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The analysis of fine and coarse roots’ functional traits has the potential to reveal 
the performance of the root system, which is pivotal in tree growth, development, 
and failure in both natural and urban forest ecosystems. Furthermore, root traits 
may be a powerful indicator of tree resilience mechanisms. However, due to 
the inherent difficulties in measuring ‘the hidden half,’ and despite the recent 
advancements, the relationships among root functional traits and biotic and 
abiotic drivers still suffer from a lack of information. Thus, our study aimed 
to evidence knowledge milestones and gaps and to categorize, discuss, and 
suggest future directions for effective experimental designs in fine and coarse 
root studies. To this end, we conducted a systematic literature review supported 
by backward manual referencing based on 55 root functional traits and 136 
plant species potentially suitable for afforestation and reforestation of natural 
and urban forest ecosystems. The majority of the 168 papers on fine and coarse 
root studies selected in our review focused predominantly on European natural 
contexts for a few plant species, such as Fagus sylvatica, Picea abies, Pinus 
sylvestris, and Pinus cembra, and root functional traits such as standing biomass, 
phenology production, turnover rate, and non-structural carbohydrates (NSC). 
Additionally, the analyzed studies frequently lack information and uniformity 
in experimental designs, measurements, and statistical analysis, highlighting 
the difficult integration and comparison of outcomes derived from different 
experiments and sites. Moreover, no information has been detected in selected 
literature about urban forest ecosystems, while most of the studies focus on 
natural forests. These biases observed during our literature analysis led us to 
give key indications for future experiment designs with fine and coarse roots 
involved, which may contribute to the building up of common protocols to 
boost the monitoring, managing, and planning of afforestation and reforestation 
projects.
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1 Introduction

Both natural and urban forests deliver multiple vital functions and 
benefits deemed as ecosystem services that rely on physical, biological, 
and social modifications of the environment (Mori, 2017; Win, 2019). 
However, specific demands drive plant management by altering forests 
and tree attributes (Felipe-Lucia et al., 2018), which may affect their 
self-organization, adaptative capacity, and resilience (Nocentini et al., 
2022). Short- and long-term innovation and optimization strategies 
are required for the sustainable provision of these ecosystem services 
(Mann et al., 2022), which, to be effective, should be based not only 
on increasing the tree cover (Przewoźna et  al., 2022), but on an 
integrated perspective that includes the economic, environmental, and 
social dynamics of the rural-to-urban gradient (Feng et al., 2021). In 
this scenario, restoring, increasing, and preserving forest biodiversity, 
including a minimum of 10% of urban areas covered by tree canopy 
in all cities by 2050 (European Commission, Directorate-General for 
Environment, 2021, 2023), as well as integrating with their sustainable 
strategic planning also green space networks characterizing the peri-
urban areas (Verdú-Vázquez et al., 2021), represent a crucial multiple 
task. Thus, in the next few years, European cities are expected to 
accomplish a large number of tree-based projects with a priority on 
the maintenance/management of already established urban and 
non-urban ecosystems. To make these projects effective, the 
development of guidelines and good practices is needed.

Due to global warming, central Europe is expected to experience 
more frequent and long summer droughts with a higher frequency 
and intensity of storms, windstorms, and other impacting climate 
events (Pauleit et al., 2005; Solomon, 2007; IPCC, 2014). These events 
are currently responsible in Europe for about 50% of tree decline, 
which occurs both in urban and non-urban forests because of the 
failure interplay between the above- and below-ground tissues 
(Taccoen et al., 2022). An inadequate rooting response to climate 
change events is one of the crucial factors in tree failure (Tamasi et al., 
2005; Nicoll et al., 2008; Day et al., 2010; McCarthy et al., 2010; Correa 
et al., 2019), even if the relationship with the potential drivers is still 
an open question (van Haaften et al., 2021). Evidence points to the 
impacts of paving and soil compaction on tree root stability and 
nutrient uptake and their structural collapse caused by pathogen 
attacks or climate extremes on poorly managed trees (Manfra et al., 
2022). Consequently, the root system is a key determinant of the 
functioning of the forest ecosystem, and the possibility to evaluate 
root health, decay, and injury is crucial not only to tree stability and 
management but also for the safety of forests and environments in 
both urban and non-urban contexts (Kabir et al., 2018; van Haaften 
et al., 2021).

Plant species vary widely in root characteristics and lifespan and 
thus create formidable challenges in defining the strategic and 
operational plans about “where” and “how” to choose tree species for 
the different areas or about performing interventions on already 
present plants in urban or non-urban areas. In this direction, the 
Italian strategic plan for urban forestry built up a list of different 
species suitable for the afforestation and reforestation of urban areas 
(NRRP; Protection and enhancement of urban and extra-urban 
green—M2C4 3.1). This list of species is expected to be the basis for 
the established planting of 6.6 million trees by 2024, underscoring the 
issue of the heterogeneity of the new planting species and 
recommending planting trees according to the biogeographical and 

ecological characteristics of the sites (Lenormand et  al., 2018). In 
particular, this list includes the main species composing the flora of 
both Mediterranean and temperate forest ecosystems,1 being 
representative of the European and pan-European biogeographical 
regions. Thus, these species potentially play a pivotal role at the 
European scale in rethinking urban and non-urban designs through 
successful afforestation/reforestation interventions underpinned by a 
thorough knowledge of vegetation distribution and their capacity to 
deliver ecosystem services. In this direction, specific and standardized 
indexes/traits quantifying the value of plant ecosystem services in 
urban and non-urban contexts are needed.

