
Análisis teórico del contacto
plasma superficie y sus

aplicaciones industriales

Memoria presentada para optar al grado de:

Doctor en Física

por:

Tejero Del Caz, Antonio

En Córdoba a, 13 de mayo de 2016

TITULO: Análisis teórico del contacto plasma-superficie y sus aplicaciones industriales

AUTOR: Antonio Tejero del Caz

© Edita: Servicio de Publicaciones de la Universidad de Córdoba. 2016
Campus de Rabanales
Ctra. Nacional IV, Km. 396 A
14071 Córdoba

www.uco.es/publicaciones
publicaciones@uco.es

Contents

Agradecimientos/Acknowledgements 1

Resumen/Abstract 3

I Theoretical Foundations 9

1. Plasmas, sheaths, probes and diagnosis 11

1.1. Introduction . 11

1.2. What is a Plasma? . 11

1.3. Debye shielding . 13

1.4. Contact of a plasma and a metallic surface . 16

1.4.1. Quasineutral solution . 19

1.4.2. Sheath solution . 20

1.4.3. Complete solution . 23

1.5. Langmuir probes and plasma diagnosis . 24

1.5.1. Different probe types . 24

1.5.2. Current to voltage characteristic curve of a Langmuir probe 25

1.6. Conclusion . 27

2. Theories of the ion current collected by a cylindrical probe 29

2.1. Introduction . 29

2.2. Ion saturation zone and cylindrical probes. Why? . 29

2.3. Orbital theories of the ion current collected by a cylindrical probe 31

2.3.1. Mott-Smith and Langmuir model . 32

2.3.2. Bernstein and Rabinowitz model . 36

2.3.3. Laframboise model . 41

2.4. Radial theories of the ion current collected by a cylindrical probe 42

2.4.1. Allen, Boyd and Reynolds / Chen model (ABR model) 42

2.4.2. Fernández Palop model . 45

2.4.3. Morales Crespo model . 50

2.5. Comparison between orbital and radial theories . 53

2.5.1. Sonin-plot . 54

i

CONTENTS

2.6. Conclusion . 56

II Particle Simulations 57

3. Particle-In-Cell simulations & parallelisation techniques 59

3.1. Introduction . 59

3.2. Particle simulations and computer experiments . 60

3.3. The Particle-In-Cell method . 64

3.3.1. Force evaluation . 65

3.3.2. Integration of the equations of motion . 70

3.3.3. Boundary conditions . 72

3.4. Need of parallelism and the GPGPU approach . 74

3.5. The CUDA R⃝ framework . 77

3.5.1. Thread hierarchy . 78

3.5.2. Thread synchronisation and memory hierarchy . 80

3.5.3. Heterogeneous programming model . 81

3.6. Conclusion . 83

4. PIC simulation of a planar Langmuir probe (CUPIC1D1V_PP) 85

4.1. Introduction . 85

4.2. Computational abstraction of the system . 85

4.3. CUPIC1D1V_PP implementation . 88

4.3.1. Initial conditions and steady state . 88

4.3.2. Particle weighting . 90

4.3.3. Poisson solver . 92

4.3.4. Particle mover . 95

4.3.5. Particle injection and boundary effects . 96

4.4. Comparison with fluid models . 99

4.5. Conclusion . 100

5. PIC simulation of a cylindrical Langmuir probe (CUPIC1D2V_CP) 101

5.1. Introduction . 101

5.2. Computational abstraction of the system . 101

5.3. Differences between CUPIC1D2V_CP and CUPIC1D1V_PP . 104

5.3.1. Initial conditions . 104

5.3.2. Particle weighting . 104

5.3.3. Poisson solver . 105

5.3.4. Particle mover . 105

5.3.5. Particle injection . 107

5.4. Hybrid code optimisation . 109

5.5. Radial to Orbital motion transition . 110

ii

CONTENTS

5.6. Conclusion . 113

III Final remarks & Conclusions 115

6. Summary, contributions and future perspectives 117

6.1. Introduction . 117

6.2. Summary . 117

6.3. Contributions . 119

6.4. Future perspectives . 120

6.5. Conclusions . 121

IV Appendixes 123

A. Fluid approximation in plasmas: Boltzmann equation and its first moments. 125

A.1. Boltzmann transport equation . 125

A.2. First and second moments of the Boltzmann equation . 126

B. CUPIC1D1V_PP sources 129

B.1. Main module . 129

B.2. Initialisation module . 131

B.3. Mesh module . 143

B.4. Particles module . 147

B.5. Boundary conditions module . 149

B.6. Diagnostic . 154

B.7. CUDA module . 162

B.8. Extra headers . 163

B.9. Additional files . 164

C. CUPIC1D2V_CP sources 167

C.1. Main module . 167

C.2. Initialisation module . 169

C.3. Mesh module . 182

C.4. Particles module . 187

C.5. Boundary conditions module . 188

C.6. Diagnostic . 194

C.7. CUDA module . 201

C.8. Extra headers . 202

C.9. Additional files . 203

Bibliography 205

iii

List of Figures

1.1. Detail of a small fraction of the Veil nebula . 11

1.2. Classification of plasmas . 12

1.3. Shielding of a charged ball introduced inside a plasma . 13

1.4. Biased metallic grid being shielded by a plasma . 14

1.5. Typical length of the Debye shielding . 15

1.6. Structure of the contact of a plasma with an infinite planar metallic surface 16

1.7. Quasineutral solution for the potential (planar case) . 19

1.8. Evolution of the ion flux along the presheath (planar case) 20

1.9. Sheath solution for Poisson’s equation (planar case) . 22

1.10. Complete solution for Poisson’s equation (planar case) . 23

1.11. Spherical Langmuir probe on board ESA’s space vehicle Rosetta 24

1.12. Current voltage characteristic of a Langmuir probe . 25

2.1. Cylindrical probe. Design and actual implementation in a laboratory plasma 30

2.2. Radial vs orbital probe theories . 31

2.3. Mott-Smith and Langmuir model . 32

2.4. TSL and OML approximations for the Mott-Smith and Langmuir theory 34

2.5. Classification of ion’s orbits in the Bernstein and Rabinowitz model 38

2.6. Limits of integration in E, J2 phase space for the Bernstein and Rabinowitz model 39

2.7. Geometrical presheath mechanism in cylindrical probes 43

2.8. Solutions of the ABR model for a cylindrical probe . 45

2.9. Initial condition of the potential for the Fernández Palop’s model (rp ≲ λD) 48

2.10. Solutions of Fernández Palop’s model (rp ≲ λD) . 48

2.11. Initial condition of the potential for the Fernández Palop’s model (rp ≫ λD) 49

2.12. Solutions of Fernández Palop’s model (rp ≫ λD) . 50

2.13. Potential profile and I − V characteristic with Morales Crespo’s fitting coefficients 53

2.14. Sonin-plot for ABR and OML theories . 55

3.1. Classification of codes used to simulate plasmas . 59

3.2. General scheme of a particle simulation . 60

3.3. Graphic interpretation of cyclic boundary conditions in 2D 64

3.4. Force evaluation in PIC codes . 65

v

LIST OF FIGURES

3.5. Particle weighting in 2D PIC simulations . 66

3.6. Nearest-grid-point (NGP) weighting scheme . 68

3.7. Cloud-in-cell (CIC) / Particle-in-cell (PIC) weighting scheme 69

3.8. Leap-frog integration scheme . 71

3.9. Effusion of particles through a wall . 72

3.10. Thermal vs drift velocity driven flux . 73

3.11. CPU vs GPU approach to multicore processors . 77

3.12. CUDA enabled automatic scalability . 78

3.13. CUDA thread hierarchy . 79

3.14. CUDA memory hierarchy . 81

3.15. CUDA heterogeneous programming model . 82

4.1. Computational abstraction of the simulation domain (planar probe) 86

4.2. Computational abstraction of the particle system (planar probe) 87

4.3. Dependence of the evolution of the simulation on the initial conditions 89

4.4. Scheme of the execution configuration of particle_to_grid() kernel. 90

4.5. Write collisions in particle_to_grid() kernel . 91

4.6. Scheme of the execution configuration of jacobi_iteration() kernel. 93

4.7. Scheme of the jacobi_iteration() kernel. 94

4.8. Scheme of the leap_frog_step() kernel . 95

4.9. Appearance of a source sheath during the simulation of a planar probe 97

4.10. Calibration of the ion flux in CUPIC1D1V_PP . 98

4.11. Comparison between PIC simulation and fluid model (planar probe) 99

5.1. Computational abstraction of the simulation domain (cylindrical probe) 102

5.2. Computational abstraction of the particle system (cylindrical probe) 103

5.3. Calibration of the ion flux in CUPIC1D2V_CP . 108

5.4. Comparison between the electron density by using particles or the fluid approximation . . 110

5.5. Dependence of the Sonin-plot on the dimensionless probe radius 111

5.6. Dependence of the ordinate of the Sonin-plot on the ion to electron temperature ratio . . 112

5.7. Dependence of the ordinate of the Sonin-plot on the ion to electron mass ratio 112

vi

List of Tables

2.1. Morales Crespo’s fitting coefficients for a cylindrical probe 52

3.1. Physical systems studied via particle simulations and computer experiments 62

3.2. Performance of intel processors along history . 74

3.3. Run times for sequential particle simulations . 75

vii

List of Source Codes

3.1. Example of a simple CUDA kernel (VecAdd) . 78

3.2. Example of a simple CUDA kernel (MatAdd) . 79

3.3. Example of a simple CUDA kernel (MatAdd any size) . 80

B.1. CUPIC1D1V_PP source file main.cu . 129

B.2. CUPIC1D1V_PP source file init.cu . 131

B.3. CUPIC1D1V_PP source file init.h . 142

B.4. CUPIC1D1V_PP source file mesh.cu . 143

B.5. CUPIC1D1V_PP source file mesh.h . 147

B.6. CUPIC1D1V_PP source file particles.cu . 147

B.7. CUPIC1D1V_PP source file particles.h . 149

B.8. CUPIC1D1V_PP source file cc.cu . 149

B.9. CUPIC1D1V_PP source file cc.h . 154

B.10.CUPIC1D1V_PP source file diagnostic.cu . 154

B.11.CUPIC1D1V_PP source file diagnostic.h . 161

B.12.CUPIC1D1V_PP source file cuda.cu . 162

B.13.CUPIC1D1V_PP source file cuda.h . 163

B.14.CUPIC1D1V_PP source file stdh.h . 163

B.15.CUPIC1D1V_PP source file random.h . 164

B.16.CUPIC1D1V_PP source file dynamic_sh_mem.h . 164

B.17.CUPIC1D1V_PP compilation file makefile . 164

B.18.CUPIC1D1V_PP input file input_data . 165

C.1. CUPIC1D2V_CP source file main.cu . 167

C.2. CUPIC1D2V_CP source file init.cu . 169

C.3. CUPIC1D2V_CP source file init.h . 181

C.4. CUPIC1D2V_CP source file mesh.cu . 182

C.5. CUPIC1D2V_CP source file mesh.h . 186

C.6. CUPIC1D2V_CP source file particles.cu . 187

C.7. CUPIC1D2V_CP source file particles.h . 188

C.8. CUPIC1D2V_CP source file cc.cu . 188

C.9. CUPIC1D2V_CP source file cc.h . 193

ix

LIST OF SOURCE CODES

C.10.CUPIC1D2V_CP source file diagnostic.cu . 194

C.11.CUPIC1D2V_CP source file diagnostic.h . 200

C.12.CUPIC1D2V_CP source file cuda.cu . 201

C.13.CUPIC1D2V_CP source file cuda.h . 202

C.14.CUPIC1D2V_CP source file stdh.h . 202

C.15.CUPIC1D2V_CP source file random.h . 203

C.16.CUPIC1D2V_CP source file dynamic_sh_mem.h . 203

C.17.CUPIC1D2V_CP compilation file makefile . 203

C.18.CUPIC1D2V_CP input file input_data . 204

x

Agradecimientos/Acknowledgements

“Si he logrado ver más lejos, ha sido
porque he subido a hombros de gigantes”

Sir Isaac Newton

Como la gran mayoría de logros que conseguimos a lo largo de nuestra vida, la finalización de una
tesis doctoral no sería posible sin la presencia, ayuda y apoyo de multitud de personas. Por lo tanto, es
de justicia dedicar las primeras lineas de este trabajo a agradecer a todas las que lo han hecho posible.

En primer lugar me gustaría agradecer a José Ignacio, mi director de tesis, la confianza depositada en
mi para llevar a cabo este trabajo. En todo este tiempo no solo me has apoyado y enseñado continuamente,
aportando soluciones siempre que llegaba a un callejón sin salida, sino que también me has inculcado
que hay cosas más importantes que el trabajo. Han sido incontables las horas que hemos compartido
discutiendo detalles sobre la investigación, la fabricación de gafas de madera, o la calidad del café en la
cafetería. Espero que en el futuro sean muchas más.

También me gustaría dar las gracias al resto de miembros del grupo de investigación. A Jerónimo,
cuya experiencia parece ser infinita. Siempre has tenido un buen consejo que ofrecerme, y tus directrices
han sido fundamentales para desarrollar con éxito una de las partes de este trabajo que más me apasiona,
la docencia. A Juan Manuel, compañero de fatigas en los congresos, porque siempre que pasas por
el laboratorio acabas levantándome el ánimo. A todos, porque espero tener la suerte de trabajar con
vosotros muchos años.

Como no, también tengo que dar las gracias al resto de compañeros del departamento de física. A
Rut, por las discusiones de gran talante científico que hemos mantenido. A los compañeros de “el café”,
porque sin ellos desconocería el significado de términos como “godovi” (espero haberlo escrito bien). Al
resto de profesores, personal y doctorandos del departamento, porque da gusto estar rodeado de un grupo
de personas como vosotros en el trabajo.

I also would like to thank the people I have met in Ljubljana during my stay there, for their warm
welcome and because thanks to them I had a great time in Slovenia. To Prof. Tomaž Gyergyek because
without him my stay there had not being possible. To Jernej and Boris for all the mountain tea shared
while talking about anything. To the rest of the people from the Reaktor center for all the time spent
together.

Y si hay mucha gente a la que agradecer en el plano profesional, hay mucha más en el plano personal.
En primer lugar a mis padres, Antonio y Pilar, y mis hermanas, Miriam y Andrea, y al resto de mi
familia, por apoyarme desde que tengo uso de razón, incluso cuando decidí estudiar esa carrera de locos,
y luego un máster, y luego un doctorado. . . Sin todos ellos, simplemente, no sería lo que soy.

A mi segunda familia, mis amigos, porque tengo la grandísima suerte de contar con tantos que si los
nombrase a todos necesitaría añadir otro apéndice a la tesis. No importa como de agobiado, cabreado o
desanimado estuviese, vosotros siempre habéis estado ahí.

Estoy seguro de que dejo muchas personas y cosas que agradecer, pero no está bonito que los agradeci-
mientos sean lo más extenso de una tesis. Así pues, gracias a todos, por haber sido gigantes a los que
subirme.

1

2

Resumen

Actualmente, la física de plasmas constituye una parte importante de la investigación en física que está
siendo desarrollada. Su campo de aplicación varía desde el estudio de plasmas interestelares y cósmicos,
como las estrellas, las nebulosas, el medio intergaláctico, etc.; hasta aplicaciones más terrenales como
la producción de microchips o los dispositivos de iluminación. Resulta particularmente interesante el
estudio del contacto de una superficie metálica con un plasma. Siendo la razón que, la dinámica de la
interfase formada entre un plasma imperturbado y una superficie metálica, resulta de gran importancia
cuando se trata de estudiar problemas como: la implantación iónica en una oblea de silicio, el grabado
por medio de plasmas, la carga de una aeronave cuando atraviesa la ionosfera y la diagnosis de plasmas
mediante sondas de Langmuir.

El uso de las sondas de Langmuir está extendido a través de multitud de aplicaciones tecnológicas e
industriales como método de diagnosis de plasmas. Algunas de estas aplicaciones han sido mencionadas
justo en el párrafo anterior. Es más, su uso también es muy popular en la investigación en física de
plasmas, por ser una de las pocas técnicas de diagnosis que proporciona información local sobre el
plasma. El equipamiento donde es habitualmente implementado varía desde plasmas de laboratorio de
baja temperatura hasta plasmas de fusión en dispositivos como tokamaks o stellerators. La geometría
más popular de este tipo de sondas es cilíndrica, y la principal magnitud que se usa para diagnosticar el
plasma es la corriente recogida por la sonda cuando se encuentra polarizada a un cierto potencial. Existe
un interes especial en diagnosticar por medio de la medida de la corriente iónica recogida por la sonda,
puesto que produce una perturbación muy pequeña del plasma en comparación con el uso de la corriente
electrónica.

Dada esta popularidad, no es de extrañar que grandes esfuerzos se hayan realizado en la consecución
de un modelo teórico que explique el comportamiento de una sonda de Langmuir inmersa en un plasma.
Hay que remontarse a la primera mitad del siglo XX para encontrar las primeras teorías que permiten
diagnosticar parámetros del plasma mediante la medida de la corriente iónica recogida por la sonda de
Langmuir. Desde entonces, las mejoras en estos modelos y el desarrollo de otros nuevos ha sido una
constante en la investigación en física de plasmas. No obstante, todavía no está claro como los iones
se aproximan a la superficie de la sonda. Las dos principales, a la par que opuestas, aproximaciones al
problema que están ampliamente aceptadas son: la radial y la orbital; siendo el problema que ambas
predicen diferentes valores para la corriente iónica. Los experimentos han arrojado resultados de acuerdo
con ambas teorías, la radial y la orbital; y lo que es más importante, una transición entre ambos ha sido
recientemente observada.

La mayoría de los logros conseguidos a la hora de comprender como los iones caen desde el plasma
hacia la superficie de la sonda, han sido llevados a cabo en el campo de la dinámica de fluidos o la
teoría cinética. Por otra parte, este problema puede ser abordado mediante el uso de simulaciones
de partículas. La principal ventaja de las simulaciones de partículas sobre los modelos de fluidos o
cinéticos es que proporcionan mucha más información sobre los detalles microscópicos del movimiento de
las partículas, además es relativamente fácil introducir interacciones complejas entre las partículas. No
obstante, estas ventajas no se obtienen gratuitamente, ya que las simulaciones de partículas requieren
grandísimos recursos. Por esta razón, es prácticamente obligatorio el uso de técnicas de procesamiento
paralelo en este tipo de simulaciones.

El vacío en el conocimiento de las sondas de Langmuir, es el que motiva nuestro trabajo. Nuestra
aproximación, y el principal objetivo de este trabajo, ha sido desarrollar una simulación de partículas
que nos permita estudiar el problema de una sonda de Langmuir inmersa en un plasma y que está
negativamente polarizada con respecto a éste. Dicha simulación nos permitiría estudiar el comportamiento

3

de los iones en los alrededores de una sonda cilíndrica de Langmuir, así como arrojar luz sobre la transición
entre las teorías radiales y orbitales que ha sido observada experimentalmente.

Justo después de esta sección introductoria, el resto de la tesis está dividido en tres partes tal y como
sigue:

La primera parte está dedicada a establecer los fundamentos teóricos de las sondas de Langmuir. En
primer lugar, se realiza una introducción general al problema y al uso de sondas de Langmuir como
método de diagnosis de plasmas. A continuación, se incluye una extensiva revisión bibliográfica
sobre las diferentes teorías que proporcionan la corriente iónica recogida por una sonda.

La segunda parte está dedicada a explicar los detalles de las simulaciones de partículas que han
sido desarrolladas a lo largo de nuestra investigación, así como los resultados obtenidos con las
mismas. Esta parte incluye una introducción sobre la teoría que subyace el tipo de simulaciones
de partículas y las técnicas de paralelización que han sido usadas en nuestros códigos. El resto de
esta parte está dividido en dos capítulos, cada uno de los cuales se ocupa de una de las geometrías
consideradas en nuestras simulaciones (plana y cilíndrica). En esta parte discutimos también los
descubrimientos realizados relativos a la transición entre el comportamiento radial y orbital de los
iones en los alrededores de una sonda cilíndrica de Langmuir.

Finalmente, en la tercera parte de la tesis se presenta un resumen del trabajo realizado. En este
resumen, se enumeran brevemente los resultados de nuestra investigación y se han incluido algunas
conclusiones. Después de esto, se enumeran una serie de perspectivas futuras y extensiones para
los códigos desarrollados.

