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Abstract 

 
Cleft lip (CL) is a common congenital facial anomaly that affects several individuals 

worldwide and is treated through a surgical procedure. The appearance outcome 

following the procedure is normally qualitatively assessed by human experts. 

However, human experts are naturally constrained with fatigue, potential bias, 

replicability weaknesses, and inconsistencies. Presence of large datasets presents 

further challenges to human qualitative assessment.  

This study aims to develop and validate novel computational techniques that can 

automatically, objectively, and quantitatively assess the CL treatment outcome. 

Consequently, the study assesses the effectiveness of CL treatment using 

computational techniques. Using digital imagery, this study has led to the development 

and validation of some computational techniques to aid with automatic, objective, and 

quantitative assessment CL treatment outcome.  

The first approach investigated the appearance and shape of the mouth lips as a 

region of interest for analysis. The bisector of the line connecting the mouth corners 

was estimated as the vertical symmetric axis of the mouth borderline. By splitting the 

mouth blob into two parts, the two parts were analysed for structural similarity. 

Consequently, a numeric score ranging from 1 to 5 was generated and validated using 

Pearson correlation coefficient against human-assigned numeric scores. 

Secondly, a novel technique for adaptive detection of the symmetric axis of the 

cropped facial images of patients after CL treatment was developed. A Gaussian filter 

was applied to smoothen the images to compress potential noise on the subsequent 

tasks. Segmentation using a bilateral semantic network was applied to detect the facial 

components in each region of interest in the facial image. Applying the previous 

approach led to improved validation metrics using Pearson’s correlation coefficient. 

The final approach explored transfer learning using CNNs in a regression analysis 

study. An investigation was completed for the impact of transfer learning on regression 

scoring and assessed its potential in overcoming dataset limitation challenges. 

Through extensive experimentation and evaluation on diverse regression scoring 

combinations, different numeric assessment prediction results were generated. It was 

demonstrated that appearance assessment through CNN transfer learning is 

significantly competitive and better than human expert assessment and scoring. 

Competitive metrics using RMSE, MAE, and Pearson correlation were generated. 

Overall, this thesis presents a comprehensive computational approach for automatic 

appearance assessment estimation of CL treatment using digital imagery. It offers 

insights into the potential of advanced computational techniques, such as shape 

analysis and deep learning, to provide accurate and objective assessments. The 

findings contribute to the field of CL treatment evaluation and pave the way for further 

advancements in automated appearance assessment methodologies. 
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Chapter 1 Introduction 
 

 

1.1 Overview 
There is a catchy phrase in the Physical Science and Technology Manual which states 

that: “image processing and analysis often require fixed sequences of local operations 

to be performed at each pixel of an image”. Relatedly, digital image processing is the 

manipulation of images with digital computers using different processing techniques 

at each stage of the processing pipeline (Pratt, 1994, Gonzalez and Woods, 2008). 

Different digital image processing techniques may output unique analysis results.   

Digital image analysis can be applied to different domains (Girod, 2015). Some 

dominating fields include traffic flow monitoring/transportation, industrial monitoring, 

earth observation/satellite technology, security systems design/ monitoring and 

medical technology (Shih, 2017; Girod, 2015). In traffic and transportation, image 

analysis influences the development of intelligent transport systems and informs the 

planning and development of safety-aware physical infrastructure. The scene's 

complexity greatly influences image and video analysis in transportation and traffic 

management, hence the need to identify all the objects, such as traffic flow at a road 

junction. Different image representation colour models and segmentation techniques 

positively influence multiple object identification (Buch, Velastin and Orwell, 2011, Lira 

et al., 2016). Monitoring driver behaviour has improved road and traffic safety by 

influencing better car designs (Behera et al., 2020, Wharton et al., 2021). In security 

systems, automatic analysis of security footage eliminates bias (Chen, Surette and 

Shah, 2020). Altogether, considering the processing load born by security cameras, 

analysis of their performance is important to ensure the reliability of the captured 

footage (Chen, 2005). Similarly, the automation of appearance analysis and 

assessment is a primary outcome of this research study. Consequently, performance 

analysis of automatic appearance analysis and assessment should be monitored 

using some conventional evaluation metrics.  

This has immensely contributed to the advancement of computer vision techniques to 

efficiently analyse all the forms of digital images through a processing pipeline 

summarised in Figure 1.1. Since digital images are potentially useful sources of 

evidence and heritage preservation, their acquisition techniques and storage 
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mechanisms are fundamental to quality preservation and quantitative analysis 

(Gonzalez and Woods, 2008).  

As indicated in Figure 1.1, image acquisition and storage are vital steps towards 

generating (medical) image datasets, both in controlled environments and in the wild.  

 

Figure 1. 1: Image processing pipeline - adopted from (Girod, 2015), contains all the fundamental 

image processing operations required in typical computer vision model. 

In medical technology, for instance, image analysis techniques are applied to modern 

ways of healthcare delivery (Bankhead et al., 2017, Ker et al., 2017). Specifically, 

outcomes such as precision with surgical procedures, improved surgical operations 

that lead to faster recovery and diagnostic advisory for internal organ failure among 

others have emerged. Overall, a summary of cutting-edge research on machine 

learning applications in medical digital image analysis has been presented by (El-Baz, 

Gimel’Farb and Suzuki, 2017). The prevalent computed tomography (CT) scanner 

generates images of profound interest to medical practitioners and researchers alike 

to aid the development of computer vision applications and advance diagnostic 

research studies.  

Images captured from the same scene, by the same device, may have different 

interpretations by different people. These possibilities arise from both experts and non-

trained audiences. Three leading reasons potentially explain these inconsistencies 

(Aeffner et al., 2017):  

1. Human beings are better at qualitative assessment, yet images are better 

interpreted quantitatively. 

2. An individual’s mental state, background and knowledge influences their 

interpretation of any image. 
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3. Visual impairment and cognitive exhaustion could lead to biased interpretation. 

Therefore, misinterpretations of a given scene, as may be portrayed in a medical 

image such as the visual outcome of a cleft lip (CL) treatment, could have adverse 

implications on patients’ well-being. Consequently, it is important to employ unbiased 

techniques for image analysis studies (Xu et al., 2014, Joskowicz, 2017).   

Research advancement in image analysis techniques has contributed to introducing 

medical imaging and analysis systems. The existing medical image processing 

systems and applications such as CT scanning, X-rays, ultrasound and nuclear 

medicine manufacturing have revolutionised computational and mathematical 

research in medicine (Drahansky et al., 2016, El-Baz, Gimel’Farb and Suzuki, 2017, 

Litjens et al., 2017). Furthermore, increased accessibility to relevant (big) datasets has 

contributed to the development and validation of machine learning algorithms, leading 

to improved medical-based applications with better performance (Tajbakhsh et al., 

2016, Razzak, Naz and Zaib, 2018). Solutions based on deep neural networks have 

successfully diagnosed the following illnesses and/or conditions using image analysis 

and classification: diabetic retinopathy,  histological and microscopical elements 

detection, gastrointestinal (GI) diseases, tumour, and cardiac illnesses, among others 

(Razzak, Naz and Zaib, 2018). Large medical datasets are often required to develop 

and validate diagnostic and/or treatment computational models (Oakden-Rayner, 

2020). In some cases, fine-tuning and adapting existing computational models leads 

to more effective performance outcomes and innovations. Likewise, innovations 

through research studies can be spurred by knowledge and adaptation of existing 

management frameworks. Furthermore, computerisation and optimisation of such 

frameworks often leads to better solutions (Oh, Yang and Yi, 2015). 

The current treatment and management framework for cleft lip can be summarised in 

the workflow in Figure 1.2, while Figure 1.3 shows the meaning of the symbols used. 

Figure 1.2 comprises several decision-making steps and processes. 
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Figure 1. 2: Treatment and Management Workflow for cleft lip from prenatal stage to at least six 

months. 
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Figure 1. 3: Meaning of symbols used in flow chart design. 

 

The steps in Figure 1.2 are subsequently explained below:  

1. Prenatal Counselling and Support 

In many contexts, ultrasound scanning of pregnant mothers is a common practice. 

This is intended to determine the structural growth of the foetus. This may reveal 

details of the foetus’s facial structures, among other discoveries (Bäumler et al., 2011). 

The prenatal diagnosis of cleft lip may allow early counselling and support to expectant 

parents. Genetic analysis and prenatal counsellors play a vital role in this exercise.  

Providing accurate information about cleft lip, treatment options, and potential 

challenges helps parents prepare emotionally and make informed decisions (Costa et 

al., 2023). Genetic counselling may be offered to discuss the potential causes and 

recurrence risks in future pregnancies (Bronshtein, Blumenfeld and Blumenfeld, 

1996). 

2. Treatment through a Multidisciplinary Team Approach 

A multidisciplinary team of specialists, such as paediatricians, plastic and maxilla-facial 

surgeons, nurses, speech therapists, audiologists, ENT specialists, Orthodontists, 

Psychologists and social workers, collaborates to provide comprehensive care 

(Frederick et al., 2022). The team develops an individualised treatment plan based on 

the severity and specific needs of the cleft lip condition. 
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In many cases, feeding can be challenging for infants with cleft lip due to difficulty 

creating a seal and proper suction. Special feeding techniques, such as using 

specialised bottles and nipples or utilising alternative feeding methods like nasogastric 

or orogastric tube feeding, may be recommended. The involvement of a feeding 

specialist or lactation consultant can be beneficial in assisting parents in managing 

feeding difficulties (Khanchezar et al., 2019). 

After birth, lip taping is decisive for successful future stages of cleft lip treatment and 

should be performed upon diagnosis, within three months from birth.  

3. Surgical Repair 

A baby’s organs and features are grown enough to safely endure a surgical procedure 

between three and six months. Therefore, surgical cleft lip repair is typically performed 

around 3 to 6 months of age, depending on the infant's overall health and growth 

(Shaye, Liu and Tollefson, 2015). Besides, patients have a high chance of full recovery 

and better appearance outcomes over time after surgery. 

Plastic surgeons with expertise in cleft lip repair perform the surgical procedure, which 

involves correcting the separation of the mouth lip tissues and creating a more natural 

appearance (Sischo et al., 2016). The surgical technique employed may vary 

depending on the individual case, the surgeon's preference, and the operations’ 

protocols or guidelines. 

4. Post-Surgical Care and Monitoring 

After cleft repair, care and monitoring involve attending to the needs of the patients, 

and assessing, or rating the treatment outcome. Therefore, close monitoring and 

follow-up care are essential to ensure proper healing and address any complications 

or concerns. These possibly influence the decisions on any potential future surgical 

repairs (Taib et al., 2015, Burg et al., 2016). 

Regular appointments with the surgical team allow for the evaluation of surgical 

outcomes, management of any issues related to scarring, feeding difficulties, or 

speech development, and adjustment of the treatment plan as needed. In some cleft 

care centres, an imaging unit may be available to collect and store pre- and post-

treatment visuals (in a database), to aid research studies (CLAPA, 2022). 
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5. Qualitative Assessment Framework  

After surgical treatment, an appearance assessment is required to determine the 

efficacy of the procedure. Expert assessment is manually conducted through 

anthropometric measurements or visual assessment of facial images. In some cases, 

web-based semi-automatic approaches are used, (Bella et al., 2016). Therefore, 

preprocessing images into understandable content is desired, implying that the visuals 

should reside in a database to enable dynamic access by the assessors. Additionally, 

for safe and secure storage. 

1.2 Background and Context 

There has been great transformation of surgical and clinical practices by developing 

innovative medical technologies and imaging systems. Medical imaging systems have 

facilitated the acquisition and development of (large) image datasets. These datasets 

can be used to pre-plan surgical procedures, analyse surgical outcomes, and improve 

patient treatment, care, and well-being. If researchers are equipped with such 

resources, image analysis techniques can further improve surgical or clinical planning 

practices, progress monitoring of procedures, and evaluation of outcomes following 

surgical interventions (Zhou et al., 2021). 

Analysis of pre-surgical or post-surgical images involves using computer algorithms to 

analyse, process and interpret medical images to extract clinically relevant 

information. Image analysis techniques can be used to improve the accuracy and 

efficiency of surgical procedures, reduce the risk of complications, and enhance 

patient outcomes (Hashimoto et al., 2018). Advanced computer algorithms can be 

designed to detect growths, segment body organs, and classify tissue types in medical 

images. Computer algorithms can also be used to analyse surgical videos and extract 

features indicative of surgical outcomes, such as incision repair, tissue damage repair, 

congenital malformation repair, and surgical duration (Ali et al., 2022). 

One of the most renowned conditions with high economic and social importance is the 

cleft lip (CL). The Center for Disease Control and Prevention1 explains that "A cleft lip 

happens if the tissue that makes up the mouth lip does not join completely before birth. 

This results in an opening in the upper mouth lip. The opening in the mouth lip can be 

 
1 https://www.cdc.gov/ncbddd/birthdefects/cleftlip.html 
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a small slit or a large opening that goes through the lip into the nose”. CL is a common 

congenital deformity that affects approximately 1 in 700 live births worldwide (Zhang 

et al., 2019). The three potential biological conditions summarised below attempt to 

explain the genesis of the CL condition and sometimes the cleft palate (CP) condition. 

1. During embryogenesis, the development of the face involves the fusion of 

multiple facial processes. The primary palate, formed by the fusion of the medial 

nasal processes, contributes to the lip and the anterior part of the palate. The 

maxillary processes on either side of the primary palate fuse with the medial 

nasal processes to complete the formation of the upper lip. Failure of these 

processes to fuse completely results in a right or left or bilateral cleft lip. (Cash, 

2012). 

2. Though not fully understood, the exact cause of CL is credited to a classical 

combination of genetic and environmental factors. Genetic studies have 

identified several genes that play a role in the development of the face and lip, 

including the IRF6, MSX1, and BMP4 genes. However, the inheritance pattern 

is often complex, involving genetic and environmental interactions. Some socio-

environmental factors can also contribute to the formation of the CL condition. 

These are maternal smoking, alcohol consumption, certain medications, 

maternal infections during pregnancy (such as rubella), and exposure to 

environmental toxins (Katsaros, 2013). 

3. The molecular and cellular mechanisms underlying CL involve disruptions in 

the signalling pathways and cellular processes that regulate facial 

development. These include processes such as cell migration, proliferation, 

adhesion, and apoptosis. Imbalances in key signalling molecules, such as 

transforming growth factor-beta (TGF-β) and fibroblast growth factors (FGFs), 

can lead to defective fusion of the facial processes, resulting in cleft lip 

formation (Owens, Jones and Harris, 1985, Jiang, Bush and Lidral, 2006, 

Jamilian et al., 2017). 

Surgical intervention (s) is/are typically required to restore normal mouth lip structure 

and function. Hence, assessing the outcome of a CL surgical repair is a revered 

research topic, both in the medical and computing domains (Medina et al., 2017). 
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While traditional assessment methods such as visual evaluation (qualitatively) and 

physical measurements (semi-quantitative) provide valuable information on cleft lip 

repair outcomes, there is a need for more objective and quantitative methods to 

assess treatment efficacy (Stein et al., 2019). Computational techniques, such as 

2D/3D imaging and analysis, computer vision, and machine learning, offer new ways 

to objectively evaluate CL repair outcomes and identify areas for improvement. 

Imaging frameworks (2D/3D) and analysis have emerged as valuable tools for 

assessing the outcomes of CL repair surgeries. By capturing high-resolution images 

of the mouth lip and surrounding structures, surgeons, carers, and researchers can 

analyse the results of surgical interventions in a more comprehensive and quantitative 

manner. Computer vision techniques, such as image segmentation and feature 

extraction, can be applied to these images to identify subtle differences in lip structure 

and potential symmetry or similarity or correctness which are important indicators of 

treatment efficacy (Huqh et al., 2022, Jeong et al., 2022). On the contrary, researchers 

and clinicians are interested in understanding the quantitative differences leading to 

asymmetry, incorrectness or dissimilarity of the mouth lips following treatment.   

Computational approaches inclined to machine learning algorithms have also shown 

promise in assessing cleft lip treatment outcomes. By training on available datasets of 

cleft lip images and patient records (such as qualitative evaluation of treatment 

outcome), machine learning models can learn to accurately predict treatment 

outcomes and identify areas for improvement. These models can also extract new 

features and parameters from CL images that may be difficult to measure using 

traditional assessment methods (Bella et al., 2016). For example, machine learning 

models can be used to analyse the texture and colour of the mouth lips, which can 

provide important information on the healing process and surgical treatment 

effectiveness (Chowdhury et al., 2022). Semantic analysis of CL treatment outcome 

images coupled with transfer learning techniques can be exploited for the development 

of quantitative assessment methods.  

Therefore, as stated before, the development and validation of computational methods 

for assessing CL repair appearance outcomes is an active research area. In addition, 

using computational techniques has led to identifying new research questions and 

areas for improvement in CL treatment (Knoops et al., 2019). The use of computational 
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approaches for assessing CL surgical treatment outcomes has the potential to 

significantly improve the accuracy and objectivity of CL assessment. By developing 

and validating new computational techniques, surgeons, carers, and researchers can 

identify areas for improvement in CL treatment and ultimately improve outcomes for 

patients with this congenital deformity. 

The care and treatment of CL patients requires a multi-disciplinary team. The 

communication between the different members of the care team should be simplified 

and precise. Using computational approaches in CL repair appearance outcome 

assessment has potential to improve and simplify the communication arrangements 

through visualisation. Visualisation is highly effective with provision and presentation 

of complete vision of a situation, by presenting assessment estimations in a more 

rational and understandable manner (Wang, Li, et al., 2020) 

1.2.1 Social-economic Considerations of Maxillofacial Anomalies  

Congenital malformations such as cleft lip and/or cleft palate conditions have 

significant economic importance due to their impact on healthcare systems, individual 

and family expenditures, and overall societal costs (Galloway, Davies and Mossey, 

2017, Thompson et al., 2017, Salari et al., 2022). The economic implications are 

multifaceted and encompass various aspects of life, both in the developed and least 

developed contexts: 

1. Prevalence  

Different countries have contrasting prevalence of cleft lip conditions in their 

populations, but the different prevalence is between the ethnicities represented in 

those countries rather than any other factor. However, the condition is most prevalent 

among Chinese Asians, then Caucasians and Indo-Aryan peoples equally and least 

prevalent among blacks (Bloomfield and Liao, 2015, Salari et al., 2022). In the United 

Kingdom, 1 in every 600-700 live births is born annually with a Cleft lip and/or palate 

(Cleft Registry and Audit NEtwork, 2020). The CRANE database indicates that the 

conditions affect more boys than girls The distribution of the different maxillofacial 

conditions is presented in Figure 1.4, adapted from (CRANE, 2021) 
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Figure 1. 4: Prevalence of different maxillofacial conditions according to the CRANE database in the 

UK. (CRANE, 2021) 

 

2. Healthcare Costs 

These maxillofacial malformations require comprehensive medical treatment, 

including surgeries, dental care, orthodontics, and speech therapy. These treatments 

can involve multiple surgeries over several years, leading to substantial healthcare 

expenses for families and healthcare systems. Because these are high-risk conditions, 

medical interventions such as specialist consultations and follow-up care contribute to 

the economic burden. Direct medical costs vary in the range of £5,000 and £15,000 

per procedure, depending on one’s location in the western world, (Galloway, Davies 

and Mossey, 2017).  

3. Reduced Productivity and Income Loss 

Individuals born with cleft lip and/or palate often face challenges in speech 

development, hearing, and dental health. These issues can affect educational 

attainment and employment opportunities, leading to reduced productivity and 

potential income loss over their lifetime (Baigorri et al., 2021). Additionally, caregivers, 

often parents or guardians, may need to take time off work to care for their children 

during treatment and recovery, further impacting family income. The study by (Baigorri 

et al., 2021) indicates frequent transport costs incurred by families of people affected 

by cleft related challenges to access speech therapy services far away from their 

locations. This further impacts on their economic plight. 

Additionally, there may be increased number of general anaesthetics in the first 3 years 

of life or more hospital appointments for surgeries during the age of between 5 and 13 

years (Grewal et al., 2021).  This directly impacts on how much education level they 

may attain, potentially exposing them to low paying jobs.  
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4. Rehabilitation and Psychosocial Support Services 

Cleft-affected individuals may require ongoing rehabilitation and support services, 

such as speech therapy and psychological counselling. These services contribute to 

both direct and indirect costs, as they require financial resources and time 

commitments. Additionally, affected individuals may experience psychological and 

social challenges, including self-esteem issues, bullying, and stigmatization. 

Addressing these emotional and social aspects often involves interventions that carry 

economic implications (Emeka et al., 2017, Garcia-Marin, 2021). 

5. Research and Development 

Research aimed at improving surgical techniques, treatment outcomes, and 

interventions for cleft lip and palate contributes to economic investment in the 

healthcare and medical research sectors. This increases the potential for better 

wellbeing of cleft-affected people and fosters collaborations, locally and globally 

(Zhang et al., 2019, Kassam et al., 2020, Sommer et al., 2023). 

6. Institutional Support 

Governments and public health systems such as the National Health Service (NHS2), 

may need to allocate resources to provide subsidised or free healthcare services for 

cleft-affected individuals, especially in regions with limited access to healthcare or 

financial resources. Additionally, Non-Government Organisations and charitable 

organisations3,4 play a significant role in supporting individuals with maxillofacial 

conditions by providing medical rescue missions, subsidised surgeries, and 

rehabilitation services (CRANE, 2021).  

 

1.3 Problem Statement  

The surgical repair of a CL is a complex and challenging procedure that requires 

careful planning and execution to achieve optimal outcomes. The success of cleft lip 

repair is typically assessed by subjective visual evaluation, which can be influenced 

 
2 https://digital.nhs.uk/data-and-information/publications/statistical/compendium-public-

health/current/chromosomal-abormalities-congential-malformations/incidence-of-cleft-palate-and-or-
cleft-lip-crude-rate-at-birth-annual-p 
3 https://www.cleft.org.uk/ 
4 https://www.clapa.com/ 
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by individual experience, bias, and disposition (Schwirtz et al., 2018, Mulder et al., 

2019).  

Objective and quantitative assessment of cleft lip repair outcomes is crucial, for not 

only improving treatment outcomes and patient satisfaction, but also alert carers that 

protocols should be adhered to. Computational techniques, such as 2D/3D imaging, 

machine learning, and computer-aided simulations, have the potential to provide 

accurate and objective measurements of CL repair outcomes. However, developing 

and standardising these techniques for clinical practice is still in its early stages 

(Mosmuller, Mennes, et al., 2017a).  

Therefore, there is a need for further research to evaluate the effectiveness and 

feasibility of existing assessment techniques for CL repair. For this reason, the greater 

need is the eventual development and validation of computational techniques, to aid 

objective and quantitative appearance assessment of CL repair outcome (Bozkurt and 

Aras, 2021). Such standardised protocols for the computational-based assessment 

cycle could be used objectively in clinical practice.  

In summary, there is need for an objective and quantitative analysis and assessment 

pipeline of CL surgical treatment appearance outcomes with a possibility of improving 

patient satisfaction and treatment efficacy. Computational methods have promising 

potential to generate accurate, reliable, and reproducible results. 

1.4 Research Goal 

The study is designed to assess the effectiveness of CL treatment using computational 

techniques. The methodology involves using medical images of patients who had 

undergone CL surgery at 5 years old. Partial facial visual data is analysed and used 

to objectively assess surgical treatment outcome appearance using various 

computational techniques. 

This research study uses the scientific method design to examine the relationship 

between CL treatment outcomes of a specific demographic while considering several 

clinical factors and attributes. In a scientific way, experimentation (such as algorithmic 

investigation and analysis), testing and observations take center stage before 

communicating outcomes (Kothari, 2004, Jennings, 2007, Chan et al., 2020). In this 
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study, the dataset consists of facial images taken after CL repair, of 5-year-old patients, 

from a collection of the Cleft Care UK (CCUK). 

 

Figure 1. 5: Abstract representation of the research goal/direction. A dataset of visuals is set to be 

automatically evaluated into a regression result of 1, 2, 3, 4 or 5. 

 

An image is selected from a database to predict a score in the range of 1 to 5 where 

1 is ‘Excellent’, 2 is ‘Very good’, 3 is ‘Fair’, 4 is ‘Poor’ while 5 is ‘Very poor’.  The 

abstract representation of the automated process is given in Figure 1.5. Moreover, if 

this could become a continuous range score then it would empower research 

methodologies for using the score to discern differences in surgical techniques, 

protocols, surgeons, and Units.  

1.5 Aim and Objectives 

This study aims to develop and validate novel computational techniques that can 

automatically, objectively, and quantitatively assess the CL treatment outcome. The 

objective is to minimise human involvement throughout an assessment pipeline. The 

following objectives are applied accordingly.  

1. To gain critical insights into the treatment ecosystem of cleft lip and review the 

assessment methods of CL treatment outcomes.  

2. To identify features that influence the design of computational techniques. 

3. To develop computational models that quantify the assessment of visual 

outcomes following CL treatment. 



15 

 

4. To test and validate the accuracy and effectiveness of the different developed 

computational techniques. 

5. To compare the results of computational assessments to traditional clinical 

assessments of CL treatment outcomes, by identifying areas of agreement and 

disagreement. 

1.6 Research Questions 

Main Research Questions 

1. Given a facial visual outcome following CL surgical treatment, in the form of a 

2D photographic image, what is the possibility of designing models with 

automatic assessment capability?  

2. Are the models capable of presenting quantitative and reproducible 

assessments of the facial visuals?  

Sub-questions 

1. What parameters are considered for the design of computational techniques 

associated with facial visuals?  

2. Given the right parameters (from sub-question 1 above), what are the model 

considerations or limitations that influence accuracy and computational 

efficiency? 

3. How does the accuracy of the different computational techniques compare 

regarding the assessment of CL treatment outcomes?  

4. What issues affect the accuracy of computational techniques in assessing CL 

treatment visual outcomes? 

5. How can the issues (in sub-question 4 above) be mitigated or engineered to 

improve the modelling process?  

6. What is the comparative benefit of computational assessments techniques over 

traditional clinical assessment techniques?  

1.7 Significance and Rationale 

The socio-economic importance of CL has been underscored in several studies 

(Hackenberg et al., 2015, Emeka et al., 2017). CL condition is costly to treat and care 
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for and a source of stigma to many patients and their parents or guardians in their 

communities (Crerand et al., 2020). Appearance assessment of CL treatment 

outcomes holds significant importance in the field of maxillofacial surgery and 

computer science. The current image assessment methods are lengthy to perform, 

require many human scorers and have poor inter-rater reliability due to subjectivity 

and bias. In addition, they are practically ineffective for audit of treatment success and 

are now only used in large research studies around the world. (Sharma et al.2012). 

By leveraging imagery availability and machine learning techniques, computational 

methods offer great promise to enhance CL treatment outcome assessment's 

accuracy, efficiency, and objectivity.  

This research study offers the hope of finding an automatic, objective, fast and reliable 

method of assessing post operative CL facial images and assigning an outcome score 

for the success of the appearance. This would be a valuable contribution to influence 

clinical practice and patient care. Furthermore, this study significantly contributes to 

the medical and computer science research domains. The following reasons explain 

why this research study is of significant interest: 

1. Objective Evaluation: Traditional methods for appearance assessment of CL 

treatment outcome often rely on subjective visual evaluation by care teams, 

which can introduce variability and subjectivity (Mosmuller et al., 2013, 

Mosmuller, Mennes, et al., 2017b). Computational techniques, on the other 

hand, exhibit potential to offer objective, reproducible, and standardised 

measurements. These methods provide more reliable and reproducible 

assessment metrics by quantifying key parameters such as lip shape, 

symmetry, and nasal appearances, and hidden or semantic features (Roy, 

Yamasaki and Hashimoto, 2018, Talebi and Milanfar, 2018). 

2. Research Advancements: The integration of computational techniques in CL 

treatment outcome assessment opens new avenues for research and 

innovation. Researchers can explore novel image analysis algorithms and 

develop automated assessment tools (Xu et al., 2021).  In some cases, design 

of diagnostic tools and treatment planning, can be used to investigate the long-

term effects of different surgical techniques. These advancements contribute to 

the overall knowledge base in the field and steer continuous improvements in 

patient care. 
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3. Additionally, computational techniques have the potential to facilitate early 

intervention and prediction of treatment outcomes. Machine learning algorithms 

can analyse datasets of CL cases to identify patterns and factors that influence 

treatment success (Hassaballah et al., 2019). This information can be used to 

develop predictive models that help carers to make informed decisions and 

improve long-term treatment planning. 

4. Research studies on assessment of CL treatment outcomes bring numerous 

benefits such as provision of objective evaluation metrics, fostering research 

advancements and enabling early interventions and outcome predictions. 

Specifically, by leveraging computational techniques, carers and researchers 

are equipped with the potential to make significant strides towards optimisation 

of CL repair procedures, practices, and outcomes. This creates a hopeful 

window for understanding the relevant factors and improving the overall well-

being of affected individuals (Leopoldo-Rodado et al., 2021). 

1.8 Outline of Research Contributions 

This research study has developed the understanding and application of 

computational techniques in evaluating the appearance of CL treatment outcomes. 

The key research contributions of this multidisciplinary PhD research study are 

outlined below: 

1.  Development of Novel Computational Assessment Framework 

This study developed a novel computational assessment framework tailored for CL 

treatment. By integrating advanced image processing technologies, machine learning 

techniques, and computer-aided and mathematical models, a comprehensive 

framework has been established to evaluate the outcomes of CL surgical repair 

automatically and objectively. This framework incorporates both quantitative and 

qualitative assessment measures, providing a more accurate and holistic evaluation 

of treatment outcomes. 

2. Application of Machine Learning and Deep Learning Techniques 

One of the major contributions of this research is the innovative application of state-

of-the-art machine learning and deep learning techniques in the analysis of CL 

treatment outcomes for appearance assessment. By training and deploying classical 
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models on the given datasets of post-operative images, the study has demonstrated 

the potential of machine learning algorithms to fully automate the assessment process 

and improve accuracy. Potential for more accurate results is vindicated for transfer 

learning approaches. Precisely, this research has developed a reliable appearance 

assessment pipeline for CL post-treatment partial facial visuals. 

3. Improvement in Cleft Lip Treatment Evaluation 

The computational assessment framework developed in this study has made 

significant improvements in the estimated appearance assessment of cleft lip 

treatment outcomes. Refinements in the research could yet add valuable insights into 

the factors influencing surgical success, such as lip symmetry, scar formation, and 

overall appearance outcomes. These findings, some published, and others currently 

under review, contribute to the development of evidence-based guidelines and will give 

a sound scientific basis to surgeons in choosing and optimising treatment strategies 

to achieve improved CL surgical treatment outcomes. 

4. Linking Traditional and Computational Approaches 

This study successfully bridged the gap between traditional manual assessment 

methods and computational CL treatment outcome evaluation techniques. A more 

comprehensive and objective assessment approach has been established by 

combining clinical expertise with computational tools. This integration can enhance the 

accuracy, efficiency, and consistency of CL treatment outcome assessment, enabling 

a more standardised and reliable evaluation.  

5. Contribution to Literature to aid Future Research Directions 

This research has identified several gaps in the existing literature and highlighted 

areas requiring further investigation. The study has shed light on the need for more 

robust and diverse datasets, advanced imaging technologies, and standardised 

evaluation metrics used in computational assessment of CL treatment. Based on these 

findings, future research directions could explore multi-modal data fusion techniques, 

integrating 3D imaging technologies. Additionally, there is need for addressing specific 

challenges related to scar prediction, soft tissue generalisation and long-term 

treatment outcomes for generic maxillofacial treatment outcome.  
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6. Design of Mathematical Models for Regression of SSIM into Scores 

This study demonstrated the possibility of converting a quantifiable measure such as 

the known structural similarity index into a regression outcome as an appearance 

score. Therefore, other quantifiable attributes can be experimented using the 

developed models. Our scientific understanding of the attributes of partial facial 

appearance were modelled in six different equations (equations 7-9 and equations 12-

14) with robust and incremental results. With such regression results produced 

instantly, planners for surgical procedures have the chance to improve their practices 

because they would evaluate surgical procedures outcomes objectively with minimal 

human involvement.  

1.9 Thesis Structure 

The rest of the thesis is structured as follows: 

Chapter 2 presents a comprehensive literature review of CL treatment and potential 

assessment methods. It covers the following CL assessment methods: traditional (or 

manual or qualitative) methods, computational (semi-automatic) techniques, and 

evaluation of CL repair outcomes. By diving into existing research, gaps in knowledge 

and research opportunities are further identified. 

Chapter 3 is the methodology section, describing the research design and different 

approaches used in the study. Dataset description, utilized pre-processing techniques 

before features extraction, are presented. A discussion of baseline machine learning 

algorithms, model frameworks used for CL assessment, and evaluation metrics is also 

presented. 

Chapter 4 presents the Shape Analysis approach for assessing and evaluating CL 

treatment outcomes. The feature extraction techniques for the traditional 

computational method are discussed. Application of the mouth lips as the region of 

interest (RoI) is the pivot of this section. Using symmetry and similarity measures, CL 

treatment assessment is quantitatively computed using the designed mathematical 

models embedded in a computer program.  

Chapter 5 discusses the hybrid computational approach used for CL treatment 

outcome assessment. In this chapter, the different features of the outcome 

appearances are detected per potential RoI in the CL appearance outcome to aid with 
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adaptive facial asymmetric/ symmetric detection. In this chapter, CL outcome 

assessment measures the degree of symmetry or asymmetry by using an adaptive 

method to determine the axis involved. Three different models are presented to 

quantify the CL surgical treatment outcome assessment. 

Chapter 6 presents a deep learning computational approach that uses transfer 

learning techniques to create and evaluate a deep learning model. Extraction of 

stochastic features aids this approach in a semi-supervised manner for evaluating CL 

treatment outcome assessment. 

Chapter 7 discusses an in-depth analysis, interpretation, and synthesis of research 

findings in chapters 4 to 6. By doing this, a comparison is made between the results 

of this work and existing research studies/literature. Clinical implications and practical 

applications of this research study are also discussed. Additionally, this chapter 

presents the Conclusion and Future Studies. The research objectives and key findings 

are summarised. Highlights of the research significance and contributions are given. 

Furthermore, this chapter hints on suggestions for future research directions while 

offering recommendations for enhancing computational assessment of CL treatment. 

  



21 

 

Chapter 2 Literature Review 

 

 

2.1 Introduction  

This section critically analyses existing research and knowledge relevant to this 

research study. The purpose of this chapter is to help contextualise the research 

problem, identify the research gaps, and rationalise the proposed research, as 

presented in the following subsections.  

2.2 Epidemiology of Cleft Lip (CL) 

Cleft lip (CL) is a congenital malformation that affects the facial structure of individuals. 

The cleft is a failed fusion of tissue plates in the embryo at around 4-6 weeks after 

conception. Consequently, there is an opening in the upper lip5, as seen in Figure 2.1.  

 

 

Figure 2. 1: Cleft lip in a subject. Normally, this is a cut in the upper lip whose fusion did not before 
birth.  

 

It is one of the most common birth defects, with a prevalence ranging from 1 in 500 to 

1 in 2,500 live births globally, depending on ratio identity  and location (Mossey and 

Modell, 2012, Salari et al., 2022). The exact causes of CLP are not fully understood, 

 
5 
https://www.cdc.gov/ncbddd/birthdefects/cleftlip.html#:~:text=A%20cleft%20lip%20happens%20if,the%20lip
%20into%20the%20nose. 

https://www.cdc.gov/ncbddd/birthdefects/cleftlip.html#:~:text=A%20cleft%20lip%20happens%20if,the%20lip%20into%20the%20nose.
https://www.cdc.gov/ncbddd/birthdefects/cleftlip.html#:~:text=A%20cleft%20lip%20happens%20if,the%20lip%20into%20the%20nose.
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but it is believed to be a complex interplay of genetic and environmental factors (Dixon 

et al., 2011). The CL condition can be classified as either syndromic or non-syndromic. 

There is a growing body of research on the genetic basis of CL, with many genes 

identified as potential risk factors. Studies have shown that variations in genes 

involved in craniofacial development, such as IRF6, MSX1, and PVRL1, are strongly 

associated with an increased risk of CL (Khandelwal et al., 2013, Leslie and Marazita, 

2013, Takechi et al., 2013). Other studies have also implicated environmental factors, 

such as maternal smoking and alcohol consumption, in the development of CL (Dixon 

et al., 2011). 

Treatment of CL typically involves a multidisciplinary approach, with a team of 

healthcare professionals from various specialties working together to manage the 

condition. Surgical repair is the backbone of treatment for CL, intending to improve the 

function and appearance of the mouth (Raghavan et al., 2018). This enhances infants’ 

ability to (breast) feed and interact with their mothers and/or carers. Other 

interventions, such as speech therapy and orthodontic treatment, may be necessary 

to address the associated complications of CL (Cai et al., 2018, Isiekwe and Aikins, 

2019). The significant advancements in the surgical methods used to repair CL have 

improved outcomes. However, access to this specialised care remains significantly 

costly, therefore accessing such services remains a challenge in many parts of the 

world (Swanson et al., 2017, Bennett et al., 2018, Murthy, 2019)  

2.2.1 Cleft Lip Demographics  

The World Health Organization (WHO) reported that the prevalence at birth of orofacial 

cleft (OFC) varies worldwide, in the range of 3.4–22.9 per 10,000 births for cleft lip and 

palate (CLP) (Mossey and EE, 2003). 

The prevalence of CLP and/or OFC has been found to vary based on ancestry, with 

the highest incidence rates observed amongst Asian (Tibeto-mongoloid) populations 

(0.82–4.04 per 1000 live births), intermediate rates amongst Caucasians (0.9–2.69 

per 1000 live births), and the lowest rates amongst African populations (0.18–1.67 per 

1000 live births) (Mossey and Modell, 2012, Salari et al., 2022, Wang et al., 2023). 

Despite this prevalence, it was discovered that the “burden of orofacial clefts falls 

disproportionately on the countries with the smallest surgical workforce or lowest 
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Socio-Demographic Index, rather than those with the highest prevalence of disease”, 

(Massenburg et al., 2021). 

However, several studies disagree on whether OFC/CLP is more prevalent among 

females or male populations(Ahmed, Bui and Taioli, 2017, Eshete et al., 2017, 

Swanson et al., 2017).  

2.3 Methods and Challenges in Evaluation of CL Repair Outcomes 

CL repair is a complex and challenging surgical procedure that requires understanding 

the underlying anatomy, tissue characteristics, and healing mechanisms (Massie et 

al., 2016, Bekele, Ekanem and Meberate, 2019). For this reason, sometimes pre-

surgical planning using computer-aided software is desired and emphasised. Various 

objective and subjective measures can evaluate the procedure's success, including 

clinical assessment, functional outcomes, and patient-reported satisfaction (Klassen 

et al., 2021). 

CL treatment assessment methods can be categorised into two broad categories, 

direct clinical and indirect clinical assessment. The different respective sub-categories 

are summarised in Figure 2.2. 

 

 

Figure 2. 2: Classification of CL Treatment Outcome Assessment Methods. There are 2 general 
approaches: indirect and direct approaches.  

 

2.3.1 Direct Clinical Assessment (DCA)  

This method involves the physical examination of the patient who underwent the CL 

surgical repair by an expert or assessor. Because a multidisciplinary care team is 

involved in the care and management of patients with CL condition, several experts 
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such as surgeons and orthodontists could be involved in the physical examination. 

DCA is also called a “live assessment” session (Sharma et al., 2012).  

In this method, direct quantitative measurement generates metrics and dimensions of 

the different facial parts. This is categorised as an objective DCA tool (Sitzman and 

Allori, 2014).  

DCA also involves visual inspection and palpation of the repaired lip, as the most used 

method for evaluating the appearance outcome of the surgery (Mcelroy et al., 2017). 

However, it is subjective and relies on the expertise and experience of the evaluator, 

leading to inter- and intra-observer variability (Nahai et al., 2005). Functional 

outcomes, such as speech and feeding, are also important measures of CL repair 

success under the DCA approach (Kummer, 2014). 

The additional challenge is the potential conflict of interest should the assessment 

team include members of the CL repair team. 

2.3.2 Indirect Clinical Assessment (ICA) 

2.3.2.1 Overview 

ICA utilises images of patients after CL treatment. The images are usually 2D facial 

images used as subjects for evaluation. Precisely, the region of interest (RoI) is the 

mouth (consisting of the upper and lower lips) (Al-Omari et al., 2003, Sharma et al., 

2012).  

Objective assessments, such as nasometry, electropalatography, and 

videofluoroscopy, have evaluated speech outcomes in CL patients (Kuehn and Henne, 

2003, Nahai et al., 2005, Kummer, 2014). Similarly, feeding outcomes can be 

evaluated using objective measures such as the infant feeding assessment yardsticks 

(Gopinath and Muda, 2005). 

Patient-reported outcome measures (PROMs), such as the cleft evaluation profile 

(CEP) and the Cleft Q system6, have been developed to assess patient satisfaction 

and quality of life after CL repair (Mulder et al., 2019). PROMs provide a more patient-

centred evaluation approach and are increasingly used in clinical practice. 

 
6 https://qportfolio.org/cleft-q/ 
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Despite these evaluation methods, there are persistent challenges in assessing CL 

repair outcomes. The lack of standardised evaluation protocols to assess appearance 

of CL treatment outcomes makes it difficult to compare research results across 

different studies (Mosmuller, Mennes, et al., 2017a) . In addition, the appearance 

assessment of outcomes in patients with CL can be more challenging due to the 

additional complexity of the surgical procedures and associated comorbidities 

(Mosmuller, Mennes, et al., 2017a, Mulder et al., 2019). 

2.3.2.2 Photographic Assessment 

Most prominent ICA methods utilise digital imagery analysis or photographic 

evaluation techniques. This can be conducted qualitatively or quantitatively. Figure 2.3 

summarises the breakdown.  

 

Figure 2. 3: Photographic Evaluation Methods. Divided into qualitative and quantitative methods.  

 

Qualitative assessment requires human experience and emotion to judge the CL 

repair outcome. Assessment is normally descriptive but could be quantitatively coded. 

Quantitative evaluation uses a wide range of image features for assessment. The 

nature of the assessment task presents different feature needs, either fewer features 

or infinitely many and potentially advanced features. Consequently, assessing the 

different appearances following CL treatment using traditional computational 

algorithms and machine learning approaches is possible.  

The following research studies were identified as closely related to this PhD research. 

These approaches quantitatively assess CL treatment outcome using ICA digital 

imagery.  
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1. Analyse It Doc (A.I.D) 

Analyse It Doc (A.I.D.) is an anthropometric analysis software for images of the facial 

nasolabial region. The software evaluates facial morphology, symmetry and 

appearances using standardised photos from Adobe Photoshop (Adobe Inc, San 

Jose, California, USA) (Adobe Inc, 2021) or ImageJ software (National Institute of 

Health, Stapleton, New York, USA) (Schneider, Rasband and Eliceiri, 2012). The 

photos must be standardised in different views such as frontal, lateral, and submental 

views (Pietruski, Majak and Antoszewski, 2017).   

A.I.D has modules for subjective and objective assessment/evaluation of appearance 

outcomes. Therefore, this approach is semi-automatic. Additionally, the objective 

assessment module using the A.I.D uses only a few landmarks. The system has got 

two major applications: examination of individual patients and analysis of voluminous 

multiple evaluators from multiple treatment centres. Although the system can be used 

collaboratively, few validation studies have been reported using this approach.   

Therefore, CL repair treatment outcome assessment is a secondary consideration for 

the A.I.D software. Besides, A.I.D’s manual photogrammetric inputs indicates its semi-

automatic approach (Pietruski, Majak, Debski, et al., 2017). Further, the features are 

manually marked on the frontal and lateral views. However, it outputs strong inter/intra-

rater reliability. This is attributed to the multiple views of measuring several parameters 

from which the raters’ reliability is computed. For example, there is significantly better 

accuracy of repeated linear and angular measurements in submental view, frontal 

view, and lateral view. 

2. SymNose 

SymNose is a computer-based program developed to aid CLP research (Pigott and 

Pigott, 2010) and was developed to aid quantitative outcome analysis for 2D digitised 

images. The UK standard for assessing the cleft lip repair is from colour 2D Anterior 

posterior, worms’ eye and lateral images taken under standard conditions when the 

child is 5 years old. The system creates semi-objective parameters such as lip and 

facial symmetry.  

Different studies have used SymNose to generate objective outcomes, specifically 

absolute scores through rating images from best to worst (Freeman, Mercer and 
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Roberts, 2013, McKearney, Williams and Mercer, 2013, Russell, Kiddy and Mercer, 

2014, Mosmuller et al., 2016, Bella et al., 2016, Deall et al.,2016). An upgraded version 

of SymNose, SymNose 2 (Pigott and Pigott, 2016), has improved capabilities of scar 

quantification and a thin lip correction. The lip-aspect ratio (LAR) algorithm was 

responsible for this correction. The LAR algorithm was applied to a study where the 

appearance range of normal symmetry for facial features was also defined (Kornmann 

et al., 2019). 

