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ABSTRACT
Lightweight modules play a key role in 3D object detection tasks for autonomous driving, which are necessary for the application of
3D object detectors. At present, research still focuses on constructing complex models and calculations to improve the detection
precision at the expense of the running rate. However, building a lightweight model to learn the global features from point cloud
data for 3D object detection is a significant problem. In this paper, we focus on combining convolutional neural networks with self-
attention-based  vision  transformers  to  realize  lightweight  and  high-speed  computing  for  3D  object  detection.  We  propose  light-
weight detection 3D (LWD-3D), which is a point cloud conversion and lightweight vision transformer for autonomous driving. LWD-
3D utilizes a one-shot regression framework in 2D space and generates a 3D object bounding box from point cloud data, which
provides  a  new  feature  representation  method  based  on  a  vision  transformer  for  3D  detection  applications.  The  results  of
experiment on the KITTI 3D dataset show that LWD-3D achieves real-time detection (time per image < 20 ms). LWD-3D obtains a
mean average precision  (mAP)  75% higher  than that  of  another  3D real-time detector  with  half  the  number  of  parameters.  Our
research extends the application of visual transformers to 3D object detection tasks.
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T he realization of  autonomous driving requires  an efficient
environment  perception  system  to  complete  3D  object
detection  to  achieve  the  goal  of  avoiding  obstacles  and

road  traffic.  LiDAR sensors  play  a  key  role  in  the  data  input  for
environment  perception  systems.  They  are  also  essential
components for 3D object detection and recognition. Point cloud
data  are  an  important  output  format  of  LiDAR  sensors,  which
have  the  physical  ability  to  perceive  depth  in  3D  space.  Thus,
extracting object  features from point clouds to explore 3D object
detection is a significant research direction.

In  contrast  to  RGB images,  point  cloud  data  consist  of  points
based  on  a  3D  coordinate  system  as  object  descriptors[1],  which
include  depth  and  position  information. Figure  1 shows  an
example  of  an  RGB  image  with  point  cloud  data.  Three-
dimensional  object  detection  based  on  autonomous  driving  is  a
typical  research  topic  for  exploring  point  clouds.  However,  the
sparsity  and  disorder  of  point  cloud  data  affect  the  model
construction  for  3D  object  detectors,  which  influences  the
processing  speed.  Previous  work  focused  on  improving  the
accuracy  of  3D  object  detection  based  on  deep  learning  and
ignored  its  application  in  practice.  We  found  that  building  a
lightweight  module  is  conducive  to  the  application  of  3D  object
detection tasks in the field of autonomous driving.

According  to  a  survey  of  3D  object  detection  methods,  three
typical methods are available for feature representation from point
cloud  data,  namely,  multi-view-based  methods,  voxel-based
methods,  and  point-based  methods.  Multi-view-based  methods
build  an  orientation  view  from  the  point  cloud  to  represent  the
object features. Then, they use 2D convolutional neural networks
to extract features and predict the bounding box. Their advantage

lies in their fast calculation speed. However, the model design does
not  adjust  to  the  3D  object,  which  causes  the  loss  of  detailed
features  and  affects  the  accuracy.  Voxel-based  methods  convert
the discrete and unordered point cloud into a regular matrix in a
limited  3D  space  by  calculating  the  spatial  density  of  the  point
cloud. These methods determine the size of the converted matrix
according  to  the  number  of  points  in  the  point  cloud.  Thus,  the
feature  loss  is  small  compared  to  that  of  multi-view-based
methods. The disadvantage is that the overall calculation speed is 
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Fig. 1    Examples  of  RGB  images  and  3D  point  cloud  data  for  bounding
boxes in autonomous driving scenes.
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slow and decreases  exponentially  as  the  number  of  points  in  the
point  cloud  increases.  Point-based  methods  directly  address  the
relationships among point cloud data by using a cascade of multi-
layer perceptron (MLP). This effectively guarantees the invariance
of  the  input  point  cloud  and  improves  the  computational
efficiency under certain conditions.

