

Case Western Reserve University Scholarly Commons @ Case Western Reserve University

Intersections Fall 2020

Intersections: CWRU Undergraduate Poster Session

Fall 12-1-2012

Charge Transport Properties of BO-Chelated Azadipyrromethenes

Tingrui Ma Case Western Reserve University

Muyuan Zhao Case Western Reserve University

Geneviève Sauvé Case Western Reserve University, gxs244@case.edu

Follow this and additional works at: https://commons.case.edu/intersections-fa20

Part of the Chemistry Commons

Recommended Citation

Ma, Tingrui; Zhao, Muyuan; and Sauvé, Geneviève, "Charge Transport Properties of BO-Chelated Azadipyrromethenes" (2012). *Intersections Fall 2020.* 29. https://commons.case.edu/intersections-fa20/29

This Book is brought to you for free and open access by the Intersections: CWRU Undergraduate Poster Session at Scholarly Commons @ Case Western Reserve University. It has been accepted for inclusion in Intersections Fall 2020 by an authorized administrator of Scholarly Commons @ Case Western Reserve University. For more information, please contact digitalcommons@case.edu.

Charge transport properties of BO-chelated azadipyrromethenes

Tingrui Ma, Muyuan Zhao, Geneviève Sauvé*

2020.12.04

Outline

- 1. Introduction
- 2. Device Fabrication and Thickness Measurement
- 3. Mobility Results
- 4. Summary and Future Plans

Organic Solar Cells

- Flexible and light-weight
- ► Low cost
- Large scale fabrication

1.https://www.ecofriendlylink.com/blog/organic-solar-cells/

2. Solar Cells of the Future: System for Increasing the Efficiency of Organic Solar Cells https://scitechdaily.com/solar-cells-of-the-future-system-for-increasing-the-efficiency-of-organi c-solar-cells/

3.https://infinitypv.com/technology/opv

think beyond the possible"

BO-chelated azadipyrromethenes Structure

dOhexADP-BO

Mobility Device Structure

Electron Mobility Test

Hole Mobility Test

Mobility Calculation

Mott-Gurney Law

 $J = \frac{9}{8} \, \mu \, \epsilon \, \epsilon_0 \, \frac{V^2}{L^3}$

μ	mobility	
3	dielectric constant	
ε ₀	permittivity of free space	
d	film thickness	
m	slope	

$$\mu = (8m^2d^3) / (9\epsilon\epsilon_0)$$

P N Murgatroyd 1970 J. Phys. D: Appl. Phys. 3 151

Space charge-limited current behavior

Figure 4. Space charge-limited current behavior for polymer semiconductor with only ohmic and trap-free space charge-limited current regions.

Device Fabrication (MORE Center)

- 1. Check the conductivity of ITOs.
- 2. Clean the ITOs.
- 3. Spin-coat a ZnO layer and anneal.
- 4. In glove box, spin-coat a solution of the **dOhexADP-BO** and anneal.
- 5. Thermally deposit 30nm Ca and 100nm Al for e-mobility or 10nm MoO₃ layer and 80nm Ag were thermally deposited for h-mobility

Thickness measurement

Stylus profilometer

- -Use probe to detect the surface
- Moving along the surface to acquire the surface height.
- -Test the difference in heights of the surfaces
- -Fit the slope and thickness to calculate the mobility.

SCLC Mobility Ca	Iculations 4-2			
Equation	Units			
J = (9/8) μεε ₀ (V ² /d ³)			Denominatc 0.00000002	
μ=(8m²d³)/(9εε₀)	cm²/V·s			
Definitions		Value	Units	
μ	mobility	0.0026277671	cm²/V∙s	
3	dielectric constant	3	-	
ε ₀	permittivity of free space	0	F/m	
d	film thickness	270	nm	
		2.70E-05	cm	
m	slope	19.969		

Hole Mobility Test (dOhexADP-BO)

Mobility: $7.4*10^{-4} \text{ cm}^2/\text{V*s}$

Electron Mobility Test (dOhexADP-BO)

Mobility: 4.6*10⁻⁶ cm²/V*s

Conclusions

Nuture Materials	Neat µ _h	Neat µ _e	
N-type materials	(cm ² V ⁻¹ s ⁻¹)	(cm ² V ⁻¹ s ⁻¹)	
dOhexADP-BO	7.4 x 10 ⁻⁴	4.6 x 10⁻ ⁶	

Summary and Future Plan

- BO-chelated materials are promising p-type semiconductors for electronic applications.
- More electron mobility tests of BO materials will be conducted.
- Continue both electron and hole mobility tests of different materials.

Acknowledgements

- Dr. Geneviève Sauvé
- Dr. Ina Martin
- Muyuan Zhao
- Jay Jimenez
- Quynh Tran
- Charlie Lu

MORE Center @ CWRU

14

think beyond the possible