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Abstract

Reversible S-palmitoylation of protein cysteines, catalysed by a family of integral membrane

zDHHC-motif containing palmitoyl acyl transferases (zDHHC-PATs), controls the localisa-

tion, activity, and interactions of numerous integral and peripheral membrane proteins.

There are compelling reasons to want to inhibit the activity of individual zDHHC-PATs in

both the laboratory and the clinic, but the specificity of existing tools is poor. Given the exten-

sive conservation of the zDHHC-PAT active site, development of isoform-specific competi-

tive inhibitors is highly challenging. We therefore hypothesised that proteolysis-targeting

chimaeras (PROTACs) may offer greater specificity to target this class of enzymes. In

proof-of-principle experiments we engineered cell lines expressing tetracycline-inducible

Halo-tagged zDHHC5 or zDHHC20, and evaluated the impact of Halo-PROTACs on

zDHHC-PAT expression and substrate palmitoylation. In HEK-derived FT-293 cells, Halo-

zDHHC5 degradation significantly decreased palmitoylation of its substrate phospholem-

man, and Halo-zDHHC20 degradation significantly diminished palmitoylation of its substrate

IFITM3, but not of the SARS-CoV-2 spike protein. In contrast, in a second kidney derived

cell line, Vero E6, Halo-zDHHC20 degradation did not alter palmitoylation of either IFITM3

or SARS-CoV-2 spike. We conclude from these experiments that PROTAC-mediated tar-

geting of zDHHC-PATs to decrease substrate palmitoylation is feasible. However, given the

well-established degeneracy in the zDHHC-PAT family, in some settings the activity of non-

targeted zDHHC-PATs may substitute and preserve substrate palmitoylation.

Introduction

S-palmitoylation (also referred to as S-acylation), a dynamic type of lipidation, reversibly

anchors proteins to membranes through attachment of a saturated fatty acid (typically palmi-

tate) to cysteine residues via the formation of a thioester bond. This modification is catalysed

by zDHHC-domain containing palmitoyl acyl transferase enzymes (zDHHC-PATs), and
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reversed by thioesterases [1]. The zDHHC-PATs are integral membrane proteins located

throughout the secretory pathway, whereas all thioesterases identified to date are cytosolic ser-

ine hydrolases.

The zDHHC-PAT family comprises 23 members in humans [2]. Some of these enzymes

display overlapping substrate specificities and subcellular locations, while others are restricted

to a single cellular compartment [1]. In recent years, these enzymes have emerged as potential

therapeutic targets for various diseases, including cancer, neurological disorders, cardiovascu-

lar diseases, and infectious diseases [3]. For example, envelope glycoproteins from a diverse

range of human viral pathogens are S-palmitoylated, including SARS-CoV-2, SARS-CoV,

influenza A, measles, rabies, ebola and HIV-1 [4]. Other viral proteins are also known to be S-
palmitoylated, with important consequences for virus assembly, replication, and virulence [5–

10]. Functionally, S-palmitoylation can control viral budding and release (influenza HA [11],

togavirus E1/E2 [12, 13]) as well as viral membrane fusion (influenza HA [14–16], SARS-CoV

spike [17, 18], SARS-CoV-2 spike [19–21]). No known viruses encode zDHHC-PATs, imply-

ing that S-palmitoylation of viral proteins is entirely dependent upon host enzymes.

In cardiac muscle, the ubiquitous Na/K ATPase is vital for ion homeostasis as well as con-

tractile and mitochondrial function [22]. In cardiac pathologies, reduced Na/K ATPase activity

and elevated intracellular sodium concentrations degrade trans-sarcolemmal ion gradients,

impair systolic and diastolic function, and reduce mitochondrial ATP production [23]. The

accessory protein phospholemman (PLM) activates Na/K ATPase when phosphorylated [24,

25], inhibits the enzyme when palmitoylated [26, 27], and in recent years has emerged as a

drug target to correct ion transport defects associated with heart failure [28].

Hence zDHHC-PATs are attractive drug targets: an agent targeting zDHHC20 (responsible

for SARS-CoV-2 spike protein S-palmitoylation [19]) would offer significant therapeutic

potential to manage pathology caused by coronaviruses and possibly other infectious agents.