As reviewed by Freschét et al. (2021b), root functional traits can 
be  analyzed to obtain knowledge about resource acquisition, 
protection, and element cycling of plants. Additionally, the analysis of 
specific root functional traits can reveal plant resilience and adaptation 
mechanisms to disturbance (Montagnoli et al., 2023). Some of these 
traits are easily measurable and often vaguely related to a single or a 
few functions (i.e., “soft”), or difficult to measure and more often 
closely related to a precise function (i.e., “hard”) (Bakker et al., 2019; 
Freschét et al., 2021b). Root functional roles are strictly related to 
some root morphological traits, such as diameter, that permit 
categorization into fine and coarse roots. Fine roots, representing 
about 2–3% of the total biomass and 33–67% of the total annual net 
primary production in most terrestrial ecosystems, accomplish 
nutrient, oxygen, and water uptake by cooperating with associate 
mycorrhizae (Vogt et al., 1995; Finér et al., 2011; McCormack et al., 
2015). Coarse roots are responsible for the storage of reserves, the 
distribution of nutrients/water to the above-ground part, and 
providing comprehensive physical support to the plant anchorage 
(Zhang and Wang, 2015; Montagnoli et al., 2020). Both fine and coarse 
roots contribute to plant adaptation to environmental conditions 
through the so-called “phenotypic plasticity” modulating the root 
dynamics (production and turnover rate) and morphology (length, 
diameter, and biomass), which are essential to soil exploration and 
anchorage (Iversen et al., 2017; Brunner et al., 2019; Dumroese et al., 
2019; Iversen and McCormack, 2021). Root traits, such as length, 
branching characteristics, and diameter, have been quite often related 
to foraging strategies, with root length being assumed to 
be proportional to resource acquisition (benefit) and root mass being 
proportional to construction and maintenance (cost). Under drier soil 
conditions, plants modulate the production of longer and finer roots, 
which results in a relatively greater length per unit mass, thereby 
leading to an increase in specific root length (SRL) (Ostonen et al., 
2007; Montagnoli et  al., 2012). Moreover, in terms of nutrient 
acquisition, root production has been related to lateral root branching 
since a reduced density is beneficial for N capture by reducing 
competition among root axes (Lynch, 2019; Montagnoli et al., 2022). 
Zadworny et  al. (2016, 2017) proposed two ways of phenotypic 
plasticity that plants use to react to water or nutrient deficiency: quick 
growth of fine roots for a fast enhancement of water/nutrient 
acquisition, or thick root production to go in the direction of long-
term ability to store resources. More generally, Cudlin et al. (2007) 
explained that root growth stops and death (i.e., decrease in root 

1 https://www.mase.gov.it/sites/default/files/archivio/biblioteca/protezione_

natura/ecoregioni_italia_eng.pdf
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length and biomass and increase in root turnover) might indicate that 
an overall reduction in root production becomes more functional 
when water shortage exceeds a certain limit in terms of content and 
time. In addition to their important role in the exploration and 
exploitation of water and nutrients, from a biomechanical point of 
view, preferential root production and growth occur in different 
directions to enhance anchorage along the axis of mechanical loading 
(Stokes et al., 2009). In slopy soils and/or under prevailing wind 
conditions, several authors have demonstrated that the tree anchorage 
is likely attributable to the forces of the roots pushing downward, 
hanging upward, or standing in the wind- or lee-ward direction 
(Danjon et al., 2005; Ghestem et al., 2011; Yang et al., 2014, 2017; 
Montagnoli et al., 2022). These findings together explain that plants 
continuously adjust their root growth in response to environmental 
conditions through the modulation of new root production, 
longitudinal or radial growth, and the turnover of standing roots 
(Amendola et al., 2017; Montagnoli et al., 2021) and toward the 
achievement of higher functional performance. However, the main 
drivers and production/decomposition patterns related to the 
phenotypic plasticity of fine and coarse roots still need to be studied 
to possibly link those to the overall tree performance, especially in a 
global climate change scenario (Mausolf et  al., 2018; Brunner 
et al., 2019).

In general, the studies of the root systems are limited by their 
below-ground existence, making them hard to view and sample 
(Gyssels and Poesen, 2003), especially in urban contexts where the 
plants experience soils with environmental inputs that are strongly far 
and different from rural and natural forests. From this perspective, a 
high magnitude of efforts should be directed toward the appropriate 
development of urban forest ecosystems. Additionally, even with the 
same study aims or in similar conditions, the lack of standardized 
methods and the inhomogeneity of definitions in root studies affect 
the accuracy and the possibility of making comparisons among 
experiments and replicates (Reubens et al., 2007). For example, despite 
the identification of fine and coarse roots through their diameters, 
there is a lack of a unique definition. Reubens et al. (2007) define the 
fine roots as having a diameter lower than 3 mm, Zhang and Wang 
(2015) and Zhang et al. (2020) use the threshold of 2 mm, Dybzinski 
et al. (2019) of 1 mm, while other scientists still divide in classes the 
fine roots by their diameter minor than 2 mm or ranging between 2 
and 5 mm (Steele et al., 1997; Xiao et al., 2003; Børja et al., 2008). This 
led to the impossibility of uniformly analyzing the studies to define 
the relationships among root traits and functions and developmental 
patterns, also from a species-specific perspective.

In this scenario, we  performed a systematic review of the 
knowledge about the functional traits of fine and coarse roots of those 
species for afforestation and reforestation in urban and non-urban 
areas, considering those present in the “Urban and extra-urban 
afforestation plan” (Italian Ministry of Ecological Transition, 2021a,b), 
which extensively include different biological forms (e.g., trees, shrubs, 
herbs, and grasses) used in afforestation and reforestation projects 
across Europe (Dimitrova et  al., 2022). Indeed, there is emerging 
evidence that planting a diverse mix of species with characteristics 
representative of a reference ecosystem can facilitate the succession of 
functional biodiverse ecosystems over time and successfully address 
climate change and biodiversity loss simultaneously (Andres et al., 
2022). Based on this, we critically evaluated milestones and gaps of 
knowledge emerging from the analysis. Additionally, we performed a 

comprehensive analysis of the designs that drive the experiments on 
fine and coarse roots to highlight the peculiarities and general features. 
Such an overall assessment can lead to standardized procedures and 
methods applicable for experimental design in fine and coarse root 
research projects on tree species for afforestation and reforestation of 
urban and non-urban areas, boosting the development of applicative 
guidelines for the management of these peculiar ecosystems.

