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At present, the incidence rate of breast cancer ranks first among new-onset

malignant tumors in women. The tumor microenvironment is a hot topic in

tumor research. There are abundant cells in the tumor microenvironment that

play a protumor or antitumor role in breast cancer. During the treatment of

breast cancer, different cells have different influences on the therapeutic

response. And after treatment, the cellular composition in the tumor

microenvironment will change too. In this review, we summarize the

interactions between different cell compositions (such as immune cells,

fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment

and the treatment mechanism of breast cancer. We believe that detecting the

cellular composition of the tumor microenvironment is able to predict the

therapeutic efficacy of treatments for breast cancer and benefit to

combination administration of breast cancer.
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1 Introduction

1.1 Breast cancer (BC)

According to the American Cancer Society, breast cancer

accounted for 31% of new cancer cases in women in 2023.

Among all cancers affecting women, the incidence of breast

cancer is highest (1). Since the mid-2000s, the incidence of female

BC has slowly increased by approximately 0.5% every year (2). The

mortality rate of female BC peaked in 1989 and has since declined to

43%, mainly due to improvements in early detection, diagnosis and

treatment. In recent years, the mortality rate of BC has decreased

from 2% to 3% per year between 1990 and 2000 to 1% per year

between 2011 and 2020. In 2023, deaths due to female BC made up

approximately 15% of all deaths from cancer (1). Although

significant progress has been made in the treatment of BC, the

metastasis and recurrence are still major challenges for us.

Breast cancer is a heterogeneous disease. Clinically, according to

the hormone receptor (ER and PR), HER2 (ERBB2) and

proliferation marker protein Ki-67 (MKI67) status, BC can be

divided into four subtypes: luminal A, luminal B, HER2-positive

and triple-negative breast cancer (TNBC) (3). The classification of

BC has an notable influence on patient prognosis. Hormone

receptor(HR)-positive BC have a better prognosis than the

negative. Moreover, HER2-positive BC are more aggressive than

the negative. TNBC which does not express ER, PR, or HER2, is the

most aggressive type. TNBC has the highest rate of chemotherapy

resistance and distant recurrence, especially brain metastasis.

Compared with patients with other subtypes, TNBC patients have

the worst prognoses, highest recurrence rates, and the most

complex treatments (4).
1.2 Treatment of breast cancer

Different subtypes of BC have different first-line treatments.

HR-positive BC requires endocrine therapy, such as tamoxifen,

aromatase inhibitors and abexilide. HER2-positive BC is treated

with anti-HER2 therapy (mainly trastuzumab and patuzumab).

TNBC is treated with standard chemotherapy and radiotherapy

(5). In the comprehensive treatment of BC, radiotherapy is a vital

step. The immunogenicity of BC is low, but TNBC has the highest

immunogenicity. Patients who treated with programmed death

receptor-1 (PD-1) and its ligand, programmed cell death- ligand

1 (PD-L1) inhibitors have significant efficacy. Since then,

immunotherapy has completely changed the treatment for solid

tumors (6). Immunotherapy has gradually attracted amounts of

attention, but its application in treating BC is still limited.

Therefore, several new treatment methods for improving the

survival rate of breast cancer patients, such as targeted drugs,

vaccines for immune cells, Antibody Drug Conjugates (ADC),

nanoparticles (albumin, metals, lipids, polymers, micellar

nanoparticles) and breast cancer stem cell (BCSC)-based

treatment are emerging and being extensively studied (7).
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1.3 The tumor microenvironment of
breast cancer

Recently, it has been reported that tumors are constantly

evolving heterogeneous dynamic systems. The tumor

microenvironment (TME) is composed of cancer cells, noncancer

cells (including immune cells and stromal cells), and the

extracellular matrix (ECM) (8, 9). The interaction between cancer

cells and the TME plays an essential role in tumor progression and

therapeutic efficacy. According to the immune scores, immune

regulatory targets and immune cell infiltration degree, tumors are

classified into two types: “immune hot” and “immune

cold”. Compared with “immune cold” tumors, the effects of

therapy on “immune hot” tumors are better after treated with

immunosuppressants. Some immunotherapy mechanisms shift the

TME from “cold” to “hot” (10). In fact, cells in the TME regulate

tumor growth and progression through different mechanisms and

take different parts in the treatment of BC. Studying the

contribution of the TME in the progression of BC is conducive to

identifying biomarkers that can be used to specifically regulate

TME. For example, the T cell concentration is related to the

pathological complete response (pCR) and overall survival (OS)

of BC patients. Patients with a high change in the CD8/FOXP3 ratio

(CFR) have better relapse-free survival (RFS) (11). These indicators

may serve as useful biomarkers and drug targets for predicting the

efficacy of neoadjuvant therapy (NACT) in the future, but the

specific role of cells in the TME has not been clarified clearly.

Describing the interactions between various cell compositions and

treatments, this review is conducive to constructing BC

classifications for survival prediction in the future.
2 The cell compositions of the
tumor microenvironment

An increasing number of studies have indicated that the TME

plays a major role in the occurrence and treatment effect of BC (12–

14). The noncancer cells in the TME of BC include immune cells

and stromal cells, whereas the immune cells include T cells, B cells,

plasma cells, NK cells, macrophages, myelogenous suppressor cells,

dendritic cells and neutrophils. The stromal cells include

endothelial cells, pericytes, fibroblasts, adipocytes and

mesenchymal stem cells. Different cell compositions play different

roles in the treatment of BC. These two types of TME with opposite

effects, and the substances associated with cell functions can be

observed visually in the Figure 1. Research has shown that cells in

the TME can be regarded as biomarkers of treatment response.

These cells can indirectly reflect the immune status of tumor cells

and their hosts, affect tumor development and indicate the pCR

after NACT (15). Many comprehensive treatments for BC involve

interactions with the TME of the host. Combination administration

of targeted cellular compositions of the TME and other

conventional treatments has been widely studied, and this

approach will be of assistance in follow-up treatment.
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2.1 Cells with positive predictive
therapeutic effects

2.1.1 CD8+ T cells
CD8+ T cell is one of the vitalest types to predict positive

therapy effect. The CD8+ T cell is an independent and sensitive

predictor of the response to NACT and 5-year disease-free survival

(DFS) in patients with BC. Patients with a high percentage of CD8+

T cell infiltration are sensitive to NACT (16). The mortality of

luminal and HER2-positive BC patients can be predicted by the

infiltration of CD8+ T cells (3). CAMKK2 can recruit CD8+ T cells

to accumulate around tumors (17), and HMGB1 can activate the

antitumor effect of CD8+ T cells to inhibit tumor growth (18).

Genome-scale CRISPR screens of CD8+ T cells revealed that the

interaction between DHX37 and the PDCD11 gene can regulate the

NF-kB pathway and the function of CD8+ T cells (19). High

expression of MAL2 in BC reduces the level and stability of

MHC-I on the cell membrane to decrease the cytotoxicity of

CD8+ T cells and the antigen presentation ability of tumor cells

(20). Another study indicated that inhibiting the SOX4 pathway

suppresses the appearance of tumor cells whose MHC-I expression

are low to improve treatment efficacy (21). The commensal

microbiota and their metabolites in the breast can also affect the

tumor immune microenvironment. Clostridiales, a kind of

commensal microbiota in TNBC, can enhance the antitumor

function of CD8+ T cells and induce tumor cell pyroptosis by

activating the endoplasmic reticulum stress kinase PERK and the

related metabolite trimethylamine N-oxide (TMAO) (22). Through

various studies, we hope to identify a stable way to promote the
Frontiers in Immunology 03
proliferation and activation of CD8+ T cells in the TME and

enhance the immune activity of the TME in BC patients to

improve therapeutic efficacy.