SymNose helps annotate outcomes for identifying regions of interest and the resulting 

symmetry for assessment preparation studies. This semi-automatic approach has 

been widely used in several studies and requires preparation and comparison of 

several parameters, especially in bilateral CL and palate cases.  

3. Cleft Lip and Palate Network (CLPNet) 

CLPNet utilises artificial intelligence (AI) and machine learning (ML) techniques to 

provide recommendations, insights, and decision support for healthcare professionals 

involved in CL treatment. This approach presents a preoperative advisory platform that 

uses deep learning algorithms to output high and accurate predictions for surgical 

markers and incisions to ensure an excellent appearance outcome following CLP 

treatment (Li, Cheng, et al., 2019). The study is purely pre-surgery advisory with no 

outcome assessment performed.   

Table 2.1 summarises the different studies reviewed, indicating methods, datasets, 

and other valuable considerations.  
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Table 2. 1: Comparison of Related Studies 

 

  

 
 

Criteria 

Image 
Acquisition 
Method 

Image 
Nature 
(2D/3D) 

Age of 
Subjects  
(in years) 

Image 
Orientation 

Input pre- 
processing 
technique 

Maxillofacial 
Defect 

(Implementation) 
Platform 

Practitioner/ 
Researcher 

Assessment/ 
Evaluation 
protocol 

Research 
Study 

Analyse It Doc High 
Resolution 
camera 

2D Universal Frontal, 
Lateral, 
Submental 

Standardized Unilateral 
CLP 

(Not stated)  
At least Windows 
7, Mac 

Practitioners 
and  
Researchers 

Objective/ 
Subjective 

SymNose Scanner, 
Camera, 
Slide 
projector 

2D 10 Frontal, 
Basal 

Mouse,  
Digitizing pad 

Unilateral 
CLP 
Complete 
BCLP 
 

At least Mac 
10.4 

Practitioners 
and  
Researchers 

Control 
group, 
Objective, 
 

CLPNet Face 
detector 

3D Flexible Flexible  Professional 
labelling, 
centre crop 

Complete CL (Not stated) Practitioners 
and  
Researchers 

Control group 
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2.4 Computational Methods for CL Treatment Outcome Assessment 

Over the years, there has been a growing interest in using computational techniques 

for cleft lip repair assessment. These techniques have been used to evaluate the 

outcomes of CL repair procedures and improve the precision of treatment planning. A 

range of computational methods, including 2D imaging, 3D modelling, machine 

learning, and computer-aided simulations, have been explored in the literature. 

One common method is 2D imaging, which involves capturing photographs of the 

patient's face and analysing them to determine the severity of the cleft and the extent 

of the repair required. Many qualitative approaches as discussed above require 

capture of the facial images. For instance, (Gong and Yu, 2012) used a 2D imaging-

based technique to assess the outcomes of CL repair in a group of infant patients. 

They found that the method provided accurate and reliable results and could be used 

to monitor the progress of the repair over time. 

Another approach is 3D modelling, which enables the creation of a virtual model of the 

patient's face that can be manipulated and analysed in detail. This method has been 

used to investigate the effects of different surgical techniques on the outcomes of CL 

repair. For example, (Riedle et al., 2019) used 3D modelling to compare the outcomes 

of two different surgical techniques for CL repair. They found that one technique 

produced better results than the other and suggested that it should be used more 

widely. 

Machine learning has also been used to analyse large datasets of CL repair outcomes. 

This method involves training algorithms to recognise patterns and make predictions 

based on the data. For instance (Chada, n.d., Riedle et al., 2019, Haque et al., 2021) 

proposed computer-based models and machine learning to identify factors influencing 

CL repair procedures' outcomes. They found that the severity of the cleft, the patient's 

age, and the surgical technique used were important factors that affected the 

outcomes. 

Finally, computer-aided simulations have been used to simulate the effects of different 

surgical techniques on the outcomes of CL repair. This method involves creating a 

virtual model of the patient's face emphasising the affected region and manipulating it 

to simulate different surgical scenarios. For example (Gong and Yu, 2012, Riedle et 

al., 2019) used computer-aided simulations to investigate the effects of different 
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surgical techniques on the symmetry of the repaired lip. They found that the 

simulations provided a useful tool for predicting the outcomes of different surgical 

approaches. 

Given a dataset of images following CL treatment, it is natural to determine and 

compute their appearance scores using contemporary computational approaches on 

advanced computing resources. The general discussion of the advanced approaches 

is given below. 

2.4.1 Machine Learning 

Machine learning is a subdomain of artificial intelligence (AI) whose focal point is on 

developing algorithms and models to enable computers to learn from and make 

predictions or decisions based on given datasets. It is a fast-evolving field that has 

found relevance in various domains, from healthcare and finance to self-driving cars 

and natural language processing (Kreuzberger, Kuhl and Hirschl, 2023). 

The term ‘machine learning’ was coined by Arthur Samuel in 1959 (Samuel, 1959). 

Machine Learning is defined as the study of computer algorithms that improve and 

evolve in knowledge, automatically through experience (Alzubi, Nayyar and Kumar, 

2018).  

There are two commonly applied categories of Machine Learning (Alloghani et al., 

2020): 

1. Supervised Learning: In supervised learning, algorithms learn from labelled 

datasets, by making predictions or classifications. 

2. Unsupervised Learning: Unsupervised learning deals with unlabelled datasets 

and requires clustering or dimensionality reduction. 

There are several algorithms’ examples and techniques aligned with the above-

mentioned machine learning categories (Rajoub, 2020): 

1. Linear Regression: Used for predicting continuous values. 

2. Decision Trees: Used for classification and regression tasks. 

3. K-Nearest Neighbour: Is a non-parametric, supervised learning classifier, which 

uses closeness to make classifications or predictions about the clustering of an 

individual data point. 
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4. Deep learning: Is a subset of machine learning which involves artificial neural 

networks with many layers, and it has proven highly successful in many 

computer vision tasks like image recognition, image interpretation and 

classification. 

Despite the huge potential, machine learning faces some challenges and 

considerations as discussed below (Paleyes, Urma and Lawrence, 2022): 

1. Bias and Fairness: Machine learning models can perpetuate biases present in 

training data, leading to unfair and / or discriminatory results.  

2. Ethical and Privacy: Issues arise regarding collecting and using personal data 

for machine learning. Normally ethical approvals take long and if approved, it is 

for only a shorter period.  

3. Transparency: The ‘black box’ nature of some models raises concerns about 

accountability. 

4. Interpretability: Complex machine learning models can be challenging to 

interpret and explain, which is critical for trust and accountability. 

5. Data Quality: High-quality, diverse, and representative data is crucial for training 

effective models. 

Although there are some challenges, machine learning continues to advance, with 

ongoing research and future developments in academia and industry, driving 

innovations that shape the global technological landscape. Some future directions 

include (Gaur et al., 2019, Mohammad-Rahimi et al., 2021): 

1. Explainable AI (XAI): Developing models that provide understandable 

explanations for their decisions. 

2. Federated Learning: Training models on decentralized data to preserve privacy. 

3. Quantum Machine Learning: Exploring the potential of quantum computing to 

enhance machine learning algorithms. 

4. AI Ethics: Continued focus on ethical considerations, fairness, and responsible 

AI development. 

2.4.2 Deep Learning 

Deep learning is a subfield of machine learning and artificial intelligence (AI) that 

focuses on the development and training of deep neural networks (DNNs) 

(Goodfellow, Bengio and Courville, 2016). DNNs are complex and hierarchical 
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computational models inspired by the structure and function of the human brain 

(Lecun, Bengio and Hinton, 2015). Deep learning has gained significant attention and 

popularity due to its remarkable success in solving complex tasks, particularly in areas 

such as computer vision, natural language processing, and speech recognition 

(Havaei et al., 2017, Samek et al., 2021).  

As stated before, artificial neural networks (ANNs) are at the core of deep learning, 

which consist of interconnected nodes or neurons organized in layers. These networks 

can have many layers, giving rise to the term "deep" learning. DNNs are designed to 

automatically learn hierarchical representations of data, with each layer learning 

increasingly abstract features (Miikkulainen et al., 2018). 

Some of the commonly used deep learning architectures are: 

1. Feedforward Neural Networks (FNNs): These are the simplest form of DNNs, 

with information flowing from input to output layers in one direction. 

2. Convolutional Neural Networks (CNNs): Specialised for processing grid-like 

datasets, such as images and videos. They use convolutional layers to learn 

spatial features. 

3. Recurrent Neural Networks (RNNs): Designed for sequential data, like time 

series or natural language. They maintain hidden states to capture temporal 

dependencies. 

4. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU): 

Architectures within RNNs that address the vanishing gradient problem and are 

capable of learning long-term dependencies. 

Some of the common deep learning applications are discussed in (Samek et al., 2021) 

and summarised below:  

1. Computer Vision: CNNs are widely used for tasks like image classification, 

object detection, and image generation (e.g., GANs). 

2. Natural Language Processing (NLP): Transformers, a type of deep learning 

architecture, have revolutionized NLP, leading to advancements in machine 

translation, chatbots, and sentiment analysis. 

3. Speech Recognition: Deep learning models have achieved human-level 

performance in speech recognition tasks, enabling voice assistants like Siri and 

Alexa. 
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4. Autonomous Vehicles: Deep learning is used for perception and decision-

making in self-driving cars. 

Deep learning has a few notable considerations and challenges, in addition to the 

those discussed for general machine learning (Razzak, Naz and Zaib, 2018, Galván 

and Mooney, 2021).  

1. Training: Training deep neural networks typically involves backpropagation, 

where the model's parameters are adjusted using gradient descent or its 

variants to minimise a loss function. Therefore, large-scale labelled datasets 

and powerful hardware, such as GPUs and TPUs, have effectively trained deep 

learning models. Further, cloud computing services have been instrumental in 

helping researchers access superior computing resources.  

2. Overfitting: DNNs are prone to overfitting, where the model performs well on 

the training data but poorly on unseen data. 

3. Vanishing and Exploding Gradients: These issues can hinder the training of 

DNNs with many layers. 

4. Data Requirements: Deep learning models often require vast amounts of 

labelled data, which may not always be readily available. 

Ever since deep learning started demonstrating groundbreaking results in various 

domains, it has continued to be a driving force in AI research and application 

development. Some of the ongoing advancements, breakthroughs, and future 

directions are discussed in (Galván and Mooney, 2021): 

1. Explainable Deep Learning: Developing methods to make deep learning 

models more interpretable and transparent. 

2. Continual Learning: Enabling deep learning models to adapt to latest 

information over time. 

3. Quantum Deep Learning: Exploring the intersection of deep learning and 

quantum computing. 

2.5 Summary of Knowledge Gaps  

The above-described CL treatment outcome computational assessment measures 

have got some deficiencies as summarised below: 
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1. Lack of standardisation 

There is currently no standardised protocol for using computational techniques in CL 

repair assessment. This makes it difficult to compare results across different studies 

and hinders the development of a robust evidence base (Kassam et al., 2020, Alighieri 

et al., 2021). 

2. Limited validation 

Many computational techniques used in appearance assessment of CL repair 

outcomes have not been adequately validated. This makes it difficult to determine their 

accuracy and reliability and raises concerns about the validity of the results obtained. 

This is partly because “despite advancements, there is variable consensus on 

technique, timing, and sequence of clefts…related repair procedures” (Naidu et al., 

2022), hence affecting treatment outcome assessment validation efforts. 

3. Limited application 

Many computational techniques used in CL repair outcome assessment are not widely 

available and some are too complex for routine use by the healthcare teams (Frank-

Ito et al., 2019) and researchers. This limits their potential impact on clinical practice, 

patient treatment outcomes and improvement by other researchers. 

4. Limited generalisability 

Many studies have focused on specific populations, such as infants or patients with 

unilateral CL, complete CL, or otherwise. This limits the generalisability of the findings 

and raises questions about their applicability to other populations. 

5. Heterogeneity of CL Research Network Teams  

Multidisciplinary research teams are sometimes hindered by communication 

deficiencies of key ideas for specialised domain concepts. This hinders development 

and validation of tools and techniques. For example, the significant difference in the 

assessment outcomes of different experts for the same subjects is one of the 

indicators of how challenging different teams can harmonise assessment tasks for 

treatment outcomes, (Patcas et al., 2019). 
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6. Limited integration  

There is a need for greater integration of computational techniques into routine clinical 

practice (Huqh et al., 2022). This will require changes in clinical workflows, training of 

clinicians, and investment in infrastructure. For example, an online crowdsourcing 

approach compared to speech language pathologists can’t easily be adapted 

(Sescleifer et al., 2020).  

To address the identified knowledge gaps, there was need to conduct further research. 
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Chapter 3 Methodology 

 

 

3.1 Introduction  

This section presents the research approach used in this study. Different researchers 

can differently define Research Methodology. “Research methodology is a system of 

models, procedures and techniques used to find the results of a research problem”, 

(PANNEERSELVAM, 2014). Another definition is that “Research methodology is a way 

to systematically solve the research problem … has many dimensions and research 

methods constitute a part of the research methodology”, (Kothari 2004:8). The two 

definitions are complementary and applicable to this research study. Visual datasets 

are analysed by extracting distinctive features to aid interpretation and better 

assessment of outcomes following cleft lip treatment. For purposes of advancing 

knowledge and understanding, a range of techniques, strategies, and procedures 

(research methods) are employed and investigated. 

 

3.2 Experimental Research Design 

Research design is a critical component of research methodology. Research design 

refers to the blueprint or plan that outlines how a study has been conducted. It involves 

decisions about the type of research, data collection methods, and data analysis 

techniques (Creswell, 2003, Seltmann, 2014). 

Evident from the dataset is the availability of facial image outcomes following surgery. 

From these images, computations can lead to determine symmetry, proportions/ 

shapes, and anthropometric measurements. Human experts qualitatively assessed 

facial image outcomes. However, the semi-structured qualitative assessment was 

converted to a numeric Likert scale where 1 is ‘Excellent’, 2 is ‘Good’, 3 is ‘Fair’, 4 is 

‘Poor’ and 5 is ‘Very Poor’. 

Subsequent sections in this chapter present details of the computational analysis 

methods through the development and evaluation of different computational 

algorithms, for appearance analyses of the post-surgical facial dataset. The developed 

algorithms involve regression analysis, symmetry assessment, landmark detection, 

anthropometric measurements, and proportion/shape analysis and deep learning. 



37 
 

A validation approach is through correlation analyses between quantitative 

assessment outcomes performed automatically and those by human assessors. 

However, the deep learning regression analysis approach explores several validation 

metrics. 

Applying the developed computational algorithms to non-cleft lip partial facial images 

would give the research study a solid foundation. However, no satisfactory data set of 

facial visuals of corresponding non-cleft 5-year-olds with ethical permission was 

available to us.   

3.3 Image Processing and Analysis Pipeline 

The collected images were processed and analysed using various traditional and 

advanced image manipulation techniques. The image processing techniques used in 

the study can be classified as image pre-processing, segmentation, feature extraction, 

and classification, among others. To maximise outcomes of advanced image 

manipulation operations, pre-processing is necessary (Dharavath, Talukdar and 

Laskar, 2014). Blurring, morphing, pixel equalisation, standardisation, luminosity 

adjustments, among others are key towards reducing the noise on images (Miljkovi, 

2009).  Figure 3.1 depicts the detailed facial analysis flow, from input to output. 

 



38 
 

 

Figure 3. 1: Representation of a fusion of different blocks responsible for detailed quantitative facial 
analysis. Preprocessing, RoI detection, Segmentation, Features extraction and Modelling.  

Basically, Figure 3.1 indicates that subsequent chapters will present image pre-

processing techniques to aid with RoI detection through segmentation, before 

performing any feature extraction tasks. 

3.3.1 Brief Image Pre-processing 

This is a technique for formatting the input images before analysis or inference or 

model creation. The main reasons for pre-processing are quality enhancement, noise 

reduction/removal, interpretability improvement, reduction of computational 

complexity, and preparation for further processing or analysis. Therefore, pre-

processing is an essential step in computer vision and image analysis research 

(Szeliski, 2011). A detailed explanation of pre-processing operations considered has 

been discussed in (Gonzalez and Woods, 2002, Szeliski, 2011, Dharavath, Talukdar 

and Laskar, 2014, Nixon and Aguado, 2019). 

In this research, the following preprocessing operations were applied as detailed in 

the subsequent chapters: Resizing and Scaling, Gray Scaling, Denoising, Contrast 

Enhancement, Image Normalisation. 

However, the image cropping/slicing technique has been used across the different 

chapters and is briefly discussed below. 
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Cropping involves selecting a specific region of interest within an image while 

discarding the remaining parts. It is useful for removing unwanted backgrounds, 

focusing on specific objects, or resizing images to a standard aspect ratio. Cropping 

can be performed manually or using automated techniques based on object detection 

or segmentation algorithms. One of the approaches used for CL treatment 

assessment, crops the facial images into three thirds. A common implementation 

technique is the array slicing. Some results are presented in Figure 3.2. 

 

Figure 3. 2: Image (left) sliced into three segments i.e., upper, middle, and lower segments (right) 

 

3.3.2 Segmentation Overview 

Image segmentation is a fundamental task in computer vision that involves dividing an 

image into meaningful and coherent regions or segments. In simpler terms, 

segmentation helps users identify the object (wanted/meaningful section) and 

background in an image. It plays a crucial role in various applications, such as object 

recognition, image understanding, medical imaging, and autonomous driving (Wang, 

Wang and Zhu, 2020, Wang et al., 2022). This study innovatively applied/adapted 

some segmentation approaches to develop and validate computational methods for 

appearance assessment of CL treatment outcomes. A discussion of segmentation 

algorithms used is presented in the respective subsequent chapters. The general 

approaches are Thresholding-Based Segmentation, Edge-Based Segmentation, 

Clustering-Based Segmentation and Deep Learning Segmentation Methods.  
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3.3.3 Features Extraction and Detection 

After segmentation, unique features in the region of interest (RoI) can be identified. 

There are four broad categories of features: 

1. Anthropometric Features  

These would naturally involve direct and physical measurements of the different facial 

feature dimensions (such as thickness, length) where possible (Sunderland, 1995). 

This facilitates analysis of facial anatomical features and assess the recovery extent, 

especially for the upper lip. CL affects the upper lip and is usually the part of the mouth 

region to undergo surgical repair. The regrowth of the development of that region is 

closely monitored if treatment is to be assessed. 

Specialists use specialised tools such as callipers or anthropometers to capture 

anthropometric data (Norton, 2019). Anthropometry can violate a patient’s privacy, 

may lack standardisation and can be tedious, hence should be minimised or 

completely avoided (Wang et al., 2000). Segmentation not only automates this 

process but also ensures objectivity. The different features are stored as continuous 

numeric values, in a mathematical formulation. Consequently, we obtain quantifiable 

record of measurable facial attributes.  

2. Geometric Features 

Following successful segmentation, mathematical features can be generated. These 

types of features refer to quantifiable measurements and attributes of the region of 

interest such as the human face.  

Normally, these attributes can be represented, analysed, and interpreted using 

mathematical equations (or models). In this study, the following mathematical features 

of the face have been studied: 

a. Symmetry  

This attribute is foundational to many facial appearances studies including 

assessment of surgical treatment (Passalis et al., 2011). Analysis of some 

features of the mouth region leads to landmark-based symmetry. This 

technique is employed to measure and quantitatively determine CL treatment 

assessment using models. 

b. Rational Facial Composition  
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Ratios and proportions can be used to illustrate the relative sizes and 

relationships between different facial attributes. The golden ratio can be used 

to compare the considerably acceptable distance between facial features such 

as the eyes, mouth corners or between the eyes, nose, and mouth regions 

(Prokopakis et al., 2013) or the general face (Hashim et al., 2017).  

 

c. Facial Landmarks 

These are categorised as some specific points on the face, belonging to known 

regions such as the eyes, nose, or mouth (Wang et al., 2018). For example, 

eye corners, nose-base, nose tip, mouth corners, and philtral ridges, 

respectively are potential facial landmarks. Automatic detection of these 

features is a backbone of deep learning to aid geometric and mathematical 

algorithms to assess spatial relationships, hence assessment of a potential 

treatment remedy. 

 

3. Biological Features 

Biological factors such as genetics, anatomy and physiological processes determine 

the physical characteristics and structures of the human face (Jagadish Chandra et 

al., 2012). Biological features are intrinsic to individuals while contributing to their 

unique facial appearance in addition to playing a crucial role in treatment outcome 

assessment and comparison (Ritz-Timme et al., 2011). For example, eye corners and 

nose shape, mouth/lip structures are unique among individuals. Understanding the 

structure, growth, and redevelopment dynamics of these features after a surgical 

procedure like in CL treatment case, can lead to design, development, and validation 

of robust frameworks. 

Biological features are easy to differentiate between them if using physical 

measurements is applicable as a progressive characteristic (Bonidia et al., 2021). If 

the goal is to assess beauty, attributes such as thick lips, smaller eyes, long pointed 

nose would be ideal (Rennels and Cummings, 2013, Kar et al., 2018). On the contrary, 

the CL condition recovery process following treatment differs among individuals. 

Therefore, the assessment framework for the outcome should be robust to take into 

consideration the different biological features.  
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4. Generic Features 

Generic facial features refer to the common and typical characteristics that are shared 

by most elements in the dataset. Whereas these features are not particular to 

categories of the dataset classes, they are representative of the classical facial traits 

(Vo and Le, 2016).  

Therefore, features such as eye shape, nose shape, nose size, mouth/lips thickness, 

facial symmetry, and skin tone vary significantly across the different elements of our 

dataset. Because facial features are influenced by a combination of genetic, 

environmental, and cultural factors, it is instrumental that generic features are 

incorporated for scalability and robustness during model design. 

Subsequently, generic features can be dynamically considered as anthropometric, 

mathematical, or biological by adaptation (Gu et al., 2017). For that reason, clinical 

assessment standards for successful CL surgical repair can be varied and harder to 

model. 

The region of interest (RoI) is characterised by at least one of the feature categories 

described above. Once the appropriate features have been detected, the next step is 

to transform the features parametric properties into quantifiable result that form an 

assessment of a CL repair outcome. 

3.3.4 Quantitative Modelling 

Scientifically, quantitative modelling refers to the approach employed towards building 

mathematical or computational models used for description and analysis of (complex) 

systems (Jonkers and Franken, 1996). Normally, the models involve the use of 

numerical and statistical techniques to represent the relationships, interactions, and 

behaviour of variables within a system. Quantitative models can significantly predict 

phenomena in the hard sciences such as in physics, biology, engineering as well as 

in social sciences and economics (Series and Sterman, 2003, Sterman, 2006, Berhe 

and Makinde, 2020).  In prediction and estimation of the success of the CL repair, a 

quantitative assessment model is designed based on the features of the repaired 

visual outcome. 

The following steps constitute the process for quantitative model construction and 

have been applied to modelling of biological complex systems (Brodland, 2015): 
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1. Problem Definition 

Define the problem that the model aims to address by clearly understanding the 

objectives, scope, and context of the modelling task. Furthermore, it is critical to 

identify the key variables, assumptions, and constraints involved. 

 

2. Conceptual Modelling 

Representation of the relationship and interactions between the identified variables 

follows. This is normally done using visuals such as flowcharts, sequence diagrams or 

pseudo codes. The goal is to realise any emergent interactions and challenges.  

3. Data Description 

The different variables should be explicitly described and defined to eliminate any 

ambiguities. Datasets arrangements and partition should be defined at this stage. Data 

for building and testing the model should be clearly defined. Where possible, gaining 

insight into the dataset patterns using statistical approaches should be conducted. 

4. Formulation 

The available dataset and extracted features influence mathematical equations or 

simulation techniques or machine learning approaches towards formulation of model 

equations or algorithms. Equations formulation and machine learning are preferred 

approaches when visual datasets are involved, like in CL treatment outcome 

assessment using partial facial images.  

5. Implementation and Validation 

Finally, the model is implemented using appropriate software tools or programming 

languages through translation of the model equations or algorithms into executable 

code. It is conventional to ensure that the model is efficient, robust, and user-friendly. 

After successfully implementing the model, evaluation of the model performance using 

test datasets follows. 

3.4 Dataset Description and Ethical Considerations 

The Cleft Care UK (CCUK) dataset used in this research study consists of anonymised 

facial images of 5-year-old children following CL treatment. Anonymity of the facial 
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images not only maintains children’s privacy but also ensures objectivity of the human 

assessors who would potentially be destructed by other facial features.   

This dataset was specifically curated for CL treatment outcome assessment studies. 

This dataset has been used by human assessors and for the development of 

alternative computational algorithms for further facial analysis and CL treatment 

objective assessment. The British Dental School at the University of Bristol undertook 

a national cross-sectional survey of children with a cleft lip and palate in 2013, called 

Cleft Care UK (CCUK). The intention was to assess the impact of reconfigured cleft 

care in the United Kingdom 15 years after an initial survey the Clinical Standards 

Advisory Group (CSAG) report in 1998, had informed government recommendations 

on centralising care. CCUK was a research study to repeat the previous audit of 

outcomes and assess if the re-organisation had improved the quality of cleft care. 

Figure 3.3 shows few dataset samples. 

 

Figure 3. 3: Sample dataset images. Input, first column and respective ground truth images (GT1, 
GT3 and GT3) generated by three experts in subsequent columns. 

 

The survey involved 5-year-old children with non-syndromic unilateral cleft lip and 

palate (Persson et al., 2015). The CCUK was a multi-centre cross section study that 

identified 359 eligible 5-year-old children from different cleft care audit clinics but only 

recruited 268 in the survey. Eventually, 250 facial images were captured due to some 
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images failing to meet the minimum inclusion rules (Sell et al., 2001). Clinical 

measures of speech, recordings, and photographs, among others were acquired by 

the national research team with main outcome measures being facial appearance, 

facial growth, speech, and wellbeing outcomes (R Al-Ghatam et al. 2015, Ness et al. 

2015). 

Permission to use the 2D images of the CCUK dataset was granted by the British 

Dental School at the University of Bristol.  A team of caregivers and clinicians has 

utilised a different dataset of post operative CL repair outcome images of 5 year olds 

for qualitative assessment purposes (Bella et al., 2016). Consequently, a benchmark 

dataset for evaluation of computation algorithms for CL treatment assessment was 

generated.   

In the subsequent chapters, the CCUK dataset will be applied and analysed alongside 

three ground truth datasets: GT1, GT2, GT3 generated by different human experts. In 

the context of computational modelling and deep learning, ‘ground truth’ refers to the 

accurate and reliable labels or annotations assigned to the training data used to train 

and evaluate a model (Richter et al., 2016). The model could be an ordinary 

computational or deep learning model. Ground truth usually serves as a reference or 

benchmark against which the model's predictions or outputs are compared 

(Kondermann, 2013). 

3.4.1 Considerations of Ground Truth  

 

1. Introduction to Ground Truth 

‘Ground truth’ is a term commonly used in computer science domains such as machine 

learning, computer vision, and data science, among others. It refers to the authoritative 

and reliable source of data or information that is used as a reference or benchmark for 

evaluating the performance of algorithms, models, or systems (Martín-Morató and 

Mesaros, 2021).  

Ground truth data serves as the reference or gold standard against which the results 

of experiments, measurements, or predictions are compared (Cardoso et al., 2014). It 

represents the true and accurate values or labels for a given problem. 
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Ground truth data has been used for different experiments in the following ways in this 

study: 

1. Supervised Machine Learning: In supervised learning tasks, such as 

classification or regression, ground truth data consists of correctly labelled 

examples that the model tries to learn from. During model training and 

evaluation, the model's predictions are compared to the ground truth to assess 

its accuracy (See Chapter 6). 

2. Computer Vision: Ground truth can include manually annotated object 

boundaries, object labels, or pixel-wise segmentations in images. Computer 

vision algorithms are evaluated based on how well they match the ground truth 

(See chapter 5). 

3. Data Collection: Ground truth data is often collected through manual annotation 

or by experts in the field who have authoritative knowledge about the subject 

matter. This data is meticulously validated to ensure its accuracy. 

4. Evaluation: Ground truth is essential for evaluating the performance of models, 

algorithms, or systems. Metrics like accuracy, precision, recall, F1 score, or 

mean squared error are computed by comparing the model's predictions to the 

ground truth (See chapters 4 to 6). 

Other applications of ground truth data are in natural language processing (NLP) and 

geospatial analysis. 

Obtaining high-quality ground truth data can be expensive and time-consuming. 

Human annotation can introduce inter-rater and intra-rater variability challenges. 

These challenges can significantly influence the quality and reliability of ground truth 

data, which, in turn, impacts the performance and validity of models, algorithms, or 

systems that rely on this data (Kondermann, 2013). 

Subjective biases, and discrepancies can arise when multiple annotators are involved 

(inter-rater issues). However, there are also cases where the differences in judgement 

or annotations is made by the same rater (intra-rater variability). There is need to 

observe if a single annotator's judgments are inconsistent over time. Ensuring the 

reliability of ground truth is critical. Therefore, ground truth should be continuously 

updated or reviewed over time to account for changing conditions or to accommodate 

new datasets (Kanclerz et al., 2022). 



47 
 

To mitigate inter-rater and intra-rater issues affecting ground truth, it is fundamental to 

establish rigorous annotation protocols, provide clear guidelines, and conduct quality 

control checks.  

The generated ground truth is both visual and numerical. Human experts qualitatively 

and semi-quantitatively rated visuals based on a scale. This was converted to 

numerical scores in the range of 1 to 5. This is critical for the evaluation of algorithms 

presented in chapters 4 to 6. Despite there being 250 images, experts’ evaluation was 

more consistent with about 25 images. It is these images that make a great part of the 

ground truth used for evaluation. 

2. Iterative Enhancement 

Ground truth can be refined and improved over time. As more knowledge is gained, 

experts may revisit and update the existing labels to enhance the accuracy and quality 

of the ground truth dataset. This iterative process helps in continuously improving the 

performance of the computer vision and deep learning models (Cardoso et al., 2014). 

3. Influence on Building Models 

The quality and reliability of ground truth have a direct impact on the performance of 

computational models and deep learning models. Inaccurate or inconsistent ground 

truth can lead to biased models or misleading results. Therefore, careful attention 

should be given to the creation and maintenance of high-quality ground truth datasets. 

Likewise, the level of domain knowledge of the experts impacts the quality of the 

ground truth (Barr et al., 2020). 

4. Training and Supervised Learning  

In supervised learning, the deep learning model is trained using a dataset in which 

each input sample is associated with a corresponding ground truth label. These labels 

are manually assigned by human experts or obtained from reliable sources. In this 

study, the boundaries of the mouth and lip region are significant, among other features.  

5. Accuracy and Performance Evaluation 

Ground truth is crucial for evaluating the accuracy and performance of a trained 

machine/ deep learning model. By comparing the model's predictions to the ground 
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truth labels, metrics such as accuracy, precision, recall, and F1 score can be computed 

to assess the model's effectiveness (Li et al., 2018). 

6. Prevalence of Annotation Methods 

Ground truth labels can be obtained through various annotation tools and methods, 

depending on the nature of the task and available resources. Manual annotation 

involves human experts meticulously labelling the data, which can be time-consuming 

and costly. Alternatively, semi-automatic or automated annotation methods, such as 

crowdsourcing or using pre-existing labelled datasets, can be employed to accelerate 

the labelling process (Foncubierta-Rodríguez and Müller, 2012). 

7. Labelling Challenges and Other Considerations 

Creating accurate ground truth labels may face certain challenges. Ambiguity in the 

data, inter-annotator variability, or subjective interpretations can introduce 

discrepancies in ground truth annotations. To mitigate such challenges, careful 

annotation guidelines, consensus among annotators, and quality control measures are 

often implemented (Kondermann, 2013, Arhin et al., 2021). 

3.5 Requirements of the Intervention 

The solution required for the evaluation and assessment of cleft lip repair aims to 

minimise human intervention. Human evaluation is peppered with prominent 

limitations such as fatigue, subconscious bias, lack of reproducibility, slow evaluation 

process hence taking longer per evaluation. Additionally, human visual interpretation 

is unique and can be a source of nonuniformity between specialists (Palmer, Schloss 

and Sammartino, 2013, Bennett et al., 2019). This research handles hundreds of 

images. Much as the dataset is deemed inadequate for computational modelling, 

human evaluation would last longer and would harbour inconsistencies. Therefore, 

computational interventions are expected to meet the following minimum thresholds. 

1. Reproducibility and Consistency 

Assessment and evaluation of cleft repairs are critical operations. These operations 

could easily be indicators for the level of commitment and skill of the surgeons. 

Following surgical repair, it is significant to evaluate the outcome in a consistent 

manner. If there exist any evaluation doubts, then reproduce the evaluation to aid the 

next course of action in the treatment plan/ cycle. This saves professional reputation 
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and resources. Computational methods can be automated and called upon repeatedly, 

whenever they are needed (Low, Bentley and Ghosh, 2020). This is unlike human 

evaluation team whose assessment requires an assembly which is hard to convene.  

2. Instant Evaluation Outcome 

The urgency of the evaluation of a cleft repair is important as is its consistency. 

Computational methods have the capability to produce instant evaluation of multiple 

cleft repair outcomes in a single operation command. This is unlike human specialists. 

From a research and practical perspective, this has potential to serve a great purpose 

in specialised equipment built for evaluation purposes only. Alternatively, a mobile 

application can be conceived for this purpose. Again, it is impossible having human 

specialists improvised as a mobile platform.  

3. Diverse Cleft Evaluation and Dataset Augmentation    

Several cases of cleft lip exist. Given a proper dataset of repairs from all the possible 

cases, a computational model is a better and reliable alternative. Once a model has 

been trained on an appropriate dataset that has been improved upon by augmentation 

and transfer learning (Wang et al., 2021), it serves a better purpose than several 

human specialists. Typically, specialist surgeons or carers handle a single aspect of 

the facial malformation. Therefore, the classification of different cleft lip conditions is 

possible with the power of modelling, unlike with human subjective and qualitative 

evaluation. Eventually, computational modelling together with the influence of artificial 

intelligence and machine learning helps with creation of a robust, faster, and scalable 

assessment mechanism.  
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Chapter 4 Shape Analysis Towards Cleft Lip Treatment 
Assessment 

 

 

4.1 Introduction 

This is the study of recognition and quantification of geometric properties and 

characteristics of objects or structures. This entails mathematical and computational 

analysis of shapes to extract meaningful information for shapes comparison, shapes 

classification into categories, and shape variations study (Loncaric, 1998a). 

Shape analysis is applied in various disciplines: computer vision, computer graphics, 

image processing, medical imaging, biology, and engineering. It plays a central role in 

specific tasks such as object recognition, shape matching, shape deformation, shape 

registration, and shape-based segmentation (Tabia and Laga, 2017, Arnaudon, Holm 

and Sommer, 2019). Shape-based segmentation has been innovatively applied in the 

representation of facial regions of interest (FRoI) by mapping of boundaries using 

contours.   

To successfully carry out shape analysis, we need to understand the following crucial 

aspects: 

1. Shape Representation  

Shapes can be represented using different mathematical representations, such as 

point clouds, contour curves, meshes, implicit functions, or parametric models. The 

choice of representation depends on the nature of the objects and the specific analysis 

requirements (Arnaudon, Holm and Sommer, 2019). Contour curves are key to the 

representation of the facial features and RoIs given their non-uniform structure. 

2. Shape Descriptors 

These are mathematical features or properties that capture the characteristics and 

provide quantitative representations of a shape. Such features include curvature, area, 

volume, moments, or Fourier coefficients and greatly facilitate shape comparison, 

classification, and retrieval (Rahmann, 2000). OpenCV can use inbuilt functions and 

procedures to retrieve shapes. Otherwise, contours and edges detection are 

fundamental for shape retrieval.   
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3. Matching of Shapes and their correspondences 

Shape matching aims to find correspondences or similarities between shapes. 

Matching techniques can be based on geometric features, such as point 

correspondences, contours, or surface features (Klingenberg, 2015). When a shape 

is partitioned into different segments, it is possible to compare the segments using 

different transformations and/or quantify the similarities/dissimilarities.  

4.2 Context and Problem Definition 

The shape analysis approach leverages on the fact that digital images contain useful 

features that facilitate analysis and research studies. Such features (both high-level 

and low-level) can be extracted from facial images and analysed to support automatic 

assessment of CL treatment outcome. This approach is based on low-level features 

of the lips and/or mouth region. The mouth boundary is detected following successful 

segmentation, as proven by the ground truth. The CL condition distorts the shape of 

the mouth. Therefore, following surgical treatment of the cleft lip, is it possible to 

determine that proper/considerable restoration of low-level features of the mouth 

region happened? Segmentation is a renowned technique for identification of the 

mouth region from a given facial image, using distinct lip colour and skin texture 

(Rohani et al., 2008, Saeed and Dugelay, 2010, Shoba and Sam, 2020). For example, 

the shape of the mouth is determined by some basic features such as the mouth 

corners, philtrum, and the upper and lower lips boundaries (upper and lower vermillion 

borders) (Carey et al., 2009, Kar et al., 2018). The alignment of the different features 

on either side of a potential symmetric axis is considered a measure of treatment 

outcome success or failure.  

The challenge is reduced to determining the symmetric axis using the mouth region 

features. Consequently, the overall structure similarity of the mouth region, folded over 

the symmetric axis, should be computed to quantify the treatment outcome 

assessment. 

4.3 Materials and Methods 

The following components and steps constitute the pipeline of this method: mouth 

detection, symmetrical axis determination, similarity measurement, and numerical 

score estimation. Mouth detection is vital for clear determination of the visual features 

of lips, vermilion lines and mouth corners from a given partial facial image. 
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4.3.1 Dataset and Tools 

The data set consists of four different categories of 25 partial facial images each. For 

ethical reasons, the facial images partially only reveal the nose and mouth/lips. In 

addition, it was also intended that human assessors are not biased by any other facial 

features. The dataset in this chapter consists of only the 25 images with a higher 

scoring or evaluation agreement among the human evaluators/ raters. Consistency 

and uniformity in assessment of the ground truth visual data is vital for reliability of 

ground truth numerical data. The latter category is also referred to as human numerical 

scores. However, in conducting the preliminary experiments, just like the human 

raters, all the 250 images were tested. 

The first category constitutes the 25 raw facial appearance images following CL 

treatment. This category is presented to human assessors, either in hard copy format 

or digitally for outcome assessment estimation. The second, third and fourth 

categories are ground truth (GT) images generated by 3 different human experts. They 

have been coded as GT1, GT2, and GT3 respectively. The different human experts 

manually draw/trace the mouth/lip region boundary using the open-source ImageJ 

software (Abràmoff, Magalhães and Ram, 2004, Schindelin et al., 2015).  

The ground truth categories of the dataset serve as validation images for the 

segmentation and the assessment prediction mechanism. Subsequently, Human 

numeric scores (HNS) were generated through a subjective appearance assessment 

process aided by statistical coding of assessor’s description of the individual images 

in the raw dataset. 

In this method, all the images of the 4 categories are automatically assessed and a 

numeric score is then generated. The automatically generated score is coded as the 

automatically estimated numeric score (AENS). This process is implemented using 

Python Programming Language7,  version 3.7. Compatibility tests were made for 

versions 3.8 – 3.10. Different software packages and libraries in the Python 

development ecosystem were also used:  

1. Open Computer Vision Library (OpenCV)8; 

 
7 https://www.python.org/ 
8 https://opencv.org/ 
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2. Matplotlib is used for creation of static, animated, and interactive visualisation 

with Python programming language.   

3. Keras open-source library, used for development, compilation, and execution 

of deep neural network-based segmentation algorithms.   

Computation of AENS is performed on GT1, GT2 and GT3, hence AENS can be 

respectively appended to the different dataset categories as GT1-AENS, GT2-AENS 

and GT3-AENS. 

4.3.2 Applied Image Pre-processing Techniques 

The following techniques were applied to the dataset before basic features were 

extracted.  

1. Resizing and Scaling 

Resizing an image involves changing its dimensions while preserving the aspect ratio 

whereas scaling changes the size of an image with little regard for the aspect ratio. 

Resizing and scaling are extensively used to standardise image dimensions, reduce 

computational complexity, and ensure compatibility across different algorithms and 

models. In this research, the images in our dataset needed uniform dimensions to 

perform objective quantitative analysis and scoring. Because the different images in 

the CCUK dataset were generated with different dimensions, resizing the different 

images was a natural step to take. For example, some images’ dimensions were 498 

by 487, 500 by 526, and 712 by 683, among other non-uniform dimensions. 

Additionally, if resizing and scaling are appropriately conducted as seen in Figure 4.1, 

image resolution is not compromised. Resizing helps to reduce the computational 

power due to reduced number of pixels. However, context-aware image resizing is 

becoming popular to reduce on computational load before the main computational 

steps are undertaken (Avidan and Shamir, 2007). In this chapter all the images were 

resized to 296 by 320 as opposed to a square dimension because a human face is 

not square. Besides, resizing can help with reducing on the image background, hence 

easily getting or separating the object or desired RoI from the input image. 
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Figure 4. 1: Appropriately resized and rescaled sample from the dataset. Left is the original input 
image with a higher resolution while the right image is carefully resized and scaled down image 

whose resolution has been maintained. 

 

2. Gray Scaling 

This is the transformation of a colour image into a single-channel image where each 

pixel represents the intensity of light. The image pixel values are either 0 or 1 (0 or 

255). Ordinarily, the average of the different colour bands is computed to associate 

binarisation as seen in Figure 4.2. Open Computer Vision (Open CV) (Intel, Santa 

Clara, California, USA) (Pulli et al., 2012) among other packages can be dynamically 

used to facilitate these processes. Grayscale images simplify processing tasks by 

reducing the computational complexity and removing colour-related information that 

may not be relevant to certain applications such as edge detection or texture analysis. 
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Figure 4. 2: Input colour image - left and grayscale image - right. 

 

3. Denoising 

Noise can substantially reduce image quality and affect subsequent analysis tasks. 

Denoising techniques aim to reduce unwanted differences caused by sensory 

limitations (from poor storage or heterogenous sources), compression, or other 

sources of noise. Common denoising methods include Gaussian blur, median filtering, 

and total variation denoising. Figure 4.3 shows the Gaussian blurring performed using 

different filter sizes. These techniques help improve image clarity and enhance the 

accuracy of image analysis algorithms such as the automatic appearance assessment 

approaches.  

 

Figure 4. 3:Denoising using the Gaussian approach with different filter sizes of 3 (middle)  
and 9 (right). 

 

 



56 
 

4.3.3 Feature Description and Detection 

All the facial images have been anonymised for ethical and other reasons as stated 

previously. On this note, it is impossible to detect other facial features, implying that 

only limited features can be identified. The focus is on detecting the features of the 

mouth region through segmentation. The anatomy of the human mouth region consists 

of the following key parts: the vermillion border (upper and lower), oral commissures 

(left and right) and the philtra ridges (left and right, separated by philtrum) (Carey et 

al., 2009, Berlin et al., 2014). 

Similarly, according to the anatomy of the human face, ideals of facial beauty indicate 

that the mouth region should be in the lower third of a given facial image (Prendergast, 

2011, Hashim et al., 2017). Because the skin colour and the lips may be 

indistinguishable, contrast enhancement and selection of suitable colour transform is 

inevitable. To mitigate this, the segmentation method should consider the semantics 

of individual pixels, first discussed in 1987 (Gritzman, Rubin and Pantanowitz, 2015). 

While traditional techniques which perform segmentation as a binarisation task usually 

under- perform at medical imagery analysis tasks (Kuruvilla et al., 2016, Wang, Wang 

and Zhu, 2020), the deep learning based semantic segmentation method (Yu et al., 

2018), has been employed in this specific approach. Nevertheless, residues such as 

scars, open mouth and runny nose still influence the segmentation outcome. Semantic 

segmentation enhances edge detection by creating a sharper contrast between the 

surrounding skin and the mouth region, hence facilitating shape identification and 

feature extraction. The ideal mouth region mainly consists of soft tissue features 

defined below:  

1. 𝑃𝑅𝐿 and 𝑃𝑅𝑅: The philtra ridges identified as one of the upper most extreme 

pixels on the left-hand and right-hand sides of the philtrum, found along the 

upper mouth boundary, respectively. Also, 𝑃𝑅 is short form for philtrum ridge. 

2. 𝑂𝐶𝐿 and 𝑂𝐶𝑅 : The left-hand and right-hand side mouth corners identified as the 

most extreme pixels on the left-hand and right-hand sides, located along the 

mouth boundary, respectively. 𝑂𝐶 is short form for oral commissure.  

3. 𝑉𝐵𝑈 and 𝑉𝐵𝐵 are a list of pixels constituting the upper and lower mouth region 

boundaries, stretching between 𝑂𝐶𝐿 and 𝑂𝐶𝑅. 𝑉𝐵 stands for vermillion border. 

