https://doi.org/10.26599/AIR.2022.9150007

CAAI Atrtificial Intelligence Research

State of the Art of Adaptive Dynamic Programming and
Reinforcement Learning

Derong Liu"? >, Mingming Ha®, and Shan Xue*

ABSTRACT

This article introduces the state-of-the-art development of adaptive dynamic programming and reinforcement learning (ADPRL).
First, algorithms in reinforcement learning (RL) are introduced and their roots in dynamic programming are illustrated. Adaptive
dynamic programming (ADP) is then introduced following a brief discussion of dynamic programming. Researchers in ADP and RL
have enjoyed the fast developments of the past decade from algorithms, to convergence and optimality analyses, and to stability
results. Several key steps in the recent theoretical developments of ADPRL are mentioned with some future perspectives. In
particular, convergence and optimality results of value iteration and policy iteration are reviewed, followed by an introduction to the
most recent results on stability analysis of value iteration algorithms.

KEYWORDS
adaptive dynamic programming; approximate dynamic programming; adaptive critic designs; neuro-dynamic programming;

neural dynamic programming; reinforcement learning; intelligent control; learning control; optimal control

oriented learning approaches, which allow the agent to

interact with the environment and obtain the
corresponding rewards. The objective of RL methods is to
maximize long-term cumulative return. In the past few decades,
RL has enjoyed rather remarkable successes across a wide range of
domains, involving game artificial intelligence (AI)", COVID-19
border testing”, mobile robotics*", autonomous driving""",
nuclear fusion™, intelligent control"**’, and so forth, which make
the agents possess the strikingly successful machine intelligence
previously thought to be impossible. Therefore, the term of RL has
a broad coverage in areas such as psychology, computer science,
economics, and control community™*’.

In various game AI tasks, board games are the most
representative kind of multistage decision task, where the ancient
Chinese board game Go is most challenging. It has been
intensively studied by AI researchers for many decades.
Researchers have always hoped to develop a learning agent, which
can defeat the human professional opponent in the game Go. The
board of the game consists of a grid of 19 horizontal and 19
vertical lines. Black and white “stones” are alternately placed on
unoccupied cross point by two players. The goal of Go is to
occupy an area larger than that occupied by the other player. At
the beginning of Go, there are roughly 360 options for each of the
two players to place their stones. Since this game has a large
number of potential board positions, the search space for Go
grows exponentially and the number of legal moves per position
quickly becomes larger than the total number of atoms in the
whole universe™. With this many states result in so many
outcomes any given game can move in, it is impossible for
programs ever to experience more than a small fraction of them

Reinforcement learning (RL) methods are a kind of goal-

even if we have massive computing power.

The Monte Carlo tree search approach has been used often to
solve the single-agent sequential decision problems. For computer
Go, only some of the possible sequences at each step are sampled
and the agent chooses an appropriate move between different
possible moves rather than trying by brute force computation of
every possible ones.

An Al company in London, namely Google DeepMind, has
achieved remarkable results in applying RL techniques. In March
2016, the match of a program called AlphaGo, developed by
DeepMind, vs. Lee Sedol made worldwide headline news at that
time, and has been a milestone in the quest of AL The defeat over
a human opponent by a machine has also aroused huge public
interests in Al technology around the world™. Instead of
searching various sequences of moves to learn, AlphaGo makes a
move by evaluating the value of the current position on the board.
Such an evaluation of the current state was made possible by
combining the deep learning capabilities of neural networks
(NNs). Position evaluation plays a crucial role in the success of
AlphaGo. It is used to estimate the optimal cost function. Such
ideas have been applied usefully to computer games by many
researchers, such as backgammon (TD-Gammon)**, checkers™,
othello™, and chess™. Many of these computer games involve the
use of an RL technique called temporal-difference (TD) method,
in particular, the TD(A) method which was used in AlphaGo and
TD-Gammon to evaluate the current position. An agent trained
by TD-Gammon has possessed a grandmaster level in the
backgammon™*!. Moreover, AlphaGo first defeated European Go
champion Fan Hui (professional 2 dan) by 5 games to 0", then
won world Go champion Lee Sedol (professional 9-dan) by 4
games to 1%, and defeated world's no. 1 Go player Ke Jie

1 Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2 Department of Electrical and Computer Engineering, University of Illinois at Chicago, IL 606071, USA

3 School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

4 School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

Address correspondence to

© The author(s) 2022. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/).

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93-110 93

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26599/AIR.2022.9150007

CAAI Artificial Intelligence Research

(professional 9-dan) by 3 games to 0.

The success of RL depended on NN's powerful representation
capabilities . The deep NN structure used in AlphaGo has 13
layers. Even though there were a large number of reports on the
application of RL and related approaches for Go™, it is only with
AlphaGo" that deep NNs were adopted to establish the value
networks to achieve high evaluation accuracy. Position
evaluation™*** and deep learning’>*! have been applied to
programs to play the game of Go, however, none of them realized
the level of success by AlphaGo®. The success of AlphaGo has a
far-reaching impact on the research in Al Based on the core
structure of AlphaGo, AlphaGo Zero is only given the game rules
in the sense that it learns from self-play, which has defeated
AlphaGo by 100 games to 0. Afterwards, AlphaGo Zero was
generalized into a single AlphaZero algorithm", which based
solely on RL, without human data, guidance, or domain
knowledge beyond game rules. In various challenging tasks such
as chess and shogi (Japanese chess), as well as Go, AlphaZero can
achieve a superhuman performance. The tasks of single-agent
environments and two-player turn-based games have been
intensively investigated by researchers. For the case containing
multiple agents, different agents independently learn and act to
cooperate and compete with each other. For example, it is
demonstrated that the trained agent can achieve human-level and
even grandmaster-level performance in some challenging three-
dimensional multiplayer video games®®. More exciting result is
the accelerating fusion science through learned plasma control™,
which reveals that the RL technique possesses the potential to
accelerate scientific and technological progress.

RL is widely considered as an effective technique in handling
optimization problems by applying the principle of optimality
derived from dynamic programming (DP). Especially, RL is used
often in optimal control problems in control systems community.
Significantly, DP provides a foundation for understanding RL.
The great majority of RL algorithms can be considered as attempts
to achieve the similar effect as DP, with less computation and
without establishing a sufficiently accurate environment model.
One class of RL methods is built upon the actor-critic structure,
namely adaptive critic designs'”, where a critic component is used
to evaluate the value of the current state and adopted action while
an actor component applies an action or control policy to the
environment. In the vast majority of control systems, since the
state and control input spaces are continuous, it is necessary to
introduce the function approximation techniques. The
combination of DP, function approximators, and actor-critic
structure results in the adaptive dynamic programming (ADP)
algorithms.

Although both RL and ADP provide approximate solutions to
DP with similar ideas and they have close relationship with each
other, studies in these two directions have been somewhat
independent™ in the past. It has been a recent trend to regard the
two together as ADPRL (ADP and RL)"*~". In this paper, starting
from the basic Markov decision process, the classic RL algorithms
are revisited. The connections and differences between Markov
decision process and optimal control for discrete-time nonlinear
systems are summarized. As mentioned in Ref. [49], RL is strongly
connected from a theoretical point of view with direct and indirect
adaptive optimal control methods. Moreover, compared with
existing surveys™ ™, several key steps in the recent algorithm
schemes and theoretical developments of ADPRL for discrete-
time optimal control are mentioned with some new perspectives,
which includes some new theoretical results of convergence rate,
stability, and new iterative framework. A brief overview of RL will

94

be provided in the next section, followed by a more detailed
overview of ADP. Its classic frameworks and iterative schemes are
also revisited.

1 Reinforcement Learning

RL methods mainly involve the value-based algorithms and the
policy-based algorithms, where the representative algorithms of
the value-based approaches include policy iteration (PI), value
iteration (VI), TD learning, deep Q-network and so forth while
the classic policy-based methods involve stochastic and
deterministic policy gradient methods, REINFORCE, trust region
policy optimization, proximal policy optimization, etc. Note that
actor-critic methods belong to both value-based method and
policy-based method, which combine the advantages of policy
evaluation and policy gradient. The classic research results in RL
can be found in the book by Sutton and Barto"” and its references.
The central idea of the value-based method in RL is certainly the
TD method"*.. The typical algorithms of TD learning are the on-
policy™ Sarsa and the off-policy’ Q-learning*. The area of RL is
more complete and more mature™* than ADP.

In a typical RL problem, an agent sequentially takes an action to
interact with its environment. In general, this process is formally
modeled as Markov decision process. An RL system typically
consists of the following four components: {S, A, R, F}, where S,
A, R,and F: SxA — S are the set of states, the set of actions,
the set of scalar rewards, and the state transition function (or
probability), respectively. A policy is denoted as 7, which
represents a mapping 7: S — A. At any given time ¢, the agent in
current state s, € S takes an action acA accordings to a
deterministic or stochastic policy =, ie, a,=mn(s,) or
Pr(a,|s,) = n(a,|s,), transitions to the next state s' according to the
state transition function s, =F(s;,a,) or probability
Pr(s,, =¢s,=s,a,=a), and at the same time, receives a
reinforcement signal, which is also called the immediate reward,
denoted by 7,,, = (s, a,,s.,1) € R. The goal of RL is to find a
policy to maximize the discounted accumulated reward, namely

the total return denoted by G, = Z Y**11141» Starting from an initial

k=0
state s,. The corresponding policy is the optimal policy.
Value-based RL methods always involve estimating some kind
of value functions. Under a policy 7, a value function estimates
the value of a given state s, which is formulated as

_ k
Si=s Zy r(5t+kaat+k7$,+k+1)

k=0

Vi(s) = Z AL)
k=0

st=s

where 0 <y <1 is a discount factor, a, = n(s;), and s, =
F(sy,ai). V(s) is called the state-value function for policy 7.
Another value function for policy 7 is often employed to evaluate
the value of taking action a in a given state s, namely the action-
value function, which is defined as

_ k
Qn(S,a) = ZY Tkt sp=s,ar=a’
k=0

_ k
S—sai—a E b r(st+k7al+k7si+k+l)
k=0

In different RL tasks, the optimal policy denoted by 7* may not
be unique. There might exist multiple optimal policies to make the
accumulated reward achieve maximization. Their same optimal
state-value function is given by
*On-policy learning estimates the value of a policy while using it for control.
"Off-policy learning is defined as evaluating one policy while following
another.

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93—-110

State of the Art of Adaptive Dynamic Programming and Reinforcement Learning

Vi(s) = stip { V”(s)}]

And the same optimal action-value function is expressed as
Q' (s,a) =sup{Q(s;a)}.

According to the Bellman’s principle of optimality, the state-
value and action-value functions can be rewritten as their
corresponding Bellman optimality equations (Bellman equations),
respectively, given as follows:

V(s) = max {r(s.a.5) + y V'(5)} W
and
Q(s.0) = r(s.a.9) + ymax {Q' (<)} @)
The optimal policy is determined by
w(5) = argman {r(s,0.) +y V" (<)}

or

7 (s) = argmax Q*(s,a).

Note that the above is described for deterministic systems.

In what follows, how to obtain the state-value function V" for
an arbitrary policy 7 is presented in detail. The process of
estimating the value function of 7 is called policy evaluation,
which is expressed as

Vi(s) =r(s,a,8)+y V*(s) =
r(s,7(s),F(s,7m(s))) +y V'(F(s, 7(s)))
The goal is to solve for V" from Eq. (3), ie., to determine a
function V7(-) that can balance the above equation for all s.

Initialized by an arbitrary initial estimation V,(-), the value
function can also be computed by iterative policy evaluation:

Vi+1(5) - T(S, a>5/) +y V,-(S/) (4)
where i = 0,1,2,... is the iteration index. The value function V"(s)
is obtained as V*(s) = lim V(s), Vs, under the assumption that the
iteration in Eq. (4) is convergent.
After the policy evaluation is finished and V*(s) is obtained, an
improved policy can be computed by

(s) = argmaax{r(s,a,s’) +yVr(s)} (5)

3)

The PI procedure involves the alternating iteration between
policy evaluation in Egs. (3) and (4) and policy improvement in
Eq. (5). With this operation, the optimal policy can be
determined.

Another algorithm to obtain the optimal policy is to use the VI
scheme. For each iteration step i, the state-value functions V; can
be computed by the following value function update:

Vin(s) = max{r(s,a,s) +y Vi(s)} (6)
and policy improvement
Mia(s) = argmax{r(s,a,s') +y Viu(s)} (7)

The iteration process shall continue until V, converges. In
general, the termination criterion | V,,,(s) — Vi(s)| < ¢, Vs, is used
to stop the iteration process, where ¢ is a small positive number.
By doing this, the obtained state-value function satisfies
Via(s) = V*(s). Then, we have 71 (s) &~ 7, (s).

Note that the PI and VI algorithms are usually model-based

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93-110

approaches. For the unknown environment's transition dynamics,
the TD method™ is a remarkable success to estimate the value
function. The TD algorithm is given by

V(s) < V(s) + afro+y Vism) = V(s)] (8)

or

Vin(s) = Vi(s:) + a[ria+y Vi(sen) — Vi(s))] ©)

where a >0 is the step size. Actually, compared with TD(A)
introduced later, the algorithm described in Formula (8) and Eq.
(9) is also called TD(0). Note that the update rule in Formula (8) is
described as the following general formula:

NewValue +— OldValue + StepSize x (Target — OldValue)

which means a step of move towards the “Target”.

In addition, the off-policy TD algorithm, Q-learning®, is an
early breakthrough of the RL methods™. A common on-policy
version of TD method is called Sarsa“**-*, whose name comes
from the fact that the approach employs the quintuple
{St,a, 11,0115 i1} Which was first introduced by Rummery and
Niranjan ", and called modified Q-learning.

TD(A), a more general TD approach®™, has been very
popular®”=*%4The idea of eligibility trace can be applied to
Sarsa*! to generate a new RL algorithm, namely Sarsa(1). The
eligibility trace can also be applied to Q-learning™*.

TD, Q-learning, Sarsa, TD(1), Sarsa(1), and Q(A) estimate the
value functions V(s) or Q(s,a) by using the state or action-state
trajectories derived from the environment. After obtaining the
estimation of the value function, an improved policy can be
determined. This is the procedure how RL solves the Bellman
equation (Egs. (1) and (2)) with model-based and model-free
approaches to obtain approximate solutions.