2.1.2 Natural killer cells (NK cells)
NK cells are the core cells of innate immunity. NK cells secrete

immune-stimulating cytokines and have direct cytotoxic effects on

their targets. Immune-stimulating factors enhance the processing

and presentation of antibodies. Therefore, these factors can inhibit

cell proliferation and angiogenesis, promote cell apoptosis and

stimulate the responsive immune system (23). High levels of NK

cells are key to achieving PCR after NACT (24). Under the effect of

NACT, peripheral NK cells are activated systemically to eliminate

metastatic tumors by promoting immune activation and releasing

immunosuppressants in the TME (25). Once a tumor occurs, the

TME begins to inhibit the function of NK cells (23). In solid tumors,

the activity of NK cells in the peripheral blood is poor. In TNBC,

NK cells in the peripheral blood can predict the risk of recurrence

and progression free survival (PFS) after chemotherapy (26).

Lectin-like transcription-1 (such as CLEC2D, OCIL, LLT1) can

interact with the NK cell receptor NKRP1A, and blocking this

interaction can increase the lytic effect of primary NK cells on

TNBC cells (27). It has been reported that blocking A2A receptors

can promote NK cell maturation and function, increase the

expression of perforin and granzyme, and inhibit tumor

metastasis. Tested in clinical trials, A2A/A2B receptor antagonists

have potential therapeutic significance in BC (28). Adenosine (Ado)

can bind to the A2a and A2b receptors to inhibit the cytotoxicity of

CD8+ T cells and NK cells. The binding promotes tumor
FIGURE 1

Cell compositions with different predictive effects on the tumor microenvironment of breast cancer and substances related to their effects. A TME
above the blood vessels is associated with a good prognosis, while a TME below the blood vessels is associated with a poor prognosis. Different cells
influence the prognosis of breast cancer patients by secreting different substances that affect the TME. (By Figdraw).
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progression and creates an immunosuppressive microenvironment

by suppressing inflammatory responses (28, 29). IFN-g secreted by

NK cells can promote the expansion of M1 macrophages, promote

the immune activity of the TME (30). In summary, these

mechanisms may become new strategies for BC treatment. NK

cells play an essential antitumor role in BC. In the future,

immunotherapy methods that enhance NK cell function can be

combined with conventional antitumor treatments to enhance

their efficacy.

2.1.3 M1 macrophages
Tumour-associated macrophages (TAMs) are involved in the

innate and adaptive immune responses. In theory, TAMs are

differentiated into different functional subgroups under different

stimuli, such as cytokines and immune complexes. M1

macrophages are polarized by IFN-g, TNF-a and LPS secreted by

type 1 helper T cells (Th1), and M2 macrophages are polarized by

IL-4, IL-10, TGF-b1 and PGE2 produced by type 2 helper T cells

(Th2) (8). M1 macrophages can capture, phagocytose and lyse

tumor cells, and their antigen presentation ability can promote the

cytotoxicity of other immune cells (30). M1 macrophages are

associated with a good prognosis in BC patients. Higher levels of

macrophages and their gene expression markers are associated with

a better NACT response (31, 32). As a classic activation phenotype,

M1 macrophages release reactive oxygen species (ROS), reactive

nitrogen species (RNS) and proinflammatory cytokines to fight

against tumors (8). The release of M1macrophage-related cytokines

leads to a reduction of M2 macrophages in early-stage BC. The

expression of M2 macrophages increases when breast cancer

progresses and metastasizes (33). Studying the differentiation of

TAMs and the relationship between M1 and M2 subtypes are

beneficial for the prognosis of BC patients.

2.1.4 Dendritic cells (DCs)
DCs have a key role in initiating and activating adaptive

immune responses by presenting antigens and producing specific

cytokines. They can interact with T lymphocytes and coordinate T

cells activation. DCs are divided into myeloid and plasma-like cell

populations based on their surface protein expression. Myeloid

dendritic cells (mDCs) take a part mainly in immune cell activation,

while plasma-like dendritic cells (pDCs) can produce IFN-I, which

is associated with poor prognosis (34). It has been reported that the

number of DCs in the TME decreases significantly but the number

of DCs in the blood increases after NACT (35). After mature DCs

migrate to lymphoid organs, the interaction between CD40 on the

surface of DCs and CD40L on T cells delivers antigens to immature

T cells in lymphoid organs and activates CD4+ helper T cells and

CD8+ T cells-related cellular immunity (9). The production of

interferon and the recruitment of DCs form a part of innate

antitumor immunity. A key mediator that promotes DCs to

activate T cells is the stimulator of interferon genes complex

(STING), which can detect the uptake of tumor cell DNA by host

antigen-presenting cells (36). The percentage of DCs in the blood

and the expression of human leukocyte antigen DR (HLA-DR),

MDC1, CD40 and CD83 on the surface of the primary tumor were
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significantly reduced after NACT in locally advanced BC. However,

the expressions of HLA-DR and CD40 are lower in patients who

have a poor response to NACT treatment (35). Cancer cells can

inhibit the maturation of tumor-infiltrating DCs, resulting in a

weakened ability to present tumor-derived antigens and

downregulate the expression of costimulatory molecule (37).

Inmmune cells, especially DCs, recruit and activate in the TME

when HMGB1 binds to TLR-2, TLR-4, and TLR-9 (38). In vitro

experiments, DCs equipped with antigens can target tumor cells

after being infused into the body. Currently, DC vaccines have been

developed and tested in clinical research and are expected to

become novel adjuncts for cancer treatment.

2.1.5 Tissue-resident memory T cells (TRMs)
TRM is a kind of new founded cell to predict the positive

prognosis of BC. The quantities of studies of TRM have been carried

out in recent years. TRMs are the third subtype of memory T cells

found in peripheral tissues and intestinal grafts. The other two are

central memory T (TCM) and effector memory T (TEM) cells.

TCMs reside in lymphoid organs and can be reactivated by

secondary infection with the same pathogen. TEMs activate the

cytotoxicity of CD8+ T cells and patrol in lymphoid and

nonlymphoid peripheral tissues (39, 40). CD8+ TRM cells are

major markers of DFS and OS. TEMs can be used to monitor the

immune regulation (41, 42). Single-cell sequencing of the gene of

CD8+ TRM in BC is significantly associated with improved survival

in early TNBC. High-density TRMs are a factor for good prognosis

in TNBC patients (41, 43). TRMs can provide rapid and long-term

protection at the site of reinfection, and tumor infiltration of TRMs

can maintain enhanced therapeutic effects and predict immune

therapy responses (44). In the last few years, cancer vaccines and

immune checkpoint inhibitors related to TRM, have been suggested

to be effective biomarkers for predicting the response of cancer

patients to immunotherapy (45). CD103 is a specific marker for

TRM cells. TGF-b induces CD103 expression on CD8+ T cells to

form and maintain TRMs and regulates TRM function through

integrin signaling (45). Knocking down Fdft1 or overexpressing

PDSS2 can promote the synthesis of coenzyme Q and

mitochondrial respiration to facilitate TRM formation and

enhance TRM antitumor immunity ability after viral infection

(46). We can further study the characteristics of TRMs in the

TME to enhance the therapeutic efficacy of BC.
2.2 Cells with negative predictive
therapeutic effects