Inhibiting zDHHC5 palmitoylation of PLM would restore ion gradients, improving contractile

function and mitochondrial ATP production in heart failure. However, there are no reliable

zDHHC-PAT inhibitors in routine experimental use, let alone compounds that can selectively

inhibit one zDHHC isoform over another. The widely used irreversible inhibitor 2-bromopal-

mitate (2-BP) has numerous off-target effects, including the thioesterase enzymes [29]. A

recently described acrylamide-based inhibitor is clearly an improvement on 2-BP, but inhibits

multiple zDHHC-PATs [30]. The conservation of all zDHHC-PAT active sites makes it

unlikely that inhibitors targeting the active site will show isoform selectivity throughout this

family (although inhibitors of zDHHC2 identified by high throughput screening show some

selectivity for zDHHC2 and zDHHC15 over zDHHC3 and zDHHC7 [31]). Strategies aimed at

blocking substrate recruitment offer more promise, as the intracellular N and C termini of the

zDHHC-PATs are poorly conserved [32, 33]. However, the zDHHC-PAT family may also be

tractable to targeted protein degradation using an emerging paradigm in medicinal chemistry

known as proteolysis targeting chimeras (PROTACs) [34, 35]. A PROTAC contains both a

ligand that is selectively targeted to a protein of interest and a ligand for cellular ubiquitination

machinery. Once the PROTAC has bound its target, it recruits a ubiquitin ligase to the com-

plex which results in ubiquitination of the target and subsequent degradation by the protea-

some. Since PROTACs do not need to engage an enzyme’s active site for efficacy, the entire

intracellular region of an enzyme is a suitable target. This significantly expands the druggable

surface area of a protein and offers the potential for protein families with highly homologous

active sites to be selectively targeted.

The HaloTag protein is a bacterial dehalogenase that has been modified to bond covalently

to a 6-carbon chloroalkane with high specificity. Attaching the chloroalkane ligand for Halo-

Tag to an E3 ligase ligand generates Halo-PROTACs. These reagents have been well validated,
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display no toxicity when applied to cells at concentrations below 10μM, and offer striking spec-

ificity at a whole proteome level [36, 37]. In this investigation, we set out to probe the tractabil-

ity of the zDHHC-PAT family to PROTAC-mediated degradation. We employed the HaloTag

system in combination with Halo-PROTACs to determine whether individual Halo-

zDHHC-PATs were amenable to PROTAC mediated degradation, and whether zDHHC-PAT

degradation impaired palmitoylation of individual substrates.

Results

Subcellular localisation of Halo-zDHHC5 and Halo-zDHHC20 in

engineered Flp-In 293 T-REx cells

We used the Flp-In system to engineer two cell lines expressing tetracycline inducible Halo-

zDHHC-PATs. For experiments targeting expression of and substrate palmitoylation by

zDHHC5, a single expression cassette encoding both Halo-zDHHC5 and its substrate PLM

separated by an internal ribosome entry site was introduced into cells. We have previously vali-

dated the Flp-In system to evaluate palmitoylation of PLM by zDHHC5 [27]. For experiments

investigating zDHHC20, an expression cassette encoding only Halo-zDHHC20 was intro-

duced. We first evaluated the subcellular location of Halo-zDHHC5 and Halo-zDHHC20 by

staining with TAMRA-chloroalkane which labels Halo-tagged proteins in cells (Fig 1). No

staining was detected in cells not treated with tetracycline to induce target gene expression.

Halo-zDHHC5 was predominantly detected at the cell surface membrane, consistent with its

established role as a cell surface zDHHC-PAT (Fig 1A). Halo-zDHHC20 was detected in both

intracellular compartments and the cell surface membrane (Fig 1B). Western blotting for the

Halo-tag detected both proteins migrating at the predicted sizes only in cells treated with tetra-

cycline (Fig 1C).

Halo-PROTAC induced degradation of Halo-zDHHC5 and Halo-

zDHHC20 in Flp-In 293 T-REx cells

We based the design for our Halo-PROTACs on the cereblon ligand pomalidomide (2, Fig

2A) [38] classical VHL ligand VH032 (3), as well as a modified VHL-targeting scaffold that

includes a fluorocyclopropane (1) [36, 37]. The inclusion of the fluorocyclopropane has been

shown to lead to improve VHL binding affinity in vitro, with a corresponding improvement in

cellular potency [37, 39]. We evaluated the ability of these different Halo-PROTACs (Fig 2A)

to induce degradation of Halo-zDHHC-PATs.

Halo-zDHHC5 was successfully degraded using VHL-directed Halo-PROTACs 1 and 3 but

not by cereblon-directed Halo-PROTAC 2 (Fig 2B: Dmax 75±5% for 1μM compound 1, 61

±13% for 1μM compound 3). In contrast all three Halo-PROTACs degraded Halo-zDHHC20

(Fig 2C: Dmax 78±6% for 1μM compound 1, 59±14% for 1μM compound 2, 60±10% for 1μM

compound 3). We conclude from these experiments that zDHHC-PATs are amenable to PRO-

TAC mediated degradation, and selected compound 1 for further evaluation. We evaluated

off-target effects of compound 1 on endogenous zDHHC5 in Flp-In 293 T-REx cells and

found no impact on its abundance (Fig 2D).