Consequently, the two lists are defined as sets, Equation 1 and 2: 
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𝑉𝐵𝑈  =  {𝑢1, 𝑢2, . . . , 𝑢m}      (Equation 1) 

𝑉𝐵𝐵  =  {𝑏1, 𝑏2, . . . , 𝑏n}      (Equation 2) 

Where 𝑢i and 𝑏j are pixels in each 2D grayscale image I, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛,   

|𝑉𝐵𝑈| = 𝑖, |𝑉𝐵𝐵| = 𝑗, 

4. The mouth boundary 𝐵 is a combined list of 𝑉𝐵𝐵 and 𝑉𝐵𝑈 . Collectively, it is 

also known as the largest non-nested detected contour in the face, represented 

in Equation 3 below: 

                       𝐵 =  𝑉𝐵𝐵  ∪  𝑉𝐵𝑈     (Equation 3) 

 Where 𝑉𝐵𝐵  ∩  𝑉𝐵𝑈  =  {𝑂𝐶𝐿 , 𝑂𝐶𝑅},  𝑃𝑅𝐿 , 𝑃𝑅𝑅  ⊂  𝑉𝐵U, 𝑂𝐶𝐿 , 𝑂𝐶𝑅  ∈  𝐵, 

and 𝑛, 𝑚 are the list sizes of 𝑉𝐵𝐵 and 𝑉𝐵𝑈 respectively.  

5. The line that links 𝑂𝐶𝐿 and 𝑂𝐶𝑅 is not always parallel to the horizontal plane of 

the image. The line’s possible orientation angle 𝜃 to the horizontal plane 

dictates the magnitude of rotational transformation (Figure 4.4). If 𝜃 <  0, rotate 

anticlockwise; otherwise, rotate clockwise. Such orientation may influence how 

human subjects visualise and assess the different facial images. 

 

 

Figure 4. 4: This is an example for boundary extraction, rotation, and symmetry axis detection of a 
cropped mouth lip image. Top row - left: mouth corners are at different elevations from the horizontal 

axis. Top row - right: After anticlockwise rotation mouth corners are at the same elevation. Bottom row 
shows the symmetric axis (black and white). 

In Figure 4.1, the top row – left: Mouth corners are at different elevations from the 

horizontal axis. Top row - right: After anticlockwise rotation mouth corners are at the 

same elevation. Bottom row shows the symmetric axis (black and white). 
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4.3.4 Symmetric Axis Detection and Measurement 

 

Symmetry is defined as ‘Harmony of Proportions’ (Weyl, 1952). In his works on 

Mathematics, Prof. Hermann Weyl dwelt on geometric concepts of symmetry such as 

bilateral, translation, rotation, among others.  

The Oxford Advanced Learners Dictionary defines symmetry as “the exact match in 

size and shape between two halves, parts or sides of something” or “the quality of 

being very similar or equal”. Arguably, the term asymmetry can be inferred as the 

contrary. Several studies have indicated that aesthetically pleasing objects have a 

higher degree of symmetry (Penton-Voak et al., 2001, Little and Jones, 2003, Little, 

Jones and Debruine, 2011, Bella et al., 2016). Symmetric axes offer guidance towards 

taking measurements for size, similarity, equality, and categorisation of the shape, 

sides of the different halves, parts, or sides (Wei et al., 2022). 

Several approaches have been previously used in the general detection of symmetry. 

Related methods are discussed in (Deng, Loy and Tang, 2017). However, those 

techniques utilised many more local and invariant object features with higher 

contrasts. This approach utilises basic lip and mouth features instead, like the 

perception of human assessors. The midpoint 𝐷, computed in Equation 4 is a position 

where the vertical symmetric axis is plotted through the image plane. 

𝐷 =  (𝑂𝐶𝐿  + 𝑂𝐶𝑅)/ 2      (Equation 4) 

A vertical straight line plotted through D and crossing the lower and upper mouth 

boundaries ensures slicing the mouth region into two shapes, left-side shape, 𝑠ℎ𝑙  and 

right-side shape, 𝑠ℎ𝑟. The evenness or variance is computed and categorized using 

the structural similarity index measure, denoted by 𝑆 (Wang et al., 2004). 𝑆 is an 

aggregated rational number ranging between −1 and 1 for colour images or 0 and 1 

for binary images. 𝑠ℎ𝑙 and 𝑠ℎ𝑟 are considered as independent and unique shapes over 

which to compute 𝑆. 𝑆 is an aggregate of luminance 𝑙, contrast 𝑐, and structure 𝑠, as 

expressed in Equation. 5 below: 
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𝑆(𝑠ℎ𝑙 , 𝑠ℎ𝑟)  = [𝑙(𝑠ℎ𝑙 , 𝑠ℎ𝑟)𝛼 ×  𝑐(𝑠ℎ𝑙 , 𝑠ℎ𝑟)𝛽 × 𝑠(𝑠ℎ𝑙 , 𝑠ℎ𝑟)𝛾]  (Equation 5) 

Where 𝛼 =  1, 𝛽 = 1, and 𝛾 = 1 for easier implementation. Since the dimensions of 𝑠ℎ𝑙 

and 𝑠ℎ𝑟 should be similar, 𝑠ℎ𝑟 is vertically flipped along the vertically plotted symmetric 

axis. Setting the default statistical parameters of 𝑙, 𝑐 and 𝑠 (Wang et al., 2004) gives 

the usable form of the parameter 𝑆 in Equation 6 below: 

𝑆(𝑠ℎ𝑙 , 𝑠ℎ𝑟)  =
(2𝜇𝑠ℎ𝑙

𝜇𝑠ℎ𝑟+𝐶1)(2𝜎𝑠ℎ𝑙𝑠ℎ𝑟+𝐶2)

(𝜇𝑠ℎ𝑙
2  +𝜇𝑠ℎ𝑟

2  +𝐶1)(𝜎𝑠ℎ𝑙
2  +𝜎𝑠ℎ𝑟

2  +𝐶2)
    (Equation 6) 

Where 𝜇𝑠ℎ𝑙
, 𝜎𝑠ℎ𝑙

, 𝜇𝑠ℎ𝑟
, and 𝜎𝑠ℎ𝑙𝑠ℎ𝑟

 are the mean and standard deviations of pixels in 

shapes 𝑠ℎ𝑙 and 𝑠ℎ𝑟 respectively, 𝜎𝑠ℎ𝑙𝑠ℎ𝑟
 is the standard deviation of the pixels in 𝑠ℎ𝑙 

and 𝑠ℎ𝑟, 

𝐶1 = (𝑘1𝐿)2, 𝐶2 = (𝑘2𝐿)2, 𝑘1 = 0.01, 𝑘2 = 0.03, 𝐿 = 22 − 1 and 𝑝 is the number of bits 

per pixel. 

4.3.5 Quantitative Modelling for Outcome Assessment  

The next step is to quantitatively assess the CL treatment appearance outcome. This 

is accomplished by computing the structural similarity index measure 𝑆 by converting 

𝑆 to a numeric score in the range of 1 and 5, where 1 = ‘Excellent’, 2 = ‘Good’, 3 = 

‘Fair’, 4 = ‘Poor’ and 5 = ‘Very Poor’. The mathematical model is a function 𝑓 of 𝑆. 

Consequently, 𝑓(𝑆) should fulfill the following boundary and monotonicity 

functions: 𝑓(0) =  5, 𝑓(1) =  1 and 𝑓(𝑆) is monotonically decreasing. Therefore, 𝑓(𝑆) 

is the AENS.  

Modelling is the formation of a relationship between variables. Normally, between 

independent and dependent variables. For example, in prediction of prevalence of 

illnesses, several factors are modelled (Tiwari, Deyal and Bisht, 2020). In this work, 𝑆 

can be independently computed from each visual image following successful 

symmetry detection.  Therefore, defining the mathematical models below is intended 

create a relationship between AENS and 𝑆. The former is the dependent variable while 

the latter is the independent variable. Consequently, there is need for conversion of 𝑆 

into AENS using different mathematical formulae. The range of AENS must be 

between 1 and 5.  
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The three models in Equation 7, 8, and 9, were innovatively designed to aid a 

comparative study of the relationship between 𝑆 and 𝐴𝐸𝑁𝑆 (also 𝑓(𝑠)), resulting into 

the treatment outcome assessment as a number between 1 and 5.  

The design of these functions is based on several assumptions. The major assumption 

is that the relationship between 𝑆  and AENS could be linear or non-linear. 

𝑓(𝑆)  =   5 − 4𝑆     (Equation 7) 

𝑓(𝑆)  =  5 − 4𝑆3    (Equation 8) 

𝑓(𝑆)  =  1 (0.2 + 0.8𝑆2)⁄    (Equation 9) 

Equation 7 is derived by assuming a linear relationship between AENS and 𝑆. 

With a purpose to model an implicit linear relationship between 𝑆 and 𝑓(𝑆). The former 

is independent while the latter is dependent on the former. 

We needed to find a constant value (a coefficient) that represents the rate at which 

𝑓(𝑆) decreases in case 𝑆 increases.  

Additionally, there is need to assume the intercept which is a baseline value of 𝑓(𝑆) in 

case 𝑆 = 0. 

Based on 𝑦 = 𝑚𝑥 + 𝑐 as a general linear equation representation, the gradient, 𝑚 =

− 4, and  𝑐 = 5.  

This leads to arriving at 𝑓(𝑆)  =   5 − 4𝑆.  

The accuracy of equation 7 to predict AENS has been presented in subsequent 

sections.  

In a similar way, other degrees of mathematical models were derived from 𝑓(𝑆) and 

its relationship to 𝑆. 

Figure 4.5 presents three scenarios which have been considered for the generation of 

𝑠ℎ𝑙 and 𝑠ℎ𝑟, to facilitate further comparison and definition of the two shapes. 

Scenario 1: Parameters are calculated over the entire mouth blob. 

Scenario 2: Parameters are calculated over the entire mouth boundary only. 

Scenario 3: Parameters are calculated over the upper lip blob only. 
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Figure 4. 5: Different scenarios for parameter calculation. 𝑇𝑜𝑝: Scenario 1 where the entire mouth 

region blob, consisting of upper and lower lips has been split into right and left blobs (𝑠ℎ𝑙 and 

𝑠ℎ𝑟  respectively). 𝑠ℎ𝑟 has been flipped. 𝑀𝑖𝑑𝑑𝑙𝑒: Scenario 2 with the boundaries defined with different 

thicknesses of 1 and 3 pixels, respectively. 𝐵𝑜𝑡𝑡𝑜𝑚: Scenario 3. 

 

In Figure 4.5, Top: Scenario 1 where the entire mouth region blob, consisting of upper 

and lower lips has been split into right and left blobs (𝑠ℎ𝑙 and 𝑠ℎ𝑟  respectively). 𝑠ℎ𝑟 has 

been flipped. Middle: Scenario 2 with the boundaries defined with different thicknesses 

of 1 and 3 pixels, respectively. Bottom: Scenario 3. 

4.4 Implementation Summary  

This section presents the summarised/ procedural implementation of the solution 

discussed in this Chapter. Figure 4.6 is the most crucial algorithm (or function) that 

anchors the implementation of the discussed solution. 

1. Convert image to grayscale.  

2. Find contours in grayscale image. 

3. For each of the contours: 

3.1 Calculate the area of contour and store it as a list. 

4.  Find the index of the contour with the largest area in the list. 

5. Create an empty image with the same size as the grayscale image. 

6. Draw the largest contour on the empty image. 

7. Find the extreme points (i.e., left most, right most, topmost, bottom most) of the 

largest contour, 
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8. Calculate the center of mass using the left most and right most extreme points. 

9. Calculate the angle of orientation based on the line joining leftmost and rightmost 

points. 

10. Use angle of orientation to aid plotting a line perpendicular to a specific line and draw 

an arbitrary long bisector/ mouth radius. 

11. Plot potential vertical symmetric axis through the center of mass. 

12. Determine the upper most points which may correspond to the philtral ridges. One of 

the points is the upper most pixel along the boundary while the second point can be 

geometrically projected. 

13. Calculate the perspective transformation matrix. 

14. Warp the image using the perspective transformation matrix to obtain the straightened 

image (warped) with width and height. 

15. If the rotation angle of bounding rectangle is less than -45 degrees: 

15. 1 Rotate the warped image (warped) by 360 degrees and orientation angle and the 

rotation angle of the bounding rectangle. 

Else: 

15.2 Rotate the warped image by the rotation angle of the bounding rectangle less the 

angle of orientation.     

16. Return the warped image.  
 

Figure 4. 6: Most significant algorithm for extraction of the region of interest for generation of the 
largest boundary (or contour) of the mouth region. 

 

The above algorithm essentially detects the largest useful boundary (the contour) in 

the facial image. This is the boundary with the largest area. The identified contour is 

used on the corresponding facial image from which other parameters such as mouth 

shape similarity or dissimilarity are measured. Other algorithms are presented in 

Figure 4.7 and Figure 4.8. 

 

1. Use the computed median and any auto-determined upper and lower threshold for 

appropriate edge detection. 

2. Perform dilation to close some gaps between objects edges. 

3. Select from contours list in the image of the contour with the largest area and draw it. 
4. Draw the order of the bounding box points: bottom left, top left, top right, bottom 

right. 
5. Draw the width and height of the detected bounding box (usually rectangular). 
6. Determine coordinates of the points in the bounding box points. This is after the 

rectangular shape has been straightened (at zero degrees to the horizontal). 
7. Computer the perspective transformation matrix. 
8. Directly warp the rotated rectangle to get the straightened or horizontally aligned 

rectangle. 

 
Figure 4. 7: Algorithm for cropping of the face image for the region of interest. 
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When analysing the structural shape of the mouth, elimination of other facial 

components is performed through cropping out the mouth. Algorithm in Figure 4.4 can 

be used for this purposed. Before cropping, the region of interest should be 

semantically segmented using the basic building block of a deep learning network, 

whose skeleton is presented in the algorithm in Figure 4.5.  

 

1. Perform a suitable convolution operation with padding. 

2. Create a suitable convolutional layer with the specified number of input planes, output 

planes, and stride (usually, the default=1). 

3. Set padding to 1 to maintain the spatial dimensions of the input. 

4. Initialise the Network Basic Building Block with input channel, output channel, and 

stride. 
5. If input and output channels are not the same or stride is not 1, create a down sample 

operation. 
6. Else go back to step 1. 
7. Calculate the forward pass of the Basic Building Block. 
8.  If down sample is not None, apply the down sample operation to a given output. 
9. Perform an element-wise addition of shortcut and residual. 
10. Create a layer with Basic Building Block units. 

11. Initialise the layers list with a Basic Building Block that inputs appropriate input and 

output channels and the specified stride. 
12. Repetitively add specific Basic Building Block numbers to the Layers container 
13. Create a sequential container with the Layers in the list and return it. 
14. Finally, involve a Residual Network building block and append the above to return a 

module for use in an adapted semantic segmentation network.  
Figure 4. 8: Basic building block for an adapted network to semantically segment the facial image’s 

mouth region. 

 

4.4.1 Complexity Analysis  

Complexity analysis of different computational interventions determines the efficiency 

and performance characteristics of either the blueprint or the implementation(Bichler, 

2017). Complexity analysis helps with understanding how the runtime or memory 

usage of the implementation scales with input size (Erciyes, 2014). During analysis, 

the following activities were completed: 

1.  Identification of key operations such as loops and recursive operations. 

2. Counting of key operations which considers the number of times each identified 

operation is executed based on the input size.  
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3. Derivation of time complexity as the sum up the counts of operations and 

express the total as a mathematical function of the input size, such as 𝑛. 

4. Analyse the memory usage of the code, counting variables, data structures, 

and recursiveness. Additionally, the space usage is expressed as a function of 

input size, 𝑛. 

5. Comparison with known classes, a comparison was made between the derived 

complexities with known complexity classes such as linear, quadratic, 

logarithmic. 

In carrying out the above activities, the representation of efficiency metrics is 

performed using the Big O notation. Big O notation is a system of measurement for 

determining an algorithm's efficiency (Rutanen et al., 2013). Furthermore, this metric 

gives an estimate of the duration for a code segment (implementation) to run on 

different sets of inputs. In some cases, experiments may be performed to measure the 

effectiveness of a code segment scalability with an increase in input size. The following 

steps were used.  

1. Image Blurring 

This operation applies a blur filter to the image and involves iterating over each pixel 

in the image and computing an average based on neighbouring pixels. The time 

complexity is 𝑂(𝑛. 𝑚), where 𝑛 and 𝑚 are the height and width of the image, 

respectively. The space complexity is 𝑂(1) since the operation is performed in a 

uniform memory space. 

2. Thresholds Calculation and Adapted Canny Edge Detection 

Thresholds were automatically calculated in an adaptive manner as was edge 

detection using Canny’s algorithm. This operation involves iterating over each pixel in 

each image. The time complexity is 𝑂(𝑛. 𝑚), the space complexity is 𝑂(1). 

3. Morphological Operations 

Both dilation and erosion operations were performed to close and close out any pixels’ 

gaps stemming from edge detection at the boundaries. Therefore, both operations 

involve iterating over each pixel in the image. In this research, the operations are 

performed three times, so the time complexity is 𝑂(3. 𝑛. 𝑚) = 𝑂(𝑛. 𝑚), the space 

complexity is 𝑂(1). 
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4. Finding Contours 

There is need to find all possible contours in the edge-detected image. The intention 

is to eventually get a contour with the largest area.  

The time complexity depends on the number of contours found and their sizes. In the 

worst case, the time complexity can be 𝑂(𝑛. 𝑚), and the space complexity is 𝑂(𝑛. 𝑚) 

to store the contours.  

5. Calculate Area 

There is need to loop over each contour to calculate its area. If there are 𝑐 contours, 

the time complexity is 𝑂(𝑐), and the space complexity is 𝑂(1), since it only involves 

storing the areas. 

6. Selection of Contour with Largest Area 

The selection of the contour with the largest area involves finding the maximum area 

from the list of areas. If there are 𝑐 contours, then the time complexity is 𝑂(𝑐), and the 

space complexity is 𝑂(1). 

7. Calculate Center of Mass using Contour Points 

Given the largest contour, its points are traversed (through a loop iteration) with the 

aim of calculating the center of mass. If the largest contour has 𝑝 points, then the time 

complexity is 𝑂(𝑝), and the space complexity is 𝑂(1). 

8. Compute the Symmetric Axis using Extreme Points 

Extreme points are determined in one operation after which the symmetric axis is 

computed. This is a basic step that involves constant access and operations. 

Therefore, both the time complexity and space complexity are 𝑂(1). 

9. Model Construction and Score Calculation 

These operations involve constant time complexity 𝑂(1) because they are based on 

individual pixel values, derived from the structural similarity index measure.  

10. Image Split and Resize 

Before any structural similarity index measure is computed, the region of interest is 

split into two. Both image splitting and resizing depend on the dimensions of the 
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images. Let 𝑑1 and 𝑑2 be the dimensions of the two images. The time complexity is 

𝑂(𝑑1. 𝑑2) and the space complexity is 𝑂(𝑑1. 𝑑2) because new images are created.  

Overall Time Complexity 

The dominant time complexity is 𝑂(𝑛. 𝑚), due to the image processing operations 

involving iteration over each pixel in the image. If the image dimensions are the same, 

as may be the requirement in most image processing frameworks, then  

𝑛 =  𝑚. This implies that the time complexity is 𝑂(𝑛2).  

Overall Space Complexity 

The overall space complexity is 𝑂(𝑛. 𝑚), due to the storage of contours and 

intermediate images. Using a similar analogy, the overall space complexity is 𝑂(𝑛2). 

4.5 Outcomes of Shape Analysis 

This section presents both the qualitative and quantitative experimental results of the 

automatically programmed rating (𝑃𝑅) method and are compared with others, when 

applicable.  

4.5.1 Preprocessing Summary 

A 3 by 3 filter was used to denoise and smoothen the images. Additionally, before 

performing any edge detections, lower and upper thresholds were generated using the 

NumPy library functions of image median and minimum and maximum. Finally, the 

morphological operations of erosion and dilation through three iterations each were 

used to close any gaps between object edges. In order to minimise the computational 

power needed, some images are processed as grayscale (Vidal and Amigo, 2012, 

Ballabeni et al., 2015). Some of the outcomes of pre-processing are in Figures 4.1, 

4.2 and 4.3 above. 

4.5.2 Image Segmentation 

Following preprocessing is segmentation of the partial facial images using different 

approaches as presented below. 

1. Thresholding-Based Segmentation 

Thresholding techniques involve selecting a global threshold value and assigning 

pixels above or below that threshold to different segments. This simple yet effective 

method is widely used, especially in binary segmentation. Otsu’s thresholding 
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technique uses a global threshold value, but it is not chosen (Otsu, 1979). The 

threshold, T, is determined automatically. In the simplest form, the Otsu algorithm 

outputs a single intensity threshold that separates pixels into two classes, foreground, 

and background. Figure 4.9 shows some outcomes from Otsu thresholding 

segmentation. Automatically determined Otsu threshold is 199 (left) and 221 (right) 

 

Figure 4. 9: Results from Otsu thresholding where threshold T has different values: second figure 

where T=100, third is where T=125 and fourth is where T=150. T=125 shows a better result for the 

mouth region. 

 

However, this technic works accurately for bimodal images. The bimodal images are 

those images whose histogram has two peaks. The threshold value is the approximate 

value of the middle of these two peaks. 

Additionally, Figure 4.10 presents the segmentation outcomes for another facial image 

using some traditional approaches.  

 

Figure 4. 10: facial features segmentation outcomes using traditional approaches. 𝑎: input image, 𝑏: 

grayscale image, 𝑐: canny edge detection, 𝑑: saliency map detection using maximum symmetric 

saliency detection result, 𝑒: Otsu segmentation result, 𝑓: Moment-preservation segmentation. 

 

Clearly, the outcomes in Figures 4.9 and 4.10 are not suitable for analysis. 

 

a b c d e f 
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In Figure 4.10, there are the following outputs: 𝑎: input image, 𝑏: grayscale image, 𝑐: 

canny edge detection, 𝑑: saliency map detection using maximum symmetric saliency 

detection result, 𝑒: Otsu segmentation result, 𝑓: Moment-preservation segmentation. 

However, result 𝑐 and 𝑑 portray the shape of the mouth region with results in 𝑒 and 𝑓 

showing a vague mouth shape. Such is the binarisation challenge using traditional 

algorithms.  

2. Clustering-Based Segmentation 

This approach utilises clustering algorithms, such as k-means (MacQueen, James and 

others, 1967, Hartigan and Wong, 1979) and mean-shift (Comaniciu and Meer, 2002), 

to group pixels into clusters based on their similarity in feature space. These methods 

allow for unsupervised segmentation and are effective in scenarios where the number 

of segments is either unknown or varies or both. 

Classical clustering algorithms operate by partitioning the feature space, which can 

include colour, texture, or other relevant image features. The algorithm steps include 

feature extraction and post processing. These flexible techniques are widely used in 

various applications such as image analysis and pattern recognition (Chen et al., 2015, 

Xia et al., 2016). Figure 4.11 shows the outcomes of the selected clustering algorithms.  

In the CCUK dataset, overall, K-means is a better clustering approach because the 

number of clusters are easily set compared to the mean shift-based cluster outcomes. 

Our dataset easily accepted a fixed number of clusters of 3. Mean shift failed to 

automatically generate a consistent number of clusters around which datapoints could 

converge. 

K-means (𝐾𝑀) and mean shift (𝑀𝑆) usually produce unsatisfactory results, though 

better than the traditional approaches. A comparative presentation between the MS 

(spatial 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 20, 𝑐𝑜𝑙𝑜𝑢𝑟 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 7), KM (𝑘 = 3) and bilateral real-time 

semantic network (𝑆𝑁) segmentation is given in Figure 4.11.  
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Figure 4. 11: More segmentation results: Top row: 1st: input image, 2nd Result from mean shift 

segmentation, 3rd is k-means segmentation outcome and 4th: bilateral semantic network 

segmentation. Bottom row: the average 𝐹1_𝑆𝑐𝑜𝑟𝑒 for the 4 categories of the dataset of 25 images is 
calculated and plotted against the image ID. The average from 𝑆𝑁 segmentation (𝐴𝑣𝑔 𝑆𝑁𝑆) is better 

than the 𝐹1_𝑆𝑐𝑜𝑟𝑒 for 𝑀𝑆 and 𝐾𝑀 segmentation results. 

The performance measurement used is F1 𝑆𝑐𝑜𝑟𝑒 percentage: the higher the better. 

The F1 score is a metric commonly used in machine learning and statistics to assess 

the performance of (mainly classification) models, especially when dealing with 

imbalanced datasets. It combines two fundamental evaluation metrics, precision, and 

recall, into a single score to provide a balanced measure of a model's accuracy 

(Vujović, 2021). 

Precision is the ratio of correctly predicted positive instances (true positives) to all 

instances predicted as positive (true positives + false positives) while Recall, also 

known as sensitivity or true positive rate, is the ratio of correctly predicted positive 

instances (true positives) to all actual positive instances (true positives + false 

negatives).  

F1 Score: The F1 score is the harmonic mean of precision and recall and is calculated 

using the following formula: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙) 

The harmonic mean gives more weight to lower values, making the F1 score a suitable 

metric for situations where you want to balance precision and recall. It ranges from 0 

to 1, with higher values indicating better model performance. 
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Clustering-based approaches (such as KM and MS) yielded worse outcomes with 

discontinuous areas and boundaries compared to deep learning methods (such as 

SN).  Gaussian blurring, morphing and dilation were usually used to mitigate such 

issues. The segmented mouth region (the required RoI) is found in the bottom third of 

the facial image. Standardisation with a bounding box was also used to reduce the 

background from the image as seen in Figure 4.1, above. 

For each image in the evaluation dataset of 25 images, the F1 score was calculated 

against the three segmentation results. For example, the segmentation result for 

AOBA from KM, MS and SN was used to calculate the F1-score against the AOBA 

input image to measure accuracy. However, AOBA has 3 versions of GT1, GT2 and 

GT3 from which to compute the F1-score. Therefore, the average F1-score (Table 4.4) 

was calculated from Tables 4.1, 4.2 and 4.3 and used to plot the graphical visualisation 

in Figure 4.11.  

Table 4. 1: KM Segmentation-based F1 Score between predicted result (PR) and all ground truth 
datasets. 

Set_ID PR_GT1 PR_GT2 PR_GT3 

AOBA 0.815648065 0.807862004 0.806662 
AOFA 0.93320467 0.945721553 0.927642 
APAA 0.908377733 0.944606788 0.910623 
AQCA 0.94625209 0.928272493 0.922093 
CLDA 0.108813418 0.11788113 0.12464 
CNCA 0.887036643 0.85367664 0.914286 
CPCA 0.260777009 0.225259705 0.29327 
DMAA 0.550027168 0.534708824 0.394108 
DMCA 0.875859385 0.891853014 0.942704 
DNBA 0.900602186 0.870074983 0.194787 
DPAA 0.261911565 0.269644224 0.860335 
DPBA 0.74425136 0.736581147 0.733232 
EOAA 0.057533887 0.058298996 0.0596 
EPFA 0.176339721 0.188451004 0.236048 
FMBA 0.299097455 0.30419909 0.307775 
FNEA 0.888163071 0.921539513 0.901553 
FNFA 0.966946174 0.961932127 0.96837 
FNGA 0.969148432 0.946422043 0.946868 
FOEA 0.315040538 0.304043716 0.311125 
FPAA 0.262378386 0.246870983 0.243172 
FPBA 0.311234531 0.280639802 0.29368 
FPHA 0.222842974 0.225425141 0.225105 
FPIA 0.28082756 0.239577911 0.238855 
GLAA 0.483187845 0.479348816 0.475409 
GLCA 0.949514732 0.949579103 0.967063 
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Table 4. 2: MS Segmentation-based F1 Score between predicted result (PR) and all ground truth 
datasets. 

Set_ID PR_GT1 PR_GT2 PR_GT3 

AOBA 0.494092014 0.516165862 0.507945043 

AOFA 0.570350252 0.575049263 0.545726737 

APAA 0.679237793 0.653155941 0.664297612 

AQCA 0.034911495 0.034168066 0.036595753 

CLDA 0.750890614 0.739470712 0.711944975 

CNCA 0.829286608 0.796070629 0.806266973 

CPCA 0.187896978 0.167763158 0.194493184 

DMAA 0.087337986 0.09223847 0.062444908 

DMCA 0.931687243 0.932992618 0.920016692 

DNBA 0.885341497 0.894374206 0.215710511 

DPAA 0.742285425 0.775460931 0.289780266 

DPBA 0.898543689 0.889666308 0.911403705 

EOAA 0.465725962 0.456149068 0.460879511 

EPFA 0.533431301 0.530143411 0.48441358 

FMBA 0.154897203 0.137407478 0.158753084 

FNEA 0.216843579 0.206396675 0.210046619 

FNFA 0.692235457 0.689118557 0.690590869 

FNGA 0.770102684 0.790837368 0.776221513 

FOEA 0.846807172 0.838568268 0.84336059 

FPAA 0.030351759 0.030953862 0.030539849 

FPBA 0.189383706 0.201624505 0.206126875 

FPHA 0.897982028 0.89681709 0.893944363 

FPIA 0.035299341 0.034209646 0.035300211 

GLAA 0.902059827 0.90896858 0.88216728 

GLCA 0.012155434 0.012172907 0.01183122 

 

Table 4. 3: SN Segmentation-based F1 Score between predicted result (PR) and all ground truth 
datasets. 

Set_ID PR_GT1 PR_GT2 PR_GT3 

AOBA 0.922593654 0.929714601 0.937361431 

AOFA 0.95611049 0.945148938 0.960660114 

APAA 0.881634719 0.894875205 0.950560316 

AQCA 0.939808501 0.951709091 0.961450855 

CLDA 0.845787164 0.820419886 0.83271284 

CNCA 0.892463555 0.911219663 0.911476679 

CPCA 0.936068892 0.913825118 0.963893623 

DMAA 0.917746155 0.917882118 0.278684821 

DMCA 0.641430766 0.690865226 0.751957149 

DNBA 0.202237914 0.217638392 0.938616071 

DPAA 0.903187409 0.885069955 0.229224989 

DPBA 0.885734676 0.909310373 0.896859021 

EOAA 0.922231502 0.944904972 0.938755497 

EPFA 0.892086331 0.885092418 0.936974106 



72 
 

FMBA 0.935641461 0.928154124 0.944181078 

FNEA 0.955355332 0.952948935 0.966313541 

FNFA 0.958210863 0.965622412 0.969076523 

FNGA 0.970849138 0.963240743 0.937671191 

FOEA 0.92736166 0.936578928 0.959624244 

FPAA 0.940172444 0.919717405 0.891144557 

FPBA 0.967337204 0.967680418 0.965182713 

FPHA 0.95808807 0.949489796 0.957186922 

FPIA 0.914362639 0.934328194 0.880944713 

GLAA 0.911015288 0.913205021 0.927808086 

GLCA 0.916082675 0.913603902 0.905149169 

 

Table 4. 4: Average F1 Scores from GT1, GT2 and GT3. 

Set_ID Avg SNS Avg MSS Avg KMS 

AOBA 93.0 50.6 81.0 

AOFA 95.4 56.4 93.6 

APAA 90.9 66.6 92.1 

AQCA 95.1 3.5 93.2 

CLDA 83.3 73.4 11.7 

CNCA 90.5 81.1 88.5 

CPCA 93.8 18.3 26.0 

DMAA 70.5 8.1 49.3 

DMCA 69.5 92.8 90.3 

DNBA 45.3 66.5 65.5 

DPAA 67.2 60.3 46.4 

DPBA 89.7 90.0 73.8 

EOAA 93.5 46.1 5.8 

EPFA 90.5 51.6 20.0 

FMBA 93.6 15.0 30.4 

FNEA 95.8 21.1 90.4 

FNFA 96.4 69.1 96.6 

FNGA 95.7 77.9 95.4 

FOEA 94.1 84.3 31.0 

FPAA 91.7 3.1 25.1 

FPBA 96.7 19.9 29.5 

FPHA 95.5 89.6 22.4 

FPIA 91.0 3.5 25.3 

GLAA 91.7 89.8 47.9 

GLCA 91.2 1.2 95.5 

 

The F1 score results in Table 4.4 indicate that the average F1 score using 𝑆𝑁 

segmentation (Avg SNS) is better than the average F1 score for using 𝑀𝑆 

segmentation (Avg MS) and 𝐾𝑀 segmentation (Avg KM). Additionally, the blue plotted 

graph in Figure 4.11 supplements this observation. Therefore, SN segmentation is a 
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more reliable segmentation algorithm. There is notable variation in SN or KM or MS 

segmentation F1 Score values among the different datasets. This is attributed to 

potential inter-expert variability in generation of the ground truth visuals (Kondermann, 

2013) as well as intricate variabilities of the segmentation algorithms themselves 

(Wang, Wang and Zhu, 2020).  

4.5.3 Validation of Shape Analysis Assessment Approach 

Successful segmentation is followed by identification of features and points such as 

boundaries (vermillion borders), extreme points (philtra ridges, oral 

commissures/mouth corners) and the boundaries enclosures. However, 𝑆 is computed 

alongside the different features of the mouth region. After computing 𝑆 based on the 

three scenarios stated above, 𝑆 is converted into a numeric score (AENS). 

Consequently, AENS and HNS are contrasted using Pearsons Correlation Coefficient 

(𝑃𝐶𝐶), where the higher the better.  

Standardisation through image orientation and alignment using the bounding box 

improves the value of 𝑆, hence the AENS. The indicator of this observation is that 

mouth orientation has potential to affect and influence human assessors whose visual 

perception may be compromised. This is an interesting finding that is worth further 

investigation in clinical setting and ground truth collection. Table 4.5 shows this 

observation. The value of 𝑆 is significantly improved upon before and after 

standardisation of the mouth orientation in Scenario 1. 

Table 4. 5: Comparison of 𝑆 before and after standardisation of the mouth orientation in Scenario 1. 

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑆 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑆 
𝐵𝑒𝑓𝑜𝑟𝑒 𝐴𝑓𝑡𝑒𝑟 𝐵𝑒𝑓𝑜𝑟𝑒 𝐴𝑓𝑡𝑒𝑟 

𝑃𝑅 0.24 < 𝑆 < 0.82 0.55 < 𝑆 < 0.89 0.60 0.79 
𝐺𝑇1 0.30 < 𝑆 < 0.84 0.49 < 𝑆 < 0.89 0.60 0.72 
𝐺𝑇2 0.28 < 𝑆 < 0.84 0.39 < 𝑆 < 0.86 0.60 0.69 
𝐺𝑇3 0.35 < 𝑆 < 0.82 0.51 < 𝑆 < 0.88 0.64 0.72 

 

The performance metrics of shape analysis are presented in Figure 4.8 over 3 

scenarios, 3 models (defined in Equations 7, 8 and 9) and 2 options of the symmetric 

axis crossing position, 𝐷 and 𝐷2. 𝐷 and 𝐷2 are respectively defined in Equations 4 and 

10.  

𝐷2  =  𝑑(𝑂𝐶𝐿  +  𝑂𝐶𝑅)/2     Equation 10 
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Where an inward shift factor 𝑑 of 5% has been experimented as the most effective. 

Naturally, mouth corners are normally not easily detected accurately due to imaging 

noise and shadows (Zhang et al., 2012).  

Figure 4.12 also shows PCC results for HNS vs AENS for the different dataset 

categories. In a nutshell, PCC results for different scenarios over the different 

transformation models. Odd row: symmetric axis plotted at D; Even row: symmetric 

axis plotted at D2. Top two rows represent Scenario 1; Middle two rows represent 

Scenario 2 and Bottom two rows represent Scenario 3. 
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Figure 4. 12: This figure shows different tables for the PCC of the AENS vs AENS for different dataset 
categories, GT1, GT2, GT3 and the PR. Results showed are also for PCC of HNS vs AENS for the 

different dataset categories. In a nutshell, PCC results for different scenarios over the different 
transformation models. Odd row: symmetric axis plotted at D; Even row: symmetric axis plotted at D2. 

Top two rows: Scenario 1; Middle two rows: Scenario 2; Bottom two rows: Scenario 3. 

 

The most significant 𝑃𝐶𝐶 is between 𝑃𝑅_𝐴𝐸𝑁𝑆 and 𝐻𝑁𝑆 because the intention of 

automation is to discover whether the fully automatic assessment mechanism agrees 

with the human assessment approach. 

    

                              Viewer does not support full SVG 1.1
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The highest 𝑃𝐶𝐶 is about 40% (𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1, 𝑇𝑎𝑏𝑙𝑒 𝐷, 𝐹𝑖𝑔𝑢𝑟𝑒 4.12) and the lowest is 

about 15% (𝑇𝑎𝑏𝑙𝑒 𝐹, 𝐹𝑖𝑔𝑢𝑟𝑒 4.12). This is partly due to the inconsistency among 

human assessors in assigning scores between different images. Overall, shifting the 

mouth corners inward improves the most significant 𝑃𝐶𝐶 across the three models. 

However, the model in Equation 8 is the most robust, implying that the mapping 

between shape structural similarity measurements (𝑆) and appearance assessment 

scores (𝐴𝐸𝑁𝑆) is non-linear. In sharp contrast, the 𝑃𝐶𝐶 between 𝑃𝑅_𝐴𝐸𝑁𝑆 and either 

𝐺𝑇1_𝐴𝐸𝑁𝑆, 𝐺𝑇2_𝐴𝐸𝑁𝑆 or 𝐺𝑇3_𝐴𝐸𝑁𝑆 is significantly higher, as high as 94% 

(𝑇𝑎𝑏𝑙𝑒 𝐹, 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1). Implying that automatic segmentation of the mouth regions as 

accurate as the human drawn mouth boundaries. 

In Scenario 2, the most significant 𝑃𝐶𝐶 is about 31%, (𝑇𝑎𝑏𝑙𝑒 𝐵). There is little 

difference in the various correlations over different setups, indicating that the mouth 

boundaries may not be as predictive as expected. This is somewhat contradictory to 

the practice that focuses on the vermilion border lines and thus requires further 

investigation. Scenario 3 has produced the lowest 𝑃𝐶𝐶 in the category of 𝑃𝑅_𝐴𝐸𝑁𝑆 of 

38% (𝑇𝑎𝑏𝑙𝑒 𝐷). A similar trend has been noticed for, 𝐺𝑇1_𝐴𝐸𝑁𝑆, 𝐺𝑇2_𝐴𝐸𝑁𝑆 and 

𝐺𝑇3_𝐴𝐸𝑁𝑆 with the same scenario. This is a clear indication that the process to 

determine the RoI is still challenged, thus can be improved upon. 

It is noted that determining the symmetric axis using fewer features is a potential 

limitation of this approach. Consequently, Chapter 5 presents a hybrid approach with 

improved results. Additionally, the benchmark for the validity testing of this technique 

is based on a single approach, spearheaded by human experts.  

4.6 Summary of Shape Analysis Framework  

Shape analysis is an automatic appearance assessment approach for CL treatment 

outcomes that utilises lips and mouth features. These low-level features are 

considered appealing to humans and can be distinguishable to aid with appearances 

judgement. The features include oral commissures, philtra ridges and the vermillion 

border. Once the mouth region has been detected using the bilateral semantic 

segmentation network method and split through the midpoint of the horizontal line 

linking the mouth corners, the two ensued blobs are analysed for potential evenness 

or unevenness. To this end, the widely used structural similarity index measure (Wang 

et al., 2004) is employed. The measure is a rational number, which is then converted 
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non-linearly to a numeric score in the range of 1 and 5, like the Asher-McDade 5-point 

Likert Scale used by human experts. A numerical similarity computation following a 

symmetric axis computation is a better objective appearances assessment of the 

repaired lips compared to the qualitative measures proposed in (Pigott and Pigott, 

2010, Deall et al., 2016b, Pietruski, Majak and Antoszewski, 2017). The discussed 

experimental results disclose that the automatically estimated numeric scores have 

relatively low correlation coefficients with human assigned score but have high 

correlation coefficients with those estimated from the human manually drawn mouth 

regions. 

It is also noted that inward shift of the mouth corners by 5% improves the accuracy of 

the midpoint 𝐷2 and offers an alternative for a symmetric axis position to combat the 

challenging nature in identifying the mouth corners with improved appearances 

assessment scores. Chapter 5 presents more accurate estimations of the symmetrical 

axis using hybrid approaches and different measurement between the two sides of the 

mouth regions is significantly improved. Some of the weaknesses of the approach 

presented in this Chapter are addressed in Chapter 6.  
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Chapter 5 Adaptive Symmetry from Key Landmarks 
Using the Hybrid Approach 

 

 

5.1 Introduction 

Surgical treatment of the CL condition is meant for complete or partial restoration of 

key facial features. Because these features define the appearance of an individual’s 

face, they can be referred to as facial landmarks (Naqvi et al., 2022). Therefore, given 

that individuals are different, facial landmarks are better described biologically or 

genetically. 

Biologically, facial landmarks are specific anatomical points or features on the human 

face that have consistent locations and are used as reference points for various 

analyses, measurements, and descriptions. These landmarks represent distinct 

anatomical structures or specific locations on the face and play a crucial role in 

understanding facial morphology, development, and variation (Shier, Butler and Lewis, 

2007). 

These landmarks, among others, are used in various fields, including anthropology, 

genetics, craniofacial surgery, and facial recognition technology, to study facial 

morphology, growth, and development, as well as to understand facial characteristics 

and their variations within and across populations (Kukharev and Kaziyeva, 2020, 

Naqvi et al., 2022). 

In this research, partially occluded facial images are used, implying that the landmarks 

can only be found at the eyes & brows, nose, or mouth region. In analysis studies, 

facial landmarks are key anatomical points of reference to aid taking measurements 

and application in domains such as anthropometry, 2D/3D imaging studies, 

preparation for surgical procedures (Fink and Neave, 2005). Detection of some 

important features is of paramount importance regarding understanding the 

restoration and recovery of some regions following the CL surgical treatment. 

The mouth lip beauty is a targeted outcome measure. The obvious distortion of the lip 

morphology hinders detection and identification of key features, considered essential 

for beauty. The features depicted from the facial appearance outcome significantly aid 

towards categorization as success or failure of a cleft repair. Eventually, this aids any 
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audit of different cleft repair practices by assessing the restoration of the mouth lips 

(Hashim et al., 2017, Kar et al., 2018). 

5.2 Identification of Features from Partially Occluded Facial Images 

Occlusion in computer vision started in the 1960s when Guzman proposed to detect 

faint lines in polyhedral drawings (Hoiem, Efros and Hebert, 2011). Consequently, it 

has been a subject of study in computer vision for detection of hidden facial features 

using convolutional neural networks with an attention mechanism (Li, Zeng, et al., 

2019); facial appearance and shape learning to robustly detect facial features using 

an occlusion-adaptive deep network (Zhu et al., 2019); and cascaded pose regression 

(CPR) (Dollár, Welinder and Perona, 2010, Burgos-Artizzu, Perona and Dollar, 2013). 

However, the notion of face detection before any features are identified is a persistent 

component and not appropriately applicable to datasets whose facial features and 

shape has been significantly occluded. 

Determining facial features in images/videos is predominantly premised on a detected 

face Therefore, face detection is a major component of facial feature identification 

studies. Facial anonymisation of appearance outcomes is a convention for cleft lip 

related studies (Lee et al., 2019). It is logically commendable and ethically a best 

practice for unbiased outcome assessment audit of different practices. Anonymization 

obstructs biased human assessment from any eye colour, ears shape, hair etc, unlike 

computer-based assessment (Shkoukani, Chen and Vong, 2013, Lee et al., 2019).  

Consequently, the images used during outcome assessment bear significant partial 

occlusion. 

Some of the facial image features of significant importance include inner eye corners 

(i.e. inner canthus, lacrimal punctum and inner canthal distance), nose features (tip, 

ala, root, and nasal base) and mouth features (upper/lower lip vermillion, oral 

commissure, vermillion border) (Hall et al., 2009, Hennekam et al., 2009). Presence 

of these features in the facial images symbolises beauty. Therefore, computer vision 

tools aim to detect and locate these features, hence assess beauty using symmetry 

and other suitable shape defining parameters (Sharma et al., 2012). Deep learning-

based methods have robust prediction capabilities to detect occluded features from 

visual data such as facial images.  
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Most facial features occur in group or pairwise classification and can be used to 

determine the symmetric or asymmetric nature of a facial appearance. Key mouth 

features are used in (Bakaki et al., 2021) to determine the symmetry axis from which 

shape analysis is applied for facial appearance assessment. Scars and other skin 

residues from surgical repair and photography effects can naturally cause features 

occlusion and influence appearance outcome assessment. Given this fact, deep 

learning techniques and regression studies have registered success regarding feature 

detection.  