4

Abstract

Nowadays, plasma physics constitutes an important part of the physics research that is currently being
developed. Its field of applicability ranges from the study of interestelar and cosmic plasmas as stars,
nebulae, intergalactic medium, etc.; to more down-to-earth applications as microchip manufacturing or
lighting devices. It results of particular interest the study of the contact of a metallic surface with
a plasma. The reason being that, the dynamics of the interphase formed between an unperturbed
plasma and a metallic surface, results of great importance when it comes to study problems such as:
ion implantation in a silicon wafer, plasma etching, charge of a spacecrafts when crossing the ionosphere
and plasma diagnosis with Langmuir probes.

The use of Langmuir probes is widespread across lots of technological and industrial applications
as a plasma diagnosing technique. Some of this applications have just been mentioned in the previous
paragraph. Moreover, it is also very popular in plasma physics research, as it is one of the few diagnosing
techniques that provides local information about the plasma. The equipment where it is commonly
implemented varies from low temperature laboratory plasmas to fusion plasmas in devices like tokamaks
or stellarators. The most popular geometry of such probes is cylindrical, and the main magnitude that
it is used to diagnose a plasma is the current collected by the probe when biased at a certain voltage.
There is a remarkable interest in diagnosing by measuring the ion current collected by the probe, since
it produce very little perturbation of the plasma when compared to the use of the electron current.

Due to such popularity, it is not strange that great efforts have been made in the pursuit of a theoretical
model that explains the behaviour of a Langmuir probe immersed in a plasma. We have to go back to
the first half of the XX century to find the firsts theories that allow us to diagnose plasma parameters by
measuring the ion current collected by a Langmuir probe. Since then, the improvements of these models
and the development of new ones has been a constant in the plasma physics research. Nevertheless, it is
still not clear how ions approach the surface of the probe. The two main, and opposite, frameworks that
are widely accepted are: the radial and the orbital one; being the problem that they predict different
values for the ion current. Experimentalists have found results in accordance to both, the radial and
orbital theories; but more important, it has been recently found a transition between both of them.

Most of the achievements accomplished to figure out how ions fall from the plasma to the surface of
a probe, have been developed in the field of the fluid dynamics or kinetic theory. On the other hand,
this problem can be tackled by using particle simulations. The main advantages of particle simulations
over fluid or kinetic models are that they provide much more information about the microscopic details
of the movement of the particles, and that it is relatively easy to introduce complex interactions between
particles. However, this advantages come at a price, and particle simulations are extremely resource
demanding. Because of that reason, it is almost mandatory to use parallelisation techniques in this kind
of simulations.

It is the void in the Langmuir probe knowledge, which motivates our work. Our approach here, and
the main objective of this work, has been to develop a particle simulation that allows us to study the
problem of a Langmuir probe immersed into a plasma and negatively biased with respect to it. This
simulation would allow us to study the behaviour of ions in the surroundings of a cylindrical Langmuir
probe, and to shed light in the experimentally found transition between the radial and orbital theories.

Right after this introductory section, the rest of the thesis is divided into three parts as follows:

The first part is devoted to establish the theoretical foundations of Langmuir probes. First, a general
introduction to the problem and the use of Langmuir probes as a plasma diagnosing technique is
made. Then, an extensive bibliographic review about the different theories that provides the ion

5

current collected by a cylindrical probe is included.

The second part is devoted to explain the details of the particle simulations developed along our
research as well as the results obtained with them. This part includes an introduction about the
theory behind particle simulations and the parallelisation techniques that have been used in our
codes. The rest of this part is divided into two chapters, each one concerning one of the geometries
considered in our simulations (planar and cylindrical). In this part we discuss our findings in the
transition between the radial and orbital behaviour of ions in the vicinity of a cylindrical Langmuir
probe.

Finally, in the third part of the thesis a summary of the work is presented. In this summary the
results of the research are briefly enumerated and some conclusions are included. After that, future
research outlooks and extensions for the developed codes are outlined.

6

“But one day Langmuir came in triumphantly and said he had it.
He pointed out that the ‘equilibrium’ part of the discharge acted as

a sort of sub-stratum carrying particles of special kinds, like
high-velocity electrons from thermionic filaments, molecules and

ions of gas impurities. This reminds him of of the way blood plasma
carries around red and white corpuscles and germs. So he proposed
to call our ‘uniform discharge’ a ‘plasma’. Of course we all agreed.”

Harold M. Mott-Smith – History of “Plasmas”

Part I

Theoretical Foundations

9

Chapter 1

Plasmas, sheaths, probes and
diagnosis

1.1. Introduction

The first studies about discharges in rarified gases, where performed in the General Electric Research
Lab in Schenectady, New York in the 1920s. These studies led to the development of a new branch of
physics that is nowadays known as plasma physics. Actually, it was there where the term “plasma” was
coined by Irving Langmuir [1].

In this chapter we are going to introduce some of the basic concepts on which our research rely.
Starting with the definition of what a plasma is, and some of the peculiarities of this manifestation of
matter. Then we deal with the question of what happens when we introduce an object into a plasma.
Our interest will be focused in the use of metallic objects, as this leads to the Langmuir probe concept.
Finally we will discuss how this probes can be used in order to diagnose different plasma parameters.

1.2. What is a Plasma?

The universe is composed of a mixture of energy and matter. It is well known that more than 99%
of the matter of the observable universe (that is, excluding dark matter) exists in the state known as

Figure 1.1: Detail of a small fraction of the Veil
nebula, approximately two light-years across. The
size of the whole nebula is around 110 light-years
across. Image Credit: NASA/ESA/Hubble Heritage
Team.

plasma. But, what is exactly the plasma state of
the matter? Well, the definition is rather simple,
a plasma is a gas which: is totally or partially
ionised, macroscopically quasineutral and exhib-
its a collective behaviour. Avoiding for now the
quasineutral and collective behaviour conditions,
the rather simple definition of plasmas given be-
fore, leads us to the conclusion that the stars are
almost 100% plasma. Now it easy to see why the
vast majority of the observable universe is com-
posed of plasma. But things does not finish there:
interplanetary matter is almost 100% ionised hy-
drogen, interstellar matter it is also composed of
huge percentages of ionised hydrogen and helium
and nebulae are colossal clouds of mostly ionised
gases resulting from the explosion of a dying star
(see Fig. 1.1).

Even though all the examples given above are
extremely far away from us, in our small human
length scale, we do not have to go to outer space

11

1.2. What is a Plasma?

in order to find a plasma. The ionosphere, which is the part of the earth’s atmosphere that protects us
from the solar winds, is mainly composed of plasma. By the way, the solar winds are also mainly plasma.
But we can find natural plasmas even closer. During a storm, clouds charge themselves because of the
friction with the air. Due to this charged clouds, an electric field arises between the ground and the
clouds. When this electric field reaches what is called the dielectric breakdown value, the air between
the clouds and the ground ionises, allowing an extremely fast discharge of the cloud. What has been just
described is a lightning, which is also a plasma. But we can take one last step closer to our experience.
Flames in a fire are a plasma as well. The air in the surrounding of a fire is heated so much that some
electrons are pulled off the air molecules, resulting again in an ionised gas.

Obviously, with such a diversity of plasmas found in the nature we can safely say that, not all
plasmas are the same. Even more if we take account of all the different man-produced plasmas, from low
consumption bulbs to thermonuclear fusion plasmas produced in tokamaks and stellarators. In order to
create a plasma, we have to communicate enough energy to a gas in order to ionise its molecules. This
energy could come from: nuclear fusion reactions (like in the sun), collisions with energetic particles (like
in the ionosphere), heating by chemical reactions (like in a flame), electric discharges (like in a lightning),
etc.

Regardless of the source of energy that produce them, basically all the plasmas are the same, a gas
composed of neutral atoms or molecules, ions and free electrons. That is the reason why plasmas are
usually classified by their density and temperature of charged particles. In particular, the electron density
and temperature are usually used in that classification. Some of the examples that have been previously
used can be seen classified in the graph of Fig. 1.2.

102 103 104 105 106 107 108 109 1010

10-5

100

105

1010

1015

1020

1025

1030

Electron Temperature (K)

E
le

ct
ro

n
 d

en
si

ty
 (

c
m

 -
3) Lightning

Sun core

Sun corona

Fusion plasma
Nebula

Flames

Northen lights

Figure 1.2: Classification of plasmas in terms of their electron
number density and temperature.

Precisely because of the presence
of charged particles, the plasma dy-
namic is highly conditioned by Max-
well’s equations of electromagnetism.
This fact is directly related to the
quasineutral and collective behaviour
conditions that we mentioned in the
plasma definition. First, when at
equilibrium, a plasma has to be elec-
trically neutral. That is, if we only
consider singly ionised ions, ne ≈
ni, where ne and ni are the elec-
tron and ion number density respect-
ively. An accidental local accumula-
tion of charge would cause an elec-
tric field to arise, causing the more
populated species to be repelled by
themselves. This process would con-
tinue until the electric equilibrium
is reached and the quasineutral con-
dition holds. The second condition

that appears into the plasma definition, i.e. collective behaviour, is related to how charged particle mo-
tion inside a plasma is not exclusively due to local conditions, but to the state of the plasma at remote
regions.

It is important to note that, the quasineutral conditions that has been just introduced (ne ≈ ni),
only holds in an unperturbed plasma. We will discuss this fact deeply in the next section where we will
introduce the sheath concept. Another remark that needs to be made is that, in most cases, the effects of
the magnetic fields created by the particles that constitute the plasma are negligible. When this happens
we do not have to take into account the four Maxwell’s equations, instead, we only consider Gauss Law to
tackle electrostatic effects. In this case we have what is called an electrostatic plasma. From now on we
will only consider electrostatic plasmas, contrary to magnetised ones, where an external magnetic field is
imposed into the plasma and the whole set of Maxwell’s equations have to be taken into consideration.

12

Chapter 1. Plasmas, sheaths, probes and diagnosis

1.3. Debye shielding

One of the main abilities of a plasma has just been outlined in the previous section while talking
about the quasineutral condition. We refer to the ability of shielding electric fields. This ability is not
surprising at all. A plasma is composed of free charged particles, so it conducts electricity, and as any
other good conductor of electricity, it tries to avoid electric fields in its inside. Let us think this more
carefully.

For the sake of simplicity we are going to consider a plasma consisting only of electrons and singly
ionised ions, and assume that both are completely cold. In this situation we can think, what would
happen if we introduce a charged ball, e.g. positively charged, inside the plasma?. First, the ball would
create a perturbation of the electric potential inside the plasma, developing an electric field. This electric
field would attract electrons towards the ball and repel ions. This process would go on until an extremely
thin layer of electrons would form around the ball in order to fully shield it. The charge of this thin layer
of electrons would be exactly the same as the one of the ball, but obviously with oposite sing. Also, as
particles have no thermal motion, the electrons of the layer would remain “sticked” to the ball. Finally,
the potential perturbation that the ball introduced into the plasma would have been completely shielded.
This can be seen with the help of the Gauss law. The net charge inside the imaginary surface that is just
outside the shielding layer of electrons (see Fig. 1.3a) is exactly zero. So, the electric field created by the
ball and the layer of electrons outside this surface is zero, and the ball becomes “invisible” to the rest of
the plasma.

The previously made assumption of completely cold particles is not very realistic, especially when
dealing with electrons. The tiny mass of electrons, provides them an incredibly high mobility, so they
always have thermal motion until some extent. Nevertheless, the picture is almost the same that the one
described in the previous paragraph. The difference is that, when the shielding layer is being formed, the
thermal motion of electrons provides energy to try to scape from the potential well created by the ball.
In fact, electrons which have a kinetic energy larger than the potential energy they have by the side of
the ball, could escape from its attraction and go back into the unperturbed plasma. So, the net effect
of considering warm particles is that a finite length is needed in order to shield the ball (see Fig. 1.3b).
Also, as some of the electrons shielding the ball are going to be able to escape from its attraction, the
shielding is no longer going to be perfect, and a small amount of the perturbation is going to leak into
the plasma.

+

electrons ions

(a) Cold particles.

+

electrons ions

(b) Warm particles.

Figure 1.3: Shielding of a charged ball introduced inside a plasma.

The effect that we have been describing in this section is called Debye shielding, and can be defined
as the ability of a plasma to shield, more or less effectively, electrical perturbations. Let us do some
math in order to study this property in a more quantitative fashion. In particular, we are interested in
quantifying how well the plasma can shield a perturbation of the electric potential, and how much of
the perturbation is leaked into the plasma. As we have seen, when particles are completely cold, the
shielding would be perfect. For that reason we are going to consider the case of warm particles. Let us

13

1.3. Debye shielding

also consider a slightly more realistic situation.

Suppose we have the same plasma that we described previously, composed of electrons and singly
ionised ions, and now we are going to introduce in it an infinite planar metallic grid biased with respect
to the plasma. The grid is 100% transparent, so particles can cross it without interacting with it. This
situation can be seen schematically in Fig. 1.4. We are looking for how the perturbation of the electric
potential is shielded until the electric field in the bulk plasma is negligible. In order to accomplish that,
we are going to solve Poisson’s equation, ∇2φ = −ρ/ε0. Obviously, the only relevant dimension in our
problem is the one perpendicular to the plane of the grid. So we can write Poisson’s equation as:

d2φ(x)
dx2 = − e

ε0
(ni(x) − ne(x)) (1.1)

where φ(x) is the electric potential, x the position with respect to the plane of the grid, e the elementary
charge, ni(x) the number density of ions, ne(x) the number density of electrons and ε0 the permittivity
of free space.

electrons ions

x

Figure 1.4: Biased metallic grid being shielded by
a plasma composed of singly ionised ions and warm
electrons.

The first thing we need, in order to solve Eq.
(1.1), is the value of the particle densities ni(x)
and ne(x). As we are going to consider the much
more meaningful case of warm particles, we can
assume that the distribution function of electrons
in the presence of an electric potential φ(x) is the
one corresponding to the thermal equilibrium:

fe(x, v) = A exp
(

−mev
2/2 − eφ(x)
kBTe

)
(1.2)

me being the mass of electrons, Te their temper-
ature, kB the Boltzmann constant, v the velocity
with which electrons move and A a normalisation
constant. We are not going to demonstrate here
the expression in Eq. (1.2). Nevertheless its mean-
ing is rather obvious from an intuitive point of
view. There are fewer particles where the poten-
tial energy is higher, as there are fewer particles
with enough kinetic energy in order to reach that
point. Now, by integrating Eq. (1.2) for every pos-
sible velocity, the electron density can be obtained
as:

ne(x) = ne0 exp
(
eφ(x)
kBTe

)
(1.3)

On the other hand, during the time needed by electrons to shield the perturbation, the movement of
ions is going to be negligible. Due to the larger mass of ions, mi ≫ me, they have a mobility much smaller
than electrons. For that reason, we can assume that the ion density is not going to change noticeably
from its value at the unperturbed plasma, ni(x) ≈ ni(x → ∞) = ni0. Also, at the unperturbed plasma
the quasineutral condition holds, so the electron and ion densities there must be equal, ne0 = ni0. Now,
if we introduce this conditions along with Eq. (1.3) in Eq. (1.1) we get:

d2φ(x)
dx2 = −ene0

ε0

[
1 − exp

(
eφ(x)
kBTe

)]
(1.4)

We are not interested here in the details of how the potential drops near the grid. Instead, we would
like to know how the potential varies at large values of x and how much of it leaks into the plasma. It
is clear that at some point, as we increase x, the potential will reach a value that fulfils the condition
eφ(x)/(kBTe) ≪ 1. With that in mind, if we expand the exponential term of Eq. (1.4) in a Taylor series:

exp
(
eφ(x)
kBTe

)
=
[
1 + eφ(x)

kBTe
+ · · ·

]
≈ 1 + eφ(x)

kBTe
(1.5)

14

Chapter 1. Plasmas, sheaths, probes and diagnosis

and introducing Eq. (1.5) into Eq. (1.4) we obtain:

d2φ(x)
dx2 = e2ne0

ε0kBTe
φ(x) (1.6)

Now, the solution of Eq. (1.6) is easy to find, as long as we set the boundary conditions φ(0) = φ0
and φ(x → ∞) = 0. The solution can be written as:

φ(x) = φ0 exp
(

− |x|
λD

)
(1.7)

where we have defined the quantity:

λD =
√
ε0kBTe
e2ne0

(1.8)

This magnitude is called Debye length, and it is a measure of the length of the shielding of the
perturbation. As can be seen in Fig. 1.5, the potential is almost shielded when we move away from the
grid a distance of a few times λD. The larger this length the more the perturbation leaks into the plasma.
As we have already stated, the ability to shield electric perturbations is one of the defining characteristics
of a plasma. It is not casual that the parameters that we chose in order to classify plasmas in Fig. 1.2,
appear in the definition of the Debye length. This parameters are the electron temperature and number
density. As we can see in Eq. (1.8), the Debye length increases as the electron temperature is increased
and decreases as the electron density is increased.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

Distance to the grid (units)

E
le

ct
ri

c
p
ot

en
ti
al

 (
�

0
 u

n
it
s)

Figure 1.5: Shielding of the electric potential given
by Eq. (1.7). It became negligible after a few λD.

If we remember the situation shown in Fig.
1.3 it is easy to understand the dependence of
the Debye length on those parameters. As we
explained there, the broadening of the shielding
layer of electrons was caused by the thermal en-
ergy of electrons. Even more, this energy allows
some of them to escape completely from the po-
tential well created by the ball. On the other hand,
when the density is increased, electrons are more
tightly packaged around the ball. So, less space
is needed in order to fit enough electrons to shield
the ball.

The space occupied by the cloud of charge that
shields the perturbation is called the sheath. In-
side this zone positive and negative charge are
not balanced in order to shield the perturbation,
meaning that the quasineutral condition is not
hold. As the conditions required for an ionised gas
to be a plasma are no longer met, the sheath can
not be properly called plasma. The structure of
this zone will be further discussed in the following
section, but we already know that its extension is several Debye lengths.

Speaking of the conditions for an ionised gas to be a plasma, we have to remember the “collective
behaviour” condition introduced in the previous section. Let us further explain what this condition
implies.

First, we have to notice that the characteristic length of the plasma, let say L, has to be larger than
the Debye length. That is, λD ≪ L, in order for the plasma to be able to shield the perturbations
introduced by the boundaries that confine it. Otherwise, quasineutrality could not be reached in
the bulk plasma.

On the other hand, we have to notice that in order to use statistical arguments, like the use of
distribution functions like Eq. (1.2) and Eq. (1.3) or the Debye shielding concept itself, we need to

15

1.4. Contact of a plasma and a metallic surface

have a reasonably high number of particles. For that reason, the number ND of particles inside a
Debye sphere (sphere with radius equal to λD) has to be large enough. That number of particles
is easily evaluated as ND = ne0(4/3)πλ3

D. In case this number is not large enough, the gas is so
diluted it can not exhibits a collective behaviour.

And last, but not least, the characteristic time, τ , of the fastest process involved in the dynamics
of the system, has to be smaller than the characteristic time that the plasma needs to shield any
perturbation. For example, the larger collision frequency has to be smaller than what is called the
electron plasma frequency, ωpe. Otherwise, the dynamic of the system would be ruled mainly
by other causes instead of electromagnetism, and the motion of particles would depends on local
conditions instead of the collective state of the system.

This electron plasma frequency can be defined as the inverse of the characteristic time that the Debye
shielding needs to be developed when a perturbation is introduced into the plasma. Knowing that
the characteristic length of the Debye shielding is λD, and the characteristic velocity of electrons
due to its thermal motion is vth =

√
kBTe/me, we have that ωpe = vth/λD =

√
ne0e2/meε0.

Finally, we can say that a plasma is an ionised gas that fulfils the following conditions in order to
show a collective behaviour:

λD ≪ L (1.9a)

ND = ne0
4
3
πλ3

D ≫ 1 (1.9b)

ωpe =

√
ne0e2

meε0
≫ 1

τ
(1.9c)

1.4. Contact of a plasma and a metallic surface

Let us now study what happens when a metallic surface, i.e. a conductor, is introduced within a
plasma. This will allow us to deepen the knowledge about the sheath zone, that we have just introduced,
and its structure.This will also leads us to the definition of an electrostatic Langmuir probe.

We are going to consider the same plasma as before, consisting only of electrons and singly ionised
ions. Into this plasma, we are going to introduce an infinite planar metallic surface, which will be
considered to be perfectly absorbing. This means that, when any particle hits the surface, it is absorbed

x

PlasmaCuasineutral
zone

(presheath)

Sheath
zone

(x) 0

E(x) 0
n

i
(x) n

e
(x) n

i0
 = n

e0

E(x) = 0

(x) = 0(x) 0

E(x) 0
n

i
(x) n

e
(x)

0
0

Figure 1.6: Structure of the contact between a
plasma and an infinite planar metallic surface which
is negatively biased with respect to the plasma. (bi-
asing potential φp < 0)

and it can not bounce off and go back into the
plasma. We are also considering that the surface
is negatively biased with a potential φp < 0 with
respect to the plasma, as this are the biasing con-
ditions our research is going to be focused on. Un-
der this conditions, the surface is going to repel
electrons and attract ions. Therefore, a charged
cloud of particles, mostly consisting of ions in this
case, is going to develop in front of the surface.
This positively charged cloud is going to shield
out the perturbation of the potential introduced
by the surface. The main difference with respect to
the previously used examples is that the particles
that reach the surface are absorbed by it. Con-
sequently, the conductor is going to drain a cer-
tain current density from the plasma. Because of
the biasing potential we have chosen to use, this
current is going to be mostly due to ions, which is
the case we were looking for.

