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Abstract—Beyond diagonal reconfigurable intelligent surface
(BD-RIS) extends conventional RIS through novel architectures,
such as group-connected RIS, with scattering matrix not re-
stricted to being diagonal. However, it remains unexplored how
to optimally group the elements in group-connected RISs to
maximize the performance while maintaining a low-complexity
circuit. In this study, we propose and model BD-RIS with a
static grouping strategy optimized based on the channel statistics.
After formulating the corresponding problems, we design the
grouping in single- and multi-user systems. Numerical results
reveal the benefits of grouping optimization, i.e., up to 60% sum
rate improvement, especially in highly correlated channels.

Index Terms—Beyond diagonal reconfigurable intelligent sur-
face (BD-RIS), group-connected RIS, grouping strategy, opti-
mization.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) is a promising,
cost-effective technology that can enhance performance and
coverage in wireless networks [1]. RISs are surfaces con-
stituted by multiple reflecting elements, able to modify the
amplitude and phase of incident electromagnetic waves. By
optimizing the reflection coefficients of these elements, RISs
can drive the reflected wave toward the intended direction.
Conventionally, RISs have been developed by independently
controlling each element through a reconfigurable impedance,
resulting in RISs characterized by a diagonal scattering matrix,
more commonly referred to as phase shift matrix [2].

More recently, beyond diagonal RIS (BD-RIS), i.e., the set
of generalized RIS architectures with scattering matrices not
restricted to being diagonal [3], has emerged to break through
the limitation of diagonal scattering matrices by allowing the
signal impinging on one RIS element to be reflected from other
elements [4]. BD-RIS has shown notable gains in improving
performance in wireless systems, such as rate splitting mul-
tiple access (RSMA) [5], dual-function radar-communication
(DFRC) [6], and mobile edge computing (MEC) systems [7].
In the framework of BD-RIS, the conventional RIS is catego-
rized as single-connected RIS, and further extended to fully-
connected RIS by connecting all the RIS elements through
tunable impedance components [2]. The fully-connected RIS
is the most flexible BD-RIS architecture, achieving maximum
performance at the cost of a high circuit complexity.

To achieve a good trade-off between performance and
complexity, the group-connected RIS was proposed by ar-

M. Nerini and B. Clerckx are with the Department of Electrical and
Electronic Engineering, Imperial College London, SW7 2AZ London, U.K.
(e-mail: m.nerini20@imperial.ac.uk, b.clerckx@imperial.ac.uk).

S. Shen is with the Department of Electrical Engineering and Elec-
tronics, University of Liverpool, L69 3GJ Liverpool, U.K. (email:
Shanpu.Shen@liverpool.ac.uk).

ranging the RIS elements into groups and interconnecting
only elements within the same group [2], [8]. Interestingly,
single- and fully-connected RISs are special cases of group-
connected RIS. Group-connected RIS has been optimized in
single-user [9], [10] and multi-user systems [11] considering
continuous reflection coefficients, as well as discretized re-
flection coefficients [12], showing promising gains over single-
connected RIS. In [13], [14], the group-connected architecture
has been exploited to both reflect and transmit the incident
electromagnetic wave, enabling full-space coverage, different
from conventional RIS [15].

In previous works on group-connected RIS [2]-[14], the
RIS elements are grouped simply by collecting adjacent RIS
elements into a group, without considering the grouping strat-
egy optimization. In [16], a dynamic group strategy for BD-
RIS supporting hybrid transmitting and reflecting mode has
been proposed, where the groups are dynamically optimized
in real-time on a per-channel realization basis. However, to
implement the dynamic group strategy optimization, the circuit
requires additional switches, which leads to higher circuit
complexity compared to conventional group-connected RIS
[16]. Therefore, it is worthwhile to consider the design of
a static grouping strategy, which does not require additional
switches and control overhead, to enhance the rate achievable
with group-connected RIS while maintaining the same circuit
complexity. To that end, in this study, we investigate how to
effectively group the RIS elements of group-connected RIS to
maximize the achievable rate while not increasing the circuit
complexity. Our contributions are outlined as follows.

