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Abstract

In this paper, an alternative to solving Bayesian inverse problems for structural health monitor-
ing based on a variational formulation with so-called transport maps is examined. The Bayesian
inverse formulation is a widely used tool in structural health monitoring applications. While
Markov Chain Monte Carlo (MCMC) methods are often implemented in these settings, they
come with the problem of using many model evaluations, which in turn can become quite costly.
We focus here on recent developments in the field of transport theory, where the problem is for-
mulated as finding a deterministic, invertible mapping between some easy to evaluate reference
density and the posterior. The resulting variational formulation can be solved with integration
and optimization methods. We develop a general formulation for the application of transport
maps to vibration-based structural health monitoring. Further, we study influences of different
integration approaches on the efficiency and accuracy of the transport map approach and com-
pare it to the Transitional MCMC algorithm, a widely used method for structural identification.
Both methods are applied to a lower-dimensional dynamic model with uni- and multi-modal
properties, as well as to a higher-dimensional neural network surrogate system of an airplane
structure. We find that transport maps have a significant increase in accuracy and efficiency,
when used in the right circumstances.

Keywords: transport maps, Bayesian updating, structural health monitoring, Markov chain
Monte Carlo, variational inference

1. Introduction

In most engineering disciplines, data is recorded daily and needs to be integrated into mod-
els for parameter estimation, model updating, more robust forecasts of systems, or detection of
non-safe system states. Since most sensors are susceptible to noise, stochastic model updating
techniques have become a standard to deal with the arising uncertainties. The resulting problem
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is often formulated as a multi-dimensional stochastic problem, where the quantity of interest is
the probability distribution of the uncertain parameters. To obtain this distribution, the prob-
lem is tackled by using Bayes’ theorem, which allows for the formulation of a stochastic distance
between model outputs and observed data and the incorporation of a priori available informa-
tion about the parameters. The resulting posterior distribution often has a complex, unknown
topology and a small support in the parameter space, which leads to an ill-defined problem.
In the past, many different approaches have been developed to overcome these difficulties, i.e.
Laplace estimates [1, 2, 3], variational Bayesian inference [4], Hamiltonian Markov Chain meth-
ods [5] and Markov Chain Monte Carlo methods [2, 6]. Specifically in structural problems, the
latter have become a standard and since the proposal of the original Metropolis-Hastings (MH)
algorithm [7, 8], more efficient alternatives have been developed, i.e. adaptive MH [9], DRAM
[10] or Bayesian updating using structural reliability methods (BUS) [11, 12]. See also [13] for
a more in-depth summary of sampling methods for Bayesian inverse problems.
The method used in this paper is the Transitional MCMC (TMCMC) method proposed in [14],
which introduces a series of intermediate posteriors that are more tractable than the original.
By adaptive sampling strategies, the influence of the likelihood can slowly be increased, leading
to a much more robust convergence of the Markov chains. TMCMC was also enhanced with
adaptive kriging strategies in [15]. Some more notes on the method are given in [16]. MCMC
methods have become an important component of parameter inference in structural problems
like health monitoring and damage detection, where often measured vibrations, mode shapes,
and natural frequencies are used to update parameters in a numerical model. To this extent, [17]
developed and used an adaptive MCMC scheme on modal data of a four-story benchmark struc-
ture. In [18] MCMC methods were applied to find distribution parameters for long-term data
of natural frequencies of an existing bridge. [19] used modal data from a three-story building
together with MCMC methods to identify Young’s moduli of different sub-structures and their
uncertainties. TMCMC specifically was applied to soil characterization uncertainties in [20] and
[21], FE model updating with vibration data in [22] and damage detection with ultrasonic wave
scattering in [23].
Recent developments in transport theory have opened up a new strategy for variational infer-
ence [24, 25], where the goal is shifted from obtaining samples from the posterior to finding
a deterministic, invertible mapping from a chosen, easy to calculate, reference density to the
posterior density [26]. This transport map (TM) approach has the advantage that once the map
is calculated, it allows for the straightforward calculation of integrals on the posterior density
and for direct sampling. The mapping is fully deterministic and obtained from an optimization
problem which was shown to be unique under certain conditions [26]. Similar developments
were undertaken in the field of machine learning with normalizing flows [27, 28, 4, 29], which
also construct a mapping between two probability functions. In normalizing flows, the map is
considered to be a generative model similar to neural networks [30], while the TM approach
mostly uses polynomials [31]. However, there have also been advancements in using tensor
trains to decompose the posterior density, thus increasing the efficiency; see [32] and [33] for a
discussion and comparison with MCMC methods. We will focus in this paper on the polynomial
formulation introduced in [34]. The maps are constructed by using a greedy algorithm which
enhances the map order until the desired approximation quality is reached. We aim to compare
the TM approach with a proven MCMC method in terms of accuracy and efficiency, and to
work out if it is a viable alternative to be used for structural problems. To this extent, we
introduce the TM approach with a general formulation for the likelihood under the assumption
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of Gaussian noise with an unknown scaling parameter and apply the TM formulation to two
problems with varying complexity. The first problem is an analytical mass-spring system, from
which the natural frequencies are used to update the spring stiffnesses. The second problem
is a neural network surrogate system of a high-dimensional, non-linear airplane test structure
(DLRAirmod). Our implementation can be found in [35].
The rest of the paper is structured as follows: In section 2 we will shortly introduce Bayesian
updating with MCMC methods, where section 2.1 introduces the general Bayesian formulation,
section 2.2 explains the general approach with MCMC methods and section 2.3 shows the transi-
tional MCMC method, which is used in this paper. Section 3 introduces the TM approximation
with some general remarks about the implementation. We will give a short summary of the
differences in MCMC and TM approaches in section 3.4. In section 4, two numerical examples
are shown, where we focus on the efficiency based on several parameters of the approaches and
the posterior. Section 4.1 shows different integration schemes of the TM approach used on a
lower-dimensional dynamic model, while section 4.2 shows the application to a neural network
surrogate model of a finite element airplane structure. Section 5 concludes this paper.

