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Abstract
We study the stochastic dynamics of natural resources under the threat of ecological regime 
shifts. We establish a Pareto optimal framework of regime shift detection under uncertainty 
that minimizes the delay with which economic agents become aware of the shift. We inte-
grate ecosystem surveillance in the formation of optimal resource extraction policies. We 
fully solve the case of a profit-maximizing monopolist, study its response to regime shift 
detection and show the generality of our framework by extending our results to other deci-
sion makers and functional forms. We apply our framework to the case of the Cantareira 
water reservoir in São Paulo, Brazil, and study the events that led to its depletion and the 
consequent water supply crisis.

Keywords  Regime shifts · Natural resources · Quickest detection · Uncertainty

JEL Classification  Q20 · Q57 · D81 · D42

1  Introduction

The dynamic management of natural resources requires making decisions under ecologi-
cal uncertainty, defined by Pindyck (2002) as uncertainty over the evolution of the rel-
evant ecosystem. Stochastic bio-economic models traditionally capture this uncertainty by 
describing environmental fluctuations as idiosyncratic shocks affecting the stock of natural 
resources. Another way ecological uncertainty can manifest itself, particularly for renew-
able resources, is by means of regime shifts, broadly identifiable as abrupt changes in the 
structure of the resource ecosystem such as the underlying population dynamics or the 
resource’s ability to regenerate (Biggs et  al. 2009). Regime shifts can cause substantial 
changes in the provision of ecosystem services, and can have significant impacts on both 
economic systems and the well-being of populations (Stern 2006). Their occurrence has 
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been extensively documented as a consequence of both natural and anthropogenic factors 
such as climate change and environmental overexploitation. Recent examples can be found 
in the logged tropical rainforests in parts of Asia, South America and Africa which have 
become more fire-prone leading to a regime shift towards exotic fire-promoting grasslands 
(Lindenmayer et al. 2011), or in the human-induced regime change in the Baltic Sea from 
cod to sprat and herring as dominant species in the fish population (Österblom et al. 2007).

There is an extensive literature studying the impact of stochasticity on renewable 
resource extraction and harvesting activities, dating from Pindyck (1984, 1987) and Reed 
(1988) up to Saphores (2003), Alvarez and Koskela (2007) and Springborn and Sanchir-
ico (2013). An emerging literature focuses on resource management under potential 
regime shifts, intended as structural changes in ecosystem dynamics: Polasky et al. (2011) 
shows how the threat of a regime shift can yield a precautionary extraction policy. Ren 
and Polasky (2014), Baggio and Fackler (2016), de Zeeuw and He (2017), Costello et al. 
(2019), Arvaniti et  al. (2019), Crépin and Nævdal (2020), Kvamsdal (2022), Patto and 
Rosa (2022) and Nkuiya and Diekert (2023) extend the analysis to endogeneity, revers-
ibility and observability of the regime shift. Sakamoto (2014) and Diekert (2017) explicitly 
consider a strategic environment and show how the potential occurrence of a catastrophic 
regime shift can facilitate cooperation between competing economic agents.

The main challenge in responding optimally to a regime shift is precisely the dual nature 
of the ecological uncertainty that economic agents face: the exact moment at which the 
shift occurs is unknown ex ante, and it is often not an easy feat to immediately disentan-
gle structural changes in the ecosystem from idiosyncratic environmental fluctuations. 
This problem is further amplified by the fact that ecosystems are in constant evolution, and 
multiple large-scale changes to their structure are often caused or accelerated by economic 
activity. Barrett (2013) shows how uncertainty over tipping points’ thresholds, rather than 
uncertainty over consequences, can cause coordination between economic agents to col-
lapse. Crépin et  al. (2012) highlight the importance of adaptive resource management 
in understanding the likelihood of regime shifts and their consequent impacts on human 
well-being.

The primary contribution of the paper is the integration of environmental surveillance 
and regime shift detection in a model of natural resource extraction. Environmental moni-
toring is a common practice in real-world resource management: for example, the Norwe-
gian company Aker BioMarine, a global krill monopoly, uses drones to collect, process and 
transmit density and distribution on the krill biomass.1 Additionally, water utilities such as 
Aguas Andinas in Chile (a private water monopoly), Anglian Water in the UK and Ameri-
can Water in the USA are increasingly reliant on remote sensing techniques for monitoring, 
prediction and control of algae blooms in real time.2 These techniques, combined with in 
situ measurements, constitute some of the most effective ways for efficient management 
and controlled exploitation of natural resources. In ecology, using real-time remote sens-
ing data is increasingly common, especially with indicators of approaching thresholds or 
impending collapse in ecosystems (Batt et al. 2013; Carpenter et al. 2014). Our framework 
is therefore particularly relevant as it sheds light on how firms operate within modern-day 
resource markets, in which monitoring resource stocks takes an increasingly central role as 
drastic ecosystem changes become more frequent.

1  https://​www.​akerb​iomar​ine.​com/​news/​aker-​bioma​rine-​pione​ering-​machi​ne-​learn​ing-​for-​opera​tional-​decis​
ion-​making.
2  https://​www.​lgson​ic.​com/​aguas-​andin​as-​pirque-​mega-​ponds/; https://​www.​aquat​echtr​ade.​com/​news/​surfa​
ce-​water/3-​utili​ty-​case-​studi​es-​on-​treat​ing-​algal-​blooms/.

https://www.akerbiomarine.com/news/aker-biomarine-pioneering-machine-learning-for-operational-decision-making
https://www.akerbiomarine.com/news/aker-biomarine-pioneering-machine-learning-for-operational-decision-making
https://www.lgsonic.com/aguas-andinas-pirque-mega-ponds/
https://www.aquatechtrade.com/news/surface-water/3-utility-case-studies-on-treating-algal-blooms/
https://www.aquatechtrade.com/news/surface-water/3-utility-case-studies-on-treating-algal-blooms/
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The surveillance and detection of regime shifts can substantially alter constraints and 
incentives faced by economic agents who extract natural resources. In this paper we first 
characterize the losses stemming from the ecological uncertainty of regime shifts, which 
manifest in the delay with which the agents become aware of their occurrence. Minimiz-
ing this delay requires the agents to be able to detect the presence of a regime shift in the 
quickest time possible. The problem involves the search for a way to deduce the occurrence 
of a general change in the drift of the controlled stochastic process that drives the natural 
resource evolution, and is formulated as an optimal stopping problem. This class of prob-
lems are known as quickest detection problems.3 Originated in the Brownian disorder lit-
erature pioneered by Shiryaev (1963, 1996), detection methods have found multiple appli-
cations throughout the statistical and econometric literature, from Krämer et al. (1988) and 
Ploberger and Krämer (1992) to Horváth and Trapani (2022). Building on Moustakides 
(2004)’s work on drift changes in martingales, we present a framework with general con-
trolled Itô diffusions that minimizes the efficiency loss caused by incomplete observability 
of the environmental conditions in which agents operate. To our knowledge, ours is the first 
paper to integrate these results in a continuous-time optimization problem in economics, 
and particularly in the regime shifts and renewable resources literature. More importantly, 
we show Pareto optimality of our framework for any resource-extracting economic agent.

In order to understand the impact of anticipating regime shift on the agents’ incentives, 
and especially within our framework of quickest detection, it is of importance to include 
in the analysis the criteria used by decision makers for their resource use. We therefore 
integrate the surveillance procedure in the optimization problem of a resource-extracting 
monopolist, such that the firm maximizes its profits with respect to the resource dynamics 
over different periods determined by the detection time. We solve the monopolist’s prob-
lem under regime shift detection by characterizing its value function as a viscosity solution 
of the Hamilton–Jacobi–Bellman partial differential equation associated with the optimiza-
tion problem over the periods defined by the detection time. Whilst we focus on solving the 
case of a monopolist, our solution technique is entirely general, and can be used to model 
any decision maker maximizing a general criterion satisfying a broad set of requirements. 
We extend our framework to include the detection of multiple regime shifts, under both full 
and partial information on the magnitude of such shifts. We show that a monopolist fac-
ing an isoelastic demand when anticipating an adverse (positive) regime shift will increase 
(decrease) its extraction and post-detection will reach a new higher (lower) extraction rate. 
Whether the immediate change in extraction is gradual or abrupt, as well as the slope of the 
extraction policy, is determined by the magnitude of the regime shift and how quickly the 
new regime is detected by the firm.

We then introduce a set of extensions to our framework. We first examine the case of 
a government seeking to maximize social welfare. While the anticipation of an adverse 
regime shift may lead the monopolist to adopt an aggressive policy, the government can 
pursue a precautionary extraction path instead, if societal risk aversion is high. As another 
benchmark, we solve the case of perfect competition, showing how the competitive extrac-
tion policy in prospect of an adverse regime shift always exceeds the monopolist. We fur-
ther show numerical evidence of how a monopolist facing a linear demand structure under 
resource dynamics subject to arithmetic fluctuations and a periodic drift can yield both 
precautionary and aggressive extraction strategies as a consequence of an adverse regime 

3  For further details we refer to Poor and Hadjiliadis (2008) and Tartakovsky et al. (2014).
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shift. Overall, our results shed an important light on the responses of different economic 
agents to ecological uncertainty.

We then apply our framework to the case of the Cantareira water reservoir, a large-scale 
system of interconnected reservoirs which serves the Metropolitan Area of of São Paulo in 
Brazil. The reservoir is managed by Companhia de Saneamento Básico do Estado de São 
Paulo (SABESP), a water and waste management company acting as a semi-public natural 
monopoly. In early 2013, the reservoir’s stored water volume began decreasing sharply and 
by July 2014 its operational capacity was depleted, leaving a densely populated area inhab-
ited by more than 25 million people in a devastating water crisis. Using daily data on res-
ervoir volume, water pumping, rainfall and river inflows, we show how the depletion was 
caused by a catastrophic regime shift in the reservoir dynamics, and estimate the structural 
parameters pre- and post-shift via particle filtering. We find that the implementation of our 
detection procedure could have allowed the water monopolist to detect its occurrence more 
than 6 months ahead of the delayed time at which it changed its pumping policy. We fur-
ther show counterfactual evidence of how adjusting the policy at the detection time could 
have substantially delayed depletion, if not avoided it altogether, and therefore could have 
drastically dampened the severe impact of the water supply crisis on the population.

The remainder of the paper is structured as follows. Section 2.1 formalizes the resource 
dynamics, sets up the detection procedure and shows its Pareto optimality. Section  2.2 
solves the monopolist’s optimization problem within different scenarios. Section  2.3 
explores the characteristics of the solution to the firm’s problem, shows the different policy 
responses to regime shifts, and Sect. 2.4 presents a set of extensions. Section 3 presents 
the application of our framework to the case of the Cantareira water reservoir, and Sect. 4 
concludes.

2 � The Model

2.1 � Resource Dynamics, Regime Shifts and Quickest Detection

We start by modeling the stochastic dynamics of a renewable resource extracted by an eco-
nomic agent. Let Xt be the resource stock available at time t, which behaves according to 
the stochastic differential equation (SDE)

where qt ∈ ℝ
+ is the extraction policy, �t = �(Xt, t) is the intensity of noise in the evo-

lution of the resource stock, �t = �(Xt, t) is the process that drives the resource growth 
and Xt ≥ 0 . Finally, Wt is the standard Brownian motion in the filtered probability space 
(ℝ,Ft,P) . The processes �t, qt, �t are adapted to the same filtration Ft , and satisfy the 
standard requirements for existence and uniqueness of a weak solution for (1).4

In order to capture the regime shift that the resource dynamics can undergo, we describe 
two alternative scenarios faced by the agent: one in which the resource evolves according 
to Eq. (1), and an alternate one in which the stock’s ability to regenerate (the drift) changes. 
This is consistent with Polasky et al. (2011), who define regime shift as a change in the 
system dynamics such as the intrinsic growth rate or the carrying capacity of the resource. 
The evolution for the resource stock then becomes

(1)dXt =
(
�t − qt

)
dt + �tdWt, X0 = x0

4  See Oksendal (2013) for all further details.
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where �t ∶= �(Xt, t) ∈ ℝ is the change in resource growth, also adapted to Ft . If 𝜆t < 0 ∀t , 
the growth rate of the resource is reduced and it undergoes a negative (adverse) regime 
shift, and vice versa. The regime shift can be made dependent on antecedent factors and 
we can write �t ∶= �(Xt, t,Θ) , where Θ is the information set the agent has when it starts 
monitoring the resource stock. By antecedent factors we imply any process adapted to the 
filtration F0 , which does not vary during the surveillance period and contributes to the 
knowledge the agent has at t = 0 on the magnitude of the regime shift �t . The set Θ can 
be constructed to include any early warning signals available at t = 0 which can signal 
the likelihood and magnitude of regime shift, such as “critical slowing-down” (Scheffer 
et al. 2009) and self-organized spatial patterns (Rietkerk et al. 2004). Such indicators are 
key features of coupled human-environment systems (Boettiger and Hastings 2012; Bauch 
et  al. 2016). Furthermore, Θ can include information on the agent’s extraction policy 
adopted before the initial observation time, allowing us to study a framework in which past 
extraction activity can determine future changes in resource growth.