2 Dynamic Programming for Discrete-Time
Nonlinear Systems

DP method is a classical optimization technique for multistage
decision problems. The traditional DP approaches require a
complete environment information. There are various schemes of
DP““I to handle different systems, such as linear systems or
nonlinear systems, discrete-time systems or continuous-time
systems, deterministic systems or stochastic systems, time-
invariant systems or time-varying systems, etc. The simplest
scheme is a backward computation in time. Since the digital
implementation of manufacturing systems has become a large
trend in the industrialization process and time-invariant nonlinear
systems cover most of the application scenarios, in the following
discussion, we focus attention on discrete-time nonlinear time-
invariant dynamical systems.

Consider the following discrete-time nonlinear systems given

by
X = F(xi, w) (10)

where k=0,1,2,..., x, €R", u, € R" and F: R" x R" — R" are
the discrete-time index, the state vector, the control vector, and
the system function, respectively. Under a given initial state
X, € R", an infinite-length control sequence wu, = (uy,u;,...)
needs to be selected and applied to Eq. (10) to achieve certain
objectives.

Define the performance index (or cost) of Eq. (10) as

95

CAAI Artificial Intelligence Research

](xkvﬂk) :ZkykkU(xivui) (11)
where u, indicates the control input sequence starting at time k,
U(,-) is the positive definite utility function, and y € (0,1] denotes
the discount factor. The function J in Eq. (11) is the cost-to-go of
state x, under the control input sequence u,, which is determined
by the initial time and the initial state. In this case, the cost will
accumulate indefinitely. This problem is called the infinite horizon
problem. If the cost accumulates over finite time steps, the
corresponding problem is the finite horizon problem. In general,
the objective of DP is to determine wu, = (uo,u,,...) so that
J(xo,u,) is maximized or minimized. In this article,
u; = (u;,u;,...) and J'(x,) are used to represent the optimal
control sequence and the optimal cost function, respectively.

More specifically, in this article, we consider the minimization
problem of the cost function J(x,,4,) in the sense that a control
sequence u; is determined to minimize the function J in Eq. (11).
According to the definition of the minimization problem, the
optimal cost function is expressed as

T (xo) = inf](xo, 1) = J (0, 145)-

The control input may be considered as a function of the state,
ie, u, = p(x), Vk. Such a mapping y: R" — R" is called control
policy, or state feedback control, or control law. Therefore, the
cost function in Eq. (11) for a given control policy y can be
rewritten as

o) = ¥y Ul u(x).

i=k
The corresponding optimal cost starting at x, is obtained as
T (%) = irﬂlf]" (x0) = J*(%0)

where y* is the optimal policy.

The Bellman's principle of optimality™*? is the foundation of
DP method. It shows that no matter what previous decisions are,
the remaining actions must constitute an optimal policy regarding
the state resulting from those previous actions.

It is assumed that, for all possible states x;.,, the optimal cost
J*(x¢11) and the optimal control sequences u;,, from time k+1 to
the terminal time have been obtained. Note that the sequence ;.
is determined by x,,. In this case, J*(x,,) indicates that the
optimal cost is generated by applying the optimal control
sequence u;,, to the system with initial state x,,,. If an arbitrary
control input u, acts on the system at time k and then the optimal
input sequence u;,, is applied to the system from time k+1, the
accumulated cost becomes

U(xIH uk) + yU(ka, ultﬂ) + yz U(xkﬂv ”Lz) +eee=
U,) + 9T (%1)

where x;,, = F(xy, u). Therefore, the optimal cost from time k on
is expressed as

T (xe) :rrlin{U(xk, we) + 9 (i) } =

: (12)
min{U(x,) +)" (Fx,) }
At time k, the optimal control u; is the control input that
minimizes the cost, i.e.,

w, = argmin{ Ui,) + /- (31)} (13)

The principle of optimality for Eq. (10) is formulated as Eq.
(12). Its key point lies in the fact that only one control vector is
optimized at a time by the backward numerical process.

Considering the Markov decision process mentioned in Section
1, it is the basic task in sequential decision problems. Considerable
research in RL has focused on this problem or its variants. For
discrete-time nonlinear systems in Eq. (10), it can be observed that
each state depends only on the state and control attained in the
previous time step, which is similar to the Markov decision
process. Therefore, the core idea of RL is applicable to solve the
Bellman optimality equations (Eq. (1)) and the optimal cost (Eq.
(12)). On the other hand, the main difference between the Markov
decision process and discrete-time nonlinear system is that, in
general, the Markov decision process is stochastic process while
the discrete-time nonlinear system is a deterministic dynamics.
More specifically, the definitions of some terms and functions
corresponding the Markov decision process and discrete-time
nonlinear system are different, which are summarized in Table 1.

Remark 1. Table 1 illustrates the different terms and definitions
corresponding to Markov decision processes and optimal control
for discrete-time nonlinear systems, where the stochastic case of
Markov decision processes is considered. In this case, both state
space and action space are discrete and the numbers of the state
and action are finite, which is the classic problem formulation of
early game Al As the environment becomes more complex, the
number of the state increases exponentially, such as the game Go,
real-time strategy video game StarCraft II and so on. In the
computer science community, since boundaries of tasks are clear,
such as the boundaries of the board and video game, these tasks
allow that the agent interacts with the dynamics to accumulate
experience in the trial and error and improve the policy with a
lower cost. Therefore, convergence of RL approaches is a key
focus in the computer science community. By contrast, for
discrete-time nonlinear dynamics, the system state and control
spaces are continuous. Besides, in control systems community,
considerable system dynamics are derived from the real world,
which results in the huge cost of trial and error, such as the orbital
maneuver problem, aircraft attitude control, robot control and
navigation, and so forth. Therefore, for control policies deployed
to the actual control systems, both convergence and stability are
necessary and important topics in control systems community.

DP method is a quite effective technique for optimization and
optimal control problems. Especially, whether or not the control
and state variables are constrained, it is convenient to apply the
DP method to nonlinear system dynamics. Note that Eq. (12) is
called the Bellman equation or functional equation of DP. It is the

Table1 Comparison between Markov decision process and optimal control for discrete-time nonlinear systems.

Term Markov decision process

Discrete-time nonlinear system

Dynamics

Immediate reward/Utility function

Pr(a|s;) = m(ae|st)

Tt = T(Sn at75t+1)

X411 = Flxg, ug)
U(xk: uk)

Return/Performance index G = Z Y i J(xk,up) = Z YR U, w)
i=t i=k
Policy/Feedback control n(als) p#(x)

96

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93—-110

State of the Art of Adaptive Dynamic Programming and Reinforcement Learning

foundation for implementing DP. Considering Eq. (12), if we have
obtained the system function F and the cost function J, solving
the Bellman equation can be regarded as a simple optimization
problem. On the other hand, since the solutions of the Bellman
equation requires calculations backward in time, actually, it is
often impossible to implement the exact DP. The backward
numerical process easily leads to the well-known “curse of
dimensionality”* . Therefore, in general, the Bellman equation is
difficult to solve analytically. In the past few decades, researchers
have strived to obtain the numerical solution of the Bellman
equation by establishing a module named critic. The critic
component is employed to approximate the cost function. It acts
as a function approximator.

3 Basic Frameworks of Adaptive Dynamic
Programming

In 1975, Weinstein and Zeckhauser' probably first mentioned
the term “adaptive dynamic programming”, which was employed
to design the optimal scheme for consuming natural resources.
Researchers have realized in very early days that DP has been
considered as a quite effective method to solve inventory control
problems. Nevertheless, it is difficult to exactly solve the DP
problems. Afterwards, ADP methods®* were formally
considered to solve the inventory control problem. In 1976,
Shields’™ survey of fault detection had also mentioned the ADP
technique. After nearly twenty years, an algorithm closely related
to ADP was developed by Barto et al.”? Subsequently, in 2002,
aiming at continuous-time systems, the ADP method was adopted
to handle the optimal control problem. Then, a comprehensive
theoretical analysis”™ of the developed ADP approach was given
later. Therefore, numerical solutions were sought using “adaptive
dynamic programming”®* or using “approximate dynamic
programming” scheme”. In 1987, the DP-based technique for
optimal control was named “approximate dynamic programming”
by Werbos".

Back in 1977, an approach, later called “adaptive critic designs”
(ACD)"™*), was presented by Werbos. Later, ACD frameworks
were classified into three classes”™: heuristic dynamic
programming (HDP), dual heuristic programming (DHP), and
globalized DHP (GDHP). In Ref. [78] published in 1992, “ACD”,
“approximate dynamic programming”, and “RL” have been
alternatively adopted by Werbos. The term ACDs have since
appeared in many studies *>*77*,

On the other hand, another widely used term is “neural
dynamic programming”®" or “neuro-dynamic programming”*>*",
Their corresponding acronym is “NDP”. In terms of control
applications™", both NDP and ADP have been widely adopted to
represent approximate approaches for DP problems. Bertsekas
and Tsitsiklis’s book® is the first one in NDP/ADP, in which the
authors first systematically and comprehensively illustrated the
methodology for intelligent control, optimal control, and
operations research.

Since it is difficult to compute the exact solution of DP
problems, in general, theoretical solutions to optimal control
problems for nonlinear plants are approximated by using
NDP/ADP methods. Therefore, the obtained approximate
optimal control is usually called “suboptimal control” in the
literature. Some papers studying optimal control problems*"
can be found, in which many viable NDP/ADP-based algorithms
were developed to approximate the exact solution of the optimal
control problem.

Here, ADP or ADPRL will be adopted to represent

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93-110

“approximate dynamic programming”, “adaptive dynamic
programming”, “adaptive critic designs’, “neuro-dynamic
programming”, “neural dynamic programming”, as well as
“reinforcement learning”” . No matter what we call it, in all
terms, the objective is to obtain the approximate solutions of DP.
For this reason, the term “approximate dynamic programming”
has been quite popular in the past. A classic framework of ADPRL
is designed as a structure including three modules, namely model,
critic, and action”™"), as given in Fig. 1. The critic component plays
the role of estimating the cost function J, for some deterministic
plants, which can be generally regarded as a Lyapunov function.

This paper concentrates on the case of each module with the
NN structure’*. As shown in Fig. 1, the output of the critic
module in the ADP structure is the estimate of the function J in
Eq. (11), denoted as j. The procedure is implemented by
minimizing the following square error over time.

v, Ly A2
|EAll = EZEkZ EZ(JWUFWM) (14)
k k

where Ji = J(x,, W.) and W, indicates the parameters of the critic
network, ie., the function approximator of state-value function.
The function U, is the same utility function as the one in Eq. (11).
Note that the function U, given in Eq. (11) is usually a function of
% and uy, ie., Uy = U(x,). If, for Vk, E; = 0, Eq. (14) results in

7k =Ui+ ijﬂ =Ui+ (U + iju) == Z)/';kU,‘ (15)
ik

which is equivalent to the cost function in Eq. (11). Obviously, in
order to minimize the error function in Eq. (14), the critic NN is
established so that its output J approximates the cost function J
given in Eq. (11).

In the case where the system function in Eq. (10) is unknown,
the function F given in Eq. (10) is learned by a model network as
plotted in Fig. 1. The model network can be constructed and
trained off-line™*' in advance or can also be identified in parallel
with the training of critic and action networks""”. Note that the
model network is trained by minimizing||x; — ;|-

Critic network

Xy

Model network

Action network

Xic

Fig.1 ADP/ACD structure with three modules.

97

CAAI Artificial Intelligence Research

As mentioned in the previous paragraph, the learning process
of the critic network is to realize the minimization of the error
measure in Eq. (14). There are various standard NN training
algorithms™*"” to achieve this goal. As depicted in Fig. 1,
Jior = J(Zi, W,) is the estimation of the cost function J at time
k-+1. Note that the state %,,, is a prediction of the state at time
k+1 derived from the model network rather than a real state
generated by the system dynamics.

Once the approximation of the cost function has been finished,
the action network is employed to minimize U; + yJi., through
the use of u, = u(x,, W,) while fixing the parameters of the critic
and model networks, where W, is the weights of the action
network. Then, the learned action network will output an optimal,
or at least, a suboptimal control signal. If the trained critic network
possesses an ideal performance, the control signal will be close to
the optimal control input in the sense that the performance of the
action network is determined by the approximation ability of the
critic network. The objective of DP is to determine an optimal
action sequence. The core idea is to interactively establish a
relationship between current actions and future consequences by
an approximation of the function J.

After the action network’s training process is complete, one
may check its control performance, then determine whether or
not to go back to the training cycle of the critic network again™*".
This loop will be iteratively performed until an acceptable
performance is achieved. The interaction among the three
networks is presented in Fig. 1. Recall that RL method is goal-
directed learning by interacting with the environment or systems.
Therefore, the control signal u, generated by the action network is
used to interact with the external environment or the target plants
and then a state at next time x,,, is obtained. Meanwhile, the
approximate state %, is given by the model network.

In general, the gradient descent algorithm is applied to train the
three networks. The gradient information is propagated backward
through the critic network to the model network and then to the
action network. Then, the three networks can be regarded as one
large feedforward network (Fig. 1). In the present implementation
of ADP as given in Fig. 1, the model network is required to
identify the unknown system dynamics. Even if the system
function is known, the model network is still necessary to further
facilitate the gradient backpropagation of action network.

Two algorithms"” used to train the critic network were
introduced by Liu et al., where one is a forward-in-time approach
as presented in Fig. 2, and the other is a backward-in-time
approach as given in Fig. 3. In the forward-in-time algorithm, J, is
the output of the critic network and U, + y}kﬂ is the training
target of the critic network. In Eq. (14), Ji and Ji., represent the
cost of different states at time k and k+1. On the other hand, in
the backward-in-time approach, J,,, in Eq. (14) is the output of
the critic network and (J, — U,)/y is chosen as the training target.
In a word, both forward-in-time and backward-in-time schemes
strive to achieve the minimization of the error measure in Eq. (14)
and satisfy the requirement in Eq. (15).

According to the TD learning in Formula (8), 7., + yV(sy,) is
the learning target, also called the TD target. Then, the learning
objective of TD method is to minimize |r,., +yV(s.,) — V(s)|,
which is identical to the key idea of the forward-in-time approach
shown in Fig. 2. The main difference between the TD learning
and the forward-in-time approach is the definition of reward
function. The reward of TD learning is defined as
ten = 1(s, a,,5,.4,) while the reward of forward-in-time scheme, i.e.,
the utility function, is expressed as U, = U(x,,u). The reason
behind the difference between r,,, and U, will be discussed later.

98

E, e
----» Critic network
Copied
;(k+1 Xy

Fig.3 Backward-in-time approach for critic network learning.