The approach used in this section disregards face detection because all visuals used 

in this study are anonymised facial images. Therefore, a deep learning-based 

approach has been used for detection of facial features from cropped images for the 

analysis and assessment of CL treatment outcome. 

One study on occluded facial landmarks detection uses statistical regression analysis 

framework where the facial image is partitioned into nine equal portions with 

anticipated landmarks positions (Dollár, Welinder and Perona, 2010). It has been 

applied to normal facial images in several datasets such as WFLF (Sagonas et al., 

2013) and COFW (Burgos-Artizzu, Perona and Dollar, 2013). A more robust approach 

(RCPR) introduced in (Burgos-Artizzu, Perona and Dollar, 2013) operates under 

difficult occlusion with the intention to improve the performance in (Dollár, Welinder 

and Perona, 2010). 

The general assumption that occlusion is casually created using external objects such 

as spectacles, caps, hair styling, religious attires etc is not conclusive. This study 

introduces and investigates a unique case of CL images where occlusion is introduced 

by the surgical treatment procedure and ethical norms instead.  

5.3 Approach and Implementation 

In this section, a detailed step by step discussion is presented. The aim is to detect as 

many feature points as possible. Additionally, the objective is to classify and group the 

detected feature points in the three apparent segments of the facial images: upper 

third, middle third and bottom third, represented as the periorbital region, nose region 

and lips/oral region respectively (Erian and Shiffman, 2011, Hashim et al., 2017), 

please refer to Figure 5.1. 
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Figure 5. 1: Illustration and adaptation of horizontal thirds under occlusion of a cropped 
face (𝑙𝑒𝑓𝑡) and full face (𝑟𝑖𝑔ℎ𝑡) 

Successful categorisation of these features is crucial towards the determination of the 

most befitting symmetric axis of the face. To this end, a deep learning-based method 

is used to detect the facial feature points of interest in the three regions: pre-

processing, feature detection, symmetrical axis estimation and numerical score 

estimation. These steps are detailed below. 

1. Pre-processing  

It is fundamental that preprocessing is conducted on the different outcome facial 

images using an appropriate filter. Filters have an enhancement and smoothing effect 

to facilitate generation of better segmentation results (Frery, 2013). Several filters such 

as Gaussian, Laplacian of Gaussian, median and the others (Frery, 2013) can be used 

for this purpose. However, given the nature of our dataset’s visuals, a 3 𝑏𝑦 3 Gaussian 

filter was the best choice because image pixels are evenly distributed despite any 

image degenerative conditions with each element set to 1. Without the Gaussian 

filtering, less features are detected. Other filters can be designed. Examples of other 

filters are: 

𝑚𝑒𝑎𝑛 𝑓 =  
1

9
[
1 1 1
1 1 1
1 1 1

] and a vertical Sobel filter:  𝑓 =  [
−1 0 1
−2 0 2
−1 0 1

] 

Following filtering is segmentation such as using edge-based segmentation. This 

technique detects and traces boundaries or edges between different regions in an 

image. The Canny edge detector is a widely used method that identifies significant 

edges based on gradient information. Other edge-based methods, such as the Sobel 
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operator and Laplacian of Gaussian, are also frequently utilized (Canny, 1986). 

Different operations have different outcomes when used in different colour systems 

such as HSV or RGB, as seen in Figure 5.2. 

Laplacian edges produce better results across HSV than RGB colour spaces, but 

struggle on grayscale images. SobelY edges are second best in performance, 

following our experiments. This is attributed to presence of more horizontally inclined 

features than vertically pronouncing features. The grayscale image from an HSV 

segmented image has better visibility than its RGB counterpart. This is attributed to 

the fact that HSV separates luma, or the image intensity, from chroma or the colour 

information (Hu et al., 2021). In subsequent studies, exploration of the image intensity 

components without their colour components will be studied. Besides, HSV is more 

human natural friendly space compared to RGB.  

Some of the outputs from these filters are presented in Figure 5.2. 

 

Figure 5. 2: Different filters used to visualize features for potential classification. 𝐿𝑒𝑓𝑡 𝑓𝑜𝑢𝑟 

columns show that facial features are not clearly localized. 𝑅𝑖𝑔ℎ𝑡 𝑓𝑜𝑢𝑟 columns show 
clearer features from the same filters after segmentation using an ML approach. 

 

The left four columns show that facial features are not clearly localised using any of 

the filters in the RGB and HSV colour spaces. The best result in the first four columns 

stems from applying Sobel Y filter to a grayscale image. The outcome image is not a 

plausible choice for any computational method. The last four columns have had 

semantic segmentation transformation on the input image.  The mouth boundary for 

the images using different filters in clear from all colour spaces apart from grayscale 

image in column 6, row 2 with Laplacian edge filters. Therefore, the best choice of 

images is using the RGB with canny edge filters. It produces a clearer mouth boundary 
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outcome from both grayscale and RGB images. The outcome is also computationally 

lighter to process.  

2. Recognition of Salient Regions using Semantic Segmentation  

Convolutional neural networks (CNNs) have revolutionised image segmentation. Fully 

Convolutional Networks (FCNs), U-Net, and Mask R-CNN are popular architectures 

used for pixel-wise segmentation tasks. These methods achieve state-of-the-art 

performance by leveraging large-scale annotated datasets and end-to-end learning. 

For example the bilateral semantic segmentation network performs segmentation at 

pixel level to differentiate between skin colour patterns of the human facial features 

using rich spatial information and sizeable receptive fields (Yu et al., 2018). Semantic 

segmentation can be applied in real time in medical images diagnostics, autonomous 

vehicles training and traffic management (Garcia-Garcia et al., 2017).  

Bilateral Segmentation Network works with two parts, namely, the Spatial Path (SP) 

and Context Path (CP). The SP component is devised to confront with the loss of 

spatial information while the CP component is designed to shrinkage of the receptive 

field for intensity values. The design of the two paths is such that for SP, only three 

convolution layers are stacked to obtain the 1/8 feature map, which retains affluent 

spatial details. However, for CP component, a global average pooling layer is 

appended on the tail of Xception network. By so doing, the receptive field becomes 

the maximum backbone network. This technique has mitigated previous semantic 

segmentation interventions that compromise spatial resolution for real-time speedy 

segmentation.  

Additionally, the segmentation network uses the attention refinement module to refine 

features at every stage of processing by employing the global average pooling. This 

is used to capture global context by computing the required attention vector used to 

guide features learning. Next, the feature fusion module sums up or fuses the features 

from CP and SP components (Yu et al., 2020). This module is part of the network 

architecture. Finally, batch normalisation is applied to balance the scales of the 

features.  

Whereas the principal loss of used to monitor the output of the whole bilateral semantic 

network, the SoftMax loss is used to monitor the loss from the CP component.  
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Using the bilateral semantic segmentation, a desired region of interest can be 

segmented, Figure 5.3 has some outcomes. In the three rows in Figure 5.3, the first 

column is the input image, the second column represents the outcome of segmenting 

the mouth and eye corners, however, all eye corners are missed in row 1, column 2, 

one eye corner is missed in row 2 column 2, while all eye corners are segmented in 

row 3 column 2. The third column shows that only the upper lip can be segmented 

while the fourth column indicates that the network can be configured to segment only 

the upper lip and eye corners. Missing some eye corners is attributed to non-uniform 

generation of the dataset by experts, during manual cropping and limited diversity in 

the dataset used for network training. 

The key benefit of bilateral network segmentation is its capacity to consider both 

spatial and intensity information simultaneously. This makes it robust in preserving 

edges and minute details, which is essential in many image analysis tasks. The 

integration of neural networks further enhances its segmentation capabilities. 

 

Figure 5. 3: Bilateral semantic network segmentation outcome: second column, segmentation of the 
lips and eye corners. In some images, the eye corners could not be segmented. Third column shows 
that only the upper lip can be segmented, or the upper lip and the eye corners as seen in the fourth 

column. 
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Despite its advantages, bilateral network segmentation can be computationally 

rigorous, especially when applied to large images. Fine-tuning neural networks for 

specific segmentation tasks may also require a substantial amount of labelled data. 

The segmentation network has been trained on large images (1024 by 1024) which 

presents a computational challenge where thousands of images are involved, 

hindering customisation and transfer learning efforts. 

Salient regions are separated through semantic segmentation because facial images 

present segmentation challenges using ordinary techniques due to low contrast 

(Oliveira et al., 2016). Inner canthus and oral region features are most salient. Figures 

5.3 and 5.4 show that not all the key regions will be detected due to poor 

anonymization procedures.  

 

 

Figure 5. 4: Segmentation results. Mouth region properly detected in all. From Left to 
Right: first - right eye corner not detected, fourth - all eye corners not detected. 

 

Further, skin colour tone and scars from surgical treatment complicates the detection 

of any features (Sandy, Kilpatrick and Ireland, 2012). The nose region is not 

segmented semantically but through any edges that may be detected. Consequently, 

the head orientation during photo-taking (either looking straight or downwards) 

influences the detection of the nose region edges and feature points following 

luminance contrast. Both the bilateral semantic network segmentation algorithm (Yu 

et al., 2020) and high-resolution network segmentation (Wang, Sun, et al., 2020) 

produce appropriate segmentation results. The former is a faster and less resource 

intensive approach. We utilize the detailed module and semantic module of the 

bilateral segmentation network to acquire the image’s low- or high-level features and 

the semantics of each pixel, respectively. The two modules are combined through a 
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real-time fusion module. The outcome is a clearly segmented mouth region, and the 

eye canthus, where possible. Figure 5.3 shows the red-segmented mouth region and 

red-segmented eye canthi (Middle two). For the different scenarios, to be discussed 

in the subsequent subsection of this chapter, different features are therefore 

considered as inputs to the top network layers.         

Segmentation therefore aids the detection of the mouth region and the inner canthi, 

but it usually completely missed the nose region. The nose was not considered a key 

CL surgical outcome, hence excluded from training the segmentation network. 

Besides, the baseline dataset for the bilateral network should have been annotated to 

incorporate the nose, (Liu et al., 2015), without the two nostrils. Eventually, the two 

nostrils would be considered significant to determine the symmetry of the partially 

occluded faces. To this end, we propose to apply Canny edge detection (Canny, 1986). 

This further results into more feature points with higher accuracy for detection of the 

mouth and eye regions, Figure 5.5, middle. Each of the regions should have feature 

points to aid with symmetry detection. For eyes, the interest lies with the closest inner 

canthus distance and the median distance while for the mouth region, the philtrum, 

vermillion borders, and oral commissures are desirable. Within the nose region, the 

tip, nostrils, and their base are of interest.  

 

Figure 5. 5: Features identified per horizontal partition. Left: Largely disorderly without 
segmentation. Middle: Shows improved features mapping and detection after segmentation. Right: 

Classified per horizontal partition.  

Figure 5.5 (left) shows that identification of feature points can be more complicated 

before segmentation. After segmentation, as seen in Figure 5.4 (Middle), it is easier to 

identify many features/ feature points in the different sections of the facial image, 

especially the mouth region, nose region, and eye corners. Figure 5.5 (right) indicates 

better feature classification by location in the facial image. For clarity, feature points in 
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the mouth region (bottom third) are coloured blue, features coloured green lie in the 

nose region (middle third) while features coloured light blue lie in the eye corners (top 

third).  

3. Identification of Connected Components  

Because of the partially occluded and anonymised nature of the dataset and other 

outliers like skin residues, scars etc, some feature points within the key regions are 

disconnected. Implying there is need to identify connected components for stability to 

aid the determination of the symmetry. This is aided by filtering the detected feature 

points using Canny edge detector with the lower and upper thresholds set as decrease 

and increase by 0.33 of the median of pixel intensities of the whole image. The integral 

features lie along the following facial parts: eye corners (or inner canthi), nose tips, 

nose base (or nose root), nostrils, mouth boundary, philtrum and oral commissures. 

Once the feature points are detected, different colours, other than red (for the predicted 

set, PS) and green for the ground truth set (GT1, GT2, and GT3), are assigned to the 

feature points per horizontal third to aid visualisation (Figure 5.5, right). 

4. Linking Points as Contours 

The next step is linking the respective feature points as contours. Successfully 

determining the feature point's perimeter suggests presence of a closed area or 

contour. At this stage, all possible contours have been identified as re-sampled 

contours from fully connected shapes without self-intersection, following the library 

implementation of the Douglas-Peucker algorithm (Wu, Silva and Márquez, 2004), 

Figure 5.4, left. Some contours may be very small but necessary for the location of the 

position of the features of interest. For example, a detailed execution shows that the 

green feature points representing identification of the nose region features (Figure 5.5, 

right) are better visibly displayed.  

5. How Partitioning Works 

Partitioning is conducted for the feature points on the detected contours into the three 

horizontal thirds based on their heights. Additionally, the feature points are classified 

into respective horizontal third segment. Figure 5.5, center and right illustrate the 

features’ locations using distinct colours for each of the three horizontal thirds (Blue 

for bottom third, Green for middle third, light blue for top third). 
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6. Center of Mass using Contours 

Determine the centres of mass of the contours in each of the three horizontal thirds. 

In Figure 5.6, the colours of the feature were changed to accommodate axes and the 

different center of mass colours. Yellow was used for upper third features, pink for 

middle-third features and light blue for bottom third features. Similarly, the same 

colours were used for plotting the respective axes passing through the center of mass 

of the different three thirds.  

The average of the features in the top third (yellow) was computed and a relatively 

thick blue dot plotted in the top third as the center of mass. Eventually, a yellow vertical 

line was plotted through the blue dot as the potential symmetry for the top third region. 

A similar procedure was followed for the middle third and bottom third. That accounts 

for the yellow vertical line, pink vertical line, and light blue vertical line. 

 

Figure 5. 6: Potential symmetric axes plotted based on component positions and their averages. Each 
plotted potential symmetric axis has been assigned a different colour that corresponds to that of the 

detected feature points in the different three third region. 

Next is computation of the overall centre of mass, which is the average of the three 

centres of mass or the average of all the features in the different three thirds of the 

facial image. The thick white dot in the image is the overall center of mass. Finally, a 

green vertical line is plotted through the white dot.   
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7. Adaptive Choice of Ideal Symmetric Axis 

Given four plotted potential axes of symmetry (Figure 5.6), only one axis should be 

considered as an optimal one. We determine the Manhattan distance of each of the 

feature points from each of the potential symmetric axes through Equation 11. Due to 

aggressive features detection, it has been experimentally proven that there are 

enough points from which to determine the symmetric axis. 

𝑑𝑖𝑠𝑡(𝑎𝑥𝑖𝑠𝑘)  =  ∑ ∑ |𝑛
𝑖=0𝑗  𝑎𝑥𝑖𝑠𝑘 − 𝑝𝑖𝑗|, 𝑘 = 1, 2, 3, 4    (Equation 11) 

Where n is the number of detected contours in the image, 𝑎𝑥𝑖𝑠𝑘 is the potential vertical 

axis of symmetry, 𝑝𝑖𝑗is a feature point 𝑗 in the 𝑖𝑡ℎ contour. The symmetric axis is finally 

determined as the one with the minimum Manhattan distance. In Figure 5.7 (left), the 

symmetric axis was determined as the light blue line while in Figure 5.7 (right), the 

symmetric axis was determined as the green line. From the four potential axes of 

symmetry, different facial images returned different symmetric axis. Overall, there is 

no definite trend of a favoured symmetric axis, hence the adaptive computation.  

 

Figure 5. 7: Most suitable symmetric axis selected using average Manhattan distance. Following 
Figure 5.6, the most suitable symmetric axis is selected from either 2 or 3 detected axes. Green 

colour is assigned to the most suitable line of symmetry.  

 

8. Chosen Symmetric Axis 

The determined symmetric axis is the basis for dividing the mouth lips region into two 

sections to aid lip shape analysis (Bakaki et al., 2021) under different appropriate 

scenarios. Lip shape analysis aims to determine how evenly or unevenly shaped the 

lip region is on either side of the symmetric axis. Generally, some studies have applied 

shape analysis to describe human perception features in medical images using 

contrast improvement ratio (CIR) (Kimori, 2013). (Loncaric, 1998b) reviews other 

shape analysis techniques applied to images. In this study, a structural similarity index 

measure (Wang et al., 2004) is preferred to automatically determine how agreeable 
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the human visual perception is of the mouth lips, nose, or a combination of both. Shape 

analysis is reduced to a structural comparison between the two mouth lip sides using 

the symmetric axis as a basis. 

5.3.1 Implementation 

The algorithm in Figure 5.8 summarises the implementation framework for this 

assessment mechanism. The accompanying assumptions are made in case some 

images in the dataset return exceptions.  

Assumptions: 

1. The rule of three thirds as applied implies that the mouth region lies in the bottom third 

of the input facial image. 

2. Due to the empirical possibility that the rule of three thirds may not apply to some 

images, this has been automatically mitigated in a way that sub-dividing the facial image 

does not happen. 

 

1. Input an image. 

2. Preprocess the image using smoothening with a 3-filter Gaussian blur. 

3. Semantically segment the image if applicable, otherwise, do not. 

4. Divide the image into three thirds based on the image height. 

5. Using the computed median, automatically determine lower and upper thresholds 

before appropriate adaptation of the Canny edge detection algorithm. The output of 

this step should be edges and points in each three third segment. 

5.1 For a non-segmented image, the number of detected edges/features per three 

third component is minimal and not as orderly.  

5.2 In step 5, differentiating the features using different colour codes is highly 

advisable. 

6. Perform morphological functions (dilation and erosion) to close gaps between object 

edges. 
7. Select the contour with the largest area in each three third segment and determine 

its centroid. This is also the average point of the feature points detected in step 5. 
8. Plot the perpendicular of through the centroid determined in 7 above for each of 

the three thirds and for the overall features in the image. 

9. Where possible, differentiate the perpendicular lines using different colour codes, 

and should correspond to colour coding in step 5.2. 

10. Adaptive shape analysis follows using structural similarity index measures using 

three different scenarios for an RGB image. 

10.1 Mouth and nose region 

10.2 Mouth region only 

10.3 upper lip only.  

11. Convert the different similarity measures into different numeric numbers between 

1 and 5 using three predefined mathematical models. 

12. Generate appropriate Pearson correlation metrics. 
Figure 5. 8: Implementation framework or algorithm for key landmark detection using the three thirds 

adaptive symmetric axis detection.  
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5.4 Outcomes and Discussion  

Automatic shape analysis can be presented as a culmination of the human visual 

perception of a given object. The facial images consist of eye corners, nose base, 

curvatures, mouth lips boundaries, and philtrum section as the key features. Each of 

these features is detected and drawn as an independent shape or structure with at 

least a position (also called feature point). Given the nature of the dataset, the detected 

features are more than the expected ones due to facial speckles for example, implying 

that the likelihood of missing the feature point is reduced. 

The distribution of the number of key feature points per horizontal third of the facial 

images from the public CCUK dataset is shown in Figure 5.9. The four subcategories 

of the public dataset are: (i) Predicted Set (PS) – a set of images obtained through the 

proposed algorithm above, and (ii) three expert-generated Ground Truth datasets 

GT1, GT2 and GT3. However, GT3 has not been considered in this study because it 

offers only a single feature (the mouth lip boundary). Ground truth sets are generated 

by manual annotation of the mouth lip region using ImageJ, an open-source software. 

 

Figure 5. 9: The number of features detected across the 3 different upper, middle 
and bottom thirds: U3, M3 and B3 of each of the 3 considered sub-datasets. 

More features are detected in the upper and bottom horizontal thirds (blue and green, 

seen in Figure 5.9, left), probably as expected. The middle horizontal third has fewer 

features because a physical dataset inspection reveals that the camera angle was not 

straight when taking most of the images. The other possibility is that the participants 

were anxious and didn't look straight during the camerawork exercise. This is mostly 

the case because most children with the orofacial cleft conditions have low self-esteem 
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among other social concerns, and may indirectly object to taking their pictures 

(Mosmuller, Maal, et al., 2017, Mulder et al., 2019). This observation has impacted 

image analysis experiments and potentially promoted discussions of multi-

dimensional 3𝐷, 4𝐷, image analysis techniques, seen as mitigation measures. 

However, resources used for multidimensional data capture are costly (Ayoub et al., 

2011). Besides, historical data is only available in 2𝐷 format, a case of the CCUK 

dataset.  

Additionally, some of the residues (caused by scars and running rose) potentially 

obscured the philtrum, oral commissure, vermillion, and nose base lining detection 

(orange, seen in Figure 5.10, left). Implying that features in the middle third can be 

discarded because they are even biologically difficult to delineate when determining 

the symmetric axis. Given that we can use minimal data to generate a consistent 

outcome, this approach is a feasible alternative to deep learning techniques that detect 

facial features directly from the cropped images.  

Figure 5.9, right, presents a more detailed breakdown of features points distribution 

per dataset subcategory per horizontal third. 

Shape analysis was performed through three scenarios to assess the proportionality 

of the appearance outcome following surgical repair. 

Scenario 1: Mouth region only (Figure 5.10, left). The physical surgical repair to the 

cleft on the upper lip is usually taken, in consideration of its alignment with the lower 

lip. Hence, considering the whole mouth region is a natural occurrence when 

performing appearance outcome assessment. Similarity on either side of the 

symmetric axis through the mouth region is expected for features such as 

commissures and philtrum. 

 

Figure 5. 10: Visualization of mouth region in Scenario 1 (left), upper lip in Scenario 2 
(middle) and both nose and mouth regions in Scenario 3 (right) 

                              

Viewer does not support full SVG 1.1
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Scenario 2: The Upper lip, (Figure 5.10, middle) is the actual region of the mouth that 

is surgically repaired. Therefore, investigating its structural feature (dis)similarity is a 

trivial and fair choice.  

Scenario 3: Combination of the nose and mouth lips region (Figure 5.10, right). 

Whereas cleft surgical repair is usually performed on the upper lip, human appearance 

outcome assessment naturally occurs with the awareness of other neighbouring 

features (Deall et al., 2016a). The closest feature available and applicable to our 

dataset is the nose region. Observing any (mal)alignment between the nose and 

mouth is almost trivial. 

These scenarios facilitate shape and structural computation and comparison using 

colour images, as presented before human assessors (Mosmuller et al., 2013). This 

also implies that the efficacy of this approach can be determined by comparing the 

shape and structural computation with the human-generated numeric score (𝐻𝑁𝑆) by 

human assessors.  In (Bakaki et al., 2021), binary images for the mouth lip region were 

used. After computing the structural similarity index measure, 𝑠, it is converted to a 

numeric score between 1 and 5 as discussed below.  

5.4.1 Mathematical Modelling  

Mathematical modelling is the process of applying mathematical techniques and 

concepts to describe and understand real-world events, systems, or processes as they 

occur during and/or following an experiment (Zorich and Paniagua, 2016). Conversion 

of the different structural similarities’ measures, 𝑠, into numeric values represents a 

complex situation where carefully constructed mathematical equations with symbols 

and relationships is desired. Therefore, this is done with the intention of gaining 

quantitative insights through numeric predictions and analysis (Leao et al., 2020). 

Different forms of mathematical model representations were considered.  

1. Linear Models: These describe relationships between variables using linear 

equations. In a linear model, the relationship between the variables is assumed 

to be proportionate and additive, implying that a change in one variable is 

directly proportional to a change in another variable, and the overall effect is 

considered cumulative (Pinheiro et al., 2007). 

2. Nonlinear Models: They describe relationships among variables using 

nonlinear equations. More complex and flexible relationships between variables 
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may be designed. Curves (such as polynomials) and exponential functions 

better represent nonlinearity (Pinheiro et al., 2007).  

3. Fractional Models: They are a class of mathematical models that involve 

fractional derivatives of non-integer orders. This is suitable where a 

phenomenon exhibits big memory requirements and long-range dependences.  

Therefore, the three (3) models below were designed to convert 𝑠 into a numeric 

score:  

Model 1 (𝑀1): 𝑓(𝑠)  =  5(1 − 𝑠2)  +  𝑠    (Equation 12) 

Model 2 (𝑀2): 𝑓(𝑠)  =  𝑒𝑥𝑝((1 –  𝑠)𝑙𝑛5)   (Equation 13) 

Model 3 (𝑀3): 𝑓(𝑠)  =  5 – 
4𝑠

(1+𝑠)
1

100

    (Equation 14) 

Where 0 ≤ 𝑠 ≤ 1 and 1 ≤ 𝑓(𝑠) ≤ 5. Implying that the models designed are 

monotonically decreasing, hence non-increasing.  

As derived from the example in chapter 4, we make some assumptions: 

• That the relationship between 𝑓(𝑠)𝑜𝑟 𝐴𝐸𝑁𝑆  and 𝑠 is either quadratic or 

exponential or fractional. Together, they could be regarded as polynomial 

functions.  

• Additionally, that the mathematical operations involved (addition, multiplication, 

and exponentiation) are valid for the domain of interest. 

• 𝑠 represents a value within a certain range (between 0 and 1) 

Derivation: 

• We combine terms involving s, including a linear term (𝑠) and a quadratic term 

(1 − 𝑠2).  

• The coefficients (5 in this case) have been chosen because 5 can be the worst 

score, which could indicate the failure to detect certain features for use in 

computation. 

The process is repeated for equations 13 and 14. 

The models designed in chapter 4 are similar to the models designed in this chapter 

because the structural similarity index measure component (𝑠) is the foundation 

parameter (also potentially referred to as independent variable) for conversion into a 
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number between 1 and 5.  The models in chapter 4 have not been used because of 

the need to understand and reflect upon the robustness of mathematical modelling, 

evaluate their performance using different mathematical models, and discover if any 

benchmark models would be achieved in the process (Banerjee, 2021). 

Therefore, 𝑠 is computed for individual treated images in each of the three subsets of 

the main dataset (PS, G1, GT2) and then automatically converted into their respective 

numeric scores (PS_AENS, GT1_AENS, GT2_AENS), from which correlation 

coefficients were calculated against HNS. The higher the coefficient, the more 

accurate the automatically estimated appearance numeric score of the CL treatment 

outcome. 

For every proposed model, AENS is computed for every possible dataset and their 

correlation coefficients computed about HNS. For example, M1, M2 and M3 are used 

to compute the AENSs for PS ( that is columns ‘PS_AENS (M1)’, ‘PS_AENS (M2)’ and 

‘PS_AENS (M3)’), respectively, under the consideration of S1, whose results are 

shown in Table 5.1. 

Table 5. 1: Results for PS_AENS over Scenario 1 and the three models 

Set_Code Set_ID SSIM SSIM_NORM M1 M2 M3 

AOBA 1 0.98451053 1.000 1.0 1.0 1.0 

AOFA 2 0.89743804 0.395 4.6 2.6 3.4 

APAA 3 0.924125194 0.580 3.9 2.0 2.7 

AQCA 4 0.972945528 0.920 1.7 1.1 1.3 

CLDA 5 0.906739756 0.459 4.4 2.4 3.2 

CNCA 6 0.945251625 0.727 3.1 1.6 2.1 

CPCA 7 0.930614227 0.625 3.7 1.8 2.5 

DMAA 8 0.944182274 0.720 3.1 1.6 2.1 

DMCA 9 0.93949915 0.687 3.3 1.7 2.3 

DNBA 10 0.94906182 0.754 2.9 1.5 2.0 

DPAA 11 0.949288457 0.755 2.9 1.5 2.0 

DPBA 12 0.911902762 0.495 4.3 2.3 3.0 

EOAA 13 0.888051776 0.329 4.8 2.9 3.7 

EPFA 14 0.925933149 0.593 3.8 1.9 2.6 

FMBA 15 0.885880415 0.314 4.8 3.0 3.7 

FNEA 16 0.914207339 0.511 4.2 2.2 3.0 

FNFA 17 0.87926085 0.268 4.9 3.2 3.9 

FNGA 18 0.860962537 0.141 5.0 4.0 4.4 

FOEA 19 0.846640729 0.042 5.0 4.7 4.8 

FPAA 20 0.840660856 0.000 5.0 5.0 5.0 

FPBA 21 0.922898051 0.572 3.9 2.0 2.7 

FPHA 22 0.958874709 0.822 2.4 1.3 1.7 
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FPIA 23 0.917825731 0.536 4.1 2.1 2.9 

GLAA 24 0.931627171 0.632 3.6 1.8 2.5 

GLCA 25 0.90167591 0.424 4.5 2.5 3.3 

 

For each visual element in the dataset, SSIM is computed and linearly normalised 

using the maximum and minimum approach before acting as the input parameter for 

the different mathematical models. Normalisation is helpful because choosing a 

common scale and representation strategy is a recommendable practice for 

comparison fairness, uniform data distribution and decisions modelling (Vafaei, Ribeiro 

and Camarinha-Matos, 2018). 

Following Table 5.1, two other tabular sets of numeric data are generated, with PS as 

the input: scenario 2 (S2) – Table 5.2, and scenario 3 (S3) – Table 5.3, respectively. 

Table 5. 2: Results for PS_AENS over Scenario 2 and the three models 

Set_Code SSIM SSIM_NORM 
PS_AENS 

(M1) 
PS_AENS 

(M2) 
PS_AENS 

(M3) 
HNS 

AOBA 0.794286932 0.880 2.0 1.2 1.5 2 

AOFA 0.785675688 0.865 2.1 1.2 1.6 4 

APAA 0.579278206 0.509 4.2 2.2 3.0 2 

AQCA 0.814685762 0.915 1.7 1.1 1.4 1 

CLDA 0.284428452 0.000 5.0 5.0 5.0 2 

CNCA 0.667275392 0.661 3.5 1.7 2.4 3 

CPCA 0.7796272 0.855 2.2 1.3 1.6 3 

DMAA 0.715846417 0.745 3.0 1.5 2.0 4 

DMCA 0.657024383 0.643 3.6 1.8 2.4 4 

DNBA 0.656182293 0.642 3.6 1.8 2.4 3 

DPAA 0.717351912 0.747 3.0 1.5 2.0 4 

DPBA 0.757496715 0.816 2.5 1.3 1.8 2 

EOAA 0.738977307 0.784 2.7 1.4 1.9 5 

EPFA 0.414502384 0.224 5.0 3.5 4.1 4 

FMBA 0.48136554 0.340 4.8 2.9 3.6 3 

FNEA 0.707645437 0.730 3.1 1.5 2.1 1 

FNFA 0.826107278 0.935 1.6 1.1 1.3 2 

FNGA 0.738191923 0.783 2.7 1.4 1.9 2 

FOEA 0.592829848 0.532 4.1 2.1 2.9 5 

FPAA 0.299107524 0.025 5.0 4.8 4.9 3 

FPBA 0.863847491 1.000 1.0 1.0 1.0 1 

FPHA 0.795470587 0.882 2.0 1.2 1.5 2 

FPIA 0.430875445 0.253 4.9 3.3 4.0 3 

GLAA 0.62022925 0.580 3.9 2.0 2.7 5 

GLCA 0.67455779 0.673 3.4 1.7 2.3 4 
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Table 5. 3: Results for PS_AENS over Scenario 3 and the three models 

Set_Code SSIM SSIM_NORM 
PS_AENS 

(M1) 
PS_AENS 

(M2) 
PS_AENS 

(M3) 
HNS 

AOBA 0.99415334 1.000 1.0 1.0 1.0 2 

AOFA 0.964996816 0.459 4.4 2.4 3.2 4 

APAA 0.969440482 0.541 4.1 2.1 2.8 2 

AQCA 0.989788824 0.919 1.7 1.1 1.3 1 

CLDA 0.963005764 0.422 4.5 2.5 3.3 2 

CNCA 0.979077131 0.720 3.1 1.6 2.1 3 

CPCA 0.975327187 0.651 3.5 1.8 2.4 3 

DMAA 0.980553343 0.748 3.0 1.5 2.0 4 

DMCA 0.977561029 0.692 3.3 1.6 2.2 4 

DNBA 0.981373941 0.763 2.9 1.5 2.0 3 

DPAA 0.981962076 0.774 2.8 1.4 1.9 4 

DPBA 0.968507692 0.524 4.2 2.2 2.9 2 

EOAA 0.961668402 0.397 4.6 2.6 3.4 5 

EPFA 0.971764181 0.585 3.9 2.0 2.7 4 

FMBA 0.958799876 0.344 4.8 2.9 3.6 3 

FNEA 0.968365544 0.521 4.2 2.2 2.9 1 

FNFA 0.952739379 0.231 5.0 3.4 4.1 2 

FNGA 0.951614992 0.211 5.0 3.6 4.2 2 

FOEA 0.945609351 0.099 5.0 4.3 4.6 5 

FPAA 0.940266349 0.000 5.0 5.0 5.0 3 

FPBA 0.971782913 0.585 3.9 2.0 2.7 1 

FPHA 0.985045057 0.831 2.4 1.3 1.7 2 

FPIA 0.967890825 0.513 4.2 2.2 3.0 3 

GLAA 0.974788298 0.641 3.6 1.8 2.5 5 

GLCA 0.964537142 0.450 4.4 2.4 3.2 4 

 

Since the PS dataset is determined automatically, its respective numeric scores 

PS_AENS are also automatically obtained. The correlation coefficient between HNS 

and PS_AENS is considered the most significant correlation (MSC). This is because 

the potential agreement between human-generated and computer-generated numeric 

scores is the most important relationship for use in evaluation of computational 

methods as seen in Table 5.4.  

The outcomes in the three sub-columns (‘S1’, ‘S2’, ‘S3’) of column ‘PS_AENS vs HNS’ 

in Table 5.4 are generated from computations of correlation coefficients from the 

columns in Tables 5.1, 5.2 and 5.3, respectively. Specifically, the result of 0.236 is the 

correlation coefficient of scores in the column PS_AENS (appearance assessment 

scores of PS computed using model M1) and column HNS (scores of human 

appearance assessment). Similarly, other results are generated. 
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The highest MSC is 0.371 resulting from computing the correlation coefficient between 

PS_AENS and HNS (M1, S2). Overall, scenario 1 also presents the consistent MSC 

results.  

Table 5. 4: Correlation coefficients between the HNS and AENS for PS, GT1, and GT2 for different 
scenarios (S1, S2 and S3) and models (M1, M2 and M3). 

 𝑃𝑆_𝐴𝐸𝑁𝑆 vs 𝐻𝑁𝑆 𝐺𝑇1_𝐴𝐸𝑁𝑆 𝑣𝑠 𝐻𝑁𝑆 𝐺𝑇2_𝐴𝐸𝑁𝑆 vs 𝐻𝑁𝑆 

𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 
𝑀1 0.236 0.371 0.205 0.079 0.062 0.039 0.055 0.181 0.024 

𝑀2 0.200 0.102 0.151 0.007 0.072 -0.033 -0.056 0.567 -0.102 

𝑀3 0.219 0.213 0.176 0.041 0.052 -0.003 -0.011 0.457 0.056 

 

To generate the results in columns ‘GT1_AENS vs HNS’ and ‘GT2_AENS vs HNS’ of 

Table 5.4, six sets of results are needed.  Three sets of results for GT1_AENS, each 

for S1, S2 and S3 are computed. Likewise, another three sets of results for 

GT2_AENS, each for S1, S2 and S3 are calculated. The aim is to obtain different 

combinations of correlations and evaluate the best possible predictions compared to 

human experts’ generated appearance scores (HNS).  

The best result in Table 5.4 is 0.567. This implies that the strongest agreement is 

between the human expert appearance assessment (HNS) and the second ground 

truth set appearance assessment numeric score (GT2_AENS) using the second 

model, M2 and the second scenario 2, S2. This agrees with some assertions that the 

smaller the region of interest the easier and better it is to perform appearance 

assessment and extract features. This is attributed to focus on local perceptions in the 

image (Liu, 2018).  The worst result in Table 5.4 is -0.102. Likewise, the least 

agreement is between the human expert appearance assessment (HNS) and the 

second ground truth set appearance assessment numeric score (GT2_AENS) using 

the second model, M2 but with the third scenario, S3. This potentially indicates the 

fact that assessment should be performed holistically. This is because there is a high 

possibility of missing out on vital appearance assessment features in a smaller region 

of interest.   

At this stage, nine (9) sets of tabular numeric results are used to compute the 

correlation coefficients, even though only three tables (Table 5.1, 5.2, 5.3) have been 

explicitly presented above. Using different numeric scores, interesting combinations 

are made, and other correlation coefficients are computed, as presented in Table 5.5.  
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Table 5.5 presents the highest correlation result of 0.940 between GT1_AENS and 

GT2_AENS, Model 1, scenarios 1 and 3. This is also a significant outcome, implying 

potential higher similarity in the human experts' datasets (GT1 and GT2).  

Table 5. 5: Correlation coefficients between different AENS combinations (PS and GT1; PS and GT2 
and GT1 and GT2) for different scenarios (𝑆1, 𝑆2 and 𝑆3) and different models (𝑀1, 𝑀2 and 𝑀3). 

 𝑃𝑆_𝐴𝐸𝑁𝑆 vs 𝐺𝑇1_𝐴𝐸𝑁𝑆 𝑃𝑆_𝐴𝐸𝑁𝑆 𝑣𝑠 𝐺𝑇2_𝐴𝐸𝑁𝑆 𝐺𝑇1_𝐴𝐸𝑁𝑆 vs 𝐺𝑇2_𝐴𝐸𝑁𝑆 

𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 
𝑀1 0.809 0.560 0.811 0.854 0.653 0.850 0.903 0.888 0.906 

𝑀2 0.827 0.356 0.825 0.834 0.560 0.842 0.940 0.910 0.940 

𝑀3 0.836 0.654 0.833 0.856 0.456 0.856 0.924 0.908 0.928 

 

The predicted dataset (PS) appearance numeric assessment (PS_AENS) ‘agrees 

more’ with the second expert generated dataset assessment (GT2_AENS) than with 

GT1_AENS, returning higher correlation coefficients of 0.856 in two scenarios, S1 and 

S3. Across Table 5.4 and 5.5, the first model (M1) and the third model (M3) are more 

robust than the second model (M2). 

Figure 5.11 (left, orange) presents a comparative study between the method in this 

chapter (referred to as approach 2, 𝐴2) and an existing method (referred to as 

approach 1, 𝐴1) (Bakaki et al., 2021). It shows that 𝐴1 usually generates lower 

structural similarity across the dataset than the former. This is because the former uses 

more feature points and thus generates more accurate symmetric axes.  

 

Figure 5. 11: Left: Computed SSIM for each of the 25 images in the test dataset using A1 and A2. 
Right: Computation time is calculated for each of the 25 images in the test dataset using A1 and A2. 

Computation time is the duration between input stage and assessment. 
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Figure 5.11 (right, orange) also shows that 𝐴2 takes shorter time than 𝐴1. It is an 

indicator that whole face feature detection is faster than partial feature detection. It is 

easier to perceive and assess a whole face than its portion. 

Figure 5.12 compares feature detection using Scale Invariant Feature Transform 

(SIFT) algorithm (Lowe, 2004) and 𝐴2, by showing how 𝐴1 and 𝐴2 map symmetric 

axes. 

 

Figure 5. 12: Features (left two columns) detected using SIFT (Left column) and proposed 
approach (Second column). Then, symmetrical axis detection from some examples of cleft 

images (right two columns) using approach 1 (A1 - Black axis by (Bakaki et al. 2021)) and approach 2 
(A2 - White axis by the proposed method) 

 

The Figure 5.12 shows that features are detected using SIFT (1st column from left) 

and the approach presented in this chapter (2nd column from left). Additionally, Figure 

5.12 presents symmetric axis detection from some examples of cleft images, seen in 

last two columns. In the 3rd and 4th columns, the black vertical axis is generated by 

approach A1 (Bakaki et al., 2021) while the white vertical axis is generated by the 

approach presented in this chapter (approach 2 – A2).  

More visual outcomes of interest are presented in Figures 5.13 and 5.14. 

Selecting the predicted set (PS) or expert generated images in GT1 and GT2 from the 

dataset maintains the assertion that the bottom third of the outcome image contains 

the region of interest, given the number of features depicted in the graphs in Figure 

5.13. Additionally, Figure 5.13 also shows some features at pixel level. This is further 

reflected in Figure 5.14.  
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In Table 5.6, the higher the MED and AVG the better while the lower the SDD the 

better. Therefore, the best scenario across all datasets is S3, followed by S1 and S2. 

This is deduced from the median results (MED), mean results (AVG) and standard 

deviation results (SDD), presented in Table 5.6. However, shorter computational time 

is observed in scenario 1 and 2 compared to the computational time of scenario 3. 

This is because of the larger region of interest, hence potentially more features are 

identified and takes longer for the models to process the subsequent parameters. 

More details are in Table 5.7 and the graphs of Figure 5.14. 

Table 5. 6: Some SSIM statistical measures across the three datasets and three scenarios 

 PS GT1 GT2 
𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 

MED 0.923 0.708  0.969 0.922 0.706 0.968 0.907 0.671 0.965 
AVG 0.917  0.656 0.970 0.917 0.667 0.969 0.915 0.659 0.968 
SDD 0.036  0.157 0.013 0.038 0.147 0.014 0.036 0.139 0.014 

 

Table 5. 7: Some Time spent statistical measures across the three datasets and three scenarios. 

 PS GT1 GT2 
𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 

MED 1.029 1.028  1.217 1.087 1.175 1.271 1.093 1.044 1.201 
AVG 1.037  1.042 1.241 1.085 1.119 1.266 1.120 1.132 1.215 
SDD 0.037  0.057 0.109 0.040 0.158 0.082 0.103 0.201 0.089 

  

Table 5.7 reveals that the first scenario, S1, is the most effective, followed by the 

second scenario, S2 and the third scenario, S3. In this case, all the considered 

statistical parameters (MED, AVG and SDD) should be lowest for optimality 

consideration.  
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Figure 5. 13: Features Map comparison at Pixel Level between 𝑃𝑆, 𝐺𝑇1 and 𝐺𝑇2. Pixels of Features are compared in the different datasets, PS, GT1 and 
GT2. The indicated features are detailed for those generated in the different three thirds (3-line graphs) of the individual images in the dataset. SSIM is also 

plotted as a bar graph.
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Figure 5. 14: Selected SSIM distribution (𝑡𝑜𝑝 𝑟𝑜𝑤) and computation time (𝑏𝑜𝑡𝑡𝑜𝑚 𝑟𝑜𝑤) for the 3 
scenarios. SSIM and computational time are as defined in Figure 5.11, but for the different scenarios. Additionally, SSIM and computational time are further 

computed on the different datasets as detailed in Figure 5.13.
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5.5 Summary 

Detecting key feature positions requires a hybrid approach that combines deep 

learning and traditional approaches. For instance, a deep learning approach for 

segmentation combined with traditional edge detection, led to detection of more 

features (nose region especially) and feature points within the various regions of 

interest. Automatic structural comparison and analysis of colour appearances 

outcomes is more in harmony with human visual perception and judgement due to 

inclusion of luminosity and contrast features. This is represented by the consistent 

MSC results across the scenarios for the three models, M1, M2 and M3. Finally, 

anonymised and occluded facial images in our dataset have more features in the 

upper and lower horizontal third segments, implying that they may provide more 

potential for the estimation of the appearances from the cleft images. Other shape 

analysis techniques applicable to biomedical images as reviewed in (Loncaric, 1998a) 

could be tested in future studies. The next step will be investigating purely deep 

learning techniques to extract, detect and, where necessary predict, facial image 

features specific to the public CCUK dataset.  

Key landmarks detection for anonymised facial images was experimentally performed 

using a deep learning approach as presented in Appendix A. The You Only Look Once 

(YOLO) framework was successfully used and tested following an ablation study, also 

presented in Appendix A. 
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Chapter 6 Regression Analysis and Assessment of 

Partial Facial Images Using Deep Learning  

 

 

6.1 Introduction 

One of the most challenging tasks in medical computer vision is to mimic human 

experts in performing expert roles such as calibration, surgical operations, and medical 

imaging, among others (Scheirer et al., 2014). Cleft lip (CL) among other craniofacial 

congenital malformations is surgically treated based on well-defined protocols 

established by the Plastic and Reconstructive Unit of the Royal College of Surgeons 

of England (Shaw et al., 1996). This follows a thorough assessment of the patient to 

determine their suitability for the operation and availability of post-operative care. The 

latter plays a significant role in the recovery process of the patient. The post-operative 

care team is diverse and includes specialists such as orthodontists, surgeons, nurses 

and social workers like phycologists and guardians (Sell et al., 2001). 

Assessment of surgical treatment outcome is tracked based on the satisfaction of the 

care teams and facial anthropometry. Human digital scoring based on a photographic 

database is one way to measure the level of satisfaction, normally using a continuous 

discrete number in the range of 1 to 5 where 1 is the best outcome while 5 is the worst 

outcome (Schwirtz et al., 2018). This can also be done based on any other predefined 

Likert Scale such as 1 to 10, or even as conservative as 0 or 1. In the event of a bigger 

dataset of facial images from several cleft treatment centres, human digital scoring 

may suffer from human weaknesses, hence the need to be supported by a 

computational approach.  