2. Parameter Estimation

2.1. Bayesian framework

Let θ ∈ Rd be a d-dimensional random variable with prior probability p(θ) describing un-
certain parameters of a model M(θ), where M(θ) : Rd → Rn. Given measured data D ∈ Rn×m

the probability of observing θ in M(θ) under the condition of D can be calculated using Bayes’
theorem [1]

p(θ|D) =
p(D|θ) p(θ)

p(D)
(1)

where the likelihood p(D|θ) describes the probability of observing the data under the assumption
of θ and is usually modeled as a stochastic distance between M(θ) and D. The most common
assumption here is a Gaussian distribution centered on M(θ). With some zero-mean additive
noise parameter ζ ∼ N(0,Σζ) the model output y ∈ Rn becomes

y = M(θ) + ζ (2)

and the likelihood can be modeled as a Gaussian with mean y and covariance Σζ [1]. The
obtained posterior distribution p(θ|D) is an expression for the updated probability for θ con-
strained by the observation of D. The so-called evidence p(D) is constant for any given set of
model and data so Eq. (1) is also used in the non-normalized form

p(θ|D) ∝ p(D|θ) p(θ) . (3)

While this prohibits the direct evaluation of the posterior density, the formulation in Eq.(3)
drastically reduces the complexity for sampling or variational methods, since calculating p(D)
involves the integration over the full likelihood, i.e.

p(D) =

∫
Θ
p(D|θ)p(θ)dθ . (4)
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2.2. MCMC-based inference

One key difficulty in Bayesian model updating (BMU) is the irregular and unknown shape
of p(θ|D) and the fact that it can only be evaluated point-wise. Therefore, MCMC methods are
usually employed to explore the probability space based on random walks and extract statistical
information, e.g. means and variances of the updated parameters [6]. The employed strategies
most often construct Markov chains based on some form of rejection sampling. Given some state
θk and a proposal state θ̂k drawn from a proposal distribution pk, the proposal state is accepted
as θk+1 with probability

pk = min
(
1,

p(θ̂k)

p(θk)

)
, (5)

otherwise θk+1 = θk. Different strategies have been proposed to sample θ̂k, i.e. the original
MH implementation [7, 8] chooses a global proposal distribution, whereas the adaptive MH-
algorithm [9] centers the proposal distribution around the current sample θk. MCMC methods
can introduce non-ergodicity in cases of multi-modal or narrowly supported target distributions.
It is difficult for the Markov chains to jump from one mode to another, if the proposal distribution
is chosen to be too narrow. However, if it is too wide, many proposal states will be rejected,
leading to a waste of computation time. The choice of an adequate proposal distribution is
therefore important for the efficiency and accuracy of MCMC methods. If the posterior’s support
is not known a-priori, there is also often the need for burn-in samples, which further increases
the computational costs.

2.3. Transitional MCMC

The main idea of the TMCMC scheme [14] used in this paper is to introduce an exponent
αj ∈ [0, 1] to the likelihood

p(θ|D) ∝ p(D|θ)αj p(θ) (6)

and increasing αj with each level j starting from α1 = 0, which is equal to sampling from the
prior density. Note that for αj = 1, Eq. (6) becomes Eq. (3), therefore samples at the last level
are distributed according to the posterior. Values of αj for the intermediate levels are chosen
based on the variance of the drawn samples. After drawing samples from the prior density,
the Adaptive Metropolis-Hastings algorithm [9] is used to draw samples for the next level until
αj = 1 is reached. The main motivation behind TMCMC is to avoid the problem of sampling
from difficult target probability density functions (PDFs) but sampling from a series of PDFs
that converge to the target PDF and that are easier to sample [14]. Through this process it
is also possible to sample from multi-modal, narrow posteriors since the samples are ”pushed”
slowly towards regions of higher probability. The need for burn-in samples is also removed, since
samples at each level j are guaranteed to be drawn according to p(D|θ)αj p(θ).

3. Transport Maps

A transport map M is a deterministic coupling between a reference density ρ and the target
density π ∫

Y
f(y)π(y)dy =

∫
X
f(M(x))ρ(x)dx (7)
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Figure 1: Example of mapping for θ ∈ R2 between standard-normal reference density (left) and target density
(right). The map M(x) pushes samples x forward to the target density, M−1(θ) pulls them back to the reference
density.