Note that the TD(1) and the forward-in-time scheme depicted in
Fig. 2 possess the same learning objective. Nevertheless, in TD and
TD(A), the update of value functions at each step only makes a
move according to the step size towards the target, and
presumably, it does not reach the target after a single step of move.
In the present approaches shown in Figs. 2 and 3, the forward-in-
time and backward-in-time states for certain number of steps,
such as 3-5 steps” or 50 steps'", are employed in learning or
training. With this operation, the learning target may or may not
be achieved. It is certain that the action taken by an agent will
move in the direction of the target.

There were two greatest developments of ADP in control
systems community®"?. The first one®™ summarized the main
developments of ADP in detail. Until then, major results of ADP
methods are mainly contributed by Werbos™ . The second
one"” achieved important advances regarding the model-free
ADP method. A more concise scheme was developed to make the
model network given in Fig. 1 not required anymore. The
improved ADP-based algorithm was applied to several practical
examples''?, and the competitive performance of the developed
ADP approach was demonstrated. As mentioned in Ref. [115], the
present self-learning approach can be regarded as a backward-in-
time algorithm. Another paper"” also discussed the model-free
ADP approach and its properties. As plotted in Fig. 4, the present
diagram is a model-free, action-dependent adaptive critic design.
In this design, the model network and the critic network together
can be regarded as a new critic network.

The model-free ADP has been called action-dependent (AD)
ACDs by Werbos™. Therefore, various AD versions of HDP,
DHP, and GDHP have emerged to deal with the model-free
control problem. The classic approach of ADP, namely HDP, is
given in Fig. 1 or the left side of Fig. 4. As mentioned in Ref. [78],
the learning objectives of HDP and TD are identical. Also, the
equivalence of ADHDP and Q-learning was discussed”. The

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93—-110

State of the Art of Adaptive Dynamic Programming and Reinforcement Learning

Q

A new

critic network

u, Uy
Action network Action network

Xic X

Fig.4 A new critic network for model-free ADP.
action-value function is adopted in both ADHDP and Q-learning
(involving Sarsa as well) to evaluate the value of state-action pair.

As depicted in the right side of Fig. 4, the role of the critic network
of ADHDP is to minimize the following square error measure.

IE,|l = Z
where Q, = Q(x;, u, W,.) and W, indicates the parameters of the
critic network. If E,, = 0, Vk, Eq. (16) leads to

Q=U 1+ 9y =Un+ YUy +yQiy2) = -+ =
Z yi—k—lu (17)

i=k+1

Z Qi — Uk_ka)z (16)

which is exactly T given in Eq. (15). From Fig. 4, it can be
observed that Q= Q(x,u, W,) is equivalent to J,, =
7(5ck¢1,Wc) :7(F(xk,uk),Wc). If the same inputs x;, and u, are
given, the two outputs are identical. Note that the relationships are
different. According to the definition of Q; and the model
network, it is explicitly a function of x; and u, while F in model
network is totally internal. Considering the cost function,
obviously, Jo is an explicit function of %.,, while, through
Rinr = F(x, u0), Jen is also a function of x, and u,.

The one step time difference of functions J, in Eq. (15) and Q,
in Eq. (17) has exactly the same argument. The HDP structure
requires a model network to result in

]k Ui+)/Uk+1 +y Uk+2 + -

The ADHDP structure does not need a model network and the
function Q satisfies

Qi ~ Uy + yUk+2 +y Uk+3

Actually, the TD learning is a model-free method. In other
words, it does not need the model network to evaluate the value
function”*,

In addition to the present basic ADP schemes given above,
there are also other various structures developed in Refs. [116, 117].

4 Model-Based and Model-Free
Dynamic Programming

Adaptive

Under a known external environment dynamics, the widely
adopted approach to compute the (optimal) cost function is V1. In
what follows, a different set of notation will be used. The value

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93-110

function V* represents the cost function under the control policy
¢, ie, V¥(x) =J'(x), Vx.. The corresponding optimal value
function is expressed as V* (x,) = inf, V*(x,).

Similarly, for the value function, there also exist three forms: (i)
V(x,u,) indicates the value of Eq. (10) starting at x, and
controlled by the control sequence u, = (u, Uy, ...). (i) V*(xx)
denotes the value function of Eq. (10) starting at x, and controlled
by the control policy u, = p(x;). (ili) V*(x;) is the optimal value
function of Eq. (10) starting at x,. For convenience, in this paper,
the notation V(x;) has been used to represent V(x,u,) and
V¥(x;). This representation of value function is standard in the
literature. There will also be cases where the value function is a
function of x, and u, (not explicitly as a function of u,).
Therefore, it is appropriate to denote the value function as
V(xz, u). Besides, for time-varying systems, the value function is
described as V(x,u, k). As a convention, in these cases, it is also
standard to represent value functions using V(x;) if the context is
clear.

As given earlier in Egs. (4), (6), and (9), the Bellman equation
can be iteratively solved using the successive approximation
approach.

The task of ADP is to obtain the optimal cost function J* given
in Eq. (12) and then derive the optimal control «; in Eq. (13). One
effective approach to approximate J* is to adopt the following
iterative algorithm. Let J* in Eq. (12) be replaced by V. Then, Eq.
(12) can be rewritten as

V(x) = H‘IA:H {U(X/m u) + Yy V(Xk+l)}7

which can be further described as
Vi(x) = muin{U(xhuk)“‘)’Vi—l(xkﬂ)} (18)

where i =1,2,... is the iteration index. The iteration scheme is
similar to the fixed point iteration. For example, the algebraic
equation z = g(z) is solved by using the iterative method, where
g(z) is called the fixed point equation. Then, the iteration scheme
is implemented by establishing the iteration equation z,., = g(z;).
Starting from z, the iteration equation is used to compute
z=g(z),2, =g(z),... If g(z) is a contraction map, then the
fixed point is unique and we have z.. = g(z..) starting from any
initial value z,.

For Eq. (18), the value function is initialized by V, and the
iterative value functions V,, V,, and so on, can be iteratively
derived from this equation. One would hope that V_(x,) is the
solution of the Eq. (18) when the iteration step i reaches ... Note
that a solution can only be obtained if the sequence {V} is
convergent.

Considering the iteration process in the previous paragraph, we
would expect to obtain a solution which can approximate the
solution of DP with high accuracy. In the iteration process, a
control policy corresponding to each iterative value function V; is
determined by

vi(%c) :argrrgn{U(xhuk)+y\4(F(xk7uk))} (19)

This sequence of control signals {vy,v,...
iterative control policy sequence.

The detailed VI-based ADP algorithm has been given. Next, the
theoretical results of the iterative ADP approach will be
introduced and discussed, which includes stability of the policy,
convergence of value function and policy sequences, and
optimality of the obtained solution. It is meaningful and essential
to guarantee the convergence of the iterative solution process. In

} is called the

99

CAAI Artificial Intelligence Research

addition, guaranteeing the convergence of the sequence {V,} is
not sufficient. The key property of the sequence {V,} is that {V;}
converges to the optimal cost J* asi — oo,

The simplest initialization of VI is to start from V,(x;) =0,
V. Considering the undiscounted optimal control problem
in the sense that the discount factor is set as 1. Then, Eq. (18) is
rewritten as

Vi) = min {U(x,, 1) + Via(e) }, =12, (20)

Rantzer and his coworkers proved the following proposition.

Proposition 1 (Convergence of VI"*'")). Suppose that, Vx; and
Vu,, the inequality J*(F(x,,u)) < pU(x;, 4,) holds uniformly for
some p<oo and that nJ'(x) < Vo(x) <J(x) for some
0 < 7 < L Then, {V;} given by Eq. (20) approximates J* according
to the inequalities

n—1
1+ —
{ (I4p7)

It was shown by Proposition 1 that the convergence and
optimality of VI can be guaranteed, i.e., V;(x;) — J*(x;) as i — oo.

The affine form of Eq. (10) has been largely studied, which is
expressed as

X1 :f(xk) +g(xk)u(xk)7 k= 071727 ce

}]*(xk) < Vilx) <T (%), V.

where f: R" - R" and g: R* —R™™ are nonlinear system
dynamics. In general, the utility function is selected as the
following quadratic form:

U(xi, ty) = x,Qx; + tRu

where Q € R™" and R € R™" are positive definite matrices. In
Ref. [120], an iterative ADP algorithm and its properties were
derived as follows. The iterative ADP starts from a zero initial
value function, i.e., V,(x;) = 0, Vx;. Then, the initial control policy
v, is solved by

vy(x,) = arg nlin {xT Qi+ ufRu + Vo (%) } (1)
where V;(x;,;) = 0. The next value function can be determined by

Vi(x) =x; Qi + vy (%) RV, (%) 4+ Vo (xn) =

. T (22)
2 Qi+ v () Rvo (%) 4 Vo (flxe) + (i) vo (1))

For the iteration step i, the successive approximation process
will be implemented between control policies
v;(x,) = argmin {x{ka + uRu; + V,-(xkﬂ)} =
e

argmin {xQui + uRu + Vi(flo) + glx)) } = (23)

1o V()
2R 4 (xk) 9 Xeos
and value functions

Via (-xk) = Hﬂn {x{ka + u:Ruk + Vf(xk+1)} = (24)
Qx4+ v () Rvi (%) + V5 (f(xk) +g(x)w (Xk))

wherei=1,2,....
We can rewrite the above Egs. (21)-(24) as follows. Firstly
vy(x;) is obtained from V;(x;) = 0 as

vo(x) = argmin {x{Qx, + {Ru } (25)

100

Then the iteration will be performed between value function
update

V() =min {x,Qx; + tRuy + Vi (1) } =
g

Q.+ v (%) Ry () + Vi, () + g(x) v (%))
(26)

and control policy improvement
v,(x) =argmin {x,Qx; + uRu + Vi(x.1) } =
argmin {;Qx, + uRu; + V,(flx) +g(s)u) } = 57)

_ lRflgT(xk) aVi(xku)

2 axk+1

where i=1,2,.... It is noted that Egs. (21)-(24) and Egs.
(25)-(27) are exactly the same algorithm.

The following results were shown in Ref. [120].

(1) The sequence {Vi(x,)} with V,(x,)=0 wil be
monotonically non-decreasing and is bounded by a continuous
function. Therefore, the limit of V;(x,) when i — o, ie.,, V..(x),
exists.

(2) V.(x) =T (x) in the sense that the iterative solution
converges to the optimal cost.

(3) vo.(xx) = v (x;) in the sense that the iterative control policy
converges to the optimal control policy.

Along the line of Ref. [120], there are further results" . Along
the line of Rantzer's work"*"”, some of important developments
can be also found"* .

Another effective method to numerically approximate J*(x;)
and u*(x,) is policy iteration (PI). PI starts from an arbitrary
admissible control policy v,(x;). The PI scheme is implemented
between the policy evaluation

Vi(x) = Qi + ! (%) Rvi (%) + V5 (f(xk) +g(xk)v,-,1(xk))
(28)

and the policy improvement
v,(x.) =argmin {x;Qx; + uRu; + V(x.,) } =
argmin {x/Qx; + uRut + V; (flxi) +8(x)u) } = 59y

_ lRflgT(xk) (9V,-(xk+1)

2 axk+1

where i =1,2,.... When the policy evaluation cannot be solved
directly, the successive approximation approach is usually used to
iteratively approximate its numerical solution at each iteration.
The monotonicity, convergence and optimality of the value
function sequence generated by PI have been investigated"”.
Later, a generalized policy iteration (GPI) algorithm™ was
presented to solve the infinite horizon optimal control problem.
Moreover, the convergence of the PI and GPI algorithms were
proved. Recently, some research has focused on the convergence
rate of the iterative ADP algorithms. Luo et al" found that PI
converges to the optimal value function faster than VI while it
requires an initial admissible control policy. A tradeoft between PI
and VI was achieved to accelerate the convergence by introducing
a balancing parameter. Inspired by the successive over relaxation
method, Ha et al™ developed a novel VI scheme with a
adjustable convergence rate and gave a practical accelerated ADP
algorithm. Similar to the traditional iterative ADP, the present
ADP algorithm is initialized by a positive semi-definite function
Vy(x,). The initial control policy ¥,(x;) is also obtained. The novel
ADP scheme achieves a balance between

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93—-110

State of the Art of Adaptive Dynamic Programming and Reinforcement Learning

min,, {xQx; + u{Ruy + Vi, (%¢1)} and Vi, (%) by the use of a
relaxation factor w. The iterative procedure is performed between
the novel value function update

v, (x¢) = wmin {szxk + u;Ruy + F\v/,.,l(xkﬂ) }+
U

iy (30)
(I=w)Via(x)
and the policy improvement
V(%) = arg 111in {x}Qu + ufRuy, + v, (%) } (31)

where the relaxation factor satisfies w > 0. As mentioned™, if
0 <w<1, the developed VI scheme is an under-relaxation
method. If w=1, it is the traditional VI. If w > 1, it is an over-
relaxation method. Since the value-based ADPRL methods
including TD, Sarsa, TD(1), Sarsa(1), and Q(1) are based on the
generalized PI framework, the new iterative ADP scheme can be
extended to these ADPRL algorithms to accelerate convergence of
the value function.

Note that the iterative ADP methods mentioned above
consider the case of the known system dynamics. Based on the
ADP scheme, considerable literatures"“*" also focus attention on
the case of unknown system dynamics and many researchers are
devoted to developing the model-free and data-driven ADP
technique. Luo et al.”*’ developed a model-free policy-gradient-
based ADP algorithm to achieve optimal control by using offline
and online data. A model-free ADP controller"™ was designed to
solve the optimal control problem by using the supplement
information derived from the costate function, which does not
require any plant information. Aiming at the data-driven control
problem, Li et al"*" developed a series of data-driven ADP
methods and investigated the stability and domain of attraction of
the closed-loop systems, which do not need the plant modeling
process.

On the other hand, optimal tracking control is also a significant
topic in the control community, which mainly aims at designing a
controller to make the controlled plant track a reference trajectory.
The literature on this problem is extensive!™™ and reflects
considerable current activity. Luo et al."” converted a tracking
control problem to a regulation problem with a discounted
performance index by establishing an augmented system. A
multistep heuristic dynamic programming was developed to
achieve the tradeoff between PI and VI by using multistep policy
evaluation scheme. Afterwards, it is revealed that the tracking
error cannot be eliminated if the traditional performance index is
adopted"”. To eliminate completely the tracking error as the
number of time steps increases, Li et al.'! designed a novel cost
function. Besides, the convergence and monotonicity of the
obtained new value function sequence were also investigated.
Based on the novel cost function"* and considering the effect of
discount factor, a novel stability analysis method was developed to
guarantee that the tracking error under the new control policy
approaches zero as the number of time steps increases'*.
Moreover, the effect of the presence of the approximation errors
of the value function is discussed. A novel inverse RL algorithm"*
was also developed to learns an unknown performance objective
function for tracking control. In addition, some RL-based tracking
algorithms have been developed and applied to various practical
applications"“"*. Aiming at the unmanned surface vehicle with
complex unknowns'™, including dead-zone input nonlinearities,
system dynamics, and disturbances, an RL-based neuro-tracking
controller was designed to solve the optimal tracking problem.