Scoring of photographic datasets has been used in several applications in past 

research studies. Beauty and attractiveness have been widely researched where 

datasets have been created and studied in the wild and through social media sites 

(Gan et al., 2014; Xie et al., 2015; Lebedeva, Guo and Ying, 2022). The common 

subject in all these studies is to promote a recommender approach for service 

consumption purposes, for example, in social dating sites, in tourism/hospitality 

industry, real estate and housing schemes among others. Researchers focus on how 
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beautiful or attractive the images in the datasets are rated by the participants (Li, 

Huang and Christianson, 2016; Poursaeed, Matera and Belongie, 2018).  

Rating of medical-related datasets to determine a treatment outcome or deduce a 

diagnostic outcome has been rarely and vaguely conducted, using computer vision. 

Besides, the above-identified studies did not regulate any computational restrictions 

with dataset features, especially where face images were used.  Appreciation of 

beauty or attractiveness is considered primary where images are ideal and from the 

wild. However, this is contrary to the aims of corrective surgery for CL. The facial 

visuals used in this study are presented as outcomes following corrective CL surgical 

treatment, not beauty or superficial aesthetic correctness. This is a key uniqueness of 

the dataset used in this study. 

Therefore, using geometric facial features from occluded images can be significant 

towards development of a computational scoring solution. Using convolutional theory 

for key features discovery/detection from different images can be fundamental for 

formulation of a scoring model. Realistically, this means modelling the several key 

features to regress into a single continuous outcome, the appearance score. A scene 

of geometry is mathematically defined by a set of detected key features, considered 

central to following any successful CL corrective surgical treatment.  Subsequently, 

any computer vision solution would be challenged with detection and may be 

identification of key features to facilitate appearance outcome scoring and rating. The 

key features, also known as outcome objects, can be used to determine other metrics, 

both continuous and categorical in nature. In image quality studies such as (Narwaria 

and Lin, 2010), feature extraction and representations are critical to successful 

scoring. Committing human visual intuition with scoring of vast datasets of medical 

images is prone to mistakes because image features memorability is worryingly low 

over a long time (Jing et al., 2019). Hence, computer vision can be a crucial 

intervention towards creation of sustainable solutions for scoring of large datasets. 

6.1.1 Background and Context 

Key feature extraction in medical image datasets is an object detection and recognition 

computer vision task leading to image understanding and pattern recognition. Object 

detection is challenged with localization and classification of specific objects in a given 

image while object recognition is responsible for identification and perception (Singh, 
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2019). These computer vision tasks are essential and have been widely applied to 

different scenarios in ground-breaking applications in medical science  as reviewed in 

(Ker et al., 2017) and (Drahansky et al., 2016). Studies such as skin cancer 

detection/classification, automated pancreas segmentation and brain tumour 

segmentation among others have demonstrated considerable progress in computer 

vision applications in medicine. Two decades ago, successful systems such as the 

Viola Jones detector (Viola and Jones, 2001), which pioneered facial recognition tasks 

were based on handmade features by using sliding windows to search across the 

whole image. To mitigate some of the challenges it faced, especially facial features’ 

localisation, the Histogram of Oriented Gradients (HoG) detector method  was 

proposed by using gradients and scale invariant features to detect faces in oriented 

images (Albiol et al., 2008). Oriented images are a common site even in a controlled 

environment. This research uses cropped partial facial images, sometimes lacking 

rightful luminosity and orientation.  

Features’ extraction, whether in controlled environments or in the wild, is facilitated by 

presence of some datasets to allow researchers to conduct experiments. Most 

datasets that enable facial features exploitation research studies such as facial 

recognition, beauty and security related tasks include full images/visuals. This 

facilitates researchers to exploit as many features as possible. This research utilises 

a particular anonymised dataset of images from the Cleft Care UK (CCUK). To 

reemphasise the integrity of this research study, for ethical reasons, patient identity is 

protected and anonymised, leaving mainly the inner eye corners section and the 

nasolabial region to aid this study. Table 6.1 summarises the related studies.  

Table 6. 1: Previous studies categories that inspired the study of appearances assessment with 
regression analysis assessment using deep learning models. 

Approach Research Team Category 

Artificial Intelligence Tools 
review for  

(Rokhshad, Keyhan and 
Yousefi, 2023) 

Semi-automatic and 
automatic methods 
reviewed for feasibility 

Objective hypernasality 
measure using deep learning 

(Mathad et al., 2021) Automatic method for 
acoustics of patient with CL 
condition 

CNN model for automatic 
detection and measurement of 
facial landmarks to assign 
severity grades 

(McCullough et al., 2021) Automatic method that 
assigns severity grades with 
no assessment of the 
outcome 



108 
 

Shape Analysis and Similarity 
Measure 

(Bakaki et al., 2021) Automatic assessment 
though based on essential 
features 

Hybrid deep learning-based 
approach for detection of 
landmarks in the different 
segments of the facial image 

(Bakaki et al., 2022) Automatic assessment 
method but feature 
detection presents 
weaknesses 

Deeper understanding and 
location of key surgical incision 
markers 

(Li, Cheng, et al., 2019) Automatic approach for 
facilitation of a robust 
solution for surgical 
treatments advisory of cleft 
lip and palate to maximise 
chances of a better 
appearance outcome 
following surgery 

Human expert manipulation of 
SymNose 

(Pigott and Pigott, 2010) Semi-automatic approach 
that helps with annotation of 
outcomes for identification 
of regions of interest and the 
resulting symmetry for 
assessment preparation 
studies 

Analyse It Doc (A.I.D) to 
facilitate quantitative 
assessment based on digital 
semiautomatic 
photogrammetry 

(Pietruski, Majak, Debski, et 
al., 2017, Pietruski, Majak, 
Pawlowska, et al., 2017) 

Semi-automatic method that 
generates a catalogue of 
anthropometric numeric 
values for an individual 
appearance outcome that 
may be subject to expert 
misinterpretation 

Human qualitative 
assessment, sometimes based 
on different Likert scales 

(Schwirtz et al., 
2018)(Mosmuller, Mennes, 
et al., 2017a)(Lee et al., 
2019)(Al-Ghatam, Jones, 
Ireland, Atack, Chawla, 
Deacon, Albery, Cobb, 
Cadogan, Leary, Waylen, et 
al., 2015) 

Traditional approaches that 
are inconsistent, verbose, 
mostly give irreproducible 
results and prone to human 
fatigue.  

 

6.1.2 Context of the Challenge 

Most computer vision tasks aim at reproduction of human visual recognition capability 

for several tasks because human experts were previously considered better than 

machines for specific tasks (Scheirer et al., 2014). With large medical datasets, the 

trend is steadily changing. Utilisation of artificial intelligence (AI) methods is more 

prevalent and preferred for visual data analysis. Hence, AI methods have slowly 

become a trend of extensive datasets analysis with exciting techniques (Greenspan, 

Van Ginneken and Summers, 2016, Litjens et al., 2017, Fourcade and Khonsari, 

2019). To assess the surgical outcome from facial images, it would require sustained 
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substantial awareness, brain time, closer features recognition and visual analysis 

expertise by human subjects to judge the repair. Scoring is not only aimed at improving 

surgical repair practices but also ensuring that different patients get the desired social 

acceptance following the treatment (Sharma et al., 2012, Schindler et al., 2017).  To 

aid with advanced and robust objective assessment and scoring, the cropped partial 

facial images can be studied and analysed for deeper features mainly in the mouth 

and nose regions (the nasolabial section). 

This study proposes an end-to-end deep convolutional transfer learning-based 

assessment pipeline. Transfer learning (TL) can be understood as the adaptation of a 

model (potentially the weights and/or architectural settings) trained for one domain into 

a similar domain (Bengio, 2011). Several open-source state-of-the-art models have 

been trained on diverse and rich visual datasets and are available for use by 

researchers and scientists. TL is a proven and feasible technique for good results 

especially in the event the destination domain has a limited dataset. Four deep transfer 

learning categories and strategies are described in (Tan et al., 2018). A summary of 

the different deep transfer learning categories is presented in Table 6.2. 

Table 6. 2: A brief of some categories of deep transfer learning (DTL) 

Category of DTL Category Brief 

Adversarial DTL There are transferable representations that is relevant to both the 
source domain and the target domain. the source domain and 
target domain. 

Network-based DTL This denotes the reuse of the partial network that pre-trained in the 
source domain, including its network structure and connection 
parameters, transfer it to be a part of DNN which is used in target 
domain 

Instances-based DTL Utilize instances in source domain by appropriate weight. This is to 
the strategy is to select partial instances from the source domain as 
supplements to the training set in the target domain by assigning 
suitable weight values to these selected instances. 

Mapping-based DTL This refers to representing instances from the source domain and 
target domain into a new data space. That is to say that instances 
from two domains are related and suitable for a union deep neural 
network 

 

This chapter presents the adversarial-based and network-based deep transfer 

learning strategies. This is because the visuals used in some classes in ImageNet (the 

parent domain) are suitable to the research problem (child domain). Additionally, the 

base network structure is as well used to fine tune the new network structure. 
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6.2 Approach to Regression Analysis 

6.2.1 Overview 

Following surgical treatment, it is important to score appearance outcomes. The goal 

is to determine a continuous/real number score of the partial facial image, ranging from 

1 to 5. A score of 1 represents excellent outcome while 5 represents very poor 

outcome. It is conventional to read or input an image into the model before pre-

processing, feature extraction and finally prediction of its numeric score. 

Deep Learning modelling, a subset of machine learning, is used. In deep learning 

modelling, deep neural networks consist of three general categories of layers: input 

layer, hidden layer(s), and output layer (Fourcade and Khonsari, 2019, Roberts and 

Yaida, 2021). The flow chart in Figure 6.1 is an abstract representation of the working 

framework for the proposed (regression) model in this study. In Figure 6.1, there is a 

black box at a high level which simply accepts input facials and their respective raters’ 

scores to aid generation of the deep features knowledge base. The box should output 

a score ranging from 1 to 5. This study explores the design and development of the 

black box using deep transfer learning techniques. 

In our supervised learning framework, appearance outcomes and raters’ scores are 

inputs to the model. Conservatively, one may regard all the scores as weighing equally. 

It is vital to systematically eliminate appearance outcome assessors who generate the 

ground truth scores. Facial visuals are read into a convolutional neural network (CNN) 

for deep features extraction, hence feature pattern learning in relation to ground truth 

scores. This is implemented by gradually increasing the CNN complexity by appending 

more dense layers after the feature extractor until a desired outcome is achieved. 
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Figure 6. 1: Abstract design of RCNN. The black box at high level simply accepts input aesthetics and 
their respective raters’ scores to aid generation of the deep features knowledge base. The box should 
output a score ranging from 1 to 5. This study explores the design and development of the black box 

using deep transfer learning techniques. 

6.2.2 Deep Features Extraction and Pattern Learning  

Deep features are consistent responses of a node or layer within a hierarchical model 

such as a CNN. Deep features in our context are numeric descriptors obtained from a 

conceptual and insightful CNN presented in Figure 6.2.  

Figure 6.2 shows the potential inner workings of the three adapted models. One of the 

models, the VGG16 adapted model is visually represented in Figure 6.3. 

Whereas these features are often used for classification, object recognition and 

localisation (Russakovsky et al., 2015), our research uses deep features as a source 

of ‘hidden or obscured parameters’ for regression analysis and modelling. Deep 

features such as landmark/RoI intensity and mouth shape, nose proportionality, 

among others, are represented by some variable 𝑥. Exponential growth of 𝑥 could bias 

the model outcome (in Figure 6.4). Therefore, features (represented by 𝑥) should be 
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suppressed through early and frequent monitoring of the outcome through proper 

fitting. 

The chosen frameworks of VGG16, ResNet50 and MobileNetv1 have been previously 

trained using ImageNet dataset. Human visual capacity apparently outcompetes 

VGG16 but is outcompeted by ResNet50 on ImageNet dataset (Alzubaidi et al., 2021). 

 

Figure 6. 2: An illustration of the deep learning model for this study. This diagram shows the potential 
inner workings of the three adapted models. A visual is read, and split into smaller visuals, potentially 

containing the required features that are eventually aggregated. One of the models, the VGG16 
adapted model is visually represented in Figures 6.3 and 6.5. 

 

MobileNetv1 on the other hand is a portable lightweight model with a streamlined 

architecture that uses deep-wise separable convolutions (Howard et al., 2017). It has 

performed well in non-mobile applications such as breast cancer mammography 

studies and  skin lesion classification, using transfer learning (Falconi, Perez and 

Aguilar, 2019, Sae-Lim, Wettayaprasit and Aiyarak, 2019).  

In Figure 6.3, the flattening framework and dense layers have managed and handled 

the different deep features. This visual representation can be generated for the other 

adapted frameworks, ResNet50 and MobileNetv1.  
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Figure 6.5 is a Layer-wise and Block-wise representation of the model architecture 

presented in Figure 6.3. 

 

Figure 6. 3: A VGG16 transfer learning framework used in this study. Several pooling layers and 
convolutional layes used on the input visuals before flatenning into several dense layers. The 

numbers are empirically determined in a fine tuning exercise. This visual representation can be 
generated for the other adapted frameworks, ResNet50 and MobileNetv1. Figure 6.5 is a Layer-wise 

and Block-wise representation of the VGG16 model architecture as presented in this visual. 

Our design leverages on the principle of transfer learning to initialise the model 

weights, 𝑊, and partially suppress the potential need for large datasets. Figure 6.4 

represents the relationship between input features, weights, biases, and outputs. 

 

Figure 6. 4: Model Weight intuition. Every feature has a weight (level of importance) attached to it, 
numerically and a bias to regulate (normalise or ‘balance up’) the outcome.    

Where: 𝑥 is the input/features, 𝑊 is the weight, 𝑏 is the bias, and 𝑦 is the output. 

Different model weights and parameters are often used with varying combinations of 

input to get the right outcome. Therefore, 𝑊 and 𝑏 are used during hyperparameter 

tuning.   

6.2.3 Regression Model Adaption and Design 

Our model employs transfer learning to aid extraction of features based on existing 

weights. We merge the features using different combinations of pooling layers.  The 

head of the base models is for classification purposes. Figure 6.5 shows the base of 

the VGG-16 model and the adapted design for the regression task as explained below. 
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Modifying classification heads in a deep learning model is a conventional practice 

when adapting a pre-trained model for a different classification or regression task. This 

process is often part of transfer learning. The following steps have guided the 

adaptation of the new model from existing frameworks. 

1. Choose and Load Pre-trained Model(s) 

Carefully selecting a pre-trained deep learning model suitable for the regression 

problem. The models chosen for this task are VGG-16, ResNet50 and MobileNet. This 

is because these models are of different extremes of computational resources 

requirements.  

Next is loading the pre-trained model weights and architecture. Pre-trained models 

and their weights are typically resident in deep learning libraries like TensorFlow or 

PyTorch. TensorFlow was used. 

2. Remove and/or Freeze Existing Layers 

The study requirements dictate that some layers are first removed, that is remove the 

existing classification head (the output layer). Empirically, some layers were 

sequentially frozen to extract intermediate features for comparison and some layers, 

to prevent them from being updated during training. The intention was to fine-tune part 

of the base network model and eventually replace the classification head with a 

regression node. 

3. Add and Connect a Regression Head: 

After the feature extractor, the classification head has been replaced with two dense 

Layers using rectified linear unit (RELU) activations. This facilitates a robust decay for 

a regression result. The Functional API of the Keras Library is used to build the model. 

Next step is to connect the output of the last layer of the regression head to the 

existing/base model's architecture. This step is fundamental for creating a single, 

unified model as illustrated in Figure 6.5. 

A loss function minimization evaluates a regression model’s reliability. We compile the 

built model using Loss functions L1 and L2 and an optimiser. Adam optimiser was 

used with different values. Finally, the model is fitted on the training and validation 

dataset for executable model generation (i.e., training process occurs). This marks the 
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first steps towards building a stable executable model because setting the right 

parameters is a top-heavy iterative process. 

 

Figure 6. 5: An alternative representation of the VGG-16 adapted model, represented as layers and 
blocks. Basically, many can layers constitute a given block. The representation has a base-layer 

(chosen as VGG16), and other additional layers as can be experimentally fine-tuned. 

6.2.4 Definition of Parameters and Hyperparameter Tuning 

The different parameters needed for the training are defined in Table 6.3 while Table 

6.4 defines the loss functions and evaluation metrics. 

Table 6. 3: Definition of parameters and variables. 

𝐶 CCUK Dataset 

𝑛  Size of 𝐶 
𝐶𝐴𝑢𝑔 Augmented 𝐶 

𝑚 Size of 𝐶𝐴𝑢𝑔 where 𝑚 ≫ 𝑛 

𝑅𝑗 Rater number 𝑗 to assess 𝐶 where 1 ≤ 𝑗 ≤ 3 

𝑋𝑖 Random image 𝑖 in 𝐶𝐴𝑢𝑔 where 𝑖 ≤  0.95𝑚 

𝑌𝑖,𝑗 Ground truth score of 𝑋𝑖  by 𝑅𝑗 

𝑌𝑖,𝑗
′  Average of 𝑌𝑖,𝑗 over 𝑖 

�̂�𝑖,𝑗 Predicted Score of 𝑋𝑖 based on 𝑌𝑖,𝑗 – The main output of the model 

�̂�𝑖,𝑗
′  Average of �̂�𝑖,𝑗 over 𝑖 

𝛼 Bias introduced through hyperparameters adjustments 

𝑓Ω(. )  Learning algorithm - predefined in general terms in Section 2. 

𝑥𝑖,𝑗 Feature extracted from 𝑋𝑖 𝑎𝑛𝑑 𝑌𝑖,𝑗 are inputs for 𝑓Ω(. )  
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Table 6. 4: Definition of Loss functions and evaluation metrics 

 

Because hyperparameter tuning is an iteratively resource intensive engineering 

process, we experimented with a random search algorithm and a grid search algorithm 

for execution of 𝑓Ω(. ) in a resource constrained environment. Nonetheless, the results 

section presents outcomes where computing resources are readily available. 

Models were trained based on the different ground truth scores for RaterA, RaterB and 

RaterC, satisfying the following condition based on definitions in Table 6.3: 

𝑅𝑗: Rater number 𝑗 to assess 𝐶 where 1 ≤ 𝑗 ≤ 3.  

Therefore, the definition of 𝐿1 and 𝐿2 are respectively influenced by these conditions. 

𝐿1𝑗  =  ∑ |𝑌𝑖,𝑗 − �̂�𝑖,𝑗|𝑚
𝑖=1             (Equation 15) 

𝐿2𝑗  =  ∑ (𝑌𝑖,𝑗  − �̂�𝑖,𝑗)2𝑚
𝑖=1             (Equation 16) 

The lower the values of 𝐿1 and 𝐿2 the better the value of �̂�𝑖,𝑗. Because the CCUK 

dataset doesn’t have any outliers, our model’s regularisation function is 𝐿2, instead of 

𝐿1. 𝐿1 and 𝐿2 are therefore computed for the validation phase dataset to mitigate 

potential overfitting challenges.  

Additional metrics used in this study are intuitively presented and mathematically 

defined below. 

Pearson Correlation Coefficient (𝑃): Is the most common way of measuring a linear 

correlation by giving an indication of the strength and direction of a relationship 

between two variables. For good results, the value of 𝑃  should be closer to 1. 𝑃 is 

defined as: 

𝐿1 Least absolute deviation 

𝐿2 Least squared error  

𝑃 Pearson’s correlation coefficient, where -1 ≤ 𝑃 ≤  1 

𝑀𝐴𝐸 Mean Absolute Error – computed from 𝐿1 
𝑅𝑀𝑆𝐸 Root Mean Squared Error – computed from 𝐿2 

𝑅2_𝑆𝑐𝑜𝑟𝑒 Coefficient of determination regression score, where ∞ < 𝑅2_𝑆𝑐𝑜𝑟𝑒 < ∞ 
Ω𝑡 Adjusted optimiser settings 𝑡 when defaults are not favourable. Implying a 

different learning rate for 𝑓Ω(. ) 
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𝑃𝑗 =  
∑ (𝑓Ω(𝑋𝑖) − 𝑓Ω(𝑋𝑖

′))(𝑌𝑖,𝑗 −𝑌𝑖,𝑗
′ ) 𝑚

𝑖=1

√∑ (𝑓Ω(𝑋𝑖) − 𝑓Ω(𝑋𝑖
′))2 ∑ (𝑌𝑖,𝑗 −𝑌𝑖,𝑗

′ ) 2𝑚
𝑖=1

𝑚
𝑖=1

              (Equation 17) 

Root Mean Squared Error (𝑅𝑀𝑆𝐸) is computed from the Mean Squared Error (𝑀𝑆𝐸). 

𝑀𝑆𝐸 is the average of the squared difference between the ground truth and predicted 

values for a given dataset. Essentially, it estimates the variation/variance of any 

residuals. 𝑅𝑀𝑆𝐸 closer to zero is the desired outcome although any non-negative 

outcome is possible.  

𝑅𝑀𝑆𝐸𝑗  = √
∑ (𝑓Ω(𝑋𝑖) − 𝑚

𝑖=1 �̂�𝑖,𝑗)2

𝑚
                (Equation 18) 

Mean Absolute Error (𝑀𝐴𝐸) 𝑖𝑠 𝑒xpressed as the average of the absolute difference 

between ground truth and predicted image scores in the dataset. Unlike 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸 

measures the average of any residuals. 𝑀𝐴𝐸 closer to zero is the desired outcome 

although any non-negative outcome is a practical possibility. 

𝑀𝐴𝐸𝑗   =  
∑ |𝑓Ω(𝑋𝑖) − 𝑚

𝑖=1 �̂�𝑖,𝑗|

𝑚
                            (Equation 19) 

R-Squared Score (𝑅2𝑆𝑐𝑜𝑟𝑒) is a statistical measure helping with presentation of the 

proportion of variance for the dependent variable as explained by the independent 

variable in each regression model. Best possible score is potentially 1.0. If the 

regression model is subjectively terrible, then 𝑅_𝑆𝑞𝑢𝑎𝑟𝑒𝑑 can be negative. 

𝑅^2_𝑆𝑐𝑜𝑟𝑒𝑗 = 1 − 
𝑆𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑆𝑆𝑅)

𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑆𝑆𝑇)
 

= 1 −  
∑ (𝑌𝑖,𝑗 − 𝑚

𝑖=1 �̂�𝑖,𝑗)2

∑ (𝑌𝑖,𝑗 −𝑌𝑖,𝑗
′ ) 2𝑚

𝑖=1

                                       (Equation 20) 

6.2.5 Dataset Distribution 

In the previous two chapters, a small dataset of images was used for the experiments. 

However, this chapter will use the full dataset for the experiments instead. The dataset 

used in this study was provided by CCUK. It consists of 250 anonymised facial images 

of 5-year-old children who underwent surgical cleft lip repair. Based on 𝑇𝑎𝑏𝑙𝑒 6.3, 𝑛 =

250 = |𝐶|. Facial anonymity is a mandatory ethical requirement to respect patients’ 

privacy. Further, the dataset contains outcome assessment scores from human 

experts and carers. Orthodontists, plastic surgeons, language/speech therapists, 
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psychologists, and individual patients made assessments based on the facial 

appearance outcomes from surgical treatment.  

All facial images in 𝐶 were included for the different experiments. The dataset was 

statistically analysed to gain insights into the reliability of the assessors prior to 

conducting more deep learning experiments. For the five raters (RaterA, RaterB, 

RaterC, RaterD and RaterE), Figure 6.6 shows the respective scores’ distributions.  

The median score distribution of all the raters’ scores has been included because 

scores for 4 of the 5 raters are visibly asymmetrically distributed. Otherwise, using 

mean would be a natural choice. Empirically, RaterB has a score distribution closer to 

normal compared to the rest. Empirical observations, in addition to statistical 

estimation of scores spread, are used to eliminate some raters before model building 

and training (Jordan and Mitchell, 2015).   

Summary statistics are used to provide more visual cues about how well the score 

summaries represent the raters’ performance in relation to the median. The default 

dataset standard deviation and mean values were used to visualise error bars in 

Figure 6.7, where the divergence is evident. Summary statistics are usually more 

appropriate with the addition of error bars, which provide a visual cue about how well 

the summary represents the underlying data points. 
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Figure 6. 6: Distribution of Scores based on each Rater, bottom right is the median distribution for all the five raters. A normal distribution is not expected. 
Uniform rater scores would be the best result though it is not a practical possibility.
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Several libraries have sub-modules, notably from the Seaborn module, that can be 

configured to aid with the automatic calculation of both summary statistics and the 

error bars from a given dataset. Seaborn is a lending library for making statistical 

visuals in Python programming language and contains several submodules (Waskom, 

2021). We use error bars in bar plots for the additional visualisation to aid with Raters’ 

elimination. In statistics and mathematics, a bar plot represents an estimation of 

central tendency for a numeric variable with the height of each rectangle and provides 

some indication of the score ambiguity/uncertainty (Unpingco, 2019).  

Additionally, an error bar around a given score relationship estimates central tendency 

capable of showing either the range of parameter uncertainty or the spread of the 

underlying dataset around the parameter. Some of the raters may present scores 

whose uncertainty and accuracy may be biased based upon indecisive vector feature 

representation in deep learning (Sra, 2016). 
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Figure 6. 7: Certainty/Uncertainty visualisation of error cues for raters’ scores against the median. Bottom most image is aggregated distribution with Kernel 

Density Estimation (KDE) for each rater. Raters B and C had difficulty rating visuals as ‘1 = excellent’ and Raters A and D could not rate many visuals as ‘5 = 
very poor’. 
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Having dealt with the entire dataset, the data spread is more significant than the 

uncertainty. Therefore, Rater E was eliminated due to the largest variance from the 

median score and having no images with scores in one predefined range (see Figure 

6.6 and Figure 6.7, 2nd along Row 2). Rater D scores are preserved for test purposes, 

implying Rater A, Rater B and Rater C scores were used in building and validating the 

deep CNN model whose set up is described in this chapter.  

6.2.6 Implicit Preprocessing 

1. Image Augmentation 

This involves the generation of new training images by applying a set of 

transformations such as rotation, translation, scaling, flipping, or adding noise to the 

original images. Augmentation helps increase the diversity and size of the training 

dataset, leading to improved model performance, generalisation, and robustness. This 

technique is often also used in machine learning and deep learning approaches where 

the dataset is small. 

The ImageDataGenerator module in Keras aided the image augmentation process 

using the selected transformation techniques in Table 6.5. The intention is to create 

more examples for the representation of various imaging conditions from the training 

set to represent a real-world setting.  

Table 6. 5: Image Augmentation properties to aid the Transfer Learning-based approach. 

Rotation range (degrees) 10 
Horizontal flip True 
Zoom_range 0.1 
Brightness_range (0.5 – 1.5) 

 

An outcome of such augmentation properties is the visual combination in Figure 6.8. 

The image in Figure 6.8 is the same image but under different augmentation/ 

transformation conditions to represent a real-world setting. Reading from left to right, 

the first 2 images are horizontally flipped under slightly different lighting conditions and 

so are the 3rd and 4th. The 5th image is zoomed in while the last image is an 

illuminated representation of the original outcome. 

Consequently, the dataset increased from 250 images to 4735 images with the 

corresponding labels. The new dataset is used to aid better feature extraction through 
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transfer learning using deep convolutional neural networks (DCNN). 

 

      
Figure 6. 8: This sample aesthetic outcome combination represents an image following treatment. 

This is the same image but under different conditions as per a real-world setting. First 2 images are 
horizontally flipped under slightly different lighting conditions and so are the 3rd and 4th. The 5th image 

is zoomed in while the last image is an illuminated representation of the original outcome. 

 

2. Image Filtering 

This is the convolution of an image with a filter or kernel to perform operations such 

as blurring, sharpening, or enhancing specific features. Common types of filters 

include Gaussian filters, median filters, and high-pass filters. Filtering can be used for 

noise reduction, smoothing, feature extraction, or image enhancement. Machine 

learning and deep learning techniques can employ several filters. 

6.2.7 Deep Learning and Regression Modelling 

Regression analysis is the process of estimating the relationship between a minimum 

of two variables, usually independent and dependent variables. Several regression 

techniques and functions can be used to fit independent variables to get the dependent 

variable. Using this approach in machine learning, a prediction model can be designed 

(Chatterjee and Simonoff, 2013). Normally, regression analysis research is embedded 

in a supervised machine learning context. In this study, the independent parameters 

are the different features of the facial appearances’ outcomes, following the surgical 

treatment while the dependent attribute is the outcome assessment estimation. The 

assessment estimation should be a continuous number, from 1 to 5.  

Normally, with regression analysis, the extent of parameters disintegrations and limited 

interaction is celebrated more than the opposite. Hence, the metrics to verify 

successful regression prediction are measured using loss functions. The following 

mathematical expression clarifies this analogy:  
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A regression estimation/ prediction takes a function 𝑓Ω(. ) (𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑 𝑤𝑖𝑡ℎ Ω) 

given some feature points (𝑥𝑖, 𝑦𝑖) ∀ 𝑖 ∈  {0, 1, . . . , 𝑚 − 1} under a loss function 𝑙:   

𝐿 = ∑ 𝑙(𝑓(𝑖 𝑥𝑖), 𝑦𝑖). The aim of a regression is to estimate the function 𝑓 while 

minimizing the total loss 𝐿 of all the data items.  

In this research, given the nature of our dataset, we categorize the regression model 

based on the function 𝑓Ω(. ) and loss function 𝑙. The complicated and subjective nature 

of independent variables (𝑥𝑖) makes it harder to discover if their true relationship to 

the dependent variable (𝑦𝑖) is linear, polynomial, logarithmic or logistic. Given this fact, 

physically learning, analysing, and grading of the complicated facial features is harder 

not only for human beings but also for most categories of regression analyses (Godec 

et al., 2019). After the different transformations (stated in Table 6.5 and Figure 6.8), 

some visualisations of extracted features can be generated.  

6.2.8 Visualisation of Feature Maps 

Deep learning models are traditionally very hard to explain, that’s why they are usually 

treated as black boxes. But CNN models are actually the opposite. This section helps 

with the visualisation of various components.  

With an example of a facial visual image the internal works are decoded and visualised 

as below. The visualisation of the feature maps aids us to see how the input is 

transformed passing through the convolution layers. The feature maps are also called 

intermediate activations since the output of a layer is called the activation. 

 

 

Figure 6. 9: Conceptual visualisation of feature maps using 3D convolution filter. A collection of pixels 
is a potential source of features (feature map space) with in a given image as demonstrated. 
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The output of a convolution layer is a 3D volume as seen in Figure 6.9 (adopted from 

(Yosinski et al., 2015)). The height and width correspond to the dimensions of the 

feature map, and each depth channel is a distinct feature map encoding independent 

features. Therefore, individual feature maps are visualised by plotting each channel 

as a 2D image. 

Actual visualisation works by passing an input visual image into a CNN and recording 

the intermediate activation. Random feature map selection is done to plot the 

visualised output.  

Since the first component of the deep learning model is features extraction, VGG 

convolutional layers are named as ‘BlockX_ConvY’. For instance, the third filter in the 

first block would be coded as ‘Block1_Conv3’. The illustration in Figure 6.10 shows 

VGG-16 architecture with 16 layers, minus the SoftMax and any other pooling layers.  

 

Figure 6. 10: Block-wise and Filter-wise visualisation of VGG16 model. There are 5 blocks with 
different sizes (number of convolutional layers). These extract high level features before feeding into 

the dense layers for either a classification or a regression task. 

There are several convolution filters in each block as indicated in Figure 6.10 (adopted 

from online Dertat, 2017), however, we cannot visualise all of the feature maps. For 

example, block 3 outputs 256 distinct feature maps. Therefore, we sequentially access 

any desired number of feature maps. In this study, the first sixteen (16) were chosen, 
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stacked as 4 by 4 (the last row in Figure 6.11) across the input facial image or four (4) 

2D feature maps stacked as 2 by 2 (the first 2 rows in Figure 6.11).  

Therefore, given the size of the different filters in each layer, we get the first 16 or 4 

feature maps from the first convolution layer (conv1) of each block (as per the column 

headings of Figure 6.11).  However, other feature map groups may be specified, as 

and when necessary.  

Figure 6.11 visualises feature maps extracted from a layer-wise and block-wise 

approach. The first column is for feature maps from Block1, second column, Block2 

and continues to fifth column, Block5. The first row in Figure 6.11 uses default RGB 

colour visualisation while the second and third rows use HSV for visualisation.  Feature 

maps are clear in the latter colour space.
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Block1_Conv1 Block2_Conv1 Block3_Conv1 Block4_Conv1 Block5_Conv1 

     

     

     
Figure 6. 11: Block-wise feature maps extraction from VGG16-based architecture. The three rows (top to bottom) represent the level of detail of extracted 

features. It could have been more. For each block, a visualisation is made for the extracted features. As expected, block 5 represents a concrete feature map 
at level 3 (lowest level). 
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The regression framework partly exploits such robust features using both random and 

sequential features selection. Hybrid features selection is not feasible because the 

output formats of the different model blocks cannot be harmonized using a 

computational approach. A feasible manual selection approach would be unreliable 

and inept. Figure 6.12 also demonstrates that the model learns from the same facial 

image that has been presented differently, following successful augmentation.  

Following features extraction as partly visualised, a deep learning model processes 

thousands or millions of parameters using neurons of the RELU activation function 

combinations. A given layer of the model can be updated based on the state of the 

layer before or after, courtesy of the computational flexibility and efficiency introduced 

by backpropagation (Lecun, Bengio and Hinton, 2015). We can naively assume that 

the different feature points are processed using a polynomial function to generate an 

assessment outcome in the range of 1 and 5, inclusive. The visualisation in Figure 6.8 

facilitates this intuition, hence eliminating any linear regression function for the 

calculation of the outcome assessment score. The implementation is however different 

for the model computational steps of the last blocks/layers of our predictive model. 

To compute an assessment score �̂�, we use a polynomial expression below to fit 𝑥: 

�̂�  =  𝑓Ω(𝑥)   =   Ω0 +  ∑ Ω𝑗
𝑚
𝑗=1 𝑥𝑗                                (Equation 21) 

Assuming a preference and predefined number of features or feature points, 𝐹, (𝑥𝑖, 𝑦𝑖). 

Where  (𝑥𝑖, 𝑦𝑖) ∈ ℝ ∀ 𝑖 ∈   {0, 1, . . . , 𝑚 − 1}, we can fit the polynomial function, with 

degree,  𝑣 through a minimization expression: 

minΩ  ∑ ||𝑦𝑖  −  𝑓(𝑥𝑖)||2

𝑖

 

The idea is to calculate (𝑣 +  1) variables denoted by Ω0, . . . , Ω𝑣. The intuition is that 

for linear regression, the polynomial function has a degree, 𝑣 =  1. 

Calculation of Ω0, . . . , Ω𝑣 is feasible for a known dataset, from which 

parameters/features or independent variables 𝑥𝑖 have been extracted. The CCUK 

dataset distribution has been discussed in the previous sub-section 6.2.5.   
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6.3 Experimental Configuration and Results  

6.3.1 Overview 

Presented in this section are the different experimental configurations and results. 

Before the results presentation, an overview of selected terminologies is given to 

facilitate understanding the models’ architectural visual representations. These 

concepts have been detailed in (Goodfellow, Bengio and Courville, 2016, Zhang et al., 

2021).   

1. Activation function: One that facilitates a neural network to learn a non-linear or 

complex relationship. In our supervised learning context, we have features and 

labels (scores). Functions (such as the RELU used in this study), facilitate 

neural networks to map features to labels for eventual inference. Other 

activation functions include sigmoid, tanh, ELU (exponential linear unit) and 

many others.  

2. Batch Normalisation: Inputs and outputs into activation functions should be 

normalised in each hidden layer. This helps stabilise neural networks by 

dropping outlier weights and potentially enable networks learn faster. 

3.  Batch size: The sample images from the dataset that the model processes and 

determines how frequently the network parameters are updated per iteration.  

4. Convolution: It is a machine learning idiom for convolutional layer or 

convolutional operation. A convolution is a mathematical computation (hence 

combination) of two functions, one holding the filter and another holding the 

input image or intermediate feature matrix, hence, normally invoked as 

‘Conv2D’. 

5. Convolutional Neural Network (CNN): Is a neural network that where one of the 

layers is a convolutional layer. Other layers could be a combination of pooling 

layers and/or dense layers. It is only limited by the creativity of the network 

engineer. CNNs are popular because key features are extracted without human 

intervention, and they have voracious capability to map features with minimal 

corresponding labels.  

6. Pooling: The process of reducing the size of matrices generated by an earlier 

convolutional layer into a smaller one for context capture. Global Maximum 

Pooling or Global Average Pooling are two often used functions, implemented 
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at the pooling layer, to take the maximum value or average value respectively, 

across the pooled section.  

7. Dense Layer:  Also referred to as fully connected layer, is a hidden or output 

layer from which every node is connected to every other node of the 

subsequent hidden layer.  

8. Flatten: Is a function used for input vectorisation, like pooling, but changes all 

the resultant 2D arrays from feature maps into a long linear vector. Therefore, 

flattening always generates a 1D vector, unlike pooling. 

6.3.2 Experiments and Parameter Settings 

To fit the dataset to the model, a random split for model training, evaluation and testing 

was necessary of 4735 images. A random distribution of 75% for training purpose and 

25% for model testing (evaluation). Additionally, another random split for the training 

images was conducted, 85% of the training phase images were used for training while 

15% were used for validation purposes. Details are found in Table 6.6. 

Table 6. 6: Initial Dataset distribution 

Training Phase: 75% of 𝐶𝐴𝑢𝑔 Evaluation Phase: 25% of 𝐶𝐴𝑢𝑔 

# images for Training # images for Validation # images for Testing 

3018 (85% of 𝐶𝐴𝑢𝑔) 533 (15% of 𝐶𝐴𝑢𝑔) 1184 

 

However, if this challenge was a classification problem, then stratified dataset splitting 

would have been a better approach (Kahloot and Ekler, 2021). 

Therefore, 25% of the dataset used for evaluation is not read into the network layers 

during the training phase and is used for model evaluation only. The dataset size may 

however dictate the distribution. 

As indicated, we chose the Adaptive Moment Estimation (Adam) algorithm as the 

model optimiser with default settings. More settings of Adam were experimented after 

a grid and random search with outcome detailed in Table 6.7. A description of Adam, 

Stochastic Gradient Descent (SGD) and other optimisation algorithms can be found in 

(Curtis and Nocedal, 2018, Alzubaidi et al., 2021). 
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Table 6. 7: Random Search and Grid Search hyperparameter outcomes for VGG16-based model 

Default Optimization Settings Learning rate: 0.001 
Algorithm name: Adam 

Other Experimental Settings Grid Search Random Search  
Learning rate 0.0005 0.0006 
Dropout_rate 0.2 0.4 
# filters 64 64 
# Units 256 64 
# Trainable parameters 3,250,497 840,513 

 

The platform settings have been defined in Table 6.8. NVIDIA GeForce 940MX GPU 

(now GeForce MX350) is known for accelerating computational power on laptops by 

250%, which is considerably faster than many modern CPUs.  

Table 6. 8: Hardware and software requirements 

Hardware Software 

NVIDIA GeForce 940MX (GeForce MX350),  
pci bus id: 0000:01:00.0,  
compute capability: 5.0  

64-bit Operating System, Microsoft Windows 10, 
version 22H2 

Computing Capability 5.0 Python Programming Language v 3.9.0 

Random-access storage is 16GB DL Frameworks: Tensorflow, Keras (2.8.0). CuDA, 
and CuDNN 

GPU memory is 8GB Libraries: Pandas, Matplotlib, Seaborn, Sklearn, 
Scipy, Pillow, and numpy. 

 

6.3.3 Implementation Summary  

The pseudocode below represents the abstract deep learning project involving 

regression analysis. The goal is to predict a continuous numerical target variable (the 

appearance assessment scores based on input images. The pseudo code indicates a 

framework for feature extraction using any suitable selected pre-trained model (such 

as VGG16, ResNet50 or MobileNetv1). A custom regression node is built on top of the 

feature extraction base. This is accomplished through the steps below: 

1. Importing Libraries. 

1.1 Import necessary libraries for deep learning (TensorFlow, Keras), data handling (Pandas), 

model visualisation, and other utilities. 

2. Definition of Constants and Global variables. 

2.1 Set various constants and global variables, such as image dimensions, data paths, and working 

directory. 

3. Loading and Preprocessing Data.  

3.1 Load a dataset that of images and associated scores. Split the dataset into training and 

testing subsets. 

4. Creation and Initialisation of Data Generators. 
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4.1 Create data generators for training, validation, and testing. These generators preprocess 

the images and prepare batches for training and evaluation. 

5. Loading any Pre-trained Model of choice.  

5.1 Load a pre-trained model with weights initialised from scratch or using ImageNet pre-

trained weights. Empirically, the latter was applied to this research. 

5.2 Freeze all layers of the loaded pre-trained model to prevent them from being updated 

during training. 

6. Building a Custom Regression Model.  

6.1 Create a custom regression model by adding new layers to the pre-trained base model. 

6.2 An appropriate features aggregation/ batch framework such as Flattening, Global Average 

Pooling 2D (GAP), Global Max Pooling 2D (GMP) is applied to the output of the loaded model to 

reduce the spatial dimensions. 

6.3 A Dense layer with a single neuron and a linear activation function is added to produce the 

regression output. 

7. Model Compilation. 

7.1 Compile the regression model, specifying the optimizer (Adam), loss function (such as mean 

squared error - mse), and any other metrics.  

8. Model Training.  

8.1 Train the regression model using the training and validation datasets. 

8.2 Early stopping is implemented to monitor the validation loss and stop training when it stops 

improving. 

9. Model Evaluation on Test Set. 

9.1 Evaluate the trained model on the test dataset, calculating various performance metrics 

such as RMSE (Root Mean Square Error), R-squared (R2) value, Pearson correlation coefficient 

(PCC), and mean absolute error (MAE). 

10. Visualisation 

10.1 Visualise the model predictions for a subset of test images alongside their ground truth 

scores. 

10.2 Export the results to a suitable storage site such a file. 

11. Plot Loss History. 

11.1 Visualise the training and validation loss history to assess the model's convergence and 

generalisation. 

 

6.3.4 Primary Findings 

Transfer learning techniques shaped the model configurations with prior variables 

about three raters and three architectures. Presented below are results from TL 

settings and combinations using the VGG16 framework. The training graphs and 

predictions presented in Figures 6.12 and 6.13 respectively are based on the following 

condition:   

𝐼𝑓 𝑗 =  1, 𝑡ℎ𝑒𝑛 𝑅1  = 𝑅𝑎𝑡𝑒𝑟𝐴 
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Where the features  𝑥1,1 extracted are aggregated using the following vectorisation 

arrangements:  

𝑖: GlobalMaxPooling (GMP), vectorisation of features without any dense layers. 

Otherwise, GMPv2 denotes that 2 additional dense layers were applied; 

𝑖𝑖: GlobalAveragePooling (GAP), vectorisation of features without any dense layers. 

Otherwise, GAPv2 denotes that 2 additional dense layers were applied;  

𝑖𝑖𝑖: Flattening (FLT), vectorisation of features without any dense layers. Otherwise,  

𝑖𝑣: Flattening with additional 2 dense layers (FLTv2).  

Features extraction and aggregation for deep propagation is challenging, but some 

system functions exist to aid users to create models faster.  In Figure 6.12, the labelled 

visuals were generated from the feature maps aggregation frameworks defined as 𝑖: 

GlobalMaxPooling; 𝑖𝑖: GlobalAveragePooling; 𝑖𝑖𝑖: Flattening; 𝑖𝑣: Flattening with 

additional 2 dense layers. Between 𝑖 and 𝑖𝑖, model validation ranges between 0.6 and 

0.4 over 50 epochs, leading to early overfitting. In 𝑖𝑖𝑖, the size of the feature vector 

potentially leads to early convergence and non-uniformity though the validation range 

is wider (0.15 and 0.4). With the additional 2 dense layers in 𝑖𝑣, the model trains and 

shows signs of learning beyond the 50 epochs, presenting the best outcome. 
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𝑖 𝑖𝑖 

𝑖𝑖𝑖 𝑖𝑣 
Figure 6. 12: VGG-based Model training and validation visualisation for the first rater under different 
settings. Features extraction and aggregation for deep propagation is challenging, but some system 

functions exist to aid users to create models faster.  From 𝑖: GlobalMaxPooling; 𝑖𝑖: 
GlobalAveragePooling; 𝑖𝑖𝑖: Flattening; 𝑖𝑣: Flattening with additional2 dense layers. Between 𝑖 and 𝑖𝑖, 
model validation ranges between 0.6 and 0.4 over 50 epochs, leading to early overfitting. In 𝑖𝑖𝑖, the 

size of the feature vector potentially leads to early convergence and non-uniformity though the 
validation range is wider (0.15 and 0.4). With the additional 2 dense layers in 𝑖𝑣, the model trains and 

shows signs of learning beyond the 50 epochs, presenting the best outcome. 