2 Methods

2.1 Searching strategy

This review is focused on the root functional traits of 136 plant 
species (including 79 trees and 57 shrubs) reported in the “Urban 
and extra-urban afforestation plan” (Italian Ministry of Ecological 
Transition, 2021a,b) as suitable for afforestation, reforestation, and 
tree planting in urban and non-urban areas. Indeed, these measures 
should take into consideration the high diversity of species, which 
also includes the different growth forms of plants. We performed a 
systematic literature search following the guidelines of Preferred 
Reporting Items for Systematic Reviews and Meta-Analysis 
(PRISMA; Moher et al., 2009) using a query-based strategy and 
backward manual referencing of the literature. We first identified 
the root functional traits to be used as query terms for the automatic 
literature database interrogation by exploring the FRED 3.0 
database that reports data related to root traits grouped in categories 
(Iversen and McCormack, 2021) and the paper of Freschét et al. 
(2021a). We considered those root traits related to architecture, 
chemistry, dynamics, morphology, physiology, and microbial 
associations together with the functional traits “root standing 
biomass” and “root standing necromass” crucial for the description 
of root dynamics in forest ecosystems. Lists derived after the 
exploration were crosschecked, and a comprehensive set of 55 root 
functional traits, categorized along with others and mapped in 
relation to one another, was adopted to perform the literature 
searches (Figure 1).

The combination of the 55 root functional traits together with 
the names (Latin binomials and common) of the 136 tree species 
were used as query terms together with the words “root” and “roots.” 
The common species names were chosen according to those reported 
in the “Taxonomy” database of the National Center for Biotechnology 
Information (NCBI).2 In total, 7,480 queries (Supplementary File 1) 
were composed and used to perform searches through PubMed3 to 
identify articles with query terms matching their abstract, keywords, 
and title (last updated on 20 July 2023). The outputs were screened, 
edited, and tabulated by scripts in Perl (Wall et  al., 2000). 
Additionally, the free accessible package pheatmap (v. 1.0.12; Kolde, 
2019) in R (R Core Team, 2017) was used to draw a clustered 
heatmap based on the log scaled numbers of records identified for 
each species/trait combination. The clustering was done by complete 
hierarchical clustering based on Euclidean distances for both species 
and root functional traits, which were also categorized according to 

2 https://www.ncbi.nlm.nih.gov/taxonomy/

3 https://pubmed.ncbi.nlm.nih.gov/
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their recurrence in the literature search outputs. Subsequently, of all 
the identified records, only the scientific articles showing the terms 
“fine root(s)” and “coarse root(s)” in their abstract, keywords, and 
title and not related to the seedling stage and/or under controlled 
conditions were retained and considered relevant to our subsequent 
questions. Considering the wide range of related fields of the topic 
of our study, backward manual referencing based on snowballing 
(Wohlin et al., 2022) was also applied to identify relevant studies on 
the fine and coarse roots of the target species missed by query-based 
searches (Avenell et al., 2001; van Haaften et al., 2021). These papers, 
together with those identified through query-based searches, were 
included in the systematic literature review and underwent a full-
text examination.

2.2 Data extraction and summary of 
selected studies

The information included in the selected original articles for the 
screening of their full text was categorized, considering three specific 
variables explained as follows: data were registered at the level of each 
selected original article.

The analysis of the first variable, “objective of the study,” was 
performed by categorizing the studies according to:

 (i) environmental constraints (e.g., drought, temperature, 
flooding, etc.),

 (ii) anthropogenic constraints (e.g., forest management, 
fertilization, irrigation, pollution, fire, etc.),

 (iii) other.

The analysis of the second variable, “root type,” was performed by 
categorizing the studies according to:

 (i) fine roots,
 (ii) coarse roots,
 (iii) other/not-specified types of roots as targets.

The analysis of the third variable, “experimental design,” was 
performed by categorizing the studies according to:

 (i) “population characteristics” (natural/afforestation/
reforestation/agroforestry),

 (ii) “coordinates and localization,”
 (iii) “size of the population,”
 (iv) “plant age,”
 (v) “sampling method(s),”
 (vi) “sampling design (when, replicate, etc.),”
 (vii) “sampled organ(s),”
 (viii) “statistical method.”

Additionally, for each article, some features were reported, such 
as an ID (PubMed ID or EID from Scopus or DOI) and the number/
type of species and root functional traits described in the article. This 

FIGURE 1

Root functional trait categorization and mapping. Map of the 55 root functional traits used as query terms from the FRED database and from Freschét 
et al. (2021a; black circled) together with “root standing biomass” and “root standing necromass” (underlined) categorized according to colors: yellow 
for morphology, orange for anatomy, red for dynamics, purple for chemistry, light blue for physiology, blue for architecture, sea green for mechanical 
traits, and green for microbial association.
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procedure was performed and cross-reviewed by the authors, allowing 
a detailed, summarized categorization of the knowledge present in 
each study.

2.3 Data visualization and statistics

The categories “species,” “traits,” “objective,” “type of root,” 
“maximum fine root diameter,” “minimum coarse root diameter,” 
“site type,” “country,” “number of plants,” “plant age,” “sampling 
method,” “experiment duration,” “sampling number,” “months of 
sampling,” “sampled organ,” and “statistical analysis” were 
considered. Plots and statistical analysis were carried out through 
R (R Core Team, 2017). Specifically, the R package “wordcloud” 
(Fellows, 2018) was used to generate a word cloud of the keywords 
associated with selected articles in the database, and the package 
ggplot2 (Wickham, 2016) was exploited for the graphical 
visualization of data. The package “rworldmap” (South, 2011) was 
used to plot the geographical distribution of the studies. For the 
Whittaker biome classification of the case studies, we plotted our 
database through the R package “BIOMEplots” (Stefan and Levin, 
2018), acquiring climate data from WorldClim (Fick and Hijmans, 
2017). Additionally, the publication-per-year trend of articles 
related to fine and coarse roots was plotted by the “ggplot2” RStudio 
package (Wickham, 2016).

3 Literature resource identification: 
milestones and knowledge gaps of 
plant species and root functional traits

The query-based search in PubMed identified a total number 
of records equal to 25.688. These records were considered together 
with those identified through backward manual referencing (42 
papers) and, after duplicate removal, reduced to 2.424 
(Supplementary File 2). Among all the identified records, only 

some were eligible for our criteria (281 papers). Records regarding 
experiments analyzing seedlings as plant material or plants 
growing under controlled conditions were also excluded (100 
papers), as well as papers with no full text available (12 papers). 
Furthermore, a single record was excluded as not being related to 
an original research article. Finally, all articles with the full text 
available (168 papers) were included in the subsequent analysis 
(Figure  2). The full text of these papers was screened, and the 
included information was categorized according to specific 
variables and tabularly reported (Supplementary File 3).