We therefore want to study the scenario in which at a given change point in time � , 
which is happening with certainty but at time unknown, the SDE driving the resource stock 
will switch between drifts:

Note that since the occurrence of � is certain, the question faced by the agent is not if a 
regime shift will occur but rather when. The agent now faces two sources of uncertainty 
when choosing the extraction policy that maximizes its profits. The first source is given 
by the Brownian motion Wt calibrated by the diffusion coefficient �t , which represents the 
fluctuations inherent to the natural randomness of environmental conditions. The second 
source is the uncertainty over the timing � of the shift, at which the resource’s drift changes 
from �t to �t + �t . Whilst being unknown to the agent ex ante, the change point would be 
immediately inferable in absence of fluctuations. In presence of fluctuations, however, the 
agent needs to be able to distinguish the structural change in the drift from idiosyncratic 
noise.

We now need to establish from a decision maker’s perspective the importance of 
adjusting to a regime shift in the ecosystem as quickly as possible. Why should an 
economic agent undertake any supplementary analysis in order to infer whether the 
regime shift has actually occurred? Let us formalize this point. The extraction policy 
q is chosen by the agent according to a specific criterion J(q) ∶= J(q, x) . From Sect. 2.2 
onwards, we will assume the agent to be a monopolist firm that follows a profit-maxi-
mizing criterion but this framework can be applied to any optimizing economic decision 
maker.5 For a government, this criterion would be expressed in terms of social welfare, 
for a risk-averse individual it would be in terms of utility drawn from resource con-
sumption. The pre-regime shift extraction policy q� ∶= q�(x, t) is optimal, in the sense 
that it is chosen by the agent such that it maximizes their expected discounted criterion 
J(q) within a given time horizon � i.e.

(2)dXt =
(
�t + �t − qt

)
dt + �tdWt,

(3)dXt =

{ (
𝜇t − qt

)
dt + 𝜎tdWt t < 𝜃(

𝜇t + 𝜆t − qt
)
dt + 𝜎tdWt t ≥ 𝜃.

5  This criterion is only assumed to be bounded, continuous and differentiable at least once with respect to 
every argument. More precisely, we require J to be Lipschitz continuous.



1332	 N. Deopa, D. Rinaldo 

1 3

where Q ∶= Q(x, t) is the non-empty set of Markovian admissible controls in feedback 
form such that � ∫ 𝜏

t
|e−𝜌sJ(q)|ds < ∞ for all t < 𝜏 , q ∈ Q and 𝜌 > 0 is the discount rate. 

For now, we only posit the policy exists and is progressively measurable with respect to Ft.
Let us now assume that the regime shift occurs in the dynamics of Xt as shown in 

(3) but the agent only realizes the occurrence of the shift at 𝜏 > 𝜃 , thus with a delay 
� − � . This implies that there exists an extraction policy q� ∶= q�(x, t) in the time 
interval [�, �] that achieves the supremum of the discounted criterion function, i.e. 
q� → supq � ∫ �

�
e−�(t−�)J(q)dt s.t. dXt = (�t + �t − q)dt + �tdWt . Because of this delay, 

the agent will continue to extract according to the policy q� that achieves the supremum 
of the optimization problem constrained by the pre-regime shift resource dynamics 
dXt = (�t − q�)dt + �tdWt . The agent, therefore, will incur a loss expressed in the same 
unit as the criterion (utility/welfare/profits) which is increasing in the detection delay.

The rationale is intuitive: the losses are generated by the fact that the agent chooses 
its extraction policy by maximizing a criterion which hinges upon the continuous obser-
vation of the evolution of the resource Xt as given by (3). If the changepoint � was 
observable, the agent would immediately adjust extraction in order to adapt to the post-
shift resource growth �t + �t . On the contrary, if the agent realizes the occurrence of 
the regime shift with a delay at 𝜏 > 𝜃 and only then adjusts extraction, within the time 
interval [�, �] the agent is de facto extracting a “wrong” quantity that is optimal for the 
pre-shift problem but sub-optimal for the post-shift one. Figure 1 presents a schematic 
representation of this phenomenon. In “Appendix 1.1” we prove that this loss is increas-
ing in the length of the delay and characterize explicitly the stochastic dynamics of the 
loss function in terms of the gradients of the Hamilton–Jacobi–Bellman equations asso-
ciated to the respective optimization problems.

The problem now involves the minimization of the delay � − � , which implies finding 
a strategy to detect the change in drift of Xt in the quickest time possible via sequential 
observations, as seen in (3). In order to solve this problem the agent searches for a “rule” 
(an optimal stopping time) � adapted to the filtration Ft , at which one can conclude the 
change point � has been reached and the regime shift has occurred. As delays are costly, 
this search requires the optimization of the tradeoff between two measures, one being the 
delay between the time a change occurs and it is detected i.e. (� − �)+ , and the other being 
a measure of the frequency of false alarms for events of the type (𝜏 < 𝜃) . The agent mini-
mizes the worst possible detection delay over all possible realizations of paths of Xt before 
the change and over all possible change points � . This problem is formalized as

q� → sup
q∈Q

�∫
�

0

e−�tJ(q)dt s.t. (1),

(4)inf
�

{
sup
�

ess sup��[(� − �)+|F�]

}

Fig. 1   Illustration of the loss 
stemming from the detection 
delay � − � (in red)
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This class of problems is usually comprised of three elements: a controlled stochas-
tic process under observation (the evolution of the renewable resource), an unknown 
change point at which the properties of the process change (a regime shift), and a deci-
sion maker observing the process. In this search there has to be an expected “time to 
first false alarm”, which represents the minimum time that the agent is willing to wait 
before reassessing its decisions when no shift is yet detected. This is to include in the 
process the fact that the signal (the change in the drift due to a regime shift) can be 
drowned in a noisy environment that does not allow for its detection within a “reason-
able” time frame. This constraint has been formalized by Shiryaev (1963) and Lorden 
(1971) in the following way:

for when the regime shift is a constant � ∈ ℝ , and a divergence-type criterion by Moustak-
ides (2004) for a general time-varying regime shift.

The procedure to determine � is given by adapting the results of Moustakides (2004) 
to our framework (3) first via a transformation of the diffusion coefficient and then a 
change of probability measure, both shown in detail in “Appendix 1.2”. The stopping 
time that solves (4) is given by:

where ut is given by

where

in which any primitive of the function �(t, x)−1 may be used. The process ut is the logarithm 
of the Radon–Nikodym derivative between the probability measure post-regime shift and 
the measure pre-regime shift of the process X̃t , and Q is the probability measure under 
which X̃t<𝜃 is a martingale. The false alarm constraint faced by the agent is given by

and the threshold � ∈ ℝ
+ is set such that it solves e� − � − 1 = T , is unique for each choice 

of T, and the constraint (8) is binding with equality.
Shiryaev (1963) studied the simplified scenario of the so-called “Brownian disorder” 

for a Brownian motion with constant diffusion coefficient � ∈ ℝ and at t = � the drift 
changes to � ∈ ℝ . Note how (8) essentially reduces to (5) for constant � and � . Adapting 
this case to our framework, which will be of relevance in our subsequent applications, 
the optimal stopping time under the constraint (5) is given by (6) where now one has

(5)��=∞[�] ≥ T(Θ),

(6)�(�t, �) = inf
t

{
t ≥ 0;ut − inf

0≤s≤t
{
ut
} ≥ �

}
,

(7)ut = log
dQ𝜃=0

dQ𝜃=∞

= ∫
t

0

𝜆
(
s, g−1

(
s, X̃s

)
,Θ

)

𝜎
(
t, g−1

(
s, X̃s

)) dX̃s +
1

2 ∫
t

0

𝜆
(
s, g−1

(
s, X̃s

)
,Θ

)2

𝜎
(
s, g−1

(
t, X̃s

))2 ds

X̃t ∶= g(t,Xt) ∶= ∫
Xt

𝜎(t, x)−1dx,

(8)�𝜃=∞

⎡⎢⎢⎣�
𝜏

0

1

2

�
𝜆
�
t, g−1

�
t, X̃t

�
,Θ

�

𝜎
�
t, g−1

�
t, X̃t

��
�2

dt

⎤⎥⎥⎦
≥ T(Θ),
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under the martingale measure Q for the pre-regime shift resource stock Xt . The threshold 
� is the solution of the equation 2�

2

�2
(e� − � − 1) = T  . Furthermore, the expected delay of 

detection is given by

The detection procedure involves observing the process given by the resource stock’s 
log-likelihood ratio (the Radon-Nikodym derivative) of the resource dynamics under the 
two regimes, and comparing it to its minimum.6 If the two regimes are very similar (for 
example, if |�| is very small in the constant diffusion coefficient case), then the Radon-
Nikodym derivative between the two measures will often be close to unity. In this case the 
process ut − inf0≤s≤t us, ut ≥ 0 , which is known as a cumulative sum (CUSUM) process, 
will remain close to zero. This implies that unless the diffusion coefficient is very small, it 
will take longer on average to detect the presence of such a small drift change. On the other 
hand, if the two regimes are substantially different, then one should be able to detect the 
change faster. At the stopping time � the agent will detect the change in drift, which is the 
change from a Q-martingale to a Q-sub/supermartingale.

Constraints (5) and (8) may not appear intuitive but can be understood in the context 
of costly false alarms i.e. if a negligible regime shift is expected the agent would be will-
ing to tolerate for longer the uncertainty on � . For a small �t , the difference between the 
pre- and post-shift problems is negligible and therefore so is the loss incurred within the 
delay. In either case, T ∶= T(Θ) is decided ex ante by the agent and it can be interpreted 
as a measure of tolerance to ecological uncertainty. Additionally, T can also be a measure 
of the “quality” of the detection system as it bounds the expected delay in the detection 
under a false alarm, i.e. the minimum waiting time the agent faces when � = ∞ (the change 
point never occurs) before reassessing extraction decisions. This quantity depends on the 
ex ante information the agent has on the magnitude of the regime shift, as well as early 
warning signals on the proximity of structural changes. The effective time period in which 
the agent optimizes is therefore between t = 0 and the final time given by a combination 
of T and �(�t, �) i.e. the expected time to first reassessment plus the delay of detection. 
The “tolerance” T is chosen by the agent, however, �(�t, �) is a random variable. Since the 
agent knows the average delay time of detection it can assume as time horizon the sum of 
the expectations of both change-point and delay, which is equivalent to taking an ex ante 
time interval ��=∞[�] + �[�(�t, �)] . In the baseline detection case the agent has a uniform/
uninformative prior on the time of the regime shift �.7

Monitoring continuously the resource stock Xt can be a costly procedure. However, 
obtaining a constant stream of data on Xt is already required in order for the agent to calcu-
late its optimal extraction policy in (3). This cost can be included straightforwardly in the 
criterion J and once included, the added costs of undertaking the detection procedure are 
negligible. On the other hand, the loss the agent incurs in not implementing the procedure 

(9)ut =
�

�2
Xt −

�2

2�2
t,

(10)�Q[�(�, �)] =
2�2

�2
(e−� + � − 1).

6  Note that we are under the measure Q.
7  Bayesian extensions of quickest detection problems that include prior beliefs on the change point time 
have been studied, among others, by Gapeev and Shiryaev (2013): we leave the complex yet important 
application of these methods to our framework for future research.
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is non-zero and increasing in the delay. Implementing a detection procedure that minimizes 
the delay, and therefore our framework, is Pareto optimal.