where the target density in the case of BMU is the posterior distribution. The reference
density can be chosen freely by the analyst. Common choices are standard normal or standard
uniform distributions [31]. Any integrals on the target density can thus be calculated on the
reference density by use of the map M in conjunction with classical quadrature rules. Moreover,
samples from the target density Y can be drawn by drawing samplesX from the reference density
and then evaluating the map M . This makes it possible to find an analytical formulation for
the posterior density in BMU, which is usually difficult or impossible. The task now becomes
to find the map M . A map can be any invertible function M : Rd → Rd, e.g. polynomials
or even neural networks [36]. Note that in the context of this paper maps M are defined to
transport samples from ρ to π, its inverse M−1 then transports samples from π to ρ. Due
to invertibility, the direction of the transport is somewhat arbitrary and usually depends on
the application, since with transport maps it is possible to either approximate densities from
an evaluable expression (as is the case for BMU) or approximate a density from samples of the
target [36]. Furthermore, we define samples in the target space as θ and samples in the reference
space as x. An illustration of the transport process is shown in Fig. 1. Using the notation M#

for the push-forward operation

M#ρ = π(M(x)) · | det∇M(x)| (8)

and M# for the pull-back

M#π = ρ(M−1(θ)) · | det∇M−1(θ)| (9)

the mismatch of the approximation π ≈ M#ρ can be expressed with the Kullback-Leibler (KL)
divergence
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DKL(M#ρ ||π) = DKL(ρ ||M#π) (10)

= Eρ

[
log

ρ

M#π

]
(11)

where the invertibility of the map is used in Eq. (10). With a as map parameters, Eq. (11)
becomes

DKL(M#ρ||π) =
∫
X

[
log ρ(x)− log π(M(a,x))− log[| det∇M(a,x)|]

]
ρ(x)dx . (12)

Due to optimality and uniqueness properties, as well as being computationally practical,
maps M were proposed to be monotonic, lower-triangular, and constructed from components
[34]

Mk(x1,...,k,a) = f(x1, ..., xk−1, 0,a) +

∫ xk

0
g(∂k f(x1, ..., xk−1, x̄,a))dx̄ (13)

where f : Rd → R. g : R → R+ is a rectifier, e.g. the exponential function, ensuring monotonic-
ity. The resulting map has the structure

M(x) =

 M1(x1)
...

Md(x1, ..., xd)

 . (14)

Moreover, each Mk is a function Mk : Rk → R, the full map M(x) is thus a function
M(x) : Rd → Rd. The formulation of Eq. (13) ensures that the component Mk is monotonic at
least in the k-th component [34]. The functions f are defined as

f(x1, ..., xk,a) =
∑
α∈Λ

aαΨα(x1, ..., xk) (15)

with scalar coefficients aα ∈ R and a set Λm×d of m multi-indices α1×d, where each entry
(αi)j ∈ N0 describes the function degree for the i-th multi-index in the j-th input. The basis
functions Ψα are constructed from the tensor product of univariate polynomials according to
the multi-indices

Ψα(x1, ..., xk) =
k∏

i=1

Ψαi(xi) . (16)

While the maps could theoretically be constructed from any function, constructing them in
this fashion has significant advantages in terms of uniqueness and invertibility. The triangular
structure of Eq. (14) leads to a well-defined optimization problem and a unique map while also
ensuring that the maps remain computationally tractable. Invertibility, although not strictly
necessary, is needed for the computation of integrals in the target density. For more details and
proofs we refer to [34].
A good approximation of the posterior density results in a small KL divergence, so that Eq. (12)
can be transformed into a minimization problem to calculate the map parameters a. Note that
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ρ(x) does not depend on the map parameters, and instead of the full posterior π = p(θ|D), the
non-normalized form

π̃ = p(D|θ) p(θ) (17)

can be used. Furthermore, since M consists of analytical functions, the involved integrals in Eq.
(13) can easily be computed by suitable quadrature rules. Moreover, the integral in Eq. (12)
can also be approximated by quadrature rules, i.e. Gauß or Monte Carlo. A short discussion on
different methods is given in section 3.1. Setting wq,i and xq,i as weights and integration points
for the quadrature rule in Eq. (12), the final minimization problem to obtain the needed map
parameters a is then

min
a

∑
i

wq,i

[
− log

(
π̃(M(a,xq,i))

)
− log(|det∇M(a,xq,i)|)

]
. (18)

Eq. (18) can also be viewed as maximizing the integral of the mapping.
For computations, the framework MParT [37] was used which handles most of the map

computations, specifically the expressions in Eqs. (13) and (14). As a basis for the functions f
in Eq. (13) Hermite polynomials up to a degree n are chosen. Higher order functions are usually
able to approximate the target density with higher accuracy, however, since more parameters
need to be optimized their computation is also more costly. Since the needed map order cannot
be known a priori and to reduce the computational burden, it is useful to formulate an adaptive
algorithm that successively adds components to the map as long as a user-defined tolerance
for the approximation quality is not reached [34]. This tolerance has some implications to the
resulting approximation and the efficiency of the procedure. A higher tolerance leads to worse
performance while a lower tolerance increases the computational effort. Throughout this paper
we chose a value of 10−4 as we found this a good compromise between cost and performance.
The component order is increased step-wise, i.e. to increase the order from a map MΛm with
order m to order m + 1 all components Λm+1\Λm are included. Note that more sophisticated
techniques were proposed, e.g. using underlying sparsity patterns. For an in-depth discussion
the reader is referred to [31, 34]. A greedy algorithm (see Algorithm 1) can be constructed such
that only the new map components need to be optimized.

A key aspect of transport maps is solving the optimization procedure (18) for which a variety
of algorithms exist. To increase efficiency, algorithms that utilize gradient information can be
employed, however, this ultimately means that the posterior density and by that also the model
has to be differentiable with respect to the parameters. This is rarely the case in engineering
applications where numerical models (i.e. FEM) are used. One way around this issue is to use
reduced order modeling or surrogate models based on differentiable functions, e.g. polynomial
chaos expansion, proper generalized decomposition, or neural networks [38, 39].

