
A DISTRIBUTED SCIENTIFIC VISUALIZATION PARADIGM FOR

HETEROGENEOUS COMPUTER NETWORKS

A Thesis

by

MARK WAYNE LENOX

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 1990

Major Subject: Electrical Engineering

A DISTRIBUTED SCIENTIFIC VISUALIZATION PARADIGM FOR

HETEROGENEOUS COMPUTER NETWORKS

A Thesis

by

MARK WAYNE LENOX

Approved as to style and content by:

B ahram Nas sersharif
(Co-Chair)

Karan Watson
(Co-Chah)

M. Styblinskg
(Member)

P. Cantrell
(Member)

g . 4
I. Howz
(Head of Department)

December 1990

ABSTRACT

A Distributed Scientific Visualization Paradigm for Heterogeneous Computer

Networks.

(December 1990)

Mark Wayne Lenox, B. S. E. , Arizona State University

Co-Chairs of Advisory Committee: Dr. Bahram Nassersharif
Dr. Karan Watson

Current methods of supercomputer based scientific visualization place unnecessary

load on the supercomputer. By separating the computational component from the graphic

rendering component, and distributing both processes over a network, overall scientific

visualization performance increases. Furthermore, the supercomputer CPU load and mem-

ory requirements are decreased, allowing the solution of larger computational problems. A

distributed scientific visualization paradigm is developed for a heterogeneous computer net-

work, and the performance characteristics of this model are compared against the X Win-

dow System.

DEDICATION

To Katey

ACKNOWLEDGEMENT

The work presented in this thesis could not have been accomplished without help

from the staff of the Texas A&M Supercomputer Center. Thanks are in order to the director,

Dr. Bahram Nassersharif, as well as Mike Bolton, Spiros Vellas, Gynger Ingram and Victor

Hazlewood for their help and patience.

TABLE OF CONTENTS

ABSTRACT .

Page

DEDICATION. 1V

ACKNOWLEDGEMENT. .

TABLE OF CONTENTS. Vt

LIST OF FIGURES. . . . tx

INTRODUCTION . .
Other Projects,
NetCDF.
CRI Chemtool.
MIT X.
Sun VX/MVX.
Apollo Virtual Graphics Pipeline . .
OHSC apE
Design Methodology of SP .

SOFTWARE DESIGN .
Introduction . ,
SP Overall Organization. .
SPD Organization.
Libsp Organization.
Writing Distributed Visualization Applications.
Networking.

. 1

. 2

. 2

. 2

. 3
„, 4
. 5
. 6

7

9
. 9

9
. 10

. 11
12

. 13

BENCHMARK.
Examples
Methods

. 1 4

. 1 4

. 15

RESULTS . .
Overall Comparison. .
Image Performance.
Lgraph Performance,

CONCLUSION
Data Buffering . .
Resource Allocation .
Performance Considerations.
Final Conclusions.

18
. 19

19
24

. 32

. 32
33

. 34
34

REFERENCES . , , . 36

APPENDIX A: VISUALIZATION WIDGETS.
Introduction .
Lgraph Widget,
Synopsis.
Class Hierarchy .
Description
Resources.
Translations and Actions.
Programmatic Interface .
Image Widget
Synopsis.
Class Hierarchy
Description
Resources.
Translations and Actions
Programmatic Interface

APPENDIX B: SP COMMUNICATIONS LIBRARY
Introduction.
General Purpose.
SpInitialize.
SpShutdown;
Line Graphs .
SpLgraphOpen.
SpLgraphAddData
SpLgraphGridlines .
SpLgraphDivisions .

SpLgraphClose
Images. .
SpImageOpen . .
SpImageAddData. ,

SpImageClose

APPENDIX C: CRAY TO IEEE DATA CONVERSION.
Introduction .
IEEE Format . .
Cray Research Format.
Cray to IEEE Conversion.
Conclusion.

APPENDIX D: DELTA COMPRESSION.
Theoretical Performance
SP Delta Format
General Comments . .

Page

38
. 38
. 38
. 38

. . 38
. 38
. 39
. 41
. 42
. 43
. 43
, 43
. 43
. 44
. 45
. 45

. 48

. 48
. . 49

. 49

. 50

. 50
. . 51
. 52
. 53
. 53
. 54
. 54
. 56
. 57
. 57

. 58

. 58

. 58

. 59

. 59

. 61

. 63

. 63

. 64

. 64

vju

APPENDIX E: COMMUNICATION PROTOCOLS
Command Protocols
¹shutdown. . . .
Image Commands
¹video .
¹vquit . .
Lgraph Commands
¹lgraphm.
¹lgraph . .
¹xdivisions,
«ydivisions.
¹xgridlines.
¹ygridlines.
¹quit,
¹data
default data
Binary Protocols
Image Format.
Lgraph Format.

APPENDIX F: USING SP
Startup. .
SPD Application Window

Lgraph Window.
Image Window

APPENDIX G: SPD SOURCES.

APPENDIX Hh LIBSP SOURCES

APPENDIX I: VISUALIZATION WIDGET SOURCES.

Page

. . 66

. . 66

. . 66

. . 66

. . 67

. . 67

. . 67

. . 67

. . 68
. . 68

68
. 68
69

. 69

. 69

. 69

. 70

. 70

. 71

. 72

. 72

. 72

. 73

. 74

. 76

. 110

. 126

. 168

LIST OF FIGURES

Page

Fig. 1, 1. X Window System communication and processing path . . .

Fig. 1, 2. Sun's VX/MVX Design

Fig. 1. 3. Virtual graphics paradigm proposed by Voorhies

Fig. 1. 4. Distributed Visualization Paradigm

Fig. 2. 1. Data Flow Diagram .

Fig. 2. 2. SPD Organizational Diagram .

Fig. 2. 3. Libsp Data Flow Diagram .

Fig. 3. 1. Line graph example

Fig 3. 2. Image example

Fig. 4. 1. Cray CPU requirements for image processing .

Fig. 4. 2. Cray memory requirements for image processing

Fig. 4, 3. Network loading for image processing

Fig. 4. 4. Cray CPU requirements for line graph processing

. 10

. 10

. 12

15

. . 16

. . 20

. 22

23

. 26

Fig. 4. 5. Cray CPU requirements for line graph processing in an overloaded system . . . 27

Fig. 4. 6. Cray X CPU requirements in an overloaded system

Fig. 4. 7. Cray memory requirements for line graph processing . . .

Fig. 4. 8. Network loading for line graph processing

Fig. A, l. Line graph (Lgraph) widget

Fig. C. l. IEEE 64 Bit Floating Point Format .

Fig. C, 2. Cray 64 bit Floating Point Format .

Fig. F. l. SP Icon

Fig. F. 2. Application Window

Fig. F. 3. Lgraph Window

Fig. F. 4. Image Window

. . . . 28

. 30

31

39

58

59

72

. . 73

74

75

INTRODUCTION

Complex scientific calculations are sometimes more easily visualized graphically

than numerically, Unfortunately, the computers that are most capable of performing ad-

vanced calculations (supercomputersi are least capable of rendering graphical output.

Software systems exist by which supercomputers can do calculations, and render

graphical output. Software like the X Window System allows applications programs the

flexibility of displaying data on any X display server on a network [25]. Other graphics

packages, like NCAR graphics and DI-3000 for instance, allow applications to display out-

put on graphics terminals [8, 6].

These software systems have inherent drawbacks, however, that make their use non-

optimal for extremely high performance computing. In systems like X and NCAR, the

graphics rendering is actually done by the supercomputer. Since graphics rendering code is

somewhat convoluted (and large), it does not vectorize well, and serious performance pen-

alties result both for the rendering code, and the overall application [14, 9]. The availability

of dedicated graphics hardware to perform rendering operations would remove the perfor-

mance penalties, but is currently unavailable to most supercomputers.

In this work, I propose to develop a distributed paradigm for scientific visualization.

Supercomputers do well on ordered sets of data with minimum I/O. Graphics workstations

have specialized hardware to render graphics. A distributed scientific visualization para-

digm allows both machines to perform at their best. The supercomputer runs a highly vec-

torized calculation kernel that dumps binary data over a network to a graphics workstation

that processes the information, and renders the graphics in near real-time. The end result is

that the supercomputer can run to its maximum capacity, and the graphics workstation can

utilize on-board graphics hardware to accelerate the rendering process.

This thesis follows the format of ACM Transactions on Graphics.

The system as a whole is referred to as SP (short for Scientific visualization Para-

digm). The software running on the workstation is referred to as SPD (SP Daemon), and the

supercomputer resident communication libraries are know as Libsp.

Other Projects

There have been other projects associated with distributed scientific processing. The

most notorious of these projects includes the X Window System from MIT, apE from

OHSC, Chemtool from Cray Research, Inc. , and NetCDF from UCAR [25, 9, 5, 24].

NetCDF

NetCDF is a system created by the University Corporation for Atmospheric Re-

search (UCAR) for the network transparent movement of scientific data between computers

on a heterogeneous network [24]. Although NetCDF does not actually allow graphical vi-

sualization, it pioneered the concept of machine independent network transparent commu-

nication of scientific information that is necessary for a distributed scientific visualization

paradigm to operate.

NetCDF uses a system developed by Sun Microsystems called external data repre-

sentation, or XDR, to accomplish the data transfers. This system uses IEEE fioating point

formats for all data representations, and assumes that only 8-bit bytes can be interpreted in

a consistent fashion.

CRI Chemtoot

An outstanding example of the concept of distributed visualization in use is the

Chemtool software developed by Cray Research, Inc [5]. Chemtool allows molecules to be

graphically built on a Silicon Graphics IRIS workstation, then submitted to a Cray for anal-

ysis. During the analysis phase, certain parameters (like temperature) can be changed, and

their effects seen on the graphic molecule (disassociation, or oscillation for example). Un-

fortunately, Chemtool is a specialized application for computational chemistry. A general

purpose paradigm is needed to provide the same functionafity to a larger number of scien-

tific visualization problems.

MIT X

In the mid 1980s, researchers at MIT started working on a network-based window-

ing system [25]. The result is the X Window System, a distributed graphics paradigm that

allows data to be generated on a displayless mainframe, transmitted over a network, and dis-

played on a graphics workstation. The primary problem with X, however, is not functional-

ity, but equity in processor loading. Figure 1. 1 shows the obvious disparity in processor

loads between the supercomputer and the UNIX workstation.

Supercomputer

Workstation

I

Iz

Display

Network (FDDI or Ethernet)

Computation, Conversion

Formatting &. Rendering

Display

Fig. 1. 1. X Window System communication and processing path

Although X provides the necessary network transparent functionality, it has several

drawbacks that make it unsuitable for scientific visualization: First, X based programs are

complex. Second, the convoluted nature of interactive software is not easily vectorizable,

and therefore does not allow a vector supercomputer to compute at it's full potential speed,

Third, since every graphics primitive translates to a network packet, complex displays are

slow to draw, especially over heavily loaded nenvork connections. Finally, graphics render-

ing must be done on the pixel level by the supercomputer, wasting cpu cycles and memory

that could be used to do more useful work [22].

Sun VX/MVX

Sun Microsystems has implemented a hardware product called VX/MVX that uses

multiple processors to perform visualization tasks [33]. It is not a heterogeneous distributed

environment, however, in that all the processors are located within a single Sun workstation,

as shown below in figure 1. 2.

VME Bus VX Bus

i860

IIJ
V
0

n

i860

i860

i860

High Resolution

Display

i860

Computation Formatting,

Conversion &
Rendering

Display

Fig. 1. 2. Sun's VX/MVX design

The VX/MVX paradigm exhibits some of the characterisfics needed in a distributed

visualization paradigm, including equity in processor loading. The separate i860 processors

can be individually programmed to render data supplied by the SPARC processor over the

VME bus [13]. It is unsuitable for supercomputer based visualization due to the lack of a

direct VME connection between the VX/MVX subsystem and a supercomputer, but the idea

is generally correct.

Apollo Virtual Graphics Pipeline

In the SIGGRAPH proceedings of 1988, Douglas Voorhies of Apollo proposed a vir-

tual graphics paradigm to increase graphics rendering throughput in desktop workstations

[32], It is similar to the Sun proposal, but concentrates more on increasing overall through-

put with more equitable processor loading and a flexible interface rather than just increasing

the number of processors. This paradigm is shown in figure 1. 3.

Application
Software ~

Instructions
Buffering

Drawing

Engine
Display

Virtual
Memory

Rapidly
S wappable
Drawing

State

Com utation Renderin

Formatting

Display

Fig. 1. 3. Virtual graphics paradigm proposed by Voorhies

The hardware solution proposed by Voorhies gives the necessary functionality and

removes some of the drawbacks of conventional systems through the use of the virtual

graphics paradigm. In a system using virtual graphics, all processes are fooled into believing

that they have a dedicated graphics coprocessor. This provides for flexibility, combined with

increased throughput and singularity of processor tasking. The whole system works better

because the individual components are used exclusively for what they were designed to do.

Unfortunately, Voorhies' solution is as unworkable in a supercomputing environment as the

Sun VX/MVX because of the prohibitive costs of any hardware implementation.

OHSC apE

The Ohio Supercomputer Center Graphics Project released apE 2. 0 in September of

1990. This project followed design criteria similar to those established for SP. Abstraction

of scientific data, distributed processing pipeline, and minimization of supercomputer re-

source demand are all design features of apE [17].

apE, which stands for animation production Environment, abstracts data in the form

of the FLUX language [17]. FLUX has built in capabilities that make it useful for both scalar

and vector field representarion, The apE system, however, is almost strictly limited to field

representations, and contains no provisions for other potential visualization models. Limi-

tations in the FLUX communication language constrict apE in this regard.

The implementation of apE involves a distributed processing pipeline that includes

a supercomputer performing strictly numerical computation, and a workstation to perform

post processing and graphics rendering [9]. This feature allows the supercomputer to per-

form at peak speeds by minimizing extraneous overhead. Actual scientific studies done us-

ing apE have shown that considerable levels of performance can be achieved through the

distributed paradigm that it uses [14].

ApE was a valid anempt to create a general purpose distributed scientific visualiza-

tion paradigm, however, it failed for several reasons. The first reason is that it was designed

for the visualization of field data. The FLUX language is explicit on this point. Second and

foremost, the current performance status of supercomputers and UNIX workstations re-

quires that software to do distributed scientific visualization be as optimized as possible for

the particular necessary operations, The apE system with its very flexible FLUX language

is too verbose, and requires a significant amount of overhead to operate. The desired archi-

tecture requires that only scientific data be sent over the network, not just another represen-

tation of the picture (which is what FLUX does). Ideally, the workstation provides enough

post processing to completely visualize the data.

Design Methodology of SP

The solution to this problem, can be found through the network transparency fea-

tures of netCDF, and an emulation of the hardware virtual graphics paradigm proposed by

Voorhies, and the VX/MVX architecture implemented by Sun Microsystems. The virtual

graphics paradigm can be duplicated in a networked supercomputing environment, substi-

tuting a fast network connection for the virtual memory interface, as shown in figure 1. 4. In

this environment, a UNIX workstation can be programmed to support virtual data connec-

tions to any number of networked supercomputers. As a final step, the workstation can be

programmed to not only render data, but to do final analysis and storage of that data, as pro-

posed by the VX/MVX paradigm. This feature off-loads computational requirements from

the supercomputer, allowing more efficient allocation of expensive CPU and memory re-

sources.

Supercomputer

FDDI/
Ethernet

VME

UNIX
Workstation

0
lO
O
O
h
O

Display

Numeric Computation Conversion & Rendering Display

Formatting

Fig. 1. 4. Distributed visualization paradigm

When implemented in this form, a distributed visualization paradigm provides the

following functionality: A user supplied program running on the supercomputer generates

numeric data. Libraries located on the supercomputer format the data, and transport it over

the network to the UNIX workstation for further processing. The workstation processes the

information, and DMAs rendering commands to the graphics coprocessor, which displays

the results.

There are many benefits to a distributed visualization paradigm in this form. First,

software requirements on the supercomputer side are very small, releasing CPU and mem-

ory resources that can be better allocated solving problems. This feature also has the benefit

of increasing the portability of the entire project. Second, since only the binary results of

computations are transmined, network traffic is minimized. Third, all rendering commands

occur across DMA channels for higher performance. Finally, near real-time graphics pro-

cessing is supported through the systems ability to continuously process, render, and store

data.

The desirable nature of this paradigm is not in the addition of functionality, but the

equity of processor loading. As modern scientific workstations become more powerful, they

can share the processing load. Previous systems such as X, NCAR, and DI-3000 place near-

ly all of the processing load on the supercomputer [25, 6, 8). A distributed visualization par-

adigm, however, places loads across all the processors in the system [11, 23], and has the

added benefit of load balancing. The jobs that each processor executes are explicitly tailored

to the architecture of the processor. The vector supercomputer runs highly vectorized float-

ing point computational software. The UNIX workstation runs general purpose conversion

and formatting routines, and the graphics processor renders data to the display,

SOFTWARE DESIGN

Introduction

The distributed scientific visualization paradigm (SP) was designed using structured

design techniques and implemented with the object oriented techniques described by the Xt

Intrinsics [1]. The system as a whole consists of two parts, the communication libraries that

exist on the supercomputer (Libsp), and the daemon process that runs on the workstation

(SPD).

This particular implementation of SP is concerned with Cray to Sun connections.

Therefore, SPD is implemented on a Sun workstation under SunOS, and Libsp is imple-

mented on a Cray Y-MP under the UNICOS operating system. The methods presented here

are not tied specifically to these platforms, however, in their implementation. All software

was written in the C programming language [4] and all graphics calls are to the X Window

System [19-21]. The networking portions of SP were written to utilize the industry standard

Berkeley Socket libraries [16, 27], so in this respect, SP is not tied to a specific hardware

platform. In fact, Libsp was originally implemented on a Sun workstation before final im-

plementation on a Cray Y-MP, demonstrating the inherent portability.

SP Overall Organization

The primary purpose of SP is to move raw data from a scientific application on the

Cray to a Sun workstation to be viewed. On the Cray, application software formats data, and

sends it across the network with Libsp. See the appendix on Libsp for more details. The

overall process is shown in figure 2. 1.

Application

:: Cray

Libsp

C
V

fH
SPD

Communication
Controller

Sun

Lgraph

Widget

Image

Widget

Fig. Z. l. Data flow diagram

On the Sun, data is received by an SP daemon (SPD) from an ethernet socket con-

nection, formatted, and sent to the appropriate display widget for physical rendering.

SPD Organization

The SPD is organized according to the constraints provided by the X Window Sys-

tem Xt Intrinsics libraries [20], and is shown in figure 2 2. It provides functionality in three

basic areas: communications, visualization, and general data manipulation utilities. The

communications routines consist of a connection handler, and a stream communication han-

dler. The display routines consist of a series of visualization widgets to perform physical

rendering, and the general utilities provide data storage and export capabilities.

TCP/IP
XtMainLoop Image

Widget

Connection
Handler

Stream
Handler

Lgraph
Widget

Fig. 2. 2. SPD organizational diagram

11

SPD communications support consists of routines that open and maintain TCP/IP

sockets for network communication [27], and a device driver /dev/graptucs for local opera-

tion. Socket operations require two virtual data streams: a connection request stream, and a

data stream, therefore, there are two communication handlers. When a remote machine

makes a connection request to the SPD, the connection handler processes that request, cre-

ating a communications context, and initializes a data stream associated with that request

and the remote machine. All further communication with the remote machine is done with

the stream handler.

The stream handler reads information from the remote machine, and converts it to a

form that can be used by the visualization widgets.

Libsp Organization

Libsp is a collection of subroutines that reside on the Cray that give programmers

easy access to the SP protocols. Libsp divides functionality across two example visualiza-

tion areas: Lgraphs and Images. Lgraphs are X-Y line graphs, and Images are color collec-

tions of raster data. Very little front-end processing is done by lib sp. It serves almost strictly

as a communications library.

All software written to utilize Libsp first must initialize an SP protocol channel to an

SP visualization server. This is done with the SpInitialize command. This command parses

the command line parameters, and removes parameters that are specifically directed at SP

operations. Next, Splnitialize opens a socket channel [27], and binds it to the address of an

SPD visualization server. If all is well, SpInitialize returns a handle to the visualization serv-

er called Display. When all operations are complete, an Sp Shutdown command is issued.

This command notifies the SPD visualization server that all computation is complete, and

that all communication channels should be closed. When SpShutdown returns, the program

can be terminated without potential loss of data.

Once a communication channel is open, the visualization models can be invoked

with either a call to SpLgraphOpen, or SplmageOpen. Data can be written to the visualiza-

tion models, and finally, they can be closed with calls to SpLgraphClose, or SplmageClose.

Data flows through libsp in the manner shown in figure 2. 3. A communication chan-

nel is opened and bound by Splnitialize. An SpXXXXXOpen command instantiates a visu-

alization model. Data is written to the model with SpXXXXXAddData command, and the

channel is closed with SpShutdown.

Initalization Data

SpInitialize

Display

Scientific Data

Floating Point
Format

SpLgraphAddData Socket
Conversion

S pShutdown

Fig. 2. 3. Libsp data flow diagram

Writing Distributed Visualization Applications

Writing a distributed visualization application that utilizes the SP methodologies is

a four step process:

Define the precise form that the visualized data should take, and implement
an X11R4 widget to render that data [1].

Determine the scientific data that is necessary to generate the graphics, and
add the appropriate packet types to the SP communications protocols [27].

Add any necessary subroutines to Libsp for formatting and setup of a display
model instance [16].

Implement the computation kernal for the supercomputer.

These four steps obviously involve considerable detail. The implementation of a dis-

tributed visualization display model is a non-trivial task, however, the ability to use a stan-

dard X I IR4 widget to render data provides an easy development solution that can be ported

to a large number of different systems.

Networking

SP functions as a distributed system. The libsp communications library and the SPD

work together to get their job done. This dependence puts a large amount of reliance on the

associated network connection. If networking fails, so does the SP system as a whole. For

this reason, TCP/IP was selected as the communication protocol. For sockets opened in TCP

mode, correct data transmission is guaranteed [27]. If the channel fails, it will close com-

pletely. Errors are detected, and corrected at the protocol layer, so no ECC code is necessary

at the application layer. Other protocols such as UDP, or IP without TCP do not have this

feature, and are therefore unsuitable for this application without significant application over-

head,

14

BENCHMARK

In order to measure the performance of SP, it was benchmarked against the only

other currently available distributed graphics paradigm, the X Window System. The charac-

teristics measured include: Cray user CPU time, Cray system CPU time, Cray memory, net-

work loading, and some qualitative comments on application responsiveness.

Examples

Two visualization models were developed for SP for testing purposes, a line graph

model (Lgraph), and a scalar field model (Image). Both models were written as Xt widgets

for inclusion into SP, and also for ease of porting to the Cray environment for direct testing

without the SP communication interface. More precise definitions for these widgets can be

seen in the section entitled Visualization Widgets.

The Lgraph model was chosen because it represents a visualization method with a

high level of abstraction. The programmer has only cursory control of the way the graph

looks. The data set that the graph represents is made up of a series of floating point values.

The precise method of rendering the graph is unimportant to the application programmer.

Another feature of the Lgraph model is that it utilizes loosely coupled asynchronous com-

munications to improve user responsiveness.

The Image model was chosen because it is nearly the antithesis of an Lgraph model.

Image models by definition include very low levels of data abstraction. The application pro-

grammer knows that the data in an array will directly translate to a color matrix on the

screen. The transport of that matrix is unimportant, but the size and access methods are well

known. The Image model uses a tighly coupled communication scheme to improve data

transfer performance and reduce overhead.

15

Methods

To benchmark SP against X, six example programs were developed. Three examples

were written to use the Lgraph model, and three were written to use the Image model. Of

the examples in each class, one used the SP communication interface, one used the X inter-

face directly, and one provided no display output at all.

The Lgraph example renderes a sin and cos function between the value 0 and a vari-

able L, For each integer increment of L, one hundred data points were calculated and ren-

dered to the display. Increasing L linearly increases the computational and rendering

requirements linearly. An example of the Lgraph demo is shown in figure 3. 1.

~destroy ~escort ~save Sr~eeeme'

dtss X

o, o

0, 6

0, 4

0, 2

1 e 0

-0. 2

-o, e

-0. 2

2 3 4 5
2 le

Fig. 3. 1. Line graph example

The Image example rendered a sequence of frames depicting the diffusion of gas-

eous particles across a space. The image size is the variable in this case, however, increasing

the number of pixels in the image linearly will increase the total computational and render-

ing requirements in a non-linear fashion, As the image gets larger, more frames are com-

puted to show the motion with the same degree of smoothness. An example image is shown

in figure 3. 2.

16

E
~destroy

spD video

' I

, r

Fig 3. 2. Image example

The performance characteristics of all the examples were measured at varying levels

of activity. The Lgraph models were tested rendering output of data sets sized between 5000

and 15000 datapoints. The Image models were tested rendering images between 10, 000 and

250, 000 pixels.