2.2.1 M2 macrophages
M2macrophages are stimulated and polarized by cytokines (such

as IL-4, IL-10, IL-13 and TGF-b) fromTh2 (47).M2macrophages are

the main TAMs that can form an immunosuppressive TME by

releasing cytokines. M2 macrophages promote the occurrence,

angiogenesis, invasion and metastasis of BC (48). TAMs can secrete

inflammatory cytokines, such as TNF-a, IL-6, and CCL18,

promoting the function of BCSCs, the occurrence of EMT,
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metabolic reprogramming, tumor angiogenesis, and the emergence of

therapeutic resistance (49). M2 macrophages can promote tumor

invasion and are associated with poor distant metastasis-free survival

(DMFS), DFS and OS (50). CD163 is a specific marker of M2

macrophages. High quantities of CD163+ TAMs are a predictor of

nonmetastatic BC, indicating a poor response to NACT. An

increasing infiltration of macrophages in TME indicates an

increased risk of recurrence of BC after NACT (51). Macrophage

colony stimulating factor (M-CSF) is the main inducer of

macrophage migration. By increasing actin and pseudopodial

elongation, M2 macrophages are induced to recruit and migrate

(52). ROS induce macrophage polarization to the M2 type (53). As a

transfer- and inflammation-related microenvironment factor,

S100A4 triggers the differentiation and polarization of monocytes

intoM2macrophages and increases the secretion of proinflammatory

cytokines (54). Increased expression of the NOTCH signaling

pathway in endocrine-resistant BC strongly promotes the

polarization of TAMs to the M2 macrophages and strengthens

endocrine resistance (55). The identification of the molecular

mechanisms related to macrophage plasticity and polarization

provides the basis for identifying and managing macrophages.

Inhibiting TAM infiltration into the TME or polarizing M2

macrophages to M1 macrophages may be potential strategies for

treating BC.
2.2.2 Marrow-derived suppressor
cells (MDSCs)

MDSCs are heterogeneous immature bone marrow cells with

potential activity against T cells (56). MDSCs promote regulatory T

cells proliferation and inhibit cytotoxic T lymphocytes(CTL) function.

The function of MDSCs is to promote proliferation, treatment

resistance, angiogenesis, epithelial mesenchymal transition, tumor

stemness and metastasis. In addition, MDSCs directly drive tumor

growth by reprogramming breast cancer cells (57). Research shows that

tumor-infiltrating CD33+ MDSC before NACT is a risk factor for

tumor progression and the stability of BC, and the possibility of non-

PCR. In NACT patients who achieve complete response (CR) or PCR,

the number of tumor-infiltrating MDSCs is lower. The lower

infiltration of MDSCs is predicting the longer PFS and OS of

patients (58). BC can promote the differentiation and recruitment of

MDSCs in tumors by secreting cytokines, such as tumor granulocyte

colony-stimulating factor (G-CSF), macrophage colony-stimulating

factor (GM-CSF) (59), and the chemokine CCL3 (60). IL-10, TNF-b
and VEGF secreted by MDSCs are able to activate EMT and

angiogenesis, inhibit the immune response, and promote tumor

invasion and BC metastasis (61). Therefore, eliminating MDSCs may

be a promising therapeutic strategy for preventing immune evasion of

BC after surgery.
2.2.3 Cancer-associated fibroblasts (CAFs)

CAFs have a prominent role in shaping the TME to support

tumor cell survival, metastasis, angiogenesis, immunosuppression
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and treatment resistance (62). One of the CAF subgroups

expressing CD10 supports BCSCs and induces chemotherapy

resistance. The higher the expression level of CD10 on CAFs is,

the worse the response to NACT will be (63). ECM proteins, such as

fibronectin, secreted by CAFs can recruit VEGF1+ VLA-4+ bone

marrow haematopoietic cells into the lung, providing a better and

looser environment for metastatic breast cancer cells (64). TGF-b
promotes fibroblast proliferation, induces breast cancer cell

migration in vitro, and promotes the production of aSMA,

fibronectin and laminin in CAFs. Inhibiting the differentiation of

mesenchymal stem cells to CAFs by blocking TGF signaling

weakens their antitumor effects in vivo (65). CAFs are associated

with maintaining cancer cell stemness. Inhibiting sonic hedgehog

signaling with smoothened inhibitors (SMOi) can reduce the

expression of BCSCs markers, increase the sensitivity of tumors

to docetaxel, reduce the risk of metastasis and increase survival (66).

In TNBC patients, high activation of CAFs is positively correlated

with lymph node metastasis and infiltration and polarization of M2

macrophages. CAFs may be potential prognostic factors for TNBC

accordingly (67). Various subtypes of CAFs have recently been

extensively studied in BC. Identifying these subtypes is expected to

lead to original approaches for the diagnosis and treatment of BC.
2.2.4 Tumor-associated endothelial cells
(TECs) and pericytes

TECs are key participants in the growth and invasion of BC.

TECs promote tumor angiogenesis and regulate the immune

therapy response in the breast TME. Endothelial cells (ECs)

transform dormant cancer cells into more invasive and

chemoresistant phenotypes (68). ECs activate the Notch signaling

pathway to induce neutrophil infiltration and tumor metastasis

(69). In vivo and in vitro experiments have shown that contact

between BC and ECs enhances the mesenchymal properties of ECs,

which promote the invasion, proliferation and stem cell-like

phenotype of BC (70). Pericytes provide survival and structural

support for ECs, and their interaction promotes the maturation of

the vascular system (71). ECs and pericytes have crucial roles in

tumor angiogenesis. Identification of a new target to inhibit the

function of ECs and pericytes may reduce tumor angiogenesis and

the risk of BC metastasis.
2.2.5 Mesenchymal stem cells (MSCs)

MSCs play a crucial regulatory role in various aspects of the

pathogenesis of BC. MSCs can promote breast cancer cell

proliferation, induce epithelial mesenchymal (EM) transformation

of cancer cells, promote the dedifferentiation of cancer cells into

tumor stem cells, and promote drug resistance, invasion, immune

escape and cancer cell dormancy by secreting molecular mediators

(72). IL6R/gp130 signaling in the TME can induce IL-6 secretion by

MSCs. The CXCL17 chemokine network can stimulate BCSCs to

promote chemotherapy resistance and BC growth (73). Cancer cell-

derived IL-6 can trigger prostaglandin E2 (PGE2) production by
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MSCs, promote bone marrow-derived MCS recruitment to the

TME and increase the invasiveness of breast cancer cell (74).

TGF-b, the transfer protein Rho-related kinase, matrix protease,

and IL-6 are able to activate signaling pathways, such as the MAPK,

AKT or WNT pathways, mediating the function of MSCs in

promoting BC metastasis (75–77). Therefore, inhibiting the

secretion of molecular mediators by MSCs and related pathways

limits the growth and progression of BC.
2.2.6 Cancer associated adipocytes (CAAs)

Many clinical studies have shown that obesity is related to a

high incidence and the poor survival of BC, indicating the fact that

adipocytes take a part in the progression of BC (78). CAAs can

secrete leptin and the cytokines, such as CCL2, CCL5, IL-1b, IL-6,
TNF-a and VEGF to promote the invasion and metastasis of BC

(79–81). The interactions between CAAs and breast cancer cells

promote CAA to secrete IL-6. In turn, IL-6 can bind to its receptor

IL-6R, leading to the proliferation, EMT and metastasis of breast

cancer cells (82). IL-6 can also activate the PI3K–AKT axis and

HIF-a to increase the production of glucose metabolism, leading to

metabolic reprogramming of breast cancer cells, accelerating the

rate of glycolysis, and increasing the production of lactic acid (83).

