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Arterial networks are controlled by the consolidated output of stimuli that set
“howmuch” (magnitude) and “where” (distribution) blood flow is delivered. While
notable changes in magnitude are tied to network wide responses, altered
distribution often arises from focal changes in tone, whose mechanistic
foundation remains unclear. We propose herein a framework of focal
vasomotor contractility being controlled by pharmacomechanical coupling
and the generation of Ca2+ waves via the sarcoplasmic reticulum. We argue
the latter is sustained by receptor operated, transient receptor potential (TRP)
channels through direct extracellular Ca2+ influx or indirect Na+ influx, reversing
the Na+/Ca2+ exchanger. We view this focal regulatory mechanism as
complementary, but not redundant with, electromechanical coupling in the
precision tuning of blood flow delivery.
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1 Introduction

Arterial networks are rationalized as an intricate system of segments which serves to set
blood flow magnitude and adapt its distribution dependent on local energetic demands.
Arteries are described as single-layered tubes of endothelial cells surrounded by smooth
muscle cells arranged in a circular fashion. Endothelial cells are arranged parallel to the axis
of blood flow and as they are in intimate contact with blood, they respond to mechanical
forces like shear stress. They are strongly coupled to one another, unlike smooth muscle,
and thus constitute the primary pathway for electrical and chemical signals to spread along
vasculature (Mironova et al., 2024). Smooth muscle cells are circumferentially arranged and
retain the contractile machinery responsible for altering arterial tone. Tone within arterial
networks is governed by multiple stimuli, the most important being intravascular pressure,
blood flow, neural activity, and a range of endothelial derived factors. Alterations in smooth
muscle [Ca2+] are the principal driver of arterial tone, with cytosolic levels largely set by the
activity of voltage gated Ca2+ channels. The standard mechanistic paradigm, commonly
termed electromechanical coupling, is straightforward in thought, thousands of smooth
muscle cells exposed to a defined stimulus (e.g., intravascular pressure) subtly change their
conductance to Na+, Cl− or K+. With the aid of gap junction, charge spreads among coupled
vascular cells, producing a homogenous membrane potential response that gates L- and to a
lesser extent T-type Ca2+ channels. The ensuing cytosolic Ca2+ response modulates myosin
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light chain kinase and consequently the contractile state of smooth
muscle. These integrated responses have garnered deep
interrogation as they set the foundation of blood flow control
and coordinate the dilations that increase tissue perfusion with
rising metabolic demand. What is often overlooked in such
examinations is the need to discretely tune blood flow
distribution by allowing segments, in particular terminal/pre-
capillary arterioles, to focally constrict independent of the
broader structure (Sweeney et al., 2016; Grubb et al., 2020;
Zambach et al., 2021). Such behavior is observable in isolated
vessels and in-vivo to focal agent delivery, and it is insensitive to
membrane potential and the influx of Ca2+ via L-type Ca2+ channels.
Voltage insensitive contraction is often termed
pharmacomechanical coupling, and its transduction is tied to
signaling pathways activated G-protein coupled receptors.

The query addressed herein centers on how focal constrictor
events can be generated independent of electromechanical coupling.
Reason dictates careful consideration of pharmacomechanical
coupling and the regulation of myosin light chain phosphatase
(MLCP) through Gq/11 and G12/13 coupled signal pathways
(Figure 1). Gq/11 coupled receptors (e.g., α1 adrenoreceptors)
activate phospholipase C-β, the ensuing hydrolysis of
phosphatidylinositol 4,5-bisphosphate leading to diacylglycerol
and inositol triphosphate (IP3) production. The former leads to
the activation of protein kinase C and the phosphorylation of CPI-
17, an upstream inhibitor of the MLCP catalytic subunit (PP1c). In
contrast, G12/13 coupled receptors (e.g., thromboxane A2 receptor)
activate the monomeric G-protein RhoA and then Rho-kinase to
regulate the MLCP targeting subunit, MYPT1 via two key
phosphorylation sites (T-697 & T-855). While MLCP inhibition

is logically essential for focal vasoconstrictor control, a Ca2+ signal,
one modest in magnitude and uncoupled to voltage, is still required
for myosin light chain kinase (MLCK) activation. While the
mechanistic foundation of this Ca2+ signal remains unsettled, it is
intriguing to consider Ca2+ waves which originate from the
sarcoplasmic reticulum (SR) and are triggered by IP3 production
and extracellular Ca2+ influx through an elusive Ca2+ permeable
pore. The subsequent sections will consider the molecular identity of
that Ca2+ permeable pore and how a voltage-insensitive Ca2+ source
shapes focal tone development and blood flow distribution
throughout integrated arterial networks.