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93-110

Cao et al.'”" established a fixed-time trajectory tracking control
method for uncertain robotic manipulators with input saturation,
which employs a new nonsingular fast terminal sliding mode
approach to guarantee the convergence of tracking error in fixed
time. Rizvi et al'” considered the a heating, ventilating, and air
conditioning system in the presence of neither measurable nor
manipulable disturbance and, based on PI and VI, proposed both
state feedback and output feedback approaches to guarantee the
convergence of the tracking error to zero. For unknown nonlinear
input-affine discrete-time systems and based on Q-learning, a
model-free dynamic inversion-based tracking control algorithm"”
was proposed to eliminate the tracking error, which is an off-
policy approach. A model-free and off-policy adaptive critic
design with experience replay were developed to improve the
optimal tracking control performance by using the policy gradient
technique"”. In offshore oil and gas production, Li et al."” applied
the model-free RL approaches based on state feedback and output
feedback to the de-oiling hydrocyclone system. Output tracking
control and ADP algorithms were integrated to track the desired
yaw rate, mitigate the sideslip angle, roll angle, and roll rate of the
vehicle!. With this operation, the lateral stability of vehicle
dynamic systems can be improved.

5 Convergence and Optimality

In this section, for the traditional and new iterative ADP schemes,
convergence and optimality properties are reviewed.

5.1 Convergence and optimality of the traditional iterative
adaptive dynamic programming
The convergence and optimality of VI-based HDP algorithm have
been proved'”. The VI-based HDP scheme starts from a zero
value function. Then, a monotonically non-decreasing value
function sequence is established, as shown in Fig. 5. The value
function will increase monotonically to get close to V* as the
iteration index increases. Since it is impossible to perform the
iterative ADP infinite number of steps, an e-optimal control
method was developed for finite-horizon optimal control™".
Aiming at the discounted optimal control problem, an iterative
GHDP algorithm were considered’>". In order to reduce the
complexity of DP, a relaxation process based on the upper and
lower bounds of the optimal cost function was developed*'*. For
the constrained input control’, finite-horizon optimal control"”"
and optimal tracking control™”, the iterative ADP methods were
applied to find their optimal control policies. Under these control
problems, it can also be guaranteed that their value function

124]

Value function

X
Fig.5 Monotonically non-decreasing value function sequence.

101

CAAI Artificial Intelligence Research

sequences converge to the corresponding optimal value functions.
Later, Wei and Liu"™” and Li and Liu™" found that the value
function can be initialized by a positive semidefinite function. The
VI scheme with a positive semidefinite initial value function is
called generalized value iteration (GVI). Using a positive
semidefinite function to initialize VI is an extension to the zero
initial value function. With this operation, the monotonicity of the
{V.} sequence is determined by the selection of the initial value
function. Under certain conditions’”""">", the {V;} sequence
can be monotonically non-increasing, which is more appropriate
since the goal of our learning process is to minimize the value
function and thus it is expected that the iterative learning process
will decrease the values of V; gradually. Besides, it is convenient to
discuss the stability of the closed-loop system using the iterative
control policy by constructing a monotonically non-increasing
value function sequence. The relevant stability results will be given
in the next section. Heydari"" used an admissible control policy to
initialize the VI algorithm, which makes the VI scheme possess
the stability guarantee and is called the stabilizing V1. An iterative
6-ADP algorithm that can effectively avoid the initial admissible
control was proposed'”. A nearly optimal output feedback control
algorithm was developed"* for discrete-time systems. The Markov
jump systems control problem was converted to a single objective
optimal control problem™”, and then the optimal controller was
obtained by using ADP method. Event-triggering mechanism was
also considered for discrete-time control problems'*.

In the literature, there are various approaches to obtain a
monotonically non-increasing {V;} sequence, such as iterative 6-
ADP, stabilizing VI, PI", GPI'"*"™ and so forth. The
following monotonicity results of GVI and stabilizing VI have
been developed.

Proposition 2 (Monotonicity of {V;}"*"). Let V;(x) and
v,(x) be updated by the value function update (Eq. (26)) and
policy improvement (Eq. (27)), respectively.

(1) If the initial value function is a positive semidefinite
function and satisfies V;(x;) < V;(x;), then the obtained sequence
{V:} is monotonically non-decreasing, ie., V;(x;) < Vi (x) <
J (%), Vi. If V(i) = Vi(x,), the {V,} sequence is monotonically
non-increasing, i.e., V;(x) > V., (o) = J* (%), Vi.

(2) If the VT algorithm is initialized by the value function of an
admissible control policy, then the sequence {V;} is
monotonically non-increasing.

For nonlinear optimal control problems with discount factor
0<y<1, similar to the undiscounted VI algorithm, the
convergence analysis of the discounted value function sequence
was given in Refs. [122, 123]. Note that the cost function without

discount factor is a special case of the cost function with discount
factor. The following results were given in Refs. [122, 123].

(1) The {V;} sequence with V,(-) =0 is defined as in (18),
0 <y <L If the system is controllable, there exists an upper
bound y such that V,(x,) < Y, Vi.

(2) The discounted value function sequence with V() = 0 and
control law are updated by (18) and (19), where 0 < y < 1. Then,
the discounted value function sequence {V;} is monotonically
non-decreasing.

(3) im V;(x,) = J* (%) and lim v, (x;,) = v*(xz).

Based on the works byHbf{antzer and his coworkers, the
following proposition is given*""*>'*" for the GVI algorithm.

Proposition 3 (Convergence of GVI™™"). For all x, and for all
u;, suppose that the inequality J*(F(xi,u)) < pU(x, 1) holds
uniformly for some p < e and that V,(x) < V(%) < {J*(x) for
some 1< { < eo. Then, the sequence {V;} defined iteratively by
(20) approaches J* according to the inequalities

(-1

m}”"“’ e

J (%) < Vi(x) < {1+
According to Proposition 3, the sequence {V,} resulting from
GVI converges to the optimal cost as i — . As shown in Fig. 6,
there are three ways to ensure that the iterative value function
sequence derived from GVI converges to the optimal cost. When
Vo <J, the {V;} sequence converges to the optimal value
function J* from below. When V,>J*, the {V,} sequence
converges to the optimal value function J* from above. When the
relationship between V, and J* is uncertain, the {V;} sequence still
converges to J* by squeezing the upper and lower bounds of V..
Note that the monotonicity of the sequence {V,} cannot be
guaranteed when V,(x,) < J'(x;) for some x and V;(x,) > J' (%)
for others. Similar convergence and optimality results of GVI for
discrete-time optimal tracking control were also discussed and
developed"”.

In the value function update (Eq. (26)) and policy evaluation
(Eq. (28)), function approximation structures like NNs are usually
employed to approximate the value function, which will introduce
approximation errors. Since the value update and policy
evaluation equations cannot be solved exactly"”, the obtained
value functions are usually their estimations. The approximation
errors of NN were considered and the convergence analysis of the
approximate iterative value function was developed" ™. It is
guaranteed that the approximate value function sequence {¥,}
converges to a finite neighborhood of the optimal value function
as the iteration index increases under some conditions. Based on
iterative 6-ADP algorithm, the upper and lower bounds of the

Value function
Value function

Value function

X
(b) ()

Fig.6 Convergence of GVI: (a) {V}} convergence to J from below; (b) {V;} convergence to J from above; (c) {V;} convergence to J by squeezing the upper and

lower bounds of V.

102

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93—-110

State of the Art of Adaptive Dynamic Programming and Reinforcement Learning

obtained approximate value function were given"*"". The
iterative value function with approximation errors is shown to
converge to a finite neighborhood of the optimal cost. For the
GVI scheme, the relationship between the approximate value
function V, and the exact value function V; was revealed™™.

On the other hand, the convergence and optimality of the {V;}
sequence for PI and GPI have also been obtained"**"*>"**'*), The
monotonicity, convergence and stability properties of PI for
discrete-time nonlinear systems'*! were analyzed for the first time.
It was proved that any of the iterative control policies derived
from PI are admissible, which makes PI play a significant role in
online ADP methods. The corresponding stability results are
presented in the next section. The following monotonicity and
convergence results of PI were obtained"*.

(1) Starting with an admissible control policy, Vi(x,) and v;(x;)
are updated by the policy evaluation and policy improvement.
Then, the {V;} sequence generated by PI is monotonically non-
increasing, i.e., V;(x) > Vi () = J (), Vi.

(2) The iterative value function and control policy sequences

resulting from PI converge to the optimal performance index and
the optimal control policy, respectively, i.e., lim V;(x;) = J* (x;) and
limv,(x) = v* (%), V.. .
""The error bounds for approximate value function of PI and
GPI were established". The obtained {V,} sequence also
converges to a finite neighborhood of J* as i — co. Aiming at the
discounted optimal control problem, the convergence of exact Q-
function and error bound analysis of the Q-function for the PI-
based action-dependent ADP were investigated”. Similar to the
approximate value function, it has been proved that the
approximate Q-function under the boundedness conditions
converges to a finite neighborhood of the optimal Q-function.

5.2 Convergence and optimality of the new iterative adaptive
dynamic programming algorithm

According to the analysis approach of the traditional iterative
ADP methods, the convergence analysis of the new iterative ADP
scheme as mentioned in Eqs. (30) and (31) has been given in Ref.
[141], which obtained the following results.

Proposition 4 (Convergence of the new iterative ADP
scheme). Suppose that the condition 0 < J (F(x,u)) <
pU(x, 1) is satisfied and that 0 < #J*(x) < Vo(x) < T (%),
where 0 < p < e and 0 < <1< . Let the value function and
the control policy be iteratively updated by (30) and (31).

(1) If the relaxation factor satisfies 0 < w < 1, then the iterative
value function V, approximates the optimal value function J*
according to the following inequalities:

[1— (- Wp)i(l—ﬂ)}f*(xk) <Vi(w) <

(2) If the relaxation factor satisfies
Ldy,
1+p)(¢—n)’

where L € (0,1) is a constant and d,;, = min{1 —#,{—1}, then v,
approximates J* according to the following inequalities:

1<w<l1+

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93-110

(3) If the relaxation factor satisfies
Ldmin
(1+p)(¢—n)’

then lim V,(x;,) = J* (%) and lim ¥, (x,) = v* (x,), V.
The upper and lower bounds demonstrate that the bigger the w
is, the faster the convergence.

o<w<1+

6 Stability Result

Stability is the fundamental requirement of all control systems. In
this section, the stability results of the iterative ADPs are revealed.

6.1 Stability of the the traditional iterative adaptive dynamic
programming algorithms

Recently, there has been considerable literature! """ on
the stability of closed-loop systems using control policies derived
from the iterative ADP methods. For the PI algorithm, it can be
guaranteed that all the iterative control policies are admissible!".
However, GVI initialized by a positive semidefinite function does
not possess similar stability properties to PI. Till now, the
admissibility of control policies derived from the traditional VI
and GVI has been paid considerable attentions" 7551,
Various VI schemes such as iterative §-ADP"™ ", stabilizing
VI, and so forth were developed to guarantee the stability of
closed-loop systems using the iterative control policy. The control
policies generated by the iterative -ADP under some conditions
of 6 are asymptotically stable control laws'”. A stabilizing VI
algorithm was developed™, which is initialized by the value
function of an admissible policy. Such an initialization is similar to
PI. By doing this, the obtained value function sequence is
monotonically non-increasing, which ensures the stability of the
iterative control policies and makes the implementations both
online and offline feasible. The following stability results of
stabilizing VI were provided in Ref. [176].

(1) Let the VI algorithm be initialized by the value function of
an admissible control policy. Then, the closed-loop system using
the iterative control policy v; is asymptotically stable, Vi € N.

(2) The compact set Q' 2 {x € R": V,(x) < r} C Q, for any
r> 0 is a subset of the domain of attraction for the closed-loop
system.

(3) Let each iterative control policy v,(x;) in the {v;} sequence
be applied to the controlled system for L, € N time steps. Then,
every state trajectory initiated from O, converges to the origin.

In summary, the objective of these different initialization
approaches of VI is to establish a monotonically non-increasing
value function sequence. For the value function sequence that the
monotonically non-increasing property cannot be guaranteed,
Wei et al'™ gave the uniform ultimate boundedness (UUB)
condition and the admissibility condition of the iterative control
policy for the first time. The stability of the closed-loop system
under offline and online VI schemes without approximation
errors was investigated"®. The main stability results of GVI are
summarized in the following proposition.

Proposition 5 (Stability of GVI™""™)). The {V;} sequence
with an initial positive semidefinite value function and the {v}

103

CAAI Artificial Intelligence Research

sequence are updated by Eqs. (26) and (27), respectively.
(1) If there exists a constant € such that

|Vz+1(xk) - Vz(xk)‘ <&, Vx,

then the closed-loop system using the iterative control policy
v;(x) is UUB.

(2) If Vo () > V() holds for all x;, then the iterative function
Vi(x:) is a Lyapunov function and the system using v,(x;) is
asymptotically stable, Vi € N.

(3) If for all x, # 0, the following condition

Via(x) — Vi(x) < €U(x, vi(x1)), x € (0,1) (32)

holds, then the iterative control policy v;(x;) is admissible.
(4) For all x; # 0, there exists a finite N > 0 such that

Vi () — Ve(3) < €U(x, vw(x2)), ® € (0,1).
(5) If for any x; # 0, the following condition
T (%) — Vi(x) < xxQxi, x € (0,1) (33)

holds, then the iterative control policy v,,;(x;) is admissible,
VjeN.

According to the monotonicity of {V;} and considering the
property (2) in Proposition 5, a monotonically non-increasing
value function sequence can be obtained when V;, > V,. Then, the
iterative control policies derived from GVI are asymptotically
stable"". In addition, when the iterative value function sequence is
monotonically non-decreasing, the stability criterion Eq. (32) in
Proposition 5 can be used to determine the admissibility of the
control policy at the current iteration. The stability condition (Eq.
(32)) was modified as V,;(x;) — Vi(x) < kx;Qx;, which is more
appropriate since the term x]Qx; does not vary with the iteration
index while the terms U(x,,vi(x;)) at different iterations are
different"™. Besides, the corresponding domain of attraction for
the closed-loop system can also be deduced. On the other hand, if
the stability condition (Eq. (33)) is satisfied, then the iterative value
functions V;,;,, and V,,; must satisfy the stability condition (Eq.
(32)), jeN. According to the convergence result
lim V;(x,) = J* (x), the property (5) in Proposition 5 reveals that,
in the iterative process of GVI, there exists an iteration step such
that the control policies obtained after this iteration are admissible.
As shown in Fig. 7, if the iterative value function is located in the
shadow, the corresponding control policy is admissible. Based on
the stability condition V,,,(x;) — Vi(x:) < xx]Qx;, the stabilizing
VI was integrated with the traditional VI"*, which employed the
traditional VI to generate the admissible control policy and
applied the obtained admissible control policy to initialize the
stabilizing VI.

