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The transition-metal free S-vinylation of thiophenols by vinylbenziodoxolones (VBX)
constituted an important step forward in hypervalent iodine-mediated vinylations,
highlighting the difference to vinyliodonium salts and that the reaction outcome
was influenced by the substitution pattern of the benziodoxolone core. In this
study, we report several new classes of hypervalent iodine vinylation reagents;
vinylbenziodazolones, vinylbenziodoxolonimine and vinyliodoxathiole dioxides.
Their synthesis, structural and electronic properties are described and correlated
to the S-vinylation outcome, shedding light on some interesting facets of
these reagents.
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1 Introduction

Hypervalent iodine reagents have been shown to be powerful reagents for
chemoselective transformations under both transition metal-catalyzed and metal-free
conditions. (Wirth, 2016; Yoshimura and Zhdankin, 2016; Flores et al., 2019; Olofsson
et al., 2019). The use of iodonium salts has enabled transfer of aryl, alkynyl and vinyl
groups to a variety of nucleophiles. (Merritt and Olofsson, 2009; Charpentier et al., 2015;
Li et al., 2016; Rajkiewicz and Kalek, 2018; Villo et al., 2019; Declas et al., 2020; Dahiya
et al., 2022; Le Du and Waser, 2023; Mironova et al., 2023; Yoshimura et al., 2023). New
classes of alkenes have been accessed through the combination of vinyliodonium salts
with metal catalysts, (Skucas and MacMillan, 2012; Holt and Gaunt, 2015; Sheng et al.,
2017; Yuan et al., 2019), whereas metal-free applications with those reagents remain
scarce due to difficulties in controlling the reaction outcome. (Ochiai et al., 2001; Hara
et al., 2006; Kepski et al., 2019). Recent developments in the field have shown that
benziodoxolones (BX), which are iodine (III) compounds with a cyclic core, possess
improved stability and often have more easily controlled reactivity. (Yoshimura et al.,
2023). Indeed, the utility of trifluoromethyl-BX (Togni’s reagent) and ethynyl-BX (EBX)
have been efficiently demonstrated in the last decades. (Charpentier et al., 2015; Hari
et al., 2019; Le Du and Waser, 2023).

In 2016, our group reported the synthesis and first applications of vinyl-BX (VBX, 1)
(Stridfeldt et al., 2016), which showed enhanced reactivity and selectivity compared to
vinyliodonium salts. (Figure 1A), (Stridfeldt et al., 2016; Declas et al., 2020). Transition
metal-free applications include S- and P-vinylation methodologies, (Castoldi et al., 2020a;
Castoldi et al., 2020b; Di Tommaso et al., 2022), as well as photocatalytic C-vinylations with
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redox active compounds (Pal et al., 2023) and others. (Davies et al.,
2017; Le Vaillant et al., 2018; Liu et al., 2018; Jiang and Studer, 2019;
Li et al., 2019; Liu et al., 2020). Our one-pot synthesis of VBX is
shown in Figure 1B i, and the scope was later expanded to include β-
heteroatom-functionalized VBX through addition of a nucleophile
and a proton over EBX (Figure 1B ii). (Frei et al., 2014; Caramenti
et al., 2019; Shimbo et al., 2019; Tessier et al., 2019; Wu et al., 2019;
Liu et al., 2020; Declas et al., 2022) In parallel, the corresponding
vinylbenziodoxoles with a bis(CF3)alkoxy moiety (VBO) were
introduced by Yoshikai and coworkers, and have proved superior
in some applications. (Wu et al., 2016; Wu J. et al., 2017; Shimbo
et al., 2019;Wu et al., 2019; Chai et al., 2021;Wang et al., 2022). VBO
can be synthesized from TfO-BO and mono- or di-substituted
alkynes (Figure 1B iii). (Wu B. et al., 2017; Ding et al., 2020; Ura

et al., 2020; Chai et al., 2021; Declas et al., 2022; Kikuchi et al., 2022;
Wang et al., 2022) Recently, Waser presented a one-pot synthesis of
ethynyl bis(trifluoromethyl)iodoxole (EBO) directly from the
corresponding iodoarene. (Milzarek et al., 2023). This method
also included the synthesis of a VBO reagent, simplifying the
access to such targets (Figure 1B iv).