However,  these  three  typical  calculation  methods  still  cannot
meet  the  speed requirements  for  3D object  detection in  practical
autonomous  driving  applications.  According  to  our  analysis,  the
previous work did not truly consider the lightweight processing of
the  model  or  its  deployment  to  devices  with  limited  computing
hardware. Thus, most methods still have many problems, such as
a large number of intermediate parameters to store, large weights
and  high  computational  complexity.  We  summarize  the  current
important influencing factors for lightweight processing.

(a)  Point  cloud  processing.  The  numbers  of  point  cloud  data
acquired  by  different  cameras  are  different.  Improving  the  data
processing  efficiency  without  the  loss  of  point  cloud  data  is
important for solving this problem.

(b)  Feature  representation  network  design.  There  are  many
model  structures  that  can  be  used  for  feature  extraction,  such  as
3D  sparse  convolutional  neural  networks  and  PointNet[2].
Reducing  the  number  of  redundant  parameters  and  fusing  the
advantages of the models are essential for solving this problem.

(c) Detection framework design. In previous work, a two-stage
detection  framework  was  mainly  used,  i.e.,  generating  region
proposals  and  completing  two  classification  and  regression
calculations  for  bounding  box  determination,  which  originated
from the theory of 2D object detection. However, this framework
severely limits the prediction efficiency of the model.

In  this  paper,  we  focus  on  designing  a  lightweight  feature
extraction  network  and  detection  framework  for  applying  a  3D
object detector to autonomous driving. Meanwhile, we propose a
faster  and  simpler  point  cloud  preprocessing  method  that  does
not affect the quality of the input point cloud information. For the
detection framework,  we further  reduce the detection calculation
process  to  decrease  the  number  of  redundant  calculations  and
improve  the  prediction  efficiency.  The  contributions  of  our
module are summarized as follows:

(a) We propose a conversion method from point clouds by 3D-
to-2D  bird’s  eye  view  (BEV)  generation,  which  can  record  the
transformation matrix to preserve the corresponding relationships
between point clouds with channel parameters.

(b)  We  combine  lightweight  convolutional  neural  networks
with  a  transformer  module  to  build  feature  extraction  networks,
which can balance the detection accuracy and running rate.

(c)  We  design  a  one-stage  detection  framework  for  3D  object
detection  based  on “you  only  look  once” (YOLO),  which  uses
prediction layers with different scales to achieve a higher detection
running rate.

(d)  We  use  the  KITTI  3D  dataset[3] to  evaluate  the  LWD-3D
method.  This  method  achieves  real-time  detection  performance
for autonomous driving.

The remainder  of  this  paper  is  organized as  follows:  Section 1
introduces the related work for 3D object detection based on point
cloud processing. Section 2 describes in detail the module for our
LWD-3D  method.  Section  3  presents  the  experimental  results
with  the  compared  method  and  ablation  analysis.  Section  4
presents the conclusions and discusses future research.

 1    Related Work
In  our  work,  we  contribute  to  the  exploration  of  real-time

detection  methods  for  autonomous  driving  systems.  To
summarize  the  previous  work,  we  analyze  3D  object  detection
methods based on deep learning. According to our survey, 4 types
of 3D object detection methods are available, namely, multi-view-
based  methods,  voxel-based  methods,  point-based  methods,  and
real-time methods.

 1.1    Multi-view-based methods
In previous work, most methods cannot use a point cloud as the
object  of  data  processing.  Multiview-based  methods  build  a
feature extraction network by converting the point cloud data into
multi-view  images[4, 5].  For  example,  in  the  typical  method,  a
learning  network  for  BEV images  is  proposed  by  combining  the
RGB images. This method uses the data augmentation method for
3D  detection  by  generating  RGB  images  from  different  angles.
Then, MV3D[6] improves the detection performance by building a
region  proposal  network  based  on  a  two-stage  detection
framework, which only uses BEV images to predict the detection
result  from  point  clouds.  Recently,  a  stereo-based  automatic
alignment  learning  method[7] was  proposed  for  left  and  right
images, which uses point matching to optimize the bounding box
to  improve  the  detection  performance.  This  method  combines
global features with local features from BEV images from different
angles  by  converting  the  point  clouds.  However,  the  conversion
method causes  the  loss  of  detailed  features  during the  process  of
converting the point clouds to BEV images, which influences the
detection precision.

