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Abstract
Physiological and physical traits are excellent indicators of many crop characteristics, but precise phenotyping of these traits is time consuming

and, therefore,  limits progress in crop breeding and the speed of crop monitoring.  Hyperspectral  imaging offers an opportunity to overcome

these barriers as a technique for high throughput field measurements. Using a recently developed hyperspectral imaging platform devised for

plantations of the perennial crop raspberry, this study aimed to further develop the tool and test its capacity as an innovative approach for high

throughput  field  phenotyping,  data  collection  and  analysis.  Hyperspectral  imaging  and  visual  crop  assessments  were  carried  out  over  two

growing seasons in a field-grown raspberry mapping population, and data were subject to Quantitative Trait Loci (QTL) analysis.  The findings

show that reflectance intensity at multiple wavelengths can be linked to known genetic markers in raspberry, and many of these 'spectral traits'

are expressed consistently through the growing season and between years, for example spectral ratio 719 nm / 691 nm shows up consistently as

a QTL on LG4. Spectral traits were identified that co-located with previously mapped physical traits, such as 719 nm / 691 nm and cane density.

The study indicates that hyperspectral imaging can be used as an innovative approach for high throughput field phenotyping of raspberry and

could be transferred readily to other perennial crops. Our approach provides a pipeline for automated field data collection and analysis that can

be used for rapid QTL detection of spectral traits.
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INTRODUCTION

The progress of crop improvement is often constrained by
the  ability  to  characterise  genetic  control  of  desirable  traits
and the speed at which those traits can be incorporated into
breeding  programs,  which  varies  according  to  the  crop  life
cycle.  The  1990s  and  early  2000s  saw  dramatic  progress  in
developing  technologies  for  high  throughput  genetic
characterisation of  raspberry plants[1] but there is  currently a
bottleneck  in  the  challenges  of  capturing  useful  phenotypic
information  about  complex  target  traits,  particularly  those
that  are  not  well  understood,  in  an  efficient  and  non-
destructive manner. Mounting pressure on crop scientists and
breeders  to  contribute  to  the  long  term  sustainability  of
agriculture  by  delivering  crop  genotypes  with  traits  that
confer resilience to climate stress and productivity with fewer
agrochemical  inputs[2],  means  it  is  crucially  important  that
user-friendly  high  throughput  phenomics  tools  are
developed.

Imaging  technologies  offer  a  potential  solution  to  these
challenges[3],  allowing  rapid  non-destructive  data  capture
from large numbers of plants. Imaging plants is far less labour
intensive  than  other  methods  of  plant  characterisation  and
can  be  used  in  controlled  environments,  glasshouses,

polytunnels, and in field based systems of annual or perennial
crops[4].  These systems may capture data on a range of plant
traits  that  together  confer  resilience,  which  if  shown  to  be
heritable,  may  be  useful  as  a  tool  to  breed  for  the  particular
spectral  signature(s)  captured  and  associated  with  the  trait
rather  than  the  trait  itself,  in  a  similar  manner  to  the  use  of
molecular markers.

Developments  in  automated  phenotyping  have  made
greatest progress where the target trait is relatively simple to
characterise  and  when  the  crop  is  grown  in  controlled
environment  conditions[5,6].  Consequently,  examples  of
successful application of high throughput phenotyping often
include  annual  or  non-woody  crops  that  can  be  grown  in
large  numbers  in  indoor  facilities,  and  crop  characteristics
that  are  readily  quantified  in  situ  (e.g.  disease  lesions  or
indicators  of  tissue  chlorophyll  concentrations:[7,8] or  can  be
measured  readily  ex  situ  after  plant  harvest  (e.g.  grain
nutrient  concentrations:[9]).  Limited  attention  has  been  paid
to woody crop species,  which often present larger and more
complex  growth  forms  and  surfaces  for  data  collection  and
are  less  amenable  to  growing  in  pot-based  controlled
environment  systems  with  uniform  growing  conditions[10].
Transferring  high  throughput  phenotyping  methods  to  field
conditions  is,  however,  a  necessary  step  for  crop  breeding,
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ensuring  the  gathered  phenotypic  data  is  representative  of
crop  responses  in  realistic  growing  conditions  and  over
relevant  developmental  time scales[6,11].  For  field-based high
throughput  phenotyping to  be  successful,  an  important  first
step  is  to  address  the  technical  and  data  processing
challenges  imposed  by  the  heterogeneity  of  the  physical
environment  and  fluctuating  biotic  and  abiotic  conditions
that might otherwise hamper data interpretation.

Imaging  techniques  for  plant  phenotyping  are  based  on
sensing  how  the  plant  interacts  with  the  electromagnetic
(EM)  spectrum[12].  If  robust  relationships  can  be  detected
between  spectral  traits  and  physiological  traits  of  interest,
imaging offers a great opportunity to fast track crop breeding
and research. Several studies have demonstrated the capacity
for  hyperspectral  imaging  to  capture  genetic  variation  in
plant  architecture[13] and  detect  early  symptoms  of  salt
stress[14] and disease[7]. Hyperspectral imaging has been used
for plant variety detection in grape[15]. While the potential for
using image-based phenotyping to link genetic markers with
key traits for marker assisted breeding has been recognised in
laboratory  and  glasshouse  studies[7,16],  few  studies  have
attempted  to  link  hyperspectral  imaging  data  to  plant
genotype  by  high  throughput  crop  phenotyping  in  field
conditions. Work on field based hyperspectral measurements
of  useful  traits  has  been  carried  in  grape  for  measuring  fruit
brix and acid concentrations[17] but this work did not map the
traits  genetically.  Ex  situ measurements  of  spectral  measure-
ments  have  illustrated  their  potential  as  indicators  of  plant
traits  that  can  be  genetically  mapped,  including  plant  dry
weight  and  leaf  area[18],  grain  protein  content[19],  and  grain
composition[9,20].  The ability to quantify spectral indicators in
field-grown  crops  is  the  next  step  in  developing  hyperspec-
tral  imaging  as  a  robust  high  throughput  phenotyping  tool
that can be applied in conditions relevant for crop breeding.