Plant species were categorized according to their recurrence 
in the literature as “very frequent” if identified with more than 
500 recurrences (13 species), “frequent” if identified by a number 
of recurrences ranging between 100 and 499 (28 species), 
“moderately frequent” if identified by a number of recurrences 
ranging between 99 and 10 (42 species), “lowly frequent” if 
identified by a number of recurrences minor than 10 (22 species), 
and “absent” if not identified at all (31 species) (Table 1).

From a root functional traits perspective, we also performed 
a categorization considering their recurrence in the literature 
search outputs, subdividing the root functional traits into “very 
frequent” if identified with more than 500 recurrences (8 traits), 
“frequent” if identified by a number of recurrences ranging 
between 100 and 499 (41 traits), “moderately frequent” if 
identified by a number of recurrences ranging between 99 and 10 
(6 traits), “lowly frequent” if identified by a number of recurrence 
minor than 10 (none), and “absent” if not identified at all (none) 
(Table 2).

The physiological-related root functional traits are the most 
investigated, both for all the species and for those categorized as 
“very frequent” (Figure  3). In addition, root dynamics- and 
chemistry-related functional traits such as “phenology production” 
and “non-structural carbohydrates/total non-structural 
carbohydrates,” respectively, fall within the category of “very 
frequent” both for all the species and for those categorized as “very 
frequent” (Figure 3).

FIGURE 2

Flow chart of the process for selecting and including in the study the papers identified for the systematic review.

https://doi.org/10.3389/ffgc.2024.1322087
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Fantozzi et al. 10.3389/ffgc.2024.1322087

Frontiers in Forests and Global Change 06 frontiersin.org

4 Information resulting from the 
screening of selected papers

A total of 168 full-text articles about fine and coarse roots 
were included in the database for the process of knowledge 
categorization based on the summary table (Supplementary File 3). 
The temporal analysis showed a general increase in the number 
of papers about fine and coarse roots published from 1992 to 
2023, which is in consideration in our study (Figure 4). However, 
this literature production trend is characterized by alternate 
periods of high and low productivity. According to our results, 
the scientific name of the species Fagus sylvatica emerges as one 
of the most frequent keywords associated with selected papers, 
together with “fine root,” “Picea abies,” “Pinus sylvestris,” 
“non-structural carbohydrates,” and “minirhizotron” (Figure 5A). 
Indeed, among the 33 species present in the selected literature 
(Figure 5B), Fagus sylvatica is the most targeted species in fine 
and coarse root studies, as described in 55 out of 168 studies. 
This is followed by Picea abies in 50 studies, Pinus sylvestris in 39 
studies, Pinus cembra in 13 studies, and Betula pendula in 10 
studies. The rest of the species is targeted in a number of studies, 
including between 9 and 1 (Figure 5B).

The papers in our database regard 50 root functional traits, and 
the most investigated are related to root “dynamics” and, specifically, 
“standing biomass” in 48 out of 168 articles, “phenology production” 

in 41 articles, and “turnover rate” in 38 articles (Figure 5C). Also, other 
functional traits are widely represented, such as “non-structural 
carbohydrate (NSC)/total non-structural carbohydrate (TNC)” related 
to “chemistry” and described in 33 articles, or “specific root 
respiration” related to “physiology” and described in 31 articles 
(Figure 5C).

The geographical distribution of the carried-out studies showed 
that the most represented countries are Germany (32 publications), 
Switzerland (20 publications), Finland (16 publications), and Italy (15 
publications), with other countries represented at a lower magnitude 
(Supplementary Figure 1).

Among global biomes, the most represented were temperate 
seasonal forests, woodland/shrubland, and boreal forests (Figure 6). 
Both gymnosperms and angiosperms are represented in these biomes, 
except for the boreal forest biome, which is more represented by 
angiosperms than gymnosperms. Tropical seasonal forest/savanna 
was represented in only one publication describing a gymnosperm. 
Thus, data extracted from the literature showed gaps related to some 
biomes, which are temperate and tropical rain forests, tundra and 
subtropical deserts, and temperate grassland/deserts, which represent 
the extremes in climate space. The data spanned a gradient of annual 
precipitation from 42.1 to 166.3 cm and of temperature from −0.7 to 
24.66°C.

The greatest part of the studies analyzed had objectives other than 
investigating anthropogenic or environmental constraints (Figure 7A) 

TABLE 1 Species categorization according to their recurrence in the literature search outputs.

Recurrence category 
(range)

Plant species (number of recurrences)

Very frequent (>500) Trees: Alnus glutinosa (748), Betula pendula (1247), Fagus sylvatica (1908), Olea europaea (833), Picea abies (2994), Pinus pinaster (1003), 

Pinus sylvestris (3629), Populus alba (708), Populus nigra (527), Populus tremula (2030), Quercus ilex (607), Quercus robur (979), Quercus 

suber (544)

Frequent (100–499) Trees: Abies alba (306), Acer pseudoplatanus (334), Arbutus unedo (160), Carpinus betulus (162), Castanea sativa (251), Corylus avellana 

(302), Fraxinus excelsior (278), Larix decidua (168), Pinus cembra (306), Pinus halepensis (329), Pinus nigra (243), Prunus avium (228), 

Pyrus communis (118), Quercus petraea (349), Quercus pubescens (185), Taxus baccata (112), Tilia cordata (206)

Shrubs: Berberis vulgaris (173), Hippophae rhamnoides (219), Ilex aquifolium (136), Myrtus communis (138), Nerium oleander (164), 

Pistacia lentiscus (225), Rosa canina (126), Rubus idaeus (193), Spartium junceum (131), Ulex europaeus (301), Vaccinium myrtillus (377)

Moderately frequent (10–99) Trees: Acer campestre (22), Alnus cordata (29), Ceratonia siliqua (56), Chamaerops humilis (64), Frangula alnus (40), Fraxinus angustifolia 

(19), Juniperus macrocarpa (16), Juniperus oxycedrus (28), Laurus nobilis (61), Mespilus germanica (12), Ostrya carpinifolia (18), Prunus 

padus (16), Pyrus spinosa (36), Quercus cerris (52), Quercus frainetto (31), Salix alba (96), Salix atrocinerea (66), Salix caprea (85), Salix 

cinerea (40), Sorbus aucuparia (29), Sorbus domestica (11), Sorbus torminalis (14), Tamarix gallica (29), Tilia platyphyllos (38), Ulmus 

minor (42) 