In addition, IL-6 can promote ATGL-dependent lipolysis in CAAs

(84). It has been reported that CAAs secrete exo-cirCRRIM1 to

promote the progression of TNBC (85). Another study showed that

CAA upregulates the expression of aromatase in HR-positive BC

and promotes the proliferation, metastasis and endocrine resistance

of HR-positive BC (86). The decomposition of CAA and fatty acid

oxidation products provide breast cancer cells with high-energy

metabolites, such as pyruvate, lactic acid, ketone bodies and fatty

acids (87). Studying the breakdown metabolism process of CAAs

and fatty acid oxidation and the impact of their metabolites on BC is

expected to lead to the discovery of novel methods for cancer

treatment. For instance, the consumption and decomposition of

metabolic products may be a potential way to treat BC.
2.3 Cells with unclear predictive
therapeutic effects

2.3.1 Regulatory T cells (Tregs)
Tregs are a type of protumor cell that promotes the

development of the TME towards a pro-tumor direction and

inhibits the cytotoxic effects of T cells and NK cells by producing

anti-inflammatory and pro-tumor cytokines. Tregs express

immunoregulatory receptors to promote the proliferation,

immune escape and metastasis of BC (88, 89). At least two Treg

subtypes, including natural CD4+ CD25+ Treg (nTreg) and

inducible Tregs (iTregs) are observed at the tumor site in breast

cancer patients. nTreg situated in the thymus can activate immune

cells, and iTreg can secrete anti-inflammatory factors (90). Research

has shown that low levels of Foxp3+ Treg cells in the matrix are

significantly associated with improved RFS and OS (91). However,

there are also studies indicating that an increase ratio of Foxp3+/
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CD25+ tumor infiltrating lymphocytes(TILs) is associated with

improved OS (92). A higher Foxp3+ Treg cell density is

associated with a better prognosis (43). The more Foxp3+ Tregs

that are consumed, the better the pathological response to

neoadjuvant therapy will be (32). Tregs are associated with

elevated levels of CD8+ T cells, and these favourable outcomes

may be attributed to the dominant role of cytotoxic antitumor

CD8+ T cells in treatment (93). Therefore, the prognostic

significance of Tregs in BC is still controversial and needs

further study.

2.3.2 B cells and plasma cells
The B-cell lineage, such as CD79a+ B cells is infiltrated in almost

all patients. Infiltration of B cells enhances local cytotoxic immune

response and is positively related to enhancement of the immune

status. Plasma cell infiltration in the TME before NACT is related to

pCR. In addition, a higher level of PC is related to a better prognosis

in hormone receptor-negative BC patients (94). The significant

infiltration of B cells in the TME is reportedly associated with

improved OS and DFS in TNBC and HER2-positive BC (95, 96).

High expression of B cell markers in puncture specimens before

NACT is associated with an inproved PCR and patient survival rate

(97). However, breast cancer cells induce the production of

regulatory B cells (Bregs), which transform resting T cells into

Tregs to promote BC metastasis (98). Bregs also produce inhibitory

molecules such as PD-L1, FAS ligands, IL-10, IL-35 and TGF-b to

inhibit the immune response (99). In conclusion, tumor-infiltrating

B cells help to generate effective antitumor immunity at the tumor

site, and immunomodulation therapy supporting B cells and

inhibiting Bregs may be a promising treatment for BC.
2.3.3 CD4+ T cells
CD4+ T cells mainly participate in adaptive immunity.

Compared with CD8+ T cells, the prognostic effect of CD4+ T

cells is relatively small, and the subgroups of these cells are

significantly different. CD4+ T cells include Tregs, helper T cells

(Th cells), and congenital lymphoid cells (ILCs), which have an

influence on host immune regulation. Th cells can be divided into

four lineages based on the expression of different genes, named type

1 helper T (Th1) cells, type 2 helper T (Th2) cells, type 17 helper T

(Th17) cells and follicular helper T (Tfh) cells. Different lineages

have their own unique functions and even opposite functions (100).

The different types of CD4+ T cells in BC patients determine the

malignancy and metastatic capacity of the tumor to a certain extent.

INF-g and IL-12 induce the production of Th1 cells to enhance the

ability of antigen-presenting cells to promote the differentiation and

clonal expansion of CD8+ T cells (101). The combination of

immune strategies against Th1 cells and conventional treatments

is associated with improved clinical outcomes (102). David G et al.

showed that CD4+ T cells can enhance the invasion of ECs and the

metastatic ability of breast cancer cells by regulating the

precancerous characteristics of TAMs. Th2 cells enriched in the

TME stimulate epidermal growth factor signaling in breast cancer

cells, polarize M1 into M2 macrophages, enhance the pretumor

biological activity of myeloid cells, and enhance the intracellular
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1368687
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dou et al. 10.3389/fimmu.2024.1368687
EGF signaling cascade to promote the progression and metastasis of

BC (103). Expressing the regulatory factor Bcl6, which is beneficial

for antigen-specific B cell maturation, Tfh cells promote local

memory cell differentiation, support the development of tertiary

lymphoid organs, and have a major role in enhancing the local

antitumor immune response (104, 105). However, the role of

different subtypes of CD4+ T cells in the TME in BC requires

further research to develop a targeted drug to promote the

differentiation of CD4+ T cells into certain subtypes so that the

TME can develop into an antitumor state.

2.3.4 Tumor-associated neutrophils (TANs)
Tumor-infiltrating neutrophils (TINs), commonly known as

tumor-associated neutrophils (TANs), have two phenotypes. The

one is N1 type that has antitumor properties and is highly activated.

The another is N2 type that promotes tumor growth, invasion and

metastasis and is lowly activated. IFN-g and IFN-b promote the

production of N1-type TANs that promote inflammation and have

antitumor effects, while TGF-b induces the production of N2-type

TANs that promote inflammation and have antitumor effects (106,

107). Immunocyte deconvolution reveals that the presence of TANs

is related to poor prognosis in patients with BC (108). There are also

studies indicating that the increased expression of TAN-related

genes in TNBC is associated with non-PCR after NACT (97). TANs

reduce the proliferation of CD8+ T cells in the TME in mouse

models of BC and recruit immunosuppressive cells, but their effects

on humans have not been determined (109). In summary, there are

two subtypes of TANs that have opposite functions. TANs provide

predictive information for the therapeutic efficacy of BC treatment

and are expected to be useful in the treatment of breast cancer in

the future.
3 Interaction between conventional
treatments and the tumor
microenvironment in breast cancer

Breast cancer ranks first in terms of the global incidence rate,

but its mortality rate is not high due to the variety of adjuvant

treatments. Standard application of adjuvant treatments has greatly

improved the prognosis of cancer patients. Different cells in the

TME have different roles in treatment. Cells associated with good

prognosis can increase the drug sensitivity of tumor cells, and their

interaction with therapeutic drugs enhances therapeutic efficacy.