In this study, we use raspberry as a model perennial species
to  test  whether  a  novel  imaging  platform  and  data  analysis
pipeline[21] is  suitable  for  linking  spectral  data  and  physical
trait  data  to  the  genetic  map  of  the  crop.  This  study  repre-
sents  a  unique attempt  to  advance progress  in  the develop-
ment of  high throughput  breeding methods by  aiming to:  i)
link  spectral  information gathered from field-grown crops to
known  genetic  markers;  ii)  determine  the  reproducibility  of
spectral  QTLs  over  two  growing  seasons;  iii)  validate  the
acquired  spectral  QTLs  by  comparing  their  locations  with
previously characterised QTLs for  physical  traits  of  raspberry.
We  report  the  methodology  improvements,  both  practical
and  statistical,  required  to  achieve  these  ambitions,  and  we
discuss  the  potential  application  of  hyperspectral  imaging
and  data  processing  tools  for  efficient,  rapid  screening  to
accelerate plant trait selection in field-grown woody crops. 

RESULTS
 

Spectral data
Fig.  1 shows  the  average  spectral  reflectance  profiles  in

August  2016  for  leaf  material  of  the  mapping  population
parents and offspring. The profile is typical of photosynthetic
plant  material.  Below c. 680 nm,  reflectance is  low as  light  is
absorbed  by  the  plant  for  photosynthesis.  The  small  peak

around  550  nm  in  the  green  region  is  responsible  for  leaf
green colour. A steep climb in reflectance is seen in the near
infra-red  (NIR)  region  at  wavelengths  longer  than  680  nm,
known as the red edge (RE), and is caused by a sharp decline
in chlorophyll absorption. A sharp peak in reflection is seen in
the  NIR  region  at  around  760  nm.  This  is  due  to  the  natural
light source used for imaging: there is a peak in absorption by
oxygen at 762 nm reducing light intensity at this wavelength
at  the  earth's  surface.  The  average  spectral  reflectance
profiles  for  berries  of  parents  and  offspring  are  shown  in
Supplemental  Fig.  1.  These  have  some  similarities  to  whole
plant  reflectance  profiles,  but  there  is  no  peak  in  the  green
region  and  the  increase  in  reflectance  starts  at  a  lower
wavelength and climbs less steeply. 

Heritability
The  generalised  heritability  for  leaf  reflectance  data  was

calculated  for  each  date  separately,  estimating  the  compo-
nents  due  to  genotype  and  the  genotype  x  treatment
interaction. Fig.  2a shows  the  estimated  generalised  herita-
bility for each wavelength in August 2016, and Fig. 2b shows
the heritability  for  the  derived ratios  and scores  on principal
components 1−20 (PC1−PC20).  Heritability for genotype was
much  higher  than  for  the  genotype  ×  treatment  interaction.
The  heritability  was  highest  over  the  wavelength  range
450−720 nm, dropping off sharply for wavelengths above this
region.  It  was  generally  high  for  the  wavelength  ratios  and
some  of  the  principal  component  scores.  The  generalised
heritabilities  for  the  berry  data  are  shown  in Supplemental
Fig.  2 (Supplemental  Fig.  2a for  the  individual  wavelengths
and Supplemental Fig. 2b for the principal components). They
showed a similar pattern, with the generalised heritability for
genotype  being  much  higher  than  for  the  genotype  ×
treatment  interaction,  and  the  heritability  decreasing  above
720 nm. The heritabilities were highest for wavelengths from
588−640  nm  and  for  some  principal  components.  The
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Fig. 1    Mean reflectance profiles for leaf material of parents and
offspring in  August  2016.  The dotted lines  show the upper  and
lower quartiles for the offspring. Six wavelengths used to derive
three  selected  wavelength  ratios  are  marked  with  stars  for
illustration.
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heritabilities  for  some of  the  ratios  of  the  berry  wavelengths

(not  plotted)  were  higher  still,  with  a  maximum  generalised

heritability of 0.86 for the ratio 651/679.
 

Plant physical data
Summary statistics for the physical traits of height, density

and diameter from 2016 are shown in Table 1. These showed
a  high  generalised  heritability  of  at  least  0.60  for  the  main
effect  of  genotype,  but  the  generalised  heritability  for  the
genotype x treatment interaction was 0.12 at most.  All  these
traits  were highly correlated with some of  the spectral  traits,
showing  positive  correlations  with  NDRE  and  NDVI,  and
negative  correlations  with  467/m  and  wavelengths  around
453  nm  (blue).  Height  was  most  highly  correlated  with
spectral  trait  PC6  (r  =  −0.763)  while  density  and  diameter
were  most  highly  correlated  with  PC2  (r  =  −0.761  and  r  =
−0.586). Table  2 shows  the  corresponding  statistics  for  the
plant  height,  density,  diameter  and  health  scores  from  2017
(May,  June  and  September)  and  the  leaf  chlorophyll
concentrations from June-September. Again, NDRE and NVDI
showed  positive  correlations,  especially  with  density,
diameter and health, but correlations with plant height were
not as strong, particularly in September. Correlations with leaf
chlorophyll  concentration  were  most  significant  for  imaging
traits  such  as  Green,  GRVI,  551/m  and  747/691.  These
correlations show that some of  the spectral  traits  are related
to  physical  traits  and  may,  therefore,  provide  an  indicator  of
physical characteristics. 

QTL mapping
QTL  analysis  was  carried  out  for  each  of  the  spectral  and

plant  physical  traits  described  above  and  for  each  date
separately.  Because  of  the  low heritability  of  the  genotype x
treatment component, we focus here on QTL mapping of the
mean  genotype  values  over  the  treatments.  A  QTL  was
inferred  if  the  LOD  threshold  exceeded  a  value  of  3.86,
derived as the 95% point of a permutation distribution, based
on analysis of 500 permutations of each of six traits. A higher
threshold  of  a  LOD  above  4.64  corresponds  to  a  99%
genome-wide significance. 

Analysis of 2016 data
The largest QTLs were found on linkage group 3 (LG3), with

LODs up to 10.13 at 62 cM for wavelength 700 nm (Table 3).
This  region  of  LG3  showed  significant  effects  on  all
wavelengths  from  403  nm  to  731  nm.  The  summary  traits
Green,  GNDVI,  GRVI,  747/691,  753/m,  775/m  and  PC2  also
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Fig.  2    Generalised  heritability  of  spectral  data  collected  in
August  2016.  (a)  Heritability  of  individual  wavelengths.  (b)
Heritability  of  Sequoia  traits,  wavelength  ratios  and  principal
component scores.