In Fig. 1.6 a scheme of the structure of the po-
tential is shown. As can be seen, a new zone has
been introduced between the previously defined

16

Chapter 1. Plasmas, sheaths, probes and diagnosis

sheath and the unperturbed plasma. This new zone is usually referred to as the preseath or the quasineut-
ral zone. The presheath is necessary in order to connect the sheath and the plasma. It starts by the
end of the sheath, once the quasineutral condition is hold, i.e. ni(x) ≈ ne(x). Precisely because of the
quasineutral character of the presheath, the electric field in its inside is negligible. Nevertheless, the
electric potential in this zone has not already reached the plasma potential, which we are using as the
reference.

Now we are going to find the distribution of electric potential across the different zones defined in
Fig. 1.6, in order to characterise them. The starting point is the same as the one in the previous section:
Poisson’s equation. Also, because of the same reasons that were given there, the only relevant dimension
in our problem is the one perpendicular to the metallic surface.

d2φ(x)
dx2 = − e

ε0
(n+(x) − ne(x)) (1.10)

So, Eq. (1.10) is the one we have to solve. In order to do that, we need again the particles number
densities.

Let us start with electrons. As the biasing potential chosen for the probe is negative, the potential
profile developed between the surface and the plasma is retarding for electrons. That means that electrons
are reflected by the surface. This fact allows us to consider electrons to be in thermal equilibrium with
the electric field. So their distribution function can be written as:

fe(x, v⃗) = ne0

(
me

2πkBTe

)3/2

exp
(

−me(vx + vy + vz)2/2 − eφ(x)
kBTe

)
(1.11)

By integrating Eq. (1.11) for every posible v⃗ values, we can obtain the electron density profile. But
first, we have to notice something. Even though electrons are repelled by the conductor, it is posible that
some of them have enough kinetic energy in the x dimension to overcome the potential well shown in
Fig. 1.6. That is, electrons fulfilling the condition mev

2
x/2 > −eφp at the plasma (x → ∞), and moving

towards the surface, are going to reach it. These electrons are going to be absorbed by the conductor;
thus, they are not going back to the plasma. For that reason, at any point x > 0, we can find electrons
with velocities vx < −

√
2e(φ(x) − φp)/me but not the corresponding vx >

√
2e(φ(x) − φp)/me. The

reason being that, electrons that would have such a positive velocity, were absorbed by the surface when
they were coming from the plasma. So, the posible vx values at any point x > 0 are: −∞ < vx <√

2e(φ(x) − φp)/me . While for the remaining components of the velocity we have: −∞ < vy < ∞,
−∞ < vz < ∞. Finally, we can evaluate the electron number density as:

ne(x) =
∫ √

2e(φ(x)−φp)/me

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvz f(x, v⃗) (1.12)

The integral in Eq. (1.12) can be easily solved and yields:

ne(x) = ne0

2
exp

(
eφ(x)
kBTe

)(
1 + erf

(√
e(φ(x) − φp)/kBTe

))
(1.13)

where erf (x) is the error function, which is defined as follows:

erf (x) = 2√
π

∫ x

0
exp

(
−s2) ds (1.14)

On the other hand, the surface is attracting and absorbing ions because of its negative biasing po-
tential. Due to the continuous drain of ions from the plasma by the surface, their distribution function
is so perturbed that we can no longer consider an expression like the one in Eq. (1.11). This means that
ions are not in thermal equilibrium with the electric field, so we are going to use a fluid approximation
in their description. The most simple balance moment equation that can be considered for the ion fluid
can be written as [2]:

ni(x)vi(x)dvi(x)
dx

+ e

mi
ni(x)dφ(x)

dx
= 0 (1.15)

17

1.4. Contact of a plasma and a metallic surface

vi(x) being the ion fluid flow velocity and mi is the ion mass. In this equation we state that ions
move under the sole influence of the electrostatic force, and that we are in the low ionisation limit (see
Appendix A for discussion). This are both reasonable assumptions in low pressure and temperature
plasmas. Collisions are extremely rare in low pressure conditions, so their contribution to the dynamics
of the motion of ions is insignificant. Also, because of the large mass and low temperature of ions, Ti,
their thermal velocity vith =

√
2kBTi/mi is negligible compared to their flow velocity vi(x).

Eq. (1.15) can be integrated once, and knowing that φ(x → ∞) = 0 and vi(x → ∞) = 0 we obtain
the following energy conservation equation:

1
2
miv

2
i (x) + eφ(x) = 0 (1.16)

Besides, continuity equation for ions can be written as:

dni(x)vi(x)
dx

= −Zne(x) (1.17)

where the right hand side of the equation takes into account the creation of ions because of the ionisation
of neutrals by collisions with electrons, Z being the frequency of ionisation. It has to be noticed that,
the sign of the right hand side of Eq. (1.17), is introduced to take into account the negative character of
the flow velocity vi(x) (see Fig. 1.6). The ion flux, i.e. number of ions that cross a surface per unit time
and area, can be written as:

ji(x) = ni(x)vi(x) (1.18)

Now Eq. (1.16) and Eq. (1.18) can be rearranged in order to write the ion density as:

ni(x) = ji(x)
vi(x)

= −ji(x)
√

− mi

2eφ(x)
(1.19)

Finally, we have expressions for the electron and ion density given by Eq. (1.13) and Eq. (1.19)
respectively, so, Poissons’ equation and continuity equation can be expressed as:

d2φ(x)
dx2 = e

ε0

[
ji(x)

√
− mi

2eφ(x)
+ ne0

2
exp

(
eφ(x)
kBTe

)(
1 + erf

(√
e(φ(x) − φp)/kBTe

))]
(1.20a)

dni(x)vi(x)
dx

= Z
ne0

2
exp

(
eφ(x)
kBTe

)(
1 + erf

(√
e(φ(x) − φp)/kBTe

))
(1.20b)

For the sake of simplicity, we are going to transform Eqs. (1.20) in order to work in a dimensionless
fashion. Accordingly, we introduce the following dimensionless variables:

X = x

λD
; ψ(X) = eφ(x)

kBTe
; Ni(X) = ni(x)

ne0
; Vi(X) = vi(x)

λDωpe
; δ = Z

ωpe
; γ = mi

me
(1.21)

So, inserting definitions (1.21) into Eqs. (1.20) we obtain the following dimensionless equations that
describe the behaviour of the potential across the sheath and the quasineutral zone:

d2ψ(X)
dX2 = 1

2
eψ(X)

(
1 + erf

(√
ψ(X) − ψp

))
+ Ji(X)

√
γ

−2ψ(X)
(1.22a)

dJi(X)
dX

= δ

2
eψ(X)

(
1 + erf

(√
ψ(X) − ψp

))
(1.22b)

We are going to consider the case of low ionisation, which means δ → 0. In this case we are going to
see how two different solutions of Eqs. (1.22) can be found, one for the quasineutral zone and the other
for the sheath zone. Which solution it is found depends on the length scale chosen to solve the problem.

It has to be noticed that Eqs. (1.22) are an autonomous system of differential equations, i.e. they do
not explicitly depend on the independent variable. In this case it can be proved that, if we find a solution
f(X) of the system, then f(X+X0) is also a solution, where f(X) represents the electric potential, field,
or the ion flux. This fact will allow us to arbitrarily choose the origin of positions, as we can perform
any translation in the solutions that we find.

18

Chapter 1. Plasmas, sheaths, probes and diagnosis

1.4.1. Quasineutral solution

To obtain the solution corresponding to the quasineutral zone, we are going to define a new length
scale. This new length scale is not going to be characterised by the Debye length anymore, but by the
ionisation mean free path. So, instead of using the dimensionless variable X we are going to use the
variable Y = √

γδX. Obviously, Y is also dimensionless, and the introduction of its definition into Eqs.
(1.22) yields:

γδ2 d
2ψ(Y)
dY 2 = 1

2
eψ(Y)

(
1 + erf

(√
ψ(Y) − ψp

))
+ Ji(Y)

√
γ

−2ψ(Y)
(1.23a)

dJi(Y)
dY

= 1
2√

γ
eψ(Y)

(
1 + erf

(√
ψ(Y) − ψp

))
(1.23b)

Now, if we take the limit δ → 0, the left hand side of Eq. (1.23a) becomes zero. This means that both
terms on the right hand side of Eq. (1.22a) have to be numerically equal. If we go back to Eq. (1.10)
it can be seen that these two terms corresponds to the electron and ion number density. Knowing that,
it is clear why the presheath is also called the quasineutral zone, as the quasineutral condition is hold.

-1

-0.8

-0.6

-0.4

-0.2

 0

-0.8 -0.6 -0.4 -0.2 0

�
(�

)

Figure 1.7: Quasineutral solution for the potential in
the limit δ → 0, as given by Eq. (1.26).

Also, as we will see, most of the potential drop
takes place in the sheath zone (see Fig. 1.6). This
means that, inside the presheath, the potential is
still far from the value at the metallic surface.
So, in the presheath

√
ψ(Y) − ψp ≫ 1 and so

erf (
√
ψ(Y) − ψp) ≈ 1. Taking into account this

two considerations, Eqs. (1.23) become:

Ji(Y) = −

√
−2ψ(Y)

γ
eψ(Y) (1.24a)

dJi(Y)
dY

= eψ(Y)
√
γ

(1.24b)

Finally, Eq. (1.24a) can be introduced into
Eq. (1.24b) to obtain a single ordinary differen-
tial equation (ODE) for the potential:(

1√
−2ψ(Y)

−
√

−2ψ(Y)

)
dψ(Y)
dY

= 1 (1.25)

Eq. (1.25) can be easily integrated as a Cauchy problem once, we have set the proper initial conditions.
If we consider that the plasma is located at Y = 0 and the metallic surface at some point Y < 0, then the
initial condition for the potential is ψ(0) = 0. Using this initial condition, the following implicit solution
for the potential is obtained by direct integration:

Y = (−2ψ(Y))3/2

3
−
√

−2ψ(Y) (1.26)

The quasineutral solution given by Eq. (1.26) is shown in Fig. 1.7. It can be seen that the potential
departs from the value it has at the plasma, ψ(0) = 0, and starts decreasing approaching the biasing
potential of the metallic surface, ψp < 0. However, at some point Y , after a small potential drop, the
gradient of the potential goes to infinity. This means that the electric field diverges at some point before
the potential has reached the value ψp. The point where the electric field diverges marks the end of
the quasineutral zone, since the quasineutral condition does not hold. From this point, the quasineutral
solution given by Eq. (1.26) is no longer valid and the sheath solution has to be used. In order to
characterise the end point of the quasineutral zone we have to analyse Eq. (1.24b):

dJi(Y)
dY

= dJi(ψ)
dψ︸ ︷︷ ︸
→0

dψ(Y)
dY︸ ︷︷ ︸
→∞

= −eψ(Y)
√
γ

(1.27)

19

1.4. Contact of a plasma and a metallic surface

So, differentiating Eq. (1.24a) and equating to zero:

dJi(ψ)
dψ

= eψ

(
1√

−2γψ
−

√
−2ψ
γ

)
= 0 ⇒ ψ = ψB = −1

2
(1.28)

We have found that the presheath ends when the potential reaches a value ψB = −0.5, as can be seen in
Fig. 1.7. As we will see, this is also the starting point of the sheath, which solution can not be found if the
initial condition for the potential is larger than ψB. The role of the preseath is to match the sheath solution

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-0.8 -0.6 -0.4 -0.2 0

�
�(
�
)

Figure 1.8: Evolution of the ion flux along the
presheath as given by Eq. (1.24a) with γ = 1. Dot-
ted line marks the potential at which Ji is maximum.

with the plasma. It provides a zone where the
potential can decrease from zero to ψB = −0.5
without violating the quasineutral condition. If we
introduce the potential ψB into Eq. (1.16) we can
see that ions are accelerated during the presheath
until they reach a velocity vB = −

√
kBTe/mi to-

wards the metallic surface. This is usually known
as the Bohm criterion, and vB the Bohm velocity.

The criterion that we have just introduced, es-
tablishes the condition that has to be fulfilled in
order for the sheath to develop and the potential
of the metallic surface to be shielded. On the one
hand, this condition can be expressed in terms
of the ion velocity. In this case, the Bohm cri-
terion says that the minimum velocity that ions
should have, while entering the sheath, in order
for the sheath to develop, is the Bohm velocity,
i.e. vi < −

√
kBTe/mi. On the other hand, if

we look at Eq. (1.27) we see that, when the elec-
tric field diverges, the ion flux reaches a maximum.
This can be seen in Fig. 1.8, where Eq. (1.24a)
has been plotted. There, it is shown that the ion

flux reaches a maximum when ψ = ψB . So, in the zone ψB < ψ < 0, the presheath provides a mechanism
to increase the ion flux from zero, the value at the plasma, to the necessary value at the sheath edge. This
ion flux will be the initial condition when solving the sheath equations, and it provides the ion current
that the metallic surface is going to drain.

1.4.2. Sheath solution

Now we are going to tackle the problem of finding the solution corresponding to the sheath zone. As
we saw in section 1.3, the characteristic length of the sheath zone is the Debye length. So, in order to
find the sheath solution we are going to use the variable X as defined in (1.21). Also, we are going to
consider the case of low ionisation by taking the limit δ → 0 in Eqs. (1.22).

d2ψ(X)
dX2 = 1

2
eψ(X)

(
1 + erf

(√
ψ(X) − ψp

))
+ Ji(X)

√
γ

−2ψ(X)
(1.29a)

dJi(X)
dX

= 0 ⇒ Ji(X) = Ni(X)Vi(X) = NisVis ≡ cte (1.29b)

where the subscript s is used to denote the value of variables at the sheath edge, that is, at the starting
point of the sheath or the end point of the presheath.

As we can see in Eq. (1.29b), the ion flux is constant along the sheath zone. So, as we introduced
in the previous section, the presheath is responsible for providing the ion flux required for the sheath to
be formed. Once the end point of the presheath is reached, the ion flux remains constant following the
dashed line in Fig. 1.8. This flux gives us the ion current that is drained by the metallic surface per unit
area.

20

Chapter 1. Plasmas, sheaths, probes and diagnosis

Now if we introduce the variables defined in Eqs. (1.21) into the Eq. (1.16) we obtain the following
dimensionless energy conservation law:

1
2
γV 2

i (X) + ψ(X) = 1
2
γV 2

is + ψs = 0 ⇒ Vis = −
√

−2ψs/γ (1.30)

On the other hand, the ion density should be equal to the electron density at sheath edge, as quasineut-
rality has to be fulfilled in the presheath. This leads us to:

Nis = Ne(ψs) = 1
2
eψs

(
1 + erf

(√
ψs − ψp

))
(1.31)

Finally by introducing Eq. (1.31) and Eq. (1.30) into Eq. (1.29b), and then Eq. (1.29b) into Eq.
(1.29a) we obtain the Poisson’s equation that we have to solve in order to obtain the sheath solution:

d2ψ(X)
dX2 = 1

2
eψ(X)

(
1 + erf

(√
ψ(X) − ψp

))
− 1

2
eψs

(
1 + erf

(√
ψs − ψp

))√ ψs
ψ(X)

(1.32)

Eq. (1.32) can not be solved analytically, so it has to be solved numerically. Nevertheless, it can be
integrated once in order to obtain an expresión for the squared electric field as a function of the potential.
If we multiply Eq. (1.32) by dψ, on the left hand side we obtain:

d2ψ

dX2 dψ = dX
d2ψ

dX2
dψ

dX
= dX

d

dX

[
1
2

(
dψ

dX

)2
]

= d

[
1
2

(−E)2
]

= d

(
E2

2

)
(1.33)

which can be integrated directly. The right hand side of Eq. (1.32) can also be integrated, once it
is multiplied by dψ. If we perform such integration between any point (ψ,E(ψ)) and the sheath edge
(ψs, Es = 0), the following solution for the squared electric field is found:(

−dψ(X)
dX

)2

= E2(ψ) =2eψp

√
π

(√
ψs − ψp −

√
ψ − ψp

)
+ eψ

(
1 + erf

(√
ψ − ψp

))
− · · ·

· · · − eψs

(
1 + erf

(√
ψs − ψp

))(
1 − 2

(
ψs +

√
ψsψ

)) (1.34)

In Fig. 1.9a it can be seen the right hand side of Eq. (1.34) plotted for different values of the potential
at the sheath edge, ψs. The biasing potential for the metallic surface has been chosen to be ψp = −5. In
this graph it is shown that, if the potential at the sheath edge is larger than the prediction of the Bohm
criterion, ψs > ψB = −0.5, there is a zone where the value of the squared electric field is smaller than
zero. This solutions are not physically acceptable, as they would lead to a complex electric field. So,
from Eq. (1.34), the Bohm criterion can also be found by imposing that E2

min ≥ 0.

Eq. (1.34) can not be integrated analytically in order to obtain the solution for the potential as a
function of the distance to the surface. Also, it is not easy to integrate it numerically for values ψs > ψB ,
as the numerical method can easily break apart when in the surroundings of the zone where E2(ψ) < 0 in
Fig. 1.9a. So, in order to find the potential profile, we have to solve numerically the second order ODE
given by Eq. (1.32). This equation can be transformed into the following system of first order ODEs:


dψ(X)
dX

= − E(X)

dE(X)
dX

=1
2
eψs

(
1 + erf

(√
ψs − ψp

))√ ψs
ψ(X)

− 1
2
eψ(X)

(
1 + erf

(√
ψ(X) − ψp

)) (1.35)

To solve the Cauchy problem associated with the system given by Eqs. (1.35) we need initial conditions
for both variables: the potential, and the electric field. If we consider that the metallic surface is
located at X = 0 and the plasma at some point X > 0, our initial condition for the potential would be
ψ(X = 0) = ψp. Also, once we have Eq. (1.34) it is easy to obtain the initial condition for the electric
field by substituting Ep = E(X = 0) = E(ψ = ψp).

Ep = eψp

(
2√
π

(√
ψs − ψp

)
+ 1
)

− eψs

(
1 + erf

(√
ψs − ψp

))(
1 − 2

(
ψs +

√
ψsψp

))
(1.36)

21

1.4. Contact of a plasma and a metallic surface

Now the system given by Eqs. (1.35) can be solved numerically. For that task we have used a fourth
order Runge-Kutta method (RK4). The results can be seen in Fig. 1.9b. Clearly the initial condition for
the electric field given by Eq. (1.36) depends on the potential at the sheath edge ψs. In this way we can
obtain the different solutions shown in Fig. 1.9b. In this graph we can see again that for a potential at
the sheath edge ψs > ψB = −0.5, the solutions found are not physically acceptable. The sheath can not
be developed and the perturbation introduced by the metallic surface can not be shielded.

-0.4

 0

 0.4

 0.8

 1.2

 1.6

-5 -4 -3 -2 -1 0

�
 2 (

!
)

(a) Squared electric field versus the potential as given
by Eq. (1.34).

-5

-4

-3

-2

-1

 0

 0 5 10 15 20 25
�
(�

)

(b) Electric potential distribution obtained by numer-
ical integration (RK4 method) of system (1.35).

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 5 10 15 20 25

�
(�

)

(c) Electric field distribution obtained by numerical
integration (RK4 method) of system (1.35).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25

P
ar

ti
cl

e
d
en

si
ti
es

�
�
(�)

�
�
(�)

(d) Particle densities distribution obtained by numer-
ical integration (RK4 method) of system (1.35).

Figure 1.9: Solutions of Eq. (1.32) with a biasing potential of the metallic surface ψp = −5. Sheath edge
potential as follows: solid lines ψs = ψB = −0.5, long dashes ψs = −0.4 and short dashes ψs = −0.1.

Once the system (1.35) has been solved, it is straightforward to obtain the density profiles for ions
and electrons along the sheath. This profiles can be seen in Fig. 1.9d. In this graph we can see how the
electrons are repelled and almost none of them reach the metallic surface. The ion density also decreases
as we approach the metallic surface, since ions are in free fall, but not as fast as the electron density, so
that the net positive charge in the sheath shields out the electric potential of the metallic surface. On
the other hand, as we move away from the surface the densities of both species come closer and closer
until quasineutrality is reached at the sheath edge. In Fig. 1.9c we can also see, how the electric field
becomes negligible at this point.