Cells associated with poor prognosis can interact with tumor cells to

form a feedback loop that enhances the drug resistance of cancer

cells or weakens the effect of drugs by secreting cytokines and

other substances.
3.1 Conventional chemotherapy drugs

Chemotherapy drugs for BC have mainly two mechanisms: one

is to interfere with DNA formation, such as anthracyclines,

platinum agents and doxorubicin, and the other is to interfere
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with cell mitosis, such as taxanes (110). The cytotoxicity of

chemotherapy drugs come into play by enhancing the functions

of cells that predict good prognosis and inhibiting the functions of

cells that predict poor prognosis. Research shows that the presence

of CD8+ T cells during the treatment of BC is related to the

improved efficacy of doxorubicin (3). After treatment with

doxorubicin and cisplatin, the inflammation-related genes JAK-

STAT and TNF-a can be upregulated, which can increase the

cytotoxicity of T cell, immune reactivity and the response to PD-

1 inhibitors. Short-term treatment with low-dose doxorubicin and

cisplatin may result in an immunoreactive TME, increasing the

response to PD-1 inhibitors in TNBC patients (111). Paclitaxel

enhances the antibody-dependent cell-mediated cytotoxicity

(ADCC) effect of trastuzumab by mediating NK cells through

NKG2D (112). Paclitaxel induces the secretion of cyclic GMP-

AMP synthase (cGSA)-dependent soluble factors in breast cancer

cells and promotes the polarization of TAMs into M1 macrophages

(113). Regulated by paclitaxel and docetaxel, the number of MDSCs

decreases, but the number of M1 macrophages remains the same.

Docetaxel promotes the differentiation of MDSCs into M1

macrophages (114). Commonly used chemical and targeted drugs,

such as taxanes, anthracyclines, and anti-HER2 monoclonal

antibodies, can directly induce immune stimulation to kill tumor

cells by activating DCs (14).

Chemotherapy drugs, such as taxanes and anthracyclines, can

kill “bad” lymphocytes such as Tregs and cause immunogenic cell

death (ICD), and help restore antitumor immunity (115, 116). It has

been reported that, compared to single therapy, combination

administration of cisplatin and inhibition of Tregs migration

enhances the anticancer effect (117). Combination administration

can reduce the recruitment of TAMs and downregulate the

expression of chemotherapy resistance genes and multidrug

resistance genes. For example, CSF-1 can promote the

recruitment of TAMs, and the combination of anti-CSF-1 therapy

and chemotherapy drugs can reverse chemotherapy resistance

(118). Chemotherapy often leads to the occurrence of

chemotherapy resistance and severe systemic toxic reactions that

impair immune function. Adriamycin and cisplatin promote

macrophage infiltration by increasing the expression of CCR2 in

myeloid cells, leading to therapeutic resistance (119). LINC00337

accelerates malignant characteristics and promotes paclitaxel

chemoresistance in breast cancer cells through M2 macrophages

(120). M2 macrophages secrete high levels of IL-10 and induce the

recruitment of drug-resistant TAMs through the IL-10/STAT/Bcl-2

signaling pathway. Paclitaxel, etoposide, and doxorubicin induce

M2 macrophages to secrete tissue proteases and induce tumor cell

death (121, 122). M2 macrophages and CSCs participate in gap

junctional intercellular communication (GJIC), which causes

carboplatin resistance in BC (123).

Chemotherapy-resistant breast cancer cells can promote the

proliferation of stroma cells associated with poor prognosis and

promote the survival of chemotherapy-resistant cancer cells.

Doxorubicin-resistant 4T1 cells release IL-33 to promote MDSC

accumulation and reduce doxorubicin-induced tumor cell death

(124). Doxorubicin-polyglycerol-nanodiamond conjugate (Nano-

DOX) has been shown to downregulate tumor-derived granulocyte
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colony-stimulating factor (G-CSF) and inhibit the induction and

infiltration of MDSCs. Nano DOX induces the release of damage-

associated molecular patterns (DAMPs) in 4T1 cells, stimulating

the tumor immune microenvironment by activating key antitumor

immune cells, such as macrophages and DCs (125). Research has

shown that ECs exposed to chemotherapy secrete TNF-a, activate
NF-kB signaling pathway and promote CXCL1/2 expression,

leading to amplification of the CXCL1/2-S100A8/9 loop and

inducing doxorubicin resistance (126). CAFs mediate

chemotherapy resistance by releasing collagen I, which can reduce

the absorption of drugs by cancer cells. Docetaxel-induced

overexpression of MMP-1 and collagen VI in CAFs can protect

breast cancer cells from docetaxel-induced cell death. The research

indicates that CAFs and the collagen secreted by them are potential

targets for the treatment of BC (127, 128). Armornsupak et al.

reported that CAFs can increase HMGB1 expression in breast

cancer cells and promote doxorubicin resistance (129). It has

been reported that MSC induces chemotherapy resistance (such

as doxorubicin and 5-fluorouracil) via a CD9-dependent

mechanism in BC and enhances the expression of drug-resistant

proteins (BCRP and MDR1). MSC-CD9 may become an important

target for the treatment of BC (130). Adriamycin and paclitaxel

promote the production of the serine enzymes E1, CCL2, IL-6 and

IL-8 in MSCs and promote breast cancer cell proliferation and
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angiogenesis (131). Adriamycin can also cause MSCs to produce

miR-21-5p to lead to chemotherapy resistance. The miR-21-5p is

delivered to adjacent tumor cells through exosomes (132). After co-

culture of breast cancer cells and adipocytes, the expression of MVP

is upregulated in BC to decrease the intake of chemotherapeutic

drugs and reduce doxorubicin resistance (133).

The mechanisms of cells in the TME during the chemotherapy

are shown in the Figure 2. The combination of regulating the

number of different cells associated with prognosis and

chemotherapy significantly reduces primary tumor progression,

reduces metastasis. In summary, the antitumor TME can be

reprogrammed and formed to enhance the response to

cytotoxic therapy.
3.2 Antitumor molecular targeted therapies

HER2-positive BC is often treated with chemotherapy and anti-

HER2 targeted therapies, mainly trastuzumab and patuzumab. The

first mechanism of these two targeted drugs is inhibiting HER2-

mediated cellular signal transduction (134). The second is utilizing

NK-cells- and T-cell-mediated ADCC, and macrophage-mediated

antibody-dependent cellular phagocytosis (ADCP) to eliminate

cancer cells (135). In addition to their own anti-tumor
FIGURE 2

The interaction between chemotherapy and cell composition in the tumor microenvironment. There are several mechanisms underlying the
relationship between chemotherapy efficacy and the cellular composition of the TME in breast cancer. Some mechanisms can promote breast
cancer cell lysis and apoptosis, while others can lead to breast cancer cell proliferation, epithelial mesenchymal transformation and chemotherapy
resistance. (By Figdraw).
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mechanisms, trastuzumab and pertuzumab can also reshape the

TME, which is correlated to the efficacy of anti-HER2. Trastuzumab

downregulates CCL2 and increases the expression of PD-1 in

HER2-positive BC, thus increasing the immune index and Tfh

cells infiltration (136). Trastuzumab and pertuzumab bind to HER2

receptors on the cancer surface through FcgR connections,

promoting NK cell recruitment around cancer cells and

prolonging the cytotoxicity of chemotherapy (137). After the use

of trastuzumab for NACT, trastuzumab increases the ADCC effect

on patients’ immune cells cultured in vitro (138). During NACT,

trastuzumab mediates the ADCP effect on TAMs and results in

immunosuppression. B7-H4 in the TAM of HER2-positive BC

patients is significantly upregulated, leading to immune escape of

breast cancer cells (139). Contacting breast cancer cells with MSCs

activates src kinase to downregulate the expression of the PTEN

gene and activate the PI3K/AKT signaling pathway, causing

trastuzumab resistance (13). MSCs induce the expression of the

lncRNA AGAP2-AS1 in breast cancer cells, promote the expression

of CPT1, induce FAO to induce tumor cell stemness, and lead to

trastuzumab resistance (140). CAA induces trastuzumab resistance

by activating the IL-6 or STAT-CPT1B-FAO axis (141). These

studies identified potentially useful biomarkers for HER2-

positive BC.