3.1. Quadrature rule in the optimization

The choice of the quadrature rule in Eq. (18) plays a significant role in the efficiency and
accuracy of the transport map approach. In the optimization, each integration point is mapped
to the target space, where the target function is then evaluated. This means that the number
of integration points should be kept low to avoid too many model evaluations. However, the
number of points needs also to be chosen such that the accuracy is not suffering. Because the
reference density is easily computable, some quadrature schemes apply here [32]. We investigated
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Algorithm 1 Adaptive map generation

# Construct first map component
order = 1
Λ1 = GetMultiIndices (order)
map = CreateMap (Λ1)
Minimize (DKL(map, π̃)) (See Eq. (18))

# Increase map order while KL-divergence is too high
while DKL(map, π̃) > TOL do

order += 1
Λorder = GetMultiIndices (order)
Λorder = Λorder\Λorder-1 # retain only the new indices
map = Compose (map, CreateMap (Λorder)) # create new map from old map and new

components
Minimize (DKL(map, π̃))

end while

(a) MC (b) LHS (c) Gauss-Hermite (d) Smolyak

Figure 2: Example of integration points for θ ∈ R2, a): MC (100 points), b): LHS (100 points), c): Gauss-Hermite
(16 points), d):Smolyak (25 points)
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two random sampling approaches, namely Monte Carlo (MC) and Latin hypercube sampling
(LHS), as well as Gauss-Hermite integration and sparse grids with Smolyak’s algorithm [40, 41].
Examples for each of these algorithms can be seen in Figure 2. It is evident that in Gauss-
Hermite and Smolyak integration a lower number of points can cover the standard normal space
far more efficiently than any of the Monte Carlo schemes.

3.2. Laplace approximation

As a first approximation a map to a Gaussian with mean θ0 and covariance Σ0 can be calcu-
lated by using the Laplace approximation. The role of the Laplace approximation is essentially
to shift the target density function to the origin and to normalize the covariance. This results
in finding the best local Gaussian approximation. It is also similar to finding the maximum
a-posteriori (MAP) estimate. θ0 and Σ0 are found by solving the optimization problem

θ0 = argmin
θ

− log π̃(θ) (19)

which corresponds to finding the mode of the posterior. Σ0 corresponds to finding the Hessian
H at θ0, the final Laplace map thus becomes [38]

L(θ) = θ0 −H− 1
2θ . (20)

The Laplace approximation can be used to regularize the problem when combined with maps
M to give the final form of M

M(x) = L ◦M(x) . (21)

Figure 3 shows the transport process with Laplace approximation and with an intermediate
transport map on a two-dimensional example. Note that the intermediate density has zero mean
and the resulting density approximations have roughly the same mean and covariance structure.
The full algorithm to create the map M(x) is shown in Algorithm 2.

3.3. Accuracy

As a measure for the accuracy of the TM-approximation, the variance diagnostic introduced
in [25] can be used

εσ =
1

2
Var

[
log π̃(M(x)) + log | det∇M(x)| − ρ(x)

]
. (22)

The evaluation of Eq. (22) does not come with additional computational costs since it is
directly evaluated in the optimization procedure (18). With this measure, the approximation
quality can be assessed, and if deemed too low the map order can be increased adaptively.

3.4. Key aspects of MCMC and TM

The main difference between the MCMC and TM approaches is the fact that MCMCmethods
obtain a collection of samples from the posterior, while TM directly approximates the underlying
density in a deterministic fashion. This coupling allows for direct sampling of the posterior, as
well as the calculation of integrals. MCMC methods obtain samples by a ”local” approach, i.e.
they draw samples according to the probabilites of the current and a proposal sample and do not
take into account the global structure of the posterior. Through the use of the Kullback-Leibler
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L(θ)

M(θ)

L ◦M(θ)

Reference density

Laplace approximation

Intermediate transport map

Figure 3: Example of transport of Smolyak integration points from standard normal reference distribution with
pure Laplace approximation (top) and intermediate transport map (bottom).

Algorithm 2 Adaptive map generation with Laplace map

# Construct Laplace map
θ0 = Min ( - log (π̃(θ)))
H = Hessian (π̃(θ0))
L = LaplaceMap (θ0, H)

# Construct first map component
order = 1
Λ1 = GetMultiIndices (order)
map = CreateMap (Λ1)
map = Compose (L, map)
Minimize(DKL(map, π̃)) (See Eq. (18))

# Increase map order while KL-divergence is too high
while DKL(map, π̃) > TOL do

order += 1
Λorder = GetMultiIndices (order)
Λorder = Λorder\Λorder-1 # retain only the new indices
map = Compose (map, CreateMap (Λorder)) # create new map from old map and new

components
Minimize (DKL(map, π̃))

end while

10



Figure 4: 3-DOF model with m1 = m, m2 = 2m and m3 = 3m.