First, we provide the model of group-connected RIS with
an optimized static grouping strategy, designed based on the
channel statistics. Second, we formalize the corresponding
optimization problems for single- and multi-user multiple-
input single-output (MISO) systems and propose novel and
efficient algorithms for the grouping strategy optimization.
Third, we present numerical results to assess the gains derived
from optimizing the grouping strategy, which can be of up to
60% sum rate improvement in highly correlated channels.

II. BD-RIS MODEL

Consider an N -element BD-RIS, modeled as N antenna
elements connected to an N -port reconfigurable impedance
network, with scattering matrix Θ ∈ CN×N . To maximize
the power reflected by the BD-RIS, we consider the N -port
reconfigurable impedance network to be lossless. Thus, it can
be described through its purely imaginary impedance matrix
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Z = jX ∈ CN×N , where X ∈ RN×N is the reactance matrix.
According to network theory [17], X and Θ are related by

Θ = (jX+ Z0I)
−1

(jX− Z0I) , (1)

where Z0 denotes the reference impedance according to which
the scattering parameters are computed, typically set to 50 Ω.

In a group-connected RIS, the N RIS elements are divided
into G groups, each including NG = N/G elements [2]. Each
RIS element is connected to ground and to all other elements in
its group through a tunable impedance component, while there
is no connection between groups1. In previous literature, the
RIS elements have been grouped in sequential order according
to their indices. In this way, the gth group is composed of the
NG elements indexed by

Gg = {(g − 1)NG + 1, . . . , gNG} , (2)

for g = 1, . . . , G. As a result of this grouping, X and Θ are
block diagonal matrices in previous works [2].

Differently from previous literature, in this study, we op-
timize the grouping strategy to additionally enhance the per-
formance of group-connected RIS in terms of received power
and sum rate in single- and multi-user systems, respectively.
The grouping strategy can be described by a permutation π of
the N RIS elements such that the gth group is composed of
the elements indexed by

Gg = {π ((g − 1)NG + 1) , . . . , π (gNG)} , (3)

for g = 1, . . . , G. Accordingly, the reactance matrix is a
permuted block diagonal matrix given by

X = PπX̄PT
π , (4)

where Pπ = [eπ(1), . . . , eπ(N)] is the permutation matrix
associated to π, with en ∈ RN×1 denoting the vector with
the nth entry being 1 and the others being 0, and X̄ ∈ RN×N

is a block diagonal matrix fulfilling

X̄ = diag
(
X̄1, . . . , X̄G

)
, X̄g = X̄T

g , ∀g, (5)

with X̄g ∈ RNG×NG being the reactance matrix of the NG-
port fully-connected reconfigurable impedance network for the
gth group, which is symmetric for a reciprocal network. As a
consequence of (1) and (4), the scattering matrix writes as

Θ = PπΘ̄PT
π , (6)

where Θ̄ ∈ CN×N is a block diagonal matrix satisfying

Θ̄ = diag
(
Θ̄1, . . . , Θ̄G

)
, Θ̄g = Θ̄

T
g , Θ̄

H
g Θ̄g = I, ∀g, (7)

with Θ̄g ∈ CNG×NG being the gth group scattering matrix,
which is unitary for a lossless network.

To reconfigure Θ given by (6), we optimize the grouping
strategy π, impacting on Pπ , offline based on the channel
statistics, i.e., mean and covariance matrix, while we optimize
Θ̄ online on a per-channel realization basis. Since the grouping
strategy is not reconfigured online, it is denoted as “static”. In
the following, we formulate the corresponding optimization
problems for single- and multi-user systems.

1Our modeling is also valid for group-connected RIS with transmissive and
reflective capabilities, as it has the same circuit topology as purely reflective
group-connected RIS [13].