Finally, we have to notice one more thing from the physically acceptable sheath solution. As can
be seen in Fig. 1.9b, the potential doesn’t reach the plasma potential. As we increase X we find that

22

Chapter 1. Plasmas, sheaths, probes and diagnosis

ψ(X → ∞) → ψs. So we can say that, in the length scale of the sheath and in the low ionisation case,
the plasma is infinitely far away from the metallic surface and it can never be reached.

1.4.3. Complete solution

From the mathematical point of view, the system of Eqs. (1.23) represents a boundary layer problem.
Boundary layer theory is a collection of perturbative method for solving differential equations, or systems,
where the highest derivative is multiplied by a perturbing parameter that is very small. In the system
(1.23), it is clear that δ is the perturbing parameter. The ionisation rate is very small, in the case we
are interested of low pressure plasmas, and we can see that it multiplies the second derivative of the
electric potential. Boundary layer theory establishes that there exist narrow regions where the solution
of the differential equation changes rapidly. The width of these regions should vanish as the perturbing
parameter tends to zero, in our case δ → 0. Outside the boundary layer, or inner region, we have the
outer region, where the solution varies slowly enough in order to neglect the highest order derivative of
the problem.

What has been done in the previous sections is finding the approximate solutions corresponding to
the outer region and the boundary layer. This solutions are usually referred to as the outer solution,
which corresponds to the quasineutral solution, and the boundary layer solution or inner solution, which
corresponds to the sheath solution. Theoretically this two solutions can be asymptotically matched in
order to find a uniform or complete solution to the problem. However, in our case the solutions found do
not fulfil the criteria necessary in order to asymptotically match them.

As it is not possible to obtain the complete solution from the sheath and quasineutral solution, we have
to solve the complete system of Eqs. (1.22) with a small but not negligible δ value. This is numerically
done with the RK4 method. The solutions of this problem are shown in Fig. 1.10 for some specific δ, γ,
ψp and ψs values.

-5

-4

-3

-2

-1

 0

 0 10 20 30 40 50 60

�
(�

)

(a) Potential distribution.

-2.5 10-3

-2.0 10-3

-1.5 10-3

-1.0 10-3

-5.0 10-4

 0

-5 -4 -3 -2 -1 0

�
 (
!
)

(b) Ion flux versus potential.

Figure 1.10: Solutions of the system (1.22) with ψp = −5, ψs = −0.5, δ = 5 × 10−5 and γ = 72821.0
(Ar+). Solid lines correspond to the complete solution found by numerical integration with RK4, long
dashes correspond to the quasineutral (outer) solution, and short dashes correspond to the sheath (in-
ner/boundary layer) solution.

In Fig. 1.10a we can see how the potential goes from the values predicted by the quasineutral solution
close to the plasma, to the values predicted by the sheath solution near the metallic surface. It has to be
noticed that, the value chosen for the ionisation rate, δ = 5 × 10−5, is small but not negligible. By doing
so, it is easier to see clearly the difference between the three solutions shown in Fig. 1.10a. If the δ value
is decreased, the transition between solutions turn out to be smoother.

On the other hand, the gap between the ion flux predicted by the complete and the sheath solution
that is shown in Fig. 1.10b decreases as δ → 0. So, in the case of a collisionless plasma, where the

23

1.5. Langmuir probes and plasma diagnosis

ionisation rate is negligible, the ion flux at the metallic surface can be approximated by the value given
by the sheath solution. This fact will be important in the following section where we will introduce the
concept of Langmuir probe.

1.5. Langmuir probes and plasma diagnosis

It was back in the 1920’s when Irving Langmuir and Harold M. Mott-Smith started their work with
gaseous discharges [3–6]. In order to characterise the properties of the different discharges, they used
what they called at the time “collectors” [7]. Nowadays, such a device is usually reffered to as a Langmuir
probe. A Langmuir probe is a metallic electrode that can be biased while inserted in a plasma and
that allows us to measure the current that it collects from the plasma.

1.5.1. Different probe types

The geometry of a Langmuir probe and its biasing potential greatly affect the current it collects.
The most common geometries of a Langmuir probe are: planar, cylindrical and spherical. While the
use of Langmuir probes is widespread as a plasma diagnosing technique [8–14], the actual geometry and
dimensions of them, depend on the specific plasma where it is going to be used.

Figure 1.11: One of two spherical Lang-
muir probes on board ESA’s space vehicle
Rosetta, due for a comet. Image Credit:
ESA/Rosetta Mission/Swedish Institute
of Space Physics in Uppsala

For example, in Fig. 1.11 we can see one of the two Lang-
muir probes that where installed on board the space vehicle
of the Rosetta mission [15]. Both probes consist of identical
spheres of 2.5 cm in radius mounted on 15 cm “stubs” that
are then attached to the main body of the space vehicle.
They are made out of titanium and the goldish colour of the
probe is due to the titanium nitride (TiN) coating they have.
In the case of these probes, the spherical shape and large size
of them is explained because of the tenuous plasmas they are
designed to analyse. This device is to be used in the inter-
planetary medium, as well as in the surroundings of the earth,
mars [16] and the comet 67 P/Churyomov-Gerasimenko.

Cylindrical Langmuir probes are, probably, the most
widely used geometry, specially among laboratory, fusion and
industrial plasmas. Mostly because of their ease of manufac-
turing and theoretical modelling as infinitely long cylindrical
conductors. Also, the perturbation introduced by this kind
of probes is usually negligible. This is the geometry that
this work is centred on, and we will delve into the details of
this kind of probes in the following chapter, specifically when
they are negatively biased with respect to the plasma.

On the other hand, planar Langmuir probes are not that
common. The main disadvantage of them is that it is not
easy to neglect boundary effects, in order to model them as
an infinite planar conductor. This could be done by making
the probe large enough, compared to the Debye length. Nev-

ertheless, this approach is not always acceptable in laboratory and industrial plasmas, as it would most
likely cause an equally large perturbation in the plasma that is to be diagnosed, which is an undesirable
effect. However, there are situations where this geometry may come in handy, e. g. probes designed to
be mounted on divertor plates in fusion devices, where the probe has to overcome huge heat fluxes [17].
Anyway, fusion devices are not the only place where planar probes are used [18, 19].

Finally, for the sake of completeness, there are also probes with more complex geometries or config-
urations, which are usually designed for specific purpose. Among this category of probes we can find
ball-pen probes [20], double and triple probes [21], etc. The study of the behaviour of this kind of probes
is rather intricate, and rely on parameters such as the magnetic field, the probe orientation, etc.

24

Chapter 1. Plasmas, sheaths, probes and diagnosis

1.5.2. Current to voltage characteristic curve of a Langmuir probe

The exact shape of the current to voltage (I − V) characteristic curve of a Langmuir probe, depends
on the properties of the plasma where it is being used, as well as on the geometry and other attributes of
the probe itself. Nevertheless, the I − V characteristic curve of any Langmuir probe can be qualitatively
described as the one that appears in Fig. 1.12. The diagnosis of a plasma is based on the comparison
of the current, in one zone or point of the I − V characteristic curve, with the prediction of a particular
theoretical model. In this way, the current and biasing voltage of the probe are correlated to properties
of the plasma, as the electron density or temperature.

 0

Probe biasing potential

C
u
rr

en
t

co
ll
ec

te
d
 b

y
 t

h
e

p
ro

b
e (c)

(b)

(a)

Figure 1.12: Qualitative description of the current
to voltage characteristic curve of a Langmuir probe.
The biasing potential is measured with respect to the
plasma potential and the different zones are: (a) ion
saturation, (b) electron retarding and (c) electron
saturation.

We have to notice that, in Fig. 1.12, we have
taken as positive the current collected by the probe
due to electrons, and negative the current collec-
ted due to ions, which is a common practice among
the plasma diagnosis community. Also, there are
two biasing potentials that divide the character-
istic into three differentiated zones. The first being
the plasma potential, ψ0, which is the potential
of the bulk unperturbed plasma. In all our work
we consider this potential to be zero, which is equi-
valent to take the plasma as our reference for the
potential. So the biasing potential of the probe,
ψp, will be always considered with respect to the
plasma potential. The second is the floating po-
tential, which is the biasing potential of the probe
when the net current collected by it is zero. In this
case, the number of positive and negative charges
that reach the probe per unit of time, i. e. the
electron and ion currents, must be the same.

Now we can establish the three different zones
shown in Fig. 1.12. When the biasing potential of
the probe is higher than the plasma potential, we
are in the electron saturation zone. On the other
hand, when the biasing potential is smaller than
the plasma potential but higher than the floating
potential, we are in the electron retarding zone. And finally, when the biasing potential is smaller than
the floating potential, we are in the ion saturation zone. Let us characterise a little bit the different zones
that we have just introduced.

(a) Ion saturation zone: When the biasing potential is very negative with respect to the plasma, the
probe completely repels all the electrons coming from the plasma. Under this conditions the current
collected by the probe is only due to ions. In Fig. 1.12 it can be seen that the current collected in
this zone is very small compared to the current collected in other zones of the characteristic curve.
As the current drained from the plasma is so small, the perturbation produced in the plasma that
is being diagnosed becomes negligible. This is one of the reasons that make the use of this zone
particularly interesting in plasma diagnosis, as well as the motivation to center this work in the ion
saturation zone.
The reader may have noticed that the model we have solved in section 1.4 corresponds, precisely,
to the case of a planar Langmuir probe in the ion saturation zone. As we stated there, in the case
of low ionisation (δ → 0), the ion flux at the surface of the probe can be easily obtained from Eq.
(1.29b). So, provided that the probe is large enough to be considered as infinite, the dimensionless
ion current collected by it can be expressed as:

Ii(ψp) = −Ap
2

exp
(

−1
2

)(
1 + erf

(√
−
(

1
2

+ ψp

)))√
1
γ

(1.37)

where Ap is the probe area in λ2
D units and, obviously, the Bohm criterion has been used to fix

the potential at the sheath edge. Also, it has to be noticed that, in addition to the definitions of
dimensionless units given in (1.21), in Eq. (1.37) the electric charge is measured in e units.

25

1.5. Langmuir probes and plasma diagnosis

By analysing Eq. (1.37), it can be seen that, as ψp → −∞, a saturation value is reached because
of the asymptotic behaviour of the error function. So, the ion current collected by the probe easily
comes to a “saturation” value as long as ψp ≲ −5. This saturation current is given by:

Ii sat = −Ap
√

1
γ

exp
(

−1
2

)
(1.38)

To better understand how this expression allows us to diagnose a plasma, we can undo the change
of variables given in Eqs. (1.21) to obtain the ion saturation current collected by the probe in SI
units. By doing this, we get:

I∗
i sat = −eA∗

pne0

√
kBTe
mi

exp
(

−1
2

)
(1.39)

therefore, if we know an approximate value of the electron temperature, we can diagnose the electron
density by measuring the ion saturation current
On the other hand, in the case of cylindrical or spherical probes, there are several theoretical
models depending on how ions approach the probe. It is this multiplicity of theoretical models
which motivates this work, as they provide different values of particle densities and temperatures
and experimentalist are not always sure which one should be used. For this reason in the following
chapter we will study this models in full detail.

(b) Electron retarding zone: In this zone, the biasing potential is still negative with respect to the
plasma. So, as in the previous zone, electrons are repelled by the electrode and ions are attracted
by it. Nevertheless, in this case the probe potential is higher than the floating potential, which
means that the ion current is overtaken by the electron one. Actually, as the biasing potential is
increased over the floating potential, the electron current becomes more and more important and
the ion current can be diminished. For this reason, in the electron retarding zone the net current
collected by the probe is usually approximated by the electron current.
Because the biasing potential of the probe is still negative with respect to the plasma, the theoretical
model to explain the electron current collected in this zone is very similar, if not simpler, than the
model developed in section 1.4. If we consider that electrons are in thermal equilibrium in the
unperturbed plasma, their distribution function in the plasma is:

f(v⃗) = ne0

(
me

2πkBTe

)3/2

exp
(

−mev
2/2

kBTe

)
(1.40)

and the electron current collected by the probe is given by:

I∗
e = −eA∗

p

∫
fe(v⃗)v⊥dv⃗ (1.41)

where the asterisk means that the electron current and the probe area are to be taken in SI units,
v⊥ stands for the component of the velocity perpendicular to the surface of the probe, and the
integral has to be performed for all the values of the velocity that allow an electron to reach the
probe. It has to be noticed that Eq. (1.40) and (1.41) are independent of the geometry of the
probe, so they can be used for the case of planar, cylindrical and spherical probes.
If we consider the planar case, by the opposite argument used in order to obtain Eq. (1.12), vy and
vz can take any value while vx < −

√
−2eφp/me. So, Eq. (1.41) ends up like:

I∗
e (φp) = −eA∗

p

∫ −
√

−2φp/me

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvz fe(v⃗)vx (1.42)

and by direct integration the following expression is easily obtained:

I∗
e (φp) = −eA∗

pne0

√
kBTe
2πme

exp
(
eφp
kBTe

)
(1.43)

Eq. (1.43) provides one of the oldest methods for diagnosing the electron temperature. If the ion
current is not taken into account, by plotting the logarithm of the current collected by the probe,

26

Chapter 1. Plasmas, sheaths, probes and diagnosis

the electron temperature can be obtained from the slope. Another method for the diagnose of the
electron temperature is to measure the floating potential, which in the case of maxwellian electrons
can be evaluated as:

φp = −kBTe
2e

ln
(

1
2πχ2

mi

me

)
(1.44)

where χ is a coefficient around 0.6 [22].
One of the main advantages of this zone is that it can be used to obtain the electron energy
distribution function (EEDF). This is done by substituting the velocity distribution function of Eq.
(1.41) by its energy counterpart.

(c) Electron saturation zone: Finally, when the biasing potential of the probe is higher than the
plasma potential, the probe changes its behaviour and repels positive charges, i. e. ions, and
attracts negative charges, i. e. electrons. If we neglected the ion current in the previous zone,
under this conditions, we have more reasons to do the same, so the probe current is completely due
to electrons.
The electron current collected by the probe in this zone can be modelled exactly the same that it
was done for ions in the ion saturation zone. The only precaution that has to be considered is to
interchange the equation of ions and electrons, as now they behave the opposite way. So, all the
expressions obtained for the ion saturation zone are the same for this zone, as long as we use the
parameters corresponding to the electrons instead of the ion ones and the other way around.
The starting point of this zone is determined by the plasma potential, which can be obtained by
finding the inflection point in the I − V characteristic shown in Fig. 1.12.

1.6. Conclusion

In this chapter we have covered the basic fundaments of our research. We have started with the
definition of what a plasma is, and what are the properties it should fulfil in order to be considered as
a plasma. Later on, we have described the problem of the contact of a metallic surface with a plasma,
which allowed us to introduce the sheath, quasineutral and complete solutions. The boundary layer
structure of the problem, that was shown there, results in one of the main complexities of the study of
the plasma-surface interaction from a fluid perspective. Finally, we have defined what a Langmuir probe
is and how its I − V characteristic curve can be used to diagnose a plasma. The different zones in the
characteristic curve have been described and a few expressions to evaluate the current drained by the
probe have been given.

In the following chapter, our interest will be focused on the study of the ion current collected by a
cylindrical Langmuir probe in the ion saturation zone.

27

Chapter 2

Theories of the ion current collected
by a cylindrical probe

2.1. Introduction

When a Langmuir probe is negatively biased with respect to the plasma, it repels negative charges
and attracts positive ones. Actually, when the biasing potential is low enough, i. e. φp ≪ −kBTe/e, we
enter what is called the ion saturation zone of the I −V characteristic curve of the probe (see Fig. 1.12).
Under this conditions, as it has been previously stated, positive ions are the only kind of particle that
contribute to the current collected by the probe.

In order to use the I−V characteristic curve to diagnose plasma parameters, a theoretical model that
predicts the current collected by the probe is needed. In the ion saturation zone, we only need to know
the ion current collected by the probe. In the present chapter we are going to tackle this problem, and
during the following sections we will review the different models that predict ion current which have been
developed along the history, as well as their range of applicability. Our review is going to be focussed on
models of the ion current collected by cylindrical Langmuir probes.

2.2. Ion saturation zone and cylindrical probes. Why?

In the previous chapter we introduced the I − V characteristic curve of a Langmuir probe as well
as the different zones in it. Those zones can be seen in Fig. 1.12 along with the two biasing potentials
that divide the characteristic: the floating potential, ψf = φfe/kBTe, and the plasma potential, ψ0 = 0.
There, it is highlighted that the main difference between the ion and electron saturation zones of the
characteristic curve, is that the absolute value of the current collected is much smaller in the former than
the latter. From now on, our study will be centred on the ion saturation zone, that is ψp < ψf , but why?

The main reason behind the use of the ion saturation zone for diagnosing a plasma is, precisely, that
the current collected in this zone is almost negligible when compared with the current collected in the
electron saturation zone of the characteristic. For that reason, the perturbation introduced into the
plasmas, as a consequence of the current drained from it by the probe, is minimum. The huge difference
between the ion saturation current and the electron one can be explained because of the, also huge, mass
ratio between ions and electrons, mi/me ≫ 1. Let us explain this more in depth.

The current collected by the probe due to each of the species is directly proportional to the product
of the number density of particles reaching the probe by the mean velocity with which they reach it,
I ∝ npvp. While the number density of ions and electrons reaching the probe, in their respective
saturation zones of the characteristic, is of the same order of magnitud due to the charge neutrality, the
mean velocity with which they arrive is not. This velocity can be estimated as vp ≃

√
2E/m, where E

is the mean energy the particles have when reaching the probe. This energy is, in turn, proportional to
the biasing potential of the probe, whose absolute value is also of the same order of magnitud in the ion
and electron saturation zones. So, finally, the ion to electron saturation current ratio can be estimated

29

2.2. Ion saturation zone and cylindrical probes. Why?

as Ie sat/Ii sat ≃
√
mi/me. Once we know that, considering the case of the lightest possible ions, i.

e. hydrogen ions, the mass ratio would be mi/me ≃ 2000 and the saturation current ratio would be
Ie sat/Ii sat ≃ 45.

It has to be noticed that, the fact that the ion current is so small, represents a challenge from the
experimental point of view. When dealing with such small currents, the noise introduced by the plasma
or other components of the experimental setup, could easily overcome the signal which is being measured.
For that reason, special care it is needed to be taken in order to maintain the noise floor low enough.
Moreover, smoothing techniques [23] could be required prior to the analysis of the experimental data.

The second question to face is, why to center our study in Langmuir probes with cylindrical geometry.
Actually, there are two reasons for that. On the one hand, such a geometry is one of the most popular
across different kind of plasmas because of their convenience and ease of manufacturing. Besides, this
geometry has been and still is extensively used by the research group where I have developed the present
study in the laboratories of the University of Córdoba. In Fig. 2.1 it can be seen both, the design and
actual implementation of the Langmuir probes we use in our experimental setups.

Aluminium

Teflon

Pirex tube

1mm OD
Pirex tube

0.2mm D
Tungsten wire

(a) Design of the probe (b) Actual probe inside plasma chamber

Figure 2.1: Cylindrical Langmuir probe used by the Electronegative Plasmas research group of the
University of Córdoba. Design and actual implementation of the probe has been carried out by the
group. Images credit: Grupo de Plasmas Electronegativos (TEP-230), Universidad de Córdoba.

On the other hand, we are also interested in the cylindrical geometry because of the lack of consensus
among researchers about which theoretical model should be used to perform the diagnosis. As we will see
in the following sections, there are two main approaches to study the ion current collected by a cylindrical
probe. The first approach is to assume that ions fall towards the probe by following orbital trajectories
around it, meaning that some of the ions could orbit around the probe and go back to the plasma, and
thus, not contributing to the collected current. The other approach is to assume that, positive ions move
by following a radial trajectory towards the probe and none of them could orbit it. In Fig. 2.2 the
difference between both theories can be seen graphically.

Obviously, depending on the model used to perform the diagnosis, different results are obtained. So,
this ambiguity is an important problem that still needs to be addressed in Langmuir probe theory, in order
to obtain the proper values of the diagnosed magnitudes. During the past, experimentalist have found
measurements in good agreement with both radial and orbital theories and, more important, recently
a transition between the two theories has been found. All these facts suggest that, a good theoretical
model for the ion current collected by a cylindrical probe, should be somewhere in between the radial
and orbital theories, being those two limiting cases recovered under certain conditions.