divergence as optimization target, transport maps theoretically have global information about
the posterior. However, as we will show in the next section, there are some issues associated with
this, especially in multi-modal posteriors. While these usually pose a challenge, especially due to
the limited knowledge of the target space, some techniques are available to deal with the arising
issues. TMCMC makes use of so-called annealing [42], where instead of directly approximating
the target density, it is estimated through a series of intermediate densities. These allow for a
slower convergence to the density of interest, such that multiple modes are more likely to be
captured. This concept was recently shown to work with transport maps [32, 43]. Instead of
calculating a single direct map, a series of maps is chained together. Each map thus transports
samples between some intermediate densities that converge to the target. The interested reader
is also referred to [44, 45].
Generally, implementation of MCMC is more straight-forward, since the model can be used in a
black-box fashion and the updating is performed directly on the model parameters. Transport
maps require more involved calculations, as an additional set of parameters is needed. For the
TM approach, gradients are often used to increase the optimization efficiency. Here it is possible
to use recent developments for surrogate or reduced order models based on analytical functions,
such as proper orthogonal decomposition (POD), proper generalized decomposition (PGD) or
neural networks (see e.g. [38] for an application with PGD). Note that there are also MCMC
algorithms that rely on gradients, such as the No-U-Turn sampler (NUTS, [46]). Moreover,
there exist a variety of methods for gradient-free optimization of the maps to be used in cases
where model-gradients are not available. Finally, given a suitable framework, transport maps
have less dependency on user-chosen parameters, such as the proposal distribution, number of
burn-in samples or the number of Markov chains.

4. Numerical examples

We test the accuracy and efficiency of both TMCMC and TM methods on two examples,
one being a 3-DOF dynamical system with four springs and the other one an FE-model of an
airplane structure. We also conduct a study on the influence of different integration schemes for
solving Eq. (18).

4.1. Dynamical model

The dynamical model consists of three masses (m1 = m, m2 = 2m, m3 = 3m) and three
springs (k1,...,3). Consider θ̃ as the random parameters in physical space of the model. The goal
is to update the probability densities for the springs in two cases:

Case I: θ̃ =
[
k1 σ

]⊤
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Case II: θ̃ =
[
k1 k2 k3 σ

]⊤
based on calculations of the three natural frequencies ω. Using K as the stiffness matrix and
M as the mass matrix

K =

k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3

 , M =

m 0 0
0 2m 0
0 0 3m

 (23)

ω is calculated through solving the eigenvalue problem

det(K(θ̃) ·M−1 − ωI) = 0 , (24)

i.e. M(θ̃) = ω. We write K(θ̃) since the stiffness is dependent on the random parameter θ̃.
Measurements were obtained from 50 Monte Carlo simulations by assuming randomness in all
springs with µk = [1500, 750, 1200] and a variance of 1% of the mean to simulate noise in the
data. The data is additionally corrupted by an additive noise with a standard deviation of
again 1% of the measured values. In case I the values for k2 and k3 were set to their respective
mean values in the updating and not considered to be random. As a prior we use a uniform
distribution θ̃i ∼ U(100, 3500) for the uncertain stiffness parameters. To make calculations easier
all of the calculations apart from the model are performed in standard normal space, such that
the random variables need to be transformed to physical space

θ̃i = 100 + Φ(θi) · (3500− 100) . (25)

Φ(·) denotes the standard normal cumulative density function (CDF), θi is the i-th compo-
nent of θ in standard normal space. The prior in standard normal space is then the standard
normal density. Assuming a Gaussian noise model with covariance matrix Σ = cov[D] and a
scaling factor σ the log-posterior and its derivative are calculated by

log p(θ|D) = −m log
(√

(2π)|D| · σ detΣ
)
−

m∑
i=1

(Di−M(θ))⊤ · 1
σ
Σ−1 · (Di−M(θ))−0.5

∑
i

θ2i

(26)

∂ log p(θ|D)

∂θ
=

∂p(D|θ)
∂θ̃

· ∂θ̃
∂θ

− θ (27)

=
∂p(D|θ)

∂θ̃
· (3500− 100)ϕ(θ)− θ (28)

where m is the dimensionality of the data, |D| the cardinality of the data (in this case |D| =
3), ϕ(·) the standard normal density function and the derivative of the likelihood function
∂p(D|θ)/∂θ̃ is calculated with

∂p(D|θ)
∂θ̃

= − 1

σ2

m∑
i

(Di −M(θ̃))⊤ ·Σ−1 · ∂M(θ)

∂θ̃
. (29)

Furthermore, the scaling factor σ can be included in the update. We chose here a uniform
distribution σ ∼ U(0.1, 10), leading to the derivative
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∂ log p(θ|D)

∂σ
=

∂p(D|θ)
∂σ̃

· ∂σ̃
∂σ

− σ (30)

=
∂p(D|θ)

∂σ̃
· (10− 0.1)ϕ(σ)− σ (31)

∂p(D|θ)
∂σ̃

= −2m

σ̃
− 2

σ̃3

m∑
i

(Di −M(θ))⊤ ·Σ−1 · (Di −M(θ)) . (32)

In addition to the variance diagnostic, we use the Bhattacharyya distance as a measure for
the performance of TMCMC and TM approximations. The distance is calculated by

dB(pref , psim) = − log

∫
X

√
pref (x) psim(x)dx (33)

where pref is the target posterior density and psim are the approximations. Since only samples
are available for TMCMC, we use a Gaussian mixture model to obtain the PDF. As integration
points we use samples obtained from a reference TMCMC run with 105 samples, assuming these
cover the posterior density well enough. We then scale the resulting PDFs such that their
integral over this domain is equal to unity:

p(x) =
p̂(x)∫

Xref
p̂(x)dx

(34)

with Xref as integration points from the reference TMCMC-run and p̂ as and unscaled PDF.
The integral in the denominator is calculated with MC-integration∫

Xref

p̂(x)dx =
1

Nref
·
∑
i

p̂(xi) . (35)

The scaling is needed s.t. the PDFs become comparable since the unscaled form of the
posterior is not available.