Mechanistic characterisation of Halo-zDHHC5 and Halo-zDHHC20

degradation in Flp-In 293 T-REx cells

We next set out to confirm that the degradation of Halo-zDHHC5 and Halo-zDHHC20

induced by compound 1 was dependent on recruitment of the E3 ubiquitin ligase VHL, elon-

gation of ubiquitin chains, and proteasome activity. Neither Halo-zDHHC5 nor Halo-
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zDHHC20 were degraded when cells were treated with an epimer of compound 1 in which the

configuration of the prolyl hydroxyl group (established to be essential for engagement with

VHL) was inverted (compound 4, see supporting information for details). This confirms the

Fig 1. Subcellular location and expression of Halo-zDHHC20 and Halo-zDHHC5 in Flp-In 293 T-REx cells. A–

Subcellular location of Halo-zDHHC5 visualised by staining cells with TAMRA-chloroalkane either without

(uninduced) or with (induced) gene induction using tetracycline. B–Subcellular location of Halo-zDHHC20 visualised

by staining cells with TAMRA-chloroalkane either without (uninduced) or with (induced) gene induction using

tetracycline. Scale bar: 10μm. C–Western blot analysis confirming successful induction of Halo-zDHHC5 (left) and

Halo-zDHHC20 (right).

https://doi.org/10.1371/journal.pone.0299665.g001
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Fig 2. Halo-PROTAC mediated zDHHC-PAT degradation in Flp-In 293 T-REx cells. A–Halo-PROTAC structures

B–Dose response relationship for Halo-PROTACs in Flp-In 293 T-REx cells expressing Halo-zDHHC5. Cells were

treated with the indicated concentration of Halo-PROTAC for 18–24 hours and lysates immunoblotted as shown. V:

vehicle (DMSO) control. The bar chart (right) shows the expression of Halo-zDHHC5 relative to GAPDH. *: P<0.05,

**: P<0.01, one-way ANOVA followed by Dunnett’s multiple comparisons test. C–Dose response relationship for

Halo-PROTACs in Flp-In 293 T-REx cells expressing Halo-zDHHC20. Cells were treated with the indicated

concentration of Halo-PROTAC for 18–24 hours and lysates immunoblotted as shown. V: vehicle (DMSO) control.

The bar chart (right) shows the expression of Halo-zDHHC20 relative to GAPDH. *: P<0.05, one-way ANOVA

followed by Dunnett’s multiple comparisons test. D–Impact of compound 1 on abundance of endogenous zDHHC5 in

Flp-In 293 T-REx cells.

https://doi.org/10.1371/journal.pone.0299665.g002

PLOS ONE Targeting protein S-palmitoylation

PLOS ONE | https://doi.org/10.1371/journal.pone.0299665 March 21, 2024 5 / 18

https://doi.org/10.1371/journal.pone.0299665.g002
https://doi.org/10.1371/journal.pone.0299665


importance of VHL binding for Halo-zDHHC-PAT degradation (Fig 3A). The NEDD8 acti-

vating enzyme (NAE) is an essential component of cullin-RING ubiquitin ligases and is there-

fore required for ubiquitination of proteins. Inhibition of NAE with MLN4924 (10 μM)

prevented Halo-zDHHC-PAT degradation by compound 1. Similarly, inhibition of the protea-

some with Mg-132 (5 μM) also prevented Halo-PROTAC induced degradation of Halo-

zDHHC-PATs (Fig 3B), but did not alter steady-state Halo-zDHHC-PAT expression in the

absence of PROTAC, suggesting the proteasome does not usually control the turnover of these

proteins.

We sought direct evidence for conjugation of ubiquitin chains to Halo-zDHHC20 in the

presence of compound 1. Cells were transfected with HA-ubiquitin, treated with compound 1

and Mg-132, and Halo-tagged proteins were immunoprecipitated and immunoblotted for

HA. HA-ubiquitin was incorporated into numerous cellular proteins (Fig 3C). Little-to-no

HA-ubiquitin was incorporated into zDHHC20 in the absence of Halo-PROTAC, but treat-

ment with compound 1 resulted in polyubiquitination of Halo-zDHHC20 (Fig 3C). Treatment

with both compound 1 and Mg-132 (5μM) significantly increased the amount of ubiquitinated

Halo-zDHHC20. Collectively these experiments support the concept that degradation Halo-

zDHHC20 in cells treated with compound 1 involves the recruitment of VHL, polyubiquitina-

tion and subsequent proteasomal degradation of Halo-zDHHC20.