Finally, let us define a little bit better the boundaries of the ion saturation zone. In Fig. 1.12 we can
see that the ion saturation zone starts as soon as ψp < ψf . The value of the floating potential depends on
the geometry of the electrode and the plasma conditions, but in most cases and models it ranges between

30

Chapter 2. Theories of the ion current collected by a cylindrical probe

Plasma

Probe

(a) Radial theories

Plasma

Probe

(b) Orbital theories

Figure 2.2: Graphic visualization of the radial vs orbital probe theories as seen from a cut perpendicular
to the axis of a cylindrical probe.

ψf = −3 and ψf = −4. But if the biasing potential is just slightly smaller than the floating potential,
it is possible that a few electrons reach the probe and contribute to the collected current. This could be
seen in Fig. 1.9d for the case of a planar probe, there we can see that the number of electrons reaching
the probe is almost but not exactly zero, when the probe potential is ψp = −5. For that reason, when
the diagnose is to be performed in the ion saturation zone, the maximum potential to which the probe is
biased must fulfil the condition ψp ≪ ψf . Under this condition, we can be sure that the current collected
by the probe is completely and exclusively due to ions. So, a typically safe value would be ψp ≤ −10.

We have stablished the maximum value for ψp, but what about its minimum value? In the previous
chapter we stated that, theoretically, the current collected by the probe should rapidly reach a saturation
value as ψp → −∞. Nevertheless, experimentalist find that this saturation value is never reached, and ion
current keeps increasing. The problem is that, as the biasing potential becomes more and more negative,
the energy with which ions impact the surface of the probe is increased. When ions reach a certain
energy at the impact with the probe, secondary emission of electrons from the probe may take place and,
obviously, the withdrawal of electrons from the probe computes as ion current. For that reason, when
the biasing potential is negative enough, the current due to the secondary emission of electrons appears
superimposed over the ion saturation current. From the experimental point of view, typically safe values
for the biasing potential, in order to avoid secondary emission current, would be ψp ≥ −50.

We have to notice that, although this work is devoted to the theoretical study of Langmuir probes,
we have made the aforementioned remarks about the boundaries of the ion saturation zone in order to
clarify some of the working hypotheses of the theories that we are going to discuss. Now, without further
ado, let us proceed with the review of the different models of the ion current collected by cylindrical
probes. The next section will be devoted to the orbital theories.

2.3. Orbital theories of the ion current collected by a cylindrical
probe

We refer to orbital theories as the ones where the orbital motion of ions around the probe is allowed.
The first orbital theory of the ion current collected by a probe was developed in 1926 by Harold M.
Mott-Smith and Irving Langmuir [7]. This was also the first probe theory at all, and stablished the
starting point of the plasma diagnosing techniques with Langmuir probes. The theory was developed for
cylindrical and spherical probes. This was a very basic model which only considered conservation laws.
Later on, in 1959, Ira B. Bernstein and Irving N. Rabinowitz [24] extended the theory of Mott-Smith and

31

2.3. Orbital theories of the ion current collected by a cylindrical probe

Langmuir in order to take into account the specific shape of the electric potential distribution across the
sheath. They performed a meticulous classification of all the posible trajectories that ions can follow in
their fall to the probe, and particularised their model for the case of monoenergetic ions. Finally, in 1967,
James G. Laframboise [25] extended again the orbital theory by considering the more realistic case of a
fully Maxwellian plasma. He performed the most thorough study about Langmuir probes at the time.
He found complete I−V characteristic curves for the cylindrical and spherical cases, for different plasma
conditions and probe sizes.

2.3.1. Mott-Smith and Langmuir model

The theory of Mott-Smith and Langmuir was developed in 1926 [7]. Their aim was to obtain the
current collected by probes when biased at a certain potential, without taking into account the particular
shape of the potential profile between the plasma and the probe. That is why no differentiation were
made between sheath and presheath, as we have made in the previous chapter. At that time, it was
considered that between the probe and the plasma a sheath needs to be developed, in order to shield the
biasing potential of the probe, but at the sheath edge plasma conditions are fulfilled.

Within that framework, Mott-Smith and Langmuir considered a few general assumptions about the
plasma and the probe, and developed their theoretical model by considering only conservation laws. The
working hypotheses in which the model relies are the following:

The characteristics of ions and electrons at the sheath edge are known. In particular their densities
and distribution functions.

The smallest mean free path is much larger than the Debye length, that is, collisions do not occur
inside the sheath. This condition is usually fulfilled in low pressure and low temperature plasmas.

The biasing potential of the probe is large compared to the plasma potential.

The surface of the probe is perfectly absorbent, meaning that any particle that reach it is absorbed.
So, particles do not bounce off the surface and no secondary emission occurs.

The perturbation produced by the probe in the plasma is negligible.

Plasma

Probe

r
p

r
s

u
p

v
p

u
s

v
s

Sheath

Figure 2.3: Diagram of the Mott-Smith and Lang-
muir model for a cylindrical probe as seen from
above.

In their original work, Mott-Smith and Lang-
muir studied not only the cylindrical geometry but
the spherical and planar cases. Nevertheless, we
are going to consider only cylindrical probes. In
any case, the reasonings we are going to use can
be easily extrapolated to other geometries. One
last consideration that has to be made in the case
of cylindrical geometry, is that the probe must be
long enough, L ≫ rp, in order to avoid end cor-
rections and to be able to consider it as an infinite
cylinder.

Let us start with the conservation laws that
are going to be considered, which are the conser-
vation of energy and the conservation of angular
momentum, both for ions. Those laws can be writ-
ten in the following way:

E = 1
2
mi(u2 + v2 + w2) + eφ(r) = cte (2.1a)

J = mivr = cte (2.1b)

u, v and w being the components of the velocity
of ions in cylindrical coordinates and r their radial
position with respect to the axis of the probe. In
Fig. 2.3 a transverse section of the probe can be

32

Chapter 2. Theories of the ion current collected by a cylindrical probe

seen. There, it is shown that u, v and w are the radial, azimuthal and axial components of the velocity
respectively. Also, we are going to denote the values of different magnitudes at the sheath edge by an
“s” subscript, and the values at the probe surface by a “p” subscript.

As we said, we are considering that the velocity distribution function for ions normalised to the ion
density, f(u, v, w), is known at the sheath edge. That is, f(us, vs, ws)dusdvsdws is the average density
of ions at the sheath edge with velocities us ∈ [us, us + dus], vs ∈ [vs, vs + dvs] and ws ∈ [ws, ws + dws].
Once we know that, it is clear that the ion flux crossing the sheath edge (dashed line in Fig. 2.3) with
velocities in the previously said range, can be evaluated as f(us, vs, ws)usdusdvsdws. So, the ion current
that crosses the sheath edge is given by:

dIi = e2πrsLf(us, vs, ws)usdusdvsdws (2.2)

Eq. (2.2) gives the differential current due to ions with us ∈ [us, us + dus], vs ∈ [vs, vs + dvs] and
ws ∈ [ws, ws + dws]. To obtain the total current Eq. (2.2) must be integrated with certain limits of
integration for the velocity components. As we are interested in the ion current collected by the probe,
conditions for ions at the sheath edge that are going to reach the probe should be found.

On the one hand, if an ion at the sheath edge is meant to reach the probe, it must move towards it.
So, its radial velocity at the sheath edge must be positive, that is 0 ≤ us < ∞. Also, provided that the
probe is long enough, ions can have any value of the axial component of the velocity, so, −∞ < ws < ∞.
On the other hand, depending on the value of vs, ions will follow an orbital trajectory that ends up at
the surface of the probe, as the one shown in Fig. 2.3, or they will orbit around it and go back into the
plasma. In order to find the condition that vs must fulfil, we are going to rewrite Eqs. (2.1) between the
sheath edge and the surface of the probe:

1
2
mi(u2

s + v2
s + w2

s) + eφs = 1
2
mi(u2

p + v2
p + w2

p) + eφp (2.3a)

mivsrs = mivprp (2.3b)

where φp is the biasing potential of the probe and φs is the potential at the sheath edge. As the plasma
conditions must be recovered at the sheath edge, φs is equal to the plasma potential, which we are going
to take as a reference potential, so φs = φ0 = 0. Also, as the electric potential only depends on the radial
distance to the probe, there are no forces on the axial direction, so ws = wp. Now, Eqs. (2.3) can be
transformed into:

u2
p = u2

s + v2
s − v2

p − 2eφp
mi

(2.4a)

vp = vs
rs
rp

(2.4b)

Now, if we take Eq. (2.4b) into Eq. (2.4a) and solve for u2
p we have:

u2
p = u2

s + v2
s

(
1 − r2

s

r2
p

)
− 2eφp

mi
(2.5)

We know that, in order for an ion to reach the surface of the probe, the condition up ≥ 0 must be fulfilled.
So, Eq. (2.5) gives us:

u2
s + v2

s

(
1 − r2

s

r2
p

)
− 2eφp

mi
≥ 0 (2.6)

Finally, by solving Eq. (2.6) for vs we can obtain the following integration limits:

0 ≤ us < ∞ ; −∞ < ws < ∞ ; −

√
r2
p

r2
s − r2

p

(
u2
s − 2eφp

mi

)
︸ ︷︷ ︸

= v0

≤ vs ≤

√
r2
p

r2
s − r2

p

(
u2
s − 2eφp

mi

)
︸ ︷︷ ︸

= v0

(2.7)

Once we have the proper integration limits, we can integrate Eq. (2.2) in order to obtain the ion
current collected by the probe as:

Ii = e2πrsL
∫ ∞

0
dus

∫ v0

−v0

dvs

∫ ∞

−∞
dwsf(us, vs, ws)us (2.8)

33

2.3. Orbital theories of the ion current collected by a cylindrical probe

where v0 =

√
r2
p

r2
s − r2

p

(
u2
s − 2eφp

mi

)
.

In their original study, Mott-Smith and Langmuir solved Eq. (2.8) for different distribution functions,
including monoenergetic, Maxwellian and Maxwellian with a drift velocity. Nevertheless, here were are
going to solve it for the most relevant case of Maxwellian ions. If Maxwellian ions are assumed at the
sheath edge, then:

f(us, vs, ws) = nis

(
mi

2πkBTi

)3/2

exp
(

− mi

2kBTi
(u2
s + v2

s + w2
s)
)

(2.9)

nis being the ion density at the sheath edge, which is supposed to be the same that the ion density at
the plasma, nis = ni0. Also, Ti is the ion temperature at the plasma. By taking Eq. (2.9) into Eq. (2.8)
and integrating, yields:

Ii = e2πrpLni0
√
kBTi
2πmi

[
exp

(
− eφp
kBTi

)
erfc

(√
− r2

s

r2
s − r2

p

eφp
kBTi

)

+ rs
rp

(
1 − erfc

(√
−

r2
p

r2
s − r2

p

eφp
kBTi

))] (2.10)

where, erfc (x) = 2√
π

∫∞
x
e−t2dt, is the complementary error function.

Eq. (2.10) gives us finally the ion current collected by a probe as a function of its biasing potential.
The problem is that this expression is not very useful, as it depends on the position where the sheath
edge is located, rs, which is a parameter that is not known. For this reason, usually, two limiting cases
are considered instead of the general equation. Those two limiting cases, which can be schematically
shown in Fig. 2.4, are known as Thin Sheath Limit (TSL) and Orbital Motion Limit (OML). In them,
the size of the sheath is considered either, very small or large, when compared to the radius of the probe.

Plasma

Probe

r
p

r
s

(a) TSL: rs ≃ rp ⇔ rp ≫ λD

Plasma

Probe

r
p

r
s

(b) OML: rs ≫ rp ⇔ rp ≪ λD

Figure 2.4: Graphic visualization of the Thin Sheath Limit (TSL) and Orbital Motion Limit (OML) of
Eq. (2.10).

Now, let us discuss briefly the two approximations of the Mott-Smith and Langmuir theory.

Thin Sheath Limit (TSL)

In this case, the sheath surrounding the probe is considered very small compared to the probe
radius. As can be seen in Fig. 2.4a, this implies that the position where the sheath edge is

34

Chapter 2. Theories of the ion current collected by a cylindrical probe

located is comparable to the position of the surface of the probe, rs ≃ rp. Also, even though
we do not know the actual size of the sheath, and consequently the position of the sheath
edge, we do know that its order of magnitude is several times the Debye length. So, the usual
condition imposed when considering the TSL is rp ≫ λD. Under this condition, it is clear
that r2

s − r2
p ≃ 0 and rs/rp ≃ 1. Introducing these approximations into Eq. (2.10), we observe

that the arguments of the complementary error functions go to infinity, so erfc (x → ∞) ≃ 0,
obtaining the current collected by the probe in the TSL as:

Ii = e2πrpLni0
√
kBTi
2πmi

(2.11)

If we analyse Eq. (2.11), we can see that this current is independent of the biasing potential of
the probe, and corresponds to the current due to the thermal flux of ions that cross the sheath
edge. This is reasonable, as the small size of the sheath implies that all the particles that cross
the sheath edge are going to reach the probe (see Fig. 2.4a).

Orbital Motion Limit (OML)

In this case, contrary to the TSL, the length of the sheath surrounding the probe is considered
much larger than its radius. Also, it can be seen in Fig. 2.4b that this situation implies that
the positions of the sheath edge and the surface of the probe verify the condition rs ≫ rp. For
the same reasons given in the TSL, the previous condition is equivalent to rp ≪ λD. So, under
this approximation, it can be assumed that r2

s − r2
p ≃ r2

s , and Eq. (2.10) can be transformed
into:

Ii = e2πrpLni0
√
kBTi
2πmi

[
exp

(
− eφp
kBTi

)
erfc

(√
− eφp
kBTi

)

+ rs
rp

1 − erfc

√−
r2
p

r2
s

eφp
kBTi

 (2.12)

Eq. (2.12) is simpler that Eq. (2.10) but still depends on the parameter rs, so we need to take
the simplification one step further. Let us consider the Taylor expansion of the complementary
error function about x = 0:

erfc (x → 0) = 1 − 2x√
π

+ O
(
x3) (2.13)

Now, in the OML we have that r2
p/r

2
s → 0, so the second complementary error function that

appears in Eq. (2.12) can be expanded by using Eq. (2.13) in order to obtain:

Ii = e2πrpLni0
√
kBTi
2πmi

[
exp

(
− eφp
kBTi

)
erfc

(√
− eφp
kBTi

)
+ 2√

π

√
− eφp
kBTi

]
(2.14)

Eq. (2.14) gives us an analytical expression for the ion current collected by the probe in the
OML that is independent of the position of the sheath edge. The problem with this expression
is that it is not very practical, due to the complex dependence of Ii on φp, when it comes to
fit experimental data in order to diagnose a plasma. For this reason a simplified version of Eq.
(2.14) is desirable. In order to obtain such a simplified versión we consider the, otherwise usual,
case of |eφp| ≥ 2kBTi. When under this conditions, the following asymptotical series expansion
of the complementary error function [26] can be used:

erfc (x ̸= 0) = e−x2
[

1√
π

1
x

+ O
(

1
x3

)]
(2.15)

and by introducing this approximation into Eq. (2.14) we get:

Ii = e2πrpLni0
√
kBTi
2πmi

 1√
π

1√
− eφp

kBTi

+ 2√
π

√
− eφp
kBTi

 (2.16)

35

2.3. Orbital theories of the ion current collected by a cylindrical probe

Now, if Eq. (2.16) is squared:

I2
i =

(
e2πrpLni0

√
kBTi
2πmi

)2
 1
π�

�
��>

≃ 0
1

− eφp

kBTi

+ 4
π

(
− eφp
kBTi

)
+ 4
π

 (2.17)

And finally, we can obtain the expression that is commonly used when diagnosing a plasma
with the OML theory. We have to notice that, contrary to the TSL, now the current depends
on the biasing potential of the probe.

Ii = 4erpLni0
√
kBTi
2mi

√
1 − eφp

kBTi
(2.18)

As it is obvious from Eq. (2.18), the diagnose with this theory is performed by a linear fit of
the I2

i versus φp data.

The model of Mott-Smith and Langmuir, even though being the first to be developed and rather
simple, it retains most of the physics of the problem and produces results in reasonable agreement when
the required conditions are met. As mentioned before, it was also developed for different geometries and
distribution functions. However, there are two main problems that this model presents.

The first is that I −V characteristic curves are known to depend on the electron temperature even in
the ion saturation zone, while the expressions found by Mott-Smith and Langmuir do not. This deficiency
was partially solved by a subsequent model proposed by Bhom, Burhop and Massey in 1949 [27]. There,
Bhom et al. developed a model of a spherical probe in the TSL approximation considering the influence
of electrons. Nevertheless, because of the TSL approximation, their results lacked the dependence of the
current on the biasing potential of the probe.

The second problem is that the current collected by the probe is assumed to be independent of the
specific shape of the electric potential distribution across the sheath. The solution for this problem was
firstly approached by Ira B. Bernstein and Irving N. Rabinowitz, whose theory we are going to review
next.

2.3.2. Bernstein and Rabinowitz model

Bernstein and Rabinowitz developed their model in 1959 [24]. They basically extended the theory
of Mott-Smith and Langmuir by considering the shape of the electric potential across the sheath. In
order to do that, they solved the appropriate Boltzmann’s equation, yielding the particle density and
flux as functionals of the electrostatic potential profile. Once the particle density is known, the electric
potential can be found by using Poisson’s equation. They solved this problem for spherical and cylindrical
geometries, and for ions with a general distribution function, f(v⃗), at the plasma. They also considered
ions with any degree of ionisation. Finally, they particularised their result for a monoenergetic distribution
function for ions, and obtained the corresponding I − V characteristic curves numerically. Here we are
going to restrict our review for the case of cylindrical geometry as well as singly ionised ions.

The model of Bernstein and Rabinowitz is not that much different than the one developed by Mott-
Smith and Langmuir. They started with pretty much the same working hypotheses and stated that the
problem of determining the probe characteristic can be reduced to solve the collisionless Boltzmann’s
equation:

df

dt
= v⃗ · ∇⃗f − e

mi
∇⃗φ · ∇⃗vf = 0 (2.19)

along with Poisson’s equation:

∇2φ = −e
ε0

(ni − ne) (2.20)

strictly in the region rp < r < rs. Where rp and rs are taken from the notation previously used. Also,
f ≡ f(r⃗, v⃗), is the density distribution function in position and velocity space for ions. Eq. (2.19) states
that, in the absence of collisions, the distribution function is constant along an ion trajectory in the
phase space. The ion number density and flux can be evaluated at any point by performing the following

36

Chapter 2. Theories of the ion current collected by a cylindrical probe

integrals with proper integration limits:

ni(r⃗) =
∫
d3v⃗ f (2.21)

Γ⃗(r⃗) =
∫
d3v⃗ f v⃗ (2.22)

Although Eq. (2.21) and Eq. (2.22) represent the same approach that we used in the model of Mott-
Smith and Langmuir, the difference in the Bernstein and Rabinowitz theory lies in the way the different
trajectories of ions are analysed, considering the shape of the potential in order to find the limits of
integration. Let us start, like in the previous model, by considering the conservation laws of energy and
angular momentum around the axis of the probe:

E⊥ = 1
2
mi(u2 + v2) + eφ(r) (2.23a)

E∥ = 1
2
miw

2 (2.23b)

J = mivr (2.23c)

It has to be noticed that Eqs. (2.23) are the same than Eqs. (2.1), apart from the fact that Eq. (2.1a)
has been split into Eq. (2.23a) and Eq. (2.23b), in order to isolate the axial motion of ions along the axis
of the probe. Now, if we invert Eqs. (2.23) we get:

u = ±
[

2
mi

(E⊥ − eφ(r)) − J2

m2
i r

2

]1/2

(2.24a)

w = ±
[2E∥

mi

]1/2

(2.24b)

v = J

mir
(2.24c)

Eqs. (2.24) allow us to write the distribution function for ions as a function of the three constants
of motion defined in Eqs. (2.23), that is f ≡ f(E⊥, E∥, J), instead of f(u, v, w). This ostensibly simple
change of variables in the distribution function, allows us to find the proper limits of integration for Eq.
(2.21) and Eq. (2.22) in terms of the energy and angular momentum of ions as well as the electric potential.
But, before analysing the orbits of ions in order to define the aforementioned limits of integration, we
shall notice that the distribution f(E⊥, E∥, J) can be decomposed into four terms as:

f(E⊥, E∥, J) = f+(E⊥, E∥, J) + f−(E⊥, E∥, J) + f†(E⊥, E∥, J) + f‡(E⊥, E∥, J) (2.25)

where f+ corresponds to u > 0, f− to u < 0, f† to w > 0 and f‡ to w < 0. Nevertheless, because of
symmetry reasons, the distribution function is not sensitive to the sing of the axial velocity, w. So, the
decomposition of f(E⊥, E∥, J) can be simplified as:

f(E⊥, E∥, J) = f+(E⊥, E∥, J) + f−(E⊥, E∥, J) (2.26)

On the other hand, as the probe is assumed to be perfectly absorbing, there are ions approaching the
probe, that is with u > 0, that never go back into the plasma with u < 0. So, in general, f+(E⊥, E∥, J) ̸=
f−(E⊥, E∥, J).