For both cases, we calculated three different setups for TMCMC (500, 1000, and 5000 samples
per level) and five integration schemes for TM (MC, LHS, Gauss-Hermite, Smolyak, and sparse
Smolyak). We also analyzed three different sample sizes for LHS sampling to make out differences
that result from the number of integration points. Results are shown in Table 1. The number
of integration points in the TM approach and the number of samples per level in TMCMC are
denoted behind the method name in the table. Also shown is the total number of function calls
for each setup.

As is evident from the table, most of the TM approaches are more efficient than TMCMC
in case I. TMCMC with 500 samples uses about 4.5 times more function evaluations than TM-
Smolyak and 6.5 times more than TM-sparse Smolyak, while also being less accurate. With
a higher number of samples, TMCMC becomes more accurate, however since it is a sampling
algorithm the posterior approximation will be biased, as is shown by the lower accuracy in the
TMCMC approaches. TM on the other hand directly approximates the posterior function and
can thus achieve a higher accuracy, depending on the integration scheme. Using random grids
such as MC or LHS seems to introduce some error to the TM approximation since both Smolyak
integration schemes can approximate the posterior perfectly. Figure 5 illustrates this behavior,
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θ Method function calls εσ dB

Case I

[
k1
σ

]

TMCMC 500 4,000 - 0.00190
TMCMC 1000 8,000 - 0.000949
TMCMC 5000 40,000 - 0.000648

TM MC 20 1,156 0.0522 0.00837
TM LHS 10 505 0.540 0.0335
TM LHS 20 1,365 0.0255 0.00311
TM LHS 50 2,275 0.0159 0.00230
TM GaussHerm 16 665 0.432 0.0191
TM Smolyak 25 900 0.000462 0.0000496
TM SparseSmolyak 17 620 0.000505 0.0000496

θ Method function calls εσ dB

Case II


k1
k2
k3
σ



TMCMC 500 6,500 - 0.628
TMCMC 1000 13,000 - 0.137
TMCMC 5000 65,000 - 0.00288

TM MC 50 5,000 0.286 0.226
TM LHS 20 2,110 0.180 0.223
TM LHS 50 4,800 0.0939 0.217
TM GaussHerm 256 15,666 0.738 0.248
TM Smolyak 87 4,748 0.00215 0.211
TM SparseSmolyak 49 2,696 0.00219 0.211

Table 1: Results of updating for Case I and II for the dynamical system with different approaches for TM and
TMCMC. The number behind the method indicates the number of samples per level in TMCMC and the number
of integration points in TM.
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(a) LHS

(b) sparse Smolyak

Figure 5: Results for calculation of maps obtained with (a) LHS and (b) sparse Smolyak integration, as well
as samples from TMCMC, in case I for the dynamical system. Total function evaluations: LHS: 1365, sparse
Smolyak: 620, TMCMC: 8000
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Figure 6: Comparison of target and approximated posterior PDFs p(θi,j |D), TMCMC model evaluations: 13,000,
sparse Smolyak model evaluation: 2,893

the final approximation with LHS shows some deviation from the true posterior, while sparse
Smolyak integration fits the approximation perfectly. Due to some lumping of samples, MC and
LHS sampling schemes possibly introduce some bias in some regions of the reference density,
hence the approximation will also be biased in these regions. Especially while using only a few
integration points in LHS, this behavior became more obvious. The difference in results between
10 and 50 integration points shows this as well.
For case II the posterior density becomes bi-modal. This poses multiple issues for both methods,
however, due to the aforementioned annealing process, TMCMC was able to capture both modes
in most settings. One issue for TM lies in the direction of the used KL divergence. Swapping
the arguments in Eq. (10) could theoretically lead to a better performance. This would however
require knowledge about the posterior’s topology since the expectancy operator in Eq. (11)
is then formulated with respect to the target density. Additionally, using a single Laplace
approximation as first step limits the considered support in the posterior for θ. Furthermore,
the posterior has to be absolutely continuous for the TM framework [36]. Posterior values of
zero or very close to zero between the modes lead to plateaus which violate this criterion. This
is a risk in applications like SHM where the posterior has a much smaller support than the prior.
Because only one mode is captured, dB in all cases for the TM-approach is high compared to
the TMCMC approaches, however, as is illustrated in Fig. 6 the TM approach again works very
well in capturing the posterior shape for one mode. Also shown is the fact that TMCMC is not
able to capture well the ratios of both modes, as they would be nearly equally weighted, however
TMCMC introduces some bias towards one of the peaks. All of the TM approaches again use
less function evaluations than TMCMC-500, while also being more accurate. It was noticed
that the low number of samples in TMCMC-500 meant that often only one mode was captured
in the approximation. Smolyak and sparse Smolyak are again the most accurate for the TM
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Figure 7: Illustration of the DLRAirmod example, screenshots taken from the FE software NASTRAN. The
images show examples of computed mode shapes.

approaches, but because that one mode of the posterior is disregarded, they lack the accuracy
of TMCMC with more samples. Note that the variance diagnostic in case II has comparably
low values to case I, even though half of the posterior PDF was not captured. The variance
diagnostic captures only the relationship between the calculated map and the reference density,
it is therefore blind to the second mode and calculates low values. Due to the sampling nature
and the slow convergence to the posterior, TMCMC can handle the multi-modality better.