Performance characteristic measurements were taken on the Cray using the UNI-

COS utilities timex, procstat, and procrpt. Timex performs CPU utilization monitoring for

both user and system CPU time [30]. Procstat performs memory utilization monitoring, and

procrpt generates a report from the data generated by procstat [31].

Network loading was measured using the SunOS etherfind command on a Sun work-

station [28]. Etherfind reports on each data packet that is transmitted between a given set of

machines. Information is provided about port connection information, the number of actual

bytes transmitted, and the protocol used. Further filtering of the data generated by etherfind

is used to strip the data of all traffic not associated with a particular test, and to sum the num-

ber of bytes used in the complete run.

18

RESULTS

SP met all functional requirements by decreasing Cray CPU demand, memory utili-

zation, and network loading.

In order to insure that SP was working correctly, a number of small test programs

were developed to exercise the individual operational units of SP. Six of those test programs

became the benchmark suite, and were subject to critical evaluation, but the others yielded

some of their own data as well. One of the most important finds was the quantification of

system CPU requirements involved in network communication processing overhead. There

is a direct relationship between the amount of data written directly to a network socket and

the system CPU usage. Overhead is expected in all I/O operations, but network overhead is

higher than most. Through experimentation, it was found that between 0. 5 and 5 microsec-

onds of CRAY system CPU time were required per byte of data moved across the network.

These values are highly dependant on buffer size, and the priority given to the I/O processes

on both machines (coupling). Larger buffers augmented with tight coupling performed the

best, and smaller loosely coupled buffers performed the worst. Reducing the overhead

involved in the data transfers only becomes possible, however, if two conditions are met.

The process in the receiving workstation must be programmed to accept and process data in

large blocks with high priority (tight coupling), and the writes must be very large (greater

than approximately 10KBytes). If either of these conditions are not met, the Cray CPU over-

head will gravitate toward the 5 microsecond/byte figure. This agrees well with the data col-

lected on the benchmark suite.

Unfortunately, when dealing with scientific visualization problems, large amounts of

data are usually involved, therefore the network overhead both in terms of actual physical

network loading as well as the CPU load associated with the transfer of data can become

costly if not limiting. Writers of SP display models should keep this information under con-

sideration.

19

Overall Comparison

Although there is a large difference between the capabilities of X and SP, great care

was taken to make a performance comparison meaningful. The X and SP versions of the

examples perform exactly the same computations, and render exactly the same output

sequences. It does not matter how much flexibility one system has over the other, provided

the same functionality exists to solve the problem on both platforms. The additional over-

head necessary for one system over the other is simply wasted on the problem if it is not

necessary for the solution of a given problem.

Image Performance

The Image model was able to take advantage of the SP protocols to severely reduce

the load on the Cray and the attached Ethernet network. Since the Image test represents a

non-linear function, it is expected that the results should be non-linear as well.

Figure 4. 1 shows the CPU time demands to render the test sequence of images. At

the high end, CPU time requirements are dropped by an order of magnitude. Most of the

gains in this area were caused by the simplification that SP provides. Furthermore, the SP

image processing routines that are present on the Cray side are vectorized, while X has little

or no vectorization. The obvious non-linearity of X processing time comes as no surprise.

The Image test case is a non-linear function, although it can barely be detected in terms of

CPU performance. The processing requirements of X increase linearly with the size of the

image to be processed, however, when the processing requirements of X are multiplied by

the non-linear processing requirements, the resulting overall graph is obviously non-linear.

1000

800

— 22 — X User

X System

SP User

SP System

No 0 tpul Ussr

No output System

600

sr e o
V e

Vt

e00

200

Pleels

Fig. 4. 1. Cray CPU requirements for image processing

21

Figure 4. 2 shows Cray memory requirements for the test sequence to be approxi-

mately twice as high for X as compared to SP. Both X and SP increase memory demands

linearly as the image size increases. The non-linearities of the Image test sequence do not

have any effect here, so the graphs do not increase exponentially. The slight jog in the mem-

ory allocation curve for both SP and X indicates a UNICOS problem (or feature) in memory

allocation, and may be a topic for further study.

In figure 4. 3, network traffic is shown to be significantly lower using SP, Again, the

non-linearities of the Image test case make themselves apparent. Curiously enough, X does

not move as much data as the theoretical maximum would petmit. Some optimization does

in fact occur. SP, however, using the delta compression algorithms, can potentially do much

better, as it does in this example. For more information about delta compression, see Appen-

dix D. In the worst case, where every pixel on the display changes every frame, SP requires

the theoretical maximum data transfer. The actual transfer requirements in the theoretical

worst case is the number of pixels in the frame times the number of bits per pixel divided by

8 bits per byte. The maximum rate is limited to the speed of the physical connection. The

SP Image example does not allow for cases with less than eight bits per byte, and will trans-

fer data in an 8 bit format in that case. In the theoretical worst case, X can in fact provide

slightly less network traffic to render a particular sequence. Note, however, that once SP

transfers a frame, no further communication is required if the frame needs to be redisplayed.

If an X window becomes suddenly exposed, the entire frame must be retransmitted. There-

fore, in a real-use environment, the network traffic requirements of X can multiply them-

selves several fold over SP.

22

700000
— 76 — x — T — 6P

0- Na Outpul

600000

500000

uOOOOD
10

300000

V
V- — r- ~

700000

o- e — 8 — m - -o - — e- - - -o- - - — e — — — — w

10000D

Pl pa la

Fig. 4. 2. Cray memory requirements for image processing

23

— X — r — 'T — SP
Wsest Case

V
V

W, &, a~, sspC, eccl, ecS

Plrals

Fig. 4. 3. Network loading for image processing

Lgraph Performance

The Lgraph model took advantage of the SP protocols in a different way than the

Image model did. Due to the high level of abstraction that the Lgraph model provides, initial

communication requirements can be slightly higher, but memory and CPU requirements can

be dramatically decreased in a real-use environment. The Lgraph model requires propor-

tionally more system resources as the data set size increases.

Figure 4. 4 shows Cray CPU requirements to render the graph test sequences under

a moderate, sustainable load (500 data points/sec). The CPU savings associated with run-

ning SP for a single case are significant, amounting to approximately 6 Cray CPU seconds

in the 15, 000 data point test case over X. In fact, SP requires only a fraction of a second of

user time, more than the no output case. An additional two seconds of system time was accu-

mulated due to the addition of I/O, Furthermore, once complete, the SP computations never

need to be performed again. Slight variations in the system time are caused by network

uncertainty.

A test of the limits of capacity in the SP Lgraph display model shows what happens

when the visualization pipeline is heavily overloaded. Figure 4. 5 shows Cray CPU require-

ments to render the test sequence of graphs in a high load (40, 000 data points/sec) environ-

ment. Two points of interest on this graph make themselves immediately apparent:

abnormally high system CPU requirements for SP, and highly variable system CPU require-

ments for X.

First, the abnormally high system CPU requirements of SP were not expected. It has

been proposed that the high system time condition is caused by the relative absence of data

buffering, and therefore an abnormally high number of I/O requests. In order to minimize

display lag, data is only buffered on a point by point basis. To test this proposal, buffering

was increased to 400 data points per write (10 KByte buffer). These changes reduced the

number of I/O requests by factors up to 400, but had no real effect on the system CPU

requirements. The values did vary by+/-. 01 seconds, but this represents a change of less

than one percent, and is considered negligible. The actual cause of the high system CPU

time is the high I/O wait times associated with an overloaded connection. While in an I/O

wait condition, UNICOS continuously polls until the write request is granted, driving up the

system CPU demand. Increasing the CPU load above the trivial case (and therefore reducing

the number of data points/sec to be rendered) reduced the system CPU time reduced to the

normal values in Figure 4. 4.

The variability of the system CPU requirements for X are expected. It is caused by

the dynamic nature of X. Since neither the attached network, nor the Cray itself are dedi-

cated systems, differing loads could interfere with the timing and dynamics that X depends

on for operation. In this particular case, the Cray process requests the X server to open a win-

dow, and the X server immediately responds with a window ID. At some random time in the

future, the X server sends an expose event to the Cray process to tell it to draw on the win-

dow. During the random time between the window open and expose event, the Cray is con-

tinuously processing and generating numbers. When the expose event occurs, the Cray

sends X commands to render the graph in the specified window. From that point on, indi-

vidual commands are sent to modify the window to fit new calculated information. The wide

swings in system CPU time are caused by the variability in both the volume and the consis-

tency of network traffic, which previous results have shown to be directly related. A graph

showing system CPU time for three runs of the X example is shown in Figure 4. 6.

Specific research into both of these problem areas could provide interesting informa-

tion about the nature of UNICOS networking. A suggested rule of thumb to avoid the per-

formance penalties associated with overloading the communications channel is to keep the

data flow to less than 1000 data points (one X and two Y values) per second of Cray CPU

time.

eo

— yt—

— T—

- 0-

X User

X System

SP Veer

SP System

No Output User

No Output System

a
o 20
rr

rll

to

W

w

~ 000 $000 0000 10000 12000 te000

Data Points

Fig. 4. 4. Cray CPU requirements for line graph processing

27

2. 00

1. 75

— 29 — X Uee

— St — X Syerem

SP User

— err — SP System

1. 25

11
0
o 1. 0D
V e

Irl

29

/

/

/

/

/

a

0. 75

D. 5D

0, 25 v v- -~

O. OD

1000 2000 5000 1000 5000 5000 7000 5000 9000 10000 11000 12000

Data Palate

Fig. 4. 5. Cray CPU requirements for line graph processing in an overloaded system

17 a
u
u e

ul

1, 75

1. 50

1. 25

1. 00

0. 75

a Ru

22 Ru

Ru

rur — Ru ~ Ru

-Q- Ru

1 User

1 System

2 User

2 System

Ue

3 Symem

SUS7-V

/T'

p. gP
/ / /

//

pg~

0. 50

0. 25

0. 00

2000 /000 6000 8000 10000 12000 1/000

Data Points

Fig. 4, 6. Cray X CPV requirements in an overloaded system

29

Figure 4. 7 shows memory requirements for X versus SP. Since the Lgraph model

does not require additional memory to perform calculations, but simply transfers the data

that it is told to, memory requirements do not increase with data set size as X does. In this

case, a linear increase in the data set size increases the X memory requirements in a linear,

but slightly variable fashion. The variability is caused by the X responses to changes in a

dynamic system,

Figure 4. 8 shows the network loading generated for the Lgraph test sequences.

Oddly enough, X actually requires less network traffic for a single rendering of an Lgraph

than does SP. This is caused by a fundamental difference in philosophy. The SP protocols

transmit all the information required to precisely render the graph in any form. The SP dae-

mon receives and saves all of that information locally so that the graph can be easily regen-

erated without further communication. This improves response time from a user standpoint.

X transmits only enough information for a particular rendering of the data. That information

is not saved, so if aredraw is required, all the data must be transmitted again, With SP, all

network traffic is up-front, but with X it continues until the application is completely closed.

In a real operating environment, these peripheral transfers can cost many times what the up

front costs are.

30

60DOOO

700000

— X — tt

— + — SP

0 Na Oatpat

600000

500000

~ I

40DDOO

300000

200000

100000

— 8 — E3- — 9 — «)- — 9 — -0- - 8 — -0- — 9 — -0

1000 2000 3000 4000 5000 6000 7000 ODOO ODQD '10000 11000 12000

Data Patata

Fig. 4. 7. Cray memory requirements for line graph processing

31

600DOO

— tt — x — V — SP

500000

600000

300000

r

T

2000DO

100000

5000 6000 7000 5000 ODOO 10000 11DOO 12000 13000 14000 15000

Data Palata

Fig. 4. 8. Network loading for line graph processing

32

CONCLUSION

SP and X represent two distinct philosophies to solve the same problem: distributed

scientific visualization in near real-time [15]. SP operates with a very high level of data ab-

straction, while X performs the same operations with little or no data abstraction. Once an

SP job has completed, the connected workstation contains all the necessary information to

continue interactive visualization and manipulation without supercomputer intervention. X,

however, requires that the supercomputer continue to process until all computations and

user manipulations of the data are complete. These additional requirements that X imposes

add unnecessarily to the overall cost of performing scientific calculations on a supercomput-

er in terms of money and accuracy. SP removes these problems and allows the supercom-

puter to perform more efficiently.

Data Buffering

When and how data is buffered when it is generated from the supercomputer is of

great significance to the performance of SP. The larger the data buffers, the greater the lag

between computation, and visualization. Increasing the buffer sizes, however, reduces the

system CPU load, and overall network traf lie because larger more efficient packets are used

at the transport level, and less UO waiting occurs. In general, these questions must be

answered by the application programmer. Given a value for an acceptable time delay, the

application programmer must know the time required to compute each data point (highly

application specific) in order to determine the number of data points that can be buffered

without violating the acceptable time delay criteria. In more complex visualization models

than were shown here, the time delay from network transport to physical rendering must also

be added, and the buffer sizes reduced accordingly.

In the Lgraph example, network transport and rendering times can be neglected with

33

respect to the computational time requirements if the transfer rate is less than approximately

1000 data points (one X and 2 Y values) per second.

In the Image example, the network transport times cannot be neglected due to the

large transfers that must take place to render the associated images. This lag must be com-

puted depending on the limits of the physical network connection. Since the data received

is close to the form necessary for display, negligible time is required to render the image

once the data is in the workstation, Since the memory requirements per individual frame are

high for even modest frame sizes, it is doubtful, however, that multiple frames could be effi-

ciently buffered.

SP was designed to perform near real-time scientific visualization. For this reason,

buffer sizes are set by default to give performance as close to real-time as possible [26].

Resource Allocation

SP and X differ widely on system resource allocation. SP requires that all system

resources be used once, and then disposed. The X Window System, however, allocates and

holds system resources undl the user has completed all manipulations. The difference is as

follows, where X sends a series of drawing commands to render a display, SP sends all of

the scientific data that makes up the display. In many cases, the scientific data is slightly

larger than the associated drawing commands, but once sent, never needs to be resent. Sim-

ilar conclusions can be drawn from memory and CPU resources for similar reasons.

X does not depend on the attached workstation for anything more than display rights.

SP utilizes the workstation as a tool with a life longer than the computational problem. This

point cannot be emphasized enough.

34

Performance Considerations

In order to achieve high overall performance of a distributed scientific visualization

paradigm of any type, several important issues must be addressed.

On the workstation, the following problems must be dealt with: communication

latency, and buffering. The latency in processing incoming data can have a large impact on

the operation of the distributed system as a whole. The higher latency times of the Lgraph

example drove the cost of network communication up to 5 microseconds of Cray CPU per

byte of network data transfer, because of the overall reduction in channel capacity and

resulting I/O wait scheduling problems on the supercomputer, Buffering requirements are

also related to latency times. Larger receive buffers on the workstation can mitigate slower

processing provided the data set is small enough. Large data sets can quickly destroy this

proposition.

On the supercomputer, the following implementation problems must be dealt with:

vectorization, and the maximum rated speed of the communications channel. In order for a

distributed scientific visualization paradigm to be worthwhile, the supercomputer applica-

tion must take advantage of the machine architecture and achieve the highest possible per-

formance. This is the primary reason for a distributed visualization paradigm. Problems do

occur, however, in cases where large amounts of data are generated faster than the entire

visualization pipeline can handle it, Supercomputer system CPU usage increases dramati-

cally due to I/O wait scheduling in configurations where the channel is extremely over-

loaded. In this case, additional buffering does not help. A knowledge of channel capacity

can help the application programmer properly tailor the data requirements of the application

to a level that can consistently reduce supercomputer system overhead.

Final Conclusions

In comparison to the closest available alternative, the X Window System, this dis-

35

tributed scientific visualization paradigm delivers what it promises: better supercomputer

CPU and memory utilization, and decreased network loading. In some cases, CPU require-

ments can be reduced by an order of magnitude, while memory requirements are reduced to

I/3. Network utilization and interactive performance are highly dependent on the applica-

tion, but can also improve significantly.

36

REFERENCES

Ackerman, Mark, Widget Writing, Xhibition '90, MIT X Consortium, San Jose, CA,
May 1990.

Barton, Jim, Distributed Visual Processing, Silicon Graphics, Inc. Presentation,
SIGGRAPH '90, Silicon Graphics, Inc. , Dallas, TX, August 1990.

Brunhoff, Todd, VEX (Video Extension to X) Your Hardware, Xhibition '90 Con-
ference Proceedings, Tektronix, Inc. , San Jose, CA, May 1990, pp. 31-36.

C Pro ammer's Guide, Sun Microsystems, Inc. , Mountain View, CA, 1989, pp. 78-
82.

Chemtool, Cray Research, Inc. , Minneapolis, MN, 1990.

Clare, Fred, NCAR Gra hics User Guide Version 2 00, National Center for Atmo-
spheric Research, Boulder, CO, August 1987.

Cra Y-MP Functional Descri tion Manual, Cray Research, Inc. , Minneapolis, MN,
1989, pp. 2. 12-2. 21.

DI-3000 User Guide, Precision Visuals, Boulder, CO, 1989.

Dyer, D. Scott, apE Providing Visualization Tools for a Statewide Supercomputing
Network, Proceedings of the 24th Semi-Annual Cray Users Group Meeting, Colum-
bus, OH, September 1989, pp. 237-241.

10. Foley, J. D. , and Dam, A. Van, Fundamentals of Interactive Com uter Gra hics, Ad-
dison Wesley, New York, NY, 1982.

11. Fraser, M. D. , Galiano, R. A. , and Schaefer, M. E. , Modeling the Cost of Resource
Ad r Dl lh dc t hd~lDi 4. N h ll, TN, V ldo, ~ . 4,
April 1990, pp. 151-164.

12. Guitard, R. and Ware, C. , A Color Sequence Editor, ACM Transactions on Gra hics,
New York, NY, Vol. 9, No. 3, July 1990, pp. 338-341.

13. Maillot, Patrick G. , XGL Architecture, SunTech Journal, Peterborough, NH, Vol. 3,
No. 2, May 1990, pp. 10-22.

14. Marshall, Robert, Visualization Methods and Simulation Steering for a 3D Turbu
lence Model of Lake Erie, Proceedings of the 1990 Symposium on Interactive 3D
Graphics, Com uter Gra hics, Los Alamitos, CA, Vol. 24, No. 2, March 1990, pp,
89-97.

15. Morse, Alan, Visualizing 'Near Real-Time', SunTech Journal, Peterborough, NH,
Vol. 3, No. 3, July 1990, pp. 52-56, 60-62.

16. Network S stem Calls Reference Manual, Cray Research, Inc. , Minneapolis, MN,
1990.

37

17. Ohio Supercomputer Center Graphics Project, apE 2. 0 Technical Info, Ohio Super-
computer Center, Columbus, OH, March 1989.

18. O'Reilley, Tim, The Xlib Pro rammin Manual, O'Reilley & Associates, Sebas-
topol, CA, 1990.

19. O'Reilley, Tim, The Xlib Reference Manual, O'Reilley & Associates, Sebastopol,
CA, 1990.

20, O'Reilley, Tim, The Xt Intrinsics Pro ammin Manual, O'Reilley & Associates,
Sebastopol, CA, 1990.

21. O'Reilley, Tim, The Xt Intrinsics Reference Manual, O'Reilley & Associates, Se-
bastopol, CA, 1990.

22. Packard, Keith, Server Internals, Xhibition '90, MIT X Consortium, Cambridge,
MA, May 1990.

23. Reed, M. W. , Distributed Simulation Using Distributed Control Systems, Simulation
~Di est, Nashville, TN, Volume 20, No. 4, April 1990, pp. 143-150.

24. Rew, Russel, K. , netCDF User's Guide, Unidata Program Center, Boulder, CO, Jan-
uary, 1990.

25. Scheitler, R. W. and Gettys, J. , The X-Window System, ACM Transactions on
~Gra hics, New York, NY, Vol. 5, No. 2, April 1986, pp. 79-109.

26. Shelef, D. Gary, Developing Graphics in Real-time, SunTech Journal, Peterborough,
NH, Vol. 3, No. 3, July 1990, pp. 64-74.

27. SunOS 4. 1 Network Pro ammin ~ Manual, Sun Microsystems, Mountain View, CA,
1990.

28. SunOS 4. 1 Reference Manual, Sun Microsystems, Inc. , Mountain View, CA, 1990.

29. Thompson, John M. , Advanced Scientific Visualization Methods For Analysis of
Technical Data, Sun Tech Journal, Peterborough, NH, Vol. 3, No. 3, July 1990, pp.
76-86.

30. UNICOS User's Guide, Cray Research, Inc. , Minneapolis, MN, 1990.

31. UNICOS Performance Monitorin Utilities, Cray Research, Inc. , Minneapolis, MN,
1990.

32. Voorhies, Douglas, David Kirk, and Olin Lathrop, Virtual Graphics, SIGGRAPH
'88, Com uter Gra hics, Los Alamitos, CA, Vol. 22, No. 4, August 1988, pp. 247-
253.

33. VX/MVX Technical White Paper, Sun Microsystems, Inc. , Mountain View, CA,
1990.

38

APPENDIX A

VISUALIZATION WIDGETS

Introduction

The visualization widgets provide the low level rendering functionality needed by

SP. They are implemented as Xll R4 "widgets" to facilitate their reuse in other areas as well

as to simplify the comparison of a direct Xl1 implementation vs SP, Note that these widgets

were subclassed from Core. Therefore, few modifications are necessary to compile and run

them under any Xt based widget scheme. Versions of these widgets have successfully run

under the R4 Athena Widgets (Xaw), the R3 Athena Widgets, and the Open Look Intrinsic

Toolkit (OLIT). There are two visualization widgets: the Lgraph widget, and the Image wid-

get. The Lgraph widget turns X- Y scientific data into a line graph, and the Image widget

turns raster data into a color image.

Lgraph Widget

A widget to display X- Y datasets.

Synopsis

¹include (Xl I/StringDefs. h&

¹include (XI I/Intrinsic. ho
¹inclu de &Xv w/Lgraph. ho
widget = XtCreateWidget(widget, lgraphWidgetClass, . . .);

Class Hierarchy

Core-&Lgraph

Description

The Lgraph widget is used to display X- Y data in a line graph form. It receives input

from the internal function call LgraphAddData, and plots it. A single callback is supplied

(specified by XtNcallback) to support additional functionality defined by the programmer.

There are a number of display options including the number and size of tick marks, grid-

lines, and colors.

39

1. 0
Title

0. 5

-0. 5

-1. 0
-10 0

X
10

Fig. A. l. Line graph (Lgraph) widget

Resources

When creating an Lgraph widget, the following resources are retrieved from the ar-

gument list or from the resource database:

Resource
XtN width

XtNheight
XtNx
XtNy
XtNxdividers
XtNydividers
XtNxdivisions
XtNydivisions
XINxminor

T~
lIlt

int
lIlt
nlt
Boolean
Boolean
alt
nl't

alt

Default
400
400
None
None
FALSE
FALSE
5
4
5

XtNticksize
XtNmticksize
XtNxlogscale
XtNylog scale
XtNforeground

int 10
int 6
Boolean FALSE
Boolean FALSE
Pixel Black

XtNyminor int

~D' ri

Total width of widget in pixels
Total height of widget in pixels
X position of widget relative to parent
Y position of widget relative to parent
Division lines along the X axis
Division lines along the Y axis
Number of tick marks/lines along X axis
Number of tick marks/lines along Y axis
Number of minor tick marks benveen major tick
marks on the X axis
Number of minor tick marks between major tick
marks on the Y axis
Size in pixels of the major tick marks
Size in pixels of the minor tick marks

Compress x to log scale
Compress y to log scale

Foreground color

40

XtNbackground
XtNcolor0
XtNcolor 1

XtNcolor2
XtNcolor3
XtNcolor4
XtNcolor5
XtNcolor6
XtNcolor7
XtNshiftMode
XtNtide
XtNstring
XtNxlabel
XtNylabe1
XtNlabelFont
XtNfont

Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
Pixel
tnt
char *
char *
char *
char ~

char *
char *

White Background color
Black Color of trace 0
Red Color of trace 1

Green Color of trace 2
Blue Color of trace 3
Yellow Color of trace 4
MagentaColor of trace 5
Orange Color of trace 6
Gray Color of trace 7
10 Percentage to jump on overshoot
NULL Text printed on top of graph
NULL Internal holder for non-printing title
"X" X axis label
"Y" Y axis label
vtsingle Text font to use on labels
vtsingle Text font to use on numeric tick markers

The new resources (not inherited from superclasses) associated with the Lgraph

widget are:

XtNxdividers Specifies the existence of division lines in the vertical direction
instead of tick marks on the X axis.

KtNydividers Specifies the existence of division lines in the horizontal direction

instead of tick marks on the Y axis.