The next step that Bernstein and Rabinowitz took was to carefully classify all the posible orbits that
ions can follow. This analysis was carried out in terms of the effective potential energy:

U(r, J) = eφ(r) + J2

2mir2 (2.27)

which governs the radial motion of ions. In Fig. 2.5a the dependence of this effective potential on the
radial distance to the axis of the probe, r, can be seen schematically for different J2 values. The curves
shown in Fig. 2.5a have been drawn according to the following assumptions:

37

2.3. Orbital theories of the ion current collected by a cylindrical probe

1. For small r values, r2φ(r) tends to zero as r decreases. This implies that for small r the centrifugal
term dominates over the electric potential.

2. For large r values, the asymptotic behaviour of the potential is:

φ(r → ∞) ∼ cte

r2 = − J2
0

2mir2e
(2.28)

which determines the asymptotic behaviour of the curves U(r, J).

U
 (

r
)

r

�
1

2

�
2

2

�
4

2

�
�

2

�
3

2

�
�

2

� �

�
�

�
3

�
2

�

*

(a) Diagram of the effective potential energy of ions as
given by Eq. (2.27).

�
 2

r

�
!

2

�
0

2

�
"

2

(b) Diagram of the location of the extrema of U as given
by Eq. (2.29)

Figure 2.5: Classification of orbits in term of the
effective potential energy of ions around a cylindrical
probe

The qualitative behaviour of the effective po-
tential can be readily seen in Fig. 2.5a. For large
values of the angular momentum, the centrifu-
gal term, which decreases monotonically with r,
dominates over the electric potential everywhere,
which increases monotonically with r. So, for large
J2 values, the associated effective potential, U , de-
creases monotonically to zero. In Fig. 2.5a it can
also be seen that when J2 decreases, the new U
curve lies below the old one. This fact can be
probed by observing Eq. (2.27), where we can
see that (∂U/∂J2)r ≥ 0. The effective potential
curves retain their monotonic decreasing charac-
ter until a critical value J2

c is reached for the an-
gular momentum. If a slightly smaller J2 value
is considered, the U curves exhibit an inflection
point with a minimum to its left and a maximum
at some larger r value. Finally, if the J2 value is
further decreased and drops below J2

0 , as given by
Eq. (2.28), the behaviour of U for larger r values
is ruled by the electric potential, and the curves
exhibit only a minimum, past which they increase
monotonically to zero.

The location of the extrema of the effective
potential can be found by solving the equation
(∂U/∂r)J = 0. Or, by considering Eq. (2.27):

J2 = mir
3e
dφ(r)
dr

(2.29)

Eq. (2.29) can also be used to determine a
critical radius, rc, such that if the probe radius is
smaller than it (i. e. r = rd as shown in Fig.
2.5a), then there exist orbits which do not cut
the surface of the probe and are radially bounded.
For instance, in Fig. 2.5a one of those orbits
is shown, it is the trajectory corresponding to a
particle with angular momentum J2 and energy
E∗ = U(a, J2) = U(b, J2), where a and b represent
the turning points of the trajectory. However infre-
quent, collisions determine the population of ions
on such orbits, thus this quantity is not easy to
evaluate. For this reason, in order to simplify the
problem, probe radii greater than rc are only to be
considered. By assuming rp ≥ rc the possibility of
the existence of such trapped ions is avoided, since

all the extrema found to the right of rc are relative maximums (see Fig. 2.5b) and thus do not allow such
orbits.

Fig. 2.5b shows the definition of J2
p = mir

3
pe(dφ(r)/dr)rp

, which is the square of the angular mo-
mentum associated with the effective potential curve which has its maximum precisely at r = rp. Then,

38

Chapter 2. Theories of the ion current collected by a cylindrical probe

ions with angular momentum J2 ≥ J2
p will be absorbed by the probe if E⊥ ≥ U(rp, J), otherwise they

will be reflected at some larger radius. On the other hand, if their angular momentum is J2 < J2
p , they

will be absorbed if E⊥ is greater than the maximum value of U , which lies at some r > rp. We have just
stablished graphically the limits of integration needed in order to evaluate Eq. (2.21) and Eq. (2.22),
but, let us define them in a more mathematical fashion. We are going to start by defining the curve
J2 = G(E⊥) as a function in the J2 − E⊥ phase space.

J2 = G(E⊥) =


2mir

2
p(E⊥ − eφ(rp)) ; J2 ≥ J2

p

2mir
2(E⊥ − eφ(r))

J2 = mir
3e
dφ(r)
dr

 ; J2 < J2
p

(2.30)

In Fig. 2.6 a sketched diagram of the function J2 = G(E⊥) can be seen. There, the white zone,
denoted as A, corresponds to orbits where ions are absorbed by the probe, as their value of E⊥ is larger
than, either the maximum of the effective potential or the effective potential at the surface of the probe.
For this reason, in the A zone, we have that f+(E⊥, E∥, J) = 0 and f−(E⊥, E∥, J) = f(E⊥, E∥, J).

�
↥

J 2

A B

C

D

2
="(�↥)

�↥=U(#,

2
)

Figure 2.6: Diagram of the limits of integration for
Eq. (2.20) and Eq. (2.21) in the E, J2 phase space.

Now, at any point, r, the radial kinetic energy
miu

2/2 = E⊥ − U(r, J) ≥ 0. The straight line
E⊥ = U(r, J) = eφ(r) + J2/2mir

2 can also be
seen in Fig. 2.6. Obviously, the zone to the right
of it, denoted as B, is excluded. Ions with orbits
which fall into the B zone would lead to a com-
plex radial velocity. So, in the B zone we have
that f(E⊥, E∥, J) = 0. The line E⊥ = U(r, J2)
is tangent to the curve J2 = G(E⊥) at the point
where J2 = mir

3e(dφ(r)/dr), which is the point
of the maximum in the corresponding effective po-
tential curve.

Finally, there are two more zones that we need
to analyse, both of which correspond to orbits that
have a turning point to the left or to the right
of the maximum of the effective potential curve.
The zone denoted as D corresponds to ions with
orbits which have a turning point to the left of this
maximum. Obviously such ions should come from
the probe, but as we have previously stated, the
probe is perfectly absorbent, so it is not possible
for such ions to exist. For this reason, the D zone
is also excluded and f(E⊥, E∥, J) = 0 in it. On the other hand, the zone denoted as C corresponds
to ions with orbits that have a turning point to the right of the maximum of the U(r, J) curve. Such
ions come from r → ∞ and reach a turning point at a position r > rp. This kind of ions approach the
probe but never reach it, instead they go back into the plasma, and for this reason f+(E⊥, E∥, J) =
f−(E⊥, E∥, J) = 1

2f(E⊥, E∥, J) inside the C zone.

Now that we have classified all the posible orbits of ions, we can proceed to the integration of Eq.
(2.21) and Eq. (2.22). We shall notice that, in the integration of Eq. (2.22) we are only interested in
particles that reach the probe, as we want to evaluate the current collected by it. So, the integration of
Eq. (2.22) must be restricted to the zone A. Contrary, in the integration of Eq. (2.21) we are interested
in the density of ions at any point r ≥ rp in order to introduce that result into Poisson’s equation, so,
the integration of Eq. (2.21) must be performed in the zones A and C.

Before carrying out the integration, it has to be noticed that, after the change of variables (u, v, w) →
(E⊥, E∥, J), the Jacobian of the transformation is needed. This is easily evaluated from Eq. (2.24) and
yields the result shown in Eq. (2.31).

39

2.3. Orbital theories of the ion current collected by a cylindrical probe

J (E⊥, E∥, J) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂u

∂E⊥

∂u

∂E∥

∂u

∂J
∂v

∂E⊥

∂v

∂E∥

∂v

∂J
∂w

∂E⊥

∂w

∂E∥

∂w

∂J

∣∣∣∣∣∣∣∣∣∣∣∣
= 1√

2miE∥

1
mi

√
2mir2(E⊥ − eφ(r)) − J2

(2.31)

Also, it is plausible to assume that the particle distribution functions are independent of the sing of v
and w. By taking into account this last consideration, along with Eq. (2.31), we can write Eq. (2.21) as:

ni(r) = 2
∫ ∞

0
dE∥

∫ ∞

0
dE⊥

∫ √
G(E⊥)

0
dJ

·
f−(E⊥, E∥, J)√

2miE∥mi

√
2mir2(E⊥ − eφ(r)) − J2

+ 2
∫ ∞

0
dE∥

∫ ∞

eφ(r)+(er/2)(dφ(r)/dr)
dE⊥

∫ √
2mir2(E⊥−eφ(r))

√
G(E⊥)

dJ

·
2f−(E⊥, E∥, J)√

2miE∥mi

√
2mir2(E⊥ − eφ(r)) − J2

(2.32)

and Eq. (2.22) as:

Γ⃗(r) = −e⃗r2
1

m2
i r

∫ ∞

0
dE∥

∫ ∞

0
dE⊥

∫ √
G(E⊥)

0
dJ

2f−(E⊥, E∥, J)√
2miE∥

(2.33)

Once they had the, more or less general, expressions shown in Eq. (2.32) and Eq. (2.33), Bernstein
and Rabinowitz choose, for the sake of simplicity, the following monoenergetic distribution:

f−(E⊥, E∥, J) = f−(E⊥, E∥) = ni0mi

2π
G(E∥)∫ ∞

0
dE∥

G(E∥)√
2miE∥

δ(E⊥ − E0) (2.34)

Now, by introducing Eq. (2.34) into Eq. (2.32), after some tedious calculus the ion density can be
expressed as:

ni(r) = ni0
π

arcsin

(√
G(E0

2mir2(E0 − eφ(r))

)
+ 2ni0

π
H

(
E0 − eφ(r) − er

2
dφ(r)
dr

)

·
[
π

2
− arcsin

(√
G(E0)

2mir2(E0 − eφ(r))

)] (2.35)

and by taking Eq. (2.34) into Eq. (2.33), the ion flux results:

Γ⃗(r) = −e⃗r
ni0
√
G(E0)
mir

(2.36)

Once we have Eq. (2.35) and Eq. (2.36) the model of Bernstein and Rabinowitz is almost complete.
From Eq. (2.36), the total ion current collected by a cylindrical probe of length L is readily obtained as:

Ii =
2πLni0

√
G(E0)

mi
(2.37)

In their original work, Bernstein and Rabinowitz also solved Poisson’s equation in order to obtain
the electric potential profile along the sheath. For the sake of briefness, we are not going to cover here
their model to that extent. Nevertheless, once we have an expression for the ion density given by Eq.

40

Chapter 2. Theories of the ion current collected by a cylindrical probe

(2.35), the process is rather simple. Eq. (2.35) is taken into Eq. (2.20) along with the number density of
electrons, assumed to be Maxwellian, and then the electric potential is obtained by numerical integration
in a similar fashion than we did in the first chapter.

The model of Bernstein and Rabinowitz was extended later on by S. H. Lam [28] in 1965. Lam though
that, because of the numerical nature of the solutions found by Bernstein and Rabinowitz, their results
where not very practical, as they require a lot of cross-plotting in order to determine any information
of interest. The starting point for Lam was almost the point where we have finished. He used the ion
density obtained by Bernstein and Rabinowitz and introduced it into Poisson’s equation, but instead of
solving the problem numerically, he considered the case rp ≫ λD, and obtained analytical results for this
limiting case. He also stablished a criterion for trapped ions. Finally, the most thorough orbital study
was performed by James G. Laframboise, whose model we are going to review next.

2.3.3. Laframboise model

Laframboise developed his model as part of his doctoral thesis. He published it in a report at the
University of Toronto Institute for Aerospace Studies [25] in 1966. Laframboise proposed a method for
obtaining theoretical predictions of the current collected by an electrically conducting Langmuir probe
from a fully Maxwellian plasma at rest. With his method he determined full I − V characteristic curves
for probe biasing potentials between φp = −25kBTe to φp = +25kBTe, for both spherical and cylindrical
geometry, and for probe radii up to 100λD and a complete range of ion to electron temperature ratios.

From the physic point of view, Laframboise’s model is not any different than the one developed by
Bernstein and Rabinowitz. Actually, it is exactly the same, Laframboise proposes to solve both the
corresponding Boltzmann’s equation along with Poisson’s equation. Also, both models rely on the same
working hypotheses, and perform the same exhaustive analysis of all the possible trajectories of particles
in terms of the effective potential energy. The main difference between both models is that Laframboise
though that the monoenergetical ion distribution is not always the most suitable distribution to describe
ions in the plasma. For this reason he considered a fully Maxwellian plasma, i. e. a plasma where ions
and electrons are described by a Maxwellian distribution.

f(E, J) = f(E) = n0

(
m

2πkBT

)3/2

exp
(

− E

kBT

)
(2.38)

So, instead of a monoenergetic distribution function, Laframboise considered ions to have a distribu-
tion like the one in Eq. (2.38), and solved Eq. (2.32) and Eq. (2.33) with it. We have to notice that
Eq. (2.38) must be particularised for ions or electrons as needed. Also, continuing with the notation
that we have been using, we have that E = E⊥ + E∥. The problem of using a Maxwellian distribution
in Eq. (2.32) and Eq. (2.33) is that they are no longer analytically integrable. As Laframboise probed
in his work, when a poly-energetic distribution is considered, the charge density at any given radius can
be shown to be dependent not only on the local value of the potential at that radius, but on the value of
the potential everywhere in the vicinity of the probe.

Because of the lack of an analytical expression for the ion density, the system of equations (Boltzmann
and Poisson’s equation) can not be reduced to a single ordinary differential equation. Instead, a nonlinear
system of integral equations results, which needs to be solved numerically. The main contribution of
Laframboise was to develop an iterative numerical algorithm that allowed its solution. This iterative
procedure is as follows:

An initial trial function is assumed for the net charge density.

Poisson’s equation is integrated numerically to provide the electric potential and its first two radial
derivatives, as a function of the radial distance to the probe.

Using the results from the previous step the ion and electron collected currents and charge densities
are calculated. This is done by solving numerically Eq. (2.32) and Eq. (2.33).

The resulting net charge density function is mixed with the previously used net charge density in
order to provide a closer approximation to the real solution.

41

2.4. Radial theories of the ion current collected by a cylindrical probe

The steps that we have just explained here are then repeated until the approximate solutions are close
enough to the real ones. The process of calculating the ion and electron charge densities from a given
net density and subtracting them to give a new net density, defines a non-linear integral operator Φ,
which acts on the nth net charge density approximation, ρn(r), to give the next approximation ρn+1(r).
The solution of the system would be a function that satisfies the condition ρ(r) = Φρ(r). Nevertheless,
Laframboise stated that, in general, the sequence of functions generated by the operator Φ diverges by
overshooting the real solution and oscillating around it with increasing amplitude. So, he defined a mixing
function M(r) which had the property 0 < M(r) ≤ 1 for any r. And finally, with this function he defined
a new iterative scheme as follows:

ρn+1(r) = M(r)Φρn(r) + (1 −M(r))ρn(r) (2.39)

If we observe Eq. (2.39), we can see that if ρn+1(r) = ρn(r) then ρn(r) = Φρn(r), which is the
required condition for the solution to be correct. The optimisation of the function M(r) was carried out
by computational experimentation.

With the described method, Laframboise obtained the data related in the first paragraph of this
section. A remark that needs to be made is that, Laframboise applied his method to some conditions
where trapped ion orbits may occur. Even though he acknowledge that the population of those orbits
can greatly affect the prediction of the model, he believed that there are situations where the impact of
such orbits could be neglected. Anyway, he stated that more theoretical work about the population of
such orbits is needed in order to properly study these cases.

2.4. Radial theories of the ion current collected by a cylindrical
probe

Contrary to orbital theories, radial theories are those that constrict the movement of ions to the radial
dimension. So, in radial theories, the orbital motion of ions around the probe (cylindrical or spherical)
is neglected. These theories were developed because there are plenty of cases where the ion temperature
is much smaller than the electron temperature, i. e. Ti/Te → 0. Under this condition, it seems to be
reasonable to neglect the motion of ions in the plasma. By considering the variables that we have been
dealing with in the previous section, radial models can also be defined as, models where the angular
momentum of ions, J , is assumed to be zero.

The first radial model of the ion saturation zone of the I − V characteristic curve was developed in
1957 by J. E. Allen, R. L. F. Boyd and P. Reynolds [29]. This model, subsequently known as the ABR
model, was developed for the case of spherical probes and later on extended in 1965 by F. F. Chen [30] for
the case of cylindrical probes. Those two models considered the ion temperature to be exactly zero, but in
1996 J. I. Fernández Palop [14] developed a radial model of a cylindrical Langmuir probe considering the
case of finite ion temperature. Finally in 2004 R. Morales Crespo [31] extended the model of Fernández
Palop by obtaining analytical fits of the I − V characteristic curves for spherical and cylindrical probes.

2.4.1. Allen, Boyd and Reynolds / Chen model (ABR model)

Although the ABR model was originally developed by Allen, Boyd and Reynolds in 1957 [29] for the
case of spherical probes, since we are interested in the cylindrical geometry, we are going to center our
discussion in the extension developed by Chen in 1965 [30]. Nevertheless, since the theoretical foundations
are exactly the same, we are going to refer to this model as the ABR theory, even in the case of cylindrical
geometry.

As we have previously introduced, the main trait of the ABR model is that the temperature of ions
is considered to be zero, Ti = 0. Also, the previous assumption is equivalent to consider the angular
momentum of ions to be zero, J = 0. So, in the ABR model the only conservation law that needs to be
taken into account is the conservation of energy. The other equation that is considered in the model is
Poisson’s equation, which takes into account the electric potential distribution.

Due to the equations considered, this model is very similar to the one developed in section 1.4 for the

42

Chapter 2. Theories of the ion current collected by a cylindrical probe

case of planar geometry. Nevertheless, we are going to develop the full model here in order to highlight
the difference between planar and cylindrical (or spherical) geometry. In particular we are going to see
that the planar case is the only one where an “external” presheath mechanism, i. e. ionisation, is needed
in order to increase the ion current from its value at the plasma, which is zero, to the value of the current
drained by the probe. Let us remember here that, when considering the planar case, in order to develop
a sheath, ions needed to enter the sheath with a certain velocity, i. e. Bohm velocity, and ionisation
allowed the ions to increase their velocity without the need of decrease their density to the same extent,
as we saw in Eq. (1.17). But, if we write the continuity equation for the case of cylindrical geometry
without ionisation we have that:

∇⃗ · Γ⃗i(r⃗) = 1
r

∂

∂r
(rΓi(r))) = Γi(r)

r
+ dΓi(r)

dr
= 0 ⇒ 1

Γi(r)
dΓi(r)
dr

= −1
r

⇒ Γi(r) ∝ 1
r

(2.40)

where Γ⃗i(r⃗) is the ion flux at position r⃗, which obviously, because of symmetry reasons, has a radial
direction and only depends on the radial distance to the axis of the probe. So, Γ⃗i(r⃗) = Γi(r)e⃗r.

z

Figure 2.7: Diminishing of the volume elements as
the surface of the cylindrical probe is approached.

As we can see in Eq. (2.40), the ion flux in-
creases as we approach the surface of the probe
simply because of the geometry of the problem.
The expression we have found in Eq. (2.40) also
fulfil the condition that the flux at the plasma, i.
e. at r → ∞, must be zero. If we take into account
that Γi(r) = ni(r)vi(r), the fact that the geometry
allows Γi(r) to increase as we decrease r, means
that the ion velocity is able to increase without
causing a proportional decrease in the ion density.
This is precisely the effect that a presheath mech-
anism should have, and the role that ionisation
plays in the planar case.

Graphically it is easy to understand how the
ion flux could be increased simply because of
the geometry without the need to create more
particles. In Fig. 2.7 we can see how the volume
elements decrease as we approach the probe. If we imagine a certain number of ions moving inwards to
the probe with a fixed radial velocity, it is clear that when the number of ions is divided by the volume
element in order to obtain the ion number density this quantity is going to increase, causing the flux to
increase. This same reasoning is applicable to the case of spherical geometry.