 1.2    Voxel-based methods
Recently, voxel-based methods have played a key role in the field
of 3D object detection and segmentation and have achieved good
performance  in  feature  extraction.  The  typical  methods  are
VoxelNet[8] and  VoxNet[9].  These  methods  utilize  a  feature
extraction  module  based  on  a  3D  sparse  convolutional  neural
network,  which  uses  the  voxelization  method  to  process  a  point
cloud.  In  these  methods,  every  voxel  grid  needs  to  calculate  the
number  of  point  cloud  data  in  the  self-regions.  For  feature
extraction,  these  methods can provide detailed information from
point  clouds and decrease the loss  during conversion processing.
Thus,  most  related  works[10, 11] have  focused  on  detection
frameworks  based  on  voxel-based  methods.  However,  these
methods  have  high  time  cost  and  cannot  realize  real-time
detection  using  a  two-stage  detection  framework,  such  as
PointRCNN[12].  Using  a  one-stage  detection  framework,  the  SE-
SSD  method[13] uses  a  single  regression  method  with  a  self-
attention  network  from  the  point  cloud  data  to  improve  the
detection  running  rate.  This  method  focuses  on  improving  the
feature representation module to increase the detection accuracy,
but  it  still  spends  calculation  time  on  the  self-attention  network
stage.

 1.3    Point-based method
The main strategy of point-based methods is to directly apply the
point cloud for feature extraction and object detection. There are
two typical methods, PointNet and PointNet++[14], which use MLP
to  represent  the  features  from  point  clouds.  The  advantages  of
these  methods  are  that  they  reduce  the  complexity  of  the  model
for  3D  object  classification,  detection,  and  segmentation.
Therefore,  most  methods[15−17] design  the  module  using  the
changed  point-based  method  to  realize  good  performance  on
object  perception  tasks.  However,  this  method  still  has  the
problem that it needs to resize large point clouds into point clouds
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with  a  limited  amount  of  data  in  the  data  preprocessing  stage.
Through  the  resizing  process,  detailed  information  on  the  3D
space  from  the  point  clouds  is  still  lost.  In  addition,  point-based
methods  do  not  perform  well  in  the  process  of  global  feature
extraction.

 1.4    Real-time methods
Three-dimensional  object  detection  is  a  part  of  the  autonomous
driving  foundation,  yet  its  time  cost  and  computational
complexity  must  be  considered.  Thus,  real-time  methods  are
needed  to  make  the  method  as  efficient  as  possible  in  terms  of
prediction  and  running  time  while  maintaining  good  precision.
For 3D object detection, previous research has been performed to
develop  detectors  with  improved  efficiency,  such  as  the  YOLO-
based  3D  detector[18] and  SSD-based  detector[19].  These  methods
cannot realize good detection accuracy by reducing the processing
due to the sparsity of the point cloud. Most methods are still based
on  the  characteristics  of  2D  detection  data,  which  may  result  in
incorrect  or  invalid  3D  bounding  boxes.  Therefore,  achieving  a
more reasonable and efficient application of 3D detection models
based on deep learning is  still  an important research direction of
autonomous driving.

In this paper, we contribute to the development of lightweight
networks for feature representation from point clouds by applying
MobileNet[20] with  a  transformer  module.  To  reduce  the
computational  complexity,  we  propose  a  fast-processing  method
for  point  clouds  to  achieve  deployment  to  devices  with  limited
computing hardware.

In this research, we focus on the feature fusion of point clouds
by  combining  voxelization-based  methods  with  PointNet-based
methods to achieve the common representation of global features
and  local  features.  To  compensate  for  the  loss  in  the  sampling
process,  we use the self-attention mechanism method and region
proposal-based  monitoring  method  to  adjust  and  control  the
sampling process.