Impact of Halo-zDHHC5 and Halo-zDHHC20 degradation on substrate

palmitoylation in Flp-In 293 T-REx cells

Having established conditions that generated robust degradation of Halo-zDHHC5, we evalu-

ated the impact of compound 1 on PLM palmitoylation. Palmitoylated proteins were prepared

using acyl-resin assisted capture (acyl-RAC) and samples immunoblotted for proteins of inter-

est and the constitutively palmitoylated lipid raft resident protein Flotillin-2 as an assay control

[40]. Fig 4A demonstrates a significant decrease in PLM palmitoylation upon degradation of

zDHHC5 (by 47±22% compared to vehicle treated cells). We conclude from these experiments

that targeted degradation of zDHHC5 is a viable strategy to decrease palmitoylation of its sub-

strate PLM.

To evaluate the impact of zDHHC20 degradation on substrate palmitoylation we first

assessed the palmitoylation status of IFITM3, a zDHHC20 substrate which is endogenously

expressed in Flp-In 293 T-REx cells [41]. Induction of Halo-zDHHC20 expression signifi-

cantly increased IFITM3 palmitoylation compared to cells in which Halo-zDHHC20 was not

induced (Fig 4B). Treatment with compound 1 significantly decreased IFITM3 palmitoylation

(by 50±12% compared to vehicle treated cells expressing Halo-zDHHC20).

The SARS-CoV-2 spike protein is palmitoylated by zDHHC20 at a cluster of 10 cytosolic cys-

teines just proximal to its integral membrane domain [19–21]. We transfected HA-tagged

SARS-CoV-2 spike into Halo-zDHHC20 expressing cells and evaluated the impact of degrading

Halo-zDHHC20 on spike protein palmitoylation (Fig 4C). The ~210kDa spike protein is

cleaved into multiple fragments by host proteases; we focussed on palmitoylation of an ~80kDa

cleavage product. Neither induction of Halo-zDHHC20 expression nor Halo-zDHHC20 degra-

dation altered SARS-CoV-2 spike protein palmitoylation in this experimental model.

Targeting Halo-zDHHC20 in Vero E6 zDHHC20 knockout cells

We reasoned that the presence of endogenous zDHHC20 in Flp-In 293 T-REx cells, which

would not be amenable to Halo-PROTAC degradation, may limit our ability to target SARS--

CoV-2 spike protein palmitoylation by degrading Halo-zDHHC20. We therefore generated a

cell line inducibly expressing Halo-zDHHC20 on a background of endogenous zDHHC20
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Fig 3. Halo-PROTAC mediated zDHHC-PAT degradation requires recruitment of VHL, elongation of ubiquitin

chains, and proteasome activity. A–An epimer of compound 1 which does not recruit VHL does not induce

degradation of Halo-zDHHC5 (left) or Halo-zDHHC20 (right). The bar charts show the expression of each Halo-

zDHHC-PAT relative to GAPDH. **: P<0.01, one-way ANOVA followed by Tukey’s multiple comparisons test. B–

Inhibition of the protease using Mg-132 (5μM) or inhibition of NEDD8 activating enzyme using MLN4924 (10μM)

prevent degradation of Halo-zDHHC5 (left) or Halo-zDHHC20 (right) by compound 1. **: P<0.01, one-way ANOVA

followed by Tukey’s multiple comparisons test. C–Immunoprecipitation experiments confirm the incorporation of

ubiquitin chains into Halo-zDHHC20 induced by treatment with compound 1. Flp-In 293 T-REx cells in which

zDHHC20 expression was induced or not with tetracycline (± Tet) were transfected with HA-ubiquitin and treated

with compound (1μM) alone or in combination with Mg-132 (5μM). Whole cell lysates (unfractionated),

immunoprecipitation fractions that did not bind the anti-Halo beads (unbound) and proteins immunoprecipitated by

the anti-Halo beads were immunoblotted as shown.

https://doi.org/10.1371/journal.pone.0299665.g003
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Fig 4. Halo-PROTAC mediated zDHHC-PAT degradation decreases substrate palmitoylation in Flp-In 293

T-REx cells. A–Palmitoylated proteins were purified from Flp-In 293 T-REx cells engineered to express tetracycline