Now without further ado, once we have seen why there is no need to include an ionisation term in
the continuity equation for the case of a cylindrical probe (the same would apply for a spherical one),
we can start developing the ABR model. Let us start with the energy conservation law for ions. If we
take the plasma as the reference for the electric potential, φ0 = 0, and we also consider that there is no
thermal motion of ions at all in the plasma, we can integrate the momentum balance equation neglecting
the diffusion term (see Appendix A) in order to obtain the following energy conservation equation:

1
2
miv

2
i (r) + eφ(r) = 0 (2.41)

where vi is the radial flow velocity of ions, the only one we are considering, and r is the radial distance
to the axis of the probe.

On the other hand, continuity equation for ions can be written in the following way:

i = 2πreΓ(r) = 2πreni(r)vi(r) (2.42)

where i is the ion current collected by the probe per unit length. Let us notice that in Eq. (2.42) the ion
current is evaluated at a position r, nevertheless, as ions are forced to approach the probe radially, the
same ion current crossing the outer concentric surface shown in Fig. 2.7 must cross all of them until the
surface of the probe is reached.

Now if we solve Eq. (2.42) for vi(r), take it into Eq. (2.41) and then solve Eq. (2.41) for ni(r) we

43

2.4. Radial theories of the ion current collected by a cylindrical probe

can obtain the following expression for the ion number density at r:

ni(r) = i

2πre

√
− mi

2eφ(r)
(2.43)

Once we have an expression for the ion density, we need an analogous expression for the electron
density in order to solve Poisson’s equation. Considering that we are studying the ion saturation zone,
so that the electric potential is retarding for electrons, by using the same arguments of section 1.4 we
can write the electron density as:

ne(r) = ne0 exp
(
eφ(r)
kBTe

)
(2.44)

The last step that remains in order to complete the ABR model is to take Eq. (2.43) and Eq. (2.44)
into Poisson’s equation:

∇2φ(r⃗) = 1
r

d

dr

(
r
dφ(r)
dr

)
= 1
r

dφ(r)
dr

+ d2φ(r)
dr2 = − e

ε0
(ni(r) − ne(r))

= − e

ε0

[
i

2πre

√
− mi

2eφ(r)
− ne0 exp

(
eφ(r)
kBTe

)]
⇒

⇒ 1
r

dφ(r)
dr

+ d2φ(r)
dr2 = − e

ε0

[
i

2πre

√
− mi

2eφ(r)
− ne0 exp

(
eφ(r)
kBTe

)]
(2.45)

Now all that rest is to solve Eq. (2.45) numerically, but before doing so, let us define some dimen-
sionless variables in order to simplify Eq. (2.45):

R = r

λD
; ψ(R) = eφ(r)

kBTe
; I = i

2πkBTe
√

2ε0ne0
mi

(2.46)

By considering these definitions, Eq. (2.45) can be written as:

1
R

dψ(R)
dR

+ d2ψ(R)
dR2 = eψ(R) − I

R
√

−ψ(R)
(2.47)

In order to solve Eq. (2.47) numerically, initial conditions for the dimensionless potential and its first
derivative are needed, so let us figure out both of them. As we are interested in the evolution of the
potential along the sheath, we are going to obtain those initial conditions from the quasineutral solution.
The quasineutral solution is obtained by considering the neutrality conditions and, thus, by cancelling
the right hand side of Eq. (2.47), so:

eψ(R) − I

R
√

−ψ(R)
= 0 ⇒ R = I

eψ(R)
√

−ψ(R)
(2.48)

Now, if we derive Eq. (2.48) with respect to R and solve for dψ(R)/dR we get:

dψ(R)
dR

=
eψ(R)

√
−ψ(R)

−I
[
1 + 1

2ψ(R)

] (2.49)

Eq. (2.48) and Eq. (2.49) give us the initial conditions that we need for the electric potential as
well as its first derivative. Because of the impossibility of explicitly solving Eq. (2.48) for the potential,
instead of taking a fixed initial position and obtaining the initial condition for ψ and dψ/dR, the following
process is followed:

Because ψ → 0 and dψ/dR → 0 as R → ∞, a small value is fixed as initial condition for the
potential, ψs.

With Eq. (2.48) and ψs, the position of the initial condition, Rs, is located.

44

Chapter 2. Theories of the ion current collected by a cylindrical probe

By taking the values Rs and ψs into Eq. (2.49) the initial condition for the derivative of the
potential, (dψ/dR)s, is obtained.

We have to notice, that Eq. (2.47) is solved for a fixed value of the dimensionless current I. Once we
fix the I value and follow the previous steps, in order to find the proper initial conditions, the evolution
of the potential is easily obtained through numerical integration (RK4). In Fig. 2.8a different solutions
of Eq. (2.47) for different values of I are shown. In Fig. 2.8b the I −V characteristic curves for different
probe radii can be seen. Those I − V characteristic curves are found by cross-plotting of the potential
curves. The process of cross-plotting is shown graphically in Fig. 2.8a. Once we fix a probe radius, Rp,
different pairs of (ψp, I) values can be found, providing I as a function of ψp. We have to notice that in
Fig. 2.8b the values of the current are assumed to be negative for the sake of consistence with Fig. 1.12,
even though in the equations used in this section I > 0 by definition.

-30

-25

-20

-15

-10

-5

 0

 0 1 2 3 4 5

�
 (

!
)

" = 1.0

" = 1.5

" = 2.0

" = 2.5

" = 3.0

(a) Electric potential across the sheath.

-8

-7

-6

-5

-4

-3

-2

-1

-50 -40 -30 -20 -10 0

�

 ! = 0.5

 ! = 1.5

 ! = 1.0

 ! = 2.0

 ! = 2.5

(b) I−V characteristic curves found by cross-plotting.

Figure 2.8: Solutions of the ABR model for a cylindrical probe obtained through numerical integration
(RK4) of Eq. (2.47).

As we stated, the ABR model that we have just presented here, is developed for the case of completely
cold ions, Ti = 0. But, it might worth to ask the question wether it would be reasonable to consider a
radial model, that is neglecting the orbital motion of ions, when ions have a finite temperature. That
question was addressed by Fernández Palop et. al. [14] and his model is the one we are going to review
next.

2.4.2. Fernández Palop model

The most complete theoretical study of the ion current collected by a probe is the model developed
by Laframboise [25], which is based on the framework stablished by Bernstein and Rabinowitz [24], both
of which have been reviewed in previous sections. However, after the development of the ABR model,
several experimental results [32–34] found that the predictions of the ABR theory were closer to the
measured ion currents than any orbital model. For that reason, in 1996 J. I. Fernández Palop et. al. [14]
developed an extension of the ABR model where a finite ion temperature was considered and the orbital
motion of ions around the probe was diminished.

The model starts by considering Poisson’s equation in cylindrical coordinates, which, taking into
account the symmetry of the problem, can be written as:

1
r

d

dr

(
r
dφ(r)
dr

)
= − e

ε0
[ni(r) − ne(r)] (2.50)

Electrons are assumed to be in thermal equilibrium with the electric field, and the biasing potential of
the probe is assumed to be negative enough so that all the electrons approaching the probe are repelled

45

2.4. Radial theories of the ion current collected by a cylindrical probe

back into the plasma. Under this conditions, the electron density will be:

ne(r) = ne0 exp
(
eφ(r)
kBTe

)
(2.51)

Now, in order to obtain an expression for the ion density, we consider the continuity equation and
conservation of energy, like we did in the ABR model. The main difference is that, the momentum
balance equation that we are going to use for describing an steady flow of ions moving radially towards
a cylindrical probe immersed in a collisionless plasma is, has a diffusion term in it:

ni(r)vi(r)
dvi(r)
dr

+ 1
mi

dpi(r)
dr

+ e

mi
ni(r)

dφ(r)
dr

= 0 (2.52)

where pi(r) is the partial pressure of ions. As we are going to consider ions at a certain finite temperature,
we are not neglecting the diffusion term in Eq. (2.52) (see Appendix A for a discussion about this issue).
In order to obtain an expression for the ion partial pressure, we are going to consider an adiabatic flow
for ions, since it has been shown by Riemann [35] and Zawaideh et. al. [36] that the fluid approximation
in the sheath is not consistent otherwise. Therefore, the ion pressure is related to the ion density as:

pi(r) ∝ nγi (r) (2.53)

which, by taking into account the state equation for the ion fluid as well as the neutrality condition in
the plasma, can be written as:

pi(r) = kBTin
1−γ
e0 nγi (r) (2.54)

We have to notice that γ = 3, 2, 5/3 for one, two or three degrees of freedom respectively. In our
case, we are considering an infinite cylindrical probe, so, we have a compression of the ion fluid in the
two dimensions perpendicular to the axis of the probe. As it is shown in Fig. 2.7, no compression is
suffered along the axial dimension. Accordingly, we could think that the value γ = 2 should be used.
However, when the probe radius is large enough compared to the Debye length, the problem becomes
almost monodimensional and γ = 3 should be used. We are going to present the model equations for two
cases: the general bidimensional case when rp ≲ λD and the monodimensional case when rp ≫ λD, rp
being the probe radius.

Now, if we take Eq. (2.54) into Eq. (2.52), after integration, the following energy balance equation is
obtained:

1
2
miv

2
i (r) + kBTi

γ

γ − 1

(
ni(r)
ne0

)γ−1

+ eφ(r) = kBTi
γ

γ − 1
(2.55)

The last equation to consider is the continuity equation for ions, which is exactly the same that the
one used in the ABR model, given by Eq. (2.42). By taking it into Eq. (2.55), yields:

1
2

mii
2

(e2πrni(r))2 + kBTi
γ

γ − 1

(
ni(r)
ne0

)γ−1

+ eφ(r) = kBTi
γ

γ − 1
(2.56)

Now, we would have to solve Eq. (2.56) for ni(r), introduce its value into Poisson’s equation and
solve it numerically. The problem is that Eq. (2.56) is not straightforward to solve, so in order to clarify
the problem we are going to use the usual dimensionless variables defined as:

R = r

λD
; ψ(R) = eφ(r)

kBTe
; β = Ti

Te
; Ni(R) = ni(r)

ne0
; I = ie

2πε0

(
mi

2k3
BT

3
e

)1/2

(2.57)

With the use of the previous dimensionless variables, Eq. (2.56) can be expressed as follows:

I2

R2 + γ

γ − 1
βNγ+1

i (R) + ψ(R)N2
i (R) = γ

γ − 1
βN2

i (R) (2.58)

Let us notice that, when it comes to solve Eq. (2.58) for the ion density, depending on the value of γ
considered, the equation becomes a quartic (γ = 3) or a cubir (γ = 2). Considering either case there is,

46

Chapter 2. Theories of the ion current collected by a cylindrical probe

in general, a multiplicity of solutions for the ion density. The meaningful solution from a physical point
of view should recover the ABR theory in the limit β → 0, that is:

lim
β→0

Ni(R) ∼ I

R
√

−ψ(R)
(2.59)

There is only one solution among those of Eq. (2.58) that recovers the right behaviour of Eq. (2.59)
(further details can be found in the original work of Fernández Palop et. al. [14]). For the case of γ = 2
we have that:

Ni(R) =

{√
2β − ψ(R)

S

[
cos
(
θ

3

)
−

√
3

3
sin
(
θ

3

)]}−1

(2.60)

and for γ = 3:

Ni(R) =

[
3β/2 − ψ(R) +

√
(3β/2 − ψ(R))2 − 6βS
2S

]−1/2

(2.61)

where:

S =
(
I

R

)2

; θ = arcsin

(
3
√

3βS
(2β − ψ(R))2

√
2β − ψ(R)

S

)
(2.62)

Now that we have expressions for both, the ion and the electron density (in dimensionless units
Ne(R) = exp (ψ(R))), all that remains is to solve Poisson’s equation, which can be written in terms of
the dimensionless variables as:

1
R

dψ(R)
dR

+ d2ψ(R)
dR2 = eψ(R) −Ni(R) (2.63)

Eq. (2.63) can now be solved numerically for the case γ = 2 by using Eq. (2.60) and for the case γ = 3
by using Eq. (2.61). Nevertheless, before solving Eq. (2.63), we need to find proper initial conditions, as
we did when solving the ABR model. Let us start with the general case of bidimensional adiabatic flow.

Initial conditions for the case of bidimensional adiabatic flow (γ = 2, rp ≲ λD)

The initial conditions for solving Eq. (2.63) must be taken far away from the probe. So, in order to
find them, we consider the quasineutral condition that must be hold in the plasma the same way we did
before, that is by considering the right hand side of Eq. (2.63) to be zero. If we consider the expression
for the ion density given by Eq. (2.60), the quasineutral condition can be written as:

lim
R→∞

e−ψ(R) ∼
√

2β − ψ(R)
S

[
cos
(
θ

3

)
−

√
3

3
sin
(
θ

3

)]
(2.64)

where S and θ are defined in Eq. (2.62).

Now, let us analyse the quasineutral solution given by Eq. (2.64). The first thing we have to notice is
that, as the argument of the arcsin function in Eq. (2.62) is always positive, its value must range between
zero and one, so:

3
√

3βS
(2β − ψ(R))2

√
2β − ψ(R)

S
≤ 1 ⇒ 3β

2β − ψ(R)
≤ 1√

3

√
2β − ψ(R)

S
(2.65)

Also, precisely because the argument of the arcsin function in Eq. (2.62) ranges between 0 and 1, we
have that θ ∈ [0, π/2]. Once we know that, it can be easily probed that the term in brackets in Eq. (2.64)
ranges between 1 and

√
3/3, having the latter when the argument of the arcsin function is 1. So, Eq.

(2.64) must fulfil the condition:

e−ψ(R) ≥ 1√
3

√
2β − ψ(R)

S
(2.66)

Finally, in order for Eq. (2.64) to have a solution, we have that, from Eq. (2.65) and Eq. (2.66), the
electric potential must fulfil the condition:

e−ψ(R) ≥ 3β
2β − ψ(R)

(2.67)

47

2.4. Radial theories of the ion current collected by a cylindrical probe

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0 0.2 0.4 0.6 0.8 1

�

Figure 2.9: Plot of Eq. (2.67). The greyed area
correspond to the inequality while the solid line
corresponds to the equal sing.

We shall notice that the previous equation estab-
lishes a minimum value for the initial condition of
the potential, ψs. Contrary to what happened in the
ABR theory, in this model we can no longer consider
the initial conditions to be as close to the plasma as
we want, that is ψs → 0. Instead, Eq. (2.67) has to be
taken into account. In Fig. 2.9 Eq. (2.67) is plotted.
The greyed area represent the values of the potential
that fulfil the inequality given by Eq. (2.67), while the
solid line corresponds to Eq. (2.67) when the equal
sign is considered. The solid line shows the minimum
value of the potential that we can use as initial con-
dition when solving Eq. (2.63) for each β value. In
Fig. 2.9 it can also be seen that, when β = 0, ψs can
be as small as we want, which is the right behaviour
corresponding to the ABR model. We have to notice
that, when Poisson’s equation is solved numerically,
the initial condition for the electric potential has to
be slightly larger than the minimum value predicted
by Eq. (2.67).

Once we know the value of the initial condition for
the electric potential, if we take the asymptotic behaviour of Ni(R) into Eq. (2.58) for γ = 2 we obtain
the position for the initial condition as:

Rs = I
[
(2β − ψs)e2ψs − 2βe3ψs

]−1/2 (2.68)

and by differentiating Eq. (2.68) the initial condition for the derivative of the potential can also be found:(
dψ(R)
dR

)
s

= 2I2

R3
s

[
6βe3ψs − (4β − 1 − 2ψs)e2ψs

]−1 (2.69)

Finally, Poisson’s equation can be solved by numerical integration in the same fashion as we did in
the ABR model. In Fig. 2.10 some solutions can be seen showing the dependence of the results with the
ion temperature. As we said in the ABR model, in Fig. 2.10b the values of the current are shown as
negatives because it is due to ions, however in the equations of this section I is strictly positive.

-50

-40

-30

-20

-10

 0

 0 2 4 6 8 10

�
 (

�
)

(a) Electric potential across the sheath for I = 5.

-7

-6

-5

-4

-3

-2

-1

-50 -40 -30 -20 -10 0

�

(b) I − V characteristic curves for Rp = 1.

Figure 2.10: Solutions of the model for bidimensional adiabatic flow (γ = 2, rp ≲ λD) obtained by
numerical integration (RK4) of Eq. (2.63) and cross plotting. Solid lines β = 0, dashed lines β = 0.2 and
dotted lines β = 0.4.

48

Chapter 2. Theories of the ion current collected by a cylindrical probe

Initial conditions for the case of monodimensional adiabatic flow (γ = 3, rp ≫ λD)

The process of finding proper initial conditions for solving Poisson’s equation in this case is very
similar to the one developed in the previous case. If we consider the expression for the ion density given
by Eq. (2.61), the quasineutral condition can be written as:

lim
R→∞

e−ψ(R) =

[
3β/2 − ψ(R) +

√
(3β/2 − ψ(R))2 − 6βS
2S

]1/2

(2.70)

where S and θ where defined in Eq. (2.62).

Now, if we analyse the quasineutral solution given by Eq. (2.70), we notice that the argument of the
square root inside the brackets has to be positive, that is:(

3β
2

− ψ(R)
)2

− 6βS ≥ 0 ⇒
(

3β
2

− ψ(R)
)2

≥ 6βS (2.71)

Finally, if we take the condition given by Eq. (2.71) into the quasineutral solution given by Eq. (2.70)
we find the condition that the electric potential must fulfil in order for Eq. (2.70) to have a solution:

e−2ψ(R) ≥ 3β
3β/2 − ψ(R)

(2.72)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0 0.2 0.4 0.6 0.8 1

�

Figure 2.11: Plot of Eq. (2.72). The greyed area
correspond to the inequality while the solid line
corresponds to the equal sing.

We shall notice that, as in the bidimensional case,
Eq. (2.72) establishes a minimum value for the initial
condition of the potential, ψs, and the same behaviour
found in the previous case is found for the monodi-
mensional one. In Fig. 2.11 Eq. (2.72) is plotted. The
greyed area represent the values of the potential that
fulfils the inequality given by Eq. (2.72), while the
solid line corresponds to Eq. (2.72) when the equal
sing is considered. The solid line shows the minimum
value of the potential that we can use as initial con-
dition when solving Eq. (2.63) for each β value. In
Fig. 2.11 it can also be seen that, when β = 0, ψs
can be as small as we want, which is, again, the right
behaviour corresponding to the ABR model. Also, as
in the previous case, the initial condition for the nu-
merical resolution of Poisson’s equation must be taken
slightly larger than the minimum value predicted by
Eq. (2.72).

Once we know the value of the initial condition
for the electric potential, if we take the asymptotic
behaviour of Ni(R) into Eq. (2.58) for γ = 3 we
obtain the position for the initial condition as:

Rs = I

[(
3β
2

− ψs

)
e2ψs − 3β

2
e4ψs

]−1/2

(2.73)

and by differentiating Eq. (2.73) the initial condition for the derivative of the potential can also be found
as: (

dψ(R)
dR

)
s

= 2I2

R3
s

[
6βe4ψs − (3β − 1 − 2ψs)e2ψs

]−1 (2.74)

Finally, Poisson’s equation can also be solved by numerical integration for the case of monodimensional
adiabatic flow. In Fig. 2.12 some solutions can be seen showing the dependence of the results with the
ion temperature. Again, in Fig. 2.12b the values of the current are shown as negatives because it is due
to the ions, however in the equation of this section I is strictly positive.

The model developed by Fernández Palop, shares a difficulty with most of the theories that we have
reviewed in this chapter. As Lam stated, the numerical nature of the solutions found, as well as the need

49

2.4. Radial theories of the ion current collected by a cylindrical probe

-50

-40

-30

-20

-10

 0

 10 15 20 25 30 35 40

�
 (

!
)

(a) Electric potential across the sheath for I = 15.

-25

-20

-15

-10

-5

-50 -40 -30 -20 -10 0

�

(b) I − V characteristic curves for Rp = 20.

Figure 2.12: Solutions of the model for monodimensional adiabatic flow (γ = 3, rp ≫ λD) obtained by
numerical integration (RK4) of Eq. (2.63) and cross plotting. Solid lines β = 0, dashed lines β = 0.2 and
dotted lines β = 0.4.

of cross plotting in order to obtain the I − V characteristic curves, makes the use of such a model not
particularly practical when it comes to diagnose a plasma. Instead, an analytical expression would be
desirable for diagnostic purposes, e. g. the one given by Eq. (2.18) for the OML theory. It is precisely
this problem what Morales Crespo’s extension to this model deal with.

2.4.3. Morales Crespo model

This is the last model that we are going to review. It was developed in 2004 by R. Morales Crespo et
al. [31] as an extension to Fernández Palop’s model. The model was developed for the cases of cylindrical
and spherical geometries, nevertheless, we are going to restrict our review to the cylindrical case as we
have been doing in the other sections of the chapter.