XtNxdivisions Represents the number of areas the X axis will be divided into.

XtNydivisions Represents the number of areas the Y axis will be divided into.

XtNxminor Represents the number of minor tick marks between each major
division (see XtNxdivisions) on the X axis.

XtNyminor Represents the number of minor tick marks between each major
division (see XtNydivisions) on the Y axis.

XtNticksize Represents the length in pixels of the major division tickmarks

(see XtNxdivisions and XtNydivisions.)

XtNmticksize Represents the length in pixels of the minor division tickmarks
located between the major division tickmarks (see KtNxminor

41

and XtNyminor.)

XtNxlog scale Specifies that the X axis should be log scale (currently not imple-
mented.)

XtNylogscale Specifies that the Y axis should be log scale (currently not imple-
mented.)

XtNforeground Specifies the default foreground color for axis and lables.

XtNbackground Specifies the default background color used for everything dis-

played in an Lgraph widget.

XtNcolor[0-7] Specifies the color for each data trace on the graph. If there are
more than 8 traces, colors will be recycled (mod 8.)

XtNshiftMode Represents the percentage that the graph should extend the mini-
mum or maximum limits by if real-time data exceeds the current
minimum or maximum values.

XtNtitle Specifies the text that will be placed in the center top portion of
the graph to label it. This text will be displayed using XtNlabel-
Font.

XtNstring Specifies text that will not be displayed anywhere, but is useful to
keep track of internal parameters.

XtNxlabel Specifies text that will be displayed under the X axis using the Xt-
NlabelFont.

XtNylabel Specifies text that will be displayed to the left of the Y axis using
the XtNlabelFont.

XtNlabelFont Specifies the font that will be used in displaying labels.

XtNfont Specifies the font that will be used in displaying numeric data.

Translations and Actions

The following are the default translation bindings that are used by the Lgraph wid-

42

&Btn1 Down&: notify()

The Lgraph widget supports the following actions:

Processing application callbacks (XtNcallback) with notify().

Programmatic Interface

To create an Lgraph widget instance, use XtCreateWidget and specify the class vari-

able lgraphWidgetClass.

To destroy an Lgraph widget instance, use XtDestroyWidget and specify the widget

ID of the Lgraph widget.

To add a data point to the Lgraph widget's database, use lgraphAddData, and specify

the widget ID of the Lgraph widget, and the data that should be added and displayed.

lgraphAdd Data(w, x, yv, yvc)
LgraphWidget w;
double x;
double yv[];
int yvc;

The parameter w is an Lgraph widget created with XtCreate Widget. The x parameter

is the x value of the X-Y data. The yv[] (y vector) is an array of y values that will be asso-

ciated with the x value, The yvc (y vector count) is the length of the yv[].

To modify the Lgraph widget's graphing limits, use lgraphSetLimits, and specify the

widget ID of the Lgraph widget, and the new X, and Y limits. Note that the limits are not

43

specified as resources! They must be set using lgraphSetLimits, otherwise they default.

lgraphSetLimits(w, minx, miny, maxx, maxy, mode)
LgraphWidget w;
double minx, miny, maxx, maxy;
int mode;

The w parameter is an Lgraph widget created with XtCreateWidget. The min and

max parameters are the display limits for the x and y axis. These are not hard limits. If a limit

is exceeded, the Lgraph widget will expand the axis depending on the mode. The mode is

the percentage that the limits will expand by if they are exceeded. It is an integer values, so

for example, a mode of 10 means that the display will be increased by 10% if the limits are

exceeded.

Image Widget

Convert field data to a color image for display.

Synopsis

¹include &Xl I/Intrinsic. h&

¹include &Xvw/Image. h&

widget = XtCreateWidget(widget, imageWidgetClass, . . .);

Class Hierarchy

Core-&Image

Description

The Image widget converts a field of scalar data into a color raster display. One hun-

dred and twenty eight colors are supported (7 bits). Input data is provided either in the form

of a full field linear array of 8-bit values (the topmost bit is truncated - reserved for future

use), or a delta form.

The image data of an ImageWidget is stored in one of two forms, either a pixmap,

or an XImage. The pixmap is resident on the display server, is fast to display, but slow to

change. The XImage is resident in the client, is fast to change, but slow to display. All of the

scientific data formats use XImages, but the pixmap interface is there for convenience.

There is no resource value for an initial XImage, it's size must be specified as XtNwidth,

and XtNheight, and its value with an ImageSet command once the widget has been created.

One additional problem occurs with pixmaps: they are incompatible between different

depths. In other words, don't try to display a bitmap (depth = 1) on a color display (depth)

1), because it won't convert properly, and a Bad Match error will result. This problem does

not occur with Xlmages.

Resources

When creating an Image widget, the following resources are retrieved from the ar-

gument list or from the resource database:

Resource T~
XtNwidth int
XtNheight int
XtNx lot
XtNy alt
XtNbitmap Pixmap
XtNcallback Callback
XtNforeground Pixel
XtNbackground Pixel

Default
400
400
None
None
None
None
Black
White

D~ri
Total width of widget in pixels
Total height of widget in pixels
X position of widget relative to parent
Y position of widget relative to parent
Image to display
Action translation

Foreground color

Background color

The new resources (not inherited from superclasses) associated with the Image

widget are:

XtNbitmap Specifies an image to be displayed in the window. If XtNwidth
and XtNheight are not specified, the XtNbitmap is queried for
width and height, and XtNwidth and XtNheight are set
accordingly.

XtNcallback Specifies the callback interface to the notify() action.

XtNforeground Specifies the default foreground color (an Image widget may be
blank.)

XtNbackground Specifies the default background color used for everything dis-
played in an Image widget.

T?anslatlons and Actions

The following are the default translation bindings that are used by the Lgraph

widget:

&Btn1 Down&; notify()

The Image widget supports the following actions:

Processing application callbacks (XtNcallback) with notify().

Programmatic Interface

To create an Image widget instance, use XtCreateWidget and specify the class vari-

able imageWidgetClass.

To destroy an Image widget instance, use XtDestroyWidget and specify the widget

ID of the Image widget.

To rapidly change the current pixmap that is displayed by the widget, use the Imag-

ePixmapSet command.

ImagePixmapSet(w, newmap)
ImageWidget w;
Pixmap newmap;

Ordinarily, the current pixmap is changed by setting XtNbitmap with the XtSetVal-

ues command. This implies, however, an XClearWindow call to first clear the window be-

fore the new XtNbitmap is displayed. Using Image Set gets around this problem, and sets the

resource value directly, handling all the necessary screen I/O without going through the nor-

mal Xt process. If the new pixmap is a different size than the old one, ImagePixmap Set will

make a geometry request and alter its size to fit the new XtNbitmap.

46

To rapidly change the current image that is displayed by the widget, use the Imag-

eSet command.

Image Set(w, image)
ImageWidget w;
Xlmage *image;

Images are the display independent, client resident version of a pixmap. They are

faster to manipulate locally, but require some overhead to transfer in their entirety. Using the

ImageSet command will rapidly change the currently displayed image to a new value.

The Image widget also supports a 7-bit scientific data format. One hundred twenty

eight colors are allocated when the widget is created. Most color screens are 8-bit, allowing

256 colors, however, allocating the full color set would preclude other applications, and

mess up currently running applications. For this reason, a 7-bit implementation was chosen.

The data format for the scientific data format is simply an array of 8-bit unsigned integers

(unsigned char). The width and height of the picture is assumed to be the same as the cuirent

width and height of the widget. Colors are allocated with the least dense color as zero, and

the most dense color as 127. Therefore, to represent a scalar field, the color of a point is sim-

ply:

127X Color =
Max xrin

The ImageScientificSet command is used to convert the 7-bit array of data to a pix-

map that can be displayed. The format of the ImageScientificSet command is as follows:

ImageScientificSet(w, data)
ImageWidget w;
unsigned char data[];

Where the size of the array data[] is determined by XtNwidth "XtNheight. Once it

receives data, and converts it to Pixmap form, ImageScientificSet calls ImageSet to display

47

the data, and properly set the current Pixmap (XtNbitmap).

The Image widget can also accept data in the scientific delta format. This format re-

lies upon the existence of a correct current Image, and relays only the changes that need to

be made to the current Image to correct it. Data is sent in a buffer, similarly to the 7-bit sci-

entific data format, with the exception that it is segmented. The format consists of a series

of 8-bit values:

Command, Length, Data, Data, . . . , Data, Command, Length, Data, .

Command is a single 8-bit field that is either 'S ' for skip, 'U' for use, or 'D' for done.

The Length is an 8-bit (0-255) unsigned integer that tells how many data bytes follow for a

use command, or how many bytes to skip for the skip command. The Data area is only

present for the 'U' command, and represents data that should be copied into the new pixmap

from the old. The 'D' command is not followed by a length, and signifies the end of the buff-

er. For more information about delta format, see Appendix D.

The scientific delta format permits rapid rendering over a potentially slow network

connection. The command for processing scientific delta format buffers is ImageDeltaSet.

ImageDeltaSet(w, delta)
Image Widget w;
unsigned char delta[];

The end of the buffer is designated by the 'D' command, so no length parameter is

required. The ImageDeltaSet command calls ImageSet once it has computed the new image.

48

APPENDIH B

SP COMMUNICATIONS LIBRARY

Introduction

Libsp is the programming interface to the distributed graphics rendering package SP.

Using SP to render graphics is much simpler than using full blown graphics packages like

DISSPLA or DI-3000, as it has fewer display features, but it has the benefit of offloading

graphics processing to the graphics display server. This feature allows highly vectorized su-

percomputer programs to run more efficiently than they could otherwise. Furthermore, the

libsp library is much smaller than full-blown graphics packages, allowing the application

more memory room than is otherwise available.

Programs that use libsp to render graphs are structured into five basic steps: initialize

the communication channel, initialize an object instance, write data to the object, close the

object, and shutdown the communication channel.

To write a program that uses libsp, include the header file &sp. h&, and link with the

libsp library as in the following example:

cc -o demo demo. c -lsp -lm

To run a program that uses libsp, first start the sp daemon on the machine that will

be doing the display work. Next, tell the computational program which sp daemon to con-

nect to by either setting the environment variable DISPLAY (with the traditional X Window

System notation), or with the -display option on the command line. Any of the following

examples will work correctly:

Example I (command line server resolution):

demo -display adrastea. tamu. edu

49

demo -display adrastea. tamu. edu:0
demo -display 192. 58, 110. 60
demo -display 192. 58. 110. 60:0

Example 2 (environment variable server resolution):

setenv DISPLAY adrastea. tamu. edu
demo

General Purpose

The general purpose routines are common to all of the SP display models. Their pri-

mary concern is to initialize the communications channel and shut it down in an orderly

fashion when all communications are done.

SpInitialize

Open a communication channel to an SPD on another computer.

¹include &sp. h&

Display SpInitialize(urge, argv)
(int *)argc;
(char *)argv[];

Splnitialize() receives as input the command line parameters. It parse s the command

line looking for display options, If any options are found that it understands, they are re-

moved from the argc, argv list. Any options SpInitialize finds that it does not understand are

left intact. Allowable display options are:

-display address

Where address is either the name or TCP/IP address in dot notation of a workstation

running the sp display daemon. libsp also looks in the environment variable DISPLAY for

a default address to connect to. If the -display option is used, that address will be used over

the environment variable DISPLAY. Note that SP will take either the standard X notation

address:screen or just address.

50

SpShntdown:

Stop the SP communications channel in an orderly fashion.

¹include &sp. h&

void Sp Shutdown(display)
(Display)display;

SpShutdown() is called when all graphics data has been sent, and the program is

ready to quit. It is not absolutely necessary for SpShutdown() to be called when a program

exits, as any currently open network sockets will be closed by UNIX. Calling Sp Shutdown()

before exit(), however will reduce the number of errors on the server side, and is considered

to be the definitive way to stop an SP graphics driven program.

Line Graphs

Line graphs display data as their name implies. Data sets are made up of groups of

X- Y data. SP assumes that data is given to it in the order that the lines should be connected.

No curve fitting is done, the graphs are simple connections of data points. An example of a

program that uses the line graph display model is shown below.

/4

DEMO. C

Change History:
6-Jul-90/mwl - Original Issue

4/

¹include &math, h)
¹include "sp. h"

main(argc, argv)
int argc;
char *argv[];
(

Display display;
Graph graph;

51

float x;
fioat max;
float yv[2];
int i;

if ((display = Spinitialize(&argc, argv)) & 0)
(

printf("Error: Can't open graphW');
exit(0);

]

if (argc & 1)
max = atof(arg v[1]);

else
max = 5. 0;

if ((graph = SpLgraphOpen(display, 0, -1. 0, max, 1. 0, "Angle", "Value", "Sin X")) &0)
[

printf("Error: Can't open graphut");
exit(0);

]

SpLgraphGridlines(display, graph, TRUE, TRUE);
SpLgraphDivisions(display, graph, IGNORE, 10);

for (x = 0. 0; x & max; x += 0. 01)
[

for (i = 0; i & 20000; i++)
(

yv[0] = sin(x);
yv[1] = cos(x);

]
SpLgraphAddBinary Data(display, graph, x, yv, 2);

]

SpLgraphClose(display, graph);

SpShutdown(display);

)

SpLgraphOpen

Create an instance of a line graph (Lgraph).

52

¹include &sp. h&

Graph SpLgraphOpen(display, minX, min Y, maxX, max Y, xlabel, ylabel, title);
(Display)display;
(double)minX;
(double)min Y;
(double)maxX;
(double)max Y;
(char *)xlabel;
(char *)ylabel;
(char *) title;

The display parameter is a value returned from Spinitialize0. The xlabel, ylabel, and

title can be assigned NULL to let their values default.

SpLgraphAddData

Add a data point to an already instantiated Lgraph.

¹include &sp. ho

void SpLgraphAddData(display, graph, x, yv, yvc)
void SpLgraphAddBinaryData(display, graph, x, yv, yvc)
(Display)display;
(Graph) graph;
(float)x;
(float ~)yv;
(int)yvc;

void SpLgraphAddDataD(display, graph, x, yv, yvc)
(Display)display;
(Graph) graph;
(double)x;
(double *)yv;
(int)yvc;

SpLgraphAddData is the most generic way to display data generated on any archi-

tecture. It uses the ASCII protocols built into SPD to communicate. SpLgraphAddBinary-

Data converts all data to IEEE floating point formats before sending it to SPD using the

binary communication protocols. SpLgraphAddBinaryData is currently only supported on

53

Cray Y-MPs, but when used on that platform, it is about five times faster than SpLgraphAd-

dData.

SpLgraphAddDataD is the double version of SpLgraphAddData. It takes as param-

eters doubles instead of floats. Its use is not recommended, because it also uses the ASCII

protocols, and is very slow.

The graph parameter is a value returned from SpLgraphOpenO, Each point on a

graph is a combination of an X value, and one or more Y values. The X value is stated in the

parameter x, and the multiple Y values are stated in the parameter yv (Y-Vector). The Y val-

ues are in vector form (an array of doubles), whose length is determined by the parameter

yvc.

SpLgraphGridlines

Tum gridlines on (instead of tickmarks) for an already instantiated Lgraph.

¹include &sp. h)

void SpLgraphGridlines(display, graph, xgridlines, ygridlines)
(Display)display;
(Graph) graph;
(Boolean)xgridlines;
(Boolean) ygridlines;

The xgridlines and ygridlines parameters specify whether lines or just tick-marks

will be drawn on the graph at the x and y axis label values, A value of TRUE, (non-zero)

specifies that lines will be drawn. A value of FALSE (zero) specifies that only tick-marks

will be drawn.

SpLgraphDivisions

Set the number of divisions on the X and Y axis for an already instantiated Lgraph.

54

¹include &sp. h&

void SpLgraphDivisons(display, graph, xdivisions, ydivisions)
(Display)display;
(Graph)graph;
(int)xdivisions;
(int) ydivisions;

The xdivisions, and ydivisions parameters specify the number of tick marks on the

x and y axis that will be displayed. If either value is set to IGNORE, then it will default.

SpLgraphClose

Close the connection to an Lgraph. After the connection is closed, no further data

can be added to the Lgraph.

¹include &sp. h&

void SpLgraphClose(display, graph)
(Display)display;
(Graph) graph;

SpLgraphClose() is called when all data to a particular graph has been sent. The

graph parameter is a value returned from SpLgraphOpen().

Images

Images are used to represent two dimensional matrices. Once the width and height

are set, SP assumes that it will stay constant for the duration of the connection. For an image

of width WIDTH, and heigh(HEIGHT, access should be done in the following manner. To

set a value at point (x, y), use:

image [x + y
* WIDTH] = value;

Where value is an unsigned char (0-255). Due to color palatte and processing constraints,

55

only one image may be open at a time. An example that uses that image display model is

shown below.

¹include "sp. h"

¹define WIDTH 400
¹define HEIGHT 400
¹define COLORS 40

unsigned char data[500 * 500];

main(argc, argv)
int argc;
char ~argv[];
[

Display display;
int width, height;
Image image;
int i, x, y;
register int j;

display = Spinitialize(¹r urge, argv);

if (argc & 1)
[

width = atoi(argv[1]);
height = width;

]
else
[

width = WIDTH;
height = HEIGHT;

]

image = SplmageOpen(display, width, height, "blue", "red", COLORS);

printf("Animating. . . M');

/* provide some animation */
for (i = 0; i & height; i+= 4)
[

for (j = 0; j (width* i; j++)
data[j] = COLORS — I;

56

for (; j & width * height; j++)
data[j] = 0;

for(y= i; y & height kk(y &(i+COLORS*3)); y+=3)
[

for (x = 0; x & width; x++)
(

data[x + y
* width] = COLORS - (y - i) /3 - 1;

data[x + (y + 1) * width] = COLORS - (y - i) / 3 — 1;
data[x + (y + 2) * width] = COLORS - (y - i) / 3 - 1;

]
]

SplmageAddData(display, image, data);

)

SpImageClose(display, image);

Sp Shutdown(display);

)

SpImageOpen

Create an instance of an Image.

¹include &sp. h&

SplmageOpen(display, width, height, lowcolor, highcolor, numcolors)
Display display;
int width;
int height
char *lowcolor;
char ~highcolor;
int numcolors;

An image is specified as a matrix with a particular color mapping. Colors are speci-

fied as a highcolor, a lowcolor, and an integer number of color incrementes (numcolors) used

to fade between the high and low. When in operation, the values 0 to numcolors - 1 will map

to the lowcolor faded to the highcolor respectively. Values over numcolors — 1 will map to

57

the highcolor. The lowcolor and highcolor are represented as ASCII strings like "red" or

"blue". The only consideration required when specifying colors is that they must be in the

color database of the X server providing display service to the SPD. This information can

be found by looking in the /usr/lib/Xl1/rgb. txt file on the computer that is running SPD. If

a color mapping failes, it will default to the default foreground color of the SPD, This

scheme was chosen to give the application programmer as much control as possible over the

color palatte to be represented.

SpImageAddData

Send a frame of image data to be displayed by the SPD,

¹include &sp. h&

SpImageAddData(display, image, data)
Display display;
Image image;
char ~data;

The buffer (char *)data is the matrix of values mapped to the appropriate colors as

specified in SpImageOpen. It is assumed to be of width and height specified in the Splmag-

eOpen. If for some reason the width and height change, erroneous results will occur.

SpImageClose

Closes an image connection.

¹include (sp. h&

Splm age Close(display, image)
Display display;
Image image;

SpImageClose returns nothing, but must be executed before another image can be

opened.

58

APPENDIX C

CRAY TO IEEE DATA CONVERSION

Introduction

Cray Research, Inc. uses nonstandard formats for all floating point data. In order to

write binary data files on a Cray that can be later read on another machine, conversion rou-

tines must be used, UNICOS does not currently supply subroutines that can convert Cray

floating point formats to the IEEE standard formats that can be read by most computers, so

the programmer is left to do it alone. These conversion routines are expected in the next re-

lease of UNICOS.

IEEE Format

Most computers use ANSI IEEE 754-1985 standard floating point formats to store

numeric data[1]. Under this standard, single precision numbers are 32 bits in length, and

double precision numbers are 64 bits in length. Each number is made up of three parts: a

sign bit, mantissa, and exponent, in the following format:

Exponent

63 62 52 51

Mantissa

Fig. C. l. IEEE 64 bit floating point format

In the double precision form, the exponent is an eleven-bit value, biased by 1023,

the Mantissa is a normalized fraction, and the sign bit is set when the value is negative. The

single precision form is similar, except for the smaller bit fields. In general, floating point

values in IEEE format can be written in the form:

1] sisn2 (exponent — b(as)
1 y

59

Cray Research Format

Cray Research has a different definition for the storing floating point numeric

data[2], Since Crays are 64-bit per word machines, single precision is considered to be 64

bits in length, and double precision is 128 bits. Single precision on a Cray is considered dou-

ble precision on IEEE format machines. Like the IEEE format, the Cray format consists of

a sign bit, mantissa, and exponent in the following format:

Exponent

63 62 48 47

Mantissa (f)

Fig. C. Z. Cray 64 bit floating point format

Where the exponent is a 15 bit biased integer with a bias value of 400008, and the

mantissa is a 48 bit signed fraction. Since the sign of the entire number is located in bit 63,

the mantissa is an unsigned, normalized value. The actual value of a number stored in this

format is represented as follows:

value = (-I)' 2 ~ ' ~i 0 f

Cray to IEEE Conversion

Generating binary data files on a Cray for later processing on another machine is not

possible unless the data is written in a form that can be read by the other machine. Since the

64 bit Cray floating point format is the most often used, and 64 bit data formats are available

on a large number of smaller computers, an example showing the conversion of Cray 64 bit

to IEEE 64 bit is given here.

To convert Cray 64 bit floating point numbers to IEEE 64 bit floating point, the con-

version process proceeds as follows: First, the sign bit, mantissa, and exponent are removed

froin the original number, and appropriately denorinalized. Next, the mantissa and exponent

are renormalized into IEEE form, and all three parts are recombined, A small section of C

code illustrates the process:

unsigned int crayRoatToIEEE(f)
float f;
(

unsigned int i, iiptr, sign, exponent, coei'f, new;

/~ special case at zero */
if (f == 0. 0)

return (Ox0000000000000000);

/* break the old value down into it's components */
iptr = (unsigned int *)&f;
1 = *iptr;
sign = i & Ox8000000000000000;
frexp(f, &exponent);

/* modify the coefficient so it fits the l. f format ~/

coeff = ((i & Ox0000ffffffffffff) « I) & Ox0000ffffffffffff;
exponent-;

/* rebias and check for exponent overflow */
exponent += 1023;

if (exponent & Ox7fe II exponent (1)
return (Ox7ff0000000000001); /* not a number */

/~ put the new value together from scratch "/
new = sign I (coeff && 4);
new I= (exponent) «52;

return (new);

Special care must be taken to handle the three overflow possibilities. Zero is a special

case and must be detected and handled by itself. Since the Cray format has a larger exponent

than IEEE, an overflow can occur in either the positive or negative direction. In this case,

61

there is a bit shifted out of the 10 bit wide IEEE format exponent when an overflow occurs.

The response to an overflow condition can be varied, but u su sally implies either storing the

value Ox7FF0000000000000 (+ Infinity) for positive overflows, or OxFFF0000000000000

(- Infinity) for negative overflows as given in the IEEE standard, or returning

Ox7FF0000000000001 (not a number).

The use of bitwise operators is fast and efficient. Note that the data is stored in an

unsigned int value (64 bit). The unsigned int is used in this case as an 8 byte data buffer. A

write operation to a file with the address of the unsigned int as an argument will properly

store the value on disk:

write(handle, (char *) &value, g);

Although not explicitly necessary, the char * typecast relieves warning messages in

most compilers.

Conclusion

Converting IEEE to Cray format is simply the reversal of the Cray to IEEE algo-

rithm. The same type of process applies: first extract the sign bit, exponent, and mantissa,

next manipulate the mantissa and exponent into their new forms, and finally put them back

together into the proper bit fields.

Using binary floating point format values has several benefits, First, storage require-

ments are dramatically reduced, The Cray 64 bit format gives approximately 15 decimal

digits of precision over a decimal range of 10 to 10+ . To store numbers of this mag-

nitude in ASCII form would require about 20 bytes each instead of the binary 8. Similar

space requirements are seen in IEEE versus ASCII formats. The next most important benefit

is speed. It is much faster to write eight bytes (64 bits) of binary data than it is to convert

62

that same eight bytes to ASCII, then output 20 bytes. Any postprocessing done on the data

can also be dramatically improved. The slower I/O channels of smaller computers become

less of a problem, and the CPU has fewer tasks to perform when files are read in binary form

rather than ASCII.