It was further discussed the stability of the linear system under
the iterative control policy and obtained the global asymptotic
stability results"®, which greatly facilitated the stability analysis of
the closed-loop linear systems under the online HDP algorithm.
For the GVI algorithm with discount factor, the effect of the
discount factor on the stability of the iterative control policy has
been investigated"’. As mentioned in Ref. [181], unlike the
undiscounted GVI, the monotonically non-increasing {V;}
sequence of the discounted GVI does not always result in the
stabilizing iterative control policy due to the introduction of the
discount factor. Similar to the undiscounted VI, the monotonicity
of the discounted iterative value function sequence can be
determined by the relationship between V,(x,) and V;(x;)"". The
relevant stability results with respect to the discounted GVI is
presented in Proposition 6.

104

Value function

X
Fig.7 Stability results of GVI.

Proposition 6. (Stability of the discounted GVI'). The
iterative value function sequence with an initial positive
semidefinite function is defined as in Eq. (18),0 < y < 1.

(1) If Vi(x) > Vi(x) and for any x; #0, the following
condition

(1=y)Vi(xe) < Ulxe, vi(x)) (34)

holds, then the closed-loop system using the iterative control
policy v;(x;) is asymptotically stable.
(2) If Vi (%) = Vi(x,) and for any x, # 0,

(1—y)Vi(x) < 6Qx, (35)

then the iterative control policy v,,;(x;) is asymptotically stable,
VieN.

From Proposition 6, the selection of the discount factor is
significant. If an inappropriate discount factor is selected, the
stability conditions may not be satisfied in the iteration process.
This even leads to an unstable optimal control policy. Then, any
ADP methods to numerically approximate the optimal cost and
the optimal control policy may be meaningless. Note that the
stability condition (Eq. (34)) can only be used to determine the
stability of the current iterative control policy while the condition
(Eq. (35)) guarantees that all the iterative control policies after the
current iteration are asymptotically stable.

Since the function approximation structure is used to
approximate the value function and the control policy, the stability
of the system could be at risk due to the approximation errors of
the value function and control policy. Based on the 6-ADP
method, it is proved that the numerical iterative control law under
some conditions is an asymptotically stable control policy"*'.
For the stabilizing VI, effects of the presence of approximation
errors were presented on the stability of the controlled systems"”.
Also, estimations of the domain of attraction, under the
approximation errors of the value function, were given. For the
traditional VI algorithm, the stability conditions of the
approximation error of the actor were provided'”, which ensure
that the obtained approximate control policies can asymptotically
stabilize the controlled systems.

As described in the previous paragraph, NN-based adaptive
critic scheme is employed in the implementation of the iterative
ADP scheme>""*>". The stability of NN-based controllers has
been systematically and fully investigated””* "™, For affine
systems, the H.. state feedback controller was designed and the
stability analysis was elaborated". It is proved that the NN
identifier can make the state estimation error dynamics
asymptotically stable!. Sokolov et al."*! extended previous results
to the case of multi-layer NNs across all layers. Additionally, the

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93—-110

State of the Art of Adaptive Dynamic Programming and Reinforcement Learning

proposed control method based on ADHDP is UUB under some
mild conditions. According to Ref. [183], the UUB stability of the
parameter estimation errors can be guaranteed when the weights
and biases across all layers are updated by the gradient descent
algorithm. For the model-free ADHDP approach with an
eligibility trace long-term prediction parameter A, the UUB
conditions""” were investigated by using Lyapunov stability.
Considering GDHP algorithm, Kim et al™ provided the
elementwise error bound of the costate function sequence and, for
the general multi-layer NN, developed UUB stability of weights.

6.2 Stability of the new
programming algorithm
For the new iterative ADP algorithm in Egs. (30) and (31), the
stability of the closed-loop system using ¥ has also been
revealed"". The positive definiteness of {V;} and the stability
results are summarized in the following propositions.

Proposition 7. (Positive definiteness of {V,}"). Suppose that
0 < J(F(xe, u)) < pU(xi,) and 0 < yJ () < Vi) < ()5
where 0 < p < e and 0 < # <1< (. Let the value function and
the control policy be iteratively updated by Eqs. (30) and (31). If
the relaxation factor is selected to satisfy

(=1 — A
p(C—1) + dun

where d,,,, = max{{—1,1—7}, then the iterative value function
V, is positive definite.

Proposition 8. (Stability of the new iterative ADP scheme").
Assume that J(F(x;,u)) < pU(xi, 1) and 0 < Vo (x) < J (%)
hold. Let \~/',-(xk) and 7,(x;) be updated by Egs. (30) and (31),
respectively.

(1) If the difference between \N/',-“(xk) and T/l(xk), Vx, # 0,
satisfies

iterative adaptive dynamic

0<w<1+ (36)

Vi () — Vi(xe) < wex!Qx,

where the relaxation factor satisfies the condition (36) and
¢ € (0,1) is a constant, then the control policy #;(x;) is admissible.
(2) If the relaxation factor satisfies
Ldmin
1+p)(¢—n)’
then there must exist an iteration index i, such that the control
policy ¥, ,;(x;) is admissible, j € N.

0<w< 1+

7 Conclusion

In this article, the state-of-the-art developments of ADPRL,
involving various algorithms and theoretical analyses, have been
revisited. Especially, in control systems community, ADPRL
methods have been developed considerably and widely applied to
different engineering problems. The adaptive feature and general
learning capability of ADPRL methods have aroused huge
interests of researchers. Werbos™ ™' pointed out that the core
idea of ADP may be the most likely to realize truly brain-like
intelligence. The increasing evidence has demonstrated that
optimality is an organizing principle for understanding brain
intelligence"™™. In recent years, the brain research around the
world has been extensive and reflects a considerable interest.
ADPRL has a lot of potential to make contributions to brain
research and brain-like intelligence. Besides, with increasing
developments regarding the understanding of brain operating
styles, more intelligent ADPRL approaches can then be developed.

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93-110

Deep RL possess the end-to-end learning characteristic in the
sense that it can make a swift decision directly by inputting images
to the agent. With this operation, the representation capability of
deep learning and the decision-making ability of RL are
incorporated and fully utilized. The end-to-end learning
mechanism makes the agent much closer to human thinking.
Because of the end-to-end learning property, deep RL has been
paid considerable attention lately. Integrating deep learning and
ADPRL will be conducive to establish agents with higher level
intelligence. Note that there are still some unsettled concerns to be
handled. Most of the pending issues related to approximating
solutions of DP with higher accuracy and less computational cost.
With the decade-long trends in deep learning, cloud computing,
optimization, Metaverse, as well as other mathematical subjects,
we believe that ADPRL has a promising development prospect.
ADPRL has enjoyed quite remarkable successes for a wide range
of fields including the orbital rendezvous, robot arm, urban
wastewater treatment, and energy scheduling.

Article History

Received: 26 April 2022; Revised: 19 August 2022; Accepted: 14
September 2022

References

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G.
Ostrovski, et al., Human-level control through deep reinforcement
learning, Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., Mastering the game of Go with deep neural
networks and tree search, Nature, vol. 529, no. 7587, pp. 484-489,
2016.

[3] D. Silver, J. L. Schrittwieser, K. Simonyan, I. Antonoglou, A.
Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al.,
Mastering the game of Go without human knowledge, Nature, vol.
550, no. 7676, pp. 354-359, 2017.

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A.
Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., A
general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play, Science, vol. 362, no. 6419, pp.
1140-1144, 2018.

[5] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever,
A. G. Castafieda, C. Beattie, N. C. Rabinowitz, A. S. Morcos, A.
Ruderman, et al., Human-level performance in 3D multiplayer
games with population-based reinforcement learning, Science, vol.
364, no. 6443, pp. 859-865, 2019.

[6] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A.
Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev,
et al, Grandmaster level in StarCraft II using multi-agent
reinforcement learning, Nature, vol. 575, no. 7782, pp. 350-354,
2019.

[7] H. Bastani, K. Drakopoulos, V. Gupta, I. Vlachogiannis, C.
Hadjichristodoulou, P. Lagiou, G. Magiorkinis, D. Paraskevis, and
S. Tsiodras, Efficient and targeted COVID-19 border testing via
reinforcement learning, Nature, vol. 599, no. 7883, pp. 108113,
2021.

[8] L. C. Garaffa, M. Basso, A. A. Konzen, and E. P. De Freitas,
Reinforcement learning for mobile robotics exploration: A survey,
IEEE Trans. Neural Netw Learn. Syst., doi: 10.1109/TNNLS.2021.
3124466.

[9] P. Leinen, M. Esders, K. T. Schiitt, C. Wagner, K. R. Miiller, and
F. S. Tautz, Autonomous robotic nanofabrication with
reinforcement learning, Sci. Adv., vol. 6, no. 36, p. eabb6987, 2020.

[10] W. Zhu, X. Guo, D. Owaki, K. Kutsuzawa, and M. Hayashibe, A

105

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aau6249
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-021-04014-z
https://doi.org/10.1109/TNNLS.2021.3124466
https://doi.org/10.1109/TNNLS.2021.3124466
https://doi.org/10.1126/sciadv.abb6987

CAAI Artificial Intelligence Research

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

106

survey of sim-to-real transfer techniques applied to reinforcement
learning for bioinspired robots, /EEE Trans. Neural Netw. Learn.
Syst., doi: 10.1109/TNNLS.2021.3112718.

B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S.
Yogamani, and P. Pérez, Deep reinforcement learning for
autonomous driving: A survey, /EEE Trans. Intell. Transp. Syst.,
vol. 23, no. 6, pp. 4909-4926, 2022.

S. Aradi, Survey of deep reinforcement learning for motion
planning of autonomous vehicles, /EEE Trans. Intell. Transp. Syst.,
vol. 23, no. 2, pp. 740-759, 2022.

J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F.
Carpanese, T. Ewalds, R. Hafner, A. Abdolmaleki, D. De Las
casas, et al., Magnetic control of tokamak plasmas through deep
reinforcement learning, Nature, vol. 602, no. 7897, pp. 414-419,
2022.

R. Hafner and M. Riedmiller, Reinforcement learning in feedback
control, Mach. Learn., vol. 84, no. 1, pp. 137-169, 2011.

D. Liu, Y. Xu, Q. Wei, and X. Liu, Residential energy scheduling
for variable weather solar energy based on adaptive dynamic
programming, /EEE/CAA J. Autom. Sin., vol. 5, no. 1, pp. 3646,
2018.

D. Wang, M. Ha, and J. Qiao, Data-driven iterative adaptive critic
control toward an urban wastewater treatment plant, /EEE Trans.
Ind. Electron., vol. 68, no. 8, pp. 7362-7369, 2021.

Y. Zhao, Y. Ma, and S. Hu, USV formation and path-following
control via deep reinforcement learning with random braking, /EEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 12, pp. 5468-5478,
2021.

D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic
Programming With Applications in Optimal Control. Cham,
Switzerland: Springer, 2017.

D. Liu, X. Yang, D. Wang, and Q. Wei, Reinforcement-learning-
based robust controller design for continuous-time uncertain
nonlinear systems subject to input constraints, /EEE Trans.
Cybern., vol. 45, no. 7, pp. 1372-1385, 2015.

S. Xue, B. Luo, and D. Liu, Event-triggered adaptive dynamic
programming for unmatched uncertain nonlinear continuous-time
systems, /EEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp.
2939-2951, 2021.

Z. Yan and Y. Xu, Real-time optimal power flow: A Lagrangian
based deep reinforcement learning approach, /EEE Trans. Power
Syst., vol. 35, no. 4, pp. 3270-3273, 2020.

N. Wang, Y. Gao, and X. Zhang, Data-driven performance-
prescribed reinforcement learning control of an unmanned surface
vehicle, /EEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 12, pp.
5456-5467, 2021.

D. Liu, D. Wang, and H. Li, Decentralized stabilization for a class
of continuous-time nonlinear interconnected systems using online
learning optimal control approach, /EEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 2, pp. 418428, 2014.

S. Xue, B. Luo, D. Liu, and Y. Gao, Event-triggered ADP for
tracking control of partially unknown constrained uncertain
systems, /EEE Trans. Cybern., vol. 52, no. 9, pp. 9001-9012, 2022.
J. Tromp, Number of legal) positions,
http://tromp.github.io/go/legal.html, 2021.

F. Y. Wang, J. J. Zhang, X. Zheng, X. Wang, Y. Yuan, X. Dai, J.
Zhang, and L. Yang, Where does AlphaGo go: From church-Turing
thesis to AlphaGo thesis and beyond, /EEE/CAA J. Autom. Sin.,
vol. 3, no. 2, pp. 113-120, 2016.

G. Tesauro, Practical issues in temporal difference learning, Mach.
Learn., vol. 8, no. 3, pp. 257-277, 1992.

G. Tesauro, TD-gammon, a self-teaching backgammon program,
achieves master-level play, Neural Comput., vol. 6, no. 2, pp.
215-219, 1994.

J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D.
Szafron, A world championship caliber checkers program, Artif.
Intell., vol. 53, nos. 2-3, pp. 273-289, 1992.

M. Buro, From simple features to sophisticated evaluation

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

functions, in Proc. I Int. Conf. Computers and Games, Tsukuba,
Japan, 1998, pp. 126-145.

M. Campbell, A. J. Hoane, and F. H. Hsu, Deep blue, Artif. Intell.,
vol. 134, no. 1-2, pp. 57-83, 2002.

C. Moyer, How Google’ s AlphaGo beat a Go world champion,
https://www.theatlantic.com/technology/archive/2016/03/the-
invisible-opponent/475611/, 2016.

S. Byford, AlphaGo retires from competitive Go after defeating
world number one 30, https://www.theverge.com/2017/5/27/15704-
088/alphago-ke-jie-game-3-result-retires-future, 2017.

S. Shead, Google DeepMind is edging towards a 3-0 victory against
world Go champion Ke Jie, https://www.businessinsider.nl/google-
deepmind-edges-towards-ke-jie-victory-2017-5/, 2017.