2.2 � The Resource Extraction Problem

The detection strategy presented in the previous section applies to a very general frame-
work. The strategy takes the optimal extraction policy q as given, as well as known to the 
agent (i.e. is Ft-adapted). In this section we study what is the optimal extraction policy 
of an agent that wants to implement the detection procedure in its decision-making pro-
cess. We want to further remark that the solution procedure presented in this section can be 
applied equivalently to a general decision maker maximizing any criterion J that allows for 
an admissible solution, under the requirements discussed in Sect. 2.1. In order to obtain a 
tractable form for the optimal q we assume the dynamics of the resource stock Xt to follow 
a controlled geometric Brownian motion, which is Eq.(3) with �t = �Xt as resource growth, 
�t = �Xt as regime shift and �t = �Xt as diffusion coefficient, where �, � ∈ ℝ, � ∈ ℝ

+ . The 
detection problem is now a detection of a regime shift yielding a change in the growth rate 
of the (uncontrolled) resource stock from �Xt to (� + �)Xt . The first question that we need 
to address is how can the detection procedure be integrated in this framework, and what are 
its implications for the firm’s extraction decisions.

We now assume a risk-neutral monopolist which faces an isoelastic inverse demand 
function of the form q(p) = bp−� and with a marginal cost function defined as c(x) = cx−1∕� , 
where b, c > 0 and 𝛾 > 1.8 The extraction rate is chosen by the firm in order to maximize 
the expected value of the sum of discounted profits under the resource dynamics (3), and 
the profit function takes the form

We assume a profit function depending on both the stock level X and the extracted quantity 
q which implies a marginal cost function linear in extraction, rather than the stock level, 
and no fixed operating costs. This assumption can be relaxed at the expense of an optimal 
extraction function only available in entirely numerical form.

The simplest way of modeling a regime shift is to assume that the shift occurs only once 
and there are only two periods, pre-shift and post-shift. The firm’s problem therefore reads:

(11)Π(qt,Xt) =
[
p(qt)qt − c(Xt)qt

]

(12)

q∗(Xt, t) → sup
q∈Q

𝔼0

(
�

�

0

Π(q,Xt)e
−�t + �

∞

�

Π(q,Xt)e
−�t

)
dt

s.t. dXt =

{ (
�Xt − q

)
dt + �XtdWt, t ∈ [0, �)[

(� + �)Xt − q
]
dt + �XtdWt, t ≥ �,

X0 = x0 ∈ ℝ
+, and (6),

� = 𝔼�=∞[�] + 𝔼[�(�, �)],

8  Cost functions of this form also allow us to flexibly model a natural monopoly, as the technical definition 
of a natural monopoly is that the cost function is subadditive. That is, c(x, q1 + q2) ≤ c(x, q1) + c(x, q2) . 
Hence it is always cheaper to produce q1 + q2 units of output using a single firm than using two or more 
firms. Lastly, the specific choice of −1∕� for the marginal cost exponent is necessary to obtain a quasi-
explicit solution. For a discussion of this cost function in a resource extraction setting we refer to Pindyck 
(1987).
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and the extraction policy exists among the class of admissible Markov controls Q. A natu-
ral boundary condition of this problem is q∗(0, t) = 0 . Here the firm faces a constant � for 
the second period. The solution to this problem is presented in the following Proposition:

Proposition 1  The extraction policy that solves the monopolist’s problem (12) is given by:

where �(t) ∶ ℝ
+
→ ℝ for t ∈ [0, �] is the solution to the ordinary differential equation

where 𝜌 − 𝛾−1

𝛾
(𝜇 + 𝜆) + 𝛾−1

𝛾2
𝜎2

2
> 0 and equipped with the boundary condition �(�) = �s

�+�
 , 

where �s

�+�
 is a positive constant that solves the equation

and �(t) = �s

�+�
 for t ≥ � . The resource rent for the monopolist is given by

which is the value of a marginal unit of in situ stock.

Proof  See “Appendix 1.3”, where we show how the monopolist’s value function V can be 
characterized as a viscosity solution of the Hamilton–Jacobi–Bellman equation associated 
with the optimization problem (12).9 Note that Bs

�
= b

[
�

�−1
c + �s

�

]−�
 is the optimal extrac-

tion rate q∗∕Xt for a stationary problem (i.e. when � → ∞ ) when there is no detection pro-
cedure put into place, and the firm never realizes the occurrence of a regime shift, and �s

�+�
 

identifies Bs

�+�
 , the extraction rate of the stationary problem post-shift. Lastly, we remark 

once more that one can use the same boundary conditions and viscosity argument in order 
to solve the problem of a general decision maker facing a general resource constraint such 
as (1), as long as the problem dynamics satisfy the same conditions discussed in Sect. 2.1 
that allow for the existence of a feasible extraction policy within each period, which is pro-
gressively measurable with respect to Ft.

Sakamoto (2014) highlights that ecological shifts are better modeled as open-ended pro-
cesses in which several regime shifts can occur. For example, Hare and Mantua (2000) 
show that the aquatic ecosystem in the North Pacific Ocean has experienced multiple 
regime shifts for the past 40 years. Within an open-ended, multi-regime setting, the firm 
detects subsequent regime changes �1, �2,… throughout successive periods. It is however 
unlikely that the firm knows the magnitude of the regime shifts beyond the one it is cur-
rently detecting. This issue is especially present if the regime shift magnitude depends on 
the amount extracted or the state of the resource. The way the firm’s problem is therefore 

(13)q∗
i
(Xt, t) = b

[
�

� − 1
c + �(t)

]−�
Xt = B(t)Xt

(14)��(t) = �(t)

[
� −

� − 1

�
(� + �) +

� − 1

�2
�2

2

]
−

b

��

(
�(t)

�
+

c

� − 1

)1−�

,

(15)�s

�+�

(
� − (� + �)

� − 1

�
+

�2

2

(
� − 1

�2

))
=

b

��

(
�s

�+�

�
+

c

� − 1

)1−�

.

(16)R(t, x) =

(
� − 1

�

)
�(t)x−1∕�

9  The optimal extraction policy is therefore a weak solution of (12).
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set up is that in each period [�i, �i+1) the firm will undergo the detection procedure for the 
regime shift �i+1 . Once the regime shift is detected the firm will update the set Θ using all 
available information at �i+1 such as the stock level X�i+1

 or the total extraction up to �i+1 and 
form expectations on the magnitude of the next regime shift �i+2 thus restarting the detec-
tion process. The stochastic control problem of the firm will therefore read:

where i ∈ ℕ are the different periods, Here �0 = 0 , since in the first period [0, �] the growth 
rate of the resource stock is � , and �i, �i are the subsequent periods and relative changes 
in resource growth. Here we formalize the structure of the firm’s extraction decisions in 
a sequential manner. Once solved, this problem will yield a piecewise continuous control. 
The key issue in this sequential formulation is that the firm does not know at t = 0 the 
entire sequence of regime shifts {�i} , but rather only the one that it is trying to detect. After 
each detection �i the firm updates its set Θ and constructs expectations on the magnitude 
of the next regime shift �i+1 and the next detection time �i+1 . The firm’s optimal extraction 
policy is presented in the following Proposition.

Proposition 2  The extraction policy that solves the monopolist’s problem (17) is a 
sequence {q∗

i
(Xt, t)}, i ∈ ℕ

+ of the optimal policies for each time period i ∶ t ∈ [�i, �i+1] . 
The optimal policy for each period i is given by:

where �i(t) is the solution to the ordinary differential equation

equipped with the boundary condition �i(�i+1) = �s

i+1
 , where �s

i+1
 is a constant that solves 

the equation

Proof  See “Appendix 1.3”.
It could now be of relevance to model a “full information” scenario in which there is a 

finite number N of subsequent regime shifts {�1,… , �N} , and the firm knows their magni-
tude at t = 0 . This problem now reads as follows:

(17)

q∗(Xt, t) → sup
q∈Q

∞�
i=0

𝔼�i �
�i+1

�i

Π(q,Xt)e
−�tdt

s.t. dXt =

⎧⎪⎨⎪⎩

��
� +

∑i

j=0
�j

�
Xt − q

�
dt + �XtdWt, t ∈ [�i, �i+1)��

� +
∑i+1

j=0
�j

�
Xt − q

�
dt + �XtdWt, t ≥ �i+1, .

X0 = x0 ∈ ℝ
+, �0 = 0 and (6),

�i+1 = 𝔼�=∞[�i+1] + 𝔼[�(�i+1, �)],

(18)q∗
i
(Xt, t) = b

[
�

� − 1
c + �i(t)

]−�
Xt = Bi(t)Xt ∀t ∈ [�i, �i+1], i ∈ ℕ

+

(19)��
i
(t) = �i(t)

[
� −

� − 1

�

(
� +

i∑
j=0

�j

)
+

� − 1

�2
�2

2

]
−

b

��

(
�i(t)

�
+

c

� − 1

)1−�

.

(20)�s

i+1

(
� −

(� − 1)

�

(
� +

i+1∑
j=0

�j

)
+

�2

2

(
� − 1

�2

))
=

b

��

(
�s

i+1

�
+

c

� − 1

)1−�

.
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where we note that now the expectation in the criterion is evaluated at time t = 0 . The solu-
tion of this problem is presented in the following Proposition.

Proposition 3  The optimal policy for the monopolist facing the sequential problem (21) 
under full information of the sequence {0, �1,… , �N} has the same form as (18) and (19), 
but the time-varying policies Bi(t) are determined by boundary conditions obtained by 
backward induction:

Proof  See “Appendix 1.3”.
It can be easily seen that the two-period, one regime shift problem (12) is equivalent to 

the full information problem (21) over two periods, by simply noting that in this case at � 
(now the only change point) the boundary condition is �1(�) = �s

1
 , which is precisely the 

boundary condition of Proposition 1.
Since in every scenario the optimal extraction policy is linear in Xt and the regime shift 

�i enters log-linearly at each � , the optimally controlled resource stock process expressed in 
growth rates is equivalent to a Brownian disorder problem. It is therefore clear that one can 
implement detection procedure with constant parameters described in Sect. 2.1 by applying 
it to the process

in each period i ∶ [�i, �i+1] , under a change of measure such that the pre-shift process 
log(Xt) is a martingale.

The choice of T, mean time to the first false alarm, is left for the firm to choose based 
on its information set Θ , and is therefore arbitrary. It is however a relevant parameter in our 
framework as it regulates the threshold at which the process (7) triggers the detection, and 
consequently sets the time horizon in which the firm operates. It is therefore important to 
understand the effect of varying T on both resource and extraction dynamics, and establish 
a set of criteria for its choice. Figure 2 shows how the choice of T has a concave effect on 
the detection time. The solid lines in Fig. 2 presents Monte Carlo estimates of the average 
detection time, as well as its 95% confidence band, with two different choices of � . The 
variance of the log-normal fluctuations is a key parameter for detection as it is inversely 
proportional to the expectation of the detection time � , and thus directly affects the firm 
horizon. These estimates are obtained via varying T on a grid between 20 and 100, and for 

(21)

q∗(Xt, t) → sup
q∈Q

N−1�
i=0

𝔼0 �
�i+1

�i

Π(qt,Xt)e
−�tdt

s.t. dXt =

⎧
⎪⎨⎪⎩

��
� +

∑i

j=0
�j

�
Xt − q

�
dt + �XtdWt t ∈ [�i, �i+1)��

� +
∑N

j=0
�j

�
Xt − q

�
dt + �XtdWt t ≥ �N ,

∀t, X0 = x0 ∈ ℝ
+, �0 = 0 and (6),

�i+1 = 𝔼�=∞[�i+1] + 𝔼[�(�i+1, �)]

(22)�N(�N) = �s

N+1
, �N−1(�N−1) = �N(�N−1), … �1(�1) = �2(�1).

d log(Xt) =

⎧
⎪⎨⎪⎩

�
𝜇 +

∑i

j=0
𝜆j − Bi(t)

�
dt + 𝜎dWt t < 𝜃

�
𝜇 +

∑i+1

j=0
𝜆j − Bi(t)

�
dt + 𝜎dWt t ≥ 𝜃.
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each point running 200 simulations of the optimally controlled X with relative extraction 
q∗ , as given by (13) evaluated with its respective T-dependent time horizon and boundary 
conditions. The regime shift occurs at � = T∕2 for each value of T on the grid, which is 
equivalent to assuming uniform priors on � . One can see that whilst � is increasing in T, its 
sensitivity is limited and drops drastically for large T for all levels of � . This result is robust 
to varying parametric choices.