The other anti-HER2 targeted therapies also have the

interaction with cells in the TME. IL-8 activates the Scr/STAT/

ERK1/2 pathway and mediates EGFR signal transduction. TAMs

secrete IL-8 in the TME of locally advanced BC, leading to HER2-

positive BC resistance to lapatinib (one kind of TKI) and

trastuzumab (142).. Marusyk et al. reported that fibroblasts can

inhibit lapatinib-induced cell death in a variety of breast cancer cell

lines and increase the apoptosis threshold of breast cancer cells. The

combination administration of BCL2/BCL-xL inhibitors and

lapatinib can restore the apoptosis sensitivity of some breast

cancer cells (143). CAA increases glycolysis in BC, which leads to

an increase ratio of lactic acid/glucose in HER2-positive BC patients

and reduces the secretion of interferon-g by NK cells, causing

resistance to lapatinib and trastuzumab (144). Therefore, many

cells in the TME are involved in anti-HER2 targeted therapy.

Studying and regulating these cells and cell products may reverse

treatment resistance, which is conducive to the survival and

prognosis of HER2-positive BC patients.

In the past few years, many original therapeutic targets for

malignant tumors have been discovered. The interaction of these

novel targeted therapies with cells in the TME has been studied

extensively. High macrophage infiltration activates the NF-kB
signaling pathway through IL-6, leading to resistance to PI3K

inhibitors, hedgehog inhibitors (Cyclopamine), and BET

inhibitors (145–147). With the sustained influence of

bevacizumab, TAMs polarize into the M2b subtype. With the

increasing proportion of M2 macrophages, TNF-a produced by

them promotes IDO1 expression in cancer cells and leads to

bevacizumab resistance (148). In the treatment of BC, PARP

inhibitors can activate the cGAS/STING pathway in tumor cells

and induce the recruitment and activation of CD8+ T cells and DCs

(149). Olaparib, the PARP inhibitor can control the state,

phenotype, function, and metabolism of TAMs, increasing
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recruitment of TAMs to tumors. The BC with olaparib resistance

remodels glucose and lipid metabolism in TAMs through sterol

regulatory element binding protein 1 (SREBP1). A PARP inhibitor

combined with an anti-CSF-1R antibody can enhance CD8+ T-cell-

mediated innate and adaptive antitumor immunity and prolong the

survival of breast cancer patients with the BRCA gene mutation

(150). Research has shown that the expression of the chemokine

receptor gene CCR8 is upregulated in tumor-resident Tregs

compared with that in normal tissue-resident Tregs. Targeting

CCR8 to clear Tregs in the TME may be a promising

immunotherapy method for BC (151). Cetuximab, an IgG1

monoclonal antibody targeting EGFR, can trigger the ADCC of

TNBC cells by NK cells, but this ability is negatively correlated with

the expression of CD85j. CD85j antagonists can restore the ADCC

effect and improve the clinical efficacy of cetuximab (152). The

protein tyrosine phosphatases PTPN1 and PTPN2 are core

regulatory factors of inflammation, and these gene deletion in

tumor or immune cells can promote antitumor immunity (153).

ABBV-CLS-484 (AC484), an effective inhibitor of PTPN1 and

PTPN2, activates the JAK/STAT pathway, reduces T-cell

dysfunction, stimulates inflammatory responses in the TME, and

promotes the function of NK cells and CD8+ T cells (154).

Biodegradable polymer and zinc phthalocyanine photosensitizer-

NPs target the mitochondria of cancer cells and induce DC

activation and tumor antigen generation through light

activation (155).

In summary, commonly used antitumor molecular targeted

therapies combined with targeted cells in the TME therapy can

induce persistent reprogramming of the TME, which can constitute

a promising treatment strategy for BC.
3.3 Endocrine therapy

Endocrine therapy resistance is associated with inhibition of

cells that are associated with good prognosis and activation of cells

that are associated with negative prognosis in the TME of HR-

positive BC. Oestrogen can regulate the activity and metabolism of

different subtypes of macrophages and T cells. According to

previous research, oestrogen can slow the apoptosis of

neutrophils, leading to a decrease in the cytotoxic activity of NK

cells. Inhibiting oestrogen can increase the activity of circulating NK

cells and reduce the infiltration of Tregs into the TME (156, 157). In

CD4+ T cells, oestrogen signaling is associated with inhibiting Th1

cells to secrete proinflammatory cytokines and promoting Th2 cells

to produce anti-inflammatory cytokines (158).

It has been reported that Foxp3+ Tregs are associated with poor

survival in patients with HR-positive BC (159). Increased oestradiol

in the breast promotes the polarization of monocytes into M2

macrophages, the differentiation of CD4+ T cells into Tregs and the

infiltration of Tregs and MDSCs. These mechanisms suggest that

oestradiol inhibits the formation of antitumor TME (12, 160).

Research shows that tamoxifen resistance is related to high EGFR

expression, and the quantity of TAMs infiltrated in BC tissues with

high EGFR expression is large. TAMs can synthesize various

cytokines to enhance aromatase activity and increase oestrogen
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production (161, 162). CAAs activate the JAK/STAT pathway,

increase leptin secretion, lead to Hsp90 expression, and reduce

sensitivity to tamoxifen (163). The expression of integrin-b1 in

breast cancer cells induced by CAFs can promote the proliferation

and drug resistance of dormant cancer cells after treating with

fulvestrant (164). Blocking aromatase to reduce oestrogen synthesis

by targeting cells in the TME may provide a new therapeutic way in

HR-positive BC.
3.4 Radiotherapy

Radiotherapy is a fundamental method for treating BC and has

prominent antitumor effects under the effect of cells in the TME.

Research shows that the therapeutic effect of breast-conserving

surgery plus radiotherapy is equivalent to that of total

mastectomy. After treatment with breast-conserving surgery,

radiotherapy can reduce mortality and recurrence (5). The death

of tumor cells caused by radiotherapy can stimulate the activity of

DCs and CTLs to kill cancer cells (165). Radiotherapy can induce

the expression of CXCL16, which is a proinflammatory cytokine

that enhances the recruitment and antitumor cytotoxicity of CD8+

T cells (166). Radiotherapy can induce cancer cells damage or death,

leading to the release of damage-associated molecular patterns

(DAMPs), including ATP, HMGB1, calreticulin, and heat shock

proteins (167). HMGB1 can activate Toll-like receptor 4 on DCs,

enhance the cross-presentation of tumor antigens, and subsequently

activate the response of CTLs (14, 168). Radiotherapy at one site can

activate DC migration and cross-activate T cells in lymph nodes to

induce systemic antitumor immunity (abscopal effect). The effect

helps eliminate tumors in nonradiation-treated metastatic

sites (169).

Radiotherapy can promote BC progression through interaction

with cells that are associated with negative prognosis in the TME.

After radiotherapy, breast cancer cells produce CCL2, which

stimulates TAM recruitment. TAMs further induce angiogenesis

and secrete immunosuppressive factors such as IL-10 and TNF-b to

promote radiation tolerance and tumor metastasis (170).

Radiotherapy can upregulate the expression of IL-1P, TNF-a,
IFN-I, and IFN-II and induce the expression of cell adhesion

factors (such as VCAM-1 and ICAM-1) on ECs, which promote

lymphocyte migration to the tumor parenchyma (171, 172).