The reactivity of hypervalent alkynylating reagents with
substituted aromatic ring cores, as well as variations of the “side-
arm”, which binds to the iodine centre, have been explored.
(Fernández González et al., 2013; Shimbo et al., 2019). While we
evaluated the influence of core-substituents on VBX in the
S-vinylation of thiols, (Castoldi et al., 2020b), there are no broad
studies investigating the structural and electronic effects of varying
these groups on vinylating reagents. (Mironova et al., 2023). Herein,

FIGURE 1
(A) The use of iodonium salts compared to VBX; (B) Selected synthetic routes to VBX and VBO; (C) Workflow of this investigation.

GRAPHICAL ABSTRACT

Frontiers in Chemistry frontiersin.org02

Doobary et al. 10.3389/fchem.2024.1376948

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1376948


we report the synthesis of several new VBO 2, as well as the synthesis
of novel compound classes vinylbenziodazolones (VBZ, 3),
vinylbenziodoxolonimine (VBXI, 4), and vinyliodoxathiole
dioxides (VBT, 5) (Figure 1C). It should be noted that the
benziodazolone (Le Du et al., 2021) and benziodoxathiole
(Koser et al., 1993; Koposov et al., 2006) cores have been
reported in other hypervalent iodine reagents, whereas the
benziodoxolonimine is a novel side-arm. Additionally, we have

synthesised several novel ortho-functionalized iodonium salts 6,
which serve as good comparisons in the studies. Finally, a
vinylbenziodoxolone-type reagent with a six-membered side-
arm (VBX6 7) was synthesized to evaluate the effect of the side-
arm length and conjugation with the core. We have determined
their crystal structures, as well as their reduction potentials, and
correlated these parameters with the reagents’ reactivity under the
reported S-vinylation conditions.

SCHEME 1
Synthesis of hypervalent vinylation reagents. (A) VBX reagents 1; (B) VBO reagents 2 (2a already reported), yields from 10 given; (C) VBZ reagents 3,
VBXI reagent 4 and VBT reagents 5; (D) Acyclic iodonium salts 6 and VBX6 7.
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2 Results and discussion

2.1 Synthesis of novel vinylation reagents

Several core-substituted VBX reagents 1 were synthesised
according to literature methods (Stridfeldt et al., 2016; Boelke
et al., 2017), Scheme 1A). The synthesis of novel VBO reagents 2
started from anilines 8, which underwent a Friedel-Crafts reaction to
access the amino benzyl alcohols 9 (Scheme 1B). A subsequent
Sandmeyer reaction produced the required iodoarenes 10 in good
yields. (Amey andMartin, 1979). The benziodoxole core was formed
through oxidative chlorination and hydrolysis, without isolation in
between the steps, to form hydroxy-BO 11. The vinyl moiety was
introduced from the corresponding boronic acid using TMSOTf and
pyridine (Boelke et al., 2017) to form VBO 2 (yields from 10 given in
Scheme 1B). It should be noted that ortho-substituted compound 2f
was incredibly unstable, making isolation and analysis difficult (See
the Supplementary Material for details).

Variations of the side-arm were next investigated to obtain novel
compound classes for vinylation. The synthesis of VBZ 3 proceeded
in good yields from 2-iodophenyl N-tosylbenzamides 12a-c, using
our one-pot method developed for VBX (Stridfeldt et al., 2016) with
mCPBA/triflic acid and (E)-styrylboronic acid (Scheme 1C). To our
surprise, reactions with the ortho-methyl-substituted substrate 12d
behaved differently, and resulted in the formation of the novel
compound class VBXI 4, which has an I-O hypervalent bond instead
of the expected I-N bond. It appears that the sterical congestion
caused by the ortho-methyl group promotes formation of the BXI
core as opposed to the BZ core. Products 5 were obtained from 2-
iodophenyl sulfonic acids 12d-e in moderate yields due to
incomplete conversion of the starting material.

For the sake of comparison to their cyclic counterparts, a series
of vinyliodonium salts 6 with ortho functionalities were also
synthesised from the iodoarenes 13 (Scheme 1D). Our one-step
method (Stridfeldt et al., 2016) without the basic workup was used to
obtain these compounds in good to high yields. Interestingly, when
the one-pot synthesis of VBX6 7 was attempted, product formation
alongside an inseparable impurity was observed. (See the
Supplementary Material for details) However, when isolated
compound 6e was treated with an aqueous basic solution, 7
could be isolated in good yields with high purity. This strategy
was also attempted for the synthesis of VBX7 from 6d, but was
unsuccessful (See the Supplementary Material for details).