 

The sample scoring outcomes for arrangements 𝑖 and 𝑖𝑣 are labelled with 𝑃𝑆 for 

predicted score and 𝐺𝑇𝑆 for ground truth score. There was limited learning in the 

settings of 𝑖 and 𝑖𝑖. In both cases, there was early overfitting, 𝑖𝑖 being worse, where 

the overfitting manifests as while the training loss decreases, the validation loss does 

not. The settings with options 𝑖𝑖𝑖 and 𝑖𝑣 reveal a better outcome for model fitting (see 

the validation ranges as captioned in Figure 6.12). Following successful training is 

model validation with sample outcomes in Figure 6.13. 
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𝑖 𝑖𝑣

Figure 6. 13: Predicted scores of some images based on the trained VGG16 architecture under 
conditions 𝑖 and 𝑖𝑣 with apparent better predictions under condition 𝑖 for the showed results.  

The sample outcomes in Figure 6.13 are few and superficially indicate 𝑖 outperforming 

𝑖𝑣. However, Figure 6.13 and Table 6.9 together indicate that the overall settings in 𝑖𝑣 

offer the best outcome for scoring of the test dataset images with the lowest 𝑅𝑀𝑆𝐸, 

𝑀𝐴𝐸 and the highest 𝑃 and 𝑅2_𝑆𝑐𝑜𝑟𝑒, for the first rater, 𝑅1. 

Using the VGG16 framework, more quantitative outcomes generated for the following 

settings summarised in Table 6.3 and Table 6.4 are presented in Table 6.9. 

If  𝑗 =  2, then 𝑅2  = 𝑅𝑎𝑡𝑒𝑟𝐵 , 

If  𝑗 =  3, then 𝑅3  = 𝑅𝑎𝑡𝑒𝑟𝐶 

To generate Tabel 6.9, different models based on the VGG16 framework were fitted 

under different settings. For instance, the visuals in the dataset were used to fit and 

evaluate the model using the first rater (𝑅1) labels. To aggregate the resulting features 

during model building, different vectorisation frameworks have been applied. These 

include global maximum pooling (GMP), global average pooling (GAP) and the regular 

flattening arrangement (FLT). The resulting model is evaluated different metrics. The 

choice of these metrics is root mean squared error (RMSE), mean absolute error 

(MAE), correlation coefficient (p) and r-squared score. Once a model is built, an 

evaluation is conducted to ascertain its accuracy on the unseen/unused subset of the 

main dataset. This aids in the decisions about rater’s and parameter’s reliability. The 

process is repeated using different rater labels for the same dataset. 

 

 



136 
 

Table 6. 9: TL with VGG16 architecture. Different raters’ ground truth scores are used in training the 

model with different vectorisation arrangements giving different metric outcomes. 

Assessor Ground 
Truth 

Vectorisation Framework 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑃 𝑅2_𝑆𝑐𝑜𝑟𝑒 

𝑅1 𝑖 (𝐺𝑀𝑃) 0.653 0.514 0.507 0.246 

𝑖𝑖(𝐺𝐴𝑃) 0.699 0.536 0.419 0.536 

𝑖𝑖(𝐺𝐴𝑃𝑣2) 0.751 0.619 -0.024 -0.004 

𝑖𝑖𝑖(𝐹𝐿𝑇) 0.448 0.338 0.811 0.645 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.370 0.256 0.876 0.758 

𝑅2 𝑖 (𝐺𝑀𝑃) 0.980 0.743 -0.034 -0.012 

𝑖𝑖(𝐺𝐴𝑃) 0.764 0.640 -0.045 -0.033 

𝑖𝑖(𝐺𝐴𝑃𝑣2) 0.976 0.752 -0.009 -0.003 

𝑖𝑖𝑖(𝐹𝐿𝑇) 0.536 0.409 0.841 0.700 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.470 0.354 0.900 0.769 

𝑅3 𝑖 (𝐺𝑀𝑃) 0.934 0.798 -0.002 -0.005 

𝑖𝑖(𝐺𝐴𝑃) 0.934 0.798 -0.001 -0.005 

𝑖𝑖𝑖(𝐹𝐿𝑇) 0.572 0.440 0.801 0.624 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.869 0.698 0.446 0.131 

𝑅4 𝑖 (𝐺𝑀𝑃) 0.935 0.740 0.094 0.005 

𝑖𝑖(𝐺𝐴𝑃) 0.935 0.735 0.099 0.007 

𝑖𝑖𝑖(𝐹𝐿𝑇) 0.943 0.768 0.153 -0.010 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.913 0.732 0.243 0.053 

𝑅5 𝑖 (𝐺𝑀𝑃) 0.717 0.626 -0.059 -0.014 

𝑖𝑖(𝐺𝐴𝑃) 0.715 0.624 0.008 -0.007 

𝑖𝑖𝑖(𝐹𝐿𝑇) 0.673 0.568 0.360 0.106 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.631 0.510 0.515 0.214 

𝑅𝑀𝑒𝑑𝑖𝑎𝑛 𝑖 (𝐺𝑀𝑃) 0.768 0.630 0.013 -0.005 

𝑖𝑖(𝐺𝐴𝑃) 0.767 0.627 0.025 -0.003 

𝑖𝑖𝑖(𝐹𝐿𝑇) 0.462 0.350 0.803 0.627 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.725 0.589 0.332 0.105 

𝑅𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑖 (𝐺𝑀𝑃) 0.661 0.543 0.008 -0.005 

𝑖𝑖(𝐺𝐴𝑃) 0.661 0.543 0.006 -0.004 

𝑖𝑖(𝐺𝐴𝑃𝑣2) 0.659 0.546 0.040 0.001 

𝑖𝑖𝑖(𝐹𝐿𝑇) 0.676 0.346 0.582 0.099 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.639 0.531 0.287 0.061 

 

It is consistently true from Table 6.9 that vectorisation by flattening and flattening with 

additional dense layers outputs optimal metrics. Different ground truth values produce 

mixed results under different conditions. All seven ground truth values produce optimal 

results when the feature aggregation framework is flattening. However, while flattening 

with additional dense layers is optimal for Rater A (𝑅1), Rater B (𝑅2), Rater D (𝑅4) and 

Rater E (𝑅5) and it is not the case for Rater C (𝑅3), and the median(𝑅𝑀𝑒𝑑𝑖𝑎𝑛) and mean 

(𝑅𝑀𝑒𝑎𝑛) ground truth sets. This indicates the possibility of 𝑅3 heavily skewing the 

Median and Mean computations. This is potentially because the 𝑅3 has the least 

appearance assessment knowledge or makes severely biased assessments. 

Therefore, exploring how the weighted mean dataset performs would be interesting. 
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Other features’ aggregation frameworks are poor because they are not robust and are 

non-suitable with processing hybrid datasets. Also, VGG16 as a framework potentially 

favours a few frameworks for aggregation in non-classification deep learning 

problems. The best results from the optimal metrics were realised using ground truth 

from Rater A (𝑅1) and Rater B (𝑅2). Based on these outcomes, the subsequent 

experimental results for ResNet50 and MobileNetv1 architectures were explored for 

only 𝑅1 and 𝑅2, as seen in Tables 6.10 and 6.11, respectively.  

Table 6. 10: ResNet50-based Results 

Assessor Ground 
Truth 

Vectorisation Framework 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑃 𝑅2_𝑆𝑐𝑜𝑟𝑒 

𝑅1 𝑖 (𝐺𝑀𝑃) 0.749 0.603 0.060 0.002 

𝑖 (𝐺𝑀𝑃𝑣2) 0.758 0.621 -0.041 -0.022 

𝑖𝑖(𝐺𝐴𝑃) 0.738 0.608 0.218 0.037 

𝑖𝑖(𝐺𝐴𝑃𝑣2) 0.749 0.625 0.171 0.008 

𝑖𝑖𝑖(𝐹𝐿𝑇) 0.750 0.579 0.413 0.006 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.745 0.622 0.239 0.018 

𝑅2 𝑖 (𝐺𝑀𝑃) 0.978 0.749 0.023 -0.007 

𝑖 (𝐺𝑀𝑃𝑣2) 0.978 0.738 0.049 -0.007 

𝑖𝑖(𝐺𝐴𝑃) 0.985 0.762 0.009 -0.022 

𝑖𝑖(𝐺𝐴𝑃𝑣2) 0.978 0.751 0.016 0.000 

𝑖𝑖𝑖(𝐹𝐿𝑇) 0.916 0.714 0.358 0.122 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.926 0.719 0.346 0.104 

 

Because vectorisation by global max pooling did not result in optimal outcomes with 

ResNet50 experiments (please see Table 6.10), the subsequent experiments present 

results where vectorisation was only by global average pooling and flattening. In Table 

6.10, it is reasonable to conclude that there is no single stable features vectorisation 

framework for 𝑅1dataset. ResNet50 is a generally resource intensive framework which 

might have underperformed over time on a limited dataset (Xu, Fu and Zhu, 2023). 

However, 𝑅2 is suitable with only GAPv2 across the evaluation metrics. There is 

considerable consistency in the results across Table 6.11.  
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Table 6. 11: MobileNetv1-based Results 

Assessor Ground Truth Vectorisation Framework 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑃 𝑅2_𝑆𝑐𝑜𝑟𝑒 
𝑅1 𝑖𝑖(𝐺𝐴𝑃) 0.522 0.405 0.726 0.518 

𝑖𝑖(𝐺𝐴𝑃𝑣2) 0.331 0.246 0.900 0.806 

𝑖𝑖𝑖(𝐹𝐿𝑇) 1.840 1.331 0.302 -4.986 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.338 0.249 0.899 0.798 

𝑅2 𝑖𝑖(𝐺𝐴𝑃) 0.641 0.504 0.763 0.571 

𝑖𝑖(𝐺𝐴𝑃𝑣2) 0.334 0.243 0.945 0.884 

𝑖𝑖𝑖(𝐹𝐿𝑇) 3.003 1.967 0.315 -8.426 

𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.425 0.320 0.904 0.811 

 

Table 6.12 shows an adjusted dataset distribution to mitigate potential early 

convergence and overfitting. 

Table 6. 12: Adjusted dataset distribution. 

Training Phase: 95% of 𝐶𝐴𝑢𝑔 Evaluation Phase: 5% of 𝐶𝐴𝑢𝑔 

# images for Training # images for Validation # images for Testing 

4048 450 237 

 

The aggregated outcomes following Table 6.12 are presented in Table 6.13 below, for 

MobileNetv1-based transfer learning framework only. Other model frameworks were 

eliminated because TL based on MobileNetv1 yielded the most optimal outcomes. The 

results in Table 6.13 are better than those in Table 6.11 for both ground truth datasets. 

This is attributed to a bigger training and validation dataset; hence elimination of early 

convergence is significant.  

Table 6. 13: MobileNetv1 results after adjusting the dataset distribution. 

Assessor Ground Truth Vectorisation Framework 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑃 𝑅2𝑆𝑐𝑜𝑟𝑒 
𝑅1 𝑖𝑖𝑖(𝐹𝐿𝑇𝑣3) 0.310 0.230 0.913 0.829 

𝑖𝑖(𝐺𝐴𝑃𝑣3) 0.750 0.614 NaN -0.001 

𝑅2 𝑖𝑖𝑖(𝐹𝐿𝑇𝑣3) 0.376 0.283 0.932 0.851 

𝑖𝑖(𝐺𝐴𝑃𝑣3) 0.293 0.216 0.955 0.909 

 

The training curves are flatter with less overfitting as seen in Figure 6.14. The most 

optimal result in Table 6.13 is where the second dataset for Rater B (𝑅2) with global 

average pooling using a few dense layers as per the previous architecture.  
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𝑅1, 𝑖𝑖𝑖 

 
𝑅2, 𝑖𝑖𝑖 

 

 
𝑅2, 𝑖𝑖 

 

Figure 6. 14: MobileNetv1-based model training and validation visualisation for first and second raters 
under different settings. 𝑅2, 𝑖𝑖 shows a better learning outcome implying that a better model was fitted/ 

built. 

6.3.5 Reducing the Regression Task into a Classification Case 

The regression model can be naturally specialised as a classification model. 

Assessment of facial image appearance following cleft lip treatment can be considered 

a classification task. The scores of different facials are classified into only five (5) 

categories: 1 – ‘Excellent’, 2– ‘Good’, 3– ‘Fair’, 4– ‘Poor’ and 5– ‘Very Poor’. Therefore, 

a classification model is created in the following two aspects as a predictive modelling 

technique for classification or categorisation on facial images into the predefined 

classes (Kotsiantis et al., 2007, Lu and Weng, 2007): (i) through replacing the 

regression head in 1D output with the classification head with 5D output, and (ii) while 

the scores are used as real number for regression, they are treated as categories for 

classification. The goal is to automatically make decisions that map features of 

different facial images appearance into their corresponding classes and use the 

outcomes to serve as a validation technique for the regression model. Note that the 

classification and regression models use the same datasets for training and learning 

with different outputs.    

The classification model was built based on already class labelled data instances. The 

facial images and their features are the independent variables while the labels are the 

dependent variables. Preprocessing was simplified because the class labels are either 

categorical or numerical. Since the study analyses facial images, a CNN-based 

architecture was conveniently used for feature extraction and mapping to the different 

brands and train a model (Caldeira et al., 2020). The Adam optimiser was used with 

MobileNetv1- based CNN classification model, with scores/labels from Rater B as the 

basis. Some metrics are summarised in Table 6.14. The three potential optimisers (in 

Table 6.14) can be used for training our classifier. However, Adam is most accurate 
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across the entire classifier development cycle, therefore, it is the preferred optimiser 

for the classifier in this study.    

Table 6. 14: Accuracy Metrics for the classification model during training, validation, and testing 

phases for the three selected optimisers with Rater B labels. 

Phase Adam SGD RMSprop 
Training  0.993 0.989 0.988 
Validation 0.997 0.978 0.983 
Testing 1.000 0.963 0.974 

 

Adam optimiser produced better classification outcomes than the other optimisers for 

the MobileNetv1 baseline architecture. This may not be generalised for the rest of the 

architectures explored in this study. More experimental work may be conducted. Table 

6.9 can be generated using different optimisers for different raters’ labels and CNN 

model architectures. 

 

Figure 6. 15: Some results from the CNN classification model. Left – Model Training and Validation 

Accuracy graph shows that excellent learning took place. Middle- Confusion, matrix indicates that 

testing classification accuracy was perfect. With early stopping and checkpoint call backs, it is 

observed that at epoch 25, the validation accuracy was nearly 100. A model was saved at that point, 

which was eventually loaded and used for classification testing. Right – Prediction results (PL) against 

the ground truth (GTL). 

The graph in Figure 6.15 (Left) indicates how the classification model training and 

validation was nearly perfect. The model training and validation accuracy graph shows 

that excellent learning took place. Figure 6.15 (middle) is the confusion matrix with 

perfect label classification. With early stopping and checkpoint call backs, it is 

observed that at epoch 25, the validation accuracy was nearly 100%. A model was 

saved at that point, which was eventually loaded and used for classification testing. 

The original 25 evaluation images and 23 randomly selected other images were used 

for testing, resulting in 48 visuals. In Figure 6.15 (Right), predicted label (PL) is made 
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against the ground truth label (GTL) for selected visuals and the assessment labels 

are rightly expected.  

6.4 Evaluation of Deep Regression Analysis and Assessment 

Approach 

6.4.1 Model Performance  

The 𝑅2𝑆𝑐𝑜𝑟𝑒 is a good and reliable alternative to Pearson’s correlation, 𝑃. All key results 

above, bar one, indicate a direct proportion between the two metrics. Table 6.15 

summarises Tables 6.9, 6.10, 6.11 and 6.13 with optimality applied to Table 6.9.  

Table 6. 15: Best results aggregated from the three architectures following several experiments. 

Assessor Ground Truth  Model Vectorisation Framework 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑃 𝑅2𝑆𝑐𝑜𝑟𝑒 
𝑅1 VGG16 𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.370 0.256 0.876 0.758 

MobileNet 𝑖𝑖(𝐺𝐴𝑃𝑣2) 0.331 0.246 0.900 0.806 

𝑖𝑖𝑖(𝐹𝐿𝑇𝑣3) 0.310 0.230 0.913 0.829 

𝑅2 VGG16 𝑖𝑣(𝐹𝐿𝑇𝑣2) 0.470 0.354 0.900 0.769 

ResNet50 𝑖𝑖𝑖(𝐹𝐿𝑇) 0.916 0.714 0.358 0.122 
MobileNet 𝒊𝒊(𝑮𝑨𝑷𝒗𝟐) 0.334 0.243 0.945 0.884 

𝒊𝒊(𝑮𝑨𝑷𝒗𝟑) 0.293 0.216 0.955 0.909 

 

Table 6.15 was generated using an elimination method based on the optimality of the 

four metrics. All the four metrics were considered at their optimal best across the entire 

row/record for inclusion. 

The fact we used several metrics, this section attempts to explain the significance of 

the quantitative outcomes as shown in the tables above. For over a decade, machine 

learning solutions interoperability has outpaced its ‘explainability’. Several 

practitioners have questioned their validity and societal impact (Carvalho, Pereira and 

Cardoso, 2019).   

Training models with scores provided by the first rater (𝑅1) performed well across two 

architectures. In contrast, scores provided by the second rater ( 𝑅2) scores were more 

robust across all the three backbone models, chosen for experimental setup. As earlier 

stated, the higher the values of 𝑃 and/or 𝑅2𝑆𝑐𝑜𝑟𝑒  and the lower the values of 𝑅𝑀𝑆𝐸 

and/or 𝑀𝐴𝐸, the better the regression model. The 𝑀𝐴𝐸 value is the extent to which an 
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estimation of a score can go off the ground truth. Therefore, minimization of 𝑀𝐴𝐸 and 

𝑅𝑀𝑆𝐸 is an optimality target.  

Any intuitive choice for the best possible outcome would be either of the two 

approaches below: 

a) Approach 1 with initial dataset distribution:  

• Using ground truth for rater 𝑅2 

• Transfer learning with MobileNetv1 

• Random or Sequential feature aggregation through global average pooling 

b) Approach 2 with a revised dataset distribution 

• Use ground truth for rater 𝑅2 

• Transfer learning for MobileNetv1 

• Random or Sequential feature aggregation through global average pooling 

Rater 𝑅2 has proven a more reliable assessor for facial appearances outcomes 

following CL treatment. In general practice, surgeons are best placed to train, monitor, 

and objectively appraise each other’s practices. Despite their multifaceted curriculum 

during training, surgeons are often assessed based on their clinical ethics, passionate 

scientists and researchers to improve their practices (Soh, 1998). This has not 

changed, even in recent times. Therefore, while assessing other surgeons' outcomes, 

a set of surgeons should be considered objective enough, if a dataset of images 

presented to them is limited, also referred to as assessment of reduced ‘surgical 

volumes’ (Mayer et al., 2009).  

In their work on assessment of quality of care in surgery, (Mayer et al., 2009) proposed 

that clinical pathway measures such as the structure of care, process of care and 

outcome of care should be emphasized if patient satisfaction is to be improved. 

Additionally, (Mayer et al., 2009) present a detailed framework for their proposed 

quality of surgical care framework, which was statistically proved using a dataset for 

coronary artery bypass surgical activities. 

Using a transfer learning-based regression CNN framework, it is possible to assess 

partial appearance outcomes with errors in the range of  0.293 < 𝑅𝑀𝑆𝐸 <  0.334 and  

0.216 < 𝑀𝐴𝐸 <  0.243.  Global average pooling aggregation is preferred for better 
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results and assures a Pearson correlation of between 94.5% and 95.5%. Segment-

wise acceptance of the model network layers facilitated getting the desired features. 

There is room to potentially improve upon these metrics by having diverse datasets. It 

was noted that in many medical research studies, “data on outcomes after surgical 

interventions are often of poor quality. The lack of consistent reporting is well 

highlighted in the medical literature” (Domenghino et al., 2023:1). Some open datasets 

potentially include images available to facilitate research. This would open doors for a 

more comprehensive research activity for an unsupervised learning study for the 

future. Frameworks should be proposed for potential generation of reliable and expert-

evaluated CL-based datasets. 

6.4.2 Comparison of Regression Analysis to Other Assessment Methods  

Previous attempts to assess appearance outcomes following CL surgical treatment 

have undertaken quantitative and qualitative approaches. SymNose, in some of the 

studies, applied the thin lip correction algorithm to improve lip appearances before and 

after human raters made the assessment (Kornmann et al., 2019). Inter-rater and 

intra-rater reliability improved between 0.80 and 0.78 to 0.81 and 0.83, respectively. 

However, this method does not support generation of precise continuous score of a 

facial appearance outcome following treatment. Another approach involved 3D 

analysis of soft tissue for symmetry computation on postoperative images.  The 

symmetry is compared between the treatment outcome appearances and the regular 

facials. If the normal and the postoperative images have convergent balances, then 

surgical treatment can be individualised otherwise, generalisation of treatment 

protocols take precedence (Schwenzer-Zimmerer et al., 2008).  

In shape analysis framework. Low level features of the mouth are used to compute the 

facial symmetry. Similarity of the mouth region is calculated using the symmetric axis 

and eventually converted into a score assessment. The automatically computed 

assessment score is compared to the human score using Pearson’s correlation 

coefficient (Bakaki et al., 2021).  Additionally, (Bakaki et al., 2022) further divided the 

different facial image into three third components and detected features separately. 

Symmetry was detected using the shortest Manhattan distance between the center of 

the three thirds and the other features. Three scenarios were used to determine 

similarities of structural components from which assessment score is calculated and a 

correlation is determined.  
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Finally, classification model was developed to simplify cleft lip treatment assessment 

into known categories of 1, 2, 3, 4 and 5. This approach is less restrictive and requires 

less computational resources than regression analysis. Table 6.16 aggregates the 

different studies’ Pearson’s correlation coefficient, where applicable. It shows that 

CNN based classification has the most potential for simulating the human behaviours 

in assigning scores to cleft images after cleft repair. However, CNN based regression 

model provides more detailed and fine-grained appearance numeric assessment. 

Table 6. 16: Aggregated correlation metrics from different studies. 

Study PCC 
CNN based Regression 0.955 
CNN based Classification 1.000 
Hybrid Key Landmarks Detection-based Method 0.567 
Traditional-based Shape Analysis 0.396 
Direct Comparison between AI-based scoring and Conventional Raters N/A 
Quantitative 3D Tissue analysis of Symmetry N/A 
SymNose and Thin Lip Correction algorithm N/A  

 

6.4.3 Summary  

This study investigated the effectiveness of using CNN models for transfer learning to 

perform appearance assessment through regression analysis. The objective was to 

leverage pre-trained models and transfer their learned features to improve the 

performance of our particular regression scoring task. Through different 

experimentation and analysis settings, several key findings have emerged. Results 

demonstrate that transfer learning can significantly enhance appearance assessments 

using regression techniques from the flexible CNN frameworks of VGG16, ResNet50, 

or MobileNetv1. Using their pre-trained model weights, these networks can effectively 

learn high-level features from the CCUK dataset, improving scoring accuracy. This 

finding confirms the potential of transfer learning as a valuable technique for 

regression tasks, particularly with limited datasets. MobileNetv1 was found as most 

viable network. Additionally, the choice of the pre-trained models and the layers for 

transfer play a crucial role in achieving optimal performance. Different pre-trained 

models have diverse architectures and represent different levels of abstraction in 

visual features. Therefore, careful consideration should be given to selecting the 

appropriate pre-trained model. Furthermore, fine-tuning the transferred layers in the 

CNN can help refine the learned representations and appropriately adapt them to 

appearance outcome scoring. Overall, the findings of this study emphasise the 
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potential of transfer learning in regression scoring/assessment with CNNs. The 

approach offers a powerful means to leverage the great potential of pre-trained 

models, enabling improved regression performance, and overcoming dataset 

limitations. However, further research is needed to explore the impact of different 

transfer learning strategies, parameters/features selection criteria and investigate the 

optimal choice of hyperparameters. This study contributes to the growing body of 

research on transfer learning in regression analysis, providing insights into its 

effectiveness. The demonstrated benefits open new opportunities for applying CNNs 

with transfer learning in supervised regression appearance scoring challenges. Table 

6.16 summarises some results from different studies.  
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Chapter 7 Discussion and Conclusion  
 

 

7.1 Introduction 

This section involves an interpretation and analysis of research findings and a critical 

discussion of their implications. A summary of the thesis and the future research 

direction is indicated. Last but not least, the research strengths and limitations are also 

discussed.  

7.2 Discussion  

This PhD study aimed to develop and evaluate computational appearance 

assessment techniques for cleft lip treatment using partial facial images. Leveraging 

advanced image processing algorithms and machine learning models aimed to 

provide an empirical and quantitative means of assessing appearance outcomes in 

cleft lip patients following surgical treatment. Further, the minor objectives include 

comparison of accuracy and effectiveness of the different assessment techniques 

developed in the research study. 

The approach used in this research study was based on analysis of the different post-

treatment facial images from children living with cleft lip condition. The images were 

processed using state-of-the-art image processing pipelines and computer vision 

algorithms to extract relevant facial features and quantify appearance parameters. 

Machine learning models were then trained to predict appearance ratings based on 

expert assessments using the extracted features. The latter assessments served as a 

validation parameter sets for the developed computational techniques. Shape analysis 

employed basic features from the mouth as the region of interest. However, because 

the mouth is composed of flexible tissue (Colston et al., 1998), its features may not be 

as reliable and those of other regions like the nose and the eye corners. Accordingly, 

key landmarks detection for different regions of interest was investigated using a 

hybrid mechanism. In both approaches, appearance assessment is a quantification of 

the structural similarity index measure (SSIM) (Wang et al., 2004) using carefully 

devised mathematical models (Brunet, Vrscay and Wang, 2012).  An approach that 

uses deep learning is also investigated to facilitate better extraction of features. The 

extracted features are mapped to the human assessors’ scores using a transfer 
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learning regression framework to create a predictive fine-grained assessment model.  

Transfer learning increases the capability of traditional machine learning models (Pan 

and Yang, 2009, Zhuang et al., 2021).   

7.2.1 General Discussion of Results 

 
The results obtained from the computational appearance assessment techniques 

demonstrated promising accuracy and reliability in predicting appearance outcomes 

after cleft lip treatment. In shape analysis, the test dataset consists of human expert 

generated visuals (GT1, GT2, and GT3). The shape analysis computational approach 

automatically generates the appearance numeric scores for each test dataset 

(GT1_AENS, GT2_AENS, and GT3_AENS). There is also the automatically predicted 

set (PS) of visuals, which is also assessed numerically to generate PS_AENS. The 

highest computed correlation coefficient is 0.959, between the PS_AENS and 

GT3_AENS. However, for the most significant correlation coefficient, the highest is 

0.399. The most significant correlation is computed between PS_AENS and human 

expert generated scores (HNS). The three-region key landmarks assessment 

approach has a correlation coefficient as high 0.940 and as low as -0.102. However, 

there is noted balanced distribution of structural similarity index measure across all 

datasets where colour images have been used. The deep learning regression model 

approach produces the most significant correlation coefficient in the range of 0.945 

and 0.955. This is the best generated range of correlation coefficient across the test 

dataset.  

7.2.2 General Comparison and Relevance 

 

Compared to traditional subjective assessments conducted by human experts, the 

automatic computational appearance assessment techniques showcased several 

advantages. Firstly, they provided a standardised and consistent evaluation process, 

eliminating inter-observer variability. Secondly, the computational methods enabled 

rapid and efficient assessment of appearance outcomes, potentially saving time for 

clinicians, researchers, and policy makers. Therefore, the tools developed in this 

research can be considered a good audit resource. However, it is important to 

acknowledge that these computational techniques cannot fully replace trained 

professionals' expertise and clinical judgment. Thirdly, the development and 

evaluation of computational techniques are based on ground truth. While they have 
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shown great potential, if the ground truth includes bias and the small datasets, these 

techniques may produce inaccurate results or even fail. Thus, collecting and 

generating a large enough ground truth dataset is essential for developing the 

computational and learning based methods.       

The clinical relevance of computational appearance assessment techniques for cleft 

lip treatment is significant. By providing objective measurements of appearance 

outcomes, these techniques can aid clinicians/surgeons in treatment planning and 

decision-making processes. Computational techniques offer quantitative tools to 

evaluate treatment effectiveness and could be used to track patient progress over time 

through incremental imagery processing adaptation and analysis. Additionally, 

integrating patient preferences and perceptions can be facilitated by incorporating 

patient feedback into the computational models. Further, integrating these technics 

into regular clinical practice can potentially improve treatment outcomes, patient 

satisfaction, and long-term monitoring and audit. 

7.2.3 Discoveries from Research Questions 
 

In the event of a facial visual outcome, computational techniques can be designed and 

developed to automatically assess its appearance. Additionally, automatic appearance 

assessment methods have capability to yield both quantitative or numeric and semi-

quantitative scores. Additionally, the developed automatic assessment methods can 

provide the same outcomes when desired over the provided datasets. Hence 

automatic assessment methods are easily reproducible.  

Visual assessment is associated with visual understanding using features from the 

principal components. Partial facial images have few principal components which 

constitute regions of interest, from which features are extracted and analysed for 

appearance assessment. The mouth, and nose and eye corners contain detailed 

features, from which we define the different parameters. For example, the mouth has 

the mouth corners, philtrum ridges and boundary. Likewise, the nose features and 

parameters are well documented. In non-cleft patients, the features may have known 

or conventional defined shapes and geometric properties, potentially unlike in visuals 

from people with cleft conditions.  
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The main challenge affecting automatic assessment of cleft lip treatment outcomes is 

poor features recognition, stemming from poor dataset preparation. When it is difficult 

to recognise mouth features or nose features, parameters for modelling contain 

incorrect values. This in turn generates the wrong assessment from the model. This is 

overcome by using a supervised deep modelling approach. 

Traditional modelling methods are less scalable in case the visual dataset is 

inconsistently prepared. This affects their accuracy as seen by results in Chapter 4. 

Hybrid methods and deep learning methods exhibit a self-mitigating mechanism with 

inconsistent data. This results in consistent generation of parameters from correctly 

identified features. Consequently, the assessment is more accurate as demonstrated 

in Chapters 5 and 6.  

Progressively, it was discovered that minimal human involvement leads to better 

assessment results. This is an indicator that unsupervised deep learning is a potential 

significant step towards achieving the best appearance assessment results on facial 

outcomes following cleft lip treatment. 

Therefore, automatic assessment methods are more robust, accurate, and consistent 

than human assessment methods as demonstrated in Chapters 4 – 6.  

7.3 Conclusion  

This research designed and evaluated some computational methods using partial 

facial images to analyse and assess cleft lip repair. Traditional, hybrid and deep 

learning computational methods were developed and validated to achieve the 

research objectives.  

Chapter 2 presented the review of relevant literature for this study. The epidemiology 

of cleft lip was covered and highlighted the underlying causes and potential clinical 

management or mitigation strategies. However, this Chapter also revealed that cleft 

lip is a disease of high psycho-social significance, especially among non-black 

population.  Consequently, the need to intervene using contemporary computational 

techniques was based on the summarised knowledge gaps especially the lack of 

standardised treatment outcome assessment procedures, limited validation of 

treatment outcomes, and crucially, to minimise human involvement in cleft lip 

treatment outcome evaluation.  
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In Chapter 3, the general and specific methods of realising the research objectives 

have been presented. Notably, the visual data processing pipeline is discussed in 

detail, breaking down the significance of the steps, while discussing their 

implementation and outcomes. Several preprocessing machine learning and deep 

learning techniques have been experimented as a springboard for Chapters 4, 5 and 

6. This Chapter additionally discussed the dataset, its ethical considerations, and its 

limitations. 

In Chapter 4, the shape analysis approach presented significant findings. The 

computation of the structural similarity index measure allowed for a quantitative 

evaluation of the cleft lip treatment outcomes. The correlation coefficients indicated a 

moderate to solid agreement between human assessments and the computationally 

based assessment, suggesting the potential of this approach in objective appearance 

assessment. 

In Chapter 5, the region-based key landmarks detection and assessment approach 

showed promising results. Identifying key landmarks in different regions of the partial 

facial image contributed to an accurate evaluation of treatment outcomes. The 

correlation coefficients revealed a strong agreement between human expert scores 

and automatically generated scores, indicating the effectiveness of the models in 

capturing appearance improvements. 

Finally in Chapter 6, the deep learning regression analysis demonstrated notable 

performance. The model successfully generated an assessment predictive model by 

mapping deep extracted features to human expert scores. The correlation coefficients 

between human scores and automatically generated scores were consistently high 

across the test dataset, indicating the reliability of the deep learning approach in 

appearance assessment. 

Overall, the research findings indicate the potential of these approaches in providing 

objective and quantitative assessments of cleft lip treatment outcomes. However, 

further refinement, validation, and collaboration with stakeholders are needed to fully 

realize their clinical applicability and realistic impact on patient care. 
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7.4 Future Research, Recommendations, and Limitations  

7.4.1 Introduction 
 

Recommendations for this study should shape the future research while focusing on 

refining the computational models in an iterative manner, involving continuous 

evaluation, feedback, and improvement. It aims to enhance the models' accuracy, 

reliability, and practical applicability in assessing appearance outcomes of cleft lip 

treatment. 

Future research should focus on refining the computational models, expanding the 

dataset to include diverse populations, and incorporating additional features or 

modalities for improved accuracy. Integrating patient perspectives and preferences 

into the assessment process is crucial to ensure personalised treatment outcomes. 

Collaboration with clinicians and patients can provide valuable insights and guide 

further developments in this multidisciplinary research study. Additionally, the need to 

fully understand a face in a personal context should be left to a non-supervised 

machine learning approach. This potentially eliminates some dataset bias, especially 

introduced by human experts’ assessment scores and ratings. The following 

discussion is a hybrid presentation for future research and recommendations to 

mitigate some implicit limitations in chapter 4, 5 and 6.  

7.4.2 Algorithmic Enhancements 
 

Future studies should explore and implement advancements to the proposed 

algorithms used in the computational models. For example, one can investigate more 

sophisticated techniques for shape analysis, key landmarks detection, or other deep 

learning architectures. This may include considering hybrid state-of-the-art methods 

in computer vision, pattern recognition, or machine learning to enhance the accuracy 

and robustness of the proposed models. 

7.4.3 Feature Detection, Selection and Extraction 
 

The refinement process of the features may involve analysing the components used 

in the models and determining which ones are most relevant and informative for 

appearance assessment. This can include exploring different feature extraction 

techniques or incorporating additional features that may capture essential aspects of 
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facial images. Feature engineering and dimensionality reduction methods can also be 

employed to improve the efficiency and performance of the models. The potential use 

of generative adversarial networks (GANs) for features engineering is encouraged and 

recommended if ethical clearance is granted.  

7.4.4 Dataset Expansion and Diversity 
 

Refining the models often requires collecting and incorporating more extensive and 

diverse datasets. Expanding the dataset can help capture a broader range of facial 

variations, including different ethnicities, ages, and gender. This increased dataset 

diversity can improve the generalisability and robustness of the models, making them 

applicable to a broader population. 

Numeric or quantitative assessments by different raters (doctors, nurses, surgeons) 

could be replaced with their respective correlation ranks from the different 

experimental settings in future studies.  

Dataset validation is vital to successful collection of a reliable dataset. 

7.4.5 Bias and Error Analysis 
 

It is essential to thoroughly analyse potential biases or errors in the computational 

models. This includes assessing the performance of the models across different 

subgroups of the dataset and identifying any discrepancies or limitations. By 

understanding and addressing potential biases, one can refine the models to ensure 

they provide more accurate and fair assessments for individuals with different 

characteristics. 

7.4.6 Validation and Evaluation 
 

Rigorous validation and evaluation are crucial in refining the computational models. 

This involves comparing the computational assessments with expert or subjective 

assessments by clinicians and patients. Iterative refinement can be performed based 

on the feedback and insights gained during the validation process. This helps improve 

the models' performance and ensures their reliability in real-world clinical settings. 

Given that the duration of the research study was limited for academic purposes, 

extensive and practical validation in clinical settings is highly recommended.  
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7.4.7 User Interface and Integration 
 

Refining the computational models may also involve developing a user-friendly 

interface or integrating existing clinical systems. This would potentially facilitate 

seamless adoption and utilisation of the models by clinicians in their routine practice. 

Considering the practical aspects, such as ease of use, interpretability of results, and 

integration into existing workflows, can enhance the usability and acceptance of the 

computational approaches. 

Among the future research dimensions would be exploring feasible computational 

avenues for integrating CL treatment assessment into routine clinical practice. 

Research is needed because some assessment methods may be clinically impractical 

or unfriendly.  

7.4.8 Ethics Clearance 
 

In this light, more research is needed to map any ethical considerations associated 

with using computational techniques to assess CL treatment outcomes, from patients’ 

and clinicians’ viewpoints. 

 

 

 

  



154 
 

References 
 

ABRÀMOFF, M.D., MAGALHÃES, P.J., and RAM, S.J., 2004. Image processing with 
imageJ. Biophotonics International. 11 (7), pp. 36–41. 

ADOBE INC, 2021. Unit 6 : Adobe Photoshop Professional Lesson 1 : Installation 
and Components of Adobe Photoshop. Preuzeto, ebookbou.edu.bd,cited by 11. 
pp. 87–116. 

AEFFNER, F., WILSON, K., MARTIN, N.T., BLACK, J.C., HENDRIKS, C.L.L., 
BOLON, B., RUDMANN, D.G., GIANANI, R., KOEGLER, S.R., KRUEGER, J., 
and YOUNG, G.D., 2017. The gold standard paradox in digital image analysis: 
Manual versus automated scoring as ground truth. Archives of Pathology and 
Laboratory Medicine. 141 (9), pp. 1267–1275. 

AHMED, M.K., BUI, A.H., and TAIOLI, E., 2017. Epidemiology of Cleft Lip and 
Palate. In: M.A. ALMASRI, ed. Designing Strategies for Cleft Lip and Palate 
Care [online]. Rijeka: IntechOpen. Available from: https://doi.org/10.5772/67165. 

AL-GHATAM, R., JONES, T.E.M., IRELAND, A.J., ATACK, N.E., CHAWLA, O., 
DEACON, S., ALBERY, L., COBB, A.R.M., CADOGAN, J., LEARY, S., and 
OTHERS, 2015. Structural outcomes in the Cleft Care UK study. Part 2: dento-
facial outcomes. Orthodontics \& Craniofacial Research. 18, pp. 14–24. 

AL-GHATAM, R., JONES, T.E.M., IRELAND, A.J., ATACK, N.E., CHAWLA, O., 
DEACON, S., ALBERY, L., COBB, A.R.M., CADOGAN, J., LEARY, S., 
WAYLEN, A., WILLS, A.K., RICHARD, B., BELLA, H., NESS, A.R., and SANDY, 
J.R., 2015. Structural outcomes in the Cleft Care UK study. Part 2: Dento-facial 
outcomes. Orthodontics and Craniofacial Research. 18, pp. 14–24. 

AL-OMARI, I., MILLETT, D.T., AYOUB, A., BOCK, M., RAY, A., DUNAWAY, D., and 
CRAMPIN, L., 2003. An appraisal of three methods of rating facial deformity in 
patients with repaired complete unilateral cleft lip and palate. Cleft Palate-
Craniofacial Journal. 40 (5), pp. 530–537. 

ALBIOL, A., MONZO, D., MARTIN, A., SASTRE, J., and ALBIOL, A., 2008. Face 
recognition using HOG-EBGM. Pattern Recognition Letters. 29 (10), pp. 1537–
1543. 

ALI, M., PENA, R.M.G., RUIZ, G.O., and ALI, S., 2022. A comprehensive survey on 
recent deep learning-based methods applied to surgical data. [online]. Available 
from: http://arxiv.org/abs/2209.01435. 

ALIGHIERI, C., BETTENS, K., BRUNEEL, L., D’HAESELEER, E., VAN GAEVER, 
E., and VAN LIERDE, K., 2021. Reliability of outcome measures to assess 
consonant proficiency following cleft palate speech intervention: The percentage 
of consonants correct metric and the probe scoring system. Journal of Speech, 
Language, and Hearing Research. 64 (6), pp. 1811–1828. 

ALLOGHANI, M., AL-JUMEILY, D., MUSTAFINA, J., HUSSAIN, A., and ALJAAF, 
A.J., 2020. A Systematic Review on Supervised and Unsupervised Machine 
Learning Algorithms for Data Science. pp. 3–21. 

ALZUBAIDI, L., ZHANG, J., HUMAIDI, A.J., AL-DUJAILI, A., DUAN, Y., AL-



155 
 

SHAMMA, O., SANTAMARÍA, J., FADHEL, M.A., AL-AMIDIE, M., and 
FARHAN, L., 2021. Review of deep learning: concepts, CNN architectures, 
challenges, applications, future directions [online]. Journal of Big Data. Springer 
International Publishing. Available from: https://doi.org/10.1186/s40537-021-
00444-8. 

ALZUBI, J., NAYYAR, A., and KUMAR, A., 2018. Machine Learning from Theory to 
Algorithms: An Overview. Journal of Physics: Conference Series. 1142 (1), pp. 
0–15. 

ARHIN, K., BALDINI, I., WEI, D., RAMAMURTHY, K.N., and SINGH, M., 2021. 
Ground-Truth, Whose Truth? -- Examining the Challenges with Annotating Toxic 
Text Datasets. [online]. 1 (1), pp. 1–15. Available from: 
http://arxiv.org/abs/2112.03529. 

ARNAUDON, A., HOLM, D.D., and SOMMER, S., 2019. A Geometric Framework for 
Stochastic Shape Analysis. Foundations of Computational Mathematics [online]. 
19 (3), pp. 653–701. Available from: https://doi.org/10.1007/s10208-018-9394-z. 

AVIDAN, S. and SHAMIR, A., 2007. Seam carving for content-aware image resizing. 
Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. 26 
(3). 

AYOUB, A.F., BELL, A., SIMMONS, D., BOWMAN, A., BROWN, D., LO, T.W., and 
XIAO, Y., 2011. 3D assessment of lip scarring and residual dysmorphology 
following surgical repair of cleft lip and palate: A preliminary study. Cleft Palate-
Craniofacial Journal. 48 (4), pp. 379–387. 

BAIGORRI, M., CROWLEY, C.J., SOMMER, C.L., and MOYA-GALÉ, G., 2021. 
Barriers and Resources to Cleft Lip and Palate Speech Services Globally: A 
Descriptive Study. Journal of Craniofacial Surgery. 32 (8), pp. 2802–2807. 

BAKAKI, P., RICHARD, B., PEREIRA, E., TAGALAKIS, A., NESS, A., BEHERA, A., 
and LIU, Y., 2022. Key Landmarks Detection of Cleft Lip-Repaired Partially 
Occluded Facial Images for Aesthetics Outcome Assessment. In: Lecture Notes 
in Computer Science (including subseries Lecture Notes in Artificial Intelligence 
and Lecture Notes in Bioinformatics). pp. 718–729. 

BAKAKI, P., RICHARD, B., PEREIRA, E., TAGALAKIS, A., NESS, A., and LIU, Y., 
2021. Shape Analysis Approach Towards Assessment of Cleft Lip Repair 
Outcome. In: Lecture Notes in Computer Science (including subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 165–174. 

BALLABENI, A., APOLLONIO, F.I., GAIANI, M., and REMONDINO, F., 2015. 
Advances in image pre-processing to improve automated 3d reconstruction. 
International Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences - ISPRS Archives. 40 (5W4), pp. 315–323. 

BANERJEE, S., 2021. Mathematical modeling: models, analysis and applications. 
CRC Press. 

BANKHEAD, P., LOUGHREY, M.B., FERNÁNDEZ, J.A., DOMBROWSKI, Y., 
MCART, D.G., DUNNE, P.D., MCQUAID, S., GRAY, R.T., MURRAY, L.J., 
COLEMAN, H.G., JAMES, J.A., SALTO-TELLEZ, M., and HAMILTON, P.W., 
2017. QuPath: Open source software for digital pathology image analysis. 



156 
 

Scientific Reports. 7 (1), pp. 1–7. 

BARR, B., XU, K., SILVA, C., BERTINI, E., REILLY, R., BRUSS, C.B., and 
WITTENBACH, J.D., 2020. Towards Ground Truth Explainability on Tabular 
Data. [online]. (Whi). Available from: http://arxiv.org/abs/2007.10532. 

BÄUMLER, M., FAURE, J.-M., BIGORRE, M., BÄUMLER-PATRIS, C., BOULOT, P., 
DEMATTEI, C., and CAPTIER, G., 2011. Accuracy of prenatal three-
dimensional ultrasound in the diagnosis of cleft hard palate when cleft lip is 
present. Ultrasound in obstetrics \& gynecology. 38 (4), pp. 440–444. 