Table 1.    Summary statistics for the physical traits in 2016 (taken from images) and correlated spectral traits.

Trait Latham mean Moy mean Generalised heritability for
genotype

Generalised heritability for
genotype × treatment Correlated spectral traits*

Height 4.29 3.16 0.75 0.09 PC6 (−0.763)
467/m (−0.659)
NDRE (0.586)
NDVI (0.512)
453 nm (−0.570)

Density 3.48 2.62 0.67 0.09 PC2 (−0.761)
467/m (−0.788)
NDRE (0.789)
NDVI (0.744)
464 nm (−0.771)
663 nm (−0.776)

Diameter 3.29 2.96 0.60 0.12 PC2 (−0.586)
467/m (−0.660)
NDRE (0.627)
NDVI (0.587)
453 nm (−0.657)

* m is the mean spectrum reflectance intensity for the plant across all wavelengths.
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showed a main peak from 62−76 cM and a secondary peak at
23-30  cM.  The  summary  traits  Red,  NDVI,  NDRE,  711/686,
467/m, 677/m, 728/m, PC8 and PC11 showed a single peak at
62−76 cM. The ratio 551/m had its largest peak at 22 cM and a
slightly smaller peak at 65 cM.

The  wavelengths  from  568  nm  to  708  nm  were  all
significantly associated with the 6−10 cM region on LG4, and
some  shorter  wavelengths  were  either  significant  or
approaching significance for this region. The Red trait, all four
vegetation  indices,  PC2,  PC11,  PC12,  and  ratios  747/691,
719/691,  551/m,  753/m  all  showed  associations  with  this
region, with the maximum LOD of 7.05 for the ratio 747/691.

Some  QTL  were  found  for  derived  ratios  on  the  linkage
groups LG1, LG2 and LG6. There was a QTL detected on LG1
for 551/509 at 6 cM with LOD 4.4, but no other traits mapped
to  this  region.  LG2  showed  four  regions  with  small  numbers
of  traits  mapping  to  each:  509/512  mapped  to  21  cM  with

LOD 4.5,  while  470/523 mapped to 36 cM with LOD 4.8,  and
711/686  mapped  to  46  cM  with  LOD  4.7.  A  further  QTL  was
located  at  99  cM  for  PC5,  with  LOD  4.9.  For  LG6,  QTLs  were
detected at 55-63 cM for 509/512, GRVI, 719/691, 747/691 and
551/m with LODs of 4.0−4.8.

A QTL analysis from the visual traits scored from images in
2016  detected  QTLs  on  LG3  for  density  and  diameter  (at  68
cM and 29 cM, with LODs of 6.7 and 4.2, respectively), and for
density on LG4 at 6 cM, with LOD 4.4. All of these were close
to QTLs for correlated spectral traits such as NDVI, NDRE and
PC2.  However,  no  QTLs  were  detected for  height  in  2016,  or
for the correlated spectral trait of PC6 (see Table 1).

To  speed  up  the  analysis,  QTL  mapping  in  2017  used
spectral  data  from  the  principal  component  scores,  the
wavelength  ratios  selected  from  2016  data  analysis  and  the
'Sequoia'  set;  these  were  chosen  as  a  core  set  that  were
sufficient  to  identify  all  the  QTL  locations  detected  in  the

Table 2.    Summary statistics for the physical traits scored in 2017 and correlated spectral traits.

Month Trait Latham
mean Moy mean

Generalised
heritability for

genotype

Generalised
heritability for

G × T

Correlations with spectral traits from same date

NDVI NDRE 467/m 753/m Best PC

May Height 2.44 2.28 0.625 0.074 0.260 0.448 −0.399 0.520 PC3: −0.723
Density 3.77 3.20 0.626 0.099 0.699 0.615 −0.626 0.634 PC2: −0.634

Diameter 3.13 3.34 0.608 0.052 0.618 0.588 −0.633 0.666 PC2: −0.544
Health 3.62 3.02 0.613 0.080 0.714 0.627 −0.671 0.686 PC2: −0.616

June Height 2.44 2.32 0.580 0.028 0.422 0.441 −0.534 0.363 PC3: −0.691
Density 4.37 3.73 0.608 0.057 0.689 0.735 −.0693 0.597 PC2: −0.581

Diameter 3.94 4.19 0.610 0.035 0.695 0.729 −0.749 0.613 PC2: −0.520
Health 3.91 3.68 0.577 0.069 0.685 0.716 −0.717 0.594 PC2: −0.521

September Height 2.95 2.46 0.619 0.020 0.230 0.018 −0.235 0.357 PC4: −0.703
Density 4.04 4.36 0.608 0.023 0.549 0.554 −0.554 0.373 PC3: −0.518

Diameter 4.37 4.62 0.555 0.073 0.628 0.382 −0.596 0.647 PC4: −0.532
Health 4.49 4.38 0.594 0.027 0.663 0.477 −0.633 0.571 PC3: −0.596

GRVI Green 551/M 747/691 Best PC

June Chlorophyll 1.148 1.134 0.584 0.000 0.493 −0.479 −0.492 0.502 PC2: −0.494
July Chlorophyll 1.088 1.020 0.552 0.000 0.429 −0.314 −0.451 0.484 PC2: −0.477

August Chlorophyll 1.157 1.041 0.774 0.000 0.270 −0.190 −0.239 0.208 PC6: 0.211
September Chlorophyll 1.232 1.033 0.765 0.053 0.308 −0.126 −0.255 0.234 PC8: 0.302

* m is the mean spectrum reflectance intensity for the plant across all wavelengths.

Table 3.    Location of QTLs for spectral data and plant physical data collected in August 2016.