 2    Proposed Method
In this work, we develop a lightweight detection module based on
deep  learning  for  3D  object  detection  in  the  scenario  of
autonomous  driving.  Through  an  analysis  of  the  2D  detection
module  and  3D  detection  module,  we  propose  a  state-of-the-art
method  for  real-time  detection,  namely,  LWD-3D.  This  method
includes  three  parts:  a  point  cloud  conversion  module,  mobile
transformer feature extraction module, and detection head for 3D
transformation.  Through the point cloud conversion module,  we
build  a  method  for  converting  2D  images  into  3D  point  clouds,
which  has  no  memory  usage  problems  with  intermediate
parameters.  The  mobile  transformer  feature  extraction  module
can  provide  effective  global  and  local  features  by  utilizing  a  self-
attention  module.  The  detection  head  for  3D  transformation
builds  a  more  efficient  detection  framework  to  further  accelerate
inference.

 2.1    Pipeline of LWD-3D
As  shown  in Fig. 2,  LWD-3D  is  an  end-to-end  training  and
prediction framework for 3D object detection. It includes 3 stages
for point cloud processing and result output. The data input uses
the method of BEV generation to convert the point cloud, which
records  the  transformation  matrix  for  the  conversion  function.
We  propose  a  transformation  function  for  calculating  the  point
cloud to match the BEV images of  each pixel  grid.  According to

the number of point cloud data in the scene, the parameters of the
transformation  function  can  be  adjusted  to  address  the
generalization of the model.  In addition, a transformation matrix
is  used  to  generate  a  3D  bounding  box  from  the  BEV  detection
result of the 2D bounding box.

The  feature  extraction  network  combines  convolution  with
depth-wise  separable  convolutional  networks  to  build  a  feature
representation  module.  To  acquire  the  detailed  distance  features
from the point cloud,  we use a  transformer block to connect  the
feature  encoder  and  decoder  modules.  Depth-wise  separable
convolutional  networks  are  only  one-third  of  the  original
convolution  computation  and  can  effectively  improve  the
calculation speed and reduce the parameter quantity. Meanwhile,
the transformer structure  can effectively  supplement  the distance
features  between  point  clouds  to  compensate  for  the  feature  loss
caused by depth-wise separable convolution.

For  the  detection  head,  we  propose  a  one-stage  detection
framework  based  on  YOLO[21, 22].  Compared  with  the  2D  object
detector, our module needs to complete the regression calculation
of  the  3D  bounding  box  so  that  the  positioning  result  after
combining  the  transformation  matrix  is  more  accurate  for  3D
detection. To improve the efficiency of detection training, we use
the  K-means  clustering  method  to  preprocess  the  dataset,  which
can  acquire  the  initial  value  of  the  anchor  box.  This  method  is
helpful for improving the training efficiency and running speed of
the  model.  After  obtaining  the  2D  bounding  box  on  the  BEV
images,  our  model  generates  a  3D  bounding  box  by  combining
the transformation matrix from the data input.

In  the  pipeline  of  our  method,  the  point  cloud  conversion
module  converts  and  records  the  input  data  of  the  point  cloud
through  the  BEV  image  generation  method  by  using  a  density
calculation  function.  The  mobile  transformer  feature  extraction
module  extracts  the  features  from  the  BEV  image  with  the
lightweight  convolution  and  transformer.  Finally,  the  detection
head  predicts  the  classification  and  localization  results  based  on
the  candidate  anchor  box  method.  It  is  significant  that  our
method is an efficient detection framework that can be applied to
practical object detection on limited computing devices.