2 The sarcoplasmic reticulum and
Ca2+ waves

Vascular smooth muscle retains sarcoplasmic reticulum, an
internal store that releases Ca2+ upon activation of ryanodine or
IP3-sensitive receptors (IP3R). Ca

2+ release takes the form of several
definable events, the two most common being “Ca2+ sparks” and
“Ca2+ waves.” Ca2+ sparks, as discerned by Nelson et al. (1995) are
focal voltage-dependent events that rapidly activate large-
conductance Ca2+-activated K+ channels, thus initiate
spontaneous transient outward currents (STOCs). In resistance
arteries, STOCs drive a feedback hyperpolarization that
moderates constriction initiated by stimuli like intravascular
pressure. Ca2+ waves are slower events (1–3 s, duration)
characterized by a wave front spreading from end-to-end within
one cell and then asynchronously among neighboring cells. Their
spatial/temporal heterogeneity is notably distinct from the

FIGURE 1
Proposed framework for focal constriction through pharmacomechanical coupling, a process independent ofmembrane potential and VGCC. AGq/

11 signaling pathway inhibits MLCP while activating TRPC cationic channels. The latter, operating as a Ca2+ influx pathway or by reversing NCX transport,
facilitates the generation of Ca2+ waves necessary for MLCK activation. Abbreviations: NCX, Na+/Ca2+ exchanger; TRPC, canonical transient receptor
potential channel; VGCC, voltage-gated Ca2+ channel; SR, sarcoplasmic reticulum; IP3, inositol triphosphate; DAG, diacyl glycerol; PLC,
phospholipase C; PIP2, phosphatidylinositol 4,5-bisphosphate; MLC, myosin light chain; MLCK, MLC kinase; MLCP, MLC phosphatase.
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synchronous, oscillatory behavior underpinning arterial vasomotion
(Seppey et al., 2009). Asynchronous Ca2+ waves display voltage-
insensitive properties and their abolishment moderates tone
development to superfused agonist (Jaggar and Nelson, 2000;
Mufti et al., 2010). Ca2+ waves reflect regenerative Ca2+-induced
Ca2+-release among neighboring IP3 and/or ryanodine receptors, an
event dependent on IP3 production and extracellular Ca2+ influx.
The latter would be presumptively important to driving the initial
opening of IP3Rs or to refilling of the SR. What is the most likely
identity of this Ca2+ permeable pore?

3 Ca2+ permeable pores and Ca2+ waves

3.1 The fabled “receptor operated
Ca2+ channel”

Receptor operated Ca2+ channels were first rationalized by Somlyo
and Somlyo (1968) to partly explain persistent agonist-induced tone
following L-type Ca2+ channel blockade. Despite this early
conceptualization, the identity of “receptor operated Ca2+ channels”
remained elusive for decades as its electrophysiological and
pharmacological fingerprint was variable and difficult to define. A
bona fide target emerged in the 21st century, with the isolation of
transient receptor potential (TRP) channels, named after a mutant
drosophila strain with visual cue blindness (Cosens and Manning,
1969). Molecular studies revealed TRP channels as a diverse group
of cation permeable pores, comprised of 4 pore forming subunits,
6 transmembrane domains each and intracellular termini whose
molecular diversity imparts unique regulatory properties (Hellmich
and Gaudet, 2014). There are six subfamilies, the first identified being
the canonical (TRPC) class (Wes et al., 1995) followed by those: 1)
modulated by “vanilloid”-like molecules (TRPV; Caterina et al., 1997);
and 2) retaining C-terminal repeats related to the “ankyrin” protein
(TRPA; Jaquemar et al., 1999). Genomic analysis of disease pathologies
subsequently identified the final three subfamilies that being the
melanoma metastasis/TRP melastatin (TRPM; Duncan et al., 1998),
the autosomal dominant polycystic kidney disease/TRP polycycstin
(TRPP; Mochizuki et al., 1996), and the human mucolipidosis type IV/
TRP mucolipin (TRPML; Bargal et al., 2000). While multiple TRP
subunits are expressed in vascular smooth muscle, the canonical
subclass has garnered particular attention as activation is coupled to
Gq signal transduction, rendering it “receptor operated.” TRPC
channels pass both mono- (e.g., Na2+) and di- (Ca2+) valents, their
relative permeability set by subunit composition (Bolton, 1979; Putney
and Tomita, 2012). As such, they can operate as a depolarizing current
and/or a Ca2+ influx pathway that drives: 1) electrical feedback, via the
large conductance Ca2+ activated K+ channel (Earley et al., 2005); or 2)
Ca2+ wave generation (Figure 1). We will consider the latter below, with
attention focused on two TRPC channel subunits for which
foundational data is available. We acknowledge a priori TRPC
channel subunits do heteromultimerize, but due to a lack of
functional observations, discussion on this topic cannot be advanced.