63

APPENDIX D

DELTA COMPRESSION

Few computer/network systems have the necessary bandwidth to quickly render

sequences of digitized images. In order to get a reasonable frame rate () I/5 Hz) with current

technology, the image information must either be compressed, or special dedicated hard-

ware must be present. The SP image example uses a simple form of image sequence com-

pression called delta compression. With delta compression, an image is assumed to be part

of a sequence of regularly ordered images. Once the first image is transferred, only the

changes necessary to convert the old image to the new image actually need to be transmitted.

Theoretical Performance

Providing a reasonable number of pixels change per frame, large savings can occur

in terms of network loading. Obviously, the performance of such a scheme is extremely

dependent on the application. The SP image application was designed to show scalar fields

moving with time. From this context, it is reasonable to assume that as the boundaries of the

iso-lines move, pixels will most often change in groups of less than 256, but greater than I

(these are not hard values, just guesses). Given an overhead of 2 bytes per packet, plus data,

if 25% of a 400 by 400 pixel image changes in each frame, and all the changes are single

byte independent changes, the size of the delta compressed image would be

. 25*400*400*3+. 75*400*400/256*4 or approximately 122 Kbytes. Not much savings over

the 160 Kbytes just to transmit the whole frame. If the data were more reasonable, however,

and on the average had just 32 bytes per frame, the delta buffer would become

. 25*400*400*34/32+. 75*400*400/1 28*2, or approximately 44 Kbytes. A much more rea-

sonable number, one fourth of the original size. In this case, with the network transmission

time considered the limiting factor of the process, almost four frames could be transmitted

and rendered in the time required to move one in the whole case. For cases where even larger

average change packet lengths occur, even more compression would result.

SP Delta Format

The delta format used by SP consists of a sequence of commands to either use or dis-

card data, stored in a linear buffer. All commands are relative to the current position in the

image buffer that is updated after the execution of each command. There are three com-

mands: use, skip, and done. The use command specifies a sequence of data bytes that will

replace values in the current image, requires a variable number of bytes (unsigned char), and

takes the following form,

U, length, data, data, data, data, data, data

The character U indicates the command use, the length value is an 8-bit unsigned number

that indicates the number of data bytes that follow. The skip command is a two byte

sequence that specifies the number of bytes to skip without changing in the original image.

It has the following format,

S, length

The character S indicates a skip command, and the length is an 8-bit value indicating the

number of bytes to skip over in the current image. The done command is a single byte com-

mand that indicates all processing is done for this frame. It has the following format,

D

The single D character indicates a done command.

General Comments

The SP delta format is not a generic compression algorithm. It makes several

assumptions about well behaved data to get good performance characteristics. If SP were to

be used for a specific application, it would be advisable to investigate the nature of the data

to be moved, and optimize the compression algorithm appropriately.

One of the good points about the SP delta compression algorithm is that is requires

65

relatively little CPU to get good results. The compression/decompression sequence is

simple, and does not limit the overall processing throughput.

66

APPENDIX E

COMMUNICATION PROTOCOLS

The SP network communications protocols are of key importance to the operation

of SP as a whole. All data generated on the supercomputer is moved to the workstation via

the SP communications protocols. There are two modes of operation within the protocol set:

ASCII command mode, and binary mode. In both modes of operation, data packets are sent

in newline terminated blocks. In ASCII command mode, the blocks are variable length, and

in binary mode, the blocks are of fixed size.

Command Protocols

The command protocols are completed entirely in ASCII for ease in readibility as

well as ponability. All commands start with a ¹ character, and are immediately followed by

textual data, terminated by a newline charact'er. All fields within an ASCII command can be

separated with either spaces, commas, or tabs. If a single field contains multiple words sep-

arated with spaces, placing the entire field in double quotes will cause SPD to interpret the

field as a whole rather than as several fields.

¹shntdown

¹shutdown'vt

When received by SPD, this command turns off the communication channel.

Although the communication channel can be closed without warning, the issuance of a

¹shutdown command eases any errors by providing an orderly shutdown.

Image Commands

There are two commands associated with image connections: ¹video and ¹vquit.

The ¹video command opens an image sequence connection, and the ¹vquit command closes

that connection.

67

¹video

¹video width height lowcolor highcolor numcolorsut

Where width and height relate to the size of the image associated with the data stream, Low-

color is the color associated with the least intensity, highcolor is associated with the highest

intensity, and numcolors is an integer value describing how finely to fade between the two.

For more information on values to use, see the section on Libsp.

¹vqnit

¹vquibn

The ¹vquit command has no arguments, and stops the current image sequence con-

nection.

Lgraph Commands

Lgraphs have more options than Images, and therefore support more commands.

There are a total of nine Lgraph related commands: ¹lgraphm, ¹lgraph, ¹xdivisions, ¹ydivi-

sions, ¹xgridlines, «ygridlines, ¹quit, ¹data, and default data.

¹lgraphm

¹Igraphm minx miny maxx maxy xlabel ylabel titleut

The ¹lgraphm command initializes an Lgraph instance in multiple connection mode.

The min and max values are ASCII fioating point numbers that are best guesses for the final

values of the graph. It is not strictly important that they be correct, but the Lgraph will have

an easier time showing the time progression of the data set if it doesn't have to constantly

rescale to show the values. The labels and title are ASCII text strings that will be placed in

the graph. If the labels and title are multi-word sequences separated with spaces, placing the

68

values in quotation marks will allow SPD to properly group them. Once this command is

sent, SPD will initialize and send back an lgraph connection id. The connection id will need

to be used on all future Lgraph commands to associate data with a particular instance of an

Lgraph.

¹lgraph

¹lgraph minx miny maxx maxy xlabel ylabel fitle'ut

The ¹lgraph command has similar syntax to the ¹lgraphm command, however,

Lgraphs opened in this fashion do not return a connection id. This is useful in single context

situations where there can be no bi-directional communication. An example of this is file

storage.

¹xdivisions

¹xdivisions value [graphno Jm

The ¹xdivisions command specifies the number of divisions along the X axis. The

optional graphno parameter is the connection id returned by a call to ¹lgraphm. If no

graphno parameter is specified, the ¹xdivisions command operates on the first graph on the

connection id list.

¹ydi visions

¹ydivisions value [graphno]

The ¹ydivisions command operates similarly to the ¹xdivisions command on the Y

axis.

¹xgridlines

¹xgridlines boolean [graphno]

The ¹xgridlines command changes the graph divider style between tickmarks and

69

gridlines on the X axis (in the Y direction). The optional graphno parameter is the connec-

tion id returned fmm a call to ¹lgraphm. The ab sense of the graphno parameter indicates that

the operation will be performed on the first graph in teh connection id list.

¹ygridlines

¹ygridlines boolean [graphno]

The ¹ygridlines command changes the graph divider style between tickmarks and

gridlines on the Y axis (in the X direction). The optional graphno parameter is the connec-

tion id returned from a call to ¹lgraphm. The absense of the graphno parameter indicates that

the operation will be performed on the first graph in the connection id list.

¹quit

¹quit [graphnoPa

The ¹quit command closes the connection id for the graph instance given by

graphno. If graphno is not specified, the ¹quit command closes the first graph on the con-

nection id list,

«data

¹id x yl y2 y3 yn'ut

The ¹data command adds a data point to the data set associated with a particular

Lgraph instance. It has a slightly different format than the other ¹ commands. The id field

directly after the ¹ character contains the connection id of the graph as returned by

¹lgraphm, The x and y values are formatted ASCII floating point numbers.

default data

If no ¹ sign is present, the data is assumed to be in numeric (x yl y2, . . . yn) format,

and will be associated with the first graph on the graph connection id list.

70

Binary Protocols

The binary protocols are used to transmit large blocks of data more efficiently than

could be done through ASCII. Although binary blocks are newline terminated similarly to

the ASCH command blocks, the newline character is only used as a frame check. If the new-

line character isn't where it should be, a framing error occured, and SP will report it as an

unbound binary block.

Binary blocks are differentiated from command blocks with a different starting char-

acter. The starting characters for the binary blocks are '! ', '@', and '$', while the starting

character for the command blocks is '¹'.

Image Format

There are two kinds of image blocks. Whole image blocks, and delta image blocks.

The image protocol operates by first sending an entire image frame to establish a baseline,

then sending a individual delta buffers to alter the previous image into the new image.

Image blocks are made up of four parts, a starting character, followed by a 64-bit

integer length, the specified data, and a newline character. The length field specifies the

number of bytes in the data block that follows. This value can be compared against known

size of the image once the data is received by SPD, to determine the validity of the connec-

tion. The starting character for the image block is a '@' character.

Image delta blocks are made up of four parts also: a starting character, followed by

a 64-bit length, the delta data, and a newline character. The length field specifies the number

of bytes in the delta command buffer. For more information on the internal format of the

delta buffers, see the section on delta compression. The starting character for an image delta

block is a '$'.

Lgraph Format

The Lgraph binary buffer format is slightly more complex than the image binary

block formats because multiple simultaneous channels across a single connection are sup-

ported. The Lgraph binary format is made up of the following sequence: a starting character

'! ', a channel id (8-bits), a Y vector length (yvc)(8-bits), an X value (64-bit IEEE floating

point format), a sequence of yvc Y values (64-bit IEEE floating point format), and a newline

character. In C structure form, the format is described as follows,

struct lgraphFormat

[
char startingchar,
unsigned char id;
unsigned char yvc;
unsigned char padding [6];
double x;
double y[yvc];
char terminator;

All floating point numbers are m IEEE 64-bit floating point format. It is the respon-

sibility of the machine doing the sending to ensure that all numbers are in a proper format.

See the section on Cray to IEEE floating point format conversion for more details.

72

APPENDIX F

USING SP

The heart of the SP system is SPD. This is the software that the user interacts with

most directly. The demonstration version has three parts: the SPD application window, the

Lgraph window, and the Image window. All display models within SP have a particular type

of window associated with them. As more display models are added, more window types

with features specific to the display model will also be added.

Startup

Since SPD is a graphical application based on the X Window System, it must be con-

nected to an X server, This can be done either remotely, or locally to the machine, but some

models (the image model specifically) require high bandwidth between the application and

the video display, so running them remotely will have a bad influence on their performance.

Some models, like the Lgraph, require relatively small amounts of display bandwidth, and

work fine run remotely over the network using the X protocols.

Usually, SPD is started with the command: sp -iconic &. Resulting in the following

icon, stating that SP is ready to move data.

SP

Fig. F. l. SP icon

Note that only one SPD can be run at a time. SP uses TCP port 10000 to communi-

cate, and if it can't get that port in particular, will print an error message, and stop.

SPD Application Window

Expansion of the SP icon results in the display of the SP application window. For

73

display models with a save option (like Lgraphs), old data sets can be reloaded from this

window.

Ou

~load ~nuit
filename:

Fig. F. 2. Application window

A file is loaded and displayed by typing in the filename next to the filename prompt,

and clicking the load button. The quit button terminates all communication connections, and

shuts SPD down.

Lgraph Window

An Lgraph window is created for every instance of an Lgraph display model con-

nection. It has an area to render the associated X- Y line graph, and some buttons to deal with

(he data once it has been transferred to the Sun in its entirety.

74

0
~destroy ~papery ~sa e Filename,

afn8

lee

0. 8

0. 6

0. 4

0. 2

-0. 2

-0. 4

-0. 6

-0. 8

-i
0 2 3 4 8

Ft le

Fig. F. 3. Lgraph window

The destroy button completely removes an Lgraph window from existence. All

memory associated with the dataset is deallocated, and the window is closed. Any data asso-

ciated with the Lgraph that was not saved before the destroy was instituted will be lost.

The export facility writes data in Xgraph form. To export data from an Lgraph into

Xgraph form for further manipulation and printing, specify the filename to save the data to

(usually a name . xg) after the filename prompt on the display and press the export button.

All of the data associated with the Lgraph will be written to the specified file.

The save facility writes data in SP form so it can be retrieved later with the SP appli-

cation window load feature. To save a file in SP form, specify its filename after the filename

prompt in the Lgraph window, and press the save button. All of the data associated with the

Lgraph will be written to the specified file.

Image Window

An image window is created for every instance of an Image display model. It con-

75

tains an area to render color matrix information, and a single button to destroy the instance.

Qv

~destroy

dety Video

Fig. F. 4. Image window

Due to processing and color palatte limitations, only one Image is allowed to be open

and active at a time. Several Images can be open, but only one can actively receive data from

the network.

76

APPENDIK G

SPD SOURCES

Source Code listings for SPD

77

/Q

SPD. H

Change History:
06-Jul-90/mwl - Original Issue
03-Nov-90/mwl - Original Issue

typedef struct graphappTag

(

Widget shell;
Widget graph;
Widget text;
int connected;

) GRAPHAPP;

typedef struct graphcontextTag

(
struct graphcontextTag *nextgraph;
Widget graph;
int isrealized;
int graphno;
int connected;

) GRAPHCONTEXT;

typedef struct imagecontext Tag
(

Widget video;
Widget videoShell;
char *buffer;
unsigned int buflength;
int connected;

) VIDEOCONTEXT;

typedef struct commcontext Tag
(

GRAPHCONTEXT *las tgraph;
GRAPHCONTEXT *firstgraph;
VIDEOCONTEXT *video;
int numgraphs;

) COMMCONTEXT;

¹define SPD TCP PORT 10000

78

/4

TOKENS. H

Change History:
06- Jul-90/mwl — Original Issue
03-Nov-90/mwl - Original Issue

¹define LGRAPH
¹define TITLE
¹define XLABEL
¹define YLABEL
¹define XLOGSCALE
¹define YLOGSCALE
¹define XGRIDLINES
¹define YGRIDLINES
¹define XDIVISIONS
¹define YDIVISIONS
¹define RESCALEMODE
¹define LGRAPHM
¹define SHUTDOWN
¹define QUIT
¹define VIDEOS
¹define VIDEO
¹define VQUIT

0
I
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

79

/4

SP. C

Line graph Pop-Up Window Controller.

Change History:
12-May-90/mwl - Original Issue.
23-May-90/mwl — Added support for /dev/graphics k split Lgraph widget.
02-Aug-90/mwl — Binary transfer Cray to Sun
25-Sep-90/mwl - Split connection handlers to protocols. c
03-Nov-90/mwl - Released

¹include &stdio. h&

¹include &unistd. h&

¹include &fcntl. h&

¹include &sys/filio. h&

¹include &malloc. h&

¹include &string. h&

¹include &math. h&
¹include &Xl 1/Intrinsic. h&

¹include &Xl I/StringDefs. k&

¹include &Xol/OpenLook. h&

¹include &Xol/ControlAre, k»
¹include &Xol/OblongButt. h&

¹include &Xol/Form. h&

¹include &Xol/BaseWindow. h&

¹include &Xol/Caption. h&

¹include &Xol/Tex tField. h&

¹include ". . /Xt+Lgraph/Lgraph. h"
¹include &ermo. h&

¹include "sp. bit"
¹include "spicon. bit"
¹include "spd. h"
¹include "tokens. h"

/* for networking */
¹include &sys/types. h&

¹include &sys/socket. h&

¹include &netinet/in. h&

¹define SPD TCP PORT 10000

extern void quit();
extern void getdata();

80

extern void connectHandler();

static Arg list[10];

Widget Toplevel;
Pixmap icon pixmap;
Pixmap spicon pixmap;

main(argc, argv)
int argc;
char *argv [];
(

char *lfile;
char buffer[256];
char *cptr;
double x;
double yv[16];
int i;
char tmpbuf[64];
int infile;
intinsock;
struct sockaddr in name;
int retry;
COMMCONTEXT *context;
static char inbuffer[128];
Widget form, textlabel, quitbutton, loadbutton, filetext, control;
extern void utilLoad();

/* initialize toplevel widget and get the environment going */
Toplevel = Olfnitialize("main", "LineGraph"AHULL, 0, 8. argc, argv);
icon pixmap = XCreateBitmapFromData(XtDisplay(Toplevel)PCtScreen(Toplevel)-

&root, sp bits, 32, 32);
spicon pixmap = XCreateBitmapFromData(XtDisplay(Toplevel), XtScreen(Toplevel)-

&root, spicon bits, 64, 45);
XtSetArg(list[0], XtNiconPixmap, spicon pixmap);
XtSetValues(Toplevel, list, 1);

/~ create the form that controls the main area */
form = XtCreateManagedWidget("form", formWidgetClass, Toplevel, NULL, O);

/* create control area for buttons */

XtSetArg(list[0], XtNxRefWidget, form);
XtSetArg(list[1], XtNyRefWidget, form);
XtSetArg(list[2], XtNyResizable, (XtArgVal) FALSE);
control = XtCreateManagedWidget("control", controIAreaWidgetClass, form, list, 3);

81

/" create load button */
loadbutton = XtCreateManagedWidget("load", oblongButtonWidgetClass, control, list, 0);

/* create a button just to quit if necessary «/

quitbutton = XtCreateManagedWidget("quit", oblongButtonWidgetClass, control, list, 0);

/* create a text field to get a filename */
XtSetArg(list[0], XtNyAddHeight, (XtArgVal) TRUE);
XtSetArg(list[1], XtNxRefWidget, form);
XtSetArg(list[2], XtNyRefWidget, control);
XtSetArg(list[3], XtNyResizable, (XtArgVal) TRUE);
XtSetArg(list[4], XtNxResizable, (XtArgVal) TRUE);
XtSetArg(list[5], XtNyAttachBottom, (XtArgVal) TRUE);
XtSetArg(list[6], XtNxAt tachRight, (XtArg Val) TRUE);
XtSetArg(list[7], XtNxAddWidth, (XtArgVal) TRUE);
textlabel = XtCreateManagedWidget("Filename: ", captionWidgetClass, form, list, 8);
XtSetArg(list[0], XtNwidth, 300);
filetext = XtCreateManaged Widget("text", textFieldWidgetCl ass, textlabel, list, 1);

/~ Add callbacks after everything is defined ~/

XtAddCallback(loadbutton+tNselect, u tilLoad, fi letext);
XtAddCallback(quitbutton+tNselect, quit, NULL);
XtRealizeWidget(Toplevel); /* let the window system start the display process */

/* create a socket for processes to connect to.
Use TCP/IP in stream mode.

Q/

if ((insock = socket(AF INET, SOCK STREAM, O)) & 0)
(

printf("Error: Can't open sockefut");
exit(0);

]
else

[
if (fcntl(insock, F SETFL, FNDELAY) == -1)
[

fprintf(stderr, "Error: Can't set FNBIO on connection request socket [%dIvt", errno);
exit(0);

]

bzero((char *) &name, sizeof(name));
name. sin family = AF INET;
name. sin port = htons((unsigned short)(SPD TCP PORT));
name. sin addr. s addr= htonl(INADDR ANY);

82

for (retry = 20; bind(insock, &name, sizeof(name)) && retry; retry —)
(

fprintf(stderr, "Fatal Error: Can't bind to address'ut");

exit(0);
)

P* listen for connects (Allow up to 5 to queue up) ~/

listen(insock, 5);

/" when a connect request comes in, handle it */
XtAddinput(insock, XtinputReadMask, connectHandler+ULL);

)

if ((infile = open("/dev/graphics", 0 RDONLY I 0 NDELAY)) &= 0)
(

/* Add event handlers for /dev/graphics input sources */
context = (COMMCONTEXT *)malloc(sizeof(COMMCONTEXT));
context-&numgraphs = 0;
context-&firstgraph = NULL;
context-)lastgraph = NULL;
XtAddinput(infile PktlnputReadMask, getdata, context);

)
else

fprintf(stderr, "Error: Couldn't open file [/dev/graphics]'vt");

XtMainLoop();
)

void quit()
(

exit(0);
)

83

/Q

PROTOCOLS. C

SP protocol controllers.

Change History:
12-May-90/mwl - Original Issue.
23-May-90/mwl - Added support for /dev/graphics &. split Lgraph widget.
02-Aug-90/mwl — Binary transfer Cray to Sun
25-Sep-90/mwl — Split off from SP. C and added video protocols
03-Nov-90/mwl - Released

¹include &stdio. h&

¹include &unistd. h&

¹include &fcntLh&
¹include &sys/filio. h&

¹include &malloc. h&

¹include &string. h&

¹include &math. h&

¹include &X 1 1/Intrinsic. h&

¹include ". . /Xt+Lgraph/Lgraph. h"
¹include &errno. h&

¹include "spd. h"
¹include "tokens. h"

/» for networking */
¹include &sys/types. h&

¹include &sys/socket. h&

¹include &netinet/in. h&

extern double atof();
extern char *wordcpy();
extern void getdata();
extern Widget cmdparse();
extern GRAPHCONTEXT *getgraph();
extern void readbinary();
extern void readvideo();
extern void readvideoCompressed();
extern Widget createGraph();
extern Widget create Video();

static Arg list[10];

static char term []=", uter";

void connectHandler(data, connect handle, id)
caddr t data;
int *connect handle;
XtlnputId *id;
[

int insock;
struct sockaddr addr;
int addrlen;
long bytes;
COMMCONTEXT *context;
char buffer[128];
int block;

if (ioctl(~connect handle, FIONREAD, &bytes) ==- -1)
[

sprintf(buffer, 'Error: ioctl error on connection handler [%d]", errno);
utilErmr(buffer);
XtRemoveInput(*id);

]
else

[
if ((insock = accept(*connect handle, addr, &addrlen)) == -1)
[

if (errno = EWOULDBLOCK) /* if it's a blocking error, just ignore it */
return;

sprintf(buffer, "Error: accept error on connection handler [%d]", errno);
utilError(buffer);
XtRemoveInput(*id);

]

block = 32766;
if(setsockopt(insock, SOL SOCKET, SO RCVBUF, &block, sizeof(int)) ==-1)
[

utilError("Error: can't modify input stream for large buffer size");
]
context = (COMMCONTEXT *)malloc(sizeof(COMMCONTEXT));
context-&numgraphs = 0;
context-&firstgraph = NULL;
context-&lastgraph = NULL;
context-&video = NULL;
XtAddInput(insock, XtlnputReadMask, getdata, context);

]
]

85

void getdata(context, handle, id)
COMMCONTEXT ~context;
int *handle;
XtInputId *id;
[

char *cptr;
double x;
double yv[16];
int i;
long bytes;
static char buffer[1024];
static char tmpbuf[1024];
Widget graph;

/* Make sure that this is still a valid socket connection */
if (ioctl(*handle, FIONREAD, &bytes) = -1)
[

XtRemoveInput(*id);
close(*handle);
utilError("Error: Invalid Connection");
return;

]

/* if there is nothing left to read, but we got called to read data,
something is wrong, so close this connection. */

if (! bytes)
[

XtRemoveInput(*id);
close(~handle);
utilError(stderr, "Error: Connection Abruptly Terminated");
return;

for (cptr = buffer;; cptr++)
[

mread(~handle, cptr, 1);

/* if the first character is a!, @ or a $, the packet is binary

graph or video data.
Q/

if (cptr == buffer)

[
switch (~cptr)
[

86

case '! ".
readbinary(*handle, context);
return;

case '@'.
readvideo(*handle, context);
return;

case '$",
readvideoCompressed(*handle, context);
returtl;

)

]
/* if this is a newline character, it is the end of this text record */
if (~cptr == 'ut')

[
~cptr = "0';
break;

]
]

if (buffer[0] = '¹') /* ASCII Text Protocol */
cmdp arse(buffer, context, *id, *handle);

else / noprotocol*/
(

cptr = wordcpy(tmpbuf, buffer, term);
x = atof(tmpbuf);

for (i = 0; (cptr = wordcpy(tmpbuf, cptr, term)) ! = NULL; i++)
yv[i] = atof(tmpbuf);

if (context-&firstgraph 8c& i) /* if a graph exists, write to it */

[
IgraphAddData(context-&firstgraph-&graph, x, yv, i);

)

]
)

/4

readvideo()

Process a binary color video data request.
4/

87

static void readvideo(handle, context)
int handle;
COMMCONTEXT *context;
(

if (! context-&video)

[
utilError("Error: No video connection established");
return;

)

mread(handle, context-&video-&buffer, context-&video-&buflength);

if (context-&video-&buffer[context-&video-&builength - 1] ! = "ut')
utilError("Invalid video block");

else
ImageScientificSet(context-&video-&video, context-&video-&buffer);

)

/4

readvideoCompressed()

Process a binary color video data request.
4/

static void readvideoCompressed(handle, context)
int handle;
COMMCONTEXT *context;

[
long length[2];

if (! context-&video)

[
utilError("Error: No video connection established");
return;

]

mread(handle, length, 8);
/* read in the bytes contained by the delta buffer + I new!inc */

¹ifdef SPDEBUG
fprintf(stderr, "[%d]", length[1]);
¹endif

mread(handle, context-&video-&buffer, length[1] + I);

ImageDeltaSet(context-&video-&video, context-&video-&buffer);

)

88

/*
readbinary()