(Tet) inducible Halo-zDHHC5 and phospholemman (PLM) after expression was induced or not with tetracycline (±
Tet). The Western blots show palmitoylated proteins (Palm) immunoblotted alongside corresponding unfractionated

cell lysates (UF). The bar chart (right) shows the relative palmitoylation of PLM. **: P<0.01, one-way ANOVA

followed by Tukey’s multiple comparisons test. B–Palmitoylated proteins were purified from Flp-In 293 T-REx cells

engineered to express tetracycline (Tet) inducible Halo-zDHHC20 after expression was induced or not with

tetracycline (± Tet). The Western blots show palmitoylated proteins (Palm) immunoblotted alongside corresponding

unfractionated cell lysates (UF). The bar chart (right) shows the relative palmitoylation of IFITM3. **: P<0.01, one-

way ANOVA followed by Tukey’s multiple comparisons test. C–Palmitoylated proteins were purified from Flp-In 293

T-REx cells engineered to express tetracycline (Tet) inducible Halo-zDHHC20 and transfected with HA-tagged

SARS-CoV2 spike. The Western blots show palmitoylated proteins (Palm) immunoblotted alongside corresponding

unfractionated cell lysates (UF). The bar chart (right) shows the palmitoylation of the SARS-CoV2 spike 80kDa

cleavage product relative to its abundance in the corresponding unfractionated cell lysate.

https://doi.org/10.1371/journal.pone.0299665.g004
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knockout. We selected Vero E6 cells for these experiments since these cells are validated for

SARS-CoV-2 replication assays and re-engineered a validated zDHHC20 knockout cell line

[19] to express Halo-zDHHC20.

Halo-zDHHC20 was predominantly localised in intracellular compartments in Vero E6

cells (Fig 5A). We achieved robust expression of Halo-zDHHC20 in this model, but we were

unable to degrade Halo-zDHHC20 with any Halo-PROTACs (Fig 5B). Given their efficacy in

FT-293 cells, we reasoned that the presence of a drug efflux mechanism in Vero E6 cells may

limit PROTAC efficacy. Co-application of verapamil (40 μM), a multi-drug resistance trans-

porter inhibitor [42], enhanced compound 1 efficacy compared to vehicle treated cells (Fig

5C) and we therefore co-applied compound 1 with verapamil in subsequent experiments.

In zDHHC20 knockout Vero E6 cells engineered to express tetracycline inducible Halo-

zDHHC20, induction of Halo-zDHHC20 expression did not increase palmitoylation of either

endogenous IFITM3 or HA tagged SARS-CoV-2 spike protein expressed via transient trans-

fection (Fig 5D). In keeping with this result, knockdown of Halo-zDHHC20 using compound

1 co-applied with verapamil did not reduce palmitoylation of either target (Fig 5D).

Comparison of PROTAC and nanobody-mediated zDHHC20 degradation

in Flp-In 293 T-REx cells

PROTAC-mediated degradation of a protein of interest is dependent on the recruitment of an

E3 ubiquitin ligase. In circumstances where target abundance significantly exceeds E3 ligase

abundance, or the synthesis rate of the target protein significantly exceeds the ubiquitination

capacity of the ligase, PROTACs mediated knockdown may be limited. Genetically encoded

nanobody-E3 ligase conjugates offer an alternative approach to target a protein of interest (for

example [43]). We investigated whether a nanobody-E3 ligase conjugate offered superior deg-

radation of zDHHC20 to a PROTAC. We engineered FT-293 cells to express tetracycline

inducible Halo-zDHHC20-YFP and compared degradation induced by compound 1 (1μM)

with degradation induced by transfecting cells with a fusion protein composed of an anti-GFP

nanobody (LaG-16 [44]) and the HECT domain of the E3 ubiquitin ligase NEDD4L (Fig 6).

PROTAC mediated knockdown was superior to nanobody mediated knockdown, and com-

bining a Halo-directed PROTAC with a GFP-directed nanobody fused to an E3 ligase did not

induce greater degradation of zDHHC20 than PROTAC alone.

Discussion

In this investigation, we set out to evaluate the tractability of integral membrane zDHHC-PAT

enzymes to PROTAC mediated degradation, and whether degrading this family of enzymes

was a viable approach to target palmitoylation of their substrates. We report that

zDHHC-PATs that are localised to both intracellular compartments and the cell surface mem-

brane can be successfully degraded using PROTACs. In some settings, zDHHC-PAT degrada-

tion leads to decreased substrate palmitoylation.

