, cooperate,
and compete to solve tasks, and learn similar strategies to social

188]

189]

155



CAAI Artificial Intelligence Research

intelligence in humans, and even more complex behavior™'.

Human biases. The development of social intelligence
demands an open-ended setting, yet ToM-like skills would not
spontaneously “pop out” from Al agents playing in such
contexts™. We must also introduce better biases, even structural
biases, as a form of built-in common sense, as there may be
multiple biases and limits in the human brain that facilitate the
acquisition of social intelligence. For instance, there may be innate
biases of attention to the human face, speech, hands, eyes, gaze-
direction, and biological motion, and these early biases ensure that
the infant learns about the components of the world that provide
information about the minds of other people. These biases could
be hard-coded, evolve from interactions with other agents, or be
taught by humans.

5 Conclusion

Although there have been significant advances in Al research, we
are still a long way from obtaining human-level intelligence. ASI is
a crucial missing component for artificial general intelligence
(AGI) on par with humans and symbolizes the future path of Al
Acknowledging ASI as a distinct research area will enhance the
field's awareness and encourage academics to discuss and
investigate the topic's challenging problems. As one of the most
significant promising subfields in AI, ASI requires more
theoretical and computational work from the Al community.
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