Since the time � at which the regime changes is unknown, the firm will therefore use the 
expected detection time (10) and the expected false alarm as a “maximal delay” estimate, 
in order to evaluate the boundary conditions and simultaneously undertake the detection 
procedure. If the threshold � is reached before the expected detection time �i+1 , then the 
firm switches to the subsequent period with the modified drift since the regime shift has 
been detected. It is also possible to introduce the stopping time itself as the final time, 
�i+1 = �(�(qi), �) , thus directly joining real-time detection and firm optimization. This 
choice would leave the properties of the model unchanged, as it can be shown with stand-
ard arguments that the value function W of the real-time problem can be rewritten as an 
infinite-time version of the value function V of the problem (12) with a stochastic discount 
factor v:

in the augmented state space (x, v) ∈ ℝ
2 , where v is the solution of

The problem is more involved but the form of the extraction policy remains unchanged and 
at each detection time �(�i, �) the firm will switch to the next period. As our specification 

W(x, v, t) = e−vV(x, t),

dv = Pr[�(�i, �) ∈ (t, t + dt)|�(�i, �) ≥ t]dt.

Fig. 2   Sensitivity of the detection process to changing the mean false alarm constraint T ∶= T(Θ) . The red 
and black solid lines show the Monte Carlo mean detection time obtained by letting T vary on a unit grid 
between 20 and 100, for each simulating 200 optimally controlled trajectories for the resource stock and 
undertaking the detection procedure, for two different values of � . The curve for the average stopping time 
estimates and their 95% confidence bands are interpolated. The regime shift is assumed to occur at � = T∕2 
for each value of T. Parameter values: � = 0.1 , � = −0.09, � = 0.05, b = 0.5, � = 1.5, c = 0.5
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is equivalent to uniform priors on the unobservable change point � and this distribution is 
unaffected by within-period firm choices, the problem only involves the well-known distri-
butional properties of running minima. We leave a more comprehensive exploration of this 
aspect, especially for when the occurrence of � or the firms’ priors are influenced by the 
actions of economic agents, for future research.

2.3 � Response to Regime Shifts

We can now study the effects of detection of a regime shift on the monopolist’s extraction 
decisions. We choose to focus principally on the two-period, one shift case shown in Prop-
osition 1 since this scenario is a good fit for our empirical application, and all that follows 
holds when there are multiple subsequent regime shifts.

One can show with a simple geometric argument that the solution of (15) increases in 
� , i.e. 𝜕𝜙s

𝜇+𝜆
∕𝜕𝜇 > 0 . This implies that a negative (positive) regime shift unequivocally 

increases (decreases) the post-detection stationary extraction rate Bs

�+�
 . In order to show 

this mechanism more explicitly, we assume the scenario of no extraction costs c = 0 which 
yields

Since 𝛾 > 1 , this quantity clearly increases in �,10 implying that if 𝜆 < 0 then �s
�+�

 
decreases. This mechanism is illustrated in Fig. 3, where Bs

�
 is the counterfactual station-

ary rate if the detection procedure was not put in place and/or if the firm was unaware of 
the regime shift. The environmental parameters dictating the dynamics of the resource are 
� = 0.025 and � = 0.25 . Figure  3a depicts a negative regime shift of � = −0.035 which 
is detected at � = 100 . Observe how the expectation of a negative regime shift leads 
the monopolist to gradually increase its extraction of the resource up until the new post 
detection stationary extraction rate Bs

�+�
 . The intuition behind this is straightforward, as 

the expectation of a decline in the resource’s growth rate leads the firm to intensify its its 
extraction as the in situ value of the resource declines. Figure 3b depicts a positive regime 
shift of the same magnitude � = +0.035 which results in the monopolist slowing down its 
extraction as the resource rent increases.

Figure  4 highlights the role of the magnitude and detection of the regime shift on 
extraction policies. Each curve represents an adverse shift of varying magnitudes and 
relative detection times. Consistent with Sect. 2.1, we note that the larger is the mag-
nitude of the shift and the quicker is the detection. Comparing the solid extraction path 
(which depicts the smallest magnitude of change � = −0.04 ) to the other two paths, 
one can observe that not only do larger shifts lead to a higher post-detection stationary 
extraction rate, but also the curvature of the pre-detection extraction path varies across 
the three cases. A longer detection period of � = 60 sees a gradual increase from Bs

�
 to 

the new stationary extraction rate since the firm has a longer time horizon to adjust. 
However, for shorter detection times there is an immediate jump from Bs

�
 and a steeper 

extraction path to reach Bs
�+�

 , further highlighting how detection can influence firm 

�s

�+�
= b

1

�

(
�� − (� + �)(� − 1) +

�2

2

� − 1

�

)−
1

�

.

10  The quantity � − (� + �) �−1
�

+
�2

2

�−1

�2
 always needs to remain positive in order for problem to have a fea-

sible solution.



1341Quickest Detection of Ecological Regimes for Natural Resource…

1 3

Fig. 3   Extraction policies for negative and positive regime shift. Environmental parameters: � = 0.025 and 
� = 0.25 . Isoelastic demand function q(p) = bp−� where � = 1.5 , b = 1 and marginal cost c(Xt) = cX−1∕� , 
where c = 0.1 . Finally, � = 0.05

Fig. 4   Extraction policies for negative regime shifts of varying magnitudes and detection times: 
� = − 0.040 and � = 60 , � = − 0.075 and � = 35 , � = − 0.1 and � = 20 . Environmental parameters: 
� = 0.025 and � = 0.25 . Isoelastic demand function q(p) = bp−� where � = 1.5 , b = 1 and marginal cost 
c(Xt) = cX−1∕� , where c = 0.1 . Finally, � = 0.05 . Dotted vertical lines represent detection �
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extraction behaviour. Figure 5 illustrates the extraction path of a monopolist facing mul-
tiple regime shifts under full information, both negative and positive.

2.4 � Extensions

As mentioned in Sect. 2.2, our framework is general and allows for the modeling of dif-
ferent decision makers. As a first extension, we now discuss the case of a government 
that wants to maximize an isoelastic/CRRA social welfare function. This is a conveni-
ent choice, as the problem is similar to the monopolist’s problem when b = 1, c = 0 , but 
allows us to show how precautionary extraction policies can emerge when societal risk 
aversion is high. This scenario allows us to study how a government would respond 
to the prospect of a regime shift detection. The government maximizes expected dis-
counted welfare, i.e. uses as criterion the following:

for all admissible policies qt ∶= q(Xt, t) ∈ Q . Costs can be easily introduced as well, simi-
larly as in the monopolist’s problem, but we prefer to discuss this instance as it allows for a 
fully explicit solution. Following the same steps as shown in “Appendix 1.2”, one can show 
that the government’s optimal extraction policy is given by

where C = 𝜌 − 𝜇
(

𝛾−1

𝛾

)
+

𝜎2

2

𝛾−1

𝛾2
> 0 , and �

g
 is given by

J(qt) =
�

� − 1
q

�−1

�

t

q∗
g
(Xt, t) =

(
𝛾

𝛾 − 1

)𝛾[
𝜙𝛾
g
e−𝛾C(𝜏−t) +

(1 − e−𝛾C(𝜏−t))

𝛾C

(
𝛾

𝛾 − 1

)𝛾]−1
Xt t ∈ [0, 𝜏]

=

(
𝛾

𝛾 − 1

)𝛾

𝜙−𝛾
g
Xt t > 𝜏,

Fig. 5   Extraction path for regime shifts of � = − 0.1 , � = 20 and � = + 0.04 , � = 60 . Environmental param-
eters: � = 0.025 and � = 0.25 . Isoelastic demand function q(p) = bp−� where � = 1.5 , b = 1 and marginal 
cost c(Xt) = cX−1∕� , where c = 0.1 . Finally, � = 0.05 . Dotted lines represent detection �
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which is the post-regime shift stationary extraction rate. What can now be studied is 
the case of 0 < 𝛾 < 1 , which was not allowed in the monopolist’s case, since such val-
ues cannot identify feasible demand functions. In this scenario of no extraction costs, the 
parameter � identifies the elasticity of intertemporal substitution, as well as the inverse of 
constant relative risk aversion. It can be easily seen that in this framework precautionary 
extraction policies emerge as a response to an adverse regime shift, when societal risk 
aversion is high. Furthermore, since the elasticity of intertemporal substitution is low, the 
government has a strong preference for smooth extraction paths, and therefore any antici-
pated reduced growth rate yields a lower extraction path both pre- and post-detection. Fig-
ure  6 illustrates such an occurrence, where two adverse regime shifts of different mag-
nitude are detected at different times within the same scenario (which implies the same 

�
g
=

(
�

� − 1

)[
�� − (� + �)(� − 1) +

�2

2

(
� − 1

�

)]− 1

�

,

Fig. 6   Precautionary extraction policies for an adverse regime shift for a government. Isoelastic social wel-

fare function J(qt) =
�

�−1
q

�−1
�

t  where � = 0.8 . Environmental parameters: � = 0.1, � = 0.25 . Finally, � = 0.05
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counterfactual “no detection” extraction rate Bs
�
 ). The figure shows how larger adverse 

regime shifts |𝜆1| > |𝜆2| , 𝜆i < 0 , which in turn imply quicker detection times 𝜏1 < 𝜏2 , yield 
substantially more precautionary extraction policies, which jump immediately at t = 0 to 
a lower extraction level. Figure 7 further illustrates this mechanism by simulating jointly 
optimization and quickest detection, and presents an instance of how our framework can 
be implemented in practice. Before the unobservable regime shift occurrence at t = � , the 
government observes the detection process defined in Eq.(7), searching for the stopping 
time �(�) as given by (6). Within the time interval [�, �(�)] the government still applies 
the “wrong” extraction policy B�(t)Xt . Once the process ut − inf ut (the orange trajectory) 
has reached the threshold � , the new regime shift is detected and upon detection at �(�) 
switches to B�+�(t)Xt . The lighter-colored trajectory illustrates the counterfactual dynamics 
of the resource stock in absence of the detection procedure where an inappropriately high 
extraction rate ends up yielding a substantially lower resource stock level.

As another benchmark, let us discuss the case of a perfectly competitive extraction 
path and compare it to the monopolist’s optimal policy. We assume every agent has the 
same information set Θ in the formation of � , so that all agents “compete” perfectly on 
detection as well. The criterion used by in the competitive case is given by:

for all admissible policies qt ∈ Q . Following again the same steps as before, we have that 
the competitive solution is

J(Xt, qt) = ∫
qt

p(r)dr − c(Xt)qt

Fig. 7   Simulation of an adverse regime shift detection for a government and subsequent precaution-
ary extraction adjustment at �(�) , with counterfactual over-extraction due to the detection delay. Numeri-
cal simulation done with a Shoji–Ozaki discretization for the time-dependent drift and a Milstein 
scheme for the diffusion term. The regime shift happens at � = 26.6 . Parameter values: T = 70,� = 0.1 , 
� = − 0.09, � = 0.05, � = 0.8
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where �c(t) solves the ODE

equipped with the boundary condition �c(�) = �c

�+�
 , where �c

�+�
 solves the equation

What can be immediately seen is that since 𝛾 > 1 , the competitive extraction facing adverse 
regime shifts always exceeds the monopolist’s. Figure 8 shows how for an adverse regime 
shift the competitive extraction path dominates the monopolistic one, even for a scenario 
in which the two counterfactual extraction rates in absence of detection (or, equivalently, in 
absence of regime shifts) are essentially identical.