The successful targeting of PLM palmitoylation by zDHHC5 in this investigation is likely a

result of the relatively small number of zDHHC-PAT enzymes present at the cell surface mem-

brane, which means that another enzyme cannot substitute when zDHHC5 is degraded. This

contrasts with intracellular targets, where there is established promiscuity between enzyme /

substrate pairs. For example, zDHHCs 3 and 7 represent a ‘high capacity, low specificity’ pal-

mitoylation system within the secretory pathway [45], which may be a factor that limits any

strategy targeting palmitoylation of particular substrates. Along similar lines, although

zDHHC20 activity is a major determinant of the palmitoylation of the SARS-CoV-2 spike pro-

tein, other enzymes are also capable of palmitoylating this substrate [19, 21], which likely
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accounts for our failure to reduce spike protein palmitoylation when degrading Halo-

zDHHC20. In contrast, our results indicate that while zDHHC20 abundance is a determinant

of IFITM3 palmitoylation status in Flp-In 293 T-REx cells (accounting for us successfully tar-

geting IFITM3 palmitoylation by degrading Halo-zDHHC20), zDHHC20 abundance is not

rate limiting for IFITM3 palmitoylation in zDHHC20 knockout Vero E6 cells. Evidently,

zDHHC-PATs expressed in Vero E6 cells can fully palmitoylate IFITM3 even in the absence of

zDHHC20. Multiple zDHHC-PATs are capable of palmitoylating IFITM3 [41, 46]. The recent

description of cell-specific expression maps of palmitoylating and depalmitoylating enzymes

will clearly be an important tool to identify appropriate cellular models to evaluate the efficacy

of zDHHC-PAT inhibitors and degraders [47].

Fig 5. Targeting Halo-zDHHC20 in Vero E6 zDHHC20 knockout cells. A–Subcellular location of Halo-zDHHC20 visualised by staining cells with TAMRA-

chloroalkane either without (uninduced) or with (induced) gene induction using tetracycline. Scale bar: 10μm. B–Western blotting confirms successful induction of

Halo-zDHHC20 expression (left). Dose response relationship for Halo-PROTACs in Vero E6 zDHHC20 knockout cells expressing Halo-zDHHC20 (right). Cells were

treated with the indicated concentration of Halo-PROTAC for 18–24 hours and lysates immunoblotted as shown. V: vehicle (DMSO) control. The bar chart (right)

shows the expression of Halo-zDHHC20 relative to GAPDH. C–Impact of co-applying the multi-drug resistance transporter inhibitor verapamil (40μM) with

compound 1 (1μM) for either 24h or 48h on Halo-zDHHC20 abundance in Vero E6 zDHHC20 knockout cells. The bar chart (right) shows the expression of Halo-

zDHHC20 relative to GAPDH. *: P<0.05, **: P<0.01, one-way ANOVA followed by Tukey’s multiple comparisons test. D–Palmitoylated proteins were purified from

Vero E6 cells engineered to express tetracycline (Tet) inducible Halo-zDHHC20, transfected with HA-tagged SARS-CoV2 spike. The Western blots show palmitoylated

proteins (Palm) immunoblotted alongside corresponding unfractionated cell lysates (UF). The bar charts show the relative palmitoylation of the SARS-CoV2 spike

80kDa cleavage product and IFITM3.

https://doi.org/10.1371/journal.pone.0299665.g005
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The very different subcellular localisation of zDHHC20 in Flp-In 293 T-Rex and Vero E6

cells may also account for the different dependence of IFITM3 on zDHHC20 for palmitoyla-

tion in these models. In Flp-In 293 T-Rex cells zDHHC20 localises to both intracellular mem-

branes and the cell surface, whereas in Vero E6 cells it is predominantly intracellular. It is

noteworthy that a recently-described chemical genetics system to identify zDHHC20 sub-

strates identified numerous substrates that were only palmitoylated by zDHHC20 in one out

of three cell lines investigated [48]. The different subcellular localization of zDHHC20 in dif-

ferent cell types may account for this cell-specific substrate preference. We are aware of no

studies that have systematically evaluated subcellular localization of zDHHC-PATs in multiple

cell types. One investigation investigated zDHHC-PAT subcellular distribution solely in HEK

293T cells [49]. The clear difference between zDHHC20 distribution in two cell types of similar

origin identified in our investigation highlights the importance of evaluating the whole enzyme

family’s cellular location in more cell and tissue types in future investigations.