Shrubs: Cistus creticus (13), Cistus monspeliensis (44), Colutea arborescens (14), Cytisus scoparius (49), Cytisus villosus (36), Erica arborea 

(18), Euonymus europaeus (15), Juniperus communis (64), Phillyrea latifolia (39), Prunus spinosa (33), Rhamnus alaternus (24), Rhododendron 

ferrugineum (10), Ruscus aculeatus (20), Salix purpurea (70), Sambucus nigra (85), Viburnum tinus (55), Vitex agnus-castus (42)

Lowly frequent (<10) Trees: Acer monspessulanum (6), Celtis australis (9), Crataegus laevigata (1), Fraxinus ornus (9), Malus sylvestris (1), Myricaria germanica 

(6), Platanus orientalis (8), Quercus trojana (7), Rhamnus cathartica (3), Tamarix africana (6)

Shrubs: Artemisia arborescens (7), Cistus salviifolius (7), Cornus mas (8), Cornus sanguinea (7), Crataegus monogyna (4), Cytisophyllum 

sessilifolium (2), Erica scoparia (9), Euphorbia dendroides (5), Ligustrum vulgare (6), Salix triandra (8), Viburnum lantana (9), Viburnum 

opulus (2)

Absent (=0) Trees: Acer opalus (0), Carpinus orientalis (0), Cercis siliquastrum (0), Juniperus deltoides (0), Juniperus turbinata (0), Laburnum 

anagyroides (0), Quercus congesta (0), Quercus dalechampii (0), Quercus leptobalana (0), Salix eleagnos (0), Salix pedicellata (0), Sorbus 

aria (0), Sorbus graeca (0), Ulmus glabra (0)

Shrubs: Anagyris foetida (0), Celtis tournefortii (0), Cytisus hirsutus (0), Daphne laureola (0), Emerus major (0), Genista aetnensis (0), 

Genista maderensis (0), Genista monspessulana (0), Hypericum androsaemum (0), Paliurus spina-christi (0), Phillyrea angustifolia (0), 

Phlomis fruticosa (0), Pistacia terebinthus (0), Rosa sempervirens (0), Salix arrigonii (0), Salix gussonei (0), Teucrium fruticans (0)
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and focused on the fine roots, a few on the coarse roots, a part targeted 
both fine and coarse roots, and the rest had no clear specification 
about this (Figure 7B). The studies were mostly carried out only in 
natural contexts, followed by afforestation sites, and only a few studies 
were carried out in agroforestry or reforestation sites or in combination 
of sites with diverse typologies (Figure 7C).

Notably, although the species used to search the literature are 
suitable for urban afforestation and reforestation, in fact, no research 
carried out in an urban environment emerges among the studies 
under analysis.

Plant age is another parameter of the experimental design 
considered in this analysis. A part of the selected literature (21 studies, 
equal to 12.5%) is based on experiments that indicated vague plant 
age, reporting it as a time range in years (Supplementary Figure 2A). 
On the contrary, about half of the studies (80 studies, equal to 47.62%) 
provided precise indications about this parameter 
(Supplementary Figure 2B). Nevertheless, most of the studies provided 
no information about plant age (67 studies, equal to 39.88%).

The months of sampling are clearly indicated in 71 studies 
(42.27%), mainly occurring in April (27 studies, 16.07%), July (28 
studies, 16.67%), and October (26 studies, 15.48%), less those of the 
winter period (Supplementary Figure 2C). Some studies (16 studies, 
9.52%) mentioned the sampling period by a season or with ambiguous 
indications like “before summer” and were considered as “vague.” 
Additionally, 81 studies (48.21%) made no description of the sampling 
period (Supplementary Figure 2C).

Almost half of the studies did not provide information regarding 
the number of plants included in the experiment (82 studies; 48.81%), 

and the rest described experiments including a number of plants 
ranging from 2 to 606 (Supplementary Figure 2D). There is a wide 
range of experiment duration spanning from 1 to 156 months (91 
studies, equal to 54.17%; Supplementary Figure 2E).

However, most of the studies provided no indication about the 
experiment duration (56 studies equal to 33.34%) or were based on a 
single sampling (21 studies equal to 12.5%). Most experimental 
designs involved only root sampling (102 studies; 60.71%), while in 
other 26 studies (15.48%), the roots were sampled together with one 
or more additional organs, and in 40 studies (23.81%), the organs 
targeted for sampling were not specified (Figure 8A).

Among the sampling methods used alone, the most represented 
was soil coring (71 studies; 42.26%), followed by excavation, described 
in 25 studies (14.88%), and minirhizotrons (10 studies; 5.95%) 
(Figure 8B). Rhizoboxes were described in five studies (2.98%), nylon 
meshes in three studies (1.79%), and lysimeter, 3D digitizing, and 
penetrating radar were described only in one study (~0.59%), 
respectively (Figure 8B). The rest of the studies (seven, equal to 4.17%) 
describe a combination of two different methods. A number of studies 
equal to 44 (26.19%) have no specific description of the sampling 
method (Figure 8B).

The maximum diameter to define a fine root is frequently set at 
2 mm (83 studies, 49.40%), while only some studies apply different 
thresholds equal to 0.5 mm (two studies, 1.19%), 1 mm (four studies, 
2.38%), 3 mm (one study, 0.60%), or 5 mm (five studies, 2.98%; 
Figure 8C).

It is relevant to note that in 73 studies (43.45%), there are no 
indications about the diameter size adopted to identify fine roots.

TABLE 2 Root functional trait categorization according to their recurrence in the literature search outputs.