Linkage Group
(LG)

Position Max LOD Spectral trait
(nm)

Other significant
spectral traits

Significant physical
traits

Parent

LG1 0−6 cM 4.38 at 6 cM 551/509 / / Dominant
LG2 21−26 cM 4.52 at 21 cM 509/512 / / Dominant
LG2 36−40 cM 4.77 at 36 cM 470/523 / / Dominant
LG2 46-48 cM 4.67 at 46 cM 711/686 / / Moy
LG2 99−103 cM 4.87 at 99 cM PC5 / / Latham
LG3 3 cM 5.00 at 3 cM 557/658 PC7 / Latham
LG3 22 cM 5.93 at 22 cM 551/m / Diameter

(29 cM, LOD 4.24)
/

LG3 54−79 cM 10.13 at 62 cM 700 403−731,
Green, Red, NDVI, NDRE, GNDVI,
GNRI, 719/691, 728/m, PC2, PC8,
PC11 and many others

Density
(68 cM, LOD 6.67)

Additive

LG4 6−10 cM 7.05 at 6 cM 747/691 568−708,
Red, GNDVI, GRVI, NDVI, NDRE,
many ratios, PC2

density
(6 cM, LOD 4.41)

Dominant

LG5 None / / / / /
LG6 55−63 cM 4.78 at 55 cM 509/512 GRVI, 719/691, 551/m / Latham
LG7 None / / / / /
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2016  imaging  data.  The  set  did  not  aim  to  be  a  minimal  set
and still contains some redundancy and correlated traits that
map to similar locations.

Reflectance  intensities  in  several  selected ratios  are  highly
correlated,  illustrated  in Fig.  3;  strong  correlations  between
neighbouring  wavelengths  is  a  feature  of  high-resolution
hyperspectral datasets. For example, GNDVI and GRVI showed
a  strong  positive  correlation  with  each  other  and  strong
negative  correlation  with  ratio  551/m,  due  to  the  relative
closeness  on  the  spectrum  of  wavelengths  used  to  calculate
these  ratios.  Similarly,  the  first  few  principal  component
scores (such as PC2) showed strong correlation with many of
the  selected  wavelength  ratios.  Although  there  was  an
element  of  redundancy  in  correlated  ratios  that  identified
common  loci,  these  ratios  also  identified  unique  loci,
therefore providing useful additional information. 

Analysis of 2017 data
Supplemental Fig. 4 summarises for each linkage group the

QTLs detected for leaf and berry spectral data and for physical
plant traits on each date in 2017 and in August 2016. Linkage
group  7  is  not  shown  as  no  QTLs  were  found,  reflecting
previous findings with this population for other QTL analyses.
The  results  are  discussed  for  each  linkage  group  for  leaf
spectral  data  together  with  plant  physical  traits.  The  berry
spectral  data  and  fruit  data  are  discussed  separately.  The
figures  include  all  QTLs  that  have  a  LOD  value  greater  than
3.86,  the  95%  genome-wide  significance  threshold.  The
discussion  here  focuses  on  the  larger  QTLs,  with  a  LOD
greater  than  4.64,  the  99%  genome-wide  significance
threshold.

Strong and robust spectral QTLs were found across linkage
groups  1−6.  These  are  highlighted  in  the  following  section;
more detailed results for each linkage group are presented in
the supplementary material.

In linkage group 1,  a  consistent spectral  QTL was found in
the 1−20 cM region (Supplemental Fig. 4a). The ratio 509/512
nm  was  significant  in  June,  July  and  September,  with  the

maximum LOD score of 5.4 detected at 1 cM in June. None of
the physical plant traits measured in this study map onto this
area  of  the  linkage  group,  although  several  fruit  traits  have
been mapped in the 0−18 cM region[22−25]. In linkage group 2
(Supplemental  Fig.  4b)  spectral  QTLs  were  detected  but
appeared less consistently across the season.

Linkage  group  3  has  always  been  the  most  QTL-dense
linkage  group  to  interpret  in  our  previous  studies,  and  this
study  also  identified  LG3  as  the  location  of  many  spectral
QTLs:  a  simplified  linkage  map  is  shown  (Supplemental  Fig.
4c).  Some  spectral  traits  showed  a  consistent  QTL  on  all
imaging  dates,  for  example  the  ratio  747/686  had  a  peak
between  50−73  cM  on  all  dates,  with  the  largest  LOD  score
being 9.9 in September. Other traits have been shown to map
to this region, such as root sucker density and diameter from
the mother plant[26], lateral density, height and leaf density[27],
and fruit traits including firmness and ripening[24,28,29].

Linkage group 4 (Supplemental Fig. 4d) shows that various
spectral  traits  map  to  different  loci  in  the  0-13  cM  region
across  most  imaging  dates.  QTLs  for  cane  density  and  plant
health  were  also  located  in  this  region.  Previous  work  has
found  QTLs  in  this  region  for  leaf  density,  bush  density  and
leaf  hairs[30].  Linkage  group  5  (Supplemental  Fig.  4e)  shows
QTLs  appearing  across  different  dates,  but  the  pattern  was
inconsistent  across  the  season.  Spectral  QTLs  were  detected
consistently  in  linkage group 6  (Supplemental  Fig.  4f)  across
all  dates  in  the 66−77 cM region.  A QTL for  the spectral  trait
551/509  was  detected  in  early  May,  July  and  August.  QTLs
were  also  detected  at  this  position  for  leaf  chlorophyll
concentration in July, August and September. 

Berry traits
QTLs  for  the  berry  traits  were  found  on  all  linkage  groups

apart from LG7. These are summarised in Table 4 and shown
in Supplementary  Fig.  4.  The  most  significant  region  was  on
LG3,  centred  around  48  cM,  with  a  LOD  of  12.4  for  the  ratio
539/932.  The  Sequoia  traits  Green,  NDRE,  GRVI  and  GNDVI,
and  PC3  also  had  QTLs  in  this  region.  Earlier  work  on  this
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Fig.  3    Plot showing correlation between reflectance values for selected wavelength ratios,  Sequoia ratios and principal  component scores
derived  from  individual  wavelength  data.  Ratios  are  grouped  on  the  axes  according  to  their  relatedness  to  each  other.  Dark  blue  indicates
strong negative correlation and bright yellow indicates strong positive correlation. Data were collected in August 2016.
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mapping  population[23] reported  QTLs  for  fruit  colour  meter
scores  which  mapped  close  to  this  location.  Further  spectral
QTLs  mapped  to  LG2  (at  around  19  cM),  LG3  (at  around  72
cM), LG4 (at around 31 cM) and LG6 (at around 57 cM), and all
of  these  corresponded  to  previously-detected  QTLs  for  fruit
colour  meter  scores,  and  sometimes  for  visual  fruit  colour
scores.  There were also spectral  QTLs on LG5 close to 23 cM,
where[24] detected  a  QTL  for  fruit  weight. Table  4 also  gives
three  further  regions  where  QTLs  were  detected  for  the
spectral traits on LG1 (around 68 cM), LG2 (around 45 cM) and
LG3 (around 23 cM) where no QTLs for  fruit  traits  have been
detected in previous work. 