3.1.1 TRPC6
TRPC6 is ubiquitously expressed in vascular smooth muscle and

recognized for its relatively high permeability to Ca2+ over Na+ (5-6:
1; Hofmann et al., 1999; Dietrich et al., 2003). When expressed in

HEK293 cells, TRPC6 channels displayed two prominent properties,
that being dual rectification and the induction of a cytosolic Ca2+

response following activation (Dietrich et al., 2003; Estacion et al.,
2006). TRPC6 were first reported as a Gq-coupled, receptor operated
Ca2+ channel in fibroblast-like monkey cells (Boulay et al., 1997), an
observation later transposed into vascular smooth muscle (Inoue
et al., 2001; Anfinogenova et al., 2011). As to the latter, Ca2+ influx
through TRPC6 channels is under the regulatory control of
catecholamines (Inoue et al., 2001) along with vasopressin
(Maruyama et al., 2006) and angiotensin II (Saleh et al., 2006).
Evidence that Ca2+ influx via TRPC6might facilitate to SR Ca2+ wave
generation is developing but somewhat indirect, with evidence
showing that: 1) channel clusters form in plasma membrane
adjacent to the SR; and 2) TRPC6 knockdown is associated with
a reduction in agonist induced, Ca2+ oscillations in cultured smooth
muscle cells (Li et al., 2008).

3.1.2 TRPC3
TRPC3 cation channels shares similarities to TPRC6 being

activated by Gq-coupled agonists (Liu et al., 2009) and displaying
inward and outward rectification (Kamouchi et al., 1999). It is
however distinct from TRPC6, in that basal activity is higher
(Dietrich and Gudermann, 2007) and selectivity to Ca2+ over Na+

is reduced (1.6:1; Kamouchi et al., 1999). Arteries from TRPC3−/−

mice display diminished constriction to phenylephrine (Yeon et al.,
2014), presumptively due to TRPC3 inducing a depolarization that
triggers L-type Ca2+ channels (Reading et al., 2005; Pereira da Silva
et al., 2022). While reasoned, more recent work has suggested that
TRPC3 may also act as a receptor operated Ca2+ channel, enabling
tone development through Ca2+ waves induction. Of particular
interest are findings showing that TRPC3 binds to IP3R (Yuan
et al., 2003; Adebiyi et al., 2012) through its calmodulin/IP3R
binding domain (Zhang et al., 2001). This C-terminus motif
impacts channel gating (Wedel et al., 2003) and presumptively
the concomitant Ca2+ influx needed to initiate or sustain SR Ca2+

waves generation (Curcic et al., 2022). Note, TRPC1 also been
alluded to interact with IP3Rs although findings remain limited
(Yuan et al., 2003).

3.1.3 Indirect role for TRPC channels?
While it reasoned to suggest that Ca2+ influx through TRPC

channels induces SR Ca2+ waves directly, there is a body of literature
which suggests their role in internal Ca2+ mobilization is indirect.
Consider the Na+/Ca2+ exchanger, an antiporter that employs the
Na+ electrochemical gradient to facilitate the efflux of Ca2+. Due to
its electrogenic nature, the Na+/Ca2+ exchanger can operate in
reverse mode, enabling the Ca2+ influx presumptively needed to
drive Ca2+ wave generation (Blaustein and Lederer, 1999) (Figure 1).
This perspective aligns with past work showing that Na+/Ca2+

exchanger inhibition not only diminishes Ca2+ waves but the
generation of nifedipine-insensitive tone (Dai et al., 2006; Syyong
et al., 2009). Antiporter reversal occurs when cells are depolarized or
when local intercellular [Na+] rises, presumptively due to TRPC
channel activation and monovalent influx (Rosker et al., 2004;
Lemos et al., 2007). While evidence is somewhat circumspect,
past studies have shown a physical association between TRPC
channels and NCX. TRPC3 coimmunoprecipitates with NCX in
transfected HEK cells (Rosker et al., 2004), while in vascular smooth
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muscle, Na+/Ca2+ exchangers are thought to cluster in association
with TRPC6 adjacent to the sarcoplasmic reticulum (Poburko
et al., 2007).