Process a binary graph data request.
Q/

static void readbinary(handle, context)
int handle;
COMMCONTEXT *context;

unsigned char buffer[512];
int yvc;
int graph;
GRAPHCONTEXT *graphcontext;
double fb[32];
int i;

mread(handle, buffer, 7);

graph = (unsigned int)buffer[0];
yvc = (unsigned int)buffer[1];

¹ifdef SPDEBUG
printf("utGraph: %d YVC: %d - ", graph, yvc);
¹endif

mread(handle, fb, g + 8 * yvc);

¹ifdef SPDEBUG
for (i = 0; i & yvc; i++)

printf("%lx ", fb[i]);
¹endif

mread(handle, buffer, 1);

if (buffer[0]!= "ut')

[
utilError("Error: Unbound binary block - Data was lost");
return;

]

if (! (graphcontext = getgraph(graph, context)))
[

utilError("Error: Bad graph handle");

89

lgraphAddData(graphcontext-&graph, fb [0], & fb[1], yvc);
]

static int mread(handle, buffer, length)
int handle;
char *buffer;
int length;

[
int retry = 15;
char nnpbuf[64];
int bytes;

¹ifdef SPDEBUG
fprintf(stderr, "Attempting to read [%d] bytesut", length);
¹endif

while (retry —)
[

bytes = read(handle, buffer, length);
if (bytes == -1) /* error, no bytes read */

[
P' sometimes operation can block the process, this is OK */
if (errno!= EWOULDBLOCK && errno!= EINTR)

sprintf(tmpbuf, "Error: TCP/IP Channel Read Error [%d]", errno);
utilError(nnpbuf);

]
else
[

sleep(1);
1'etry++;

¹ifdef SPDEBUG
f printf(stderr, ". ");
¹endif

]
]
else if (bytes = length) /* got exactly what I want */

return (bytes);
else /* read insufficient data, try again for the rest */

[
length -= bytes;
buffer+= bytes;

¹ifdef SPDEBUG
fprintf(stderr, "+");
¹endif

retry++;
]

]

static Widget cmdparse(buffer, context, id, handle)
char *buffer;
COMMCONTEXT *context;
XtlnputId id;
int handle;

(
char *cptr;
char tmpbuf[128];
int width, height, numcolors;
char lowcolor[64], highcolor[64];
float minX, min Y, maxX, max Y;
char xlabel [64], y label[64], title[64];
Widget graph;
int graphno;
int i;
double x;
double yv[16];
GRAPHCONTEXT *graphcontext;
int value;

cptr = wordcpy(tmpbuf, buffer, term);
switch (command(ktmpbuf[l]))

case VIDEOS: /* open for spectrum video connection */
cptr = wordcpy(tmpbuf, cptr, term);
width = atoi(tmpbuf);
cptr = wordcpy(tmpbuf, cptr, term);
height = atoi(tmpbuf);
cptr = wordcpy(lowcolor, cptr, term);
cptr = wordcpy(highcolor, cptr, term);
cptr = wordcpy(tmpbuf, cptr, term);
numcolors = atoi(tmpbuf);
if (! context-&video)

createVideo(context, width, height, lowcolor, highcolor, numcolors);
else

utilError("Error: Can only have one open video connection");
break;

91

case VIDEO: /~ open for discrete colormap video connection */
break;

case VQUIT: /* close the video connection */
free(context-&video-&buffer); /* free the I/O memory */
context-&video-&buffer = NULL;
context-&video-&buflength = 0;
context-&video-&connected = 0;
context-&video = NULL; /* turn it loose */
break;

case LGRAPHM: /* open for multiple graph connections, make sure to send the graphno
back */

cptr = wordcpy(tmpbuf, cptr, term);
minX = atof(tmpbuf);
cptr = wordcpy(tmpbuf, cptr, term);
min Y = atof(tmpbuf);
cptr = wordcpy(tmpbuf, cptr, term);
maxX = atof(tmpbuf);
cptr = wordcpy(tmpbuf, cptr, term);
max Y = atof(tmpbuf);
if (cptr) /* optional label arguments */

(
cptr = wordcpy(xlabel, cptr, term);
cptr = wordcpy(ylabel, cptr, term);
cptr = wordcpy(title, cptr, term);
graph = createGraph(minX, min Y, maxX, max Y, xlabel, ylabel, title);

)
else

graph = createGraph(minX, min Y, maxX, max YPJULL, NULLPlULL);

graphno = addgraph(graph, context);
sprintf(tmpbuf, "%tfvt", graphno);

write(handle, tmpbuf, strlen(tmpbuf)); /* send back confirmation of the handle number
4/

break;

case LGRAPH: /* open for just a single graph (don't wait for confirmation) '/
cptr = wordcpy(tmpbuf, cptr, term);
minX = atof(tmpbuf);
cptr = wordcpy(tmpbuf, cptr, term);
min Y = atof(tmpbuf);
cpn = wordcpy(tmpbuf, cptr, term);
maxX = atof(tmpbuf);

cptr = wordcpy(tmpbuf, cptr, term);
max Y = atof(tmpbuf);
if (cptr) /* optional label arguments */

[
cptr = wordcpy(xlabel, cptr, term);
cptr = wordcpy(ylabel, cptr, term);
cptr = wordcpy(title, cptr, term);
graph = createGraph(minX, min Y, maxX, max Y, xlabel, ylabel, title);

]
else

graph = createGraph(minX, min Y, maxX, max YPIULLPIULL, NULL);

graphno = addgraph(graph, context);
break;

case TITLE: /* «title value [graphno] "/
break;

case XLAB EL: /* ¹xlabel value [graphno] */
break;

case YLABEL: /* ¹ylabel value [graphno] */
break;

case XLOGSCALE: /* ¹xlogscale value [graphno] */
break;

case YLOGSCALE: P ¹ylogscale value [graphno] */

break;

case XDIVISIONS: /* ¹xdivisions value [graphno] */
cptr = wordcpy(tmpbuf, cptr, term);
value = atoi(tmpbufj;

if (cptr) /~ if a graphno is there, get it, otherwise default */

[
cptr = wordcpy(tmpbuf, cptr, term);
graphno = atoi(tmpbuf);
if (!(graphcontext = getgraph(graphno, context)))
[

utilError("Error: Bad graph handle");
break; /* this is bad data, throw it away */

]
]

93

else /* default graph is first in the list */
graphcontext = context-&firstgraph;;

XtSetArg(list[0]PktNxdivisions, value);
XtSetValues(graphcontext-&graph, list, 1);
break;

case YDIVISIONS: / «ydivisions value [graphno] */
cptr = wordcpy(tmpbuf, cptr, term);
value = atoi(tmpbuf);

if (cptr) /* if a graphno is there, get it, otherwise default */
[

cptr = wordcpy(tmpbuf, cptr, term);
graphno = atoi(tmpbuf);
if (! (graphcontext = getgraph(graphno, context)))
[

utilError("Error: Bad graph handle");
break; /* this is bad data, throw it away */

]
]
else /* default graph is first in the list ~/

graphcontext = context-&firstgraph;;

XtSetArg(list[0] QtNydivisions, value);
XtSetValues(graphcontext-&graph, list, 1);
break;

case XGRIDLINES: /* «xgridlines value [graphno] "/
cptr = wordcpy(tmpbuf, cptr, term);
value = (tmpbuf[0] == 'T') ? I: 0;

if (cptr) /* if a graphno is there, get it, otherwise default */

[
cptr = wordcpy(tmpbuf, cptr, term);
graphno = atoi(tmpbuf);
if (!(graphcontext = getgraph(graphno, context)))
[

utilError("Error: Bad graph handle");
break; /* this is bad data, throw it away */

]
]
else /* default graph is first in the list */

graphcontext = context-&firstgraph;;

XtSetArg(list[0] PktNxdividers, value);
XtSetValues(graphcontext-&graph, list, 1);
break;

case YGRIDLINES: /* ¹ygridlines value [graphno] */
cptr = wordcpy(tmpbuf, cptr, term);
value = (tmpbuf[0] == 'T') ? 1: 0;

if (cptr) /~ if a graphno is there, get it, otherwise default */

[
cptr = wordcpy(tmpbuf, cptr, term);
graphno = atoi(tmpbuf);
if (! (graphcontext = getgraph(graphno, context)))
[

utilError("Error: Bad graph handle");
break; /* this is bad data, throw it away */

]
]
else /* default graph is first in the list ~/

graphcontext = context-&firstgraph;;

XtSetArg(list[0], XtNydividers, value);
XtSetValues(graphcontext-&graph, list, 1);
break;

case QUIT: /* ¹quit [graphno] */
if (cptr)
[

cptr = wordcpy(tmpbuf, cptr, term);
graphno = atoi(tmpbuf);

]
else if (context-&firstgraph)

[
if (context-&firstgraph == context-&lastgraph) /* is there only one? */

context-&lastgraph = NULL;
context-&firstgraph = context-&firstgraph-&nextgraph;
free(context-&firstgraph);
break;

]
removegraph(graphno, context);

break;

case SHUTDOWN: /* ¹shutdown "/
for (graphcontext = context-&firstgraph; graphcontext; graphcontext = graphcontext-

&nextgraph)

95

free(graphcontext); /* get rid of the communication contexts, but leave the graphs to
display ~/

if (context-&video) /* if there is a video connection ~/

context-&video-&connected = 0; 8 release it */

free(context);
XtRemovelnput(id);
close(handle);
break;

default: /~ ¹graphno x yv[OJ yv[1J yv[2] «/

graphno = atoi(ktmpbuf[1]);
if (l(graphcontext = getgraph(graphno, context)))
[

utilError("Error: Bad graph handle");
break; /* this is bad data, throw it away ~/

]

cptr = wordcpy(tmpbuf, cptr, term);
x = atof(tmpbuf);

for (i = 0; (cptr = wordcpy(tmpbuf, cptr, tetm)) ! = NULL; i++)
yv[i] = atof(tmpbuf);

]
]

lgraphAddData(graphcontext-&graph, x, y v, i);
break;

GRAPHCONTEXT *getgraph(graphno, context)
int graphno;
COMMCONTEXT *context;
[

GRAPHCONTEXT ~graphcontext;

for (graphcontext = context-&firstgraph; graphcontext; graphcontext = graphcontext-&nex-
tgraph)

if (graphcontext-&graphno == graphno)
return (graphcontext);

return (NULL);
J

int addgraph(graph, context)

Widget graph;
COMMCONTEXT *context;
(

GRAPHCONTEXT *graphcontext;

graphcontext = (GRAPHCONTEXT *)malloc(sizeof(GRAPHCONTEXT));
if (! context-&lastgraph)

context-&firstgraph = graphcontext;
else

context-&lastgraph-&nextgraph = graphcontext;

context-&lastgraph = graphcontext;
graphcontext-&nextgraph = NULL;
graphcontext-&graph = graph;
graphcontext-&graphno = context-&numgraphs;
context-&numgraphs++; /* one more graph */

return (graphcontext-&graphno);

)

removegraph(graphno, context)
int graphno;
COMMCONTEXT ~ context;

(
GRAPHCONTEXT *lastgraph;
GRAPHCONTEXT *graphcontext;

lastgraph = NULL;
for (graphcontext = context-&firstgraph; graphcontext; graphcontext = graphcontext-&nex-

tgraph)
(

if (graphcontext-&graphno = — graphno)

(
if (lastgraph)

lastgraph-&nextgraph = graphcontext-&nextgraph;
else

context-&firstgraph = graphcontext-&nextgraph;

if (graphcontext == context-&lastgraph)
context-&lastgraph = lastgraph;

free(graphcontext);
return (1);

)
lastgraph = graphcontext;

97

)

return (0);
)

static char *wordcpy(dst, src, terminators)
char *dst;
char *src;
char *terminators;

(
if (!src II!*src)
(

~dst = Ox0;
return (NULL);

while (bchr(terminators, *src))
are++;

if (! *src)
(

"dst = OxO;

return (NULL);
)

if (~ src = 'X"')

(
src++;
while (~src!= '7" && *src)
(

~dst = *src;
dst++;
src++;

)
if (*src == 'Y")

src++;
)
else
(

while (! bchr(terminators, *src) && *src)
(

*dst = *src;
dst++;
src++;

)

)

98

*dst = OxO;

return (src);
)

static int bchr(buf, ch)
char «buf;
char ch;
(

while (*buf)
(

if (*buf = ch)
return (1);

buf++;
)
return (0);

)

/*
TOKEN. C

Change History:
9-Jul-90/mwl - Original Issue
3-Nov-90/mwl - Released

¹include (string. h&

¹include "tokens. h"

static char *Tokenlist[] =
[

"LGRAPH",
"TITLE",
"XLABEL",
"YLABEL",
"XLOGSCALE",
"YLOGSCALE",
"XGRIDLINES",
"YGRIDLINES",
"XDIVISIONS",
"YDIVISIONS",
"RES CALEMODE",
"LGRAPHM",
"SHUTDOWN",
"QUIT",
"VIDEOS",
"VIDEO",
"VQUIT",
NULL

];

int command(cmdbuf)
char *cmdbuf;

[
int i;

for (i = 0; Tokenlist[i]; i++)
if (! strcasecmp(cmdbuf, Tokenlist[i]))

return (i);

return (- I); /~ didn't find anything */

]

/4

UTILITIES. C

Change History:
6- Jul-90/mwl - Original Issue
3-Nov-90/mwl - Released

4/

¹include &stdio. h&

¹include &fcntl. h&
¹include &malloc. h&

¹include &Xl 1/Intrinsic. h&

¹include &X11/StringDefs. h&

¹include &Xol/OpenLook. h&
¹include &Xol/BaseWindow. h&

¹include &Xol/ControlAre, h&

¹include &Xol/Form. h&

¹include &Xol/ControlAre. h&

¹include &Xol/OblongButt, h&

¹include &Xol/Caption. h&

¹include &Xol/I'extField. h&

¹include &Xol/PopupWindo. h&

¹include &Xol/BaseWindow. h&

¹include &Xol/Notice. h&
¹include &sys/param. h&
¹include &Xl 1/IntrinsicP. h&
¹include ". . /Xt+Lgraph/LgraphP. h"
¹include ". . /Image/Image. h"
¹include "spd. h"

extern void destroyVideo();
extern void destroyGraph();
extern void exportGraph();
extern void utilSave();
extern void utilError();

extern Widget Toplevel;
extern Pixmap icon pixmap;

static char Filename[128] = '"';

static void destroyGraph(w, graphApp, event)
Widget w;
GRAPHAPP *graph App;
caddr t event;

(

XtPopdown(graphApp-&shell);
XtDestroyWidget(graphApp-&shell);
free((caddr t) graphApp);

]

static void exportGraph(w, graphApp, event)
Widget w;
GRAPHAPP *graphApp;
caddr t event;

[
FILE *fp;
char buffer[128];
LgraphWidget graph;
LDATA *ldata;
int i;
Arg list[1];
char *filename;
int datapts;

XtSetArg(list[0], XtNstring, & filename);
XtGetValues(graphApp-&text, list, 1);

if (! filename II ! strlen(filename))

[
utilError("Error: No file specified. ");
return;

]

strcpy(Filename, filename); /* save the filename so it can be used later */

fp = fopen(filename, "w");
if (! fp)
[

sprintf(buffer, "Error: Couldn't open file [%s] for write", filename);
utilError(buffer);
return;

graph = (LgraphWidget)graphApp-&graph;

fprintf(fp, "Device: PostscripfutDisposition: To DevicevtFileOrDev: Ip'vt");

fprintf(fp, "TitleText: %s~n", graph-&[graph. title);

datapts = graph-&lgraph. ldata-&yvc;
for (i = 0; i & datapts; i++)

102

[
fprintf(f p, 'utY'%An", i);
for (ldata = graph-&lgraph. ldata; ldata; ldata = ldata-&nextdata)

(
sprintf(buffer, "%g %g'n", Idata-&x, !data-&yv[i]);
fputs(buffer, fp);

]
]

fclose(fp);
]

static void utilSave(w, graphApp, event)
Widget w;
GRAPHAPP ~graphApp;
caddr t event;
(

FILE *fp;
char buffer[128];
LgraphWidget graph;
LDATA *ldata;
int i;
Arg list[1];
char *filename;

XtSetArg(list[0], XtNstring, & filename);
XtGet Values(graphA pp-&text, list, 1);

if (! filename II ! strlen(filename))

[
utilError("Error: No file specified. ");
return;

]

strcpy(Filename, filename); /* save the filename so it can be used later */

fp = fopen(filename, "w");
if (! fp)

sprintf(buffer, "Error: Couldn't open file [%s] for write", filename);
utilError(buffer);
return;

]

graph = (LgraphWidget)graphApp-&graph;

103

fprintf(fp, "¹lgraph%g %g %g %g V'%sY' V'%sV'Y'%sY''ut",

graph-&lgraph. minX,
graph-&lgraph. min Y,
graph-&lgraph. maxX,
graph-&lgraph. max Y,
graph-&lgraph. xlabel,
graph-&lgraph. ylabel,
graph-&lgraph. title);

fPrintf(fP, "¹xgridlines %svi", (graph-&lgraph. xdividers)? "TRUE": "FALSE");
fprintf(fp, "¹ygridlines %svt", (graph-&lgraph. ydividers) ? "TRUE": "FALSE");
fprintf(fp, "¹xdivisions %dvt", graph-&lgraph. xdivisions);
fprintf(fp, "¹ydivisions %&ho", graph-&lgraph. ydivisions);

for (Idata = graph-&lgraph. ldata; ldata; ldata = ldata-&nextdata)
(

sprintf(buffer, "%g", ldata-&x);
for (i = 0; i & ldata-&yvc; i++)

sprintf(&buffer[strlen(buffer)], " %g", ldata-&yv[i]);
strcat(buffer, 'ut");
fputs(buffer, fp);

]

fputs("¹shu tdown'ut", fp);
fclose(fp);

]

extern void getdata();

void utilLoad(w, filetext, event)
Widget w;
Widget filetext;
caddr t event;

[
int infile;
COMMCONTEXT *context;
char buffer[128];
char *filename;
Arg list[2];

XtSetArg(list[0], XtNstring, & filename);
XtGetValues(filetext, list, 1);

if (! filename II ! strlen(filename))

[
utiIError("Error: No file specified. ");
return;

)

if ((infile = open(filename, O RDONLY I 0 NDELAY)) &= 0)
(

/~ Add event handlers for /dev/graphics input sources ~/

context = (COMMCONTEXT *)malloc(sizeof(COMMCONTEXT));
context-&numgraphs = 0;
context-&firstgraph = NULL;
context-&lastgraph = NULL;
XtAddlnput(infile+tinpu tReadMask, getdata, context);

)

else
[

sprintf(buffer, "Error: Couldn't open file [%s Jm", filename);
utilError(buffer);

)
)

void createVideo(context, width, height, lowcolor, highcolor, numcolors)
COMMCONTEXT *context;
int width;
int height;
char *lowcolor;
char *highcolor;
int numcolors;

[
Widget control, video, shell, form, destroy;
Arg list[10];
VIDEOCONTEXT *videocontext;

¹ifdef SPDEBUG
fprintf(stderr, "Creating Video: %d %d %s %s %tfvt", width, height, lowcolor, highcol-
or, numcolors);
¹endif

if (context-&video)

fprintf(stderr, "Error: video connection already present'ut");
utilError("Error: video connection already present");
return;

)

XtSetArg(list[0], XtNtitle, "SPD Video");
XtSetArg(list[1], XtNiconName, "SPD Video");
XtSetArg(list[2], XtNiconpixmap, icon pixmap);
shell = XtCreatePopupShell("spd", baseWindowShellWidgetClass, Toplevel, list, 3);

form = XtCreateManagedWidget("form", formWidgetClass, shell, list, 0);

XtSetArg(list[0], XtNxRefWidget, form);
XtSetArg(list[1], XtNyRefWidget, form);
XtSetArg(list[2], XtNyResizable, (XtArgVal) FALSE);
control = XtCreateManagedWidget("control", controlAreaWidgetClass, form, list, 3);

destroy = XtCreateManagedWidget("destroy", oblongButtonWidgetClass, control, list, 0);

XtSetArg(list[0], XtNwidth, width);
XtSetArg(list[1], XtNheight, height);
XtSetArg(list[2], XtNlowcolor, lowcolor);
XtSetArg(list[3], XtNhighcolor, highcolor);
XtSetArg(list[4], XtNnumcolors, numcolors);
XtSetArg(list[5], XtNyAddHeight, (XtArgVal) TRUE);
XtSetArg(list[6], XtNxRefWidget, form);
XtSetArg(list[7], XtNy RefWidget, control);
XtSetArg(list[8], XtNxAddWidth, (XtArgVal) TRUE);
video = XtCreateManagedWidget("Video", imageWidgetClass, form, list, 9);

videocontext = (VIDEOCONTEXT *)malloc(sizeof(VIDEOCONTEXT));
videocontext-&video = video;
videocontext-&buffer = malloc(width * height+ 1);
videocontext-&builength = width * height+ 1;
videocontext-&videoShell = shell;
videocontext-&connected = 1; /* do not destroy until disconnected */
context-&video = videocontext;

XtAddCallback(destroy+tNselect, destroyVideo, (caddr t)videocontext);

Xtpopup(shell, XtGrabNone);

static void destroy Video(w, context, event)
Widget w;
VIDEOCONTEXT ~context;
caddr t event;

[
if (context-&connected)

[

utilError("Error; Cannot destroy graph until it has disconnected");
return;

]

if (context-&buffer)
free(context-&buffer);

context-&buflength = 0;
if (context-&videoShell);

[
XtPopdown(context-&video Shell);
XtDes troy Widget(context-&video Shell);

)

free((char *)context);
)

Widget createGraph(minX, min Y, maxX, max Y, xlabel, ylabel, title)
fioat minX, min Y, maxX, max Y;
char *xlabel, *ylabel, "title;
(

Widget destroy, export, save, shell, graph, form, control, caption, text;
char *ixlabel, *iylabeh~ititle;
GRAPHAPP *appdata;
Arg list[15];

XtSetArg(list[0], XtNtitle, (title) ? title: "SPD");
XtSetArg(list[1], XtNiconName, (title) ? title: "SPD");
XtSetArg(list[2], XtNiconPixmap, icon pixmap);
shell = XtCreatePopupShell("spd", baseWindowShellWidgetClass, Toplevel, list, 3);

form = XtCreateManagedWidget("form", formWidgetClass, shell, list, O);

XtSetArg(list[0], XtNxRefWidget, form);
XtSetArg(list[1], XtNyRefWidget, form);
XtSetArg(list[2], XtNyResizable, (XtArgVal) FALSE);
control = XtCreateManagedWidget("control", controlAreaWidgetClass, form, list, 3);

destroy = XtCreateManagedWidget("destroy", oblongButtonWidgetClass, control, list, 0);

export = XtCreateManagedWidget("export", oblongButtonWidgetClass, control, list, O);

save = XtCreateManagedWidget("save", oblongButtonWidgetClass, control, list, O);

caption = XtCreateManagedWidget("Filename: ", captionWidgetClass, control, list, 0);

107

XtSetArg(list[0], XtNwidth, 300);
text = XtCreateManagedWtdget("textfield", textFieldWidgetClass, caption, list, 1);

if (xlabel &&. ylabel)
[

ixlabel = malloc(strlen(xlabel) + 1);
strcpy(ixlabel, xlabel);
iylabel = malloc(strlen(ylabel) + 1);
strcpy(iylabel, ylabel);
XtSetArg(list[0] QtNxlabel, ixlabel);
XtSetArg(list[1] QtNyl abel, iylabel);
XtSetArg(list[2], XtNyAddHeight, (XtArgVal) TRUE);
XtSetArg(list[3], XtNxRefWidget, form);
XtSetArg(list[4], XtNyRefWidget, control);
XtSetArg(list[5], XtNyResizable, (XtArg Val) TRUE);
XtSetArg(list[6], XtNxResizable, (XtArg Val) TRUE);
XtSetArg(list[7], XtNyAttachBottom, (XtArgVal) TRUE);
XtSetArg(list[8], XtNxAttachRight, (XtArgVal) TRUE);
XtSetArg(list[9], XtNxAddWidth, (XtArgVal) TRUE);
ititle = malloc(strlen(title) + 1);
strcpy(ititle, title);
XtSetArg(list[10] +tNtitle, title);
graph = XtCreateManagedWidget("Graph", lgraphWidgetClass, form, list, 11);

]
else
[

XtSetArg(list[0], XtNyAddHeight, (XtArgVal) TRUE);
XtSetArg(list[1], XtNxRefWidget, form);
XtSetArg(list[2], XtNyRefWidget, control);
XtSetArg(list[3], XtNyResizable, (XtArgVal) TRUE);
XtSetArg(list[4], XtNxResizable, (XtArgVal) TRUE);
XtSetArg(list[5], XtNyAttachBottom, (XtArgVal) TRUE);
XtSetArg(list[6], XtNxAttachRight, (XtArgVal) TRUE);
XtSetArg(list[7], XtNxAddWidth, (XtArg Val) TRUE);
XtSetArg(list[8], XtNtitle, title);
graph = XtCreateManagedWidget("Graph", lgraphWidgetClass, form, list, 9);

]

lgraphSetLimits(graph, minX, min Y, maxX, max Y, 10); /* let's try to get a smooth display */

/* add these hooks so that the utilities can get to these widgets
and work on them.