DISCUSSION

This  study  is  the  first  to  demonstrate  how  hyperspectral
imaging  could  be  used  as  a  tool  for  field  based  high
throughput  phenotyping  for  a  perennial  crop  species.  Using
raspberry  as  a  model,  we  have  demonstrated  a  method
capable  of  carrying out  QTL mapping of  image derived data
in  field-scale  experiments.  By  comparing  spectral  QTLs  with
other  known  QTLs  for  this  crop,  we  have  accomplished  the
first  step  in  using  spectral  QTLs  as  indicators  of  well
characterised  plant  physical  traits  and  highlighted  their
potential  for  uncovering  previously  unexplored  traits.  Our
methodology  for  gathering  and  analysing  spectral  data  and
linking  these  to  genetic  markers  represents  a  significant
advance in releasing the bottleneck of mining large datasets
produced by high throughput phenotyping and genotyping,
which typically restricts progress in crop phenomics[31].

Our findings show that spectral traits derived from imaging
data  are  highly  heritable  and  can  be  detected  across  the
growing  season,  satisfying  our  aim  to  identify  reproducible
spectral  QTL,  and  suggests  these  are  linked  to  biological
functions.  We  focused  on  mapping  QTLs  in  FRURES-S2021-
0009-derived  data  when  averaged  over  different
environmental  treatment  conditions  because  the  heritability

analysis  showed  that  the  genotype  component  of  variation
was consistently larger than that of the genotype x treatment
interaction. The heritabilities varied across the set of spectral
traits,  with  many  being  higher  than  for  the  physical  traits
scored on these trials.

We also show that several spectral QTL co-locate with plant
physical  traits  such  as  architecture,  leaf  pigmentation  and
plant  health,  indicating  that  spectral  traits  can  be  used  as
indicators  of  plant  performance.  As  most  of  the  visual  traits
are  scored  on  an  ordinal  scale  with  a  small  number  of
categories,  while  imaging  data  are  continuous  and  are
collected across a large wavelength range, our expectation is
that  spectral  data  will  provide  better  resolution  of  QTL
locations where these co-locate. While it is debatable whether
spectral data is a more efficient way of gathering visual traits
that  are  relatively  easy  to  score,  the  fact  that  some  spectral
QTLs  co-locate  with  less  tractable  plant  characteristics,  such
as root density and diameter on LG3 and root rot damage on
LG6[25,26] suggests  exciting  possibilities  for  using  spectral
phenotyping  to  replace  destructive  harvesting  approaches.
The fact that some spectral QTLs co-located with plant health
scores  (LG3,  LG4)  and  berry  yield  and  quality  (LG5)  deserves
further  research  to  assess  whether  this  spectral  information
could be used in plantation monitoring and management, or
as an early indicator of yield potential.

We were interested in both the spectral QTLs that co-locate
with  previously  identified  QTLs  for  visually  scored  traits  and
those that map to new genetic positions. While most previous
work  carrying  out  QTL  mapping  on  hyperspectral  data  has
focussed  on  generating  proxies  for  physical  trait  data  and
then  mapping  these[18],  we  believe  that  there  is  merit  in
exploring the potential  for spectral  traits  to reveal  additional
information  about  plant  performance  beyond  simple
indicators of well characterised traits. Further work is needed
to assign functions  to  spectral  traits  to  understand their  role
in plant breeding. This includes more detailed analysis of the
response  of  these  'new'  QTLs  to  environmental  conditions,

Table 4.    Location of QTLs for berry spectral and physical data collected in July 2017.

Linkage Group
(LG) Position Max LOD

Spectral traits
(wavelengths ratios,

nm)

Other significant
spectral traits

Significant physical
traits Historic traits Parent

LG1 7−36 cM 5.3 at 27cM 820/848 PC2, PC4 10BW (LOD 6.58,
7 cM), PFS (LOD
5.45, 9 cM)

Fruit ten-berry
weight

Moy

LG1 55−68 cM 5.0 at 68 cM 399/427 / / / Both (dom)
LG2 16−26 cM 9.4 at 19 cM 623/679 PC5, PC6 / Many fruit visual and

colour meter scores
Both (mainly
additive)

LG2 39−46 cM 5.8 at 45 cM 455/539 / / / Both (dom)
LG3 8−25 cM 10.6 at 23 cM 651/932 Red, RE, NIR, PC1,

PC4, PC6
/ / Both (mainly

additive)
LG3 40−56 cM 12.4 at 48 cM 539/932 Green, NDRE, GRVI,

GNDVI, PC3
/ Fruit colour meter

scores
Both (mainly
additive)

LG3 68−107 cM 8.6 at 72 cM 736/792 PC8 10BW (LOD 6.65, 107
cM), PFS (LOD 4.23,
107 cM)

Fruit colour meter
scores

Both (mainly
additive)

LG4 29−50 cM 9.5 at 31 cM 483/623 PC8 / Fruit visual and
colour meter scores
(both parents)

Latham

LG5 3−23 cM 6.8 at 23 cM 764/932 RE 10BW (LOD 4.86,
4 cM), brix (LOD
5.13, 17 cM)

Fruit ten-berry
weight

Moy

LG6 55−74 cM 7.6 at 57 cM 595/707 Green, GNDVI,
NDVI, PC5, PC3

/ Fruit visual and
colour meter scores

Latham

LG7 None / / / / / /
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and examining the genes associated with their map locations.
It is possible that these 'new' QTLs might provide information
about  phenotypes  and  physiological  processes  that  are
otherwise  hard  to  measure  or  have  been  previously
overlooked  and  could  be  important  in  future  raspberry
breeding.