4.2. DLR-Airmod

Here we investigate parameter updating on a higher dimensional, non-linear model for an
experimental setup of an airplane structure (DLR-Airmod, for further details see [48, 49, 50],
an illustration is shown in Figure 7). The structure is a replica of the GARTEUR SM-AG19
test bed, which was designed to investigate experimental determination of modal characteristics.
The DLR-Airmod structure consists of an aluminum frame with several attached sensors that
change the dynamic behavior, so the original goal was to update an FE-model of the structure
to simulate this influence based on vibration measurements. We concentrate in this example on
11 input parameters to the model plus the scaling parameter σ, giving a total of 12 parameters
to update. The 11 model inputs denote mass and stiffness parameters of structural parts with
attached sensors and cables. The model provides 10 output parameters, which correspond to
modal frequencies. A list of the considered input and output parameters with their physical
mean values is shown in Table 2. Instead of the full FE-model, we used a neural network as a
surrogate model, which was trained on 105 samples from the original FE-model of the system,
where the input consists of evenly spaced samples in a range of 0.1 to 2 times the mean value for
each parameter. To normalize the training data it is ideal to keep this setup, s.t. the parameters
have equal order of magnitude. As a prior distribution we therefore chose a uniform distribution
θ̃i ∼ U(0.1, 2), where θ̃i is the i-th input in physical space. Note that the physical space in this
example denotes the normalized inputs. Moreover, the inputs are again mapped to standard
normal space using Eq. (25) with a lower bound of 0.1 and an upper bound of 2. Using a neural
network as a surrogate model comes with the advantage of being differentiable and thus usable
in conjunction with the presented setup of transport maps. The data is generated from the
numerical model using a nominal value of 0.3 for all entries of θ. However, to find out about
differences in the approaches for different support sizes of the posterior we look at two different
cases, one where the variance in the input is 10 % and the other where the variance is 1 % of
the mean value. The posterior is of the same form as Eqs. (26) and (30) with m = 50, |D| = 10
and σ ∼ U(1, 50). M(θ) is here the output of the neural network, hence ∂M(θ)/∂θ can be
calculated with automatic differentiation.
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Inputs
Parameter Description Mean physical value

θ1 Front bungee cord stiffness 3.375N/m2

θ2 Rear bungee cord stiffness 14.060N/m2

θ3 Vertical tail plane stiffness 243.75N/m
θ4 Tail joint mass 0.375 kg
θ5 Right wing-tip mass 0.345 kg
θ6 Left wing-tip mass 0.345 kg
θ7 Right/Left wing-tip additional mass 0.028 kg
θ8 Outer wing additional mass 0.028 kg
θ9 Wing-fuselage joint stiffness, x-direction 3.75× 107N/m
θ10 Wing-fuselage joint stiffness, y-direction 3.75× 107N/m
θ11 Wing-fuselage joint stiffness, z-direction 1.31× 107N/m

Outputs
Parameter Description Mean physical value

D1 RBM roll 0.697Hz
D2 RBM pitch 1.04Hz
D3 RBM heave 2.81Hz
D4 2nd EF wing bending 5.57Hz
D5 3rd EF wing bending 14.69Hz
D6 antisymm. wing torsion 29.33Hz
D7 symm. wing torsion 31.96Hz
D8 vert. tail plane bending 35.07Hz
D9 4th EF wing bending 44.08Hz
D10 1st EF wing foreaft 47.13Hz

Table 2: Inputs and outputs for the DLRAirmod model. RBM: rigid body motion, EF: eigenfrequency. Data
obtained from [47].
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Due to the findings in the previous section, we used TMCMC with 1000 and 5000 samples
per level and TM with LHS (100 integration points) and sparse Smolyak (337 integration points)
integration schemes. Furthermore, for the initial Laplace map in the TM approaches we increased
the robustness by using a global search approach to find θ0. We found that using eight randomly
sampled starting points instead of starting at zero for the optimization was sufficient to not
converge to a local minimum. While this increases the number of needed model evaluations, it
also makes the TM approaches more robust since the calculated maps are conditioned on the
global instead of a local minimum. A selection of resulting density approximations in the case
of wide support can be found in Figure 8 and for the small support in Figure 9. Because the
integration of the true posterior in 12 dimensions was not possible anymore, the densities shown
are conditioned on the known posterior mode θ0 = [0.3, . . . , 0.3,−0.6]. The numbers of function
evaluations are shown in Table 3. The estimated mean values for θ for the 10 % variance case
are shown in Table 4 and for the 1 % variance case in Table 5. These results show an overall
good agreement, as most values are close to the prescribed mean of 0.3 for θ1,...,11. For TMCMC,
some of the values are quite far from the true value, indicating convergence to a local posterior
maximum. In general, due to the high dimensionality of the posterior, this problem is difficult
to solve for any approach, which is further illustrated in the model outputs shown in Figure 10.
Even though the approximations show variations, when samples obtained from both approaches
are propagated through the model, output and data are overlapping closely.

In the case of the wider support (Figure 8), there are only small differences between the
two TM approaches, while LHS integration uses only about 75% of the model evaluations of the
sparse Smolyak approach. Between using 1000 and 5000 samples per level in TMCMC, there is a
larger difference in the approximation quality, but also a sixfold increase in function evaluations.
Even though the posterior is slightly multi-modal and thus the approximations become even
more difficult, generally it can be seen that the TM approaches capture the posterior better
than TMCMC. This is also evidenced by the estimated mean values (Table 4). Especially for θ6
to θ10 the estimations are relatively far away from the true value. Since more integration points
are needed for the TMs, the difference in function evaluations to TMCMC becomes less.