2.2 Reactivity investigation in S-vinylation
of thiols

The S-vinylation protocol developed by our group was used to
evaluate the vinylating reagents, as this reaction had already proved
sensitive to the VBX core structure. (Castoldi et al., 2020b). 4-
Bromothiophenol was thus vinylated with reagents 1-7 to provide
thioether 14 with vinyl iodide 15 sometimes formed as side-product
(Scheme 2). The result obtained with the novel VBX reagent 1f
followed the trend in the original work, (Castoldi et al., 2020b), in
which reagents with electron-donating groups (EDG) gave higher
yields than those with electron-withdrawing groups (EWG). VBO
reagents 2 performed markedly worse, with yields of 14 ranging
from 25% to 51%. VBZ 3 behaved similarly to VBX, with 3c
providing the highest yield of 90%, whereas VBXI 4 and VBT 5
gave significantly lower yields, which could be due to solubility
problems. E/Z ratios were recorded in of each of these reactions, but

SCHEME 2
Comparison of vinylating reagents 1-7 in the S-vinylation of 4-bromothiophenol. Yields are NMR yields, which were calculated by using
1,3,5 trimethoxybenzene as internal standard.
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there was no observed trend with regards to the reagent used (See the
Supplementary Material for details).

Additionally, the compounds with ortho-substituents performed
worse than their counterparts (1a vs 1g, 2a vs 2f). Due to the rapid
decomposition of those reagents during isolation and analysis, we
hypothesise that the ortho-substituents increase the reactivity of
these compounds, especially since the majority of product in these
reactions were the vinyl iodide 15. Indeed, ortho-substitution in
hypervalent iodine compounds has earlier been reported to cause
considerable reactivity changes. (Guilbault and Legault, 2012;
Malmgren et al., 2013; Abazid and Nachtsheim, 2020).
Additionally, VBXI 4 produced a very poor yield of 14 in
comparison to its analogues VBZ 3, possibly due to its BXI core.
Similar to what was reported with acyclic vinyliodonium salts in the

original S-vinylation paper, (Castoldi et al., 2020b), reagents 6
provided little product, with 15 again being the major product in
these reactions. VBX6 provided a much lower yield than VBX,
indicating the importance of the 5-membered ring for the
application of this reagent.

2.3 X-ray crystallography analysis

To evaluate how the core substituents and side-arms influenced
the structure, we collected single crystal X-ray diffraction data on
selected compounds (Figure 2). Much of the crystal structure data in
the literature focusses on vinyliodonium salts, (Hinkle and
McDonald, 2002; Ochiai et al., 2007; Yoshimura et al., 2021), and

FIGURE 2
Novel crystal structures of reagents 1-7 compared to structures in the literature (1a (Stridfeldt et al., 2016), 2a (Pisella et al., 2020) and 6f (Clegg and
Harrington, 1999)).
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varied substitution patterns on the vinyl groups of VBO (Wu et al.,
2016; Wu J. et al., 2017; Wu et al., 2019; Ding et al., 2020; Pisella
et al., 2020; Chai et al., 2021; Laskar et al., 2021; Wu et al., 2023) and
VBX. (Stridfeldt et al., 2016; Caramenti et al., 2019; Tessier et al.,
2019). On the other hand, there appears to be no crystal structure
investigations on the effect of cyclic vinylation reagents with
different side-arms and core-substituents, as well as non-
covalent interactions in ortho-substituted iodonium salts, on
reaction outcome.

We evaluated the effect of the side-arm by comparison of
core-unsubstituted VBX 1a, VBO 2a, VBZ 3a and VBT 5a, which
showed very similar C1-I bond lengths, 2.127, 2.118, 2.127 and
2.112 Å respectively. The same is also true for C3-I bond lengths,
as they measured at 2.100, 2.103, 2.140 and 2.128 Å respectively.
However, X-I bond lengths were drastically different. 1a and 3a
were somewhat similar with bond lengths of 2.510 and 2.581 Å
respectively, whilst 2a had a shorter bond length (2.346 Å) and
5a has a longer bond length (2.649 Å). This is perhaps indicative
of the increased trans effect caused by this functional
group. (Ochiai et al., 2006). Additionally, measured X-I-C3

bond angles showed that all compounds expressed a T-shaped
conformation with 1a having the smallest angle, 165.9°, and VBO
2b the largest, 170.9°. The X-ray crystal structure of VBX6 7
showed a strained 6-membered ring in the side-arm, with similar
bond lengths and hypervalent bond angle with VBX 1a.
However, 7 has a C2-C1-I-C3 bond angle of 36.4°, which is far
higher than that of 1a (4.3°).