Fig 6. Comparison of nanobody and PROTAC mediated Halo-zDHHC20-YFP degradation in Flp-In 293 T-REx cells. Flp-

In 293 T-REx cells engineered to express Halo-zDHHC20-YFP were treated with compound 1 (1μM) and / or transfected with

the YFP-directed nanobody LAG-16 with the HECT Domain of NEDD4L fused at either its amino or carboxyl terminus. The bar

chart (right) shows the expression of Halo-zDHHC20-YFP relative to GAPDH. *: P<0.05, **: P<0.01, ***: P<0.001, ****:
P<0.0001, one-way ANOVA followed by Tukey’s multiple comparisons test.

https://doi.org/10.1371/journal.pone.0299665.g006
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All PROTACs we evaluated in this study successfully degraded Halo-zDHHC20 in HEK-

derived Flp-In 293 T-REx cells, but only VHL-directed PROTACs 1 and 3 were effective

against Halo-zDHHC5. Clearly then, cereblon-directed PROTACs such as compound 2 can

target integral membrane proteins for degradation in this cell type. The failure to target Halo-

zDHHC5 with compound 2 may, be related to suboptimal geometry between the target pro-

tein and the E3 ligase in the ternary complex (2 has a shorter linker between Halo and E3 ligase

ligands than compounds 1 and 3). Alternatively, it may be related to the subcellular location of

the target protein. The ubiquitin proteasome system is particularly active early in the secretory

pathway, where it functions in quality control of newly translated proteins [50, 51]. Intracellu-

lar integral membrane proteins such as a zDHHC20 may therefore be more amenable to tar-

geted degradation than their plasma membrane equivalents. That said, both cereblon and

VHL directed ligands have successfully been used to target plasma membrane resident pro-

teins [52–55].

In conclusion, we demonstrate the tractability of zDHHC-PATs to PROTAC-mediated

degradation. This significantly increases the intracellular surface area of this enzyme family

that could be targeted with small molecules to achieve isoform-specific inhibition. Investiga-

tions to identify isoform-specific ligands binding outside the conserved active site of this

enzyme family are now warranted.

Methods

Drugs

Verapamil and Mg-132 were obtained from Merck, MLN4924 was obtained from Cambridge

Bioscience. All drugs were dissolved in DMSO and applied to cells from a 1000-fold concen-

trated stock solution. Vehicle treated cells received DMSO only.

Antibodies

This investigation used antibodies raised to GAPDH (Merck clone GAPDH-71-1, 1:10000),

Halo (Promega G9281, 1:1000–1:5000), GFP (ProteinTech clone 3H9, 1:1000), IFITM3 (Pro-

teintech 11714-1-AP, 1:5000), PLM (Abcam ab76597, 1:1000), Flotillin 2 (BD Biosciences

610384, 1:2000), HA tag (Merck 11867423001, 1:5000), zDHHC5 (Merck, HPA014670, 1:1000).

Plasmids and molecular biology

Plasmids encoding murine zDHHC-PATs were generously provided by Professor Masaki

Fukata, National Institute for Physiological Sciences, Japan. The Halo tag cDNA was from Pro-

mega. Plasmids pcDNA5-FRT/TO and pLKO encoding Halo-zDHHC-PATs were generated

by InFusion cloning (Takara) of PCR products amplified using primers designed using the

Takara online primer design tool.

Cell culture and generation of stably expressing cell lines

Flp-In 293 T-REx cells were obtained from Thermo and cultured in DMEM supplemented

with 10% foetal bovine serum 15μg/ml blasticidin (Invivogen) and 100μg/ml zeocin (Invivo-

gen). Flp-In 293 T-REx lines stably expressing proteins of interest were generated by cotrans-

fecting cells with pcDNA 5 FRT/TO (encoding the gene of interest) and pOG44 using

GeneJuice (Merck) according to the manufacturer’s instructions. Stably transfected cells were

selected using 100μg/ml hygromycin (Invivogen).

Lentiviruses encoding Halo-zDHHC20 were generated by transfecting 293T cells with

pLKO-Halo-zDHHC20. zDHHC20 knockout Vero E6 cells (described in [19]) generously
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provided by Professor Gisou van der Goot (EPFL, Switzerland) were transduced with lentivi-

ruses and selected with 2mg/ml G418 (Thermo).

Expression of the genes of interest was achieved by treating cells with tetracycline (10μg/

ml) at the time they were seeded into plates.

Synthesis of Halo-PROTACs

Halo-PROTACs 1–3 and the hydroxyproline epimer control of 1 were prepared according to

standard protocols as described in Supporting Information (S1 File). All final compounds

were purified by reverse phase HPLC and their purity assessed by NMR (S2 File).