 2.2    Point cloud conversion module

n×n

To reduce the amount of  data in the feature extraction stage,  we
propose  a  point  cloud  conversion  method,  in  which  the  point
cloud  is  projected  to  build  a  BEV  image.  With  MV3D[6] as  a
reference,  we  use  the  multichannel  view  to  represent  the  point
cloud. Thus, we build a grid image from a projection of the point
cloud,  as  shown  in Fig. 3.  For  the  unordered  point  cloud,  we
generate an  grid cell, and we calculate the point for each grid
cell. The left image represents the maximum height calculation for
the  point  cloud,  where  each  grid  cell  uses  the  pixel  value  to
represent  the  height  of  the  highest  point  with  the  related  cell.
Thus,  the  left  image  can  acquire  the  space  distance  information
from the point cloud. The formula for the height calculation is

Hz = max(Ppoint · [0,0, 1]
T
) (1)

Hz

Ppoint

where  represents  the height  of  the highest  point  from the 3D
data and  represents the collection of all points in the area.

The  right  image  builds  the  density  feature  map  for  the  point
cloud. The formula for the density is as follows:

Dz = min
(
1.0, log

(
N+ 1
64

))
(2)
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Dzwhere  is the density value of the point cloud for each grid cell
and N represents the number of points in each grid cell.

In  addition,  we  recode  the  intensity  information  of  the  point
cloud  as  the  input  to  compensate  for  the  loss  during  the
conversion  process.  The  formula  for  the  intensity  calculation  for
the point cloud is

Iz = max(I(Ppoint )) (3)

Iz Iwhere  is  the  maximum  intensity  for  each  grid  cell  and 
represents the calculation of the intensity.

Thus,  we  combine  the  three  images  to  establish  a  new  input
format  for  point  cloud  processing.  This  method  reduces  the
amounts  of  feature  processing  and  overall  calculation  in  the
subsequent process for feature extraction.

 2.3    Mobile transformer feature extraction module
In  this  work,  we  focus  on  combining  convolutional  neural
networks with visual transformers to represent the local and global
features from point clouds.  To improve the running rate,  we use
the  depth-wise  separable  convolution  to  replace  the  original
convolution based on MobileNet[20].

1× 1

Figure  4 shows  the  calculation  process  for  the  depth-wise
separable convolution operation. The main strategy is to convolve
the  channel  for  each  input  data  instance  without  adding  a  large
number  of  network  kernels.  Then,  kernels  are  used  to

3× 3 1× 1

expand  the  channels  from  the  previous  layer.  Therefore,  the
overall computational burden of this model is only one-third that
of  ordinary  convolution.  In  this  work,  our  module  comprises

 channel kernels and  fusion kernels. However, the depth-
wise  separable  convolution  cannot  provide  more  features  to
facilitate detailed local feature extraction.

The  transformer  module  constructs  a  better  relationship
learning model between local grid cells. Thus, we want to use the
fusion  module  to  model  the  local  and  global  features  for  point
clouds  with  fewer  parameters  and  calculations.  In  previous
approaches,  the  transformer  module  may  lose  the  order
relationship of point cloud information. Our module loses neither
the path order nor the spatial order for each point cloud by using
the depth-wise separable convolution to recode the feature tensor
before the input transformer.

For  transformer  processing,  this  model  calculates  the
relationship  of  each  grid  cell,  which  can  fuse  the  concatenated
features  from the point  cloud in each grid.  Thus,  our  model  can
encode and decode the global  features  from all  pixels  of  the  grid
cells. Compared to the previous 3D detection module, our method
uses  fewer  parameters  and  computations  to  build  the  feature
extraction  network,  which  has  the  advantage  of  a  combined
representational  module.  With  the  convolution  and  transformer
in  our  method,  the  resultant  feature  extraction  block  has
convolution-like  properties  for  representing  the  global  features.
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Fig. 2    Example of a 3D transformer down-sampling network. We use 2D images to represent the voxel point cloud data. Among them, gray grids represent
the nonempty voxels.  Through the self-attention module,  we can obtain the confidence score of each nonempty voxel.  Therefore, our method builds a more
robust object feature representation model in the feature extraction network.

 

(a) (b)

Fig. 3    Example  of  converting an image from a  point  cloud.  (a)  Height  image from the  maximum height  calculation result  for  the  point  cloud.  (b)  Density
image from the result of the density feature map for the point cloud.
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According  to  this  module,  we  can  decrease  the  number  of
network layers, making the network lightweight.