4/

appdata = (GRAPHAPP *) malloc(sizeof(GRAPHAPP));
appdata-)shell = shell;

108

appdata-&graph = graph;
appdata-&text = text;
appdata-&connected = I; /* currently connected to a file */

XtAddCallback(destroy+tNselect, destroyGraph, (caddr t)appdata);
XtAddCallback(export, XtNselect, exportGraph, (caddr t)appdata);
XtAddCallback(save, XtNselect, utilSave, (caddr t)appdata);

Xtpopup(shell, XtGrabNone);

return (graph);
)

/g

ERROR HANDLING SUBROUTINES

Q/

static Widget errshell = NULL;
static char *ibuf;

void utilErrorOK(w, inbuffer, event)
Widget w;
char «inbuffer;
caddr t event;

XtPopdown(errshell);
XtDestroyWidget(errshell);
errshell = NULL;
free(ibuf);

)

void utilError(buffer)
char ~buffer;

Arg list[5];
Widget ok, text, control;

if (errshell)
return;

fprintf(stderr, buffer);
/* allocate my own internal buffer for the message ~/

ibuf = malloc(strlen(buffer) + 1);
strcpy(ibuf, buffer);

XtSetArg(list[0], XtNstring, ibuf);
XtSetArg(list[1], XtNtitle, "SPD");
errshell = XtCreatePopupS hell("notice", noticeShellWidgetClass, Toplevel, list, 2);

XtSetArg(list[0], XtNcontrolArea, (XtArgVal) &control),
XtGetValues(errshell, list, 1);

ok = XtCreateManagedWidget("OK", oblongButtonWidgetClass, control, list, 0);
XtAddCallback(ok+tNselect, utilErrotOKPCULL);

XtPopup(errshell, XtGrabExclusive);
]

APPENDIX H

LIBSP SOURCES

Source Code Listings for Libsp

SP. H

Header file for network display interface SP.

Change History:
28-Jun-90/mwl — Original Issue
16-Sep-90/mwl — Added TRUE, FALSE, and IGNORE directives
26-Sep-90/mwl - Added Image directives

struct ImageRec
(

int builength;
char *data;
int displayValid;

);

typedef int Graph;
typedef int Display;
typedef struct ImageRec *Image;

¹ifndef TRUE
¹define TRUE I
¹endif

¹ifndef FALSE
¹define FALSE 0
¹endif

¹define IGNORE -I
¹define BLANK NULL

extern Image SplmageOpen();

112

/j

libsp. c

Network Imerface for SP graphics.

Change History:
18- Jun-90/mwl — Original Issue
27-Jun-90/mwl — Reworked into Sp library format
03-Nov-90/mwl - Released

Q/

¹include &stdio. h&

¹include &malloc. h&

¹include &ctype. h&
¹include &string. h&

¹include &sy s/types. h&

¹include &sys/socket. h&

¹include &netinet/in. h&

¹include &arpa/inet. h&

¹include &errno. h&

¹include &sys/errno. h&

¹include &netdb. h&

¹include "sp. h"

¹define SPD TCP PORT 10000
¹define DELTABUFSIZE 128000

extern char *getenv();

¹ifdef CRAY
extern unsigned int crayFloatToIEEE();
¹endif

Display Spinitialize(argc, argv)
int *argc;
char *argv[];

int handle;
int addrlen;
struct sockaddr in name;
char *hostid = "192. 58. 110. 14",
unsigned long hostaddr;
struct hostent *host;
unsigned long *hostptr;
int ij;
char *cptr;

char *envptr;
char envbuffer[12];

/~ set the default host address */
hostaddr = inet addr(hostid); f" by default ~/

/* if the DISPLAY environment variable is used, use that value by default */
if ((envptr = getenv("DISPLAY")))
(

strcpy(envbuffer, envptr);
if ((cptr = strchr(envbuffer, ".)))

cptr = "4', / if they used an X display string, truncate */
if (isdigit(envbuffer[0]))
(

if ((hostaddr = inet addr(envbuffer)) = -1)
fprintf(stderr, "Warning: Can't resolve TCP/IP Address in DISPLAY variable

[% s~", envbuffer);

]
else

(
host = gethostbyname(envbuffer);
if (host)
(

¹ifdef CRAY
hostaddr = *(unsigned long *)host-&h addr list[0] » 32;

¹else
hostaddr = *(unsigned long *)host-&h addr list[0];

¹endif
]
else

fprintf(stderr, "Warning: Can't resolve hostname in DISPLAY variable [%s]W', en-
vbuffer);

]
]

/* check each individual display option ~/

for (i = I; i (*argc; i ++)
(

if (argv[i][0] == '-')
(

switch (argv[i][1])
(

case 'd': /* -display hostname */
if ((cptr = strchr(argv[i + 1], ",)))

cptr = "4', / if they used an X display string, truncate */

114

if (isdigit(argv[i+ 1][0]))
[

if ((hostaddr = inet addr(argv[i + 1])) = - I)
fprintf(stderr, "Warning: Can't resolve TCP/IP Address [%sf'", argv[i+I]);

]
else
[

host = gethostbyname(argv[i+ I]);
if (host)

(
¹ifdef CRAY

hostaddr = ~(unsigned long *)host-&h addr list[0] && 32;
¹else

hostaddr = *(unsigned long *)host-&h addr list[0];
¹endif
«ifdef DEBUG

fprintf(stderr, "Real Name: %s Address: %1x'ut", host-&h name, hostaddr);
¹endif

]
else

(
fprintf(stderr, "Warning: Can't resolve hostname [%s]W', argv[i+ I]);

]
]

/* get rid of these options */
for (j = i + 2; j &= *argc; j++)

mv[j - 2] = argv[j]'
*argc -= 2;
break;

]
]

]

default:
break;

/~ create a socket for processes to connect to.
Use TCP/IP in stream mode.

4/

handle = socket(PF INET, SOCK STREAM, O);

name. sin family = AF INET;
name. sin port= SPD TCP PORT;
name. sin port= htons (name. sin port);

name. sin addr. s addr= hostaddr;

if (connect(handle, &name, sizeof(name)))
[

printf("Error: Can't connect to spd daemon[%dpa", etrno);
return (- I);

)

return (handle);
)

Image routines

44444444444lf 4 kll 4444444QQ k444 C tW4 C+lf C4+44+QQQQQQ+44lf 44444lf Oil 44444 k4 k k44Q4

k '4 W '4 4 44 4 4 4 0' 4 4 4 4 4 4/

Image SplmageOpen(display, width, height, lowcolor, highcolor, numcolors)
Display display;
int width, height;
char ~lowcolor;
char ~highcolor;
int numcolors;

(
char buffer[128];
Image image;

sprintf(buffer, "¹videos %d %d V'%sV' V'%sV' %d 'ut", width, height, lowcolor, highcolor, -

numcolors);
write(display, buffer, strlen(buffer));

image = (Image)malloc(sizeof(Image));
image-&data = malloc(width * height);
image-&builength = width * height;
image-&displayvalid = FALSE;

return (image);
)

int SpImageClose(display, image)
Display display;
Image image;

(
write(display, "¹vquitW', 7);
free(image);
return(0);

]

int SpDumpDelta(buffer)
unsigned char *buffer,
(

int i;

while ("buffer!= 'D')
(

switch (*buffer)
(

case 'U'.
printf("U: [%u] ", ~(buffer + 1));
for (i = 0; i & ~(buffer + 1); i++)

printf("%02x ", *(buffer+ 2+ i));
printf('M");
buffer += *(buffer + 1) + 2;
break;

case 'S'.
printf("S: [%u]M', *(buffer+ I));
buffer+= 2;
break;

default:
printf("Error: Invalid type [%cue", *buffer);
buffer++;
break;

]
]

static unsigned char deltabuffer[DELTABUFSIZE];

int SpItnageGenDelta(old, new, size, delta, maxdelta)
unsigned char old[];
unsigned char new[];
unsigned long size;
unsigned char *delta;
unsigned long maxdelta;

117

int bytes, i;
unsigned long position = 0;
unsigned char ~length;
unsigned char *cptr;
unsigned int cmdpos;
unsigned long indelta = 0;

static unsigned char command[258];
static int bailout = 0;
static int saved position;
static int saved cmdpos;

/* if the last delta calculation failed due to lack of delta buffer space,
continue where we left off.

4/

if (bailout)

[
bailout = 0;
position = saved position;
for (i = 0; i & saved cmdpos; i++)

*deltas+ = command[i];

indelta+= saved cmdpos;

/~ start calculating delta data.
4/

while (!bailout && indelta & maxdelta - 1 &&. position & size)

command [0] = 'D',
cmdpos = 1;
bytes =0;

while (old[position] = new[position] && bytes & 255 && position & size)
[

position++;
bytes++;

]

if(bytes & 5 && position& size)
[

command[0] = 'U',
length = &command[1];
*length = 0;
cmdpos = 2;

118

for (i = position - bytes; i & position; i++)
[

command[cmdpos++] = new[i];
(~length)++;

]

while (old[position] ! = new[position] && *length & 255 && position & size)
[

command[cmdpos++] = new[position];
poslttotl++;
(*length)++;

]

if (* length == 0)
[

command[0] = 'D',
cmdpos = 1;

]
]
else if (position & size)

[
command[0] = 'S';
command[1] = bytes;
cmdpos = 2;

]

/* add the command to the delta buffer */
if (cmdpos & (maxdelta - indelta - 1))
(

indelta+= cmdpos;
cptr = command;
while (cmdpos —)

*delta++ = *cptr++;
]
else

[
delta[indelta++] = 'D'; /* this delta buffer is done */
bailout = 1; /* not enough space left, abort & come back later */
saved position = position;
saved cmdpos = cmdpos;

]
]

/* terminate the buffer */

*delta = 'D';
indelta++;

return (indelta);
]

int SpImageAddData(display, image, data)
Display display;
Image image;
unsigned char *data;

[
int deltalength, i;

if (! image-&displayValid)

[
write(display, "@", 1); /* tell the SPD that this is a binary data block */
write(display, data, image-&builength); /* send the data over */
write(display, '"m", I); /~ terminate the data block */
image-&displayValid = TRUE;

¹ifdef SPDEBUG
fprintf(stderr, "wrote [%d] bytes'ut", image-&buflength);
¹endif

]
else

[
deltalength = SpImageGenDelta(image-&data, data, image-&buflength, -

deltabuffer, DELTAB UFSIZE);
write(display, "$", 1); /* tell the SPD that this is a binary data block */
write(display, &deltalength, g); /* tell the SPD that this block has deltalength bytes */

write(display, deltabuffer, deltalength); /* send the data over */
write(display, 'M', I); /* tell the SPD that this is a binary data block */

¹ifdef SPDEBUG
fprintf(stderr, "Compression enabled: [%d[ut", deltalength);
SpDumpDelta(deltabuffer);
¹endif

]

/* copy the new to the old */
for (i = 0; i & image-&buflength; i++)

image-&data[i] = *data++;

return (0);
]

Lgraph routines

4 kklf lf kkkk k44 C44V 44444'ktkkll 44ll 44II 44 k4 4'4'4 k'4'4'444 k444 C4 C @44'444'+ted'Wt4'44 III 4 k k4

Q44444 k4Q4 kOW4 k4+/

Graph SpLgraphOpen(display, minX, min Y, maxX, max Yxlabel, ylabel, title)
Display display;
double minX, min Y, maxX, max Y;
char *xlabel, *ylabel, ~ title;

(
char buffer[128];
char *cpu",
Graph handle;

if (! xlabel)
xlabel = "X";

if (! ylabel)
ylabel = "Y",

if (! title)
title = "SP",

/* open a graph */
sprintf(buffer/ ¹lgraphm %g %g %g %g Y'%sY'Y'%sY' Y'%sY'ut", minXmin Y maxX max-

Y, xlabel, ylabel, title);
write(display, buffer, strlen(buffer));

/* wait for confirmation about the graph handle.
This requires a round-trip to the server, so
it could take a while,

g/

cptr = buffer;
read(display, cptr, 1);
while (~cptr!= "ut')

(
cpfr++;
read(display, cptr, 1);

)
*cptr = "4';

121

handle = atoi(buffer);
return (handle);

]

SpLgraphClose(display, handle)
Display display;
Graph handle;

[
char tmpbuf[64];
/~ close the graph ~/

sprintf(tmpbuf, "¹quit %cM', handle); /" do nothing for now */
write(display, tmpbuf, strlen(tmpbuf)); /» do nothing for now */

]

SpLgraphGridlines(display, handle, gridx, gtidy)
Display display;
Graph handle;
in t gridx;
int gridy;
[

char buffer[64];

/* Turn X gridlines on/off */
sprintf(buffer, "¹xgridlines %s %&M', (gridx)? 'TRUE": "FALSE", handle);
write(display, buffer, strlen(buffer));

/* Turn Y gridlines on/off */

sprintf(buffer, "¹ygridlines %s %&fvt", (gridy) ? "TRUE": "FALSE", handle);
write(display, buffer, strlen(buffer));

]

S pLgraphDivisions(display, handle, divx, divy)
Display display;
Graph handle;
int divx;
tnt dtvy;
[

char buffer[64];

/* set the number of divisions on the X axis */
if (divx &= 0) /* only set if not "ignore" */
[

sprintf(buffer, "¹xdivisions %d %8vt", divx, handle);
write(display, buffer, strlen(buffer));

]

122

/* set the number of divisions on the Y axis ~/

if (divy &= 0) /* only set if not "ignore" */
[

sprintf(buffer, "¹ydivisions %d %tM', divy, handle);
write(display, buffer, strlen(buffer));

)

)

SpShutdown(display)
Display display;
[

write(display, "¹shutdownM", 10); /~ tell the server to close the connection //r. quit */
close(display);

)

SpLgraphAddData(display, handle, x, yv, yvc)
Display display;
Graph handle;
float x;
float yv[];
int yvc;
[

char buffer[128];
int i;

/* build up the buffer to be sent out */
sprintf(buffer, "¹%d %g", handle, x);
for (i = 0; i & yvc; i++)

sprintf(&buffer[strlen(buffer)], " %g", yv[i]);
strcat(buffer, 'ut");

/* send it out over the network */
/* fprintf(stdout, "%s", buffer); */
write(display, buffer, strlen(buffer));

)

SpLgraphAddDataD(display, handle, x, yv, yvc)
Display display;
Graph handle;
double x;
double yvP;
int yvc;
[

char buffer[128];

/» build up the buffer to be sent out */
sprintf(buffer, "¹%d %g", handle, x);
for (i = 0; i & yvc; i++)

sprintf(&buffer[strlen(buffer)], " %g", yv[i]);
stre at(buffer, 'ut");

/* send it out over the network */
/' fprintf(stdout, "%s", buffer); */

write(display, buffer, strlen(buffer));
]

¹Ifdef CRAY

/~ Binary transmission supported from Cray to Sun
4/

SpLgraphAddBinaryData(display, handle, x, yv, yvc)
Display display;
Graph handle;
float x;
float yvP;
int yvc;
[

char *cptr;
int i;
struct

[
char header;
char graph;
char yvc;
char filler[5]; /~ nothing stored here ~/

unsigned int x;
unsigned int yv[32];

] buffer;

buffer. header = '! ',
buffer. graph = (char)handle;
buffer. yvc = (char)yvc;
buffer. x = crayFIoatToIEEE(x);

¹ifdef SPDEBUG
printf("%0161x ", buffer. x);

for (i = 0; i & yvc; i++)

[
buffer. yv[i] = crayFloatToIEEE(yv[i]);

printf("%016lx ", buffer. yv[i]);
]

printf('M");
¹else

for (i = 0; i (yvc; i++)
buffer. yv[i] = crayFloatToIEEE(yv[i]);

¹endif

/~ send it out over the network */
write(display, &buffer, 16 + 8 * i);
write(display, 'M", I); /~ temporary record terminator */

]
¹endif

¹ifdef SPDEBUG
mwrite(handle, buffer, length)
int handle;
char *buffer;
int length;

[
int i;

for (i = 0; i & length; i++)
printf("%02x ", buffer[i]);

printf('M");

write(handle, buffer, length);

]
¹endif

/g

crayFloatToIEEE()

Takes as input a 64-bit Cray format floating point number, and
returns a properly formatted IEEE 64-bit binary value stored in
a 64-bit unsigned integer.

4/

¹ifdef CRAY
unsigned int cray Float ToIEEE(f)
float f;
[

unsigned int i, *iptr;
unsigned int sign;

unsigned int exponent;
unsigned int coeff;
unsigned int new;

/~ special case at zero */
if (f == 0. 0)

return (Ox0000000000000000);

/* break the old value down into it's components */
iptr = (unsigned int *) & f;
i = ~iptr;
sign = i & Oxg000000000000000;
exponent = ((i & Ox7fff000000000000)» 48) - Ox4000;

/* modify the coefficient so it fits the l. f format i/
coeff = ((i & Ox0000ffffffffffff) «1) & Ox0000ffffffffffff;
exponent —;

/* check for exponent overHow */
exponent+= 1023;

if (exponent & Ox7fe II exponent & 1)
return (Ox7ff0000000000000); /* not a number */

/* put the new value together from scratch */
new = sign I (coeff « 4);
new I= (exponent) « 52;

return (new);
)
¹endif

126

APPENDIX I

VISUALIZATION WIDGET SOURCES

127

/g

Lgraph. H

Change History
3-Nov-90/mwl — Original Issue

g/

¹ifndef XLgraph h
¹define XLgraph h

/444444444 fl4444+4++lf QQ+444II 444444444+Q4QQ4QQ444444444 k44444QQ44444 k444Q4

* Lgraph Widget

4444lllklf 44 II444444+QQQQ+44 444 k4 k444+lf 4QQQQ+Q+444ll II kgb k44W C+QQQ4444 ktl k444Q/

¹include &XI I/Core. h&

/* Resources:

Name Class Rep Type Default Value

background BackgroundPixel XtDefaultBackground
bitmap Pixmap Pixrnap None
border BorderColorPixel XtDefaultForeground
borderWidth Border WidthDimension1
callback Callback Pointer NULL
cursor Cursor Cursor None
destroyCallback CallbackPointerNULL
font Font XFontStruct~XtDefaultFont
foreground Foreground Pixel XtDefaultForeground
height Height Dimensiontext height
insensitiveBorder InsensitivePixmapGray
internalHeight HeightDimension2
internalWidth WidthDimen sion 4

justify Justify XtJustifyXtJustifyCenter
label Label S tring NULL
mappedWhenManaged MappedWhenManagedBooleanTrue
re size Resize Boolean True
sensitive Sensitive Boolean True
width Width Dimensiontext width
x Position Position0

Position Position0
xdividers Xdividers Boolean FALSE
ydividers Ydividers Boolean FALSE

128

xdivisions
ydivisions
maxX
max Y
minX
min Y
xlogscale
ylogscale
color0-7
shiftMode
xminor
yminor

g/

Xdivisions
Ydivisions
MaxX
Max Y
MinX
Min Y
Xlogscale
Ylogscale
Colo r0-7

Shif tMode
Xminor
Yminor

1Ilt

mt
int
int
int
int
Boolean

Boolean
Pixel

int
int
int

5
5
0
0
0
0

FALSE
FALSE

XtDefaultForeground
10

5
5

/* Private Atoms ~/

¹define XtNxdividers "xdividers"
¹define XtCXdividers "Xdividers"
¹define XtNydividers "ydividers"
¹define XtCYdividers "Ydividers"
¹define XtNxdivisions "xdivisions"
¹define XtCXdivisions "Xdivisions"
¹define XtNydivisions "ydivisions"
¹define XtCYdivisions "Ydivisions"
¹define XtNmaxX "maxX"
¹define XtCMaxX "MaxX"
¹define XtNmax Y "max Y"
¹define XtCMax Y "Max Y"
¹define XtNminX "minX"
¹define XtCMinX "MinX"
¹define XtNmin Y "min Y"
¹define XtCMinY "MinY"
¹define XtNxlogscale "xlogscale"
¹define XtCXlogscale "Xlogscale"
¹define XtNylogscale "ylogscale"
¹define XtCYlogscale "Ylogscale"
¹define XtNcolor0 "colot0"
¹define XtCColor0 "Color0"
¹define XtNcolorl "color 1"
¹define XtCColor 1 "Color 1"
¹define XtNcolor2 "color2"
¹define XtCColor2 "Color2"
¹define XtNcolor3 "color3"
¹define XtCColor3 "Color3"
¹define XtNcolor4 "color4"
¹define XtCColor4 "Color4"

129

¹define XtNcolor5 "color5"
¹define XtCColor5 "Color5"
¹define XtNcolor6 "color6"
¹define XtCColor6 "Color6"
¹define XtNcolor7 "color7"
¹define XtCColor7 "Color7"
¹define XtNshiftMode "shiftMode"
¹define XtCShiftMode "ShiftMode"
¹define XtNxlabel "xlabel"
¹define XtCXlabel "Xlabel"
¹define XtNylabel "ylabel"
¹define XtCYlabel "Ylabel"
¹define XtNtitle "title"
¹define XtCI'itle "Title"
¹define XtNlabelFont "labelFont"
¹define XtCLabelFont "LabelFont"
¹define XtNxminor "xminor"
¹define XtCXminor "Xminor"
¹define XtNyminor "yminor"
¹define XtCYminor "Yminor"
¹define XtNticksize "ticksize"
¹define XtCTicksize "Ticksize"
¹define XtNmticksize "mticksize"
¹define XtCMticksize "Mticksize"

extern WidgetClass lgraphWidgetClass;

typedef struct LgraphClassRec *LgraphWidgetClass;
typedef struct LgraphRec *LgraphWidget;

¹endif /* XLgraph h */
/* DON'T ADD STUFF AFTER THIS */

130

/4

LgraphP. h - Private definitions for Lgraph widget

Change History
3-Nov-90/mwl - Original Issue

4/

¹ifndef XLgraphP h
¹define XLgraphP h

¹include "Lgraph. h"
¹include &X 1 I/Corep. h&

/44444444++4+ggggggyggg+4+ggggggggggggggggg ggg ggg +gg g444444g4g g+ggyggq+g

" Lgraph Widget Private Data

W4444V'444WII't444444444II'4444'k44'k4444'k'@44'@WE'4W4WW4'CV'4 CVI44444'Cttktkk'CW4tW4t/

typedef struct LDATA TAG

(
struct LDATA TAG *nextdata;
double x;
double ~yv;
int yvc;
) LDATA;

/444'CV W444tt C4444444444444tkkll kkll II All 4

* Class structure

44444O44'C4 C'C48444t444444444444'4tWWt/

/~ New fields for the Lgraph widget class record */

typedef struct LgraphClass

(
intmakes compiler happy; /~ not used ~/

) LgraphClassPart;

/* Full class record declaration */
typedef struct LgraphClassRec [

CoreClassPartcore class;
LgraphClassPart lgraph class;

131

) LgraphClassRec;

extern LgraphClassRec lgraphClassRec;

/44II All 4'4444444444 4W44W4448 kkklllkkll kll akkll t

* Instance (widget) structure

444444444'C4WV lllkkkktktktll 44II II 4444 k44444/

/* New fields for the Lgraph widget record ~/

typedef struct {
/* resources */
XtCallbackList callbacks;
float minX; /* lowest X value "/
float min Y; /~ lowest Y value */
float maxX; /* highest X value ~/

float max Y; /* highest Y value */
Boolean xdividers;
Boolean ydividers;
int xdivisions;
int ydivisions;
ln't xminor;
int y minor;
int ticksize;
int mticksize;
Boolean xlogscale;
Boolean ylogscale;
Pixel foreground;
Pixel colorO;
Pixel colorl;
Pixel color2;
Pixel color3;
Pixel color4;
Pixel colorS;
Pixel colorfi;
Pixel color7;
int shtftMode;
char *tide;
char 'titlestring;
char *xlabel;
char ~ylabel;
XFontStruct *labelFont;
XFontStruct *font;

132

/* private state */
LDATA ~ldata; /* data area ~/

LDATA *lasulata; /* pointer to last data point in the list ~/

Pixmap gray pixmap;
GC normal GC;
GC inverse GC;
GC grid GC;
GC color GC[8];
Boolean rtOK;
float minX;
float min Y;
float maxX;
float max Y;
int margin;
int height;
float x scale;
float yscale;

) LgraphPart;

/* Full widget declaration */

typedef struct LgraphRec (
Core Part core;

Lgraph part lgraph;

) LgraphRec;