III. GROUPING STRATEGY OPTIMIZATION FOR
SINGLE-USER SYSTEMS

Consider a single-user RIS-aided MISO system where the
transmitter is equipped with M antennas. The channel h ∈
C1×M between the transmitter and the receiver is expressed
as h = hRΘHT , where hR ∈ C1×N and HT ∈ CN×M

denote the channels from the RIS to the receiver and from the
transmitter to the RIS, respectively. The transmitted signal is
x = ws, where w ∈ CM×1 and s ∈ C are the precoding
vector and data symbol. The precoding vector is subject to
∥w∥22 = 1 while the data symbol is subject to the transmit
power constraint E[|s|2] = PT . Thus, the received signal is
given by y = hRΘHTws + z, where z ∼ CN

(
0, σ2

z

)
is the

additive white Gaussian noise (AWGN), with received signal
power given by

PR = PT |hRΘHTw|2 , (8)

which we want to maximize by optimizing Θ and w. Ob-
serving that (8) is maximized when w is given by maximal
ratio transmission (MRT), i.e., w = hH/∥h∥2, our problem
reduces to maximize the channel gain ∥h∥22 by optimizing Θ.

The resulting optimization problem can be formalized as
a bi-level problem composed of a lower- and upper-level
problem. The lower-level problem, solved on a per-channel
realization basis, is given by

max
Θ̄

∥∥hRPπΘ̄PT
πHT

∥∥2
2

(9)

s.t. Θ̄ = diag
(
Θ̄1, . . . , Θ̄G

)
, (10)

Θ̄g = Θ̄
T
g , Θ̄

H
g Θ̄g = I, ∀g, (11)

according to which the matrix Θ̄ is optimized given a fixed
permutation matrix Pπ depending on the static grouping
strategy π. Besides, the upper-level problem, solved offline,
optimizes π based on a training set of C channel realizations
representative of the channel statistics. This problem is for-
malized as

max
π

1

C

C∑
c=1

∥∥∥h(c)
R PπΘ̄

(c)
PT

πH
(c)
T

∥∥∥2
2

(12)

s.t. Pπ = [eπ(1), . . . , eπ(N)], (13)

Θ̄
(c) solves (9)-(11), ∀c, (14)

where h
(c)
R and H

(c)
T are the cth channel realizations in

the training set, for c = 1, . . . , C. Remarkably, the bi-level
problem (9)-(14) is hard to solve since it involves two nested
optimization problems.

A. Optimizing the Static Grouping Strategy π Offline
To efficiently optimize π by solving (12)-(14), we first

remove the dependence on the variables {Θ̄(c)}Cc=1 from the
objective (12). To this end, we introduce h̄

(c)
R = h

(c)
R Pπ and

H̄
(c)
T = PT

πH
(c)
T , so that the objective ∥h(c)

R PπΘ̄
(c)

PT
πH

(c)
T ∥22

can be lower bounded by∥∥∥h̄(c)
R Θ̄

(c)
H̄

(c)
T

∥∥∥2
2
≥
∣∣∣h̄(c)

R Θ̄
(c)

H̄
(c)
T v

(c)
T

∣∣∣2 (15)

=
∥∥∥H(c)

T

∥∥∥2
2

∣∣∣h̄(c)
R Θ̄

(c)
u
(c)
T

∣∣∣2 , (16)
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Algorithm 1: Optimizing the grouping strategy.