 2.4    Detection head
The  main  strategy  of  YOLO  is  to  use  K-means  clustering  to  set
anchor  boxes  on  2D  images.  Network  fine-tuning  requires  the
priors  of  each  bounding  box.  Of  course,  each  prior  anchor  box
must  be  able  to  cover  the  whole  region  of  the  corresponding
object in the dataset. For the 3D detection task, the anchor-based
method  is  beneficial  for  locating  the  bounding  box  of  an  object,
which can train on objects of different scales. Thus, the lightweight
detection  module  needs  the  anchor-based  method  to  ensure
location accuracy, especially for 3D objects.

x,y,z,w,h,c z
In this detection head, we build a prior anchor box for the 3D

box  ( ).  For  the  original  anchor  box,  we  add  the 
coordinate  to  represent  the  height  of  the  box.  Meanwhile,  we
combine  the  transformation  matrix  from  the  point  cloud
conversion to further improve the accuracy of  the bounding box
regression calculation. In addition, for pedestrians and cyclists, we
further broaden the setting range of the a priori bounding box to
improve  the  generalization  performance  of  the  overall  detection
framework.

For  the  bounding  box  regression,  we  still  use  the  upper-left
corner  of  the whole  image as  the coordinate  origin and establish
the  3D  bounding  box  regression  calculation  principle. Figure  5
shows  an  example  of  the  center  coordinate  of  each  grid  cell.
According to the bounding box method, our detection framework
only performs one regression and classification calculation, which
effectively  improves  the  calculation  efficiency  and  reduces  the
number of model parameters. In addition, we implement end-to-
end training and prediction methods to meet the requirements for
practical application.

 2.5    Training policy

ScaleInputdata

Due  to  the  dispersion  and  disorder  of  point  clouds,  the  data
conversion process  also produces  diverse  changes  in  object  scale.
On  the  BEV  images,  the  3D  object  still  has  a  scale  change
problem. Meanwhile, the 3D object, e.g., from the pedestrian class,
is  smaller  in  the  overall  images.  Therefore,  we  propose  a
multistage pretraining policy to improve the training efficiency of
the models. The density of the point cloud comes from the results
of  the  transformation  stage.  We  use  different  scales  to  train  the
feature  extraction  network  to  adapt  to  the  scale  change  of  the
input object. The formula  is

ScaleInputdata = 32× (13+n) ,n ∈ [0,7] (4)

n

where  32  represents  the  down-sampling  ratio  for  feature
extraction  network.  13  present  the  minimum  output  feature
image size. Through the adjustment of ,  the model training can
use  different  size  data  for  training.  For  data  enhancement,  we
perform geometric  rotation,  random clipping and block input  in
the process of BEV image generation. Compared with the original
3D data,  the 2D data make it  easier  to design data enhancement
methods.

 3    Experiment
For  experimental  evaluation,  we  use  the  KITTI  3D  detection
dataset.  In  the  previous  work,  few  methods  consider  model
efficiency  or  practical  applications.  Therefore,  we  select  only  one
type  of  method  for  comparison,  namely,  Complex-3D[18].  In  this
section,  we  present  in  detail  the  dataset,  parameters,  experiment
and analysis.

 3.1    Dataset
KITTI 3D detection dataset is a typical benchmark for 3D object
detection tasks in the scenario of autonomous driving. The dataset
consists of 7481 training samples with label information and 7518
test samples without labels for the 3D bounding box. Although the
dataset  contains  10  categories,  the  categories  of  this  dataset  are
uneven.  Thus,  we  only  select  and  experiment  with  the  3  large
categories of objects, namely, Car, Pedestrian, and Cyclist.

According to the dataset principles, we evaluate our models at 3
levels of difficulty: easy, moderate, and hard. We divide the dataset
into a training dataset (3712 images) and validation dataset (3769
images).