Radiation-induced DNA damage can increase the activity of the

NF-kB signaling pathway in ECs and promote the production of IL-

6, CCL1, and CCL5 (173). These cytokines can attract Tregs and

maintain the protumor TME (174). CAFs protect BC from the

impact of radiotherapy by releasing exosomes to activate NOTCH3-

and STAT1-dependent pathways. CAF-mediated drug resistance

can be prevented through combined with g-secretase inhibitors

(175). During radiotherapy for breast cancer patients, combination

administration of drugs targeted cell compositions together can

enhance the effect of radiotherapy after detecting the cellular

compositions of the TME.
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3.5 Immunotherapy

Immunotherapy can effectively inhibit the development of BC. The

main immune checkpoint inhibitors in BC treatment include PD-1/

PD-L1, TIM-3, and CTLA-4 inhibitors, which can present tumor-

related antigens to T lymphocytes through DCs and enhance the

antitumor activity of CD8+ T cells (9). It has been reported that neither

anti-PD-L1 therapy nor anti-CD73 therapy alone significantly inhibits

tumors in xenograft mice, but combination therapy can inhibit tumor

growth by increasing the number of CD8+ T cells and the ability to

secrete INF-g and TNF-a (6). Avelumab is a human anti-PD-L1 IgG

monoclonal antibody whose mechanism is not to block the PD-1/PD-

L1 signaling pathway but to trigger the ADCC effect in TNBC. The

ADCC is activated by IL-2 and IL-15, which can enhance NK cell-

mediated cytotoxicity (176). CD8+TRMs are biomarkers for predicting

the response to ICI immunosuppressive therapy. Patients with

advanced BC and high quantity of TRMs have a greater response to

PD-1 inhibitors. Blocking the PD-1/PD-L1 interaction can increase the

toxicity of CD8+ TRMs to cancer cells (44). After blocking TIM-3 with

an anti-(a)TIM-3 antibody, the chemokine released by DCs increases

to enhance the function of T cells and the response to chemotherapy.

The use of an anti-TIM-3 antibody can especially improve the response

to paclitaxel in luminal B BC and TNBC in mouse models (177).

A study in TNBC showed that the combination of

phosphoinositol 3 kinase d (PI3Kd) inhibitors and PD-1

inhibitors can increase the proportion of CD8+ T cells, reduce the

number of Tregs and MDSCs, and improve the efficacy of

radiotherapy (178). High expression of TYRO3 in BC can reduce

the M1/M2 macrophages ratio, inhibit iron death, generate a

promoting TME, and lead to resistance to PD-L1 inhibitors (179).

Cytokines derived from MSCs, such as CCL5, can lead to the

upregulation of PD-L1 in BC. Inhibiting MSCs with the cytokine

inhibitor pirfenidone can significantly reduce the secretion of CCL5

in breast cancer cells to reduce the expression of PD-L1 (180). PD-

L1 expressed in CAA can inhibit the antitumor function of CD8+ T

cells activated by anti-PD-L1 antibody, leading to resistance to PD-

L1 inhibitors. The PPARg antagonist GW9662 can enhance the

antitumor effect of CD8+ T cells. It can also selectively inhibit the

expression of PD-L1 in mouse adipose tissue and the progression

and metastasis of BC (181). PD-L1 inhibitors and FOXP3+ Tregs

may have synergistic effects. The upregulated expression of these

genes in the TME can promote tumor immune evasion in BC. The

combination of PD-L1 inhibitors and consuming Tregs can

improve the therapeutic efficacy in TNBC patients (88). TINs

enriched in the TME help breast cancer cells escape ferroptosis

and become resistant to immune checkpoint inhibitors. Aconitate

decarboxylase 1 (Acod1) is highly expressed in human TIN.

Downregulation of Acod1 can reduce the infiltration and

immunoregulation of TIN, inhibit the metastasis of BC, and

increase the efficacy of immune checkpoint inhibitors (182).

Receptor tyrosine kinase RON expressed by macrophages inhibits

the tumor immune response, promotes the binding of CD80 to

CTLA-4, inhibits T-cell activation, and leads to resistance to CTLA-
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4 inhibitors (183). The study of overcoming immunotherapy

resistance by targeting cells with a poor prognosis in the TME

has prospective clinical significance and will greatly improve the

efficacy of immunotherapy in BC patients.
3.6 Bisphosphate

Bisphosphate is used to treat bone metastases and improve its

own efficacy by affecting cell compositions in the TME. Zoledronic

acid is one kind of bisphosphate that can reduce the expression of

MMP-9 on TAMs, increase the number of M1 macrophages, and

increase the survival rate of breast cancer patients. Zoledronic acid

can also prevent MSCs from producing MCP-1 to recruit TAMs to

tumors and control tumor growth (184).

Altogether, cells in the TME have rich mechanisms of action in

treatment. There are interactions between different cellular

compositions and between cells and therapy. Some cells provide

physical and mechanistic support for cancer cells to promote tumor

progression, while others lyse and kill cancer cells to inhibit tumor

progression. Table 1 summarizes the commonly associated cells and

their main mechanisms of each conventional treatments.
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4 Targeting the cellular composition
of the tumor microenvironment to
treat breast cancer

With the arrival of the era of precision treatment for BC, the

classification of BC based on the different roles of cells in the TME

has been widely studied. In the future, it will be necessary to

investigate these studies in clinical trials to determine the effects

of various cell compositions in the TME on patient survival and

prognosis. The combination of conventional first-line and second-

line therapies with drugs targeting the cells in the TME is a

promising approach to achieve better therapeutic effects and

represents a new direction for future research.

CD8+ T cells and NK cells have significant roles in the efficacy of

cancer vaccines. The vaccines can specifically amplify and activate

CD8+ T cells and NK cells, but their effectiveness in controlling

cancer development is limited (185). A dendritic cell vaccine (DCV)

combined with NACT can improve the pCR and ameliorate PD-L1-

negative tumors. DCV can reshape the TME and induce cellular

and humoral immunity in peripheral blood (186). In the phase I

clinical study, before surgical resection, the vaccine containing the

HER2 peptide was directly injected into the lymph nodes of BC
TABLE 1 Different roles of cells in the tumor microenvironment during treatment.

Treatment The effect of
related cells

Main Mechanisms References

Chemotherapy Paclitaxel NK, M1 Promote therapeutic effects, Promote TAM polarization to M1 (111–113)

Treg, MDSC,
CAF, M2

Immunogenic cell death, Promote cancer cell proliferation, Development
of treatment resistance

(115, 120, 121,
124, 127)

Doxorubicin CD8+ T, DC Promote therapeutic effects, Activate DC function (3, 14, 111)

MDSC, CAA, CAF,
MSC, M2

Promote cancer cell proliferation, Reduce the effect of chemotherapy,
Develop treatment resistance

(122, 124, 129,
130, 133)

Platinum CD8+ T Promote therapeutic effects (111)

Treg, M2 Immunogenic cell death, Develop treatment resistance (115, 119)

Targeted
antitumor drugs

Trastuzumab NK ADCC (135)

MSC, CAA Develop treatment resistance (13, 140, 141)

Lapatinib TAM, CAF, CAA Develop treatment resistance, Increase glycolysis (142–144)

Bevacizumab M2 Promote TAM polarization to M2 (148)

PARP
inhibitor

CD8+ T, DC Promote immune cell recruitment (149)

TAM Promote TAM glucose metabolism and lipid metabolism (150)

Endocrine
inhibiting drugs

Tamoxifen TAM, CAA Promote oestrogen production, Reduce drug sensitivity (161, 163)

Fulvestrant CAF Promote proliferation and treatment resistance (163)

Radiotherapy DC, CD8+ T Promote immune cell activity and recruitment (165, 166)