Input: NG, {H(c)}Cc=1

Output: The optimized grouping strategy π⋆

1 i← 0, π0(n) = n, ∀n;
2 repeat
3 i← i+ 1;
4 Update Πi as the set of all the grouping strategies

obtainable by swapping two elements in πi−1;
5 Update πi by solving problem (21)-(23);
6 until πi = πi−1;
7 return π⋆ ← πi;

where v
(c)
T ∈ CM×1 and u

(c)
T ∈ CN×1 are the dominant right

and left singular vectors of H̄
(c)
T , respectively. According to

[10], we can find in closed-form the optimal Θ̄(c) maximizing
the terms |h̄(c)

R Θ̄
(c)

u
(c)
T |2, denoted as Θ̄

⋆(c), yielding

∣∣∣h̄(c)
R Θ̄

⋆(c)
u
(c)
T

∣∣∣ = G∑
g=1

∥∥∥∥[h̄(c)
R

]
Gg

∥∥∥∥
2

∥∥∥∥[u(c)
T

]
Gg

∥∥∥∥
2

, (17)

where Gg = {(g − 1)NG + 1, . . . , gNG}, for g = 1, . . . , G.
Thus, problem (12)-(14) can be simplified into

max
π

1

C

C∑
c=1

(
G∑

g=1

∥∥∥∥[h̄(c)
R

]
Gg

∥∥∥∥
2

∥∥∥∥[u(c)
T

]
Gg

∥∥∥∥
2

)2

(18)

s.t. Pπ = [eπ(1), . . . , eπ(N)], (19)

which no longer contains a nested optimization problem as the
objective solely depends on the permutation matrix Pπ .

To solve problem (18)-(19) through exhaustive search has
prohibitive complexity because of the high number of possible
grouping strategies π. Specifically, in RISs with N elements
grouped into G groups, each containing NG elements, the
number of possible grouping strategies NS is given by

NS =
1

G!

(
N

NG

)(
N −NG

NG

)
· · ·
(
NG

NG

)
=

1

G!

N !

(NG!)
G
,

(20)
growing with N !. To decrease the search space, we solve
problem (18)-(19) through a local search process, as shown
in Alg. 1. Specifically, we find the optimal grouping strategy
π⋆ maximizing the objective (18) as follows. The grouping
strategy is initialized to the trivial permutation. Thus, denoting
as π0 the initial grouping strategy, we have π0(n) = n, for
n = 1, . . . , N . At the ith iteration, we generate all possible
grouping strategies obtainable by swapping two elements in
πi−1, where the swapping operation consists of selecting two
elements belonging to two different groups and assigning each
of them to the group of the other. The resulting set of grouping
strategies is denoted as Πi and it is possible to show that
its cardinality is N(N − NG)/2. Then, the objective (18) is
computed for each grouping strategy in Πi. Finally, πi is given

by the grouping strategy in {Πi ∪ πi−1} maximizing (18),
namely

max
π

1

C

C∑
c=1

(
G∑

g=1

∥∥∥∥[h̄(c)
R

]
Gg

∥∥∥∥
2

∥∥∥∥[u(c)
T

]
Gg

∥∥∥∥
2

)2

(21)

s.t. Pπ = [eπ(1), . . . , eπ(N)], (22)
π ∈ {Πi ∪ πi−1}, (23)

which can be solved by an exhaustive search given the limited
search space. We update π iteratively until the convergence is
reached, i.e., when πi = πi−1. Note that Alg. 1 is ensured
to converge by the following two properties. First, the same
grouping strategy is never selected in multiple iterations since
(18) is strictly increasing over iterations. Second, the total
number of grouping strategies is limited. The complexity
of each iteration of Alg. 1 is driven by the complexity of
solving problem (21)-(23). Since it is solved by an exhaustive
search over the elements of Πi, the complexity is equal to the
cardinality of Πi, i.e., O(N(N −NG)/2).

B. Optimizing the Scattering Matrix Θ̄ Online

When π is fixed, we optimize Θ̄ by solving problem (9)-(11)
on a per-channel realization basis. Introducing the equivalent
channels h̄R = hRPπ and H̄T = PT

πHT , we solve (9)-(11)
by alternatively optimizing Θ̄ and the auxiliary variable w
subject to ∥w∥2 = 1 to maximize |h̄RΘ̄H̄Tw|2. First, with
fixed Θ̄, we update w as w = (h̄RΘ̄H̄T )

H/∥h̄RΘ̄H̄T ∥2.
Second, with fixed w, we update Θ̄ through the global optimal
solution provided in [10]. These two steps are iterated until the
objective (9) converges. The complexity of this online stage
is driven by the complexity of the global optimal solution for
Θ̄ in [10], i.e., O(N2

GN).