Preparation of cells lysates and western blotting

Cells were seeded in 12-well plates and treated with drugs (Halo-PROTACs, Mg-132, verapa-

mil, MLN4924) 24 hours after seeding. All drugs (or vehicle) were applied to cells for 18–24

hours. After treatment, cells were detached using a cell scraper and lysed with lysis buffer (1%

Triton X-100, 0.1% SDS, and 0.1% protease inhibitor cocktail (Merck 535140) in PBS) for

30min at 4˚C. Lysates were centrifuged at 17,500g for 5min at 4˚C, insoluble material was dis-

carded, and soluble fractions analysed using SDS PAGE and western blotting. After electro-

phoresis on 6–20% polyacrylamide gradient gels, proteins were transferred to PVDF

membranes, blocked with 5% non-fat milk in PBS-T for one hour and incubated with the pri-

mary antibody overnight. Secondary antibodies from Jackson Immunoresearch were applied

for 1 hour at room temperature, and membranes extensively washed before protein bands

were visualized using enhanced chemiluminescence using a LiCOR Odyssey FC.

Confocal microscopy

TAMRA chloroalkane (Promega, 2μM) was applied to cells in standard culture media on glass

coverslips for 15min at 37˚C. Cells were then washed with PBS, incubated in standard culture

media for 30min at 37˚C, then fixed and mounted on glass slides in mounting media supple-

mented with DAPI. Images were acquired using a Zeiss LSM880 confocal microscope with

excitation and emission filters set to 543nm and 599nm respectively for TAMRA and 405nm

and 459nm for DAPI.

Immunoprecipitation

Cells were seeded in 6-well plates and treated as required. After treatment, cells were lysed for

30min using PBS supplemented with 1% Triton X-100, 0.1% SDS, 0.5 mM EDTA, and 0.1%

protease inhibitor cocktail (Merck 535140). Lysates were centrifuged at 17,500g for 5min at

4˚C and insoluble material discarded. Halo tagged proteins were immunoprecipitated from

the solubilised cell lysate using Halo-Trap magnetic agarose (ProteinTech) and beads washed

extensively with PBS supplemented with 1% Triton X-100, 0.5 mM EDTA, and 0.1% protease

inhibitor cocktail.

Palmitoylation assays

Palmitoylated proteins were purified using resin-assisted capture (acyl-RAC) [56]. Cells were

lysed in 2.5% SDS, 1% MMTS, 1mM EDTA, 100mM HEPES, pH7.5. Lysates were agitated for

4 hours at 40˚C during which time MMTS alkylated free cysteines in proteins. Excess

unreacted MMTS was removed by precipitating proteins using 3 volumes of cold acetone,

incubating samples at -20˚C for 20min, and recovering protein pellets by centrifuging at

17,500g for 5min. Protein pellets were extensively washed with 70% acetone, dried, and
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resolubilised in 1% SDS, 1mM EDTA, 100mM HEPES, pH7.5. A sample representing the

whole cell lysate (‘unfractionated’) was taken at this point. Palmitoylated proteins were cap-

tured by agitating resolubilised proteins for 2.5 hours with thiopropyl Sepharose (Cytiva) in

the presence of 250mM neutral hydroxylamine to cleave thioester bonds and reveal previously

palmitoylated cysteines. Following capture of palmitoylated proteins, Sepharose resin was

washed extensively with 1% SDS, 1mM EDTA, 100mM HEPES, pH7.5 and proteins eluted

using Laemmli buffer supplemented with 100mM DTT.

Statistical analysis

Uncropped Western blot and gel images are provided in S1 Raw images. All Western blot data

were quantified using Image Studio Lite Ver 5.2. Protein abundance in whole cell lysates was

normalised to the abundance of GAPDH. For genomically-expressed palmitoylated proteins

(PLM, IFITM3) the amount captured in the acyl-RAC assay was normalised to amount of the

palmitoylated housekeeping protein Flotillin 2 captured. For transfected proteins (e.g. SARS--

CoV-2 spike protein, where expression sometimes varied from well to well) the amount cap-

tured in the acyl-RAC assay was normalised to expression. Expression / palmitoylation values

for individual samples within an experiment were normalised to the mean value for all samples

in that experiment. Replicate experiments were analysed using GraphPad Prism. P values were

calculated using one-way ANOVA followed by appropriate post-hoc tests.

Supporting information

S1 Raw images. Uncropped blot & gel images.

(PDF)

S1 File. General chemistry experimental details. Synthesis and evaluation of Halo-PRO-

TACs.

(DOCX)

S2 File. NMR analyses of compounds 1–4 used in this investigation.

(DOCX)
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