Lastly, in “Appendix 1.4” we present an extension of our framework in which we discuss 
the monopolist’s problem under linear demand and resource dynamics driven by a Brownian 
motion with constant diffusion parameter and a periodic drift to represent seasonality. Whilst 
there is no analytical solution to this problem, we solve numerically the HJB partial differen-
tial equation associated to this problem and recover its gradient. We find that the scenario pre-
sented, similar to the one we study in our empirical application, yields both precautionary and 
aggressive extraction policies as responses to adverse regime shifts. In particular, in this sce-
nario precautionary extraction strategies (with respect to the no-detection counterfactual) can 
emerge when resource stock levels are low. This result sheds light on how the response of a 
monopoly to regime shifts can depend crucially on the form of the demand function.

q∗
c
(Xt, t) = b

[
c +

(
� − 1

�

)
�c(t)

]−�
Xt

�c(t)� = �c(t)

[
� −

� − 1

�
� +

� − 1

�2
�2

2
− �

]
−

b

� − 1

(
� − 1

�
�c(t) + c

)1−�

�c

�+�

(
(� − 1)

b
� +

�2

2b
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Fig. 8   Monopoly versus competitive extraction rates facing the same adverse regime shift. 
� = 2,� = 0.1, � = − 0.15, � = 0.05, � = 0.05, b = 2, c = 0.8 . Detection happens at � = 60
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3 � Empirical Application: Catastrophic Regime Shift in the Cantareira 
Water Reservoir

The main piece of evidence motivating our paper is that ecological regime shifts are indeed 
often observed in the dynamics of renewable resources. A scenario in particular that cap-
tures well the essence of our framework is the case of one of the world’s largest water 
reservoirs, the Cantareira system. The Cantareira reservoir is an ensemble of six reservoirs 
connected by channels and pipelines serving the Metropolitan Area of São Paulo (MASP) 
in Brazil, which is one of the largest metropolitan areas in the world. The Cantareira sys-
tem is managed by Companhia de Saneamento Básico do Estado de São Paulo (SABESP), 
a water and waste management company acting as a semi-public natural monopoly.

In early 2013, the volume experienced a sharp decrease and the operational capacity of the 
reservoir was subsequently depleted. This depletion occurred despite the preceding rainy season 
being one of the heaviest recorded in recent times. At one point, the city’s main Cantareira reser-
voir was down to 5%, which barely covered a month’s supply of the population’s requirements. 
SABESP realized the critical state of the reservoir only in January 2014 and began to reduce 
withdrawals, but by July 2014 the operational capacity of the reservoir was depleted. Since then 
water withdrawal has been done by pumping of the so-called “strategic reserve” or “dead vol-
ume”, as well as starting to drill underground to extract groundwater. Dead volume pumping 
involves extracting the water that remains at the bottom of the reservoir, an often-criticized prac-
tice as it is considered dangerous due to the increasingly stagnant nature of the water as well as 
the presence of harmful elements. This shortage led to an unprecedented crisis of water supply 
faced by MASP in 2014, which left the 20 million inhabitants of the area at risk of catastrophic 
drought whose long-terms impact are still felt to this day (Sousa et al. 2022).

Coutinho et  al. (2015) study the close-to-depletion reservoir dynamics via a tipping-
point transition approach. The reasons behind this catastrophic outcome have clear roots 
in environmental changes. The expansion of deforestation activities into the Amazon basin 
has increased pollution, severely reduced the upstream water sources and reduced rainfall. 
Some of the causes, however, can also be found in the economic decisions behind the crisis 
such as SABESP’s poor water management with fragile pipes and ageing infrastructures. 
Furthermore, during the water crisis of 2014, SABESP failed to warn their citizens about 
the rationing of water resources, and awarded major bonuses to its directors despite the 
gravity of the situation.11

This scenario is therefore an ideal test for our framework. The first question is whether 
a regime shift consistent with (3) actually happened. The second question is whether the 
regime shift could have detected by applying our framework before early 2014, which is 
when SABESP started reacting to the rapidly depleting reservoir. If this is the case, the 
last question we want to ask ourselves is whether the reservoir depletion could have been 
avoided, or at least delayed, if SABESP would have reacted to the regime shift by adjusting 
its outflow policy at the detection time. We leave open the interpretation of what was the 
criterion used by SABESP in order for it to determine its optimal outflow policy. Given the 
evidence we find of the necessity of a precautionary policy, as well as for consistency with 
our theoretical framework, we deem this decision maker to be compatible with the incen-
tives of either a private monopoly facing the linear demand and costs typically associated 

11  https://​theco​nvers​ation.​com/​sao-​paulo-​water-​crisis-​shows-​the-​failu​re-​of-​public-​priva​te-​partn​ershi​ps-​
39483.

https://theconversation.com/sao-paulo-water-crisis-shows-the-failure-of-public-private-partnerships-39483
https://theconversation.com/sao-paulo-water-crisis-shows-the-failure-of-public-private-partnerships-39483
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with water pricing (Tsur 2020; Chakravorty et al. 2022), or a public/regulated monopoly 
maximizing social welfare (Seim and Waldfogel 2013).

Figure 9 illustrates the reservoir dynamics. Observe that despite the inter-annual trend, 
a clear seasonal fluctuation is present in the rainfall (darker grey shaded region) which is 
reflected in the volume of stored water or the percentage of operational volume, as shown 
by the black line. In early 2010 and 2011 outflow (the blue line, equivalent to qt in our 
framework) had to be suddenly increased as a consequence of high river inflow, in order 
to allow the reservoir volume to stay within its maximum capacity. Around early 2013 the 
reservoir volume suddenly began a sharp decline initiated by a reduction in inflow and 
rainfall. In 2015 inflow and rainfall increased, but neither translated into an increase in the 
reservoir volume, which stabilized at a level well below the necessary operational capacity 
and remained persistent. This new reservoir level generated enough scarcity to plunge the 
region into the aforementioned water crisis. For inflow we use daily data from the rivers 
Jaguari, Cachoeira, Atibainha and Piva, as well as the upstream Àguas Claras reservoir, 
obtained from the public bulletins on SABESP’s website. SABESP’s “extraction” q∗

t
 is the 

outflow from the reservoir allowed daily, which equals to river outflow plus the amount of 
water pumped to be sold for regional consumption. Rainfall is obtained as the daily pre-
cipitation levels (mm). We input inflow, rainfall and extraction and estimate the following 
model:

(23)dXt =

⎧
⎪⎪⎨⎪⎪⎩

�
inflowt + 𝛽 rainfall

𝛾

mm∕t

�������������������������������
𝜇

�
− q∗

t

�
dt + 𝜎dWt t < 𝜃

��������������������������������

inflowt + 𝛽 rainfall
𝛾

mm∕t
+𝜆 − q∗

t

�
dt + 𝜎dWt t > 𝜃,

Fig. 9   Rainfall (dark grey), water inflows (light grey), outflow (blue line) and volume stored (black line) in 
the Cantareira system between 2007 and 2013. Data source: Coutinho et al. (2015), NOAA ESRL Physical 
Sciences Division (PSD)
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where dt is assumed as 1 day to match the daily data and � is assumed to happen at the 
beginning of March 2013, when the reservoir volume deviated significantly from the pre-
existing trends. Varying this change point in an interval of ± 2 months yields equivalent 
estimates. There is no evidence of the variance of the fluctuations being dependent on 
X, and the drift is clearly time-dependent due to seasonalities, and therefore we estimate 
the model (23) with a time-dependent drift. We then estimate �, � , � and � by means of 
joint particle filtering for both state and parameters. All details on the simulation, filter-
ing procedure and parameter estimation is reported in “Appendix 1.5”. Table 1 reports the 
coefficient estimates and their standard errors of each filtered parameter distribution. Addi-
tionally, a likelihood ratio test between the model (23) and a specification with geometric 
fluctuations (i.e. with �XdWt as noise source) yields a p value of 2.2 × 10−2 , which vali-
dates specification (23).

Estimation of both pre- and post-shift models show that the rainfall coefficients as well 
as the variance of fluctuations do not change significantly between the pre- and post-shift 
periods: rainfall parameters are essentially unaffected, and � is the parameter that var-
ies the most (from ca. 2 × 106 cubic meters to 1.7 × 106 ), and even though the difference 
is not statistically significant this change shows how the dynamics of the reservoir after 
the regime shift become increasingly driven by the deterministic part. This is shown in 
Fig.  10 which plots the fitted pre- and post-shift models against the observed reservoir 
volume. For plotting convenience, both model fit and volume are expressed as percent-
ages with respect to the reservoir’s capacity ranging from a maximum of 1.2695 × 109 m3 
to a minimum volume of 9.8155 × 106 m3 below which the pumping of the dead volume 
is activated. The figure shows how the model estimated in (23), shown by the dashed red 
line, tracks well the data (solid black line) whilst remaining firmly within a 95% confi-
dence band obtained by sampling 1000 coefficient sets from their reconstructed distribu-
tions, and running 1000 simulations for each set. The slight decay in fit in early 2011 
for the pre-shift model, seen in the top panel of Fig.  10, leaves open the possibility of 
the presence of multiple regime shifts. The bottom panel of Fig. 10 shows how the post-
regime model in (23) fits very well the data, as well as how the regime shift manifests by 
the emergence of a dominant deterministic force that drives the reservoir volume to the 
point where the operational capacity is exhausted.

Furthermore, estimating the pre-shift model using the post-shift data results in a sub-
stantially worse fit: a likelihood ratio test between the model estimated in Table 1 and 
the same model without � yields a p value of 1.5 × 10−3 which provides further evidence 
of the regime shift. We remain open-minded on the interpretation of what caused the 

Table 1   Parameter estimates and their standard errors for the pre- and post-shift models for the res-
ervoir dynamics (23) using the observed river inflow, rainfall and outflow (chosen by the firm) as given 
inputs. There is no evidence of β and γ changing before and after the detection time whilst there is a strong 
evidence of a subsequent negative regime shift λ that dominates the pre-existing drift

� � � �

(pre-shift) 42,781.41 0.658 – 202,094.3
(4214.25) (0.009) – (38110.37)

(post-shift) 42,668.86 0.618 − 66885.78 176,511.4
(1715.6) (0.026) (8552.4) (25324.43)
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emergence of � : all evidence points towards a story of climate change exacerbated by 
deforestation around the upstream Amazon basins, leading to droughts and rising tem-
peratures. This is captured in our framework by a deterministic force towards depletion, 
broadly conceivable as a reduced environmental suitability for the pre-existing volume 
levels of the reservoir.

Upon estimation of � , � and � , we now turn to the remaining two questions of interest 
with respect to our framework. The first question is whether SABESP could have detected 

Fig. 10   Fit of the model pre-shift (top panel) and post-shift (bottom panel). The shaded areas represent 
rainfall (dark grey) and river inflows (light gray). The solid black line is the observed reservoir volume, the 
dashed red line is the reservoir volume obtained tracking (23) with the particle filter and the estimated coef-
ficients. Monte Carlo 95% confidence/plausibility bands obtained by sampling 1000 coefficient sets from 
their filtered distributions and running 1000 simulations for each sample. The dashed blue line in the top 
panel represents the normalized maximum reservoir capacity (1.269 km3)
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the regime7 shift. We therefore implement the detection procedure presented in Sect. 2.1 as 
our model shows evidence of constant diffusion and regime shift coefficients. Let us now 
conjecture what could have been done if SABESP had started the detection process in real 
time on January 28th, 2013. This date represents the first time at which both river inflow 
and rainfall deviated significantly (i.e. more than twice the long-term standard deviation) 
from both their long-term trends for more than 2 weeks.12 The firm’s detection problem 
involves observing the running minimum/cumulative sum process over the reservoir vol-
ume Xt under the appropriate change of measure, and detecting the presence of a regime 
shift once this process hits the threshold � . Note that the change of measure is effectively 
the way to account for all observable effects of inflow and rainfall on reservoir volume, and 
estimate whether a new force ( � ) has emerged that transformed the “residual” fluctuations 
in a supermartingale.

This threshold, however, depends on the firm’s tolerance/distance to the first false alarm 
T. In order to account for this, we undertake the detection process for the substantially 
different values of T = [30, 100, 500, 5000, 10,000] , which imply “tolerances” (first times 
to false alarm) ranging between 30 days and 27 years, representing most values SABESP 
could reasonably assume. Given our Monte Carlo simulations shown in Fig. 2, we expect a 
concave effect of T on the detection time � : this is indeed the case. Table 2 presents the dif-
ferent thresholds for the detection process with varying T, and the corresponding detection 
dates and times it would have taken for SABESP to detect the shift.