Recurrence 
category 
(range)

Root functional trait (number of recurrences)

Very frequent (>500) Chemistry>Non-structural carbohydrates/total non-structural carbohydrates (808), Physiology>Exudation>Amount (1900), Physiology>Exudatio

n>Composition (1874), Physiology>Gross root C efflux rate (1902), Physiology>Net root exudation rate (1902), Physiology>Root maximum net 

ion uptake rate (1902), Physiology>Specific root respiration (1902), Dynamics>Phenology>Production (1003)

Frequent (100–499) Anatomy (309), Architecture>Root angles (109), Architecture>Topology>Branching intensity (110), Architecture>Topology>Branching ratio 

(110), Architecture>Maximum rooting depth (118), Architecture>Topology>Root interbranch distance (115), Architecture>Topology>Root tip 

density (115), Microbial association>Other rhizosphere microbes (327), Microbial association>Symbionts>Mycorrhizal fungi>Mycorrhizal 

biomass (474), Microbial association>Symbionts>Mycorrhizal fungi>Type>Foraging strategy (465), Microbial association>Symbionts>Mycorrhiz

al fungi>Type>Percentage colonization (465), Microbial association>Symbionts>N-fixers>Type>N-fixation capacity (184), Microbial 

association>Symbionts>N-fixers>Type>N-fixation rate (186), Microbial association>Symbionts>Nitrogen fixation association type (182), 

Microbial association>Symbionts>Nodule investment (182), Microbial association>Symbionts>Root mycorrhizal fungal community composition 

(201), Morphology>Cell wall thickness to conduit lumen diameter ratio (362), Morphology>Dry matter content/tissue density (358), 

Morphology>Length of apical hairless zone (362), Morphology>Length of apical nonbranched zone (362), Morphology>Rhizosheath size (362), 

Morphology>Root color (354), Morphology>Root diameter (368), Morphology>Root elongation rate (363), Morphology>Root hair>Growth rate 

(362), Morphology>Root hair>Life span (362), Morphology>Root hairs>Density (354), Morphology>Root hairs>Length (359), Morphology>Root 

length (416), Morphology>Root tip diameter (363), Morphology>Specific root length/specific root area (370), Dynamics>Decomposition (332), 

Dynamics>Life span (277), Dynamics>Phenology>Mortality (409), Dynamics>Standing biomass (283), Dynamics>Standing necromass (284), 

Dynamics>Time of peak root mortality (280), Dynamics>Time of peak root production (281), Dynamics>Time of root growth cessation (284), 

Dynamics>Time of root growth initiation (294), Dynamic>Turnover rate (282)

Moderately frequent 

(10–99)

Mechanical>Bending (86), Mechanical>Penetration (67), Mechanical>Root modulus of elasticity in the longitudinal direction (57), 

Mechanical>Tensile strength (57), Mechanical>Toughness (55), N-fixation/Nitrogen fixation (38)

Lowly frequent (<10) none

Absent (=0) none
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Minimum diameters to identify coarse roots are defined only in 
eight studies (4.76%) and are set equal to 2 mm, 5 mm, or 15 mm 
(Figure  8D). However, the rest of the selected studies (160, 
corresponding to 95.24%) report no indications about this.

Concerning the number of samplings reported in the selected 
literature, 93 studies (55.36%) described a number of samplings 
ranging from 1 to 44 (Figure 8E), and among these, 31 studies are 
based on a single sampling (18.45%), while others are based on two 

FIGURE 3

Heatmap of target species and root functional traits, which are represented in the PubMed search outputs. The x-axis shows the root functional traits, 
whose functional categories have been indicated as: A for architecture, C for chemistry, MA for Microbial Association, Me for mechanical, Mo for 
morphology, P for physiology, and D for dynamics. The y-axis shows the Latin names of target species present in the search output.
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samplings (24 studies, 14.29%), three samplings (nine studies, 5.36%), 
or four samplings (10 studies, 5.95%) (Figure 8E).

Of the others, 75 out of 168 studies (44.64%) did not report 
precise information (Figure  8E). In Table  3, results related to the 
occurrence of the statistical analysis are reported. Few statistical tests 
were frequently used, and among these, the most commonly used was 
ANOVA (45.24%), followed by Student’s t-test (13.69%), the Shapiro–
Wilk test (11.31%), Pearson’s correlation (10.12%), linear regression 
model (8.93%), Kruskal–Wallis rank sum test (7.14%), Mann–
Whitney U test (7.14%), Tukey’s HSD test (7.14%), and PCA (5.36%). 
Other statistical tests were applied in a number of studies ranging 
from 5 to 9, and the greatest part of the statistics were applied in less 
than four studies.

5 Discussion

We provide a general overview of the literature about root 
functional traits together with a revised and detailed dissection of 
the studies of fine and coarse roots of species targeted for 
afforestation and reforestation programs in urban and non-urban 
areas, evidencing common practices and criticisms of the applied 
experimental procedures.

5.1 Fine and coarse roots are mainly 
studied in European natural contexts for a 
few plant species and functional traits

Among the 136 target species, some of them, identified as “very 
frequent,” were well studied for their biological and economic 

relevance, such as Alnus glutinosa, Betula pendula, Fagus sylvatica, 
Olea europea, three Quercus genus, and Pinus pinaster (Majdi, 2001; 
Rastogi et al., 2015; Kostelenos and Kiritsakis, 2017; Mármol et al., 
2019; Rey et al., 2019; Mader et al., 2020; Smeriglio et al., 2022), and/
or are model species in plant biology investigations, such as Picea 
abies, Populus alba, and Populus tremula (Brunner et al., 2001, 2004; 
Vasiliauskas et al., 2007; Shorohova et al., 2011; Gauthier et al., 2015).

Among the traits analyzed, all those related to root physiology 
were classified as “very frequent” in the literature, and among these, 
root exudation was a key component since it played a crucial role in 
both plant–soil interactions, root carbon efflux, and microbe 
relationship. In particular, root exudates can modify soil characteristics 
and locally adapt plants to abiotic/biotic stressors, giving clear hints 
on plant morpho-physiological plasticity in response to biotic and 
abiotic stressors (Canarini et al., 2019). Therefore, despite the main 
drivers of root exudation still need to be identified, the study of root 
exudation remains a key to understanding plants as holobionts, 
especially in natural and urban forests (Lyu and Smith, 2022).