¹endif /* XLgraphP h */

133

/4

Lgraph, c - Lgraph widget

Change History
3-Nov-90/mwl — Original Issue

Q/

¹include &stdio. h&

¹include &malloc. h&

¹include &string. h&

¹include &math. h&

¹include &XI I/Xlib. h&

¹include &X 1 I/IntrinsicP. h&

¹include &XI I/StringDefs. h&

¹include "LgraphP. h"

/gg 4g 4440440444444444444444444444tkkt4444404444444444444444444eek

* Full class record constant

44444lllkll All 4444II 44II kill 4'4 k4'44 &II 4 k k444II 44II lf 4444II 44 kkkll 4 II II 444444WW44/

/* Private Data */

static char defaultTranslations[] =
"&Btn1 Down&:notify()vt'i
&Btn3Down&:set()";

¹define offset(field) XtOffset(LgraphWidget, field)

static XtResource resources[] = [
[XtNcallback, XtCCallback, XtRCallback, sizeof(XtPointer),

offset(lgraph. callbacks), XtRCallback, (XtPointer)NULL],
[XtNxdividers, XtCBoolean, XtRBoolean, sizeof(Boolean),

offset(lgraph. xdividers), XtRImmediate, (caddr t)FALSE],
[XtNydividers, XtCBoolean, XtRBoolean, sizeof(Boolean),

offset(lgraph. ydividers), XtRImmediate, (caddr t)FALSE],
(XtNxdivisions, XtCXdivisions, XtRInt, sizeof(int),

offset(lgraph. xdivisions), XtRImmediate, (caddr t)-1),
[XtNydivisions, XtCYdivisions, XtRInt, sizeof(int),

offset(lgraph. ydivisions), XtRImmediate, (caddr t)-1),
[XtNxlogscale, XtCBoolean, XtRBoolean, sizeof(Boolean),

offset(lgraph. xlogscale), XtRImmediate, (caddr t)FALSE],
[XtNylogscale, XtCBoolean, XtRBoolean, sizeof(Boolean),

offset(lgraph. ylogscale), XtRImmediate, (caddr t)FALSE),

134

{XtNxlabel, XtCXlabel, XtRString, sizeof(String),
offset(lgraph. xlabel), XtRString, "X"),

{ XtNylabel+tC Ylabel, XtRString, sizeof(String),
offset(lgraph. ylabel), XtRString, "Y"),

{XtNtitle+tCTitle, XtRString, sizeof(String),
offset(lgraph. title), XtRString, '"'),

{XtNstring+tCString, XtRString, sizeof(String),
offset(lgraph. titlestring), XtRString, '"'),

(XtNcolorO, XtCColor0, XtRPixel, sizeof(Pixel),
offset(lgraph. color0), XtRString, "XtDefaultForeground"),

{XtNforeground+tCForeground, XtRPixel, sizeof(Pixel),
offset(lgraph, foreground), XtRString, "black"),

(XtNcolorl, XtCColorl, XtRPixel, sizeof(Pixel),
offset(lgraph. colorl), XtRString, "red"),

(XtNcolor2, XtCColor2, XtRPixel, sizeof(Pixel),
offset(lgraph. color2), XtRSmng, "green"),

(XtNcolor3, XtCColor3, XtRPixel, sizeof(Pixel),
offset(lgraph. color3), XtRString, "blue"),

(XtNcolor4, XtCColor4, XtRPixel, sizeof(Pixel),
offset(lgraph. color4), XtRString, "orange"),

(XtNcolor5, XtCColor5, XtRPixel, sizeof(Pixel),
offset(lgraph. color5), XtRString, "magenta"),

(XtNcolor6, XtCColor6, XtRPixel, sizeof(Pixel),
offset(lgraph. color6), XtRString, "brown"),

(XtNcolor7, XtCColor7, XtRPixel, sizeof(Pixel),
offset(lgraph. color7), XtRString, "navy"),

{ XtNlabelFont+tCLabelFont, XtRFontStruct, sizeof(XFontStruct *),
offset(lgraph. labelFont)+tRString, "vtsingle"),

{ XtNfont+tCLabelFont, XtRFontStruct, sizeof(XFontStruct *),
offset(lgraph. font), XtRString, "vtsingle"),

{ XtNxminor, XtCXminor+tRInt, sizeof(int),
offset(lgraph. xminor)PktRImmediate, (caddr t)5),

(XtNyminor, XtCYminor, XtRInt, sizeof(int),
offset(lgraph, yminor), XtRImmediate, (caddr t)5),

{ XtNticksize, XtCTicksize PktRInt, sizeof(int),
offset(lgraph. ticksize), XtRImmediate, (caddr t)10),

(XtNmticksize, XtCMticksize, XtRInt, sizeof(int),
offset(lgraph. mticksize), XtRImmediate, (caddr t)6),

{XtNshiftModePCtCShiftMode, XtRInt, sizeof(int),
offset(lgraph. shiftMode), XtRImmediate, (caddr t) 10)

);
¹undef offset

static Boolean SetValuesO;
static void Initialize(), Redisplay(), Set(), Reset(), Notify(), Unset();

static void Destroy(), PaintLgraphWidgetO;
static void ClassInitialize();

static XtActionsRec actionsList[] =
(
("set", Set),
(" notify" notify),
("reset", Reset),
("unset", Unset),

4define SuperClass ((CoreWidgetClass) &coreClassRec)

LgraphClassRec lgraphClassRec = (
(
(WidgetClass) SuperClass J" superclass ~/

"Lgraph" J* class name ~/

sizeof(LgraphRec) J* size */
NULL J* class initialize */
NULL J* class pan initialize */
FALSE J* class inited */
Initialize J~ initialize */
NULL J* initialize hook */
XtInheritRealize J* realize */
actionsList, /* actions */
XtNumber(actionsList) J* num actions */
resources, P* resources */
XtNumber(resources) J* resource count */
NULLQUARK J* xrm class */

FALSE, /* compress motion */
TRUE J* compress exposure */
TRUE J* compress enterleave */
FALSE, /* visible interest */

Destroy J* destroy */
XtInheritResize J* resize */

Redisplay J~ expose */
SetValues J* set values */
NULL J* set values hook */
XtInheritSetValuesAlmostJ* set values almost */
NULLJ~ get values hook */
NULLJ~ accept focus */
XtVersion J* version */
NULL J* callback private */
defaultTranslations J* tm table */
XtlnheritQueryGeometry J* query~eometry */

136

XtinheritDisplayAccelerator/*display accelerator */
NULL' extension */

), / CoreClass fields initialization */

0, /~ field not used ~/

), /* LgraphClass fields initialization ~/

);

/* for public consumption ~/

WidgetClass lgraphWidgetClass = (WidgetClass) &lgraphClassRec;

~ Private Procedures

444444444444 C44 C44V'444WW4444W44'Ct4444'tkkkkll 44444II 44II 4 k4444'4'k4'&44/

static GC
Get GC(cbw, fg, bg, font, linetype, dashtype)
LgraphWidget cbw;
Pixel fg, bg;
Font font;
int linetype;
char dashtype;

(
XGCValuesvalues;

values. foreground = fg;
values. background= bg;
values. font= font;
values. cap style = Capprojecting;
values. line width = 0;

if (linetype! = LineSolid)

values. line style = linetype;
values. dash offset = 0;
values. dashes = dashtype;

return XtGetGC((Widget)cbw,
(GCForegroundlGCBackgroundlGCFontlGCLineWidthlGCCapStyle! GCLineStyle!

GCDashOffsetlGCDashList),
&values);

)

else

137

return XtGetGC((Widget)cbw,
(GCForegroundlGCBackgroundlGCFontlGCLineWidthlGCCapStyle),
&values);

]

/'i ARGSUSED */
static void
Initialize(request, new, args, num args)
Widget request, new;
ArgList args J* unused */
Cardinal *num args;f" unused */

[
LgraphWidget cbw = (LgraphWidget) new;

/* set a reasonable desired size */
cbw-&core. width = 500;
cbw-&core. height = 350;

/* get GCs so we can draw */
cbw-&lgraph. normal GC = Get GC(cbw, cbw-&lgraph. foreground, cbw-&core. back-

ground pixel,
cbw-&lgraph. font-&fid, Line Solid, O);

cbw-&lgraph. inverse GC = Get GC(cbw, cbw-&core. background pixel, cbw-&lgraph. -

foreground,
cbw-&lgraph. font-&fid, Line Solid, O);

cbw-&lgraph. grid GC = Get GC(cbw, cbw-&lgraph. foreground, cbw-&core. background—
pixel,

cbw-&lgraph. labelFont-&fid, LineDoubleDash, 1);
cbw-&lgraph. color GC[0] = Get GC(cbw, cbw-&lgraph. colorO, cbw-&core. background-

pixel,
cbw-&lgraph. font-&fid, Line Solid, 0);

cbw-&lgraph. color GC[1] = Get GC(cbw, cbw-&lgraph. colorl, cbw-&core. background-
pixel,

cbw-&lgraph. font-&fid, Line Solid, 0);
cbw-&lgraph. color GC[2] = Get GC(cbw, cbw-&lgraph. color2, cbw-&core. background—

pixel,
cbw-&lgraph. font-&fid, Line Solid, 0);

cbw-&lgraph. color GC[3] = Get GC(cbw, cbw-&lgraph. color3, cbw-&core. background—
pixel,

cbw-&lgraph. font-&fid, LineSolid, 0);
cbw-&lgraph. color GC[4] = Get GC(cbw, cbw-&lgraph. color4, cbw-&core. background—

pixel,
cbw-&lgraph, font-&fid, LineSolid, 0);

cbw-&lgraph. color GC[5] =Get GC(cbw, cbw-&lgraph. color5, cbw-&core. background-

pixel,
cbw-&lgraph. font-&fid, LineSolid, 0);

cbw-&lgraph. color GC[6] =Get GC(cbw, cbw-&lgraph. color6, cbw-&core, background—
pixel,

cbw-&lgraph. font-&fid, Line Solid, 0);
cbw-&lgraph. color GC[7] =Get GC(cbw, cbw-&lgraph. color7, cbw-&core. background-

pixel,
cbw-&lgraph. font-&fid, LineSolid, 0);

cbw-&lgraph. ldata = NULL; /* starts with no graph data */

cbw-&lgraph. iminX = 0. 0;
cbw-&lgraph. imaxX = 0. 0;
cbw-&lgraph. imin Y = 0. 0;
cbw-&lgraph. imax Y = 0. 0;
cbw-&lgraph. minX = 0. 0;
cbw-&lgraph. maxX = 0. 0;
cbw-&lgraph, min Y = 0. 0;
cbw-&lgraph. max Y = 0. 0;

/* do not start real-time representations until the graph has been properly realized */

cbw-&lgraph. rtOK = FALSE;

* Action Procedures

/* ARGSUSED */
static void
Set(w, event, params, num params)
Widget w;
XEvent ~event;
String *params;/* unused */
Cardinal *num params J* unused */

[
LgraphWidget cbw = (LgraphWidget) w;

XtCallCallbacks(w, XtNcallback, (caddr t)event);

]

/* ARGSUSED */

139

static void
Unset(w, event, params, nutn params)
Widget w;
XEvent *event;
String ~params;/~ unused */
Cardinal *num params;

(
LgraphWidget cbw = (LgraphWidget) w;

/* ARGSUSED */
static void
Reset(w, event, params, num params)
Widget w;
XEvent *event;
Strhtg *params;/* unused ~/

Cardinal *num params; /~ unused ~/

(
LgraphWidget cbw = (LgraphWidget) w;

)

/* ARGSUSED ~/

static void
Notify(w, event, params, num params)
Widget w;
XEvent *event;
String *params;/* unused */
Cardinal *num params J* unused */

(
LgraphWidget cbw = (LgraphWidget) w;
LDATA "data;
int i;

printf("minX: %g min Y: %g maxX: %g max Y: %gW', cbw-&lgraph. minX,
cbw-&lgraph. min Y,
cbw-&lgraph. maxX,
cbw-&Igraph. max Y);

printf("iminX: %g imin Y: %g imaxX: %g imax Y: %gW', cbw-&lgraph. iminX,
cbw-&lgraph. imin Y,
cb w-&lgraph. imax X,
cbw-&lgraph, imax Y);

for (data = cbw-&lgraph. ldata; data; data = data-&nextdata)

140

(
printf("%g", data-&x);

for (i = 0; i & data-&yvc; i++)
(

printf(" %f ', data-&yv [i]);
]

printf("m");

]
]

/4
* Repaint the widget window
4/

/* ARGSUSED */
static void
Redisplay(w, event, region)
Widget w;
XExposeEvent ~event;

Region region;

(
if (event)

/* only clear the display if the whole window needs to be redrawn */

if (event-&x == 0 && event-&y = 0)
XClearWindow(XtDisplay(w), XtWindow(w));

lgraphDisplay(w);

]

static void
Destroy(w)
Widget w;

(
int i;

LgraphWidget cbw = (LgraphWidget) w;

/* free up data area memory */

lgraphFree(cb w);

141

/* so Label can release it */
XtReleaseGC(w, cbw-&lgraph. normal GC);
XtReleaseGC(w, cbw-&lgraph. inverse GC);

for (i = 0; i & 8; i++)
XtReleaseGC(w, cbw-&lgraph. color GC[i]);

/4
* Set specified arguments into widget
Q/

/* ARGSUSED ~/

static Boolean
SetValues (current, request, new)
Widget current, request, new;

(
LgraphWidget oldcbw = (LgraphWidget) current;
LgraphWidget cbw = (LgraphWidget) new;
Boolean redisplay = False;

if ((oldcbw-&lgraph. foreground! = cbw-&lgraph. foreground) II

(oldcbw-&core. background pixel! = cbw-&core. background pixel) II

(oldcbw-&lgraph. font! = cbw-&lgraph. font))
(
XtReleaseGC(new, cbw-&lgraph. inverse GC);
XtReleaseGC(new, cbw-&lgraph. normal GC);

cbw-&lgraph. normal GC = Get GC(cbw, cbw-&lgraph. foreground,
cbw-&core. background pixel);
cbw-&lgraph. inverse GC = Get GC(cbw, cbw-&core. background pixel,
cbw-&!graph. foreground);

redisplay = True;

)

return (redisplay);

)

/Q

* Private subroutines for manipulating the database

142

¹define GRAPHBORDER 40

int lgraph AddData(w, x, yv, yvc)
LgraphWidget w;
double x; /*X value*/
double 4'yv; /* Y vector */
int yvc; /* length of Y vector */
[

LDATA *data, ~prevdata;
int i;
int xl, yl, x2, y2;

prevdata = data;
data = (LDATA 4')malloc(sizeof(LDATA));
data-&x = x;
data-&yv = (double *)malloc(sizeof(double) * yvc);
for (i = 0; i & yvc; i++)

data-&yv[i] = yv[i];
data-&yvc = yvc;

if (! w-&lgraph. ldata)
w-&lgraph, ldata = data;

else
w-&lgraph, lastdata-&nextdata = data; /~ apply link within list ~/

data-&nextdata = NULL; /* finish the list with a NULL terminator ~/

if (x & w-&lgraph. maxX)
w-&lgraph. maxX = x;

if (x & w-&lgraph. minX)
w-&lgraph. minX = x;

for (i = 0; i & yvc; i++)
[

if (yv[i] & w-&lgraph. max Y)
w-&lgraph. max Y = yv[i];

if (yv[i] & w-&lgraph. min Y)
w-&lgraph. min Y = yv[i];

/* if the widget is already realized, and this is additional info to display
draw more.

4/

if (w-&lgraph. rtOK & & w-&lgraph. lastdata && data)

[

143

/* if graph tolerances have been breached, just redisplay */
if (w-&lgraph. maxX & w-&lgraph. imaxX II w-&lgraph. max Y & w-&lgraph. imax Y II w-

&lgraph. min Y & w-&lgraph. itninY II

w-&lgraph. minX & w-&lgraph. iminX)

(
XClearWindow(XtDisplay(w), XtWindow(w));
rescale(w);
lgraph Display(w);

]
else P' this line will still fall within our graph area, so draw it */

[
for (i = 0; i & data-&yvc; i++)
(
x 1 = w-&lgraph, lmargin+ w-&lgraph. x scale * (w-&lgraph. lastdata-&x - w-&lgraph. im-

inX) + GRAPHBORDER / 2;
x2 = w-&lgraph. lmargin+ w-&lgraph. xscale * (data-&x - w-&lgraph. iminX) +

GRAPHBORDER / 2;
y 1 = w-&lgraph. height - w-&lgraph. yscale * (w-&lgraph. lastdata-&yv[i] — w-&lgra-

ph. iminY) - GRAPHBORDER/2;
y2 = w-&lgraph. height — w-&lgraph. yscale ~ (data-&yv[i] - w-&lgraph. imin Y)-

GRAPHBORDER / 2;
XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph. color GC[i%8], xl, yl, x2, y2);

]
]

]

/* finalize the links to the data areas */
w-&lgraph. lastdata = data; /* add end-link to get back to it fast */

static rescale(w)
LgraphWidget w;
[

if (w-&lgraph. shiftMode)

[
if (w-&lgraph. maxX & w-&lgraph. imaxX)

w-&lgraph. imaxX = w-&lgraph. maxX * (1. 0+ w-&lgraph. shiftMode /100. 0);
if (w-&lgraph. max Y & w-&lgraph. imax Y)

w &lgraph imax Y = w &lgraph max Y ~ (1 0+ w &lgraph shiftMode / 100 0);
if (w-&lgraph. min Y & w-&lgraph. imin Y)

w&lgraph iminY = w-&lgraph min Y * (10+ w-&lgraphshiftMode /1000);
if (w-&lgraph. minX & w-&lgraph. iminX)

w-&lgraph. iminX = w-&lgraph. minX * (1. 0+ w-&lgraph, shiftMode /100. 0);
]

]

lgraphSetLimits(w, minx, miny, maxx, maxy, mode)
Lgraph Widget w;
float minx, miny, rnaxx, maxy;
int mode;

(
w-&lgraph. iminX = minx;
w-&lgraph. imin Y = miny;
w-&lgraph. imaxX = maxx;
w-&lgraph. imax Y = maxy;
w-&lgraph. shiftMode = mode;

)

¹define MTICKSIZE w-&lgraph. mticksize
¹deflne TICKSIZE w-&lgraph. ticksize
¹define LABELSEPARATION 5

static int lgraphDisplay(w)
LgraphWidget w;

(
int height, width;
int depth;
int x;
int y;
int bwidth;
Window win;
int xl, x2, yl, y2;
LDATA «data;
int i;
float value;
float minX, maxX, min Y, max Y;
double magnitude;
char buffer[64];
int xdivisions, ydivisions;
int labelwidth;
float xscale, yscale;
int lmargin;
int maxyw;

w-&lgraph, rtOK = TRUE; /* valid data will be entered for graph scaling (real-time pro-
cessing is OK) */

/* determine a reasonable number of divisions if necessary */
if (w-&lgraph. xdivisions == -1)

xdivisions = 5;

145

else
xdivisions = w-&1graph. xdivisions;

if (w-&lgraph. ydivisions == -1)
ydivisions = 4;

else
ydivisions = w-&lgraph. ydivisions;

/* make sure that the minimums and maximums are reasonable */
minX = w-&lgraph. iminX;
maxX = w-&lgraph. imaxX;

min Y = w-&lgraph. imin Y;
max Y = w-&lgraph. imax Y;

if (min Y = max Y)
(

min Y = w-&lgraph. iminY = min Y - . 01;
max Y = w-&lgraph. imax Y = max Y - . 01;

)

/* find the longest of the y value labels */

for (maxyw = 0, i = 0; i &= ydivisions; i++)
(

sprintf(buffer, "%. 4G", (max Y — min Y) * i / ydivisions + min Y);
if (strlen(buffer) & maxyw)

maxyw = strlen(buffer);

)
if (maxyw & 25) /~ don't overshoot the '8' buffer */

maxyw = 25;

/~ calculate the necessary margins using font information */
labelwidth = XTextWidth(w-&lgraph. font, w-&lgraph. ylabel, strlen(w-&lgraph. ylabel)) +

LABELS EPARATION;
lmargin = w-&lgraph. lmargin = labelwidth + XTextWidth(w-&lgraph. -

font, ". 888888888888888888888888", maxyw) +
LABELSEPARATION;

/~ make sure the widths and heights are correct */
height = w-&lgraph. height = w-&core, height — w-&lgraph. font-&ascent — w-&lgraph. font-

&descent - 5;
width = w-&core. width — lmargin — 15;

/* scaling information */
yscale = w-&lgraph. yscale = fabs((height - GRAPHBORDER) / (max Y - min Y));

146

xscale = w-&lgraph. xscale = fabs((width - GRAPHBORDER) /(maxX - minX));

/~ Draw Graph Surround Box */

XDrawRectangle(XtDisplay(w)PktWindow(w), w-&lgraph. normal GC,
lmargin + GRAPHBORDER / 2,
GRAPHBORDER / 2,
width - GRAPHBORDER,
height — GRAPHBORDER);

/* Draw Title */

XDraw String(XtDisplay(w) QtWindow(w), w-&lgraph. normal GC,
w-&core. width /2 - XTextWidth(w-&lgraph. font, w-&lgraph. titlestring, strlen(w-

&lgraph. title)) / 2,
w-&lgraph. font-&ascent,
w-&lgraph. title,
strlen(w-&lgraph. titlestring));

/* Draw Minor X Tick Marks */
for (i = 1; w-&lgraph. xminor k& i (xdivisions ~ w-&lgraph. xminor; i++)
(

/* draw axis tick marks "/
XDrawLine(XtDisplay(w), XtWindo w(w), w-&lgraph. grid GC,

(int)(lmargin + GRAPHBORDER /2+ (maxX - minX) * xscale * i / xdivisions /

w-&lgraph. xminor),
(int)(fabs(max Y) * yscale+ GRAPHBORDER /2+ MTICKSIZE /2),
(int)(lmargin + GRAPHBORDER /2 + (maxX - minX) * xscale ~ i / xdivisions /

w-&lgraph. xminor),
(int)(fabs(max Y) " yscale + GRAPHBORDER /2 - MTICKSIZE / 2));

/* draw base tick marks */

XDrawLine(XtDisplay(w) QtWindow(w), w-&lgraph. grid GC,
(int)(lmargin+ GRAPHBORDER/2+ (maxX - minX) ~ xscale * i/xdivisions /

w-&lgraph. xminor),
(int)(height - GRAPHBORDER / 2),
(int)(lmargin+ GRAPHBORDER /2 + (maxX - minX) * xscale * i / xdivisions /

w-&lgraph. x minor),
(int)(height - GRAPHBORDER / 2 — MTICKSIZE));

/* draw top tick marks */
XDrawLine(XtDisplay(w) +tWindow(w), w-&lgraph. grid GC,

(int)(lmargin+ GRAPHBORDER /2+ (maxX - minX) * xscale * i / xdivisions /

w-&lgraph. xminor),
(int)(GRAPHBORDER / 2),
(int)(imargin+ GRAPHBORDER /2+ (maxX - minX) * xscale * i / xdivisions /

w-&lgraph. xminor),

147

(int)(GRAPHBORDER / 2+ MTICKSIZE));

/~ Draw Minor Y Tick Marks */
for (i = 1; w-&lgraph. yminor &k i & ydivisions * w-&lgraph. yminor; i++)
(

/~ Draw Y axis tick marks */
XDrawLine(XtDisplay(w) PCtWindow(w), w-&lgraph. grid GC,

(int)(lmargin + GRAPHBORDER / 2+ fabs(minX) * xscale + MTICKSIZE / 2),
(int)(height — i * (max Y - min Y) * yscale / ydivisions / w-&lgraph. yminor - GRAPH-

BORDER / 2),
(int)(lmargin + GRAPHBORDER / 2 + fabs(minX) * xscale - MTICKSIZE / 2),

(int)(height - i * (max Y - min Y) *
yscale / ydi visions / w-&lgraph. yminor - GRAPH-

BORDER / 2));

/* Draw left tick marks */
XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph. grid GC,

(int)(lmargin+ GRAPHBORDER /2),
(int)(height - i * (max Y - min Y) * yscale/ydivisions/ w-&lgraph. yminor - GRAPH-

BORDER /2),
(int)(lmargin + GRAPHBORDER / 2 + MTICKSIZE),

(int)(height - i * (max Y - min Y) ~
y scale / ydivisions / w-&lgraph. yminor - GRAPH-

BORDER / 2));

/* Draw right tick marks */

XDrawLine(XtDisplay(w) QtWindow(w), w-&lgraph. grid GC,
(int)(lmargin+ width — GRAPHBORDER /2),

(int)(height - i ~ (max Y — min Y) *
yscale / ydivisions / w-&lgraph. yminor - GRAPH-