Y. Bengio, A. Courville, and P. Vincent, Representation learning:
A review and new perspectives, /EEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798-1828, 2013.

Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.
521, no. 7553, pp. 436444, 2015.

J. Schmidhuber, Deep learning in neural networks: An overview,
Neural Netw., vol. 61, pp. 85-117, 2015.

X. Cai and D. C. Wunsch, A parallel computer-Go player, using
HDP method, in Proc. Int. Joint Conf Neural Networks,
Washington, DC, USA, 2001, pp. 2373-2375.

N. N. Schraudolph, P. Dayan, and T. J. Sejnowski, Temporal
difference learning of position evaluation in the game of Go, in
Proc. 6" Int. Conf. Neural Information Processing Systems,
Denver, CO, USA, 1993, pp. 817-824.

D. Silver, R. S. Sutton, and M. Miiller, Temporal-difference search
in computer Go, Mach. Learn., vol. 87, no. 2, pp. 183-219, 2012.
R. Zaman, D. Prokhorov, and D. C. Wunsch, Adaptive critic design
in learning to play game of Go, in Proc. Int. Conf. Neural
Networks, Houston, TX, USA, 1997, pp. 1-4.

R. Zaman and D. C. Wunsch, TD methods applied to mixture of
experts for learning 9x9 Go evaluation function, in Proc. Int. Joint
Conf. Neural Networks, Washington, DC, USA, 1999, pp.
3734-3739.

R. Coulom, Computing ELO ratings of move patterns in the game
of Go, /ICGA J., vol. 30, no. 4, pp. 198-208, 2007.

M. Enzenberger, Evaluation in Go by a neural network using soft
segmentation, in Proc. 10" Int. Conf. Advances in Computer
Games, Graz, Austria, 2003, pp. 97-108.

C. Clark and A. Storkey, Training deep convolutional neural
networks to play Go, in Proc. 32" Int. Conf. Machine Learning,
Lille, France, 2015, pp. 1766—1774.

C. J. Maddison, A. Huang, I. Sutskever, and D. Silver, Move
evaluation in Go using deep convolutional neural networks, in
Proc. 3 Int. Conf. Learning Representations, San Diego, CA,
USA, 2015.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press, 1998.

A. G. Barto, Reinforcement learning and adaptive critic methods, in
Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive
Approaches, D. A. White and D. A. Sofge, Eds. New York, NY,
USA: Van Nostrand Reinhold, 1992, pp. 469-491.

F. L. Lewis and D. Vrabie, Reinforcement learning and adaptive
dynamic programming for feedback control, /EEE Circuits Syst.
Mag., vol. 9, no. 3, pp. 32-50, 2009.

F. L. Lewis, D. Liu, and G. G. Lendaris, Guest editorial-Special
issue on adaptive dynamic programming and reinforcement
learning in feedback control, /EEE Trans. Syst. Man Cybern. B:
Cybern, vol. 38, no. 4, pp. 896-897, 2008.

D. Liu, F. L. Lewis, and Q. Wei, Editorial special issue on adaptive
dynamic programming and reinforcement learning, /EEE Trans.
Syst. Man Cybern. Syst., vol. 50, no. 11, pp. 3944-3947, 2020.

L. Busoniu, T. De Bruin, D. Toli¢, J. Kober, and I. Palunko,
Reinforcement learning for control: Performance, stability, and
deep approximators, Annu. Rev. Control, vol. 46, pp. 8-28, 2018.
B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis,

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93—-110

https://doi.org/10.1109/TNNLS.2021.3112718
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/TITS.2020.3024655
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1109/JAS.2017.7510739
https://doi.org/10.1109/TIE.2020.3001840
https://doi.org/10.1109/TIE.2020.3001840
https://doi.org/10.1109/TNNLS.2021.3068762
https://doi.org/10.1109/TNNLS.2021.3068762
https://doi.org/10.1109/TCYB.2015.2417170
https://doi.org/10.1109/TCYB.2015.2417170
https://doi.org/10.1109/TNNLS.2020.3009015
https://doi.org/10.1109/TPWRS.2020.2987292
https://doi.org/10.1109/TPWRS.2020.2987292
https://doi.org/10.1109/TNNLS.2021.3056444
https://doi.org/10.1109/TNNLS.2013.2280013
https://doi.org/10.1109/TNNLS.2013.2280013
https://doi.org/10.1109/TCYB.2021.3054626
http://tromp.github.io/go/legal.html
https://doi.org/10.1109/JAS.2016.7471613
https://doi.org/10.1162/neco.1994.6.2.215
https://doi.org/10.1016/S0004-3702(01)00129-1
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611/
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611/
https://www.theverge.com/2017/5/27/15704088/alphago-ke-jie-game-3-result-retires-future
https://www.theverge.com/2017/5/27/15704088/alphago-ke-jie-game-3-result-retires-future
https://www.theverge.com/2017/5/27/15704088/alphago-ke-jie-game-3-result-retires-future
https://www.businessinsider.nl/google-deepmind-edges-towards-ke-jie-victory-2017-5/
https://www.businessinsider.nl/google-deepmind-edges-towards-ke-jie-victory-2017-5/
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1007/s10994-012-5280-0
https://doi.org/10.3233/ICG-2007-30403
https://doi.org/10.1109/MCAS.2009.933854
https://doi.org/10.1109/MCAS.2009.933854
https://doi.org/10.1109/TSMCB.2008.925890
https://doi.org/10.1109/TSMCB.2008.925890
https://doi.org/10.1109/TSMC.2020.3025549
https://doi.org/10.1109/TSMC.2020.3025549
https://doi.org/10.1016/j.arcontrol.2018.09.005

[54]

[55]

[56]
[57]
(58]
[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

State of the Art of Adaptive Dynamic Programming and Reinforcement Learning

Optimal and autonomous control using reinforcement learning: A
survey, /EEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp.
2042-2062, 2018.

D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei, Adaptive dynamic
programming for control: A survey and recent advances, /EEE
Trans. Syst. Man Cybern. Syst., vol. 51, no. 1, pp. 142-160, 2021.
D. Wang, M. Ha, and M. Zhao, The intelligent critic framework for
advanced optimal control, Artif. Intell. Rev., vol. 55, no. 1, pp.
1-22,2022.

R. S. Sutton, Learning to predict by the methods of temporal
differences, Mach. Learn., vol. 3, no. 1, pp. 944, 1988.

C. J. C. H. Watkins, Learning from delayed rewards, PhD
dissertation, Cambridge Univ., Cambridge, UK, 1989.

C. J. C. H. Watkins and P. Dayan, Q-learning, Mach. Learn., vol. 8,
no. 3, pp. 279-292, 1992.

A. Gosavi, Reinforcement learning: A tutorial survey and recent
advances, INFORMS J. Comput., vol. 21, no. 2, pp. 178-192, 2009.
L. P. Kaelbling, M. L. Littman, and A. W. Moore, Reinforcement
learning: A survey, J. Artif. Intell. Res., vol. 4, pp. 237-285, 1996.
G. A. Rummery and M. Niranjan, On-Line Q-Learning Using
Connectionist Systems, http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-
pdf/rummery_tr166.pdf, 1994.

R. S. Sutton, Generalization in reinforcement learning: Successful
examples using sparse coarse coding, in Proc. 8" Int. Conf. Neural
Information Processing Systems, Denver, CO, USA, 1995, pp.
1038-1044.

R. Bellman, Dynamic Programming. Princeton,
Princeton University Press, 1957.

D. P. Bertsekas, Dynamic Programming and Optimal Control. 3rd
ed. Belmont, MA, USA: Athena Scientific, 2005.

S. E. Dreyfus and A. M. Law, The Art and Theory of Dynamic
Programming. New York, NY, USA: Academic Press, 1977.

F. L. Lewis and V. L. Syrmos, Optimal Control. New York, NY,
USA: Wiley, 1995.

M. C. Weinstein and R. J. Zeckhauser, The optimal consumption of
depletable natural resources, Quart. J. Econ., vol. 89, no. 3, pp.
371-392, 1975.

S. G. Papachristos, Adaptive dynamic programming in inventory
control, PhD dissertation, The University of Manchester,
Manchester, UK, 1977.

S. Papachristos, Note-A note on the dynamic inventory problem
with unknown demand distribution, Manage. Sci., vol. 23, no. 11,
pp. 1248-1251, 1977.

S. Shields, A review of fault detection methods for large systems,
Radio Electron. Eng., vol. 46, no. 6, pp. 276-280, 1976.

A. G. Barto, S. J. Bradtke, and S. P. Singh, Learning to act using
real-time dynamic programming, Arzif. Intell., vol. 72, no. 1-2, pp.
81-138, 1995.

J. J. Murray, C. J. Cox, and R. E. Sacks, The adaptive dynamic
programming theorem, in Stability and Control of Dynamical
Systems with Applications, D. Liu and P. J. Antsaklis, Eds. Boston,
MA USA: Birkhéuser, 2003, pp. 379-394.

W. H. Hausman and L. J. Thomas, Inventory control with
probabilistic demand and periodic withdrawals, Manage. Sci., vol.
18, no. 5-part-1, pp. 265-275, 1972.

P. J. Werbos, Building and understanding adaptive systems: A
statistical/numerical approach to factory automation and brain
research, /EEE Trans. Syst. Man Cybern., vol. 17, no. 1, pp. 7-20,
1987.

P. J. Werbos, Advanced forecasting methods for global crisis
warning and models of intelligence, Gen. Syst., vol. 22, pp. 25-38,
1977.

P. J. Werbos, A menu of designs for reinforcement learning over
time, in Neural Networks for Control, W. T. Miller, R. S. Sutton,
and P. J. Werbos, Eds. Cambridge, MA, USA: MIT Press, 1990,
pp. 67-95.

P. J. Werbos, Consistency of HDP applied to a simple
reinforcement learning problem, Neural Netw., vol. 3, no. 2, pp.

NJ, USA:

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93-110

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

179-189, 1990.

P. J. Werbos, Approximate dynamic programming for real-time
control and neural modeling, in Handbook of Intelligent Control:
Neural, Fuzzy, and Adaptive Approaches, D. A. White and D. A.
Sofge, Eds. New York, NY, USA: Van Nostrand Reinhold, 1992,
pp.493-525.

D. V. Prokhorov, R. A. Santiago, and D. C. Wunsch, Adaptive
critic designs: A case study for neurocontrol, Neural Netw., vol. 8,
no. 9, pp. 1367-1372, 1995.

D. V. Prokhorov and D. C. Wunsch, Adaptive critic designs, /EEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997-1007, 1997.

A. Al-Tamimi, M. Abu-Khalaf, and F. L. Lewis, Adaptive critic
designs for discrete-time zero-sum games with application to H,,
control, /EEE Trans. Syst. Man Cybern. B: Cybern., vol. 37, no. 1,
pp. 240247, 2007.

S. N. Balakrishnan and V. Biega, Adaptive-critic-based neural
networks for aircraft optimal control, J. Guid. Control Dyn., vol.
19, no. 4, pp. 893-898, 1996.

G. K. Venayagamoorthy, R. G. Harley, and D. C. Wunsch,
Comparison of heuristic dynamic programming and dual heuristic
programming adaptive critics for neurocontrol of a turbogenerator,
[EEE Trans. Neural Netw., vol. 13, no. 3, pp. 764-773, 2002.

C. Cox, S. Stepniewski, C. Jorgensen, R. Saeks, and C. Lewis, On
the design of a neural network autolander, /nt. J. Robust Nonlinear
Control, vol. 9, no. 14, pp. 1071-1096, 1999.

J. Dalton and S. N. Balakrishnan, A neighboring optimal adaptive
critic for missile guidance, Math. Comput. Modell., vol. 23, nos.
1-2, pp. 175-188, 1996.

D. Liu, H. Javaherian, O. Kovalenko, and T. Huang, Adaptive critic
learning techniques for engine torque and air-fuel ratio control,
IEEE Trans. Syst. Man Cybern. B: Cybern., vol. 38, no. 4, pp.
988-993, 2008.

N. V. Kulkarni and K. KrishnaKumar, Intelligent engine control
using an adaptive critic, /EEE Trans. Control Syst. Technol., vol.
11, no. 2, pp. 164-173, 2003.

D. Liu, Y. Zhang, and H. Zhang, A self-learning call admission
control scheme for CDMA cellular networks, /EEE Trans. Neural
Netw., vol. 16, no. 5, pp. 1219-1228, 2005.

J. Si, L. Yang, and D. Liu, Direct neural dynamic programming, in
Handbook of Learning and Approximate Dynamic Programming, J.
Si, A. G. Barto, W. B. Powell, and D. Wunsch, Eds. New York,
NY, USA: Wiley, 2004, pp. 125-151.

S. Chakraborty and M. G. Simoes, Neural dynamic programming
based online controller with a novel trim approach, /EE Proc.
Control Theory Appl., vol. 152, no. 1, pp. 95-104, 2005.

D. Liu and H. Zhang, A neural dynamic programming approach for
learning control of failure avoidance problems, Int. J. Intell.
Control Syst., vol. 10, no. 1, pp. 21-32, 2005.

D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming:
An overview, in Proc. 34" IEEE Conf. Decision and Control, New
Orleans, LA, USA, 1995, pp. 560-564.

D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Scientific, 1996.

D. P. Bertsekas, M. L. Homer, D. A. Logan, S. D. Patek, and N. R.
Sandell, Missile defense and interceptor allocation by neuro-
dynamic programming, /EEE Trans. Syst. Man Cybern. A: Syst.
Hum., vol. 30, no. 1, pp. 42-51, 2000.

P. Marbach, O. Mihatsch, and J. N. Tsitsiklis, Call admission
control and routing in integrated services networks using neuro-
dynamic programming, /EEE J. Select. Areas Commun., vol. 18,
no. 2, pp. 197-208, 2000.

D. Wang, C. Mu, H. He, and D. Liu, Event-driven adaptive robust
control of nonlinear systems with uncertainties through NDP
strategy, /EEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 7, pp.
1358-1370, 2017.

C. Mu, D. Wang, and H. He, Novel iterative neural dynamic
programming for data-based approximate optimal control design,
Automatica, vol. 81, pp. 240-252, 2017.