IV. GROUPING STRATEGY OPTIMIZATION FOR
MULTI-USER SYSTEMS

Consider a multi-user RIS-aided MISO system where the
transmitter is equipped with M antennas and there are K
single-antenna receivers. The channel hk ∈ C1×M between
the transmitter and the kth receiver can be expressed as
hk = hR,kΘHT , where hR,k ∈ C1×N and HT ∈ CN×M

are the channels from the RIS to the kth receiver and from
the transmitter to the RIS, respectively. The transmitted signal
is x =

∑K
k=1 wksk, where wk ∈ CM×1 and sk ∈ C are

the precoding vector and data symbol for the kth receiver,
which are subject to

∑K
k=1 ∥wk∥22 = 1 and E[|sk|2] = PT .

Thus, the signal at the kth receiver can be expressed as
yk = hk

∑
i wisi+zk, where zk ∼ CN

(
0, σ2

z

)
is the AWGN

at the kth receiver, yielding a sum rate given by

SR =

K∑
k=1

log

(
1 +

|hkwk|2∑
i ̸=k |hkwi|2 + σ2

z

)
. (24)

To maximize (24) by jointly optimizing Θ and w1, . . . ,wK

is a hard problem given the non-convex objective function.
Thus, we optimize the BD-RIS and the precoding vectors in
two different stages, as also adopted in [11]. First, the BD-
RIS is optimized to maximize the sum of the channel gains of
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all users
∑

k ∥hk∥22 = ∥H∥2F , where H = [hT
1 , . . . ,h

T
K ]T ∈

CK×M . Second, the precoding vectors w1, . . . ,wK are de-
signed through zero-forcing beamforming.

The resulting optimization problem can be formalized as
follows. The lower-level optimization problem is given by

max
Θ̄

∥∥HRPπΘ̄PT
πHT

∥∥2
F

(25)

s.t. Θ̄ = diag
(
Θ̄1, . . . , Θ̄G

)
, (26)

Θ̄g = Θ̄
T
g , Θ̄

H
g Θ̄g = I, ∀g, (27)

where we introduced HR = [hT
R,1, . . . ,h

T
R,K ]T ∈ CK×N and

Pπ is fixed. In addition, the upper-level problem writes as

max
π

1

C

C∑
c=1

∥∥∥H(c)
R PπΘ̄

(c)
PT

πH
(c)
T

∥∥∥2
F

(28)

s.t. Pπ = [eπ(1), . . . , eπ(N)], (29)

Θ̄
(c) solves (25)-(27), ∀c, (30)

which results in a challenging bi-level problem.

A. Optimizing the Static Grouping Strategy π Offline

Similarly to the single-user case, we optimize π through
(28)-(30) by removing the dependence on the variables
{Θ̄(c)}Cc=1 from the objective (28). To this end, introduc-
ing H̄

(c)
R = H

(c)
R Pπ , we can lower bound the objective

∥H(c)
R PπΘ̄

(c)
PT

πH
(c)
T ∥2F as∥∥∥H̄(c)

R Θ̄
(c)

H̄
(c)
T

∥∥∥2
F
≥
∥∥∥H̄(c)

R Θ̄
(c)

H̄
(c)
T

∥∥∥2
2

(31)

≥
∥∥∥H(c)