Despite the pivotal role that fine and coarse roots play in plant 
development and adaptation, and despite an increasing trend in 
scientific production, studies on these two root categories are still 
lacking. Furthermore, a large part of the root studies do not focus on 
environmental or anthropogenic constraints, and they are mainly 
performed in natural sites that do not experience any urban stressors. 
In detail, among the 136 candidate plant species, F. sylvatica is a 
common target species in fine and coarse roots studies (Montagnoli 
et al., 2014; Weigt et al., 2015; Montagnoli et al., 2018; Nikolova et al., 
2020) and specifically in those analyzing fine roots biomass (Braun 
et  al., 2005; Konôpka and Lukac, 2013; Jagodzinski et  al., 2016; 
Montagnoli et al., 2016; Geilfus et al., 2017; Konôpka et al., 2020; 
Montagnoli et al., 2023). In root turnover studies, species other than 

FIGURE 4

Temporal analysis per year of published papers present in our database (Source: PubMed, 1992–2023).
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F. sylvatica, such as Picea abies or Pinus sylvestris, are frequently 
involved (Godbold et  al., 2003; Xiao et  al., 2003; Vanninen and 
Mäkelä, 2005; Eriksson et al., 2012; Jacob et al., 2014; Mildner et al., 
2014; Nacke et  al., 2016; Yan et  al., 2016; Zadworny et  al., 2016; 
Grüning et al., 2017; Mariën et al., 2021). Root dynamics is frequently 
linked to environmental drivers such as drought, seasonality, or ozone 
concentration (Lopéz et al., 1998; Paoletti et al., 2007; Mainiero et al., 
2009; Kuptz et al., 2011a,b; Montagnoli et al., 2014; Nickel et al., 2018; 
Montagnoli et  al., 2019), together with traits associated with the 
chemistry of non-structural carbohydrate (Rosinger et  al., 2020; 
Clausing et al., 2021). However, the greatest part of the other root 
functional traits is still at the beginning of the exploration of complex 
relationships with functions and environment, especially in the case 

of coarse roots (Freschét et al., 2021a). Our results also evidenced that 
the studies of the fine and coarse root functional traits are limited to 
countries that belong mostly to Central and North-Eastern Europe 
and North America and only to China and Mongolia for Asia, 
highlighting the need to expand the exploration to other regions 
and biomes.

5.2 Experimental designs lack crucial 
information

A large part of the studies was based on a single sampling or 
reported as having no or vague indications of the total duration of the 

FIGURE 5

Word cloud of the keywords (A), occurrence of species (B), and of root functional traits (C) associated with screened papers. The colors in (A) trace the 
keyword occurrence. Colors in (C) trace the categories of the root functional traits.

https://doi.org/10.3389/ffgc.2024.1322087
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Fantozzi et al. 10.3389/ffgc.2024.1322087

Frontiers in Forests and Global Change 11 frontiersin.org

experiment or the timing of the sampling, with no clear indications of 
dates and months. This approximation was also observed for 
information concerning both the number and age of the plants 
analyzed. In this perspective, our findings highlight the need for 
protocol uniformity about the tree species sampled and analyzed as 
individuals or populations as they might respond differently to 
environmental drivers (Rytter, 2013; Dawes et al., 2015; Mausolf et al., 
2018; Lak et al., 2020; Freschét et al., 2021a). The relevance of the 
duration of the sampling period strongly affects the outcome of the 
research, especially in the root context where the phenotypic plasticity 
is high both in the short- and long-term periods (Brunner et al., 2013; 
Klavina et  al., 2016). For example, in fine-root turnover studies, 

multiple sampling across different growing seasons is fundamental 
(Terzaghi et al., 2013; Kubisch et al., 2016, 2017) to avoid misestimation 
of production and mortality (Tingey et al., 2003).

Our findings underscored significant differences in various 
morphological parameters of the fine roots, except root length, when 
comparing different root sampling methods. Thus, increasing 
sampling effort (i.e., applying a combination of different sampling 
methods and/or considering samplings to avoid age-related bias) 
when designing a root experiment might lead to higher precision of 
the measured root characteristics (Tingey et al., 2003; Rytter, 2013; 
Klavina et al., 2016; Mausolf et al., 2018). In general, root studies based 
on samples collected from a few locations within the root zone have 

FIGURE 6

Whittaker biome plot of database locations (n  =  169) showing mean annual temperature (°C) and mean annual precipitation (cm). Each point 
represents a plant species: gray for angiosperms and black for gymnosperms. Climate data are from WorldClim (Fick and Hijmans, 2017).

FIGURE 7

Donut charts represent (A) the percentages of objectives, (B) the type of targeted root(s), or (C) the site type(s) of the studies present in our database.

https://doi.org/10.3389/ffgc.2024.1322087
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Fantozzi et al. 10.3389/ffgc.2024.1322087

Frontiers in Forests and Global Change 12 frontiersin.org

lower differentiating power than whole-plant sampling (Han et al., 
2014), and increasing the sample size strongly impacts the outcome of 
the research as the root characteristics are affected by microsite 
variability (Rytter, 2013).

Our findings indicate that roots are usually sampled alone in 
most of the studies, although coupling the analysis of other organs 
might help to better understand ecosystem functionality. For 
example, tracing non-structural carbohydrates or labeled carbon 
or nitrogen in different organs improves the understanding of C 
dynamics (Maillard et  al., 2001; Dyckmans and Flessa, 2002; 

Scartazza et al., 2015; Tang et al., 2022). Similarly, the analysis of 
the growth of both above- and below-ground organs has been 
linked to the presence of pollutants in the soil (Stobrawa and 
Lorenc-Plucińska, 2008; Dalle Fratte et  al., 2022). Intriguingly, 
Kilpeläinen et al. (2022) identified resource competition among 
plant organs as a major driver of root plasticity, implicitly 
suggesting multiple organ studies as more complete. Therefore, 
we  encourage root scientists to expand their collaboration, 
including plant scientists who might integrate analysis of the 
above-ground organ traits.

FIGURE 8

Features of the experimental designs in terms of sampled organs (A), sampling method (B), fine-root diameter (max, C), coarse root diameter (min, D), 
and number of samplings (E).

TABLE 3 Statistical analysis frequency according to the recurrences in the selected literature.