The detection dates range between June 6th and 29th in 2013, more than 6  months 
before the point at which SABESP started adjusting its outflow policy.

We can now address the question of whether the reservoir depletion could have been 
avoided, or at least delayed, if SABESP would have reacted to the regime shift by adjust-
ing its outflow policy at the detection time. For the Cantareira reservoir, SABESP started 
decreasing outflow in mid-January 2014, then decreased the usable capacity limit by 18.5% 
on June 15th and by 10.7% on October 2rd. We therefore apply the equivalent outflow 
strategy at the average detection time (June 22nd, 2013), and obtain Monte Carlo trajec-
tories of the model simulating 5000 trajectories keeping every other input and parameter 
unchanged with confidence bands obtained as before. Figure 11 shows how the simulated 
volume (dashed red line) remains above 25% of the maximum reservoir capacity even at 
times when SABESP started pumping from its strategic reserves.

It is certainly too ambitious a claim to say that the adoption of our detection framework 
could have avoided the water crisis. There is, however, clear evidence of how the reser-
voir depletion should have at least been delayed, as the regime shift that happened in 2013 
could have been detected by SABESP and its outflow strategy could have been adjusted 
earlier. Furthermore, pumping from the dead volume could have been avoided, improving 
the quality of the water supplied to the population as well as saving substantial amounts of 
public funding poured in the company in order to tap the deepest levels of the reservoir. 
In a situation where every day involved rationing water for millions of people, to the point 
that some citizens took to drilling through their basements to reach groundwater, the adop-
tion of our framework can help decision-makers to better understand and manage the eco-
system in which they operate.

12  This criterion is chosen arbitrarily: we note however that the choice of t0 is irrelevant in terms of detec-
tion time. We prefer this criterion as it relates to a possible “early warning signal” that could have been 
noticed ex ante.
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4 � Concluding Remarks

In this paper we study the stochastic dynamics of a renewable resource subject to eco-
logical regime shifts. The occurrence of such shifts can substantially alter the constraints 
faced by economic agents who extract natural resources. We establish a framework of eco-
system surveillance that minimizes the efficiency loss caused by incomplete observabil-
ity of the environmental conditions in which agents operate, and show Pareto optimality 
of our framework for any resource-extracting economic agent. We integrate the detection 
procedure in the maximization problem of a resource-extracting monopolist facing isoe-
lastic demand, such that the firm optimizes with respect to the resource dynamics over a 
time horizon determined by the detection time, and extend the framework to subsequent 
regime shifts under both full and partial information. We study the monopolist’s response 
to regime shift detection, and show how the optimal policy is shaped by both the magni-
tude of the shift and how quickly the new regime is detected. We extend our framework 
to a government maximizing social welfare, perfect competition, and a monopolist facing 

Table 2   Regime shift detection 
times with increasing firm 
tolerances T, if the detection 
process had been activated on 
t0 = January 28th, 2013

T � � (detection date) � − t0 (days)

30 24.67 16-06-2013 138
100 25.874 16-06-2013 138
500 27.484 23-06-2013 145
1000 28.177 23-06-2013 145
5000 29.786 29-06-2013 151
10,000 30.479 29-06-2013 151

Fig. 11   Counterfactual reservoir volume with outflow adjustment due to detection. We obtain Monte Carlo 
estimates ( N = 5000 ) of the likely trajectory of reservoir volume using the estimated post-shift coefficients 
and adjusted its post-2014 policy at the detection time (June 6th, 2013, assuming T = 100 ), with 95% confi-
dence bands obtained as in Fig. 10
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linear demand and a periodic drift in the resource dynamics. Finally, we study the case 
of the Cantareira water reservoir, a large-scale system of interconnected reservoirs which 
serves the Metropolitan Area of of São Paulo in Brazil, and show how applying our frame-
work could have helped mitigate the water crisis that emerged as a consequence of a cata-
strophic regime shift.

Our framework is of constantly increasing real-world relevance. Several natural resource 
firms and government organisations are adopting automated systems for high frequency 
monitoring of resource dynamics thus providing the potential to enhance data-driven deci-
sion making by offering larger volumes of data in near real time. However, it is important 
to highlight that environmental surveillance also comes with its own set of limitations and 
can introduce new technical, financial, and labour requirements. Even though the benefits 
of monitoring may be high, the lack of institutional knowledge and easy availability of 
technical specialists may be preventing some agents from integrating surveillance into their 
decision making. This trend, however, is changing as several new companies are address-
ing these barriers by providing straightforward affordable monitoring solutions and part-
nering with research organisations.13

To conclude, some caveats are in order. The framework we propose for the quick-
est detection of ecological regimes is general and optimal for any economic agent, and 
although a pure monopoly and perfect competition are relatively rare within resource mar-
kets, our results can be used as a first step towards richer competition structures.

Appendix 1

Appendix 1.1: Proof of Existence of Loss Increasing in Detection Delay

Because of the delay [� − �] , the firm chooses an extraction

where J(q) ∶= J(q, x),Q ∶= Q(x, t) is the non-empty set of Markovian admissible con-
trols in feedback form such that � ∫ 𝜏

t
|e−𝜌sJ(q)|ds < ∞ for all t < 𝜏 and q ∈ Q . We call this 

extraction policy q� as it assumes there has not been yet the regime shift and the optimiza-
tion is undertaken under the pre-shift dynamic constraint. Define the bounded set J̄∗(q, 𝜏) 
as the supremum of the maximization problem (i.e. the total volume of maximized crite-
rion units: profits, welfare or utils) achieved with policy q� over a finite period [0, �] , which 
is a nonempty set of real numbers bounded above and below. However, the overall “real” 
supremum of the maximization problem, which corresponds to an observable � at which 
the agent switches policy, is achieved by using the additive property of the supremum over 
bounded nonempty sets:

q� → sup
q∈Q

�∫
�

0

e−�tJ(q)dt

s.t. dXt = (�t − q)dt + �tdWt.

13  Companies such as LG Sonic and Aquatic Life Ltd. are leaders in providing real time in-situ water qual-
ity data, as well as meteorological, and satellite remote sensing data for water managers: https://​www.​lgson​
ic.​com/​no-​algae-​treat​ment-​witho​ut-​real-​time-​data/https://​www.​iisd.​org/​system/​files/​2023-​06/​real-​time-​
water-​quali​ty-​monit​oring.​pdf.

https://www.lgsonic.com/no-algae-treatment-without-real-time-data/
https://www.lgsonic.com/no-algae-treatment-without-real-time-data/
https://www.iisd.org/system/files/2023-06/real-time-water-quality-monitoring.pdf
https://www.iisd.org/system/files/2023-06/real-time-water-quality-monitoring.pdf
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where J̄∗(q𝜇, 𝜃) is the supremum set of the problem (i.e. the maximized profits) up to � 
under the constraint with drift � − q generated by the optimal policy q� , J̄∗(q𝜆, 𝜏 − 𝜃) is the 
supremum set of the problem between � and � generated by the policy q� under the con-
straint with drift �t + �t − q� and P(t, x) is the transition density of a diffusion x. Using the 
dominated convergence and Fubini theorems, both suprema terms are bounded and posi-
tive for all t ∈ [0, �] . However, between � and � any admissible policy q̃ ∈ Q, q̃ ≠ q𝜆 will 
not achieve the supremum, and J̄(q̃, 𝜏 − 𝜃) < J̄∗(q𝜆, 𝜏 − 𝜃) . Since this is valid for any q̃ , it 
follows that J̄(q𝜇, 𝜏 − 𝜃) − J̄∗(q𝜆, 𝜏 − 𝜃) < 0 for any � ≥ � . We can then write

where L(Xt, t) is a continuous function of Xt and t due to the feedback form of the Marko-
vian policies q� ∶= q�(Xt, t) and q� ∶= q�(Xt, t) . The detection delay (� − �) thus induces 
a loss Lt ∶= L(Xt, t) for the agent, expressed in the same units as J, which is increasing in 
the length of the delay itself. One can repeat the same proof as before for 𝜏 < 𝜃 using q� as 
optimal and the proof is complete.

We further note that the instantaneous loss function Lt is a function of both stock Xt and 
time t. Omitting arguments for clarity, its behavior in the interval t ∈ [0, �] is defined by the 
stochastic differential equation

under the filtration Ft , obtained using standard Itô calculus and the optimality condition 
in the respective Hamilton–Jacobi–Bellman equations associated to the value function V 
of the respective optimization problems, which read qi = J−1

q
(Vi

x
) , where i = {�, �} , the 
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subscripts in the drift and diffusion coefficients indicate partial derivatives, and the opera-
tor A� is the “true” infinitesimal generator of the controlled resource stock given by

All the extraction policy terms q have the � exponent in order to represent whether the 
policy is evaluated at the post-shift drift �t + �t or not. Lastly, the terms V�,V� are the 
solutions of the Hamilton–Jacobi–Bellman partial differential equation

for the post-shift and pre-shift problems, respectively. The terms V�
x
,V�

x
 , therefore, indicate 

the resource rents evaluated at the respective optimal extraction policies q�, q . The SDE 
starts at L(X𝜃 , 𝜃) > 0 since (24) applies for all times. By optimality of q� , V� is a martingale 
while V� is a supermartingale. From (25) one can see that the diffusion term is proportional 
to J(qi) , which is 0 when Xt = 0 , and is always positive. It then follows that L(Xt, t) > 0 in 
t ∈ [�, �] almost surely.

Equation (25) has an intuitive interpretation: the deterministic part of the instantane-
ous loss evolves according to two differential terms. The first is the difference between the 
instantaneous expected change in extraction A�q� = �[dq�] of the “theoretical” extraction 
policy q� with the suboptimal policy q generated by the detection delay � , expressed in 
units of resource rent Vi

x
 . Intuitively, this represents why the extraction policy the agent 

applies in the interval [�, �] is wrong: the chosen policy q is optimal for a resource stock 
that grows deterministically as �t , and is applied to a resource stock that however grows at 
the post-shift rate �t + �t.

Appendix 1.2: Quickest Detection of a Regime Shift

In the period before � , the dynamics of the resource Xt are determined by the SDE

under the triple (ℝ+,F,P) . Define now the trasformation, sometimes called the Lamperti 
transform, given by

Under the standard conditions of existence of a solution for (26), g(.) maps one-to-one with 
the state space of X for all t and primitives of � and thus this integral exists. One can then 
transform the original stock process in one with an unit diffusion. First, a straightforward 
application of Itô’s lemma to gx(t, x) = 1∕�(t, x) yields

Now notice that gxx(t, x) = −�xx(t, x)∕�(t, x)
2 and that Xt = g−1(t, X̃t) . We can then rewrite 

the previous expression as

A
�[�] ∶=

(
�t + �t − qi

)
�x +

�2
t

2
�xx + �t.

0 = −�Vi + sup
q

{J(q) +A
i[Vi]}

(26)dXt =
(
�t − qt

)
dt + �tdWt.

X̃t ∶= g(t,Xt) = ∫
Xt

𝜎(t, x)−1dx.
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(
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1

2
𝜎2(t, x)gxx(t, x)

)
dt + 𝜎(t, x)gx(t, x)dWt
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(
gt(t, x) + (𝜇(t, x) + q(t, x))𝜎(t, x)−1 +
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2
𝜎2(t, x)gxx(t, x)

)
dt + dWt
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Now, Girsanov theory tells us that the process

is a P-martingale. Therefore, the process

is a Q-Brownian motion, where one obtains the new probability measure by Q = �P(Mt) . 
The process X̃t therefore admits the representation

and is therefore a Brownian motion under the measure Q. Using the same procedure as 
before to the post-shift resource process, the firm’s detection problem now becomes

This problem was solved by Moustakides (2004), shows that the stopping rule that solves 
the optimization problem (4) for a general F -adapted process as regime shift, with a modi-
fied divergence-type/entropic criterion to account for a general process 𝜆t is given precisely 
by Eq. (6)

For the case of the drifted Brownian motion, notice that the Lamperti transform is 
simply given by 1∕� and the regime shift is given by �∕� . Due to the prior information 
Θ , the agent knows the magnitude of � and the detection problem reverts exactly to the 
Brownian disorder problem studied by Shiryaev (1963, 1996) and in the case of multi-
ple drifts by Hadjiliadis and Moustakides (2006). The Brownian disorder is the detec-
tion of the change between a martingale and a sub/supermartingale, depending on the 
sign of � . We apply these results directly, and refer to these papers for all details regard-
ing the derivation of the formulas.