TAM, EC,
Treg, CAF

Induce angiogenesis, chemokines and cytokines (170–175)

PD-1/PD-L1 Inhibitory NK, TRM ADCC, Promote therapeutic effects (44, 176)

CAA, Treg Develop treatment resistance, Promote immune escape of cancer cells (88, 182)

Zoledronic acid M1, MSC Promote TAM polarize to M1, Control tumor growth (184)
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patients. The results showed that the vaccinated patients developed

antigen-specific immunity and exhibited high levels of HER2-

specific CD4+ Th and CD8+ T cells. In addition, DC vaccines

with the HER2 peptide lead to lymphocyte accumulation in the

breast and induce ADCC. DC vaccines may prevent and treat early

BC (187). Local administration of mucosal vaccines can promote

the formation of TRMs, which are biomarkers of cancer vaccine

response and immune response (45). The expression of cancer

fibroblast activator protein (FAP) in CAFs is upregulated. Loeffler,

M. et al. developed a DNA vaccine targeting FAP, which can target

CAFs in BC, reverse the chemotherapy resistance, and reduce the

growth and metastasis (188, 189). According to previous reports,

the anti-FAP vaccine can reduce the accumulation of type I collagen

and increase the uptake rate of docetaxel by tumors by 70% (188). A

novel DNA vaccine targeting CAFs can enhance the antitumor

metastasis function of doxorubicin, inhibit the expression of the IL-

4 and IL-8, and promote the recruitment of CD8+ T and DCs (190).

In conclusion, cancer vaccines that act on the TME are being

extensively studied and have gradually attracted increasing amounts

of attention in the treatment of BC. The process of vaccines

targeting cell compositions in the TME is clearly present in

the Figure 3.

Metformin is used to treat patients with type 2 diabetes and has

recently been found to reduce the incidence of cancer. Teufelsbauer

et al. reported that, when treated with metformin, MSCs

preferentially differentiate into the osteogenic lineage, thus

releasing factors that inhibit the migration of breast cancer cells

(191). The exosomal CXCR4+ TRAIL is transduced from MSCs via

a lentiviral vector. These exosomals promote MSC homing and

induce cancer cell apoptosis. These Exosomes produced by MSCs

can pass through the blood–brain barrier, cooperate with the

antitumor effect of carboplatin, and shrink brain metastatic
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lesions in patients with BC (192). It has been reported that the

bioactive compound sulforaphane from broccoli can inhibit the

occurrence and growth of BC, and prevent the differentiation of fat

cells and the interaction with BC (193). Metformin, the renin–

angiotensin inhibitor, aspirin and EGCG, a component of green tea

extract, can inhibit the differentiation of adipose-derived stem cells

(ADSCs) into adipocytes. These substances can also limit the

proliferation and invasion of breast cancer cells (194–197).

Aspirin can inhibit adipogenesis and oxidative stress to change

the metabonomics and fatty acid composition of adipocytes. Under

the effect of aspirin, obesity-related inflammation and the growth

and migration of BC are suppressed (197). These drugs can directly

or indirectly affect cells in the TME to reduce tumor proliferation

and progression. In-depth study of the role of these drugs in the

TME may be useful for improving the prognosis of BC patients in

the future.
5 Discussion

The cell compositions of the TME play a complex role in the

breast TME and have a regulatory impact on the whole process of

tumor occurrence. There are more and more evidences that the

cellular compositions of TME have a profound influence during the

treatment of BC. The combination administration of targeted cells

in the TME and conventional therapy is a feasible method for BC

treatment in the future. In the TME, cells associated with a good

prognosis include CD8+ T cells, NK cells, M1 macrophages, DCs

and TRMs (8, 16, 23, 34, 41). They secrete tumor-inhibiting factor

and immune-stimulating cytokines which are able to kill cancer

cells, inhibit tumor angiogenesis and activate the immune system to

prevent tumor growth and metastasis. For another, cells in the TME
FIGURE 3

The mechanism of vaccines targeting cell compositions in the tumor microenvironment in the occurrence and progression of breast cancer.
Vaccination leads to various effects, such as DC activation, TRM formation, and CAF function inhibition. These antigen-presenting cells cross-present
tumor-related antigens to cytotoxic CD8+ T cells, activating CD8+ T cells, B cells, and NK cells to induce tumor cell death and reverse
chemotherapy resistance. (By Figdraw).
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associated with a poor prognosis include M2 macrophages, MDSCs,

CAFs, TECs and pericytes, MSCs and CAAs (48, 56, 62, 68, 71, 72,

78). They secrete cytokines which are able to promote tumor

angiogenesis, treatment resistance to promote tumor occurance

and progression. In addition, there are some cell compositions

whose prediction effect are unclear, including Tregs, B cells, CD4+ T

cells and TANs (88, 98, 100, 106). Therefore, the function of cells in

the TME deserves advanced study. There are also interactions

between cells, for instance, NK cells promote activation of CD8+

T cells and polarization of M2 macrophages (29, 30). Different

subtypes of the same cell have different functions, such as

macrophages, CD4+ T cells, TANs and DCs (8, 34, 100, 106). It is

a possible treatment approach that promote cell polarization toward

to certain subtypes that are positive to the prognosis of BC patients.

The mechanism of cells in the TME manifests as a direct effect

on cancer cells or an indirect impact on the TME. Under the

influence of the differences in cellular compositions in TME,

therapeutic effect is different in BC patients after therapy. In the

meantime, the cellular composions in TME are changed. These

changes predict the prognosis including OS, DFS and PFS of BC

patients. All the treatments have two opposite effects on the cell

compositions in the TME. The good one is associated with

apoptisis, and the bad one is related to treatment resistance (12,

111, 144, 171, 178). As vaccines, lentiviral vectors, non-anticancer

drugs and biological extracts were found to have positive

implications for cellular compositions changes in the TME, we

see the benefits of combination administration targeted cellular

compositions of the TME and other conventional treatments in BC

(187, 191, 193, 197). The cellular compositions of the TME and and

therapeutic mechanisms deserves further study.
6 Conclusion

In recent years, “immune hot” and “immune cold” tomours are

discussed extensively. But in the TME, the individual role of each

cell has not been comprehensively elaborated yet. We synthesize a

lot of research and indicate that the TME plays a crucial role in the

development and treatment of BC. This review details the main cell

compositions in the TME of BC and their possible differential effects

on the occurrence, development and treatment of BC. It’s worth

noting that targeting the cellular compositions of the TME is

promising to be used for combination administration. As far as

we know, targeting some substances such as cytokines will affect

certain specific cells in the TME to help establish an antitumor TME

and promote the progression of BC treatment. In future research,

we will combine drugs targeting specific cells in the TME with

conventional drugs for BC treatment to improve the efficacy of

these drugs and reduce drug resistance and tumor recurrence. In

future research on the treatment for BC, the influence of

conventional therapy (such as chemotherapy, radiotherapy and

targeted therapy) on the host antitumor immune response, the
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host-versus-host response (autoimmunity toxicity) and cell

composition in the TME must be considered. We may be able to

treat BC patients more accurately according to differences in the cell

compositions of the TME. Precise treatment can be achieved by

remodelling the TME, promoting antitumor cell function,

inhibiting tumor-promoting cell function, researching a cell

compositions vaccine for the TME, and combining drugs that

affect signaling pathways.

In conclusion, various cell compositions in the TME play

crucial roles in regulating breast cancer and therapeutic effects. A

better understanding of the TME will provide a new direction for

exploring new and effective precision treatment schemes for

breast cancer.
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