Our  study  highlighted  some  practical  steps  that  could
facilitate further development and application of the imaging
methodology and data analysis.  One of  the challenges faced
during  image  processing  was  normalisation  of  the  images
and removing image effects caused by sequential imaging of
plant rows in the field. The mixed model analysis used in this
study  was  able  to  account  for  this  effect  when  estimating  a
mean value per offspring genotype for QTL analysis.

In  summary,  our  study  illustrates  progress  in  two  areas  of
crop phenomics.  First,  the imaging technology offers  a rapid
method for non-destructive data capture from large numbers
of  plants  in  field  plantations  across  multiple  time  points,
enabling  phenotyping  to  be  carried  out  in  a  less  labour-
intensive manner than traditional approaches. Gathering data
on  both  vegetative  growth  and  fruit  characteristics
simultaneously,  using different segmentation approaches on
the  same  images  to  derive  data  from  different  parts  of  the
plant, could further speed up screening for berry traits, which
are particularly laborious to score. Second, the procedures we
adopted for  image data  analysis  and linking spectral  data  to
genetic  data  provided  an  effective  way  of  overcoming  the
bottlenecks  associated  with  mining  and  interpreting  large
datasets from high throughput genotyping and phenotyping.
Future  effort  will  focus  on  examining  spectral  responses  in
this  mapping  population  to  biotic  and  abiotic  stresses,
individually  and  in  combination,  to  further  assist  in
interpreting the biological function of spectral QTLs detected
in  raspberry.  Once  QTLs  have  been  identified  and  related  to
particular  stresses,  the  genome  regions  underlying  these
traits can be explored as the GbS map used in this study[29] is
aligned with the genome sequences of the two parents. This
study  illustrates  that  there  is  significant  opportunity  to
transfer  our  approach  for  spectral  QTL  mapping  to  other
perennial  species  to  advance  progress  in  field-based
phenomics of perennial crops. 

MATERIALS AND METHODS
 

Population
The  population  used  in  this  study  comprised  188  full-sib

offspring  previously  developed  by  Graham  et  al.  (2004)[32]

from  a  cross  between  the  European  red  raspberry  cultivar
Glen  Moy  and  the  North  American  red  raspberry  cultivar
Latham  (i.e.  a  pseudo-testcross  population[33]).  The  genetic
control  of  many  traits  has  been  studied  in  this  population
including ripening, developmental traits such as bush density
and  diameter,  height,  fruit  characteristics  and  resistance  to
root rot[22−30,34−39].  Most of these traits were analysed using a
linkage  map  with  medium  density,  such  as  in  Graham  et  al.
(2015)[25] with  439  markers.  However,  the  linkage  map  was
recently  enhanced  by  the  addition  of  2,348  SNPs  using
genotyping-by-sequencing  (GbS)  to  give  a  high-density
linkage map[29] linked to the genome sequences of Glen Moy

and Latham,  which was  used in  the current  study.  The high-
density  map  has  1,996  markers  segregating  in  Latham  only
(the  highly  heterozygous  parent),  330  segregating  in  Glen
Moy only and 461 segregating in both parents. 

Field trials
The Latham × Glen Moy population was planted in 2015 at

the  James  Hutton  Institute,  Dundee,  Scotland,  UK  under  a
range  of  individual  and  combined  stress  conditions  to
develop  a  range  of  response  phenotypes.  The  stress
treatments  had  a  3  ×  3  factorial  structure  with  two  biotic
stress  treatments  (vine  weevil  (V)  and  raspberry  root  rot  (R),
plus  uninfested  control  (C))  and  three  levels  of  water
treatment (control (C), drought (D) and overwatered (O)). The
vine weevil  overwatered (VO) combination was not included
giving a total of eight different treatment combinations. Each
treatment combination was grown in a separate region of the
field.  There  were  two  randomised  blocks  within  each
treatment,  each  containing  the  parents  and  offspring.  The
plots,  containing  a  single  plant,  were  placed  in  rows  of  48
plants with 1 m spacing between neighbouring plants and 5
m  distance  between  rows.  A  separate  image  was  taken  of
each row, as detailed below.

The  water  treatments  were  applied  through  differential
watering.  The  drought  plants  were  not  watered  at  all,  the
control plants and overwatered treatments were watered for
four  times  per  day  for  15  mins  each  time  (control)  and  30
mins  each  time  (overwatered).  The  trial  was  planted  in  an
open  field,  so  all  plants  also  received  water  due  to  rainfall
events.

The  root  rot  trial  was  planted  in  a  field  known  to  be
infected  with  raspberry  root  rot  from  previous  trials  planted
there[26]. In addition, plugs of lab grown root rot were placed
around  the  plants  several  months  after  planting  to  ensure
that  root  rot  infection  was  still  high  in  the  area.  The  vine
weevil  treatment  was  applied  approximately  eight  months
after planting by placing batches of 10−20 vine weevil eggs in
small  indentations  in  the  soil  surface  close  to  plants  at
random  locations  throughout  the  site;  this  process  was
repeated  12  months  later.  The  eggs  were  collected  from
laboratory  cultures  of  live  insects  initiated  from  local  vine
weevil  infestations  and  maintained  on  excised  strawberry
leaves at 20 °C with 16 h day-length. 