107

https://doi.org/10.1109/TNNLS.2017.2773458
https://doi.org/10.1109/TSMC.2020.3042876
https://doi.org/10.1109/TSMC.2020.3042876
https://doi.org/10.1007/s10462-021-10118-9
https://doi.org/10.1287/ijoc.1080.0305
https://doi.org/10.1613/jair.301
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf
https://doi.org/10.2307/1885258
https://doi.org/10.1049/ree.1976.0044
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1109/TSMC.1987.289329
https://doi.org/10.1016/0893-6080(90)90088-3
https://doi.org/10.1016/0893-6080(95)00042-9
https://doi.org/10.1109/72.623201
https://doi.org/10.1109/72.623201
https://doi.org/10.1109/TSMCB.2006.880135
https://doi.org/10.2514/3.21715
https://doi.org/10.1109/TNN.2002.1000146
https://doi.org/10.1002/(SICI)1099-1239(19991215)9:14<1071::AID-RNC453>3.0.CO;2-W
https://doi.org/10.1002/(SICI)1099-1239(19991215)9:14<1071::AID-RNC453>3.0.CO;2-W
https://doi.org/10.1109/TSMCB.2008.922019
https://doi.org/10.1109/TCST.2003.809254
https://doi.org/10.1109/TNN.2005.853408
https://doi.org/10.1109/TNN.2005.853408
https://doi.org/10.1049/ip-cta:20041119
https://doi.org/10.1049/ip-cta:20041119
https://doi.org/10.1109/3468.823480
https://doi.org/10.1109/3468.823480
https://doi.org/10.1109/49.824797
https://doi.org/10.1109/TSMC.2016.2592682
https://doi.org/10.1016/j.automatica.2017.03.022

CAAI Artificial Intelligence Research

[98] M. Aoki, On optimal and suboptimal policies in the choice of
control forces for final-value systems, /RE Trans. Autom. Control,
vol. 5, no. 3, pp. 171-178, 1960.

[99] R. Durbeck, An approximation technique for suboptimal control,
IEEE Trans. Autom. Control, vol. 10, no. 2, pp. 144—149, 1965.

[100]R. J. Leake and R. W. Liu, Construction of suboptimal control
sequences, SIAM J. Control, vol. 5, no. 1, pp. 54-63, 1967.

[101]F. Y. Wang and G. N. Saridis, Suboptimal control for nonlinear
stochastic systems, in Proc. 31" IEEE Conf. Decision and Control,
Tucson, AZ, USA, 1992, pp. 1856-1861.

[102] G. N. Saridis and F. Y. Wang, Suboptimal control of nonlinear
stochastic systems, Control Theory Adv. Technol., vol. 10, no. 4,
pp. 847-871, 1994.

[103] P. Werbos, ADP: Goals, opportunities and principles, in Handbook
of Learning and Approximate Dynamic Programming, J. Si, A.
Barto, W. Powell, and D. Wunsch, Eds. New York, NY, USA:
Wiley, 2004, pp. 3—44.

[104] W. B. Powell, Approximate Dynamic Programming: Solving the
Curses of Dimensionality. New York, NY, USA: Wiley, 2007.
[105]P. J. Werbos, Using ADP to understand and replicate brain
intelligence: The next level design, in Proc. IEEE Int. Symp.
Approximate Dynamic Programming and Reinforcement Learning,

Honolulu, HI, USA, 2007, pp. 209-216.

[106] P. J. Werbos, Foreword - ADP: The key direction for future
research in intelligent control and understanding brain intelligence,
IEEE Trans. Syst. Man Cybern. B: Cybern., vol. 38, no. 4, pp.
898-900, 2008.

[107] X. Bai, D. Zhao, and J. Yi, Coordinated multiple ramps metering
based on neuro-fuzzy adaptive dynamic programming, in Proc. Int.
Joint Conf. Neural Networks, Atlanta, GA, USA, 2009, pp.
241-248.

[108]Y. Zhu, D. Zhao, and H. He, Integration of fuzzy controller with
adaptive dynamic programming, in Proc. 10" World Congress on
Intelligent Control and Automation, Beijing, China, 2012, pp.
310-315.

[109] H. Zhang, J. Zhang, G. H. Yang, and Y. Luo, Leader-based optimal
coordination control for the consensus problem of multiagent
differential games via fuzzy adaptive dynamic programming, /EEE
Trans. Fuzzy Syst., vol. 23, no. 1, pp. 152-163, 2015.

[110]R. E. Saeks, C. J. Cox, K. Mathia, and A. J. Maren, Asymptotic
dynamic programming: Preliminary concepts and results, in Proc.
IEEE Int. Conf. Neural Networks, Houston, TX, USA, 1997, pp.
2273-2278.

[111] S. Haykin, Neural Networks and Learning Machines, 3rd ed. Upper
Saddle River, NJ, USA: Prentice-Hall, 2009.

[112]J. M. Zurada, Introduction to Artificial Neural Systems. St. Paul,
MN, USA: West, 1992.

[113]D. Liu, X. Xiong, and Y. Zhang, Action-dependent adaptive critic
designs, in Proc. Int. Joint Conf. Neural Networks, Washington,
DC, USA, 2001, pp. 990-995.

[114] G. G. Lendaris and C. Paintz, Training strategies for critic and
action neural networks in dual heuristic programming method, in
Proc. IEEE Int. Conf. Neural Networks, Houston, TX, USA, 1997,
pp. 712-717.

[115]J. Si and Y. T. Wang, Online learning control by association and
reinforcement, /EEE Trans. Neural Netw., vol. 12, no. 2, pp.
264-276, 2001.

[116] H. He, Z. Ni, and J. Fu, A three-network architecture for on-line
learning and optimization based on adaptive dynamic
programming, Neurocomputing, vol. 78, no. 1, pp. 3—13,2012.

[117]R. Padhi, N. Unnikrishnan, X. Wang, and S. N. Balakrishnan, A
single network adaptive critic (SNAC) architecture for optimal
control synthesis for a class of nonlinear systems, Newural Netw.,
vol. 19, no. 10, pp. 1648-1660, 2006.

[118] B. Lincoln and A. Rantzer, Relaxing dynamic programming, /EEE
Trans. Autom. Control, vol. 51, no. 8, pp. 1249-1260, 2006.

[119] A. Rantzer, Relaxed dynamic programming in switching systems,
[EE Proc. Control Theory Appl., vol. 153, no. 5, pp. 567-574,

108

2006.

[120] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, Discrete-time
nonlinear HJB solution using approximate dynamic programming:
Convergence proof, /EEE Trans. Syst. Man Cybern. B: Cybern.,
vol. 38, no. 4, pp. 943-949, 2008.

[121]1F. Y. Wang, N. Jin, D. Liu, and Q. Wei, Adaptive dynamic
programming for finite-horizon optimal control of discrete-time
nonlinear systems with g-error bound, /EEE Trans. Neural Netw.,
vol. 22, no. 1, pp. 24-36, 2011.

[122]D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, Neural-network-
based optimal control for a class of unknown discrete-time
nonlinear systems using globalized dual heuristic programming,
[EEE Trans. Autom. Sci. Eng., vol. 9, no. 3, pp. 628-634, 2012.

[123] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, Optimal control of
unknown nonaffine nonlinear discrete-time systems based on
adaptive dynamic programming, Automatica, vol. 48, no. 8, pp.
1825-1832,2012.

[124] D. Liu, D. Wang, and X. Yang, An iterative adaptive dynamic
programming algorithm for optimal control of unknown discrete-
time nonlinear systems with constrained inputs, /nf. Sci., vol. 220,
pp. 331-342,2013.

[125] D. Liu and Q. Wei, Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems, /EEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 3, pp. 621-634, 2014.

[126] D. Liu, Q. Wei, and P. Yan, Generalized policy iteration adaptive
dynamic programming for discrete-time nonlinear systems, /EEE
Trans. Syst. Man Cybern. Syst., vol. 45, no. 12, pp. 1577-1591,
2015.

[127]Q. Wei and D. Liu, A novel iterative 6f-adaptive dynamic
programming for discrete-time nonlinear systems, /EEE Trans.
Autom. Sci. Eng., vol. 11, no. 4, pp. 1176-1190, 2014.

[128] Q. Zhao, H. Xu, and S. Jagannathan, Near optimal output feedback
control of nonlinear discrete-time systems based on reinforcement
neural network learning, /EEE/CAA J. Autom. Sin., vol. 1, no. 4,
pp. 372-384,2014.

[129] X. Zhong, H. He, H. Zhang, and Z. Wang, Optimal control for
unknown discrete-time nonlinear Markov jump systems using
adaptive dynamic programming, /EEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 12, pp. 2141-2155, 2014.

[130] A. Sahoo, H. Xu, and S. Jagannathan, Near optimal event-triggered
control of nonlinear discrete-time systems using neurodynamic
programming, /EEE Trans. Neural Netw. Learn. Syst., vol. 27, no.
9, pp. 1801-1815, 2016.

[1317H. Li and D. Liu, Optimal control for discrete-time affine non-
linear systems using general value iteration, /ET Control Theory
Appl., vol. 6, no. 18, pp. 2725-2736, 2012.

[132] D. Liu, H. Li, and D. Wang, Error bounds of adaptive dynamic
programming algorithms for solving undiscounted optimal control
problems, /EEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6,
pp. 1323-1334, 2015.

[133]D. Liu and Q. Wei, Finite-approximation-error-based optimal
control approach for discrete-time nonlinear systems, /EEE Trans.
Cybern., vol. 43, no. 2, pp. 779-789, 2013.

[134] Q. Wei and D. Liu, Numerical adaptive learning control scheme for
discrete-time non-linear systems, /ET Control Theory Appl., vol. 7,
no. 11, pp. 1472-1486, 2013.

[135] Q. Wei and D. Liu, Stable iterative adaptive dynamic programming
algorithm with approximation errors for discrete-time nonlinear
systems, Newral Comput. Appl., vol. 24, no. 6, pp. 1355-1367,
2014.

[136] Q. Wei, D. Liu, and X. Yang, Infinite horizon self-learning optimal
control of nonaffine discrete-time nonlinear systems, /EEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 4, pp. 866-879, 2015.

[137]1 Q. Wei, D. Liu, and Y. Xu, Neuro-optimal tracking control for a
class of discrete-time nonlinear systems via generalized value
iteration adaptive dynamic programming approach, Soft Comput.,
vol. 20, no. 2, pp. 697-706, 2016.

[138] Q. Wei, F. Y. Wang, D. Liu, and X. Yang, Finite-approximation-

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93—-110

https://doi.org/10.1109/TAC.1960.1105018
https://doi.org/10.1109/TAC.1965.1098127
https://doi.org/10.1137/0305004
https://doi.org/10.1109/TSMCB.2008.924139
https://doi.org/10.1109/TFUZZ.2014.2310238
https://doi.org/10.1109/TFUZZ.2014.2310238
https://doi.org/10.1109/72.914523
https://doi.org/10.1016/j.neucom.2011.05.031
https://doi.org/10.1016/j.neunet.2006.08.010
https://doi.org/10.1109/TAC.2006.878720
https://doi.org/10.1109/TAC.2006.878720
https://doi.org/10.1049/ip-cta:20050094
https://doi.org/10.1109/TSMCB.2008.926614
https://doi.org/10.1109/TNN.2010.2076370
https://doi.org/10.1109/TASE.2012.2198057
https://doi.org/10.1016/j.automatica.2012.05.049
https://doi.org/10.1016/j.ins.2012.07.006
https://doi.org/10.1109/TNNLS.2013.2281663
https://doi.org/10.1109/TNNLS.2013.2281663
https://doi.org/10.1109/TSMC.2015.2417510
https://doi.org/10.1109/TSMC.2015.2417510
https://doi.org/10.1109/TASE.2013.2280974
https://doi.org/10.1109/TASE.2013.2280974
https://doi.org/10.1109/JAS.2014.7004665
https://doi.org/10.1109/TNNLS.2014.2305841
https://doi.org/10.1109/TNNLS.2014.2305841
https://doi.org/10.1109/TNNLS.2015.2453320
https://doi.org/10.1049/iet-cta.2011.0783
https://doi.org/10.1049/iet-cta.2011.0783
https://doi.org/10.1109/TNNLS.2015.2402203
https://doi.org/10.1109/TSMCB.2012.2216523
https://doi.org/10.1109/TSMCB.2012.2216523
https://doi.org/10.1049/iet-cta.2012.0486
https://doi.org/10.1007/s00521-013-1361-7
https://doi.org/10.1109/TNNLS.2015.2401334
https://doi.org/10.1109/TNNLS.2015.2401334
https://doi.org/10.1007/s00500-014-1533-0

State of the Art of Adaptive Dynamic Programming and Reinforcement Learning

error-based discrete-time iterative adaptive dynamic programming,
[EEE Trans. Cybern., vol. 44, no. 12, pp. 2820-2833, 2014.

[139]P. Yan, D. Wang, H. Li, and D. Liu, Error bound analysis of Q-
function for discounted optimal control problems with policy
iteration, /EEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 7, pp.
1207-1216, 2017.

[140]B. Luo, Y. Yang, H. N. Wu, and T. Huang, Balancing value
iteration and policy iteration for discrete-time control, /EEE Trans.
Syst. Man Cybern. Syst., vol. 50, no. 11, pp. 3948-3958, 2020.

[141]1M. Ha, D. Wang, and D. Liu, A novel value iteration scheme with
adjustable convergence rate, /EEE Trans. Neural Netw. Learn.
Syst., doi: 10.1109/TNNLS.2022.3143527.

[142]Y. Zhu, D. Zhao, and X. Li, [terative adaptive dynamic
programming for solving unknown nonlinear zero-sum game based
on online data, /EEE Trans. Neural Netw. Learn. Syst., vol. 28, no.
3, pp. 714-725, 2017.

[143] C. Li, D. Liu, and D. Wang, Data-based optimal control for weakly
coupled nonlinear systems using policy iteration, /EEE Trans. Syst.
Man Cybern. Syst., vol. 48, no. 4, pp. 511-521, 2018.

[144]1H. Zhang, Y. Liu, G. Xiao, and H. Jiang, Data-based adaptive
dynamic programming for a class of discrete-time systems with
multiple delays, /EEE Trans. Syst. Man Cybern. Syst., vol. 50, no.
2, pp. 432441, 2020.

[145]N. Lin, R. Chi, and B. Huang, Event-triggered model-free adaptive
control, /EEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 6, pp.
3358-3369, 2021.

[146] B. Luo, Y. Yang, and D. Liu, Policy iteration Q-learning for data-
based two-player zero-sum game of linear discrete-time systems,
IEEE Trans. Cybern., vol. 51, no. 7, pp. 3630-3640, 2021.

[147]1 Q. Wei, L. Zhu, R. Song, P. Zhang, D. Liu, and J. Xiao, Model-free
adaptive optimal control for unknown nonlinear multiplayer
nonzero-sum game, /EEE Trans. Neural Netw. Learn. Syst., vol.
33, no. 2, pp. 879-892, 2022.