The narrower support case (Figure 9) is more difficult to approximate, hence both methods
struggle to capture the posterior well. Again, TMCMC-1000 has the lowest cost with the lowest
performance and TMCMC-5000 has the highest cost, although it does not perform as well as the
TM-approximations in most dimensions. TM uses about 45% more function evaluations in the
small support case when compared to the wide support, the increase for TMCMC is about 30%.
The largest deviations in the mean value estimations (Table 5) are observed again in parameters
θ6 to θ10. In this case the TM approach deviates more than in the previous example, but not
as much as TMCMC.
These results show an advantage of TM approaches, the posterior function is directly approxi-
mated as a whole and thus can be captured more accurately. TMCMC (and sampling methods
in general) does not have this kind of global information and is therefore prone to converge to
local minima. One way of avoiding this is to increase the number of samples, which in turn also
increases the cost.

5. Conclusion

A comparison between a Markov Chain Monte Carlo (namely Transitional MCMC) approach
and a transport map approach on Bayesian posterior estimation was conducted. Both algorithms
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Figure 8: Selected approximation results for conditional PDF p(θi,j |D,θ0) with θ = [θ1, . . . , θ11, σ] for the case of
10 % variance in the DLR-Airmod-model with various approaches. PDFs are conditioned on the known posterior
mode θ0 = [0.3, . . . , 0.3,−0.6]⊤, PDF for TMCMC obtained with Gaussian mixture model.

Figure 9: Selected approximation results for conditional PDF p(θi,j |D,θ0) with θ = [θ1, . . . , θ11, σ] for the case of
1 % variance in the DLR-Airmod-model with various approaches. PDFs are conditioned on the known posterior
mode θ0 = [0.3, . . . , 0.3,−0.6]⊤, PDF for TMCMC obtained with Gaussian mixture model.
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Method Large support Small support

TMCMC 1000 16,000 21,000
TMCMC 5000 95,000 120,000

TM LHS 30,427 43,427
TM SparseSmolyak 40,476 60,013

Table 3: Number of function evaluations for updating of DLR-Airmod model for large support and small support
case

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
TM 0.297 0.308 0.288 0.300 0.233 0.371 0.301 0.306

TMCMC 0.283 0.294 0.305 0.284 0.379 0.513 -0.042 0.510

θ9 θ10 θ11 θ12
TM 0.310 0.305 0.315 -0.545

TMCMC 0.684 -0.035 0.290 0.015

Table 4: Estimated posterior mean values of TMCMC with 5000 samples and TM with sparse Smolyak integration,
10 % variance

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
TM 0.300 0.306 0.304 0.304 0.232 0.354 0.341 0.278

TMCMC 0.310 0.285 0.308 0.303 0.297 0.471 0.062 0.428

θ9 θ10 θ11 θ12
TM 0.275 0.343 0.314 -0.546

TMCMC 0.541 0.074 0.325 0.153

Table 5: Estimated posterior mean values of TMCMC with 5000 samples and TM with sparse Smolyak integration,
1 % variance
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Figure 10: Selected outputs of the DLR-Airmod-model for samples from TMCMC-5000 and TM-sparse Smolyak
approaches, output for the 1 %-variance case

were applied to two dynamic models with varying complexity to highlight differences between
the two approaches. It was found that overall, transport map approaches are more efficient
and accurate than TMCMC, although they are in the setup used in this work not able to
capture multi-modal posterior functions. There are several differences in the two approaches
with TMCMC being generally easier to implement but also showing a larger degree of variation
in the results. For MCMC methods in general, the number of samples and Markov chains needs
to be set a-priori. Often it is not clear how large these numbers should be, although they
have a significant influence on the accuracy. Too few samples introduce a bias in the posterior,
while too many samples give redundant information and therefore waste computation time.
Many MCMC algorithms also require burn-in samples, which result in additional computation
costs. Through the variational formulation, transport maps can use global information about
the approximation quality and thus are more accurate. To solve the optimization procedure for
TM, gradients are useful, however, these might not be available in some situations. While the
setups used in this paper are easily differentiable, it remains an open question if gradient-free
optimization procedures are efficient, especially in higher dimensional settings. To overcome this
problem, surrogate systems or model order reduction methods can be applied. There also exist
MCMC schemes using gradients in which cases using the TM framework can be an option. TMs
provide an analytic function of the posterior, which allows for probability computations that are
not easily available in sampling approaches. In the latter cases, it is common to fit a probability
distribution to the samples, which adds a layer of approximation and thus decreases the accuracy.
Transport maps are able to directly provide this relationship and are less restrictive to the shape
of the posterior, as technically any continuous PDF can be approximated. This also allows the
drawing of samples directly from the posterior, whereas with sampling methods the model is
needed to draw new samples. Addressing multi-modal posterior distributions with the TM
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framework requires more work. In the used setup it was difficult to capture multiple modes once
the approximation converged to a single mode. This is a challenge for most posterior estimation
methods and could be overcome by using annealing or sequential MC in conjunction with TM.
It could also possible to use multiple Laplace approximations and calculate independent maps
by splitting the posterior space into multiple regions. However, arising issues with weighting
and discontinuities between the regions need to be addressed.

As was shown in the numerical examples in this paper, while transport maps still outperform
TMCMC in higher-dimensional problems, the efficiency gain is not as high anymore. This
problem can be reduced (for both TM and MCMC approaches) by using dimensionality reduction
methods on the posterior density which exploit the fact that the data is generally not informative
in the full parameter space [51, 52]. This is also possible in an a-priori step before observing data,
which is useful for sequential updating [53]. However, further research is needed to incorporate
these techniques into structural health monitoring problems.
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