Plant physical data collection
In  2017,  plants  in  all  treatments  were  visually  assessed

across the key plant developmental  stages on May 4th,  June
26th  and  September  6th  and  plant  survival  through  the
growing  season  was  recorded  in  September.  To  assess  plant
growth  and  health  across  the  treatments,  a  range  of  plant
traits  were  scored.  Cane  density  was  recorded  using  a  visual
scoring system on a 1–5 scale based on the number of canes
per bush between 1 (1–3 canes per bush) to 5 (> 12 canes per
bush),  as  described  in  Graham  et  al.  (2011)[26].  A  value
between 1 and 5 was assigned to record plant health, where
1  =  a  poorly  growing  plant  and  5  =  a  healthy  plant  with  no
sign of stress. The plant diameter was recorded on a 1–5 scale:
a  score  of  1  indicated  a  narrow  plant  and  5  a  wide  plant[26].
Plant height was measured by visual scoring on a 1−3 scale of
plant  height  relative  to  the  standardised  heights  of  the
supporting  wires.  Leaf  chlorophyll  content  was  estimated
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using  a  hand-held  Chlorophyll  meter  (CCM-200:  Opti-
Sciences,  Tyngsboro,  Massachusetts,  USA),  which  provides  a
chlorophyll  content  index  (CCI)  for  a  0.71  cm2 area  of  leaf
based  on  absorbance  measurements  at  660  and  940  nm.
Meter  readings  were  converted  to  total  chlorophyll
concentrations  (chlorophylls  a  and  b,  in µg  per  unit  area  of
leaf) using the equations of Lichtenthaler and Wellburn[40] to
construct  a  calibration  curve  for  representative  leaf  discs
extracted  in  80%  acetone.  The  chlorophyll  measurements
were  taken  for  plants  in  all  treatments  four  times  between
12th  June  and  6th  September.  Physical  plant  measurements
were timed to be close to days when imaging was carried out,
although  due  to  the  length  of  time  required  for  assessing
physical traits, data collection took several days.

Several measures were carried out on the fruit of the plants
in  2017.  These  were  taken  at  two  time  points  in  the  season.
When the fruit was developing, potential yield and poor fruit
set were scored. Potential yield is an ordinal score on a 1 to 5
scale of  the amount of  fruit  predicted based on size of  plant
and number of flowers present. Poor fruit set (PFS) is a 0 to 3
score to measure if there is any fruit seen that was unlikely to
fully  form.  Zero  (0)  would  indicate  no  signs  of  poor  fruit
setting and 3 all fruit unlikely to set properly. The second set
of  measures  were  based  on  picked  fruit.  When  the  fruit  was
ripe,  10  fruit  were  picked  from  each  plant.  These  were
weighed  to  give  10  berry  weight  (10BW)  in  g.  Brix
measurements  were  then  taken  on  the  picked  fruit.  Brix  is  a
measure  of  soluble  sugars  present  in  the  fruit  and  gives  a
higher score if more sugars are present.

In  2016,  plant  height,  cane  density  and  diameter  were
assessed visually from visible light images of the field plants,
using  the  same  scoring  systems  described  above  for  density
and diameter and a 1−5 scale for plant height. 

Imaging platform development
Hyperspectral imaging was carried out on the plants using

a  ground-based  imaging  platform  developed  at  the  James
Hutton  Institute.  The  platform  contains  two  hyperspectral
imagers,  a  visible  near  infra-red  (VNIR)  scanner  covering  the
400−896 nm range and a short wave infra-red (SWIR) scanner
which  covers  the  wavelength  range  of  895−2,506 nm.  The
vertical  pixel  size  of  the  imaging  system  was  3  mm  at  the
target distance of the plant the horizonal distance was bigger
due  and  dependent  on  speed  of  tractor  due  to  the  line
scanning  nature  of  the  system  used.  Both  the  cameras  and
the  operating  software  were  supplied  by  Gilden  Photonics
(Glasgow,  UK).  The  cameras  were  mounted  on  the  back  of  a
tractor  which  was  driven  down  the  field  giving  lateral  view
images of the rows of plants. This study reports data collected
and analysed using the VNIR camera.

The  imaging  platform  was  developed  through  the  2016
growing  season  and  refined  for  the  2017  season.  Data  from
August  2016  were  included  in  this  study,  but  earlier  dates
have  not  been  included  as  the  imaging  protocol  evolved
during  the  2016  season.  In  2017,  imaging  was  carried  out
regularly  (May  3rd,  May  25th,  June  28th,  July  12th,  August
2nd, September 1st). Details of both the imaging platform set
up  and  image  analysis  pipeline  are  described  in  detail  in
Williams et al (2017)[21]. Briefly, a semi-automatic method was
used to split the images into individual plants and extract the

relevant plant material in each image. For each plant, a mean
spectrum of  the leaf  material  was calculated and normalised
against  a  white  reference  tile  included  in  each  image  to
generate  reflectance  values.  The  mean  reflectance  spectrum
of each plant was used for statistical analysis.

In  addition  to  calculating  the  mean  spectrum  of  plant
leaves, a measurement was made of the spectrum of ripe fruit
on  the  plants  on  July  12th  2017  for  the  treatments  control
(CC),  over-watered  (CO),  drought  (CD),  vine  weevil  (VC)  and
vine  weevil  drought  (VD).  A  segmentation  procedure  was
carried out to distinguish ripe fruit  from the rest of the plant
based  on  the  ratio  of  red  to  green  light  in  the  image.  A
threshold  was  then  applied  to  this  ratio  to  classify  pixels  as
either berry or not berry. The mean spectrum of all the berries
in  each  plant  was  then  calculated.  As  colour  was  used  for
segmentation, only berries in the red stage of ripeness would
be detected using this method. 

Analysis of the August 2016 imaging data
In  August  2016,  five  treatments  were  imaged:  CC,  CO,  CD,