To ascertain whether core-substituents made a measurable
difference on any structural properties, several analogues of each
class of vinylating reagent were also crystallised. Generally, the
same trends followed within each class of compounds.
Interestingly, the crystallographic data of ortho-substituted
VBXI 4 showed a markedly lower X-I-C3 bond angle of 155.7°,
which is the lowest angle of any hypervalent iodine vinylating
reagent in the literature. Additionally, 4 has a C2-C1-I-C3 bond
angle of 38.5°, which is far from the more idealised angle of 1°–8°

for the other compounds. These two measurements show that the
ortho-methyl substituent induces sufficient steric strain to
disrupt the hypervalent bond and ultimately leads to the
formation of an I-O bond, as opposed to the I-N bond found
in VBZ 3. We hypothesise that this key difference contributes to
the reagent’s poor reactivity under the S-vinylation conditions.
Furthermore, this characteristic likely contributes to their
unstable and over-reactive nature as seen in Scheme 2.
Interestingly, iodonium salt 6a had similar C1-I (2.123 Å) and
C3-I (2.073 Å) bond lengths to other compounds. Though, it has
a much longer X-I bond length (2.673 Å), which is unsurprising
considering the methyl ester ligand is not covalently bound, but it
is markedly smaller than the X-I bond length of 6f (The crystal
structure data of 6f is included as comparison to 6a; we did not
use 6f in other parts of the study) (2.879 Å). This shows that
whilst not having a covalently bound group will affect the
structural properties, a much more significant effect will be
observed when non-ligating substituents are used in the ortho
position to the iodine.

Next, the possible correlation between structural parameters
and reaction outcome was investigated (Figure 3). Firstly, the X-I
bond lengths were plotted against the yield of S-vinylation,
showing an upward slope from 2.341 Å (2e) to 2.581 Å (3a),
which was proceeded by a downward slope towards 2.673 Å of 6a
(ester-bound iodonium) (Figure 3A). Interestingly, 4 and 7 were
outliers to this trend (circled, hollow diamond). Thus, reagents
with X-I bond lengths of ~2.55 Å represent a “sweet-spot” under
these reaction conditions. Then the hypervalent bond angles
(X-I-C3) were plotted against reaction yields (Figure 3B).
Within this parameter, it was observed that the higher the
angle, and thus closer to the idealised 180°, the worse the
reagent performed, with a peak of ~165°. Again, reagent 4 was
an outlier in this trend. These results show that there is indeed a
link between these two structural parameters and the reaction
yield, and that both electronic and steric factors influence the
reaction outcome.

FIGURE 3
Selected structural parameters vs reaction outcome. Circled points are outliers. (A) X-I bond lengths vs reaction outcome (B) X-I-C3 bond angles vs
reaction yield.
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FIGURE 4
Recorded reduction potentials (V (vs Fc/Fc+)) of reagents used in this study.

FIGURE 5
Reduction potentials of selected reagents plotted against S-vinylation. (A) Plot of 1a–1d, 2a–2e and 3. (B) Plot of 1e–1g, 5 and 6. (C)Overlay of plots
(A, B), including the outlier compounds 2f, 4 and 7. (D) Plot of X-I bond lengths vs reduction potentials.

Frontiers in Chemistry frontiersin.org07

Doobary et al. 10.3389/fchem.2024.1376948

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1376948


2.4 Reduction potential analysis

We also wanted to investigate how the reduction potentials of
the reagents were affected by substituents of the aromatic ring core
and the side-arm (Figure 4). Whilst there have been some reports of
redox potentials of hypervalent iodine reagents in the literature,
(Kokkinidis et al., 1989; Kokkinidis et al., 1991; Choi et al., 2015; Le
Vaillant and Waser, 2017; De et al., 2019; Ramkumar et al., 2023),
and even a computational study, (Radzhabov et al., 2020), there is
currently no data on vinylation reagents and certainly no
quantitative studies linking this parameter to reaction outcome.