For  the  processing  of  the  dataset,  we  project  the  point  cloud
into  2D  space  to  obtain  a  BEV  image  with  a  resolution  of  0.1
meters  per  pixel.  Meanwhile,  we  set  the  range  of  the  LiDAR
sensors  to  40  meters  to  the  right,  40  meters  to  the  left,  and  80
meters forward in 3D space. Using this range, the input images of
the BEV map are of pixel size 640×640. For the maximum point
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cloud, we limit the spatial height of the point cloud to ±2 meters.
We  complete  the  evaluation  experiment  on  the  KITTI  3D

detection dataset. Meanwhile, we select a typical and state-of-the-
art  lightweight  3D  detection  method  for  the  comparative
experiments.  For the indicators of  evaluation,  we use the average
precision  (AP)  and  mean  average  precision  (mAP)  for  multiple
classes with a 3D intersection over union (IOU) threshold of 0.3.

 3.2    Training and parameters
Our  module  is  trained  using  an  end-to-end  method.  We  use
stochastic  gradient  descent  with  the  following  training  super
parameters: a momentum of 0.9 and a weight decay of 0.0005. We
set  the  threshold  to  0.5  for  the  3D  IOU  according  to  the
evaluation principle.

All  of  our  modules  are  trained  and  tested  in  an  end-to-end
manner  on  an  NVIDIA  Tesla  A8000  GPU.  For  the  training
policy,  our  training  module  has  an  initial  learning  rate  of  0.001.
We train our module for 300 epochs with a batch size of 64 GPU
cards.  We  use  the  data  augmentation  method  on  the  KITTI  3D
dataset to train the BEV images.

 3.3    Comparison experiment on the KITTI dataset
For  the  evaluation,  we  select  the  state-of-the-art  model  for  real-
time detection as the comparative method, which also uses a one-

stage  detection  framework.  The  data  input  only  uses  the  point
cloud from the LiDAR sensor to convert the BEV images. Table 1
shows the comparison experimental results for the 3 classes (Car,
Pedestrian,  and  Cyclist).  For  the  small  size  objects  of  pedestrian
and cyclist,  our method still  has higher detection performance in
qualitative results.

 4    Conclusion
In  this  work,  we  proposed  a  lightweight  network  for  3D  object
detection for autonomous driving, called LWD-3D, which utilizes
a  new  conversion  method  from  point  clouds  and  feature
representation modules. The proposed method includes 3 parts: a
point  cloud  conversion  module,  mobile  transformer  feature
extraction  module,  and  detection  head.  First,  we  focused  on
simplifying feature processing and memory occupation. Thus, we
proposed  a  conversion  method  from  3D  to  2D  BEV  images.
Then, we constructed a feature fusion module for combining the
depth-wise separable convolution using a transformer to represent
the  local  and  global  features.  Finally,  we  used  the  one-stage
detection framework to predict the 3D bounding box and classes
based  on  the  transformation  matrix.  For  evaluation,  the
experimental results proved the efficiency and precision of LWD-
3D on the KITTI 3D detection dataset; thus, our method realized

 

Table 1    Results of evaluation experiments in AP comparing the two methods on the KITTI dataset.

Stage Method Modality Parameter

AP (%)

Time (ms)Car Cyclist Pedestrian

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

One-stage

Complex-YOLO LiDAR 4.56×107 68.33 42.08 37.45 20.25 19.65 15.37 20.52 19.16 14.28 20

YOLO-6D LiDAR 8.6×107 70.15 47.29 40.23 24.17 22.58 18.41 23.82 21.63 17.84 35

LWD-3D LiDAR 5.6×106 75.41 52.15 43.29 28.31 30.25 24.57 29.47 30.28 24.12 8

Improvement +7.08 +10.07 +5.84 +8.06 +10.6 +9.2 +8.95 +11.12 +9.84 −12

 

Fig. 6    Qualitative analysis results for LWD-3D. Yellow box indicates the class of Car. Blue box indicates the class of Cyclist. And red box indicates the class of
Pedestrian.
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state-of-the-art performance on real-time detection. In particular,
our proposed method achieved good running rates under various
levels of difficulty.  In our future research, we plan to concentrate
on optimizing the  precision for  real-time detection by  fusing the
convolution and transformer modules.
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