R

∥∥∥2
2

∥∥∥H(c)
T

∥∥∥2
2

∣∣∣v(c)H
R Θ̄

(c)
u
(c)
T

∣∣∣2 ,
(32)

where u
(c)
R ∈ CK×1 and v

(c)
R ∈ CN×1 are the dominant left

and right singular vectors of H̄(c)
R . The terms |v(c)H

R Θ̄
(c)

u
(c)
T |2

can be maximized in closed-form [10], giving∣∣∣v(c)H
R Θ̄

⋆(c)
u
(c)
T

∣∣∣ = G∑
g=1

∥∥∥∥[v(c)
R

]
Gg

∥∥∥∥
2

∥∥∥∥[u(c)
T

]
Gg

∥∥∥∥
2

, (33)

where Gg = {(g − 1)NG + 1, . . . , gNG}, for g = 1, . . . , G.
Consequently, problem (28)-(30) can be rewritten as

max
π

1

C

C∑
c=1

(
G∑

g=1

∥∥∥∥[v(c)
R

]
Gg

∥∥∥∥
2

∥∥∥∥[u(c)
T

]
Gg

∥∥∥∥
2

)2

(34)

s.t. Pπ = [eπ(1), . . . , eπ(N)], (35)

in which the dependence on {Θ̄(c)}Cc=1 has been removed.
Since the objective in (34)-(35) solely depends on the permu-
tation matrix Pπ , it can be solved through Alg. 1 by replacing
(34) into the objective of problem (21)-(23).

B. Optimizing the Scattering Matrix Θ̄ Online

Once π has been fixed offline, Θ̄ is reconfigured by solving
problem (25)-(27) for each given channel realization. Con-
straints (26)-(27) indicate that Θ̄ is a block diagonal matrix
with each block being a complex symmetric unitary matrix,

which complicates the optimization. Thus, the relationship
between Θ̄ and X̄ deriving from (1) can be exploited to
equivalently reformulate (25)-(27) as

max
X̄g

∥∥H̄RΘ̄H̄T

∥∥2
F

(36)

s.t. Θ̄ = diag
(
Θ̄1, . . . , Θ̄G

)
, (37)

Θ̄g =
(
jX̄g + Z0I

)−1 (
jX̄g − Z0I

)
, ∀g, (38)

X̄g = X̄T
g , ∀g, (39)

where we introduced the equivalent channels H̄R = HRPπ

and H̄T = PT
πHT , which can be directly transformed into

an unconstrained problem. More precisely, exploiting the
constraints (37)-(39), the objective (36) can be expressed as a
function of X̄1, . . . , X̄G. Since X̄g is an arbitrary NG ×NG

real symmetric matrix, X̄g is an unconstrained function of
the NG(NG + 1)/2 entries in its upper triangular part. Thus,
problem (36)-(39) is an unconstrained problem in the variables
[X̄g]i,j , with i ≤ j, ∀g, and can be solved by using the quasi-
Newton method to find the optimal upper triangular part of
each block X̄g without any constraints. The complexity of this
online stage is given by the complexity of the quasi-Newton
algorithm, i.e., O(N2(NG + 1)2/4) [10].

V. PERFORMANCE EVALUATION

We now evaluate the performance of group-connected RIS
with an optimized grouping strategy. The transmitter, the RIS,
and the receiver(s) are located at (0, 0), (50, 2), and (52, 0)
in meters (m), respectively. The transmitter is equipped with
an uniform linear array (ULA) composed of M = 4 antennas,
while the RIS is an uniform planar array (UPA) composed of
NH × NV antennas, with NV = 8 and NHNV = N . The
path loss of the channels is given by the distance-dependent
model Li(di) = L0(di)