BEHERA, A., WHARTON, Z., KEIDEL, A., and DEBNATH, B., 2020. Deep CNN, 
Body Pose and Body-Object Interaction Features for Drivers’ Activity Monitoring. 
IEEE Transactions on Intelligent Transportation Systems. pp. 1–8. 

BEKELE, K.K., EKANEM, P.E., and MEBERATE, B., 2019. Anatomical patterns of 
cleft lip and palate deformities among neonates in Mekelle, Tigray, Ethiopia; 
implication of environmental impact. BMC pediatrics. 19 (1), p. 254. 

BELLA, H., KORNMANN, N.S.S., HARDWICKE, J.T., WALLIS, K.L., WEARN, C., 
SU, T.L., and RICHARD, B.M., 2016. Facial aesthetic outcome analysis in 
unilateral cleft lip and palate surgery using web-based extended panel 
assessment. Journal of Plastic, Reconstructive and Aesthetic Surgery. 69 (11), 
pp. 1537–1543. 

BENALI AMJOUD, A. and AMROUCH, M., 2020. Convolutional neural networks 
backbones for object detection [online]. Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics). Springer International Publishing. Available from: 
http://dx.doi.org/10.1007/978-3-030-51935-3_30. 

BENGIO, Y., 2011. Deep Learning of Representations for Unsupervised and 
Transfer Learning. JMLR: Workshop and Conference Proceedings. 7, pp. 1–20. 

BENNETT, C.R., BEX, P.J., BAUER, C.M., and MERABET, L.B., 2019. The 
Assessment of Visual Function and Functional Vision. Seminars in Pediatric 
Neurology. 31 (617), pp. 30–40. 

BENNETT, K.G., RANGANATHAN, K., PATTERSON, A.K., BAKER, M.K., 
VERCLER, C.J., KASTEN, S.J., BUCHMAN, S.R., and WALJEE, J.F., 2018. 
Caregiver-Reported Outcomes and Barriers to Care among Patients with Cleft 
Lip  and Palate. Plastic and reconstructive surgery. 142 (6), pp. 884e-891e. 

BERHE, H.W. and MAKINDE, O.D., 2020. Computational modelling and optimal 
control of measles epidemic in human population. BioSystems [online]. 190 
(July 2018), p. 104102. Available from: 
https://doi.org/10.1016/j.biosystems.2020.104102. 

BERLIN, N.F., BERSSENBRÜGGE, P., RUNTE, C., WERMKER, K., JUNG, S., 
KLEINHEINZ, J., and DIRKSEN, D., 2014. Quantification of facial asymmetry by 
2D analysis - A comparison of recent approaches. Journal of Cranio-
Maxillofacial Surgery [online]. 42 (3), pp. 265–271. Available from: 
http://dx.doi.org/10.1016/j.jcms.2013.07.033. 

BICHLER, M., 2017. Algorithms and Complexity. Market Design. pp. 256–267. 



157 
 

BLOOMFIELD, V. and LIAO, C., 2015. GLOBAL TRENDS IN THE RATE OF CLEFT 
LIP AND PALATE: BRIDGING THE GAP. Paediatrics & Child Health [online]. 20 
(5), pp. E75–E104. Available from: 
http://ezproxy.lib.ucalgary.ca/login?url=http://search.proquest.com/docview/1691
300981?accountid=9838%5Cnhttp://dc8qa4cy3n.search.serialssolutions.com/?c
tx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-
8&rfr_id=info:sid/ProQ%3Acbcacomplete&rft_val_fmt=info:ofi. 

BONIDIA, R.P., SAMPAIO, L.D.H., DOMINGUES, D.S., PASCHOAL, A.R., LOPES, 
F.M., DE CARVALHO, A.C.P.L.F., and SANCHES, D.S., 2021. Feature 
extraction approaches for biological sequences: A comparative study of 
mathematical features. Briefings in Bioinformatics. 22 (5), pp. 1–20. 

BOZKURT, A.P. and ARAS, I., 2021. Cleft Lip and Palate YouTube Videos: Content 
Usefulness and Sentiment Analysis. Cleft Palate-Craniofacial Journal. 58 (3), 
pp. 362–368. 

BRODLAND, G.W., 2015. How computational models can help unlock biological 
systems. Seminars in Cell and Developmental Biology. 47–48, pp. 62–73. 

BRONSHTEIN, M., BLUMENFELD, I., and BLUMENFELD, Z., 1996. Early prenatal 
diagnosis of cleft lip and the potential impact on the number of babies with cleft 
lip. British Journal of Oral and Maxillofacial Surgery. 35 (4), p. 296. 

BRUNET, D., VRSCAY, E.R., and WANG, Z., 2012. On the mathematical properties 
of the structural similarity index. IEEE Transactions on Image Processing. 21 
(4), pp. 1488–1495. 

BUCH, N., VELASTIN, S.A., and ORWELL, J., 2011. A review of computer vision 
techniques for the analysis of urban traffic. IEEE Transactions on Intelligent 
Transportation Systems. 12 (3), pp. 920–939. 

BURG, M.L., CHAI, Y., YAO, C.A., MAGEE, W., and FIGUEIREDO, J.C., 2016. 
Epidemiology, etiology, and treatment of isolated cleft palate. Frontiers in 
Physiology. 7 (MAR), pp. 1–16. 

BURGOS-ARTIZZU, X.P., PERONA, P., and DOLLAR, P., 2013. Robust face 
landmark estimation under occlusion. Proceedings of the IEEE International 
Conference on Computer Vision. pp. 1513–1520. 

CAI, Y., DU, W., LIN, F., YE, S., and YE, Y., 2018. Agreement of young adults and 
orthodontists on dental aesthetics & influencing factors of self-perceived 
aesthetics. BMC Oral Health. 18 (1), pp. 1–5. 

CALDEIRA, M., MARTINS, P., COSTA, R.L.C., and FURTADO, P., 2020. Image 
Classification Benchmark (ICB). Expert Systems with Applications. 142. 

CANNY, J., 1986. A Computational Approach to Edge Detection. IEEE Transactions 
on Pattern Analysis and Machine Intelligence. PAMI-8 (6), pp. 679–698. 

CAO, X., WEI, Y., WEN, F., and SUN, J., 2014. Face alignment by explicit shape 
regression. International Journal of Computer Vision. 107 (2), pp. 177–190. 

CARDOSO, J.R., PEREIRA, L.M., IVERSEN, M.D., and RAMOS, A.L., 2014. What 
is gold standard and what is ground truth? Dental Press Journal of Orthodontics. 
19 (5), pp. 27–30. 



158 
 

CAREY, J.C., COHEN, M.M., CURRY, C.J.R., DEVRIENDT, K., HOLMES, L.B., and 
VERLOES, A., 2009. Elements of morphology: Standard terminology for the lips, 
mouth, and oral region. American Journal of Medical Genetics, Part A. 149 (1), 
pp. 77–92. 

CARVALHO, D. V., PEREIRA, E.M., and CARDOSO, J.S., 2019. Machine learning 
interpretability: A survey on methods and metrics. Electronics (Switzerland). 8 
(8), pp. 1–34. 

CASH, A.C., 2012. Orthodontic treatment in the management of cleft lip and palate. 
Frontiers of Oral Biology. 16, pp. 111–123. 

CHADA, A., n.d. 3D Photography of Cleft Lip: Applying Imaging Biomarkers Pre-and 
Post-operatively to Facilitate a Precision Medicine Approach. Royal College of 
Surgeons of England [online]. pp. 1–20. Available from: 
https://www.rcseng.ac.uk/-/media/files/rcs/standards-and-research/future-of-
surgery/written-contributions/imaging/chada-a-3d-photography-of-cleft-lip-
applying-imaging-biomarkers-pre-and-postoperatively-to-facilitat.pdf. 

CHAN, H.P., SAMALA, R.K., HADJIISKI, L.M., and ZHOU, C., 2020. Deep Learning 
in Medical Image Analysis. Advances in Experimental Medicine and Biology. 
1213, pp. 3–21. 

CHATTERJEE, S. and SIMONOFF, J.S., 2013. Handbook of Regression Analysis. 
Handbook of Regression Analysis. Hoboken: John Wiley & Sons, Inc. 

CHEN, C., SURETTE, R., and SHAH, M., 2020. Automated monitoring for security 
camera networks: promise from computer vision labs. Security Journal [online]. 
(0123456789). Available from: https://doi.org/10.1057/s41284-020-00230-w. 

CHEN, T., 2005. Computer Vision Workload Analysis: Case Study of Video 
Surveillance Systems. Understanding the Platform Requirements of Emerging 
Enterprise Solutions. 9 (2), pp. 109–119. 

CHEN, Z., QI, Z., MENG, F., CUI, L., and SHI, Y., 2015. Image segmentation via 
improving clustering algorithms with density and distance. Procedia Computer 
Science [online]. 55 (Itqm), pp. 1015–1022. Available from: 
http://dx.doi.org/10.1016/j.procs.2015.07.096. 

CHOWDHURY, D.P., KUMARI, R., BAKSHI, S., SAHOO, M.N., and DAS, A., 2022. 
Lip as biometric and beyond: a survey. Multimedia Tools and Applications. 

CLAPA, 2022. The CRANE Database [online]. [online]. Available from: 
https://www.clapa.com/treatment/research/the-crane-database/ [Accessed 7 Jul 
2023]. 

CLEFT REGISTRY AND AUDIT NETWORK, 2020. Cleft Registry and Audit NEtwork 
Database 2020 Annual Report. (January 2000), pp. 1–76. 

COLSTON, B.W., EVERETT, M.J., DA SILVA, L.B., OTIS, L.L., STROEVE, P., and 
NATHEL, H., 1998. Imaging of hard- and soft-tissue structure in the oral cavity 
by optical coherence tomography. Applied Optics. 37 (16), p. 3582. 

COMANICIU, D. and MEER, P., 2002. Mean shift: A robust approach toward feature 
space analysis. IEEE Transactions on Pattern Analysis and Machine 
Intelligence. 24 (5), pp. 603–619. 



159 
 

COSTA, B., MCWILLIAMS, D., BLIGHE, S., HUDSON, N., HOTTON, M., SWAN, 
M.C., and STOCK, N.M., 2023. Isolation, Uncertainty and Treatment Delays: 
Parents’ Experiences of Having a Baby with Cleft Lip/Palate During the Covid-
19 Pandemic. Cleft Palate-Craniofacial Journal. 60 (1), pp. 82–92. 

CRANE, 2021. CRANE 2021 Annual Report: Summary of findings for patients and 
parents/carers. On children born with a cleft in England, Wales and Northern 
Ireland between January 2000 and December 2020. [online]. (January 2000). 
Available from: www.crane-database.org.uk. 

CRERAND, C.E., RUMSEY, N., KAZAK, A., CLARKE, A., RAUSCH, J., and 
SARWER, D.B., 2020. Sex differences in perceived stigmatization, body image 
disturbance, and  satisfaction with facial appearance and speech among 
adolescents with craniofacial conditions. Body image. 32, pp. 190–198. 

CRESWELL, J.W., 2003. RESEARCH DESIGN. Awkward Dominion. 

CURTIS, F.E. and NOCEDAL, J., 2018. Optimization Methods for Large-Scale 
Machine Learning ∗. 60 (2), pp. 223–311. 

DEALL, C.E., KORNMANN, N.S.S., BELLA, H., WALLIS, K.L., HARDWICKE, J.T., 
SU, T.-L., and RICHARD, B.M., 2016a. Facial aesthetic outcomes of cleft 
surgery: assessment of discrete lip and nose images compared with digital 
symmetry analysis. Plastic and Reconstructive Surgery. 138 (4), pp. 855–862. 

DEALL, C.E., KORNMANN, N.S.S., BELLA, H., WALLIS, K.L., HARDWICKE, J.T., 
SU, T.L., and RICHARD, B.M., 2016b. Facial Aesthetic Outcomes of Cleft 
Surgery: Assessment of Discrete Lip and Nose Images Compared with Digital 
Symmetry Analysis. Plastic and Reconstructive Surgery. 138 (4), pp. 855–862. 

DENG, Y., LOY, C.C., and TANG, X., 2017. Image Aesthetic Assessment: An 
experimental survey. IEEE Signal Processing Magazine. 34 (4), pp. 80–106. 

DHARAVATH, K., TALUKDAR, F.A., and LASKAR, R.H., 2014. Improving face 
recognition rate with image preprocessing. Indian Journal of Science and 
Technology. 7 (8), pp. 1170–1175. 

DIXON, M.J., MARAZITA, M.L., BEATY, T.H., and MURRAY, J.C., 2011. Cleft lip 
and palate: understanding genetic and environmental influences. Nature 
Reviews Genetics. 12 (3), pp. 167–178. 

DOLLÁR, P., WELINDER, P., and PERONA, P., 2010. Cascaded pose regression. 
Proceedings of the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition. pp. 1078–1085. 

DOMENGHINO, A., WALBERT, C., BIRRER, D.L., PUHAN, M.A., CLAVIEN, P., and 
OUTCOMEMEDICINE, T., 2023. Consensus recommendations on how to 
assess the quality of surgical interventions. 29 (April), pp. 811–822. 

DRAHANSKY, M., PARIDAH, M.., MORADBAK, A., MOHAMED, A.., OWOLABI, F. 
abdulwahab taiwo, ASNIZA, M., and ABDUL KHALID, S.H.., 2016. Research in 
Medical Imaging Using Image Processing Techniques. Intech [online]. i 
(tourism), p. 13. Available from: https://www.intechopen.com/books/advanced-
biometric-technologies/liveness-detection-in-biometrics. 

EL-BAZ, A., GIMEL’FARB, G., and SUZUKI, K., 2017. Machine Learning 



160 
 

Applications in Medical Image Analysis. Computational and Mathematical 
Methods in Medicine. 2017. 

EMEKA, C.I., ADEYEMO, W.L., LADEINDE, A.L., and BUTALI, A., 2017. A 
comparative study of quality of life of families with children born with cleft lip 
and/or palate before and after surgical treatment. Journal of the Korean 
Association of Oral and Maxillofacial Surgeons. 43 (4), pp. 247–255. 

ERCIYES, K., 2014. Algorithms and Complexity. Complex Networks. (January 
2010), pp. 27–61. 

ERIAN, A. and SHIFFMAN, M.A., 2011. Advanced surgical facial rejuvenation: Art 
and clinical practice. Springer Science \& Business Media. 

ESHETE, M., BUTALI, A., DERESSA, W., PAGAN-RIVERA, K., HAILU, T., ABATE, 
F., MOHAMMED, I., DEMISSIE, Y., HAILU, A., DAWSON, D. V, DERIBEW, M., 
GESSESE, M., GRAVEM, P.E., and MOSSEY, P., 2017. Descriptive 
Epidemiology of Orofacial Clefts in Ethiopia. The Journal of craniofacial surgery. 
28 (2), pp. 334–337. 

FALCONI, L.G., PEREZ, M., and AGUILAR, W.G., 2019. Transfer Learning in Breast 
Mammogram Abnormalities Classification with Mobilenet and Nasnet. 
International Conference on Systems, Signals, and Image Processing. 2019-
June (August 2019), pp. 109–114. 

FINK, B. and NEAVE, N., 2005. The biology of facial beauty. International Journal of 
Cosmetic Science. 27 (6), pp. 317–325. 

FONCUBIERTA-RODRÍGUEZ, A. and MÜLLER, H., 2012. Ground truth generation 
in medical imaging: A crowdsourcing-based iterative approach. CrowdMM 2012 
- Proceedings of the 2012 ACM Workshop on Crowdsourcing for Multimedia, 
Co-located with ACM Multimedia 2012. pp. 9–14. 

FOURCADE, A. and KHONSARI, R.H., 2019. Deep learning in medical image 
analysis: A third eye for doctors. Journal of Stomatology, Oral and Maxillofacial 
Surgery [online]. 120 (4), pp. 279–288. Available from: 
https://doi.org/10.1016/j.jormas.2019.06.002. 

FRANK-ITO, D.O., CARPENTER, D.J., CHENG, T., AVASHIA, Y.J., BROWN, D.A., 
GLENER, A., ALLORI, A., and MARCUS, J.R., 2019. Computational Analysis of 
the Mature Unilateral Cleft Lip Nasal Deformity on Nasal Patency. Plastic and 
Reconstructive Surgery - Global Open. 7 (5), p. E2244. 

FREDERICK, R., HOGAN, A.C., SEABOLT, N., and STOCKS, R.M.S., 2022. An 
Ideal Multidisciplinary Cleft Lip and Cleft Palate Care Team. Oral Diseases. 28 
(5), pp. 1412–1417. 

FREEMAN, A.K., MERCER, N.S.G., and ROBERTS, L.M., 2013. Nasal asymmetry 
in unilateral cleft lip and palate. Journal of Plastic, Reconstructive and Aesthetic 
Surgery [online]. 66 (4), pp. 506–512. Available from: 
http://dx.doi.org/10.1016/j.bjps.2012.12.001. 

FRERY, A.C., 2013. Image Filtering. In: C.A.B. DE MELLO, ed. Digital Document 
Analysis and Processing. New York: Nova Science Pub Inc. pp. 55–70. 

GALLOWAY, J., DAVIES, G., and MOSSEY, P., 2017. International Knowledge of 



161 
 

Direct Costs of Cleft Lip and Palate Treatment. Archives of Pediatric Surgery. 1 
(1), pp. 10–25. 

GALVÁN, E. and MOONEY, P., 2021. Neuroevolution in Deep Neural Networks: 
Current Trends and Future Challenges. IEEE Transactions on Artificial 
Intelligence. 2 (6), pp. 476–493. 

GARCIA-GARCIA, A., ORTS-ESCOLANO, S., OPREA, S., VILLENA-MARTINEZ, 
V., and GARCIA-RODRIGUEZ, J., 2017. A Review on Deep Learning 
Techniques Applied to Semantic Segmentation. [online]. pp. 1–23. Available 
from: http://arxiv.org/abs/1704.06857. 

GARCIA-MARIN, F., 2021. Access to oral & maxillofacial surgery in Sub-Saharan 
African countries. Journal of Oral Biology and Craniofacial Research [online]. 11 
(4), pp. 608–611. Available from: https://doi.org/10.1016/j.jobcr.2021.09.001. 

GAUR, J., GOEL, A.K., ROSE, A., and BHUSHAN, B., 2019. Emerging Trends in 
Machine Learning. 2019 2nd International Conference on Intelligent Computing, 
Instrumentation and Control Technologies, ICICICT 2019. (2), pp. 881–885. 

GIROD, B., 2015. Image Processing and Related Fields. [online]. (22). Available 
from: http://fourier.eng.hmc.edu/e161/lectures/e161ch1.pdf. 

GODEC, P., PANČUR, M., ILENIČ, N., ČOPAR, A., STRAŽAR, M., ERJAVEC, A., 
PRETNAR, A., DEMŠAR, J., STARIČ, A., TOPLAK, M., ŽAGAR, L., HARTMAN, 
J., WANG, H., BELLAZZI, R., PETROVIČ, U., GARAGNA, S., ZUCCOTTI, M., 
PARK, D., SHAULSKY, G., and ZUPAN, B., 2019. Democratized image 
analytics by visual programming through integration of deep models and small-
scale machine learning. Nature Communications. 10 (1), pp. 1–7. 

GONG, X. and YU, Q., 2012. Correction of maxillary deformity in infants with bilateral 
cleft lip and palate using computer-assisted design. Oral Surgery, Oral 
Medicine, Oral Pathology and Oral Radiology. 114 (SUPPL. 5), pp. 74–78. 

GONZALEZ, R.C. and WOODS, R.E., 2002. Digital image processing. upper saddle 
River. J.: Prentice Hall. 

GONZALEZ, R.C. and WOODS, R.E., 2008. Digital Image Processing. Third. Image 
and Vision Computing. New Jersey: Pearson Education, Inc. 

GOODFELLOW, I., BENGIO, Y., and COURVILLE, A., 2016. Deep Learning. MIT 
Press. 

GOPINATH, V.K. and MUDA, W.A.M.W., 2005. Assessment of growth and feeding 
practices in children with cleft lip and palate. Southeast Asian Journal of Tropical 
Medicine and Public Health. 36 (1), pp. 254–258. 

GREENSPAN, H., VAN GINNEKEN, B., and SUMMERS, R.M., 2016. Guest 
Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an 
Exciting New Technique. IEEE Transactions on Medical Imaging. 35 (5), pp. 
1153–1159. 

GREWAL, S.S., PONDURI, S., LEARY, S.D., WREN, Y., THOMPSON, J.M.D., 
IRELAND, A.J., NESS, A.R., and SANDY, J.R., 2021. Educational Attainment of 
Children Born with Unilateral Cleft Lip and Palate in the United Kingdom. Cleft 
Palate-Craniofacial Journal. 58 (5), pp. 587–596. 



162 
 

GRITZMAN, A.D., RUBIN, D.M., and PANTANOWITZ, A., 2015. Comparison of 
colour transforms used in lip segmentation algorithms. Signal, Image and Video 
Processing. 9 (4), pp. 947–957. 

GU, J., YANG, X., MELLO, S. De, and KAUTZ, J., 2017. Dynamic facial analysis: 
From bayesian filtering to recurrent neural network. In: IEEE conference on 
computer vision and pattern recognition. pp. 1548–1557. 

HACKENBERG, B., RAMOS, M.S., CAMPBELL, A., RESCH, S., FINLAYSON, 
S.R.G., SARMA, H., HOWALDT, H.P., and CATERSON, E.J., 2015. Measuring 
and comparing the cost-effectiveness of surgical care delivery in low-resource 
settings: Cleft lip and palate as a model. Journal of Craniofacial Surgery. 26 (4), 
pp. 1121–1125. 

HALL, B.D., GRAHAM, J.M., CASSIDY, S.B., and OPITZ, J.M., 2009. Elements of 
morphology: Standard terminology for the periorbital region. American Journal of 
Medical Genetics, Part A. 149 (1), pp. 29–39. 

HAQUE, S., KHAMIS, M.F., ALAM, M.K., and WAN AHMAD, A.W.M., 2021. The 
Assessment of 3D Digital Models Using GOSLON Yardstick Index: Exploring 
Confounding Factors Responsible for Unfavourable Treatment Outcome in 
Multi-Population Children With UCLP. Frontiers in Pediatrics. 9 (June), pp. 1–12. 

HARTIGAN, J.A. and WONG, M.A., 1979. Algorithm AS 136: A K-Means Clustering 
Algorithm Author ( s ): J . A . Hartigan and M . A . Wong Published by : Blackwell 
Publishing for the Royal Statistical Society Stable URL : 
http://www.jstor.org/stable/2346830. Journal of the Royal Statistical Society. 
Series C (Applied Statistics). 28 (1), pp. 100–108. 

HASHIM, P.W., NIA, J.K., TALIERCIO, M., and GOLDENBERG, G., 2017. Ideals of 
facial beauty. Cutis. 100 (4), pp. 222–224. 

HASHIMOTO, D.A., ROSMAN, G., RUS, D., and MEIRELES, O.R., 2018. Artificial 
Intelligence in Surgery: Promises and Perils. Annals of Surgery [online]. 268 (1), 
pp. 70–76. Available from: 
http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5604322&blobtype
=pdf. 

HASSABALLAH, M., BEKHET, S., RASHED, A.A.M., and ZHANG, G., 2019. Facial 
features detection and localization. In: Studies in Computational Intelligence 
[online]. Springer International Publishing. pp. 33–59. Available from: 
http://dx.doi.org/10.1007/978-3-030-03000-1_2. 

HAVAEI, M., DAVY, A., WARDE-FARLEY, D., BIARD, A., COURVILLE, A., 
BENGIO, Y., PAL, C., JODOIN, P.M., and LAROCHELLE, H., 2017. Brain tumor 
segmentation with Deep Neural Networks. Medical Image Analysis. 35, pp. 18–
31. 

HENNEKAM, R.C.M., CORMIER-DAIRE, V., HALL, J.G., MÉHES, K., PATTON, M., 
and STEVENSON, R.E., 2009. Elements of morphology: Standard terminology 
for the nose and philtrum. American Journal of Medical Genetics, Part A. 149 
(1), pp. 61–76. 

HOIEM, D., EFROS, A.A., and HEBERT, M., 2011. Recovering occlusion boundaries 
from an image. International Journal of Computer Vision. 91 (3), pp. 328–346. 



163 
 

HOWARD, A.G., ZHU, M., CHEN, B., KALENICHENKO, D., WANG, W., WEYAND, 
T., ANDREETTO, M., and ADAM, H., 2017. MobileNets: Efficient Convolutional 
Neural Networks for Mobile Vision Applications. [online]. Available from: 
http://arxiv.org/abs/1704.04861. 

HU, J., JIANG, Q., CONG, R., GAO, W., and SHAO, F., 2021. Two-Branch Deep 
Neural Network for Underwater Image Enhancement in HSV Color Space. IEEE 
Signal Processing Letters. 28, pp. 2152–2156. 

HUQH, M.Z.U., ABDULLAH, J.Y., WONG, L.S., JAMAYET, N. Bin, ALAM, M.K., 
RASHID, Q.F., HUSEIN, A., AHMAD, W.M.A.W., EUSUFZAI, S.Z., PRASADH, 
S., SUBRAMANIYAN, V., FULORIA, N.K., FULORIA, S., SEKAR, M., and 
SELVARAJ, S., 2022. Clinical Applications of Artificial Intelligence and Machine 
Learning in Children with Cleft Lip and Palate—A Systematic Review. 
International Journal of Environmental Research and Public Health. 19 (17). 

ISIEKWE, G.I. and AIKINS, E.A., 2019. Self-perception of dental appearance and 
aesthetics in a student population. International Orthodontics [online]. 17 (3), pp. 
506–512. Available from: https://doi.org/10.1016/j.ortho.2019.06.010. 

JAGADISH CHANDRA, H., RAVI, M.S., SHARMA, S.M., and RAJENDRA PRASAD, 
B., 2012. Standards of Facial Esthetics: An Anthropometric Study. Journal of 
Maxillofacial and Oral Surgery. 11 (4), pp. 384–389. 

JAMILIAN, A., SARKARAT, F., JAFARI, M., NESHANDAR, M., AMINI, E., 
KHOSRAVI, S., and GHASSEMI, A., 2017. Family history and risk factors for 
cleft lip and palate patients and their associated anomalies. Stomatologija. 19 
(3), pp. 78–83. 

JENNINGS, B.K., 2007. The Scientific Method. arXiv preprint arXiv:0707.1719. 

JEONG, S.H., WOO, M.W., SHIN, D.S., YEOM, H.G., LIM, H.J., KIM, B.C., and 
YUN, J.P., 2022. Three-Dimensional Postoperative Results Prediction for 
Orthognathic Surgery through Deep Learning-Based Alignment Network. 
Journal of Personalized Medicine. 12 (6). 

JIANG, R., BUSH, J.O., and LIDRAL, A.C., 2006. Development of the upper lip: 
Morphogenetic and molecular mechanisms. Developmental Dynamics. 235 (5), 
pp. 1152–1166. 

JONKERS, H. and FRANKEN, H.M., 1996. Quantitative modelling and analysis of 
business processes. Simulation in Industry [online]. 1, pp. 175–179. Available 
from: http://citeseerx.ist.psu.edu. 

JORDAN, M.I. and MITCHELL, T.M., 2015. Machine learning: Trends, perspectives, 
and prospects. Science. 349 (6245), pp. 255–260. 

JOSKOWICZ, L., 2017. Computer-aided surgery meets predictive, preventive, and 
personalized medicine. EPMA Journal. 8 (1), pp. 1–4. 

KAHLOOT, K.M. and EKLER, P., 2021. Algorithmic Splitting: A Method for Dataset 
Preparation. IEEE Access. 9, pp. 125229–125237. 

KANCLERZ, K., GRUZA, M., KARANOWSKI, K., BIELANIEWCZ, J., MIŁKOWSKI, 
P., KOCON, J., and KAZIENKO, P., 2022. What if Ground Truth is Subjective? 
Personalized Deep Neural Hate Speech Detection. 1st Workshop on 



164 
 

Perspectivist Approaches to Disagreement in NLP, NLPerspectives 2022 as part 
of Language Resources and Evaluation Conference, LREC 2022 Workshop. 
(June), pp. 37–45. 

KAR, M., MULUK, N.B., BAFAQEEH, S.A., and CINGI, C., 2018. Is it possible to 
define the ideal lips? Acta Otorhinolaryngologica Italica. 38 (1), pp. 67–72. 

KASSAM, S.N., PERRY, J.L., AYALA, R., STIEBER, E., DAVIES, G., HUDSON, N., 
and HAMDAN, U.S., 2020. World Cleft Coalition International Treatment 
Program Standards. Cleft Palate-Craniofacial Journal. 57 (10), pp. 1171–1181. 

KATSAROS, C., 2013. Cleft lip and palate--epidemiology, aetiology and treatment 
(Frontiers of oral biology, Vol.16) (2012). The European Journal of Orthodontics. 
35 (2), pp. 275–275. 

KER, J., WANG, L., RAO, J., and LIM, T., 2017. Deep Learning Applications in 
Medical Image Analysis. IEEE Access. 6, pp. 9375–9379. 

KHALID, S., GOLDENBERG, M., GRANTCHAROV, T., TAATI, B., and RUDZICZ, 
F., 2020. Evaluation of Deep Learning Models for Identifying Surgical Actions 
and Measuring Performance. JAMA network open. 3 (3), p. e201664. 

KHANCHEZAR, F., MORADI, N., TAHMASEBI FARD, N., LATIFI, S.M., BASSAK 
NEJAD, S., and HOSSEINI BEIDOKHTI, M., 2019. The Effect of Teamwork on 
Children With Cleft Lip and Palate and Their Mother’s Quality of Life. Cleft 
Palate-Craniofacial Journal. 56 (10), pp. 1353–1358. 

KHANDELWAL, K.D., VAN BOKHOVEN, H., ROSCIOLI, T., CARELS, C.E.L., and 
ZHOU, H., 2013. Genomic approaches for studying craniofacial disorders. In: 
American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 
pp. 218–231. 

KIMORI, Y., 2013. Morphological image processing for quantitative shape analysis of 
biomedical structures: Effective contrast enhancement. Journal of Synchrotron 
Radiation. 20 (6), pp. 848–853. 

KLARE, B. and JAIN, A.K., 2010. On a taxonomy of facial features. IEEE 4th 
International Conference on Biometrics: Theory, Applications and Systems, 
BTAS 2010. pp. 1–8. 

KLASSEN, A.F., RAE, C., WONG RIFF, K.W., BULSTRODE, N., DENADAI, R., 
GOLDSTEIN, J., HOL, M.L., MURRAY, D.J., BRACKEN, S., 
COURTEMANCHE, D.J., O’HARA, J., BUTLER, D., TASSI, A., MALIC, C.C., 
GANSKE, I.M., PHUA, Y.S., MARUCCI, D.D., JOHNSON, D., SWAN, M.C., 
BREUNING, E.E., GOODACRE, T.E., PUSIC, A.L., and CANO, S., 2021. 
FACE-Q Craniofacial Module: Part 1 validation of CLEFT-Q scales for use in 
children and young adults with facial conditions. Journal of Plastic, 
Reconstructive and Aesthetic Surgery [online]. 74 (9), pp. 2319–2329. Available 
from: https://doi.org/10.1016/j.bjps.2021.05.040. 

KLINGENBERG, C.P., 2015. Analyzing fluctuating asymmetry with geometric 
morphometrics: Concepts, methods, and applications. Symmetry. 7 (2), pp. 
843–934. 

KNOOPS, P.G.M., PAPAIOANNOU, A., BORGHI, A., BREAKEY, R.W.F., WILSON, 



165 
 

A.T., JEELANI, O., ZAFEIRIOU, S., STEINBACHER, D., PADWA, B.L., 
DUNAWAY, D.J., and SCHIEVANO, S., 2019. A machine learning framework 
for automated diagnosis and computer-assisted planning in plastic and 
reconstructive surgery. Scientific Reports [online]. 9 (1), pp. 1–12. Available 
from: http://dx.doi.org/10.1038/s41598-019-49506-1. 

KONDERMANN, D., 2013. Ground truth design principles: An overview. ACM 
International Conference Proceeding Series. pp. 1–4. 

KORNMANN, N.S.S., TAN, R.A., MULDER, F.J., HARDWICKE, J.T., RICHARD, 
B.M., PIGOTT, B.B., and PIGOTT, R.W., 2019. Defining the aesthetic range of 
normal symmetry for lip and nose features in 5-year-old children using the 
computer-based program symnose. Cleft Palate-Craniofacial Journal. 56 (6), pp. 
799–805. 

KOTHARI, C.R., 2004. Research methodology: Methods and techniques. New Age 
International. 

KOTSIANTIS, S.B., ZAHARAKIS, I., PINTELAS, P., and OTHERS, 2007. 
Supervised machine learning: A review of classification techniques. Emerging 
artificial intelligence applications in computer engineering. 160 (1), pp. 3–24. 

KREUZBERGER, D., KUHL, N., and HIRSCHL, S., 2023. Machine Learning 
Operations (MLOps): Overview, Definition, and Architecture. IEEE Access. 11 
(February), pp. 31866–31879. 

KUEHN, D.P. and HENNE, L.J., 2003. Speech evaluation and treatment for patients 
with cleft palate. American Journal of Speech-Language Pathology. 12 (1), pp. 
103–109. 

KUKHAREV, G.A. and KAZIYEVA, N., 2020. Digital Facial Anthropometry: 
Application and Implementation. Pattern Recognition and Image Analysis. 30 
(3), pp. 496–511. 

KUMMER, A.W., 2014. Speech evaluation for patients with cleft palate. Clinics in 
Plastic Surgery [online]. Available from: 
http://dx.doi.org/10.1016/j.cps.2013.12.004. 

KURUVILLA, J., SUKUMARAN, D., SANKAR, A., and JOY, S.P., 2016. A review on 
image processing and image segmentation. Proceedings of 2016 International 
Conference on Data Mining and Advanced Computing, SAPIENCE 2016. pp. 
198–203. 

LEAO, A.A.S., TOLEDO, F.M.B., OLIVEIRA, J.F., CARRAVILLA, M.A., and 
ALVAREZ-VALDÉS, R., 2020. Irregular packing problems: A review of 
mathematical models. European Journal of Operational Research [online]. 282 
(3), pp. 803–822. Available from: https://doi.org/10.1016/j.ejor.2019.04.045. 

LECUN, Y., BENGIO, Y., and HINTON, G., 2015. Deep learning. Nature. 521 (7553), 
pp. 436–444. 

LEE, T.V.N., IRELAND, A.J., ATACK, N.E., DEACON, S.A., JONES, T.E.M., 
MATHARU, J., WILLS, A., AL-GHATAM, R., RICHARD, B.M., NESS, A.R., and 
SANDY, J.R., 2019. Is There a Correlation Between Nasolabial Appearance and 
Dentoalveolar Relationships in Patients With Repaired Unilateral Cleft Lip and 



166 
 

Palate? Cleft Palate-Craniofacial Journal. 57 (1), pp. 21–28. 

LEOPOLDO-RODADO, M., PANTOJA-PERTEGAL, F., BELMONTE-CARO, R., 
GARCIA-PERLA, A., GONZALEZ-CARDERO, E., and INFANTE-COSSIO, P., 
2021. Quality of life in early age Spanish children treated for cleft lip and/or 
palate: a case-control study approach. Clinical Oral Investigations. 25 (2), pp. 
477–485. 

LESLIE, E.J. and MARAZITA, M.L., 2013. Genetics of cleft lip and cleft palate. 
American Journal of Medical Genetics, Part C: Seminars in Medical Genetics. 
163 (4), pp. 246–258. 

LI, S., HAO, Q., GAO, G., and KANG, X., 2018. The effect of ground truth on 
performance evaluation of hyperspectral image classification. IEEE 
Transactions on Geoscience and Remote Sensing. 56 (12), pp. 7195–7206. 

LI, Y., CHENG, J., MEI, H., MA, H., CHEN, Z., and LI, Y., 2019. CLPNet: Cleft Lip 
and Palate Surgery Support With Deep Learning. 2019 41st Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 
(1), pp. 3666–3672. 

LI, Y., ZENG, J., SHAN, S., and CHEN, X., 2019. Occlusion Aware Facial 
Expression Recognition Using CNN With Attention Mechanism. IEEE 
Transactions on Image Processing. 28 (5), pp. 2439–2450. 

LIRA, G., KOKKINOGENIS, Z., ROSSETTI, R.J.F., MOURA, D.C., and RÚBIO, T., 
2016. A computer-vision approach to traffic analysis over intersections. IEEE 
Conference on Intelligent Transportation Systems, Proceedings, ITSC. pp. 47–
53. 

LITJENS, G., KOOI, T., BEJNORDI, B.E., SETIO, A.A.A., CIOMPI, F., 
GHAFOORIAN, M., VAN DER LAAK, J.A.W.M., VAN GINNEKEN, B., and 
SÁNCHEZ, C.I., 2017. A survey on deep learning in medical image analysis. 
Medical Image Analysis. 42 (December 2012), pp. 60–88. 

LITTLE, A.C. and JONES, B.C., 2003. Evidence against perceptual bias views for 
symmetry preferences in human faces. Proceedings of the Royal Society B: 
Biological Sciences. 270 (1526), pp. 1759–1763. 

LITTLE, A.C., JONES, B.C., and DEBRUINE, L.M., 2011. Facial attractiveness: 
Evolutionary based research. Philosophical Transactions of the Royal Society B: 
Biological Sciences. 366 (1571), pp. 1638–1659. 

LIU, Y.H., 2018. Feature Extraction and Image Recognition with Convolutional 
Neural Networks. Journal of Physics: Conference Series. 1087 (6). 

LIU, Z., LUO, P., WANG, X., and TANG, X., 2015. Deep learning face attributes in 
the wild. Proceedings of the IEEE International Conference on Computer Vision. 
2015 Inter, pp. 3730–3738. 

LONCARIC, S., 1998a. A survey of shape analysis techniques. Pattern Recognition. 
31 (8), pp. 983–1001. 

LONCARIC, S., 1998b. A survey of shape analysis techniques. Pattern Recognition. 

LOW, D.M., BENTLEY, K.H., and GHOSH, S.S., 2020. Automated assessment of 



167 
 

psychiatric disorders using speech: A systematic review. Laryngoscope 
Investigative Otolaryngology. 5 (1), pp. 96–116. 

LOWE, D.G., 2004. Distinctive image features from scale-invariant keypoints. 
International Journal of Computer Vision. 60, pp. 91–110. 

LU, D. and WENG, Q., 2007. A survey of image classification methods and 
techniques for improving classification performance. International Journal of 
Remote Sensing. 28 (5), pp. 823–870. 

MACQUEEN, JAMES AND OTHERS, 1967. Some methods for classification and 
analysis of multivariate observations. Proceedings of the fifth Berkeley 
symposium on mathematical statistics and probability [online]. 1 (14), pp. 281–
297. Available from: 
http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA28
1&dq=MacQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fH
zdVcbvmYJ-lTNHu1HncmOFOkM#v=onepage&q=MacQueen some methods 
for classification&f=false. 

MARTÍN-MORATÓ, I. and MESAROS, A., 2021. What is the ground truth? Reliability 
of multi-annotator data for audio tagging. European Signal Processing 
Conference. 2021-Augus, pp. 76–80. 

MASSENBURG, B.B., HOPPER, R.A., CROWE, C.S., MORRISON, S.D., ALONSO, 
N., CALIS, M., DONKOR, P., KRESHANTI, P., and YUAN, J., 2021. Global 
Burden of Orofacial Clefts and the World Surgical Workforce. Plastic and 
reconstructive surgery. 148 (4), pp. 568e-580e. 

MASSIE, J.P., RUNYAN, C.M., STERN, M.J., ALPEROVICH, M., RICKERT, S.M., 
SHETYE, P.R., STAFFENBERG, D.A., and FLORES, R.L., 2016. Nasal septal 
anatomy in skeletally mature patients with cleft lip and palate. JAMA Facial 
Plastic Surgery. 18 (5), pp. 347–353. 

MATHAD, V.C., SCHERER, N., CHAPMAN, K., LISS, J.M., and BERISHA, V., 2021. 
A deep learning algorithm for objective assessment of hypernasality in children 
with cleft palate. IEEE Transactions on Biomedical Engineering. 68 (10), pp. 
2986–2996. 

MAYER, E.K., CHOW, A., VALE, J.A., and ATHANASIOU, T., 2009. Appraising the 
quality of care in surgery. World Journal of Surgery. 33 (8), pp. 1584–1593. 

MCCULLOUGH, M., LY, S., AUSLANDER, A., YAO, C., CAMPBELL, A., SCHERER, 
S., and MAGEE, W.P., 2021. Convolutional Neural Network Models for 
Automatic Preoperative Severity Assessment in Unilateral Cleft Lip. Plastic and 
Reconstructive Surgery. 148 (1), pp. 162–169. 

MCELROY, H., HABEL, A., MURPHY, G., and TUOHY, W., 2017. Improving early 
detection cleft palate_Infant2017. 13 (September), pp. 3–7. 

MCKEARNEY, R.M., WILLIAMS, J. V., and MERCER, N.S., 2013. Quantitative 
computer-based assessment of lip symmetry following cleft lip repair. Cleft 
Palate-Craniofacial Journal. 50 (2), pp. 138–143. 

MEDINA, J., COPLEY, L., DEACON, S., and VAN DER MEULEN, J., 2017. CRANE 
Database Annual Report 2017. Clinical Effectiveness Unit, The Royal College of 



168 
 

Surgeons of England. 

MIIKKULAINEN, R., LIANG, J., MEYERSON, E., RAWAL, A., FINK, D., FRANCON, 
O., RAJU, B., SHAHRZAD, H., NAVRUZYAN, A., DUFFY, N., and HODJAT, B., 
2018. Evolving deep neural networks [online]. Artificial Intelligence in the Age of 
Neural Networks and Brain Computing. Elsevier Inc. Available from: 
http://dx.doi.org/10.1016/B978-0-12-815480-9.00015-3. 

MILJKOVI, O., 2009. IMAGE PRE - PROCESSING. 32. 

MOHAMMAD-RAHIMI, H., NADIMI, M., ROHBAN, M.H., SHAMSODDIN, E., LEE, 
V.Y., and MOTAMEDIAN, S.R., 2021. Machine learning and orthodontics, 
current trends and the future opportunities: A scoping review. American Journal 
of Orthodontics and Dentofacial Orthopedics [online]. 160 (2), pp. 170-192.e4. 
Available from: http://dx.doi.org/10.1016/j.ajodo.2021.02.013. 

MOSMULLER, D., TAN, R., MULDER, F., BACHOUR, Y., DE VET, H., and DON 
GRIOT, P., 2016. The use and reliability of SymNose for quantitative 
measurement of the nose and lip in unilateral cleft lip and palate patients. 
Journal of Cranio-Maxillofacial Surgery [online]. 44 (10), pp. 1515–1521. 
Available from: http://dx.doi.org/10.1016/j.jcms.2016.07.022. 

MOSMULLER, D.G.M., DON GRIOT, J.P.W., BIJNEN, C.L., and NIESSEN, F.B., 
2013. Scoring systems of cleft-related facial deformities: A review of literature. 
Cleft Palate-Craniofacial Journal. 50 (3), pp. 286–296. 

MOSMULLER, D.G.M., MAAL, T.J., PRAHL, C., TAN, R.A., MULDER, F.J., 
SCHWIRTZ, R.M.F., DE VET, H.C.W., BERGÉ, S.J., and DON GRIOT, J.P.W., 
2017. Comparison of two- and three-dimensional assessment methods of 
nasolabial appearance in cleft lip and palate patients: Do the assessment 
methods measure the same outcome? Journal of Cranio-Maxillofacial Surgery. 
45 (8), pp. 1220–1226. 

MOSMULLER, D.G.M., MENNES, L.M., PRAHL, C., KRAMER, G.J.C., DISSE, M.A., 
VAN COUWELAAR, G.M., NIESSEN, F.B., and DON GRIOT, J.P.W., 2017a. 
The development of the cleft aesthetic rating scale: A new rating scale for the 
assessment of nasolabial appearance in complete unilateral cleft lip and palate 
patients. Cleft Palate-Craniofacial Journal. 54 (5), pp. 555–561. 

MOSMULLER, D.G.M., MENNES, L.M., PRAHL, C., KRAMER, G.J.C., DISSE, M.A., 
VAN COUWELAAR, G.M., NIESSEN, F.B., and DON GRIOT, J.P.W., 2017b. 
The development of the cleft aesthetic rating scale: A new rating scale for the 
assessment of nasolabial appearance in complete unilateral cleft lip and palate 
patients. Cleft Palate-Craniofacial Journal. 54 (5), pp. 555–561. 

MOSSEY, P. and EE, C., 2003. Global Registry and Database on Craniofacial 
Anomalies. 