VC  and  VD.  The  VNIR  data  in  2016  consisted  of  whole  plant
measurements at 178 wavelengths covering the 400−896 nm
range.  The  measurements  at  adjacent  wavelengths  were
highly  correlated,  and  three  different  approaches  were  used
to  summarise  the  traits  for  genetic  analysis.  These  were:  (i)
principal component analysis of reflectance values across the
entire  VNIR  spectrum  using  the  variance-covariance  matrix;
(ii)  selected  wavelength  ratios  chosen  via  visual  inspection
based on local minima and maxima in the imaging profile; (iii)
four  wavelength  ranges  corresponding  to  spectral  bands
captured by the commercially available multispectral Sequoia
camera. The selected ratios included both ratios of individual
wavelengths and ratios  of  a  wavelength to the overall  mean
for  the  plant  as  follows:  467/m,  537/644,  551/509,  551/m,
557/658, 568/641, 509/512, 677/m, 711/686, 719/691, 728/m,
747/691,  753/758,  753/m,  753/417,  775/m  and  865/417,
where  the  number  refers  to  wavelength  in  nm  and  m  is  the
mean  reflectance  of  all  wavelengths  of  the  plant.  The
'Sequoia'  set  were:  green  (530–570  nm);  red  (640–680  nm);
red  edge  (RE,  730–740  nm);  near  infra-red  (nir,  770–810  nm)
and  vegetation  indices  NDVI  (normalised  difference
vegetation  index),  NDRE  (normalised  difference  red  edge
index), GNDVI (green normalised difference vegetation index)
and GRVI (green red vegetation index) calculated from these
wavelength  bands  (NDVI  =  (nir–red)/(nir+red),  NDRE  =
(nir–RE)/(nir+RE),  GNDVI  =  (nir–green)/(nir+green),  GRVI  =
nir/green).  The  wavelength  bands  of  the  Sequoia  camera
were included to investigate whether a hyperspectral camera
provides  additional  information  compared  with  a  (cheaper,
lighter)  multispectral  camera.  We  refer  to  the  reflectance
intensities  collected  at  these  wavelengths,  used  in  the
selected  wavelength  ratios  and  in  the  principal  component
scores  collectively  as  'spectral  traits'.  The  large  number  of
traits  tested  allows  us  to  both  find  QTL  that  co-locate  with
physical  traits  and  to  find  novel  QTL  that  are  not  linked  to
known physical traits. It is hoped that further analysis of these
novel spectral QTLs would enable them to be linked to more
complex traits that cannot be easily measured in the field.

Mixed  models  were  used  to  examine  the  generalised
heritability  of  traits[38],  an  extension  of  heritability  for  more
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complicated  designs,  and  used  here  due  to  the  need  to
model  the  effect  of  different  images.  The  generalised
heritability  for  each  term  (genotype  and  genotype  ×
treatment interaction) is:

1− Vtt

2σ2
g

σ2
g Vttwhere  is the variance component of the term and  is the

average  variance  for  differences  between  the  effects  of  the
term.  This  was  calculated  using  GenStat  17  (GenStat  for
Windows  17th  Edition  2014,  VSN  International,  Hemel
Hempstead,  UK,  GenStat.co.uk)  and  its  VHERITABILITY
procedure.  To  estimate  heritability  for  the  imaging  data,  the
mixed model included fixed effects of treatment and image, and
random  effects  of  genotype  and  genotype  ×  treatment
interaction.  To  estimate  genotype  and  genotype  ×  treatment
means  for  QTL  mapping,  genotype,  treatment  and  their
interaction were fitted as fixed effects and image was fitted as a
random effect. The visual traits were analysed similarly, but with
field replicate instead of image as a random effect.

QTL  mapping  was  carried  out  using  an  interval  mapping
model as previously described by Hackett et al. (2018)[29], who
adapted  the  estimation  of  QTL  genotype  probabilities  by
incorporating  a  hidden  Markov  model  on  a  1  cM  grid  of
positions  along  each  linkage  group  before  estimating  the
LOD score for a QTL at each position by weighted regression
on  the  QTL  genotypes.  This  approach  was  found  by  Mary  et
al. (2010)[36] to give smoother LOD profiles and hence clearer
peak  locations  for  this  population  than  alternative  software
approaches  such  as  MapQTL  5  (Van  Ooijen,  2004)  and
GenStat,  as the imbalance in the proportion of markers from
each  parent  for  this  cross  caused  difficulties  for  these
programs.  The  parental  genotypes  at  each  QTL  are
represented as ab x cd, where ab is the Latham genotype and
cd  is  the  Moy  genotype,  with  offspring  genotypes  ac,  ad,  bc
and  bd,  and  the  weighted  regression  model  estimates  the
mean trait value for each offspring genotype. Estimates of the
Latham additive effect (P1), the Glen Moy additive effect (P2)
and  the  dominance  effect  (D)  can  then  be  derived  from  the
genotype trait means t(ac) etc. as:

P1 = t(bc) + t(bd) – t(ac) – t(ad)
P2 = t(bd) + t(ad) – t(bc) – t(ac)
D = t(bd) – t(bc) – t(ad) + t(ac)
For  the  August  2016  imaging  data,  QTL  mapping  was

carried  out  for  the  summaries  of  the  VNIR  wavelengths
described  above,  each  individual  VNIR  wavelength,  and  a
systematic  set  of  wavelength  ratios  using  every  tenth
wavelength. Significance thresholds were established using a
permutation  test[41].  Given  the  number  of  traits,  it  was  not
practical  to  run  a  permutation  test  for  every  trait.  Six
representative  traits  were  identified  with  the  numbers  of
missing  values  covering  the  full  range  observed  in  the  data,
and 500 permutations were analysed for each. The maximum
LODs were combined to give a total of 3,000, from which the
95%  and  99%  points  were  derived  to  give  overall  genome-
wide LOD significance thresholds. 

Analysis of the 2017 imaging data
In  2017,  imaging  measurements  of  the  whole  plants  were

made  on  all  eight  treatments,  consisting  of  the  five

treatments  from 2016 together  with  root  rot  (RC),  root  rot  +
drought (RD) and root rot + overwatered (RO). The VNIR data
in 2017 consisted of measurements at 394 wavelength bands
covering  the  400–950  nm  range;  this  differed  from  2016
because in 2017 the camera settings were changed to reduce
the  amount  of  spectral  binning,  doubling  the  number  of
wavelength bands. To speed up the analysis, QTL mapping in
2017  used  the  principal  components,  the  same  selected
wavelength  ratios  as  for  2016  and  the  'Sequoia'  set;  these
were  chosen  as  a  core  set  that  were  sufficient  to  identify  all
the  QTL  locations  found  in  2016.  Imaging  measurements
were  made  on  six  dates  (May  3rd,  May  25th,  June  28th,  July
12th,  August  2nd,  September  1st)  and  data  from  each  date
were analysed separately. For the imaging data extracted for
the berry pixels, the choice of useful ratios was less clear than
for  the  whole  plant  data  and  so  systematic  ratios  were
analysed, forming all  ratios from every 20th wavelength. The
'Sequoia set' of values were also calculated for the berry data
and  a  principal  component  analysis  was  carried  out.  QTL
mapping  was  carried  out  for  the  systematic  ratios,  the
Sequoia set and the principal component scores.
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