Appendix 1.3: Proof of Propositions 1, 2 and 3

Let us prove Proposition 1 first, where the instantaneous drift is given by � and the firm 
optimizes in t ∈ [0, �] where � = ��=∞[�] + �[�(�0, �)] . At time t = 0 the firm believes 
that the resource is driven by a diffusion process with the natural growth rate � . At a 
random and unobservable time � , there is an initial exogenous change, � , in the resource 
dynamics.

Within this time interval [0, �] , the value of the firm is given by

dX̃t =

(
gt
(
t, g−1

(
t, X̃t

))
+

𝜇
(
t, g−1

(
t, X̃t

))
+ q

(
t, g−1

(
t, X̃t

))

𝜎
(
t, g−1

(
t, X̃t

)) + 𝜎x
(
t, g−1

(
t, X̃t

)))
dt + dWt

=𝜇̃
(
t, g−1

(
t, X̃t

))
dt + dWt,

Mt = exp

(
−∫

t

0

𝜇̃
(
s, g−1

(
s, X̃s

))
dWs −

1

2 ∫
t

0

𝜇̃
(
s, g−1

(
s, X̃s

))
ds

)

W̃t = Wt + ∫
t

0

𝜇̃
(
t, g−1

(
t, X̃t

))
ds

X̃t = x0 + ∫
t

0

dW̃s

dX̃t =

{
dW̃t t < 𝜃
𝜆̃t + dW̃t t ≥ 𝜃,

, 𝜆t =
𝜆
(
t, g−1

(
t, X̃t

)
,Θ

)

𝜎
(
t, g−1

(
t, X̃t

)) .
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where the control set is given by Q = {q ∶ ℝ
+
→ ℝ

+, q ≥ 0, bounded and Ft-adapted}. 
What we want to achieve is to show that the value function V for (27) across different 
periods with changing drifts is a weak solution of the optimization problem (12). In all 
that follows we will use as a reference Fleming and Soner (2006). We first write the Ham-
ilton–Jacobi–Bellman equation for this problem in terms of its infinitesimal generator. 
Define the set D ∈ C([0, �] ×ℝ) . Then V(t, x) ∈ D is a classical solution of the optimiza-
tion problem (27) if it satisfies the equation

where A is the generator of the HJB equation. Now, define a continuous function H (the 
Hamiltonian) such that

and consider the equation

Following the fundamental work by Crandall and Lions (1981), a function 
V(t, x) ∈ C([0, �] ×ℝ) is a viscosity subsolution of (29) if for all v ∈ C∞(D)

for every point (t̄, x̄) which is a local maximum of V − v . Similarly, V(t, x) is a viscosity 
supersolution of (29) if for all v ∈ C∞(D)

for every point (t̄, x̄) ∈ D which is a local minimum of V − v . The function V(t,  x) is a 
viscosity solution of the equation (29) if it is both a viscosity subsolution and a viscosity 
supersolution. This implies that the function V(t, x) is a weak solution of the optimization 
problem (27). Let us now show that V is a viscosity solution of our problem (27).

Let v ∈ C2([0, �] ×ℝ) , let V − v be maximized at the point (t̄, x̄) ∈ ([0, 𝜏] ×ℝ) and let us 
fix an optimal control (extraction rate) q ∈ Q . Let X(.) = X(.;t, q) be the controlled stochastic 
process that drives the resource stock. For every time 𝜏 > t̄ for which X𝜏 > 0 , we have, using 
Itô’s lemma and Bellman’s principle of optimality,

(27)

V(t,Xt) = sup
q∈Q

�t �
�

t

e−�sΠ(Xt, q)ds

s.t. dXt = (�Xt − q)dt + �XtdWt,

X0 = x0, Xt ≥ 0 ∀t ∈ [0, �],

(28)−
�

�t
V +A[V(t, .)](x) = 0,

A[�](x) = H(t, x,D�(x),D2�(x))

(29)−
�

�t
W(t, x) +H(t, x,DW(t, x),D2W(t, x)) = 0.

−
𝜕

𝜕t
v(t̄, x̄) +H(t̄, x̄,Dv(t̄, x̄),D2v(t̄, x̄)) ≤ 0

−
𝜕

𝜕t
v(t̄, x̄) +H(t̄, x̄,Dv(t̄, x̄),D2v(t̄, x̄)) ≥ 0.

0 ≤�t̄

[
V(t̄, x̄) − v(t̄, x̄) − V(𝜏, x(𝜏)) + v(𝜏, x(𝜏))

]
𝜏 − t̄

0 ≤ 1

𝜏 − t̄
�t̄

[
�

𝜏

t̄

Π(x, q)dt − v(t̄, x̄) + v(𝜏, x(𝜏))

]
.
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This implies

for all q ∈ Q : we can then write

This proves that V is a viscosity subsolution of the problem (27). Proceeding similarly 
proves that V is a viscosity supersolution of the problem: if V − v attains a minimum at 
(t̄, x̄) then for any 𝜖 > 0 and 𝜏 > t̄ we can find a control q ∈ Q such that

which implies

Proceeding equivalently as before, one shows that V is a viscosity supersolution of (27). 
We can conclude that V is a viscosity solution of (27). Note that for every time �e ∈ [0, �] 
for which X𝜏 > 0 , since for optimality we have Πq(., q

∗) − Vx = 0 and Π is continuous 
and twice differentiable in q, it can be easily shown that the inequalities of the definition 
of sub- and supersolution are satisfied with equality, which means that V(t,  x) is also a 
classical solution of (28) for each t = �e . We now need to deal with the value function at 
each change point �i , and focus on the extended time interval [0, �2] . Given the “feasible” 
set D≃ = ([0, �] ×ℝ

+) , we cannot impose that the value function V(t, x) nor its gradient 
�xV(t, x) to be differentiable at � at the boundary of �D′ . Following Fleming and Soner 
(2006), we need to impose a boundary inequality, which does not require V nor the bound-
ary �D′ to be differentiable at � . This implies that the value function V(�, x) must be a 
viscosity subsolution of (27) in the time interval [0, 𝜏] for all 𝜏 > 𝜏 . Following the previous 
definitions, we must have

for all continuous functions for which V − v is locally maximized around t = � . Since V − v 
has to be maximized in a closed interval around � , we have

The proof is simple, one just needs to write 
H(�, x, �, �x)) = supq∈Q Π(�, x, q) + �x(� + q) + �xx

2 �2

2
 and use � = V�+� to show the ine-

quality holds, since the value function V at � associated with the pre-shift problem (that is, 
with a drift of �x ) must match the post-shift value function V�+� , i.e. V�+�(x) , which is sta-
tionary since the time horizon after the regime shift detection � is infinite. The last part we 

0 ≤ vt(t̄, x̄) + Π(x, q) + vx(𝜇x − q) +
𝜎2

2
x2vxx

0 ≤vt(t̄, x̄) + sup
q∈Q

[
Π(x, q) + vx(𝜇x − q) +

𝜎2

2
x2vxx

]

0 ≤vt −H(t̄, x̄,Dv(t̄, x̄),D2v(t̄, x̄)).

0 ≥ −𝜖(𝜏 − t̄) + �

[
�

𝜏

t̄

Π(x, q)dt − v(t̄, x̄) + v(𝜏, x(𝜏))

]

𝜖 ≥ 1

𝜏 − t̄
�t̄

[
�

𝜏

t̄

Π(x, q)dt − v(t̄, x̄) + v(𝜏, x(𝜏))

]
.

(30)
vt(�, x) ≤ −H(�, x,Dv,D2v)

≤ sup
q∈Q

{
Π(x, q) + vx(�, x)(�x − q) + vxx(�, x)x

2 �
2

2

}

H(�, x, �, ax) ≥ H(�, x, vx(�, 0), vxx(�, 0)) ∀� ≥ vx(�, x).
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need to show is uniqueness, and thus need the examine the characteristics of the objective 
function and the stock dynamics. The (uncontrolled) drift and diffusion terms are continu-
ous and bounded. The set Q is bounded below by 0 since q(t, 0) = 0 for all t and above by 
the fact that q is decreasing in Vx and q ≥ 0 and is thus a compact set. Note that q(t, 0) = 0 
bounds to zero the cost function as well. These results imply that Π(t, x, q) is continuous 
and bounded on ℝ+ ×ℝ

+ × Q , as well as its partial derivatives Πt,Πx,Πxx . The conditions 
of Theorem 4.4 of Fleming and Soner (2006) are then satisfied and thus V(t, x) is unique. 
We therefore can say that the viscosity solution given by

is a solution to the problem (12).
Let us now then search for a classical solution within the set (t, x) ∈ [0, �] ×ℝ

+ . The HJB 
equation for the firm’s optimization problem reads

which implies the optimal extraction policy is given by

In order to obtain an analytically tractable solution, we choose an isoelastic demand func-
tion q(p) = bp−� and marginal extraction c(Xt) = cX−1∕� , where b, c ∈ ℝ

+ and 𝛾 > 1 . The 
optimal policy thus reads

Guessing a separable form for the value function such that

it can be shown after lengthy but straightforward computations that choosing � as the solu-
tion to the nonlinear ordinary differential equation

also yields a solution the HJB equation. This implies that the problem’s boundary condi-
tion implied by the viscosity condition (31) is �(�1) = �s

�+�
 , where �s is a constant that 

solves the equation

since it be shown straightforwardly that the is the solution of (A.3) when Vt = 0 is 
V�+�(x) = �s

�+�
x(�−1)∕� . The optimal extraction policy in feedback form is then given by

(31)

V(t, x) solves Vt −H(t, x,DV(t, x),D2V(t, x)) = 0 (t, x) ∈ {[0, �) ×ℝ
+}

V�+�(x) solves −H(x,DV�+�(x),D2V�+�(x)) = 0 x ∈ ℝ
+

V(�, x) = V�+�(x).

−Vt + �V = sup
q

[
p(q)q − c(q, x) + −qVx

]
+

(
� +

i∑
j=0

�j

)
xVx +

�2

2
x2Vxx

q∗s.t. p(q) + p�(q)q = Vx + cq(q, x).

q∗ = b

(
�

� − 1

)−�(
cX

−1∕�
t + Vx

)−�

V(x, t) = �(t)x(�−1)∕� ,

��(t) = −�(t)

[
� − 1

�
� −

� − 1

�2
�2

2
− �

]
−

b

��

(
�(t)

�
+

c

� − 1

)1−�

�s

�+�

(
� − (� + �)

� − 1

�
+

�2

2

(
� − 1

�2

))
=

b

��

(
�s

�+�

�
+

c

� − 1

)1−�
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The natural boundary condition q(0, t) = 0 is immediately seen to be satisfied. We have 
therefore proven the form of the solution in Proposition 1.

The last step we need is a verification theorem for the time-dependent section of the 
policy, obtained by “stopping” the HJB at an arbitrary time 𝜏 < 𝜏 . Define v(t, x) our can-
didate function that solves the HJB equation. Using Itô’s lemma on the discounted value 
function we obtain

where A is the HJB generator. Taking expectations and adding the objective e−�tΠ(Xt, qt):

Since by assumption v is a solution of the HJB equation, we have

for all times s ∈ [0, 𝜏] . If we choose 𝜏 = t , we have the inequality

for all choices of control q. Since we established q∗
t
∈ Q as the controls for which v the 

HJB is solved, then

Then v(𝜏, x) = V(𝜏, x) for all 𝜏 ∈ [0, 𝜏] , and the proof is complete.
Proposition 2 is proven using similar arguments for a general period [�i, �i+1] , focus-

ing on changes of drift from � +
∑i

j=0
�j to � +

∑i+1

j=0
�j . Given that the objective is only 

calculated two periods at a time, since �i+2 is not (yet) known, the boundary condition 
�(�i+1) needs to match the value function with the one of the subsequent period assuming 
no further changes in drift, i.e. matching with the problem’s stationary solution with a drift 
� +

∑i+1

j=0
 . Using the same procedure as before and defining Vi ∶= V

�+
∑i

j=0
�j , the viscosity 

solution for the problem (17) is thus given by

q∗(Xt, t) = b

[
�

� − 1
c + �(t)

]−�
Xt = B(t)Xt.

e−𝜌𝜏v(𝜏,X ̃̃𝜏 ) = v(0,X0) + ∫
𝜏

0

e−𝜌sA[v](s,Xs)ds + ∫
𝜏

0

vxx(Xs)dWs

v(0,X0) =�∫
𝜏

0

e−𝜌sΠ(Xs, qs)ds + e−𝜌𝜏�v(𝜏,X𝜏 )

− �∫
𝜏

0

e−𝜌s
[
A[v](s,Xs) + Π(Xs, qs)

]
ds.