MOSSEY, P.A. and MODELL, B., 2012. Epidemiology of oral clefts 2012: an 
international perspective. Cleft lip and palate. 16, pp. 1–18. 

MULDER, F.J., MOSMULLER, D.G.M., DE VET, R.H.C.W., and DON GRIOT, 
J.P.W., 2019. Aesthetics Assessment and Patient Reported Outcome of 
Nasolabial Aesthetics in 18-Year-Old Patients With Unilateral Cleft Lip. Cleft 
Palate-Craniofacial Journal. 56 (8), pp. 1058–1064. 



169 
 

MURTHY, J., 2019. Burden of Care: Management of Cleft Lip and Palate. Indian 
journal of plastic surgery : official publication of the Association of  Plastic 
Surgeons of India. 52 (3), pp. 343–348. 

NAHAI, F.R., WILLIAMS, J.K., BURSTEIN, F.D., MARTIN, J., and THOMAS, J., 
2005. The Management of Cleft Lip and Palate: Pathways for Treatment and 
Longitudinal Assessment. Seminars in Plastic Surgery. 19 (04), pp. 275–285. 

NAIDU, P., YAO, C.A., CHONG, D.K., and MAGEE, W.P., 2022. Cleft Palate Repair: 
A History of Techniques and Variations. Plastic and Reconstructive Surgery - 
Global Open. 10 (3), pp. 1–9. 

NAQVI, S., HOSKENS, H., WILKE, F., WEINBERG, S.M., SHAFFER, J.R., WALSH, 
S., SHRIVER, M.D., WYSOCKA, J., and CLAES, P., 2022. Decoding the 
Human Face: Progress and Challenges in Understanding the Genetics of 
Craniofacial Morphology. Annual Review of Genomics and Human Genetics. 23, 
pp. 383–412. 

NESS, A.R., WILLS, A.K., WAYLEN, A., AL-GHATAM, R., JONES, T.E.M., 
PRESTON, R., IRELAND, A.J., PERSSON, M., SMALLRIDGE, J., HALL, A.J., 
SELL, D., and SANDY, J.R., 2015. Centralization of cleft care in the UK. Part 6: 
A tale of two studies. Orthodontics and Craniofacial Research. 18, pp. 56–62. 

NING, C. and YOU, F., 2019. Optimization under uncertainty in the era of big data 
and deep learning: When machine learning meets mathematical programming. 
Computers and Chemical Engineering [online]. 125, pp. 434–448. Available 
from: https://doi.org/10.1016/j.compchemeng.2019.03.034. 

NIXON, M. and AGUADO, A., 2019. Feature extraction and image processing for 
computer vision. Academic press. 

NORTON, K.I., 2019. Standards for Anthropometry Assessment. Kinanthropometry 
and Exercise Physiology. 

OAKDEN-RAYNER, L., 2020. Exploring Large-scale Public Medical Image Datasets. 
Academic Radiology. 27 (1), pp. 106–112. 

OH, H., YANG, H., and YI, K., 2015. Learning a strategy for adapting a program 
analysis via bayesian optimisation. ACM SIGPLAN Notices. 50 (10), pp. 572–
588. 

OLIVEIRA, R.B., FILHO, M.E., MA, Z., PAPA, J.P., PEREIRA, A.S., and TAVARES, 
J.M.R.S., 2016. Computational methods for the image segmentation of 
pigmented skin lesions: A review. Computer Methods and Programs in 
Biomedicine [online]. 131, pp. 127–141. Available from: 
http://dx.doi.org/10.1016/j.cmpb.2016.03.032. 

OTSU, N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE 
Transactions on Systems, Man and Cybernetics. 20 (1), pp. 62–66. 

OWENS, J.R., JONES, J.W., and HARRIS, F., 1985. Epidemiology of facial clefting. 
Archives of Disease in Childhood. 60 (6), pp. 521–524. 

PALEYES, A., URMA, R.G., and LAWRENCE, N.D., 2022. Challenges in Deploying 
Machine Learning: A Survey of Case Studies. ACM Computing Surveys. 55 (6). 



170 
 

PALMER, S.E., SCHLOSS, K.B., and SAMMARTINO, J., 2013. Visual aesthetics 
and human preference. Annual Review of Psychology. 64, pp. 77–107. 

PAN, S.J. and YANG, Q., 2009. A survey on transfer learning. IEEE Transactions on 
knowledge and data engineering. 22 (10), pp. 1345–1359. 

PANDIS, N., 2016. Multiple linear regression analysis. American Journal of 
Orthodontics and Dentofacial Orthopedics [online]. 149 (4), p. 581. Available 
from: http://dx.doi.org/10.1016/j.ajodo.2016.01.012. 

PANNEERSELVAM, R., 2014. RESEARCH METHODOLOGY [online]. PHI 
Learning. Available from: https://books.google.co.uk/books?id=-pBeBAAAQBAJ. 

PASSALIS, G., PERAKIS, P., THEOHARIS, T., and KAKADIARIS, I.A., 2011. Using 
facial symmetry to handle pose variations in real-world 3D face recognition. 
IEEE Transactions on Pattern Analysis and Machine Intelligence. 33 (10), pp. 
1938–1951. 

PATCAS, R., TIMOFTE, R., VOLOKITIN, A., AGUSTSSON, E., ELIADES, T., 
EICHENBERGER, M., and BORNSTEIN, M.M., 2019. Facial attractiveness of 
cleft patients: A direct comparison between artificial-intelligence-based scoring 
and conventional rater groups. European Journal of Orthodontics. 41 (4), pp. 
428–433. 

PENTON-VOAK, I.S., JONES, B.C., LITTLE, A.C., BAKER, S., TIDDEMAN, B., 
BURT, D.M., and PERRETT, D.I., 2001. Symmetry, sexual dimorphism in facial 
proportions and male facial attractiveness. Proceedings of the Royal Society B: 
Biological Sciences. 268 (1476), pp. 1617–1623. 

PERSSON, M., SANDY, J.R., WAYLEN, A., WILLS, A.K., AL-GHATAM, R., 
IRELAND, A.J., HALL, A.J., HOLLINGWORTH, W., JONES, T., PETERS, T.J., 
and OTHERS, 2015. A cross-sectional survey of 5-year-old children with non-
syndromic unilateral cleft lip and palate: the Cleft Care UK study. Part 1: 
background and methodology. Orthodontics \& craniofacial research. 18, pp. 1–
13. 

PIETRUSKI, P., MAJAK, M., and ANTOSZEWSKI, B., 2017. Clinically Oriented 
Software for Facial Symmetry, Morphology, and Aesthetic Analysis. Aesthetic 
surgery journal. 38 (1), pp. NP19–NP22. 

PIETRUSKI, P., MAJAK, M., DEBSKI, T., and ANTOSZEWSKI, B., 2017. A novel 
computer system for the evaluation of nasolabial morphology, symmetry and 
aesthetics after cleft lip and palate treatment. Part 1: General concept and 
validation. Journal of Cranio-Maxillofacial Surgery [online]. 45 (4), pp. 491–504. 
Available from: http://dx.doi.org/10.1016/j.jcms.2017.01.024. 

PIETRUSKI, P., MAJAK, M., PAWLOWSKA, E., SKIBA, A., and ANTOSZEWSKI, B., 
2017. A novel computer system for the evaluation of nasolabial morphology, 
symmetry and aesthetics after cleft lip and palate treatment. Part 2: 
Comparative anthropometric analysis of patients with repaired unilateral 
complete cleft lip and palate and healthy i. Journal of Cranio-Maxillofacial 
Surgery [online]. 45 (4), pp. 505–514. Available from: 
http://dx.doi.org/10.1016/j.jcms.2017.01.022. 

PIGOTT, R.W. and PIGOTT, B.B., 2010. Quantitative measurement of symmetry 



171 
 

from photographs following surgery for unilateral cleft lip and palate. Cleft 
Palate-Craniofacial Journal. 47 (4), pp. 363–367. 

PIGOTT, R.W. and PIGOTT, B.B., 2016. Quantifying asymmetry and scar quality of 
children with repaired cleft lip and Palate using Symnose 2. Cleft Palate-
Craniofacial Journal. 53 (3), pp. 298–301. 

PINHEIRO, J., BATES, D., DEBROY, S., SARKAR, D., TEAM, R.C., and OTHERS, 
2007. Linear and nonlinear mixed effects models. R package version. 3 (57), pp. 
1–89. 

PRATT, W.K., 1994. Digital Image Processing. European Journal of Engineering 
Education. 19 (3), p. 377. 

PRENDERGAST, P.., 2011. Facial proportions. Advanced Surgical Facial 
Rejuvenation: Art and Clinical Practice. pp. 15–22. 

PROKOPAKIS, E.P., VLASTOS, I.M., PICAVET, V., TRENITÉ, G.N., THOMAS, R., 
CINGI, C., and HELLINGS, P.W., 2013. The golden ratio in facial symmetry. 
Rhinology. 51 (1), pp. 18–21. 

PULLI, K., BAKSHEEV, A., KORNYAKOV, K., and ERUHIMOV, V., 2012. Realtime 
computer vision with OpenCV. Queue. 10 (4), pp. 40–56. 

RAGHAVAN, U., VIJAYADEV, V., RAO, D., and ULLAS, G., 2018. Postoperative 
Management of Cleft Lip and Palate Surgery. Facial Plastic Surgery. 34 (6), pp. 
605–611. 

RAHMANN, S., 2000. Polarization images: A geometric interpretation for shape 
analysis. Proceedings - International Conference on Pattern Recognition. 15 (3), 
pp. 538–542. 

RAJOUB, B., 2020. Supervised and unsupervised learning. Biomedical Signal 
Processing and Artificial Intelligence in Healthcare. (April), pp. 51–89. 

RAZZAK, M.I., NAZ, S., and ZAIB, A., 2018. Deep learning for medical image 
processing: Overview, challenges and the future. Lecture Notes in 
Computational Vision and Biomechanics. 26, pp. 323–350. 

REDMON, J. and FARHADI, A., 2018. YOLOv3: An Incremental Improvement. 
[online]. Available from: http://arxiv.org/abs/1804.02767. 

RENNELS, J.L. and CUMMINGS, A.J., 2013. Sex differences in facial scanning: 
Similarities and dissimilarities between infants and adults. International Journal 
of Behavioral Development. 37 (2), pp. 111–117. 

RICHTER, S.R., VINEET, V., ROTH, S., and KOLTUN, V., 2016. Playing for data: 
Ground truth from computer games. Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics). 9906 LNCS, pp. 102–118. 

RIEDLE, H., BURKHARDT, A.E., SEITZ, V., PACHALY, B., REID, R.R., LEE, J.C., 
and FRANKE, J.E., 2019. Design and fabrication of a generic 3D-printed 
silicone unilateral cleft lip and palate model. Journal of Plastic, Reconstructive 
and Aesthetic Surgery [online]. 72 (10), pp. 1669–1674. Available from: 
https://doi.org/10.1016/j.bjps.2019.06.030. 



172 
 

RITZ-TIMME, S., GABRIEL, P., TUTKUVIENE, J., POPPA, P., OBERTOVÁ, Z., 
GIBELLI, D., DE ANGELIS, D., RATNAYAKE, M., RIZGELIENE, R., BARKUS, 
A., and CATTANEO, C., 2011. Metric and morphological assessment of facial 
features: A study on three European populations. Forensic Science 
International. 207 (1–3), pp. 239.e1-239.e8. 

ROBERTS, D.A. and YAIDA, S., 2021. The Principles of Deep Learning Theory 
[online]. Available from: deeplearningtheory.com. 

ROHANI, R., ALIZADEH, S., SOBHANMANESH, F., and BOOSTANI, R., 2008. Lip 
Segmentation in Color Images. 2008 International Conference on Innovations in 
Information Technology, IIT 2008. (April 2016), pp. 747–750. 

ROKHSHAD, R., KEYHAN, S.O., and YOUSEFI, P., 2023. Artificial intelligence 
applications and ethical challenges in oral and maxillo-facial cosmetic surgery: a 
narrative review. Maxillofacial Plastic and Reconstructive Surgery [online]. 45 
(1). Available from: https://doi.org/10.1186/s40902-023-00382-w. 

ROY, H., YAMASAKI, T., and HASHIMOTO, T., 2018. Predicting image aesthetics 
using objects in the scene. MMArt and ACM 2018 - Proceedings of the 2018 
International Joint Workshop on Multimedia Artworks Analysis and 
Attractiveness Computing in Multimedia, Co-located with ICMR 2018. pp. 14–
19. 

RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE, J., SATHEESH, S., MA, S., 
HUANG, Z., KARPATHY, A., KHOSLA, A., BERNSTEIN, M., BERG, A.C., and 
FEI-FEI, L., 2015. ImageNet Large Scale Visual Recognition Challenge. 
International Journal of Computer Vision [online]. 115 (3), pp. 211–252. 
Available from: http://dx.doi.org/10.1007/s11263-015-0816-y. 

RUSSELL, J.H.B., KIDDY, H.C., and MERCER, N.S., 2014. The use of SymNose for 
quantitative assessment of lip symmetry following repair of complete bilateral 
cleft lip and palate. Journal of Cranio-Maxillofacial Surgery [online]. 42 (5), pp. 
454–459. Available from: http://dx.doi.org/10.1016/j.jcms.2013.05.041. 

RUTANEN, K., GÓMEZ-HERRERO, G., ERIKSSON, S.-L., and EGIAZARIAN, K., 
2013. A general definition of the big-oh notation for algorithm analysis. [online]. 
1 (1), pp. 1–39. Available from: http://arxiv.org/abs/1309.3210. 

SAE-LIM, W., WETTAYAPRASIT, W., and AIYARAK, P., 2019. Convolutional Neural 
Networks Using MobileNet for Skin Lesion Classification. JCSSE 2019 - 16th 
International Joint Conference on Computer Science and Software Engineering: 
Knowledge Evolution Towards Singularity of Man-Machine Intelligence. pp. 
242–247. 

SAEED, U. and DUGELAY, J.L., 2010. Combining edge detection and region 
segmentation for lip contour extraction. Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics). 6169 LNCS, pp. 11–20. 

SAGONAS, C., TZIMIROPOULOS, G., ZAFEIRIOU, S., and PANTIC, M., 2013. 300 
faces in-the-wild challenge: The first facial landmark Localization Challenge. 
Proceedings of the IEEE International Conference on Computer Vision. pp. 
397–403. 



173 
 

SALARI, N., DARVISHI, N., HEYDARI, M., BOKAEE, S., DARVISHI, F., and 
MOHAMMADI, M., 2022. Global prevalence of cleft palate, cleft lip and cleft 
palate and lip: A comprehensive systematic review and meta-analysis. Journal 
of Stomatology, Oral and Maxillofacial Surgery [online]. 123 (2), pp. 110–120. 
Available from: https://doi.org/10.1016/j.jormas.2021.05.008. 

SAMEK, W., MONTAVON, G., LAPUSCHKIN, S., ANDERS, C.J., and MÜLLER, 
K.R., 2021. Explaining Deep Neural Networks and Beyond: A Review of 
Methods and Applications. Proceedings of the IEEE. 109 (3), pp. 247–278. 

SAMUEL, A.L., 1959. Some studies in machine learning using the game of checkers. 
IBM Journal of research and development. 3 (3), pp. 210–229. 

SANDY, J., KILPATRICK, N., and IRELAND, A., 2012. Treatment outcome for 
children born with cleft lip and palate. Frontiers of Oral Biology. 16, pp. 91–100. 

SCHEIRER, W.J., ANTHONY, S.E., NAKAYAMA, K., and COX, D.D., 2014. 
Perceptual annotation: Measuring human vision to improve computer vision. 
IEEE Transactions on Pattern Analysis and Machine Intelligence. 36 (8), pp. 
1679–1686. 

SCHINDELIN, J., RUEDEN, C.T., HINER, M.C., and ELICEIRI, K.W., 2015. The 
ImageJ ecosystem: An open platform for biomedical image analysis. Molecular 
Reproduction and Development. 82 (7–8), pp. 518–529. 

SCHINDLER, I., HOSOYA, G., MENNINGHAUS, W., BEERMANN, U., WAGNER, 
V., EID, M., and SCHERER, K.R., 2017. Measuring aesthetic emotions: A 
review of the literature and a new assessment tool. 

SCHNEIDER, C.A., RASBAND, W.S., and ELICEIRI, K.W., 2012. NIH Image to 
ImageJ: 25 years of Image Analysis HHS Public Access. Nat Methods. 9 (7), pp. 
671–675. 

SCHWIRTZ, R.M.F., MULDER, F.J., MOSMULLER, D.G.M., TAN, R.A., MAAL, T.J., 
PRAHL, C., DE VET, H.C.W., and DON GRIOT, J.P.W., 2018. Rating nasolabial 
aesthetics in unilateral cleft lip and palate patients: Cropped versus full-face 
images. Cleft Palate-Craniofacial Journal. 55 (5), pp. 747–752. 

SELL, D., GRUNWELL, P., MILDINHALL, S., MURPHY, T., CORNISH, T.A.O., 
BEARN, D., SHAW, W.C., MURRAY, J.J., WILLIAMS, A.C., and SANDY, J.R., 
2001. Cleft lip and palate care in the United Kingdom - The Clinical Standards 
Advisory Group (CSAG) Study. Part 3: Speech outcomes. Cleft Palate-
Craniofacial Journal. 38 (1), pp. 30–37. 

SELTMANN, H.J., 2014. Experimental Design and Analysis. Evaluation of Human 
Work, Fourth Edition. 

SERIES, W.P. and STERMAN, J.D., 2003. System Dynamics: Systems Thinking and 
Modeling for a Complex World. European journal of computer science. 21 (3), 
pp. 35–39. 

SESCLEIFER, A.M., FRANCOISSE, C.A., WEBBER, J.C., RECTOR, J.D., and LIN, 
A.Y., 2020. Transforming assessment of speech in children with cleft palate via 
online crowdsourcing. PLoS ONE. 15 (1), pp. 1–11. 

SHARMA, V.P., BELLA, H., CADIER, M.M., PIGOTT, R.W., GOODACRE, T.E.E., 



174 
 

and RICHARD, B.M., 2012. Outcomes in facial aesthetics in cleft lip and palate 
surgery: A systematic review. Journal of Plastic, Reconstructive and Aesthetic 
Surgery [online]. 65 (9), pp. 1233–1245. Available from: 
http://dx.doi.org/10.1016/j.bjps.2012.04.001. 

SHAYE, D., LIU, C.C., and TOLLEFSON, T.T., 2015. Cleft Lip and Palate. An 
Evidence-Based Review. Facial Plastic Surgery Clinics of North America 
[online]. 23 (3), pp. 357–372. Available from: 
http://dx.doi.org/10.1016/j.fsc.2015.04.008. 

SHIER, D., BUTLER, J., and LEWIS, R., 2007. Hole’s Human Anatomy & 
Physiology. Eleventh. Boston Burr Ridge,. 

SHKOUKANI, M.A., CHEN, M., and VONG, A., 2013. Cleft lip - A comprehensive 
review. Frontiers in Pediatrics. 1 (DEC), pp. 1–10. 

SHOBA, V.B.T. and SAM, I.S., 2020. A Hybrid Features Extraction on Face for 
Efficient Face Recognition. Multimedia Tools and Applications. 79 (31–32), pp. 
22595–22616. 

SINGH, H., 2019. Practical Machine Learning and Image Processing For Facial 
Recognition, Object Detection, and Pattern Recognition Using Python-Himanshu 
Singh [online]. Available from: www.apress.com/978-1-4842-4148-6. 

SISCHO, L., PHILLIPS, C., CLOUSTON, S.A.P., and BRODER, H.L., 2016. 
Caregiver responses to early cleft palate care: A mixed method approach. 
Health Psychology. 35 (5), pp. 474–482. 

SITZMAN, T.J. and ALLORI, A.C., 2014. M e a s u r i n g Ou t c o m e s i n C l e f t 
Lip a nd Palate Treatment Cleft lip Cleft palate Cleft surgery Evidence base 
Outcomes measurement Outcome data. p. 3. 

SOH, K.B.K., 1998. Job Analysis, Appraisal and Performance Assessments of a 
Surgeon - A Multifaceted Approach. Singapore Medical Journal. 39 (4), pp. 180–
185. 

SOMMER, C.L., CROWLEY, C.J., MOYA-GALÉ, G., ADJASSIN, E., CACERES, E., 
YU, V., COSETENG-FLAVIANO, K., OBI, N., SHEERAN, P., BUKARI, B., 
MUSASIZI, D., and BAIGORRI, M., 2023. Global partnerships to create 
communication resources addressing Sustainable Development Goals 3, 4, 8, 
10, and 17. International Journal of Speech-Language Pathology [online]. 25 (1), 
pp. 167–171. Available from: https://doi.org/10.1080/17549507.2022.2130430. 

SRA, S., 2016. Directional Statistics in Machine Learning: a Brief Review. [online]. 
pp. 1–12. Available from: http://arxiv.org/abs/1605.00316. 

STEIN, M.J., ZHANG, Z., FELL, M., MERCER, N., and MALIC, C., 2019. 
Determining postoperative outcomes after cleft palate repair: A systematic 
review and meta-analysis. Journal of Plastic, Reconstructive and Aesthetic 
Surgery [online]. 72 (1), pp. 85–91. Available from: 
https://doi.org/10.1016/j.bjps.2018.08.019. 

STERMAN, J.D., 2006. Learning from evidence in a complex world. American 
Journal of Public Health. 96 (3), pp. 505–514. 

SUNDERLAND, E., 1995. Anthropometry: the Individual and the Population. Journal 



175 
 

of Medical Genetics. 32 (7), p. 582. 

SWANSON, J.W., YAO, C.A., AUSLANDER, A., WIPFLI, H., NGUYEN, T.H.D., 
HATCHER, K., VANDERBURG, R., and MAGEE, W.P., 2017. Patient Barriers 
to Accessing Surgical Cleft Care in Vietnam: A Multi-site, Cross-Sectional 
Outcomes Study. World Journal of Surgery. 41 (6), pp. 1435–1446. 

SZELISKI, R., 2011. Computer Vision: Algorithms and Applications. Choice Reviews 
Online. 48 (09), pp. 48-5140-48–5140. 

TABIA, H. and LAGA, H., 2017. Learning shape retrieval from different modalities. 
Neurocomputing. 253, pp. 24–33. 

TAIB, B.G., TAIB, A.G., SWIFT, A.C., and VAN EEDEN, S., 2015. Cleft lip and 
palate: Diagnosis and management. British Journal of Hospital Medicine. 76 
(10), pp. 584–591. 

TAJBAKHSH, N., SHIN, J.Y., GURUDU, S.R., HURST, R.T., KENDALL, C.B., 
GOTWAY, M.B., and LIANG, J., 2016. Convolutional Neural Networks for 
Medical Image Analysis: Full Training or Fine Tuning? IEEE Transactions on 
Medical Imaging. 35 (5), pp. 1299–1312. 

TAKECHI, M., ADACHI, N., HIRAI, T., KURATANI, S., and KURAKU, S., 2013. The 
Dlx genes as clues to vertebrate genomics and craniofacial evolution. Seminars 
in Cell and Developmental Biology [online]. 24 (2), pp. 110–118. Available from: 
http://dx.doi.org/10.1016/j.semcdb.2012.12.010. 

TALEBI, H. and MILANFAR, P., 2018. NIMA: Neural Image Assessment. IEEE 
Transactions on Image Processing. 27 (8), pp. 3998–4011. 

TAN, C., SUN, F., KONG, T., ZHANG, W., YANG, C., and LIU, C., 2018. A survey 
on deep transfer learning. Lecture Notes in Computer Science (including 
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics). 11141 LNCS, pp. 270–279. 

THOMPSON, J.A., HEATON, P.C., KELTON, C.M.L., and SITZMAN, T.J., 2017. 
National estimates of and risk factors for inpatient revision surgeries for orofacial 
clefts. Cleft Palate-Craniofacial Journal. 54 (1), pp. 60–69. 

TIWARI, V., DEYAL, N., and BISHT, N.S., 2020. Mathematical Modeling Based 
Study and Prediction of COVID-19 Epidemic Dissemination Under the Impact of 
Lockdown in India. Frontiers in Physics. 8 (November), pp. 1–8. 

UNPINGCO, J., 2019. Python for Probability , Statistics , and Machine Learning 
[online]. Second. Gewerbestrasse: Springer Nature. Available from: 
https://doi.org/10.1007/978-3-030-18545-9. 

VAFAEI, N., RIBEIRO, R.A., and CAMARINHA-MATOS, L.M., 2018. Data 
normalisation techniques in decision making: case study with TOPSIS method. 
Int. J. Information and Decision Sciences [online]. 10 (1), pp. 27–29. Available 
from: http://www.ca3-uninova.org. 

VIDAL, M. and AMIGO, J.M., 2012. Pre-processing of hyperspectral images. 
Essential steps before image analysis. Chemometrics and Intelligent Laboratory 
Systems [online]. 117, pp. 138–148. Available from: 
http://dx.doi.org/10.1016/j.chemolab.2012.05.009. 



176 
 

VIOLA, P. and JONES, M., 2001. Rapid object detection using a boosted cascade of 
simple features. Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition. 1, pp. 11–18. 

VO, D.M. and LE, T.H., 2016. Deep generic features and SVM for facial expression 
recognition. NICS 2016 - Proceedings of 2016 3rd National Foundation for 
Science and Technology Development Conference on Information and 
Computer Science. pp. 80–84. 

VUJOVIĆ, Ž., 2021. Classification Model Evaluation Metrics. International Journal of 
Advanced Computer Science and Applications. 12 (6), pp. 599–606. 

WANG, B., JIN, S., YAN, Q., XU, H., LUO, C., WEI, L., ZHAO, W., HOU, X., MA, W., 
XU, Z., ZHENG, Z., SUN, W., LAN, L., ZHANG, W., MU, X., SHI, C., WANG, Z., 
LEE, J., JIN, Z., LIN, M., JIN, H., ZHANG, L., GUO, J., ZHAO, B., REN, Z., 
WANG, S., XU, W., WANG, X., WANG, J., YOU, Z., and DONG, J., 2021. AI-
assisted CT imaging analysis for COVID-19 screening: Building and deploying a 
medical AI system. Applied Soft Computing. 98. 

WANG, D., ZHANG, B., ZHANG, Q., and WU, Y., 2023. Global, regional and 
national burden of orofacial clefts from 1990 to 2019: an analysis of the Global 
Burden of Disease Study 2019. Annals of medicine [online]. 55 (1), p. 2215540. 
Available from: https://doi.org/10.1080/07853890.2023.2215540. 

WANG, J., SUN, K., CHENG, T., JIANG, B., DENG, C., ZHAO, Y., LIU, D., MU, Y., 
TAN, M., WANG, X., LIU, W., and XIAO, B., 2020. Deep High-Resolution 
Representation Learning for Visual Recognition. IEEE Transactions on Pattern 
Analysis and Machine Intelligence. 43 (10), pp. 3349–3364. 

WANG, J., THORNTON, J.C., KOLESNIK, S., and PIERSON, R.N., 2000. 
Anthropometry in body composition. An overview. Annals of the New York 
Academy of Sciences. 904, pp. 317–326. 

WANG, N., GAO, X., TAO, D., YANG, H., and LI, X., 2018. Facial feature point 
detection: A comprehensive survey. Neurocomputing. 275, pp. 50–65. 

WANG, R., LEI, T., CUI, R., ZHANG, B., MENG, H., and NANDI, A.K., 2022. Medical 
image segmentation using deep learning: A survey. IET Image Processing. 16 
(5), pp. 1243–1267. 

WANG, Y., LI, J., XU, Y., HUANG, N., SHI, B., and LI, J., 2020. Accuracy of virtual 
surgical planning-assisted management for maxillary hypoplasia in adult 
patients with cleft lip and palate. Journal of Plastic, Reconstructive and Aesthetic 
Surgery. 73 (1), pp. 134–140. 

WANG, Z., BOVIK, A.C., SHEIKH, H.R., and SIMONCELLI, E.P., 2004. Image 
quality assessment: From error visibility to structural similarity. IEEE 
Transactions on Image Processing. 13 (4), pp. 600–612. 

WANG, Z., WANG, E., and ZHU, Y., 2020. Image segmentation evaluation: a survey 
of methods [online]. Artificial Intelligence Review. Springer Netherlands. 
Available from: https://doi.org/10.1007/s10462-020-09830-9. 

WASKOM, M., 2021. Seaborn: Statistical Data Visualization. Journal of Open Source 
Software. 6 (60), p. 3021. 



177 
 

WEI, W., HO, E.S.L., MCCAY, K.D., DAMAŠEVIČIUS, R., MASKELIŪNAS, R., and 
ESPOSITO, A., 2022. Assessing Facial Symmetry and Attractiveness using 
Augmented Reality. Pattern Analysis and Applications [online]. 25 (3), pp. 635–
651. Available from: https://doi.org/10.1007/s10044-021-00975-z. 

WEYL, H., 1952. Symmetry. Princeton University Press. 

WHARTON, Z., BEHERA, A., LIU, Y., and BESSIS, N., 2021. Coarse Temporal 
Attention Network (CTA-Net) for Driver’s Activity Recognition. pp. 1279–1289. 

WU, S.-T., SILVA, A.C.G. da, and MÁRQUEZ, M.R.G., 2004. The Douglas-peucker 
algorithm: sufficiency conditions for non-self-intersections. Journal of the 
Brazilian Computer Society. 9 (3), pp. 67–84. 

XIA, Y., NIE, L., ZHANG, L., YANG, Y., HONG, R., and LI, X., 2016. Weakly 
Supervised Multilabel Clustering and its Applications in Computer Vision. IEEE 
Transactions on Cybernetics. 46 (12), pp. 3220–3232. 

XU, M., CHEN, F., LI, L., SHEN, C., LV, P., ZHOU, B., and JI, R., 2021. Bio-Inspired 
Deep Attribute Learning towards Facial Aesthetic Prediction. IEEE Transactions 
on Affective Computing. 12 (1), pp. 227–238. 

XU, W., FU, Y.L., and ZHU, D., 2023. ResNet and its application to medical image 
processing: Research progress and challenges. Computer Methods and 
Programs in Biomedicine [online]. 240, p. 107660. Available from: 
https://doi.org/10.1016/j.cmpb.2023.107660. 

XU, Y., MO, T., FENG, Q., ZHONG, P., LAI, M., and CHANG, E.I.C., 2014. Deep 
learning of feature representation with multiple instance learning for medical 
image analysis. ICASSP, IEEE International Conference on Acoustics, Speech 
and Signal Processing - Proceedings. (1), pp. 1626–1630. 

YOSINSKI, J., CLUNE, J., NGUYEN, A., FUCHS, T., and LIPSON, H., 2015. 
Understanding Neural Networks Through Deep Visualization. [online]. Available 
from: http://arxiv.org/abs/1506.06579. 

YU, C., GAO, C., WANG, J., YU, G., SHEN, C., and SANG, N., 2020. BiSeNet V2: 
bilateral network with guided aggregation for real-time semantic segmentation. 
arXiv. 

YU, C., WANG, J., PENG, C., GAO, C., YU, G., and SANG, N., 2018. BiSeNet: 
Bilateral segmentation network for real-time semantic segmentation. Lecture 
Notes in Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics). 11217 LNCS, pp. 334–349. 

ZHANG, A., LIPTON, Z.C., LI, M.U., and ALEXANDER, J., 2021. Dive into Deep 
Learning [online]. Available from: https://arxiv.org/abs/2106.11342. 

ZHANG, Q., YUE, Y., SHI, B., and YUAN, Z., 2019. A Bibliometric Analysis of Cleft 
Lip and Palate-Related Publication Trends From 2000 to 2017. Cleft Palate-
Craniofacial Journal. 56 (5), pp. 658–669. 

ZHANG, X., SHEN, P., LUO, L., ZHANG, L., and SONG, J., 2012. Enhancement and 
noise reduction of very low light level images. Proceedings - International 
Conference on Pattern Recognition. (Icpr), pp. 2034–2037. 



178 
 

ZHOU, S.K., GREENSPAN, H., DAVATZIKOS, C., DUNCAN, J.S., VAN 
GINNEKEN, B., MADABHUSHI, A., PRINCE, J.L., RUECKERT, D., and 
SUMMERS, R.M., 2021. A Review of Deep Learning in Medical Imaging: 
Imaging Traits, Technology Trends, Case Studies with Progress Highlights, and 
Future Promises. Proceedings of the IEEE. 109 (5), pp. 820–838. 

ZHOU, S.K., GREENSPAN, H., and SHEN, D., 2017. Deep Learning for Medical 
Image Analysis. First Edit. Deep Learning for Medical Image Analysis. Elsevier 
Inc. 

ZHU, M., SHI, D., ZHENG, M., and SADIQ, M., 2019. Robust facial landmark 
detection via occlusion-adaptive deep networks. Proceedings of the IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition. 
2019-June, pp. 3481–3491. 

ZHUANG, F., QI, Z., DUAN, K., XI, D., ZHU, Y., ZHU, H., XIONG, H., and HE, Q., 
2021. A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE. 
109 (1), pp. 43–76. 

ZORICH, V.A. and PANIAGUA, O., 2016. Mathematical analysis II. Springer. 

 

  



179 
 

Appendix A: Key Landmarks Detection using Deep 

Learning in Partially Occluded Images 
 

 

A1. Introduction 

Facial landmark detection is the process of identifying and localizing key points or 

landmarks on a human face. These landmarks are specific points that serve as 

reference points to accurately describe the facial geometry and expressions. They are 

crucial for various computer vision applications, such as face alignment, emotion 

recognition, facial expression analysis, and face morphing. Face landmark detection 

can also be used for face features regeneration assessment (Sagonas et al., 2013). 

Key facial landmarks have been discussed by (Klare and Jain, 2010) and typically 

include: 

1. Eye landmarks: These include points for the corners of the eyes, the pupil 

centers, and the eye contours. They help in determining eye shape, gaze 

direction, and blinking patterns. 

2. Nose landmarks: Nose tip, nostrils, and nasal bridge points are essential for 

assessing nose shape, size, and orientation. 

3. Mouth landmarks: Points for the corners of the mouth, upper and lower lips, 

and the center of the mouth help in detecting mouth opening, smiles, and 

expressions. 

4. Cheek and jawline landmarks: These points represent the contour of the cheek 

and jawline, providing information about facial structure and symmetry. 

In this PhD research, the use anonymised facial images, therefore, features in 

categories 2 and 3 are detected mainly by most means.  

Facial landmark detection can be performed using various techniques such as 

Traditional feature-based methods, Deep learning-based methods, or 3D facial 

landmark detection (Sagonas et al., 2013, Cao et al., 2014). DUE TO ITS ROBUST 

NATURE, the YOLO deep learning framework takes precedence in this work.  

Facial landmark detection finds wide applications in computer graphics, augmented 

reality, medical imaging, and biometrics. It is a fundamental step in many facial 
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analysis tasks and enables a deeper understanding of facial expressions, emotions, 

and appearances studies. 

A2. Background 

Quantitative and aggregated numeric results are desirable and acceptable outcomes 

for most experimental assessment studies. This writeup aims to create a deep learning 

pipeline that mitigates the evident biased verbosity of previous attempts. Deep 

learning-based facial features detection is an alternative method to the one presented 

in Chapter 5. To appreciate an end-to-end pipeline for assessment outcome, an 

ablation study and analysis is required, and so presented in this section. 

 

If features are detected from the partial facial images, then a region of interest is highly 

likely apparent, facilitating the generation of continuous and categorical parameters. 

Among those parameters include facial symmetry; inclination/alignment of inner eye 

corners, philtrum ridges, nasal alares etc; Euclidian distances between key features; 

and elevation of key features from one another. Any scoring approach requires 

presenting these parameters for an aggregated approach with minimal human 

intervention/input. The challenge is that many of such primary features might have 

been distorted or not fully restored during the surgical treatment. Feature localisation, 

thus quantitative parametrisation is highly dynamic, complicated, radically stochastic, 

and potentially irreproducible. This may cause mathematical limitations for a linear or 

non-linear parametric functional model (Pandis, 2016). Therefore, a study fronted by 

deep learning techniques is a plausible alternative due to their capability to 

simultaneously manage models with multiple parameters of stochastic nature. 

Specifically, deep learning techniques present opportunities for optimisation and 

appropriate (hyper)parameter tuning (Ning and You, 2019).   

 

Supervised machine learning requires human experts to annotate potential key feature 

locations. Figure A.1 demonstrates the human ability to locate features from facial 

appearances outcomes following surgery using an annotation software in preparation 

for supervised learning. 
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Figure A. 1: Annotation window in LabelImg software. 12 landmarks are annotated. But could have 

been more. A bounding box is a better feature attributes detector.  

 
Figure A.2 shows the ground truth that serves as model input.  
 

 
Figure A. 2: Ground truth sample for input into a model. Each key landmark has got a label to guide 
deep network learning and generate a landmark detection model. 12 landmarks are visualised as 

annotated.  

 
Using the You Only Look Once (YOLOv3)-based deep learning framework (Figure A.3) 

(Redmon and Farhadi, 2018), a model was trained.   
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Figure A. 3: How YOLO works (Redmon and Farhadi, 2018). Several residual blocks, detection layers 

and upsampling layers are modelled. This being only a framework, several other layers may be 
incorporated.   

One of the outputs from the trained model is in Figure A.4.  
 

 
Figure A. 4: Landmarks detected from a trained model (green circles). Detection of key regions of 

interest, if necessary (blue shapes). Potential symmetric axis based on features (vertical black line). 

Different facial images can be used in Figures A.1, A.2, A.3 and A.4 to demonstrate 

the robust nature of deep learning techniques. 

 

YOLO ‘co-works’ with Darknet as its implementation back bone. Whereas YOLO can 

be modified to suit a specific dataset and its parameters, Darknet has been introduced 

to two architectures Darknet-19 and Darknet-53. It has formed the backbone of several 

versions, with YOLOv8 as the latest release.  Because some researchers and 

pioneers had reservations around the society impact of their fast object detection 

framework (YoloV1), some publications were withheld when YoloV3 was released in 
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2018. Despite this, GitHub source code repositories9 have been used to study the 

underlying frameworks. 

YOLO is a convolutional neural network (CNN), a traditionally known deep neural 

network (DNN) suited for exploitation and analysis of (medical) images and videos 

(Zhou, Greenspan and Shen, 2017).  

The reported preliminary findings in Section A4 below are premised on YOLO 

producing state of the art results for object detection with less computational resources 

for model training, sometimes outcompeting human experts (Benali Amjoud and 

Amrouch, 2020). Much as training these models is technically tricky and mostly 

resource intensive, a YOLO-based framework used in our work is relatively lighter.  

The base uses a faster and more efficient single spine/single forward propagation 

approach. 

A3. Experimental setup 

Once annotation is complete, dataset diversity is achieved through augmentation. This 

may serve to optimise model convergence during training.  A setup in Figure A1 is 

created using LabelImg, a package of Label Studio10. After annotation, a text file 

containing the bounding box coordinates of each landmark is generated. The process 

is repeated for every image in the dataset.  Normalisation is carried out about every 

image width and height to ensure uniformity of the bounding box metrics so that they 

fall between 0 and 1. This ensures that the bounding box (𝑥, 𝑦) coordinates are offsets 

of a particular grid cell location.  

𝐵 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 [ 𝑥𝑐𝑒𝑛𝑡𝑒𝑟, 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑤, ℎ]  (Equation 22) 

Where:  

𝑥 and 𝑦 are pixel values marking the bounding box center from the x-axis and y-axis 

respectively,  

𝑤 and ℎ are the width and height of bounding box, respectively.  

Sometimes 𝐵 (from Equation 22) can be a small value and should be scaled in line 

with the image dimensions with consistency and consideration of other 

features/objects in the same image. A value in the range of 2 and 4 was used to scale 

 
9 https://github.com/AlexeyAB 
10 https://labelstud.io/ 

https://github.com/AlexeyAB
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𝐵. A visualisation of 𝐵 on the dataset yielded Figure A.5b. In contrast, Figure A.5a 

represents visualisation of 𝐵 on the dataset after augmentation by the properties in 

Table A.1. 

Table A. 1: Pre-processing and Augmentation properties. 

Grayscale 25% of the dataset 
Luminosity Exposure -20% and + 20% 
Gaussian Blur Up to 4.75 pixels 
Resizing • 416 by 416 with vertical padding 

• 312 by 416 – regular face 

 

 

Figure A. 5: Dataset annotation and normalisation. Left: After augmentation, the average heatmap 
annotation is generated. Right: annotation heatmap generated before augmentation was applied. 

Therefore, augmentation is useful for a successful model building.  

In Figure A.5, each blob represents the 12 landmarks heatmap generated during 

annotation. Figure A.5 (a) is dataset annotation heatmap after augmentation. An 

indication of a better training dataset. Figure A.5 (b) is dataset annotation heatmap for 

the dataset before augmentation. 

Following augmentation, 3000 images were generated from the original CCUK dataset 

of 250 images. Poorly annotated, and unreadable photos were removed, leaving a 

total of 2857 images.  

Figures A.6 and A.7 visualise11 the same architecture for the YOLO-based CNN 

framework used to train the object detection model. It is this model that we employ in 

features localization. 

 
11 http://alexlenail.me/NN-SVG/LeNet.html 

a b 
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Figure A. 6: Adjusted YoloV3 Architecture using LeNet Style 

 

Figure A. 7: Adjusted YoloV3 Architecture using AlexNet Style – with 12 outputs. 

The network uses features from the entire image to predict each landmark’s bounding 

box. It also indicates all bounding boxes across all classes for an image 

simultaneously. This means the network reasons globally about the entire image and 

learns about all the possible twelve (12) objects/critical landmarks in the image. 

There is unification of the separate components of object detection into a single neural 

network. The network uses features from the entire image to predict each landmark’s 

bounding box. It also indicates all bounding boxes across all classes for an image 
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simultaneously. This means the network reasons globally about the entire image and 

learns about all the possible twelve (12) objects/landmarks in the image.  

Training and detection often require fine-grained visual information, so network input 

size is considerably reduced to an acceptable size of 416 by 416, This is further 

reduced to 312 by 416 due to the 0.25 width padding and 0.75 of the facial height as 

the width.  This is seconded by the approximate rational human facial morphology of 

3:4 rule of facial width to size. An ambitious filter of 11 by 11 pixels (default = 3x3 filter) 

is used on the input image. There are 5 hidden layers and 2 fully connected layers 

before converging into of 12 nodes (Figure A.7).  

A4. Results 

The model was trained to predict multiple bounding boxes per grid cell, if any existed. 

At training time, we only want one bounding box predictor responsible for each object. 

One predictor is assigned to predict an object based on which prediction has the 

highest current IOU with the ground truth. Whereas this leads to specialization 

between the bounding box predictors, special attention is paid to potential bounding 

boxes overlap for multiple objects in the same image. Figure A.8 presents the model 

training results. The smooth loss curve following training indicates the model’s learning 

was good. 
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Figure A. 8: Model training results using modified YOLO framework, shows great learning potential. A 
smooth curve is a welcome outcome. 

Following the training, some tensor board outcomes are depicted in Figure A.9 

 

Figure A. 9: Tensor board results from training the modified YOLO. Training was conducted over 100 
epochs. From left to right: 1st column: Localisation losses from bounding box coordinate prediction are 

not changing uniformly. 2nd column: Near matching bounding box prediction for object capture. 3rd 
column: Model losses from the classification of the objects. 4th and 5th columns represent 

precisions/average precisions and recall/average precisions respectively, at different intervals. 
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For each object whose label is read, there is comparison of the actual bounding box 

between the training dataset and the validation dataset. We used the bounding box 

for label localisation, the accuracy is calculated. Loss, mean absolute precision are 

some of the tensor board metrics returned. 

 

Figure A. 10:  F1-Score vs confidence map. Each of the 12 landmarks is considered as a class/ 
unique category. Best predicted class is RPR (F1>0.8, CI=0.75) and worst predicted class is LLI (F1 < 

0.25, CI < 0.25). The bold blue curve is the average for all the classes (F1<0.5, CI<0.75) 

Figure A.10 shows the label detection confidence map, where F1-score has been 

used. The map is plotted for each label, from which an average F1 score is calculated. 

The best detected label is LA while the worst is LLI. 

In conclusion, not all the landmarks could be detected on most images. In fact, the test 

dataset presented about 90% feature detection accuracy, falling below the 

expectations. Given a diverse dataset, medical image analysis studies acceptable 

accuracy ranges between 94 and 99 % (Khalid et al., 2020). The next step is to 

generate continuous and categorical parameters once the landmarks can be detected. 

The parameters would consequently serve as inputs for the regression model to output 

a desired appearance score.  

Continuous, categorical, and deeper features/parameters are learnt in a single-spine 

solution and directly mapped to a single score. A robust regression decay should follow 

feature extraction in an end-to-end network, not generate parameters for input into an 

external system.   