To begin, we measured the potentials of each of the reagent used
in this study. The higher the reduction potential (closer the value to
0 V (vs Fc/Fc+)), the more easily the reagent can be reduced. It was
found that there was a tight range of reduction potentials within
each class of reagent. VBX ranged from −1.33 V (1f) to −1.59 V (1c),
which matches that EWG should make the reagent easier to reduce.
Considering its strong likeness to 1a, VBX6 7 had a very different
potential of −1.61 V. Whilst VBZ 3a-c had slightly higher potentials
between −1.32 and −1.48 V, VBXI 4 (−1.21 V) and VBT 5
(−1.21 and −1.17 V) had lower potentials. The lowest reduction
potentials were measured for VBO 2, ranging from 2c (−1.98 V) to
2f (−1.68 V). As controls, the potentials of some vinyliodonium salts
6 were measured. Direct comparison of the uncyclized and cyclised
analogues (6c vs 1e and 6e vs 6) showed that the iodonium salts were
indeed much easier to reduce. This was, however, not the case for 6b
(−1.16 V), which was very similar to its cyclised VBT counterpart
5b (−1.17 V).

Next, to ascertain whether there is a relationship between
reduction potentials of the vinylation reagents and their yield in
S-vinylation, the two were plotted against each of other (Figure 5).
Firstly, we plotted the VBO, VBZ and only the EDG-substituted
VBX reagents, as EWG-substituted VBX performed poorly in
S-vinylation (Figure 5A). Reagents with lower reduction
potentials were found to have a positive effect on the reaction
yield. Secondly, we plotted the EWG-substituted VBX reagents,
VBT reagents and iodonium salts (Figure 5B). In this case, lower
reduction potential resulted in lowered reaction yield together with
increased levels of vinyl iodide (see data in Scheme 2). This is
interesting because the less reactive reagents (e.g., VBO) provided
lower reaction yields, whereas the more reactive reagents (e.g.,
iodonium salts) gave low yields and more vinyl iodide.
Furthermore, the results suggest that a reagent with a reduction
potential between −1.3 and −1.5 V, represents the peak of this
reaction, with potentials on either side being ultimately detrimental
for the reagents. However, this could be due to the reaction itself
being optimised on VBX 1a. Curiously however, if both plots are
overlayed with the previously excluded reagents, it becomes clear
that there are some outliers to this trend (green triangles, Figure 5C).
These are VBX6 7 and ortho-substituted VBO 2f and VBXI 4, and the
results might reflect the lack of idealised T-shaped conformation or
conjugation in those structures. Clearly the reduction potential does not
account for the change in T-shaped conformation and steric factors very
well. Overall, it appears that the reduction potentials can be a good
signifier for the efficiency of the vinylation reagent in the S-vinylation
under these reaction conditions, but further reaction optimisation could
potentially alter the outcome. Finally, a fine correlation was observed
between X-I bond lengths and reduction potentials (Figure 5D),

signifying that X-I bond lengths could affect the reduction
potentials greatly.

3 Materials and methods

For general experimental and instrumental methods, synthetic
procedures, and full compound characterization, see the
Supplementary Material.

4 Conclusion

In conclusion, the synthesis of novel hypervalent iodine-based
vinylation reagents has been reported, including the new compound
classes VBZ, VBXI, VBT and VBX6. These reagents were evaluated
in the S-vinylation of 4-bromothiophenol and VBZ performed
similarly to VBX, whilst VBO, VBXI, VBT and iodonium salts
proved inferior. Crystal structures of selected reagents were
measured, as well as electronic potentials of all the reagents.
Crystal structure data showed that there was a correlation
between certain parameters and reaction outcome, and ortho-
substituents were found to perturb the reagent’s structure and
hence destabilise it. Additionally, reduction potentials were
plotted against reaction outcome, which showed a sweet spot of
about −1.4 V, when ignoring certain outliers in the study.
Additionally, there was a correlation between reduction potentials
and X-I bond length. We believe that further investigations of
properties vs reaction outcome could result in a method for
predicting reaction outcome with hypervalent iodine reagents.
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