−αi , where L0 is the reference path
loss at distance 1 m, di is the distance, and αi is the path loss
exponent for i ∈ {R, T}. We set L0 = −30 dB, αR = 2.8,
and αT = 2. The small-scale fading effects are modeled as
correlated Rayleigh fading, i.e., hR,k ∼ CN (0, LRRRIS),
for k = 1, . . . ,K, and vec(HT ) ∼ CN (0, LTRT ). The
covariance matrix RRIS ∈ RN×N is given by the Kro-
necker correlation model for UPAs RRIS = RH ⊗ RV ,
where RH ∈ RNH×NH and RV ∈ RNV ×NV are defined
through the exponential correlation model as [RH ]i,j = ρ|i−j|

and [RV ]i,j = ρ|i−j|, with ρ being the correlation coef-
ficient. Besides, RT is given by the Kronecker correlation
model for multiple-input multiple-output (MIMO) channels
RT = RRIS ⊗ RTX , where RTX ∈ RM×M is defined as
[RTX ]i,j = ρ|i−j|. We consider mildly correlated channels by
setting ρ = 0.6 and highly correlated channels with ρ = 0.8.

In Fig. 1, we investigate the impact of the grouping strategy
optimization in single-user systems. To this end, we report
the power gains of fully- and group-connected RISs over
single-connected RIS, defined as GFully = PFully

R /P Single
R

and GGroup = PGroup
R /P Single

R , respectively, where PFully
R ,

P Single
R , and PGroup

R are the received signal power given by (8)
of fully-, single-, and group-connected RISs, respectively. As
a baseline, we consider the non-optimized grouping strategy
given by (2), obtained by grouping adjacent RIS elements, as
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Fig. 1. Power gain in single-user systems aided by fully- and group-connected
RISs with non-optimized grouping “NG” and optimized grouping “OG”.

Fig. 2. Optimized grouping for RISs with 2 × 8, 4 × 8, 6 × 8, and 8 × 8
elements and group size 4.

in previous works [2]. We observe that an optimized grouping
strategy can significantly improve the performance of group-
connected RIS, for any group size, particularly in the presence
of highly correlated channels. With ρ = 0.8, the power gain
is improved by up to 13%, when N = 64 and NG = 4.

In Fig. 2, we illustrate the resulting optimized grouping
strategy in single-user systems with ρ = 0.8, for RISs with
group size NG = 4, where RIS elements in the same group
have the same color. Interestingly, the optimized grouping
tends to maximize the distance between RIS elements grouped
together. Note that an optimized static grouping strategy
does not require additional hardware and online optimization
complexity, different from a dynamic grouping strategy [16].

In Fig. 3, we report the sum rate given by (24) obtained
by group-connected RISs in multi-user systems with K = 2
users and σ2

z = −80 dBm. As expected, the sum rate
increases with the number of RIS elements N and the group
size NG. Besides, we notice that optimizing the grouping
strategy can also visibly contribute to improving the sum rate
by maintaining the same circuit complexity. Also in multi-
user systems, the grouping strategy especially impacts the
performance in highly correlated channels. Specifically, with
ρ = 0.8, the sum rate is improved by up to 60% in multi-user
systems with N = 64 and NG = 4.

VI. CONCLUSION

We address the problem of optimally grouping the RIS ele-
ments in group-connected RIS based on the channel statistics,
to improve the performance of BD-RIS while not increasing
the circuit complexity. To this end, we show how to optimize
the grouping based on the channel statistics (offline) and the
tunable impedance components on a per-channel realization
basis (online) in single- and multi-user systems. Numerical
results show the gain of optimizing the static grouping strategy,
especially in the presence of highly correlated channels.

0 2 4 6 8 10

Transmit power [dBm]

0

2

4

6

8

10

12

S
u

m
 r

a
te

 [
b

/s
/H

z
]

Correlation coefficient = 0.6

 N = 64

 N = 32

0 2 4 6 8 10

Transmit power [dBm]

0

2

4

6

8

10

12

S
u

m
 r

a
te

 [
b

/s
/H

z
]

Correlation coefficient = 0.8

Group size 8, NG OG

Group size 4, NG OG

Fully-connected

 N = 64

 N = 32

Fig. 3. Sum rate in multi-user systems aided by fully- and group-connected
RISs with non-optimized grouping “NG” and optimized grouping “OG”.
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