Recurrence frequency Statistical analysis (number of recurrences)

>10 ANOVA (76), Student’s t-test (23), Shapiro–Wilk test (19), Pearson’s correlation (17), Linear regression (15), Kruskal–Wallis rank sum 

test (12), Mann–Whitney U test (12), Tukey’s HSD test (12), PCA (9)

5–9 Kolmogorov–Smirnov test (9), Tukey’s test (9), GLM (7), ANCOVA (6), Fisher’s exact test (6), PERMANOVA (6), Levene test (4), 

Linear mixed-effects models (LMM) (5), Mixed-effects models (5)

1–4 Dunnett’s test (4), Monte Carlo permutation test (4), Least significant difference (LSD) (3), Non-linear regression (3), Random forest 

(2), Spearman’s correlation (3), Duncan test (2), Dunn’s test (2), Kaplan–Meier test (2), Non-metric multidimensional scaling (2), 

AMOVA (1), Asymptotic decomposition (1), Bayesian models (1), Bonferroni post-hoc test (1), Bray–Curtis distances (1), Browun–

Mood test (1), Canonical variate (1), Correlation analysis (1), Double exponential (1), Expected Species Accumulation (1), Gehan–

Breslow test (1), Hierarchical single linkage clustering (1), k-mean clustering (1), Least absolute shrinkage and selection operator 

(LASSO) regression (1), least-square regression (1), logarithmic data transformation (1), MAESTRA (1), MANOVA (1), Mantel and 

Haenszel test (1), Neighbor-joining clustering (1), Network analysis (1), Power regression (1), Product-limit estimator curve (1), 

Random permutations (1), Redundancy analysis (1), R2 (1), Satterthwaite’s method (1), Semivariogram (1), Sigmoid regression (1), 

Single exponential (1), Spatial analysis by distance (1)
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Another feature of the experimental design was related to the 
fine and coarse root definitions based on the diameter size. Fine 
roots are defined as short-lived, non-woody roots responsible for 
water and nutrient adsorption with a diameter lower than 2 mm 
(Rytter, 2013), which is the reference diameter we have found in the 
greatest part of the studies. However, from our results, diameter 
thresholds other than 2 mm are still used, and in the majority of 
studies, there is no precise indication provided about these 
thresholds. The coarse roots, which are woody roots crucial for soil 
exploration and plant stability, are frequently evaluated only as 
being not classified as fine roots (Rytter, 2013). Our results support 
this observation, as the greatest part of the authors give no threshold 
as a reference for the diameter of the coarse roots. Therefore, 
although detailed and precise information on root diameter is 
fundamental and can be  linked to specific functional traits 
(Markkola et al., 1995; Menkis et al., 2004; Helmisaari et al., 2007; 
Børja et al., 2008; Gaul et al., 2009; Helmisaari et al., 2009; Meinen 
et al., 2009; Endrulat et al., 2010; Menkis et al., 2012; Terzaghi et al., 
2013; Montagnoli et al., 2018; Kriiska et al., 2021; Mariën et al., 
2021; Schwieger et al., 2021), our literature analysis reveals a diffuse 
failing in determining specific and functional diameter thresholds 
(Helmisaari et al., 2009; Nikolova et al., 2020).

5.3 The inadequate application of common 
a priori model-based statistics for 
interpreting complex dynamics of roots

Common issues related to root data collection are exacerbated by 
the application of complex and inappropriate statistical design 
(Ahrens et al., 2014; Thiese et al., 2015; Mausolf et al., 2018). Our 
findings are in line with this observation, which highlights the 
application of a large number of different statistical tests, which 
indicates a lack of clear and uniform statistical protocols in root 
studies. It is important to underline the need to build an optimal and 
univocal statistical approach to be applied for the study of a specific 
trait or set of traits that is tightly coupled with the sampling method 
and technique.

6 Future directions and perspectives

Our literature analysis evidenced the complete or limited root 
trait knowledge of the selected species for the afforestation and 
reforestation of urban and non-urban areas and, thus, the need to 
fulfill these knowledge gaps. The greatest part of the listed 136 
plant species has already been reported to be widely used across 
Europe in afforestation and/or reforestation projects as well as in 
urban and non-urban areas (Dimitrova et al., 2022). For example, 
it has been seen that afforestation strategies in urban contexts, 
including A. glutinosa and B. pendula, induce a change in the soil 
properties, increasing acidity and nutrient contents after 
45–60 years from introduction (Podwika et al., 2018). Furthermore, 
Quercus and Populus species have been shown to have great 
potential in urban afforestation and reforestation for their 
functionality in air quality improvement and climate regulation 
(Fusaro et al., 2015; Sun et al., 2017; He et al., 2018; Mariën et al., 

2021). Thus, these species may serve as possible future targets to 
study root systems in urban contexts.

Our study evidenced the total absence of fine and coarse root 
studies in urban areas and limited coverage of world regions and 
biomes. Despite this, urbanization forecasts suggest world regions 
other than Central Europe and North America as being involved 
with higher urban extents, like Eastern and Western Europe, 
South America, some regions of the northern part of Africa, and 
Mid, Central, and Western Asia (Seto et  al., 2012). In this 
perspective, studies on root systems must also concern species 
native to or adaptable to world regions that will experience high 
levels of urbanization within the next few years, and this task 
needs to consider that the urbanization process is usually a strong 
driver in modeling the changes of plant species and communities 
(Dimitrova et al., 2022; Ruas et al., 2022). Moreover, a large effort 
is needed for scientists from the most studied regions to apply 
their knowledge to less studied countries and ecosystems through 
specific funding opportunities.

With the aim of sharply providing take-home messages derived 
from our literature review, we  followed a list of crucial points 
summarizing the main outcomes.

 (i) Population characteristics: Species other than common targets 
for their biological and economic relevance must be included 
in the root studies, and a wider analysis of functional traits 
should also be performed for the most common target species. 
Additionally, sites other than natural should be  taken into 
account, considering the large efforts toward afforestation and 
agroforestry programs.

 (ii) Experimental design directions: plants of a known and uniform 
age and appropriate sampling (what, when, how many times, 
and how long): Plant age needs to be well-known and possibly 
uniform among the trees included in the experimental design. 
Sampling of multiple organs would give higher and more 
complete information about resource acquisition and 
utilization since organs often have complementary or 
competitive roles. Experiment duration must overlap and 
be  extended beyond the period of root dynamics to fully 
appreciate parameter changes over time in accordance with the 
dynamics of the type of root category and the experiment aims. 
Thus, multiple samplings across spring, late summer, and/or 
early autumn are suggested for fine roots, while full autumn 
sampling with a yearly repetition is suggested for coarse roots.

 (iii) AI may enhance statistical models to fit with biological data 
complexity and dynamics: To capture the complex patterns and 
relationships in data derived from the intermingled and 
dynamic root system, complex algorithms based on machine 
learning, deep learning, and other artificial intelligence 
approaches should be  considered, as they predict accurate 
relationships between variables without imposing any a 
priori model.

Taken together these observations, since they are coming from the 
analysis of the literature search outputs, may represent a solid base 
ground for the construction of indications for optimizing and 
standardizing the selection of plant species, root functional traits, and 
experimental design for natural and urban forest root studies.
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