A[v](s,Xs) + Π(Xs, qs) ≥ 0,

v(0,X0) ≤ ��
𝜏

0

e−𝜌sΠ(Xs, qs)ds + e−𝜌𝜏v(𝜏,X𝜏 )

(32)v(0,X0) = �∫
𝜏

0

e−𝜌tΠ(Xs, q
∗
s
)ds + e−𝜌tv(𝜏,X𝜏 ).

(33)

Vi(t, x) solves Vi
t
−H(t, x,DVi(t, x),D2Vi(t, x)) = 0 (t, x) ∈ {[�i, �i+1) ×ℝ

+}

Vi+1(t, x) solves Vi+1
t

−H(t, x,DVi+1(t, x),D2Vi+1(t, x)) = 0 (t, x) ∈ {[(�i+1, �i+2) ×ℝ
+}

Vi(�i, x) = Vi+1(�i, x),
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and the value function across all periods can be characterized as an envelope solution of a 
super- and a subsolution of (17), using Theorem 2.14 in Bardi and Dolcetta (1997). Updat-
ing notation to represent each period so that each policy Bi(t) is identified by �i(t) , we 
obtain the expressions in Proposition 2.

Proposition 3 is proven similarly as Proposition 1 for each change point, and the backward-
inducted boundary conditions are obtained straightforwardly by focusing first on �N . After this 
point in time, the firm assumes a stationary problem that follows the resource dynamics asso-
ciated to the drift � +

∑N

j=0
�j , and thus its problem has as value function V(Xt) = �N+1Xt , and 

it’s identical to the problem of Proposition 1, as the last boundary condition therefore identifies 
the time-varying policy for the time interval [�N−1, �N] , and is given by �N(�N) = �N+1 . Once 
this policy function is identified, the boundary condition for the previous period [�N−2, �N−1] 
can be written as �N−1(�N−1) = �N(�N−1) . Proceeding iteratively, the Proposition follows.

Appendix 1.4: Numerical Solution of the Monopolist’s Problem Under Arithmetic 
Fluctuations and Periodic Drift

Let us now solve another scenario which is well-suited for our empirical application, and show 
that the quantitative essence of the results shown in Section 2.3 hold. Let us assume a risk-neu-
tral monopolist facing a linear demand function with fixed costs Π(q) = (a − bq)q − cq − F , 
where a, b, c > 0 . The resource dynamics are given by a process with a periodic drift with 
period � and a constant variance of fluctuations 𝜎 > 0 , with a constant regime shift at �:

The two-period problem is now one where the monopolist maximizes the discounted profit 
function Π(q) under the dynamic constraint (34). One can show with the same arguments 

(34)dXt =

{ (
𝜇 sin(𝜔t) − qt

)
dt + 𝜎dWt t < 𝜃(

𝜇 sin(𝜔t) − 𝜆 − qt
)
dt + 𝜎dWt t ≥ 𝜃.

Fig. 12   Numerical illustration of the optimal policy associated with (35), showing both aggressive and 
precautionary policies associated with an adverse regime shift � = −3 (orange surface) and in absence of 
detection (blue surface)
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as the previous section that the viscosity solution applies, although with different func-
tional forms. The HJB equation V(t, x) for this problem can be reduced after some compu-
tations to solving the pde

where C =
(a−c)2

4b
− F and the boundary conditions are now 

V(0, t) = � sin(�t),Vx(0, t) = a − c,V(�,X� ) = V�(�,X� ) , where V� is the solution of 
Eq.(35) when Vt = 0 . We use a finite elements method (see Ciarlet (2002) for all details), 
suitable for elliptic problems such as HJB equations and particularly those with the added 
issue of having time-varying boundary conditions, to solve (35), and are known to con-
verge to its viscosity solution. We then recover numerically its gradient Vx , which is used to 
plot the optimal policy for an adverse regime shift � = −3 and policy in absence of regime 
shift. The other parameters are � = 0.02, a = 2, b = 1, c = 1, s = 2,F = 2,� = 0.3 (inter-
preting an unit of time as a year, this implies tri-monthly seasonality). Figure  12 shows 
the emergence of both scarcity-driven precautionary and aggressive extraction policies 
in anticipation of the regime shift detection at � = 3 (to be interpreted as years, since the 
within-period seasonality is 0.3), a time interval chosen not too long in order to avoid con-
vergence problems in the backward time integration of Eq.(35)), together with the oscilla-
tions stemming from the periodic drift. One can see that for low stock levels, the optimal 
policy is to reduce extraction with respect to the counterfactual in absence of detection.

Appendix 1.5: Particle Filtering and Parameter Estimation

When analyzing data that results from a dynamic system, and particularly when dealing 
with sequential observations of a process driven by a stochastic differential equation, both 
problems of state filtering and parameter estimation become relevant. A way to solve this 
problem is to treat parameters as hidden states of the system, as in the method first devel-
oped by Liu and West (2001). There have been multiple improvements since their impor-
tant contribution, but we find that the implementation of the basic setup is sufficient for 
what is required by our framework. The setup for the joint state and parameter estimation 
can be formulated in the following way, where � is our vector of parameters of interest:

In this Bayesian setup the unknown parameters � are treated as random quantities, and 
therefore we have deal with the conditional densities p(.|., �) jointly with assuming a prior 
distribution p(�) . The joint posterior for both state and parameters is given by the smooth-
ing problem

(35)0 = Vt − �V +

(
� sin(�t) −

(a − c)

2b

)
Vx +

V2
x

4b
+

�2

2
Vxx + C

Xt+1|Xt ∼p(Xt+1|Xt, �)

Yt|Xt ∼p(Yt|Xt, �)

x0 ∼p(X0|�)
� ∼p(�), t ∈ [0,… , T].

p(X0∶t+1|Y0∶t+1) =
p(Yt+1|X0∶t+1, Y1∶t, �)p(Xt+1|X0∶t, Y1∶t, �)

p(Yt+1|Y1∶t) p(X0∶t, �|Y1∶t),
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where Y starts at 1 because Y0 = X0 . The posterior distribution of parameters, which is 
what we are ultimately interested in, can be written using the Chapman-Kolmogorov equa-
tion for a Markovian process as

which is evaluated via the filtering procedure. The filtering density of the “current” state Xt 
and the parameter vector � is given by

and one can thus approach filtering conditional on parameters, which is a well-known fact. 
Filtering is thus the task of estimating recursively in time the sequence of marginal pos-
teriors, and needs to be done for both states and parameters in order to estimate param-
eters. We assume a Gaussian measurement density, i.e. p(Yt|Xt, �) = N(Xt, �

2
y
;�) , where 

�2
y
= 3.5105 is calibrated ex ante via trajectory matching. This has the intuitive interpreta-

tion of Y being the real reservoir volume with an additional classical measurement error 
centered on the observation of reservoir volume X, which helps in giving some leeway in 
fitting the model to the data. However, even in a linear Gaussian measurement system and 
in the presence of Gaussian fluctuations, the nonlinear and non-Gaussian nature of Xt due 
to inflow, rainfall and outflow ( q∗ ), choices such as the Kalman filter are likely to yield 
imperfect approximations of the true dynamics and thus we choose a particle approach in 
order to be completely agnostic on the distributional nature of p(Xt+1|Xt, �) . The approach 
by Liu and West fixes the common issue of particle decay and filter degeneracy due to 
fixed parameters by means of approximating the posterior p(�|Y1∶t) with a particle set 
(Xi

t
, �i

t
,wi

t
) . They propose to estimate the posterior distribution for � via a Gaussian kernel 

density estimation. This implies approximating the parameters’ transition density with a 
Gaussian density:

The advantage introduced is that the conditional variance is the Monte Carlo posterior var-
iance Vt (i.e. independent of �t ), and the Gaussian kernel depends on a linear combination 
of particles and empirical mean of past particles mi

t
= a𝜃i

t
+ (1 − a)𝜃̂t . The original Liu and 

West approach has the advantages of being relatively simple whilst avoiding particle decay 
and overcoming the issue of degeneracy due to fixed parameters in the simulation. In all 
what follows we use the smoothing a = 0.1 . The algorithm we employ is the following: 

(1)	 Obtain an initial set of 1000 particles (Xi
t
, �i

t
,wi

t
) , i = 1,… , 1000 . Calculate the con-

ditional mean �i
t+1

= �[Xt+1|Xi
t
, �i

t
] and mi

t
= a𝜃i

t
+ (1 − a)𝜃̂t . We start with the Dirac 

mass p(x0|�) = �(x0).
(2)	 Simulate an “index” variable through importance sampling j ∝ w

j

tp(Yt+1|�t+1,m
j

t) with 
j = 1 ∶ 1000 . Sample a new parameter vector �j

t+1
 from the k-th normal component of 

the kernel density �j
t+1

∼ N(�t+1|mj

t, (1 − a2)Vt).

p(�|X0∶t, Y1∶t) ∝ p(�)p(X0|�)
t∏

k=1

p(Xk|Xk−1, �)p(Yk|Xk, �)

p(Xt+1, �|Y1∶t+1) =
p(Yt+1|Xt+1, �)p(Xt+1|Y1∶t, �)

p(Yt+1|Y1∶t) p(�|Y1∶t),

p(Xt+1, �|Y1∶t+1) ∝
N∑
i

p(Yt+1|Xt+1, �t+1)p
(
Xt+1|Xi

t
, �t+1

)
wi
t
N
(
�t+1|mi

t
,Vt

)
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(3)	 Simulate the new states: Xi
t+1

= p(Xt+1|Xj

t , �
j

t+1
) via standard Euler-Maruyama methods 

for the SDE, using a daily interval as Δt (1/365).

(4)	 Update particle weights: wi
t+1

∝
p(Yt+1|Xj

t+1
,�

j

t+1
)

p(Yt+1|�j

t+1
,m

j
t)

.

(5)	 Repeat steps a large enough number of times to produce a final posterior reconstruction 
X
j

t+1
, �k

t+1
).

In procedures such as this one, which can be expensive computationally, it is common 
knowledge that the quality of the starting guess can sometimes make a substantial differ-
ence. We thus start by calibrating our model with simulations of the SDE (23) via tra-
jectory matching until a reasonable result (i.e. non-explosive simulated behavior, relative 
gradient and flex points matching with the data) is achieved. We then run a first pass of the 
estimation algorithm using flat (uniform) priors centered on this guess in order to reduce 
the dimensions of the parameter space, with a wide enough interval (between 104 and 106 
for � , between 0.5 and 1 for � since simulations show that 𝛾 > 1 always generates an explo-
sive behavior, between 106 and −106 for � and between 104 and 107 for � ). The main results 
are then obtained by using log-normal priors for �, � , � each with mean and variance the 
(log) mean and variance of the previous run’s posteriors, and equivalently Gaussian priors 
for � as we do not want to restrict it to be either positive or negative. Reconstructed pos-
terior densities are shown in Fig. 13. The results of pre- and post-regime shift estimations 
are reported in the main body of the paper. An immediate set of checks for quality of the 
estimation is examining effective number of particles used and conditional log-likelihood 

Fig. 13   Filtered posterior densities for the model parameters
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at every step: Fig. 14 shows how particle decay and likelihood only drop where the filter 
cannot track the data as well as in the other times (around late 2010–early 2011), whilst 
still remaining solidly within an acceptable confidence zone. Lastly, we note that other 
techniques could equivalently be used, in particular approximate likelihood methods such 
as simulated maximum likelihood, but in particular for the pre-shift model given the long 
time series for the Cantareira reservoir that we use for our analysis (daily observations, 
2007–2013) we prefer the particle filter approach as it’s much lighter computationally.
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