[148] M. Farjadnasab and M. Babazadeh, Model-free LQR design by Q-
function learning, Automatica, vol. 137, p. 110060, 2022.

[149]C. Mu, D. Wang, and H. He, Data-driven finite-horizon
approximate optimal control for discrete-time nonlinear systems
using iterative HDP approach, /EEE Trans. Cybern., vol. 48, no.
10, pp. 2948-2961, 2018.

[150] S. Al-Dabooni and D. C. Wunsch, An improved N-step value
gradient learning adaptive dynamic programming algorithm for
online learning, /EEE Trans. Neural Netw. Learn. Syst., vol. 31, no.
4, pp. 1155-1169, 2020.

[151] B. Luo, D. Liu, H. N. Wu, D. Wang, and F. L. Lewis, Policy
gradient adaptive dynamic programming for data-based optimal
control, /EEE Trans. Cybern., vol. 47, no. 10, pp. 3341-3354,
2017.

[152]J. Ye, Y. Bian, B. Luo, M. Hu, B. Xu, and R. Ding, Costate-
supplement ADP for model-free optimal control of discrete-time
nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst., doi:
10.1109/TNNLS.2022.3172126.

[153]Y. Li, Z. Hou, Y. Feng, and R. Chi, Data-driven approximate value
iteration with optimality error bound analysis, Automatica, vol. 78,
pp. 79-87, 2017.

[154]Y. Li, C. Yang, Z. Hou, Y. Feng, and C. Yin, Data-driven
approximate Q-learning stabilization with optimality error bound
analysis, Automatica, vol. 103, pp. 435-442,2019.

[155]H. Zhang, K. Zhang, Y. Cai, and J. Han, Adaptive fuzzy fault-
tolerant tracking control for partially unknown systems with
actuator faults via integral reinforcement learning method, /EEE
Trans. Fuzzy Syst., vol. 27, no. 10, pp. 1986-1998, 2019.

[156] Y. Cao, Y. Song, and C. Wen, Practical tracking control of
perturbed uncertain nonaffine systems with full state constraints,
Automatica, vol. 110, p. 08608, 2019.

[157] C. Chen, H. Modares, K. Xie, F. L. Lewis, Y. Wan, and S. Xie,
Reinforcement learning-based adaptive optimal exponential
tracking control of linear systems with unknown dynamics, /EEE
Trans. Autom. Control, vol. 64, no. 11, pp. 4423-4438, 2019.

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93-110

[158] M. Ha, D. Wang, and D. Liu, Data-based nonaffine optimal
tracking control using iterative DHP approach, /FAC-Papers-
OnLine, vol. 53, no. 2, pp. 4246-4251, 2020.

[159] K. Zhang, H. Zhang, Y. Mu, and C. Liu, Decentralized tracking
optimization control for partially unknown fuzzy interconnected
systems via reinforcement learning method, /EEE Trans. Fuzzy
Syst., vol. 29, no. 4, pp. 917-926, 2021.

[160] F. Liu, C. Jiang, and W. Xiao, Multistep prediction-based adaptive
dynamic programming sensor scheduling approach for collab-
orative target tracking in energy harvesting wireless sensor
networks, /EEE Trans. Autom. Sci. Eng., vol. 18, no. 2, pp.
693-704, 2021.

[161]H. Dong, X. Zhao, and B. Luo, Optimal tracking control for
uncertain nonlinear systems with prescribed performance via critic-
only ADP, /EEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 1, pp.
561-573, 2022.

[162] B. Luo, D. Liu, T. Huang, and J. Liu, Output tracking control based
on adaptive dynamic programming with multistep policy
evaluation, /EEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 10,
pp. 2155-2165, 2019.

[163] C. Li, J. Ding, F. L. Lewis, and T. Chai, A novel adaptive dynamic
programming based on tracking error for nonlinear discrete-time
systems, Automatica, vol. 129, p. 109687, 2021.

[164] M. Ha, D. Wang, and D. Liu, Discounted iterative adaptive critic
designs with novel stability analysis for tracking control,
IEEE/CAA J. Autom. Sin., vol. 9, no. 7, pp. 1262—1272, 2022.

[165] W. Xue, P. Kolaric, J. Fan, B. Lian, T. Chai, and F. L. Lewis,
Inverse reinforcement learning in tracking control based on inverse
optimal control, /EEE Trans. Cybern., vol. 52, no. 10, pp.
10570-10581, 2022.

[166] W. Zhang, K. Song, X. Rong, and Y. Li, Coarse-to-fine UAV target
tracking with deep reinforcement learning, /EEE Trans. Autom. Sci.
Eng., vol. 16, no. 4, pp. 1522-1530, 2019.

[167]Y. Hu, W. Wang, H. Liu, and L. Liu, Reinforcement learning
tracking control for robotic manipulator with kernel-based dynamic
model, /EEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp.
3570-3578, 2020.

[168]R. Wu, Z. Yao, J. Si, and H. H. Huang, Robotic knee tracking
control to mimic the intact human knee profile based on actor-critic
reinforcement learning, /EEE/CAA J. Autom. Sin., vol. 9, no. 1, pp.
19-30, 2022.

[169] S. Cao, L. Sun, J. Jiang, and Z. Zuo, Reinforcement learning-based
fixed-time trajectory tracking control for uncertain robotic
manipulators with input saturation, /EEE Trans. Neural Netw.
Learn. Syst., doi: 10.1109/TNNLS.2021.3116713.

[170] N. Wang, Y. Gao, H. Zhao, and C. K. Ahn, Reinforcement learning-
based optimal tracking control of an unknown unmanned surface
vehicle, /EEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp.
3034-3045, 2021.

[171]S. A. A. Rizvi, A. J. Pertzborn, and Z. Lin, Reinforcement learning
based optimal tracking control under unmeasurable disturbances
with application to HVAC systems, /[EEE Trans. Neural Netw.
Learn. Syst., doi: 10.1109/TNNLS.2021.3085358.

[172]S. Song, M. Zhu, X. Dai, and D. Gong, Model-free optimal
tracking control of nonlinear input-affine discrete-time systems via
an iterative deterministic Q-learning algorithm, /EEE Trans. Neural
Netw. Learn. Syst., doi: 10.1109/TNNLS.2022.3178746.

[173] M. Lin, B. Zhao, and D. Liu, Policy gradient adaptive critic designs
for model-free optimal tracking control with experience replay,
IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 6, pp. 3692—
3703, 2022.

[174] S. Li, P. Durdevic, and Z. Yang, Model-free H,, tracking control for
de-oiling hydrocyclone systems via off-policy reinforcement
learning, Automatica, vol. 133, p. 109862, 2021.

[175] W. Sun, X. Wang, and C. Zhang, A model-free control strategy for
vehicle lateral stability with adaptive dynamic programming, /EEE
Trans. Ind. Electron., vol. 67, no. 12, pp. 10693-10701, 2020.

[176] A. Heydari, Stability analysis of optimal adaptive control under

109

https://doi.org/10.1109/TCYB.2014.2354377
https://doi.org/10.1109/TSMC.2016.2563982
https://doi.org/10.1109/TSMC.2019.2898389
https://doi.org/10.1109/TSMC.2019.2898389
https://doi.org/10.1109/TNNLS.2022.3143527
https://doi.org/10.1109/TNNLS.2016.2561300
https://doi.org/10.1109/TSMC.2016.2606479
https://doi.org/10.1109/TSMC.2016.2606479
https://doi.org/10.1109/TSMC.2017.2758849
https://doi.org/10.1109/TSMC.2019.2924356
https://doi.org/10.1109/TCYB.2020.2970969
https://doi.org/10.1109/TNNLS.2020.3030127
https://doi.org/10.1016/j.automatica.2021.110060
https://doi.org/10.1109/TCYB.2017.2752845
https://doi.org/10.1109/TNNLS.2019.2919338
https://doi.org/10.1109/TCYB.2016.2623859
https://doi.org/10.1109/TNNLS.2022.3172126
https://doi.org/10.1016/j.automatica.2016.12.019
https://doi.org/10.1016/j.automatica.2019.01.018
https://doi.org/10.1109/TFUZZ.2019.2893211
https://doi.org/10.1109/TFUZZ.2019.2893211
https://doi.org/10.1109/TAC.2019.2905215
https://doi.org/10.1109/TAC.2019.2905215
https://doi.org/10.1016/j.ifacol.2020.12.2473
https://doi.org/10.1016/j.ifacol.2020.12.2473
https://doi.org/10.1016/j.ifacol.2020.12.2473
https://doi.org/10.1109/TFUZZ.2020.2966418
https://doi.org/10.1109/TFUZZ.2020.2966418
https://doi.org/10.1109/TASE.2020.3019567
https://doi.org/10.1109/TSMC.2020.3003797
https://doi.org/10.1109/TSMC.2017.2771516
https://doi.org/10.1016/j.automatica.2021.109687
https://doi.org/10.1109/JAS.2022.105692
https://doi.org/10.1109/TCYB.2021.3062856
https://doi.org/10.1109/TASE.2018.2877499
https://doi.org/10.1109/TASE.2018.2877499
https://doi.org/10.1109/TNNLS.2019.2945019
https://doi.org/10.1109/JAS.2021.1004272
https://doi.org/10.1109/TNNLS.2021.3116713
https://doi.org/10.1109/TNNLS.2020.3009214
https://doi.org/10.1109/TNNLS.2021.3085358
https://doi.org/10.1109/TNNLS.2022.3178746
https://doi.org/10.1109/TSMC.2021.3071968
https://doi.org/10.1016/j.automatica.2021.109862
https://doi.org/10.1109/TIE.2019.2958308
https://doi.org/10.1109/TIE.2019.2958308

CAAI Artificial Intelligence Research

value iteration using a stabilizing initial policy, /EEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 9, pp. 4522-4527, 2018.

[177] A. Heydari, Stability analysis of optimal adaptive control using
value iteration with approximation errors, /[EEE Trans. Autom.
Control, vol. 63, no. 9, pp. 3119-3126, 2018.

[178]1Q. Wei, D. Liu, and H. Lin, Value iteration adaptive dynamic
programming for optimal control of discrete-time nonlinear
systems, /EEE Trans. Cybern., vol. 46, no. 3, pp. 840-853, 2016.

[179] A. Heydari, Theoretical and numerical analysis of approximate
dynamic programming with approximation errors, J. Guid., Control
Dyn., vol. 39, no. 2, pp. 301-311, 2016.

[180] M. Ha, D. Wang, and D. Liu, Offline and online adaptive critic
control designs with stability guarantee through value iteration,
IEEE Trans. Cybern., doi: 10.1109/TCYB.2021.3107801.

[181]M. Ha, D. Wang, and D. Liu, Generalized value iteration for
discounted optimal control with stability analysis, Syst. Control
Lett., vol. 147, p. 104847, 2021.

[182]1 K. G. Vamvoudakis and F. L. Lewis, Online actor-critic algorithm
to solve the continuous-time infinite horizon optimal control
problem, Automatica, vol. 46, no. 5, pp. 878-888, 2010.

[183] M. Ha, D. Wang, and D. Liu, Neural-network-based discounted
optimal control via an integrated value iteration with accuracy
guarantee, Neural Netw., vol. 144, pp. 176-186, 2021.

110

[184] S. Al-Dabooni and D. C. Wunsch, Online model-free n-step HDP
with stability analysis, /EEE Trans. Neural Netw. Learn. Syst., vol.
31, no. 4, pp. 1255-1269, 2020.

[185] H. Zhang, C. Qin, B. Jiang, and Y. Luo, Online adaptive policy
learning algorithm for H,, state feedback control of unknown affine
nonlinear discrete-time systems, /EEE Trans. Cybern., vol. 44, no.
12, pp. 27062718, 2014.

[186] Y. Sokolov, R. Kozma, L. D. Werbos, and P. J. Werbos, Complete
stability analysis of a heuristic approximate dynamic programming
control design, Automatica, vol. 59, pp. 9-18, 2015.

[187]S. Al-Dabooni and D. Wunsch, The boundedness conditions for
model-free HDP(1), /EEE Trans. Neural Netw. Learn. Syst., vol.
30, no. 7, pp. 1928-1942, 2019.

[188]J. W. Kim, T. H. Oh, S. H. Son, D. H. Jeong, and J. M. Lee,
Convergence analysis of the deep neural networks based globalized
dual heuristic programming, Automatica, vol. 122, p. 109222,
2020.

[189] R. A. Santiago and P. Werbos, New progress towards truly brain-
like intelligent control, in Proc. World Congress on Neural
Networks, San Diego, CA, 1994, pp. 27-33.

[190] P. J. Werbos, Intelligence in the brain: A theory of how it works
and how to build it, Neural Netw., vol. 22, no. 3, pp. 200-212,
2009.

CAAI Artificial Intelligence Research | VOL. 1 NO.2 | 2022 | 93—-110

https://doi.org/10.1109/TNNLS.2017.2755501
https://doi.org/10.1109/TNNLS.2017.2755501
https://doi.org/10.1109/TAC.2018.2790260
https://doi.org/10.1109/TAC.2018.2790260
https://doi.org/10.1109/TCYB.2015.2492242
https://doi.org/10.2514/1.G001154
https://doi.org/10.2514/1.G001154
https://doi.org/10.1109/TCYB.2021.3107801
https://doi.org/10.1016/j.sysconle.2020.104847
https://doi.org/10.1016/j.sysconle.2020.104847
https://doi.org/10.1016/j.automatica.2010.02.018
https://doi.org/10.1016/j.neunet.2021.08.025
https://doi.org/10.1109/TNNLS.2019.2919614
https://doi.org/10.1109/TCYB.2014.2313915
https://doi.org/10.1016/j.automatica.2015.06.001
https://doi.org/10.1109/TNNLS.2018.2875870
https://doi.org/10.1016/j.automatica.2020.109222
https://doi.org/10.1016/j.neunet.2009.03.012

	1 Reinforcement Learning
	2 Dynamic Programming for Discrete-Time Nonlinear Systems
	3 Basic Frameworks of Adaptive Dynamic Programming
	4 Model-Based and Model-Free Adaptive Dynamic Programming
	5 Convergence and Optimality
	5.1 Convergence and optimality of the traditional iterative adaptive dynamic programming
	5.2 Convergence and optimality of the new iterative adaptive dynamic programming algorithm

	6 Stability Result
	6.1 Stability of the the traditional iterative adaptive dynamic programming algorithms
	6.2 Stability of the new iterative adaptive dynamic programming algorithm

	7 Conclusion
	References