BORDER / 2),
(int)(lmargin+ width — GRAPHBORDER /2- MTICKSIZE),

(int)(height - i * (max Y - min Y) *
yscale / ydivisions / w-&lgraph. yminor — GRAPH-

BORDER / 2));
)

/~ Draw Major X Tick Marks */
for (i = 0; i &= xdivisions; i++)
(

if (i! = 0 tkA i! = xdivisions)

(
if (w-&!graph. xdividers)

(
XDrawLine(XtDisplay(w) QtWindow(w), w-&lgraph. grid GC,

(int)(lmargin+ GRAPHBORDER /2+ (maxX - minX) * xscale * i / xdivisions),

(int)(height - GRAPHBORDER / 2),
(int)(lmargin+ GRAPHBORDER /2+ (maxX - minX) ~ xscale * i / xdivisions),

(int)(GRAPHBORDER / 2));
)

/ draw axis tick marks */
XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph. normal GC,

(int)(lmargin+ GRAPHBORDER /2+ (maxX - minX) * xscale * i / xdivisions),
(int)(fabs(max Y) * yscale + GRAPHBORDER / 2 + TICKSIZE / 2),

(int)(lmargin+ GRAPHBORDER / 2+ (maxX — minX) * xscale " i / xdivisions),
(int)(fabs(max Y) * yscale + GRAPHBORDER / 2 — TICKSIZE / 2));

/* draw base tick marks "/
XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph. normal GC,

(int)(lmargin+ GRAPHBORDER /2+ (maxX - minX) * xscale * i / xdivisions),
(int)(height — GRAPHBORDER / 2),

(int)(lmargin+ GRAPHBORDER /2+ (maxX - rninX) * xscale ~ i / xdivisions),
(int)(height - GRAPHBORDER / 2 - TICKSIZE));

P' draw top tick marks */

XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph. normal GC,
(int)(lmargin+ GRAPHB ORDER / 2+ (max X - minX) " xscale ~ i / xdivisions),
(int)(GRAPHBORDER / 2),

(int)(lmargin+ GRAPHBORDER / 2+ (maxX - minX) ~ xscale * i / xdivisions),
(int)(GRAPHBORDER / 2 + TICK SIZE));

sprintf(buffer, "%. 4G", (maxX - minX) * i / xdivisions + minX);
XDrawString(XtDisplay(w)PCtWindow(w), w-&lgraph. normal GC,

(int)(lmargin + GRAPHBORDER /2+ (maxX - minX) * xscale ~ i / xdivisions-
XTextWidth(w-&lgraph. font, buffer, strlen(buffer)) / 2),

height - I,
buffer,
strlen(buffer));

/* Draw Major Y Tick Marks ~/

for (i = 0; i &= ydivisions; i++)
(

if (i!= 0 R& i!= ydivisions)

(
if (w-&lgraph. ydividers)

(
XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph. grid GC,

(int)(lmargin + GRAPHBORDER / 2),
(int)(height - i * (max Y - min Y) * yscale / ydivisions - GRAPHBORDER / 2),

149

(int)(lmargin + width - GRAPHBORDER / 2),
(int)(height - i * (max Y - min Y) * yscale / ydi visions - GRAPHBORDER / 2));

/* Draw Y axis tick marks */
XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph, normal GC,

(int)(lmargin + GRAPHBORDER / 2+ fabs(minX) * xscale + TICKSIZE / 2),
(int)(height - i * (max Y — tnin Y) ~ yscale / ydivisions — GRAPHBORDER / 2),
(int)(hnargin + GRAPHBORDER / 2+ fabs(minX) ~ xscale - TICKSIZE /2),
(int)(height — i ~ (max Y — min Y) * yscale / ydivisions — GRAPHBORDER / 2));

/ Draw left tick marks */
XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph. normal GC,

(int)(lmargin + GRAPHB ORDER / 2),
(int)(height - i ~ (max Y - min Y) ~ yscale / ydivisions - GRAPHBORDER /2),
(int)(lmargin + GRAPHB ORDER / 2 + TICKS IZE),
(int)(height - i * (max Y - min Y) ~ yscale / ydivisions - GRAPHBORDER /2));

/* Draw right tick marks v/

XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph. normal GC,
(int)(lrnargin + width - GRAPHBORDER / 2),
(int)(height — i * (max Y — min Y) *

y scale / ydivisions - GRAPHB ORDER / 2),
(int)(lmargin+ width - GRAPHBORDER /2 - TICKSIZE),
(int)(height — i ~ (max Y - min Y) " yscale / ydivisions — GRAPHBORDER /2));

sprintf(buffer, "%. 4G", (max Y - min Y) * i / ydivisions + min Y);
XDrawString(XtDisplay(w)+tWindow(w), w-&lgraph. normal GC, labelwidth+

LABELS EPARATION,

(int)(height - i * (max Y - min Y) * yscale / ydivisions - GRAPHBORDER /2+ w-

&lgraph. font-&ascent / 2),
buffer,
strlen(buffer));

/* Draw Y Axis */
XDrawLine(XtDisplay(w)+tWindow(w), w-&lgraph. normal GC,

(int)(lmargin + GRAPHBORDER / 2+ fabs(minX) * xscale),
(Uit)(GRAPHBORDER / 2),
(int)(lmargin+ GRAPHBORDER/2+ fabs(minX) * xscale),
(int)(height — GRAPHBORDER / 2));

/* Draw Y Axis Label */
XDrawString(XtDisplay(w)PktWindow(w), w-&lgraph. normal GC, O,

height / 2,

150

w-&lgraph. ylabel,
strlen(w-&lgraph. ylabel));

/* Draw X Axis */
XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph. normal GC,

(int)(lmargin + GRAPHBORDER / 2),
(int)(fabs(max Y) *

y scale + GRAPHBORDER / 2),
(int)(lmargin+ width - GRAPHBORDER /2),
(int)(fabs(max Y) ~ yscale+ GRAPHBORDER /2));

/* Draw the X Axis Label */
XDrawString(XtDisplay(w)+tWindow(w), w-&lgraph. normal GC,

w-&core. width /2 - XTextWidth(w-&lgraph. font, w-&lgraph. xlabel, strlen(w-
&lgraph. xlabel)) / 2,

w-&core. height - w-&lgraph. font-&descent,
w-&lgraph. xlabel,
strlen(w-&lgraph. xlabel));

/* Draw Data */
for (data = w-&lgraph. ldata; data k& data-&nextdata; data = data-&nextdata)

[
for (i = 0; i & data-&yvc; i++)
[

x 1 = lmargin+ xscale * (data-&x - minX) + GRAPHBORDER / 2;
x2 = [margin+ xscale ~ (data-&nextdata-&x — minX) + GRAPHBORDER /2;
y 1 = height - yscale ~ (data-&yv[i] — min Y) — GRAPHB ORDER / 2;
y2 = height - yscale * (data &nextdata &yv[i] — min Y) — GRAPHBORDER /2;

/* printf("XS:%f YS:%f Xl:%d Yl:%d X2:%d Y2:%&M', xscale, yscale, xl, yl, x2, y2); ~/ /
* debugging only */

f" draw only if something will be actually drawn ~/

XDrawLine(XtDisplay(w), XtWindow(w), w-&lgraph. color GC[i%8], xl, yl, x2, y2);

]
]

]

lgraphFree(w)
LgraphWidget w;

[
LDATA *datarec;

for (datarec = w-&lgraph. ldata; datarec; datarec = datarec-&nextdata)

[
free(datarec-&yv);
free(datarec);

151

)
)

152

/4

Image. h

Change History
3-Nov-90/mwl — Original Issue

g/

¹ifndef XImage h
¹define XImage h

/4W4g+gggg4444444444gWe+gggggSgg4444gg44ggg+4W+4gg++g+gggggggyl 444444gg44

* Image Widget

44W4444444W C4444444II 44II 4 VII 44II 4'4 844'44444444WW4 k444 C4 t C4 C C44ICt44444444444/

¹include &XI I/Core. h&

/~ Resources:

Name ClassRepTypeDefault Value

bitmap PixmapPixmapNone
lowcolor Lowcolor String
highcolor Highcolor String
numcolors Numcolors Int
colormap Colormap String

Blue
Red
20
None

/* Private Atoms */

extern WidgetClass imageWidgetClass;

typedef struct ImageClassRec "ImageWidgetClass;
typedef struct ImageRec *ImageWidget;

¹define XtNlowcolor "lowcolor"
¹define XtCLowcolor "Lowcolor"
¹define XtNhighcolor "highcolor"
¹define XtCHighcolor "Highcolor"
¹define XtNnumcolors "numcolors"
¹define XtCNumcolors "Numcolors"
¹define XtNcolormap "colormap"
¹define XtCColormap "Colormap"

¹endif / XImage h */

154

/g

ImageP. h - Private definitions for Image widget

Change History
3-Nov-90/mwl — Original Issue

Q/

¹ifndef XImageP h

¹define XImageP h

¹include "Image. h"
¹include &Xl I/Corep. h&

/4444444444444040eskkkeeki*eskkki444000444440400044444440004i*ekssessiseke
lf

' Lgraph Widget Private Data

44444Q4Q4Q44444+g+4+4444+gi 444+44444i g44Qg44444444444444444444444444444/

typedef struct LDATA TAG
(
struct LDATA TAG *nextdata;
double x;
double *yv;
int yvc;
) LDATA;

* Class structure

4i'444'C4'C4'C4'C444444 Cki 'C'ki"C4i C4444'ki 4/

/* New fields for the Lgraph widget class record */

typedef struct ImageClass

(
int makes compiler happy; /* not used */

) ImageClassPart;

/* Full class record declaration */
typedef struct LgraphClassRec (

CoreClassPartcore class;
ImageClassPart image class;

155

) ImageClassRec;

extern ImageClassRec imageClassRec;

* Instance (widget) structure

444444444444g4QQ4444Q4Q44444gg44444444/

/* New fields for the Image widget record */

typedef struct (
/* resources */
XtCallbackList callbacks;
Pixel foreground;
Pixmap current pixmap;
char *lowcolor;
char *big hcolor;
char *colormap;
int numcolors;

/* Private areas */
GC
Pixel
XIm age
int
int

) ImagePart;

normal GC;
colors [128];
*current image;
depth;
isrealized;

/* Full widget declaration */

typedef struct ImageRec (
Core Part core;
ImagePart image;

) ImageRec;

¹endif/* XImageP h*/

t56

/4

Image. c

A Widget used to smoothly display pixmaps.

Change History:
12-Sep-90/mwl - Original Issue
3-Nov-90/mwl - Released

¹include &stdio. h&

¹include &malloc. h&

¹include &string. h&

¹include &math. h&

«include &Xl 1/Xlib. h&

¹include &Xl 1/Intrinsicp. h&

¹include &Xl 1/StringDefs. h&

¹include "Imagep. h"

~ Full class record constant

'k4'k44444444V'444444'CV'44444'C'C'C44V'44444'C4W C444444444444444'844'l444/

/* Private Data */

static char defaultTranslations[] =
"&B tn 1Down&:notify()";

¹define offset(field) XtOffset(ImageWidget, field)

static XtResource resources[] = [
[XtNcallback, XtCCallback, XtRCallback, sizeof(XtPointer),

offset(image. callbacks), XtRCallback, (XtPointer)NULL),
[XtNbitmap, XtCPixmap, XtRBitmap, sizeof(Pixmap),

offset(image. current pixmap), XtRImmediate, (caddr t)None),
[XtNforegroundPCtCForeground, XtRPixel, sizeof(Pixel),

offset(image. foreground), XtRString, "XtDefaultForeground"],
[XtNIowcolor+tCLowcolor, XtRString, sizeof (char *),

offset(image. lowcolor), XtRString, "blue"),
[XtNhighcolor, XtCHighcolor, XtRString, sizeof (char *),

offset(image. highcolor)+tRString, "red"),
[XtNnumcolors, XtCNumcolors, XtRInt, sizeof (int),

157

offset(image. numcolors), XtRImmediate, (caddr t)20),
(XtNcolormap, XtCColormap, XtRString, sizeof (char *),

offset(image. colormap), XtRString, '"'
)

);
¹undef offset

static Boolean SetValues();
static void Initialize(), Redisplay(), Notify();
static void Destroy();
static void ClassInitialize();

static XtActionsRec actionsList[] =
(
("notify"Plotify)

):

¹define SuperClass ((CoreWidgetClass) &coreClassRec)

ImageClassRec imageClassRec = (
(
(WidgetClass) SuperClass J" superclass ~/

"Image"J* class name */
sizeof(ImageRec) J* size */
NULL J* class initialize "/
NULL J* class part initialize */

FALSE, P class inited */
Initialize J* initialize */
NULL J* initialize hook */
XtInheritRealize J* realize */
actionsListJ* actions ~/

XtNumber(actionsList) J* num actions */
resources/" resources */
XtNumber(resources)/" resource count ~/

NULLQUARK J* xrm class ~/

FALSE J" compress motion */
TRUE J* compress exposure */

TRUE J* compress enterleave */

FALSE, / visible interest */
DestroyJ' destroy */
XtInheritResize J* resize */

Redisplay J* expose */
SetValues J* set values */

NULL J* set values hook */
XtInheritSetValuesAlmost, /* set values almost */
NULLJ" get values hook */

158

NULL J* accept focus */
XtVersion J«version */
NULL J callback~rivate */
defaultTranslations J« tm table */
XtInheritQueryGeometryg«query~eometty «/

XtinheritDisplayAcceleratorg«display accelerator */
NULL/* extension */

), /* CoreClass fields initialization */

(
0, /* field not used */

), /* ImageClass fields initialization */

/* for public consumption «/

WidgetClass imageWidgetClass = (WidgetClass) &imageClassRec;

/««

* Private Procedures

««/

static GC
Get GC(cbw, fg, bg)
ImageWidget cbw;
Pixel fg, bg;
(
XGCValuesvalues;

values. foreground = fg;
values. background= bg;
values. cap style = Capprojecting;
values. line width =0;

return XtGetGC((Widget)cbw,
(GCForegroundlGCBackgroundl GCLineWidthlGCCap Style),
&values);

)

/* ARGSUSED */
stanc void
Initialize(request, new, args, num args)
Widget request, new;
ArgList args;/* unused */

159

Cardinal *num args;/* unused */

(
ImageWidget cbw = (ImageWidget) new;
Window root;
int x, y, w, h, bw, depth, displaydepth;
XGC Values values;
int i;
int red, green, blue;
int incred, incgreen, incblue;
Colormap cmap;
XColor lowdef, highdef;
XColor def;

displaydepth = DefaultDepthOfScreen(XtScreen(cbw));
cbw-&image. depth = displaydepth;

if (cbw-&image. current pixmap!= NULL)
(

XGetGeometry(XtDisplay(cbw), cbw-&image. current pixmap, &root, &x, &y, & w, &h, &-
bw, &depth);

cbw-&core. width = w;
cbw-&core. height = h;

)
else if (! cbw-&core. width II! cbw-&core. height)

(
fprintf(stderr, "Image Widget: Setting width and height manually&");

cbw-&core. width = 400;
cbw-&core. height = 400;

)

if (displaydepth &= 8)
(

cmap = DefaultColormapOfScreen(XtScreen(cbw));

if (! XParseColor(XtDisplay(cbw), cmap, cbw-&image. lowcolor, &lowdef))
printf("Image Widget Error: Can't find low color definition");

if (! XParseColor(XtDisplay(cbw), cmap, cbw-&image. highcolor, &highdef))
printf("Image Widget Error: Can't find high color definitio&n");

red = lowdef. red;
blue = lowdef. blue;
green = 1owdef. green;

incred = ((int)highdef. red - (int)lowdef. red) / cbw-&image. numcolors;

160

incgreen = ((int)highdef. green - (int)lowdef. green) / cbw-&image. numcolors;
incblue = ((int)highdef. blue - (int)lowdef. blue) / cbw-&image. numcolors;

for (i = 0; i & cbw-&image. numcolors;)

[
def. red = red;
def. green = green;
def. blue = blue;

if (! XAllocColor(XtDisplay(cbw), cmap, &def))
[

printf("Image Widget Error: Can't allocate colorce&n");
cbw-&image. colors[i] = cbw-&image. foreground;

]
else

cbw-&image. colors[i] = def. pixel;

1++;

red+= incred;
green += incgreen;
blue += incblue;

]
)
else / black and white display, allocates only two colors ~/

[
cbw-&image. colors[0] = cbw-&core. background pixel;
cbw-&image. colors[1] = cbw-&image. foreground;
cbw-&image. numcolors = 2;

]

/* get GC so we can draw */
values. foreground = cbw-&image. foreground;;
values. background = cbw-&core. background pixel;
cbw-&image. normal GC = XCreateGC(XtDisplay(cbw), RootWin-

dowOfScreen(XtScreen(cbw)), GCForegroundlGCBackground, &values);

/" general initialization ~/

cbw-&image. current image = (XImage *)NULL;
cbw-&image. isrealized = 0;

]

161

* Action Procedures

444444444484444444444444444/

/* ARGSUSED */
static void
Nodfy(w, event, params, num params)
Widget w;
XEvent ~event;
String *params;/* unused */
Cardinal "num params;/* unused */

(
ImageWidget cbw = (ImageWidget)w;

XtCallCallbacks(wgktNcallback, (caddr t)event);

)

/4
* Repaint the widget window
4/

static void Redisplay(w, event, region)
ImageWidget w;
XExposeEvent *event;
Region region;
(

w-&image. isrealized = 1;

if (w-&image. current pixmap)
XCopyArea(XtDisplay(w), w-&image. current pixmap, XtWindow(w),

w-&image, normal GC, O, O, w-&core. width, w-&core. height, 0, 0);
else if (w-&image. current image)

XPutImage(XtDisplay(w), XtWindow(w), w-&image. normal GC, w-&image. current i-

mage,
0, 0, 0, 0, w-&core. width, w-&core. height);

/Q

* Destroy Method
4/

static void Destroy(w)
ImageWidget w;

(
Colormap cmap;

162

if (w-&image. current pixmap)
XFreePixmap(XtDisplay(w), w-&image. current pixmap);

if (w-&image. current image)
XDestroyImage(w-&image. current image);

XFreeGC(XtDisplay(w), w-&image. normal GC);
)

/Q

* Set specified arguments into widget
4/

/* ARGSUSED ~/

static Boolean
SetValues (current, request, new)
Widget current, request, new;

(
ImageWidget oldcbw = (ImageWidget) currem;
Image Widget cbw = (Image Widget) new;
Boolean redisplay = False;
XGCValues values;

if (oldcbw-&image. current pixmap! = cbw-&image. current pixmap)
redisplay = True;

if ((oldcbw-&image. foreground!= cbw-&image. foreground) II

(oldcbw-&core. background pixel!= cbw-&core. background pixel))

(
XFreeGC(XtDisplay(new), cbw-&image. normal GC);

values. foreground = cbw-&image. foreground;
values. background = cbw-&core. background pixel;
cbw-&image. normal GC = XCreateGC(XtDisplay(cbw), XtWin-

dow(cbw), GCForegroundlGCBackground, &values);

redisplay = True;

)

return (redisplay);

)

/Q

* Private commands

163

Q/

void Imagepixmap Set(w, map)
Image Widget w;
Pixmap map;
[

int x, y, width, height, bw, depth;
Window root;
Arg list[3];

/* look at the size of the new pixmap. Resize the window if necessary */

XGetGeometry(Xt Display(w), map, &root, &x, &y, & width, &height, &bw, &depth);
if (width & w-&core. width II height & w-&core. height)

[
/~ XtResizeWidget(w, width, height, w-&core. border width); ~/

XtMakeResizeRequest(w, width, height, & width, &height);

]

/* set the new pixmap to the current one, and blit it to the screen ~/

w-&image. current pixmap = map;

if (! w-&image. isrealized)
return;

XCopyArea(XtDisplay(w), w-&image. current pixmapPCtWindow(w), w-&image. nor-

mal GC, O, O, w-&core. width, w-&core, height, 0, 0);
]

void Image Test(w)
ImageWidget w;

[
int id;

if (! w-&image. isrealized)
Ie tultl j

for (i = 0; i & w-&image. numcolors; i++)
[

XSetForeground(XtDisplay(w), w-&image. normal GC, w-&image. colors[i]);
for (j = 0; j &= w-&core. height / w-&image. numcolors; j++)
[

XDrawLine(XtDisplay(w), XtWindow(w), w-&image. normal GC,
O, i * w-&core. height/ w-&image. numcolors + j,
w-&core. width, i * w-&core. height / w-&image. numcolors + j);

]
]

void ImageScientificSet(w, data)
ImageWidget w;
char dataP;
[

register int x, y, position;
Pixel color,
int idata;
char *buffer;

if (! w-&image. current image) /* if no image has yet been allocated, allocate one for an 8-
bit display '/

[
buffer = malloc(w-&core. width * w-&core. height);
if (! buffer)

[
fprintf(stderr, 'Error: Can't Allocate Image Data Area [%d] %d %An", w-&core. width

* w-&core. height, w-&core. width, w-&core. height);
return;

)

w-&image. current image = XCreatelmage(XtDisplay(w),
DefaultVisualOf Screen(XtScreen(w)),
w-&image. depth, ZPixmap, 0, buffer,
w-&core. width, w-&core. height,

8, 0);

if (! w-&image. current image)
fprintf(stderr, "Error: Can't create image ut");

if (w-&image. depth & 1) /* color display ~/

[
position = 0;
for (y = 0; y (w-&core. height; y++)

for (x = 0; x & w-&core. width; x++)
[

idata = data[position++] % w-&image, numcolors;
color = w-&image. colors[idata];

XPutPixel(w-&image. current image, x, y, color);

]
]
else /* mono display */

165

[
position = 0;
for (y = 0; y & w-&cote. height; y++)

for (x = 0; x & w-&core. width; x++)
[

color = ((data[position++]) ?
w-&image. colors[1]: w-&image. colors[0]);

XPutpixel(w-&image. current image, x, y, color);
)

)

if (! w-&image. i srealized)

[
return;

]

XPutlmage(XtDisplay(w)+tWindow(w), w-&image. normal GC, w-&image. current im-

age,
0, 0, 0, 0, w-&core. width, w-&core. height);

)

void ImageSet(w, image)
ImageWidget w;
XImage *image;

[
/* change to the new image "/
w-&image. current image = image;

if (I w-&image. isrealized)
re turtl j

/* blit it to the display */
XPutImage(XtDisplay(w), XtWindow(w), w-&image. normal GC, w-&image. current im-

age,
0, 0, 0, 0, w-&core. width, w-&core. height);

void ImageDeltaSet(w, data)
ImageWidget w;
unsigned char *data;

[
int done = 0;
int bytes, i;
int x, x2, y, y2;
unsigned int position = 0;

166

Pixel color;

/* if there isn't a preallocated image, a delta isn't possible «/

if (! w-&image. current image)

[
utilError("Error: No current image for delta processor");
netul11;

while (! done)

[
switch(~data) /* depending on command ~/

[
case 'S'.

position+= *(data+ 1);
data+= 2;
break;

case 'U'.
bytes = ~(data+ 1);
data+= 2;

if (w-&image. depth & 1)
for (i = 0; i & bytes; i++, position++, data++)

if (*(data) &= w-&image. numcolors)
color = w-&image. colors[w-&image. numcolors - 1];

else
color = w-&image. colors[*(data)];

XPutPixel(w-&image. current image, position % w-&core. width,

position / w-&core. width, color);
]

else
for (i = 0; i & bytes; i++, position++, data++)

[
color = w-&image. colors[((*(data) &= 1)? 1: 0)];
XPutPixel(w-&image. current image, position % w-&core. width,

position / w-&core. width, color);

case 'D'.
done = 1;
break;

167

)

)

default:
fprintf("Image Widget Error: Invalid Delta Command [%cNt", ~data);
data++;
break;

if (! w-&image. isrealized)

(
utilError("Error: Trying to delta to an umealized widget");
return;

)

XPutlmage(XtDisplay(w) PCtWindow(w), w-&image. normal GC, w-&image. cunent im-

age,
0, 0, 0, 0, w-&core. width, w-&core. height);

)

168

VITA

Mark Wayne Lenox received his B. S. E. in Systems Engineering from Arizona State

University in 1989. He worked as a programmer for Quincy Street, Corporation in Phoenix

Arizona for several years before going to work for Cray Research, Inc. , in 1989. With the

realization that a B. S. just wasn't enough, he moved to College Station Texas to pursue an

M. S in Electrical Engineering. While studying at Texas A&M he worked at the Texas A&M

Supercomputer Center in the areas of scientific visualization, distributed processing, and

UNIX system programming, In his spare time, he competed with the A&M water ski team,

and currently holds the A&M mens trickskiing record. After graduation, Mark plans to live,

work, and ski (although not necessarily in that order) in the Dallas, Texas area.

Further information about SP is available from the Texas A&M Supercomputer Cen-

ter, 006 WERC, College Station, TX 77843.