4 Focal constriction and the spatial
throttling of blood supply

Fundamental understanding of vascular control is shaped by
prevailing tools and the manner in which experiments are designed
to probe biological behavior. In this regard, the use of vessel
myography is central, as is the examination of arterial tone to
agonists broadly applied to a bath. The interpretational
consequence of this embedded approach is to view arterial tone
as a global integrated phenomenon, among and across vessel
segments, a property essential to the control of blood flow
magnitude. As such, electro- and pharmaco-mechanical coupling,
the latter of which incorporates receptor operated Ca2+ channels/
Ca2+ sensitization, are viewed as contractile mechanisms working
proportionally and synergistically with one another. Deeper
examination, however, reveals a flaw in this reasoning, embodied
by this query “Why are two distinct contractile mechanisms needed
to regulate a singular aspect of arterial tone development and
presumptively blood flow control? Indeed, integrated tone control
across vessels and branch points can be achieved through
electromechanical coupling alone, as charge spread through gap
junctions ensures a comparable VM and cytosolic Ca2+ response
across thousands of smooth muscle cells. Could it be that

pharmacomechanical coupling encodes for an aspect of blood
flow delivery distinct from “magnitude”? Consider for example, a
single terminal arteriole and the associated tuning of blood flow
“distribution” within each capillary network. Local tuning
presumptively requires focal vasomotor control, a response
difficult to achieve via electromechanical coupling as the charge
arise from a small number of activated cells gets readily diluted into
the large mass of unstimulated cells to which they are coupled. It is in
this context that the value of pharmacomechanical coupling, with its
dependence on MLCP regulation and receptor operated Ca2+

channel activation, becomes evident. Although observations are
limited, brain studies have noted that precapillary arterioles can
operate in a sphincter-like manner as they branch from the
penetrating arteriole. The mural cells embedded in these
segments are intriguing in many aspects (Phillips et al., 2022),
perhaps most notably herein, the robust expression of
TRPC3 and TRPC6 (He et al., 2018; Vanlandewijck et al., 2018)
(Figure 2). Vasomotor heterogeneity is also observable across the
length of a penetrating arterioles, a behavior consistent although not
definitive for, focal zones of enhanced TRPC channel expression and
pharmacomechanical control (Institoris et al., 2015; Chow et al.,
2020). What triggers focal vasomotor responses in organs like the
brain, remains a question of active inquiry. Perhaps, a single
astrocytic endfoot produces a diffusible signal from appropriate
sensory input that tunes pharmacomechanical rather than
electromechanical coupling. Arguably, pharmacomechanical
regulation might also be achieved via direct neural synapses onto
smooth muscle, regions of which have been recently identified by

FIGURE 2
(A) TRPC3/6 expression (defined as cellular transcript counts/cell) in the mouse brain mural cells, as determined by single-cell RNA sequencing.
Note the strong TRPC3/6 expression. Figures provided by http://betsholtzlab.org/VascularSingleCells/database.html (He et al., 2018; Vanlandewijck et al.,
2018). (B) Spatial throttling of blood supply through pharmacomechanical coupling independent of an integrated electrical signal. Abbreviations: PC,
pericytes; SMC, smooth muscle cells; v, venous; a, arterial; aa, arteriolar.
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scanning electron microscopy (Zhang et al., 2024). The genesis of
focal vasomotor tone should also be rationalized in a pathobiological
context. Consider for example, cerebral arterial vasospasm, a
profound local constriction induced by the extravasation of
blood, and which elicits stroke-like symptoms. These deleterious
responses are often refractory to L-type Ca2+ channel blockade, and
thus presumptively pharmacomechanical in foundation. It follows
that targeting key pathways and signaling proteins underpinning
pharmacomechanical coupling may be of clinical benefit to
appropriate patient populations.

5 Summary

A putative receptor activated TRPC channel in a cohort of
smooth muscle cells, could serve as a Ca2+ source to drive SR Ca2+

wave generation and a local pharmacomechanical constrictor
response, independent of membrane potential. Contrary to
electromechanical coupling where an electrical signal integrated
across vessel segments sets blood flow magnitude, local
VM-independent constriction would be presumptively designed to
tune distribution. In this regard, pharmacomechanical coupling
should be view as functional distinctive from electromechanical
coupling but essential to the optimization of demand/supply
coupling to active tissues (Figure 2). While an intriguing concept,
experimental validation is essential, the first step being the
identification of local constrictor sites in vivo, a process which
has begun. Further, it is interesting to consider whether such
sites are molecularly unique, perhaps displaying enhanced
expression of receptor operated Ca2+ channels. One could
alternatively argue that these sites of point control receive
additional inputs from surrounding parenchymal cells, for
example, defined astrocytic end feet or the sparely arranged
interneurons in brain. Further experimentation is clearly needed
to deepen insight on this novel aspect of blood flow control.
Likewise, intricate computers models of contractile control, akin
to those used to probe intercellular conduction in brain
microvascular networks will provide further conceptual insight
and set new boundaries to our understanding of blood flow
coupling to energetic demands.
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