Although the physics behind this model is exactly the same than the previous one, the main aim of
this theory was to find analytical expressions that fit the results obtained by Fernández Palop et al., so
that it would be easier to diagnose a plasma. In particular, Morales Crespo found analytical expressions
that approximate the electric potential and I −V characteristic curves shown in Fig. 2.10. As the model
relies on the same physical statements as Fernández Palop’s model, the equation that needs to be solved
is Poisson’s equation, as given by Eq. (2.63), where the ion density is obtained by solving Eq. (2.58). It
has to be noticed that Morales Crespo solves the more general case of rp ≲ λD, where the adiabatic flow
of ions towards the probe is bidimensional, i. e. γ = 2. The initial condition for the Poisson’s equation
is, as usual, obtained from the quasineutral solution.

The basic idea that this model relies on is that, despite the fact that the ion thermal energy finite, it
is usually small when compared to the electron one. So, under this assumption, Eq. (2.63) can be solved
by using a perturbative method. Let us express an expansion of both, the electric potential, and the ion
number density in the following form:

ψ(R, β) = ψ0(R) + ψ1(R)β + ψ2(R)β2 + · · · (2.75a)
N(R, β) = N0(R) +N1(R)β +N2(R)β2 + · · · (2.75b)

If we take Eqs. (2.75) into Eq. (2.58), Eq. (2.63) and the quasineutral solution, a hierarchy of sets of

50

Chapter 2. Theories of the ion current collected by a cylindrical probe

equations is obtained. Those sets of equations can be written in general as:

Ni [R,ψi(R)] = Ni [R,ψ0(R), ψ1(R), . . . , ψi−1(R), ψi(R)] (2.76a)
1
R

dψi(R)
dR

+ d2ψi(R)
dR2 = Fi [R,ψ0(R), ψ1(R), . . . , ψi−1(R), ψi(R)] −Ni [R,ψi(R)] (2.76b)

lim
R→∞

Ni [R,ψ0(R), ψ1(R), . . . , ψi−1(R), ψi(R)] = Fi [R,ψ0(R), ψ1(R), . . . , ψi−1(R), ψi(R)] (2.76c)

Eq. (2.76a) determines the ith term of the positive ion density, Ni, as a function of R, ψ0(R),
ψ1(R), . . . , ψi−1(R) and ψi(R). Eq. (2.76b) corresponds to the ith term of Poisson’s equation series,
where Fi [· · ·] is the ith term of the electron density series, exp (ψ(R)). And Eq. (2.76c) represent the
initial condition for the ith term of Poisson’s equation. More precisely, Eq. (2.76c) represent the initial
condition for the electric potential, nevertheless, the initial condition for the electric field is readily found
by differentiation. If we perform the calculations, the first three sets of equations can be expressed as
follows:

Zero order term: (
I

R

)2

+ ψ0N
2
0 = 0 (2.77a)

1
R

dψ0

dR
+ d2ψ0

dR2 = exp (ψ0) −N0 (2.77b)

lim
R→∞

N0 = exp (ψ0) (2.77c)

First order term:

ψ1N
2
0 + 2N1N0ψ0 + γ

γ − 1

(
Nγ−1

0 −N2
0

)
= 0 (2.78a)

1
R

dψ1

dR
+ d2ψ1

dR2 = ψ1 exp (ψ0) −N1 (2.78b)

lim
R→∞

N1 = ψ1 exp (ψ0) (2.78c)

Second order term:

ψ2N
2
0 + 2ψ0N1N0 + ψ0N

2
1 + 2ψ0N0N2 + γ

γ − 1
N1 (Nγ

0 − 2N0) = 0 (2.79a)

1
R

dψ2

dR
+ d2ψ2

dR2 =
(
ψ2

1
2

+ ψ2

)
exp (ψ0) −N2 (2.79b)

lim
R→∞

N2 =
(
ψ2

1
2

+ ψ2

)
exp (ψ0) (2.79c)

Eqs. (2.77)–(2.79) represent the hierarchy of sets of equations that we said before until the second
order. We have to notice that, for the sake of clarity, in the previous equations we have omitted the
implicit dependencies of ψi and Ni. Also, as it seems reasonable, the zero order term given by Eqs.
(2.77) is equivalent to the ABR model, that we reviewed at the beginning of this section. Actually, if we
take Eq. (2.77a) into Eq. (2.77b) we get Eq. (2.47).

In his original work, Morales Crespo solved Eqs. (2.77)–(2.79) and stated that the second order
contribution could be diminished, so instead of Eqs. (2.75) he only considered the linear term, neglecting
higher orders contributions.

ψ(R, β) ≃ ψ0(R) + ψ1(R)β (2.80a)
I(Rp, ψp, β) ≃ I0(Rp, ψp) + I1(Rp, ψp)β (2.80b)

Simply by observing Eqs. (2.77)–(2.79) it can be realised that those equations must be solved numer-
ically. In fact, even the zero order term was integrated numerically by us when we reviewed the ABR

51

2.4. Radial theories of the ion current collected by a cylindrical probe

theory. So, Morales Crespo performed an analytical fit to Eq. (2.80b) by using the following expressions:

I0(Rp, ψp) = 1
Rp

1∑
i=0

ci(Rp) (−ψp)i/2 (2.81a)

I1(Rp, ψp) = 1
Rp

1∑
i=0

di(Rp) (−ψp)i/2 (2.81b)

where ci(Rp) and di(Rp) are the coefficients of the corresponding analytical fit, which depend on Rp and,
in turn, are also fitted as:

ci(Rp) =
2∑
j=0

cijR
j
p (2.82a)

di(Rp) =
2∑
j=0

dijR
j
p (2.82b)

being cij and dij the coefficients of this second fit.

Finally, let us notice that Eq. (2.80b) can be written for an arbitrary position, R, and potential, ψ.
So, if we take Eqs. (2.81) into Eq. (2.80b), expand it and identify terms with Eq. (2.80a) we can obtain
that:

ψ0(R) = −
[
IR− c0(R)
c1(R)

]2

(2.83a)

ψ1(R) = 2
√

−ψ0(R)
c1(R)

[
d0(R) + d1(R)

√
−ψ0(R)

]
(2.83b)

where ci(R) and di(R) are given by the same definitions appearing in Eqs. (2.82).

Coefficients R0
p R1

p R2
p

(−ψp)0 1 c00 = −3.302 × 10−1 c01 = 1.762 × 10−1 c02 = 4.601 × 10−1

β d00 = 9.081 × 10−1 d01 = −9.300 × 10−1 d02 = 5.080 × 10−1

(−ψp)1 1 c10 = −2.375 × 10−1 c11 = 9.930 × 10−1 c12 = 2.228 × 10−2

β d10 = −2.801 × 10−1 d11 = 6.232 × 10−1 d12 = −4.232 × 10−3

(a) Values for Rp ∈ [1, 10]

Coefficients R0
p R1

p R2
p

(−ψp)0 1 c00 = −6.796 c01 = 1.162 c02 = 4.194 × 10−1

β d00 = 29.95 d01 = −5.397 d02 = 6.728 × 10−1

(−ψp)1 1 c10 = −2.263 c11 = 1.343 c12 = 5.623 × 10−3

β d10 = −4.832 d11 = 1.365 d12 = −3.441 × 10−2

(b) Values for Rp ∈ [10, 50]

Table 2.1: Fitting coefficients for the I − V characteristic curves for a cylindrical probe.

The numerical values of the coefficients found by Morales Crespo are shown in Table 2.1a for dimen-
sionless probe radii ranging from 1 to 10, and in Table 2.1b for dimensionless probe radii ranging from
10 to 50. As it might be expected, the best behaviour of the fitting is found for Rp values centred in the

52

Chapter 2. Theories of the ion current collected by a cylindrical probe

-35

-30

-25

-20

-15

-10

-5

 0

 1 2 3 4 5 6 7 8 9 10

�
 (

�
)

(a) Electric potential across the sheath for I = 5.

-9

-8

-7

-6

-5

-4

-3

-2

-35 -30 -25 -20 -15 -10 -5 0

�

(b) I − V characteristic curves for Rp = 4.

Figure 2.13: Reconstruction of the potential distribution and I−V characteristic as given by Eqs. (2.80)
and the coefficients in Table 2.1a. Solid lines β = 0, dashed lines β = 0.1 and dotted lines β = 0.2.

previously mentioned ranges. Also, the value of the ion temperature must be low enough when compared
to the electron one, so that β is small enough for the perturbative method to make any sense.

In figure Fig. 2.13 we can see some potential profiles and I−V characteristic curves obtained with the
fitting coefficients found by Morales Crespo. We have to notice that the graph in Fig. 2.13a is restricted
to R ∈ [1, 10], as this is the range where the coefficients in Table 2.1a are valid.

2.5. Comparison between orbital and radial theories

In the previous sections we have reviewed the most remarkable theories that predict the ion current
collected by a cylindrical Langmuir probe in the ion saturation zone. Those theoretical models can be
classified as orbital or radial theories. From now on, we are going to restrict our discussion to the most
representative theories of either category: the OML theory by Mott-Smith and Langmuir [7] and the
ABR theory by Allen, Boyd and Reynolds / Chen [29, 30]. Obviously, with such a profound difference
between the orbital and the radial approach, the results obtained when diagnosing with the OML or
the ABR model are really different. For this reason, it is of particular importance to get to know the
way ions really behave in order to use the proper theory. However this is not always an easy task, and
experimentalists have found results in agreement with the OML [37, 38], the ABR [39, 40] or somewhere
in between them [41].

One of the main problems of using the ion saturation zone of the I − V characteristic in cylindrical
Langmuir probes is that it is not known, a priori, which theoretical model must be used to perform the
diagnosis. Sometimes, the use of a particular model is taken from granted as long as some conditions
are met, even though the model can not be fully validated. Several authors [30, 42–45, 31, 46] have
proposed different criteria to determine whether one theory or another is applicable to a particular case.
However, no matter which theory is used, usually different values for the ion and electron densities are
found, even though we know that ne0 ≃ ni0 in order to fulfil the quasineutral condition at the plasma.
This discrepancy between the densities is usually attributed to the effect of secondary emission, presence
of negative ions, collisions inside the sheath, non-maxwelliam thermal distributions, so on and so forth.
However, ions are usually not perfectly described by either the OML, ABR or any other model.

It has been recently found, by Díaz-Cabrera et al. [47], that ions experiment a transition between
the radial and orbital behaviour in a Helium plasma. The transition takes place as the ratio of ion to
electron temperature, β = Ti/Te, is increased. This transition suggests that the OML and ABR theories
are limiting cases of a more general model that describes the behaviour of ions around the probe. It is
precisely the study of this problem what represents one of the main aims of this work.

53

2.5. Comparison between orbital and radial theories

As we have said a few lines above, there are several criteria that allow us to know if one particular
model is applicable to a certain case. However, we are not only interested in knowing which theoretical
framework better describes the behaviour of ions, but also in highlighting the difference between the
different models themselves, in order to shed light on the pursuit of a general model that describes the
behaviour of ions not only under certain conditions. For this task, the Sonin-plot representation, that we
are going to showcase next, comes in handy.

2.5.1. Sonin-plot

In 1966 Ain A. Sonin published an article [48] dealing with the use of cylindrical Langmuir probes
in flowing Argon plasmas. There, he studied the dependence of the ion current collected on the probe
radius and the flow velocity of the plasma. In order to study the dependence with the probe radius, Sonin
developed a representation of the ion current that turned out to be of great interest. This representation
was latter known as Sonin-plot after him.

As we have stated, the Sonin-plot is a representation that relates the ion current collected by the probe
with the probe radius. In particular, the dimensionless probe radius, Rp = rp/λD, is the parameter that
Sonin used in his study. To be more precise, the Sonin-plot represents the following dimensionless ion
current:

ysonin(Rp, ψp, β) = I ′(Rp, ψp, β) = i

erpne0

√
mi

2πkBTe
(2.84)

versus the same dimensionless current multiplied by the squared dimensionless probe radius:

xsonin(Rp, ψp, β) = I ′(Rp, ψp, β)R2
p = ierp

ε0

√
mi

2πk3
BT

3
e

(2.85)

where all the parameters have been previously defined along the text. We have to notice that both, the
abscise as well as the ordinate of the Sonin-plot, are dimensionless quantities that depend on the same
three parameters: Rp, ψp and β. Usually, two of these parameters are fixed, so a parametric curve is
obtained. The parameters that are usually fixed are the biasing potential of the probe, ψp, which is
to be taken in the ion saturation zone (see the end of section 2.2) and the ratio of the ion to electron
temperature, which in the plasmas we are considering is usually small, β < 1.

One of the reasons why the Sonin-plot results a useful tool is because it can be used for diagnosing
purposes. As J. Ballesteros et al. [49] proposed, the fact that the abscise of the Sonin-plot, xsonin, does
not depend on the electron density, ne0, can be used to obtain its value with a simple cross plotting
technique. However, we are interested in the Sonin-plot because its ability to highlight the differences
between the predictions of different models, in particular between the radial and the orbital ones. For
this reason we are going to represent the Sonin-plot corresponding to the OML and the ABR theory,
which can be easily obtained from the corresponding I − V characteristic.

Let us start with the OML theory. We have to remember here that the OML model could be resolved
analytically, so an expression for the ion current can be obtained. Eq. (2.18) gives us the total current
collected by a probe of length L. So the ion current per unit length corresponding to the OML theory is
given by:

iOML = 4erpni0
√
kBTi
2mi

√
1 − eφp

kBTi
(2.86)

Now, by taking Eq. (2.86) into Eq. (2.84) and Eq. (2.85) we have that:

ysonin-OML(Rp, ψp, β) = 2√
π

√
Ti
Te

(
1 − eφp

kBTi

)
(2.87a)

xsonin-OML(Rp, ψp, β) = 2√
π

rpe
2ne0

ε0kBTe

√
Ti
Te

(
1 − eφp

kBTi

)
(2.87b)

and, if we consider the usual dimensionless parameters that we have been using across the document, we

54

Chapter 2. Theories of the ion current collected by a cylindrical probe

have that:

ysonin-OML(Rp, ψp, β) = 2√
π

√
β − ψp (2.88a)

xsonin-OML(Rp, ψp, β) = 2√
π
R2
p

√
β − ψp (2.88b)

On the other hand, as the model has to be solved numerically, we do not have an analytical expression
for the ion current collected by the probe in the ABR theory. Instead, we have to obtain the Sonin-plot
from numerical I − V characteristic curves, as the ones shown in Fig. 2.8b. So, it would be convenient
to have expressions of the abscise and ordinate of the Sonin-plot in terms of the dimensionless current,
I, that we defined in section 2.4.1 when solving the ABR equations. In Eq. (2.46), which gives us the
definition of the dimensionless current I, we can solve for i to get:

i = I2πkBTe
√

2ε0ne0

mi
(2.89)

And now, if we take Eq. (2.89) into Eq. (2.84) and Eq. (2.85), after some algebraic calculations, we have
that:

ysonin-ABR(Rp, ψp, β) = 2
√
π
I

Rp
(2.90a)

xsonin-ABR(Rp, ψp, β) = 2
√
πIRp (2.90b)

Finally, with the help of Eqs. (2.88) and Eqs. (2.90) we can obtain the Sonin-plot for both the OML
and ABR models. But first, let us notice that, with the definitions given by Eq. (2.84) and Eq. (2.85),
no matter which theory is considered, the explicit expression for the Sonin-plot is the same:

ysonin = R2
p xsonin (2.91)

So, for a fixed Rp value, any the point of the Sonin-plot must fall in a straight line whose slope is given
by the square of the dimensionless probe radius.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

�′

!"
= 4

!"
= 0.5

Figure 2.14: Sonin-plot for ABR (thick solid line)
and OML (thick dashed line) for β = 0, ψp = −25
and Rp ∈ [0.5, 4].

In Fig. 2.14 we can see the Sonin-plot correspond-
ing to both the ABR and the OML theories. The thick
solid line corresponds to the ABR model as given by
Eqs. (2.90). Obviously, in the ABR model, the ra-
tio of the ion to electron temperature is zero, β = 0.
The biasing potential of the probe in this Sonin-plot
is ψp = −25. As Eqs. (2.90) depend on the current
collected by the probe, those values are found numer-
ically by cross plotting of Fig. 2.8b for ψp = −25 and
Rp ∈ [0.5, 4]. The thick dashed line corresponds to
the OML model as given by Eqs. (2.88). In order
to compare both models properly, the values of the
parameters used to obtain the OML Sonin-plot have
been also β = 0, ψp = −25 and Rp ∈ [0.5, 4]. Let us
notice that the OML model is represented by a hori-
zontal line in Fig. 2.14 because Eq. (2.88a) does not
depend on Rp. Last but not least, the thin solid lines
represent points in the Sonin-plot where the dimen-
sionless probe radius is fixed, Rp = 0.5 and Rp = 4
respectively, as given by Eq. (2.91).

As can be seen in Fig. 2.14, the Sonin-plot of
radial and orbital theories have very distinctive behaviours. In our case we have compared the ABR and
OML models, but the results would be similar if we were to use any of the more elaborated models in
each category. In Fig. 2.14, it can also be seen that, as the dimensionless probe radius is increased, the
gap between both Sonin-plots is reduced. There are two reasons for this. On the one hand, the OML
theory is only valid for the case Rp ≲ 1, whereas for Rp ≫ 1 the TSL is the correct approach. On the
other hand, no matter what orbital model it is used, as Rp is increased it becomes more and more difficult

55

2.6. Conclusion

for an ion to orbit around the probe (see Fig. 2.4a), and the predictions of the orbital and radial models
come closer to each other. Also, the larger the radius the more the probe behaves as planar instead of
cylindrical. So both theories approach the planar limit as Rp → ∞.

2.6. Conclusion

In this chapter we have reviewed the different models developed along the history that predict the
ion current collected by a cylindrical probe, in the ion saturation zone. Two different approaches have
been showcased: the orbital and the radial theories. Because of the profound differences between both
cases, the predictions of the radial and orbital theories are very different, specially for relatively small
probe radii, Rp ≲ 1. We have stated that experimentalists have found results in agreement with either
theories and even in between the predictions of both, the radial and orbital models. Moreover, it has
been found a transition between radial and orbital behaviour for helium plasmas, which suggests that
the radial and orbital behaviours should be limiting cases of a more general model that describes the
movement of ions across the sheath. The Sonin-plot, which represents a powerful tool when it comes to
discriminate between the radial and orbital behaviours, has also been explained.

With this chapter we finish the introductory part of the thesis. The following part is devoted to
explain the details of the different simulations developed during our research. In particular, in the next
chapter we are going to explain the fundamentals about particle-in-cell (PIC) simulations.

56

Part II

Particle Simulations

57

Chapter 3

Particle-In-Cell simulations &
parallelisation techniques

3.1. Introduction

Because of the complex problems found when studying a plasma, computers have always played an
important role in the development of plasma physics. To put it into perspective, even the simplest models
developed in chapter 2, e. g. the ABR theory, require a numerical integration scheme in order to be
solved. The only exception to that is the the Mott-Smith and Langmuir theory. This should come as no
surprise, since the theory was developed in 1926, while the ENIAC, the first general purpose computer,
was built in 1946.

When it comes to simulate a plasma with a computer, there are two main approaches: fluid description
and kinetic description. Fluid description of a system relies on the use of macroscopic quantities, such as
particle densities and flow velocities, instead of dealing with microscopic information, e. g. distribution
function. Fluid simulations of plasmas are performed by solving magnetohydrodynamic (MHD) equations,
which are composed by the different moments of the Boltzmann equation (see apendix A) and the field
equations, i. e. Maxwell’s equations. Actually, this is the approach used in chapter 2. Even thought
the fluid approach offers a coarser description of the system, it was extensively used in the early ages of
plasma physics, due to the fact that it is relatively inexpensive from the computational point of view.
On the other hand, the kinetic approach relies on microscopic parameters such as distribution functions
or even individual particle positions and velocities, reason why it offers a more detailed and complete
description. Within the kinetic simulations there are two options, to solve the kinetic equations of plasmas
(i. e. Boltzmann, Vlasov or Fokker-Planck equations along with field equations) or particle simulations.
In particle simulations the motion of a collection of charged particles is computed while they interact
with each other as well as with externally applied fields.

KINETIC
DESCRIPTION

Vlasov,
Fokker-Planck

codes

Particle
codes

Hybrid
codes

FLUID
DESCRIPTION

MHD
codes

Figure 3.1: Classification of the different codes used to simulate plasmas.

In Fig. 3.1 we can see a simple classification scheme of the different options that can be used in order
to simulate a plasma. MHD and Vlasov/Fokker-Planck codes consist basically in numerical algorithms

59

3.2. Particle simulations and computer experiments

for solving differential equations, such as the RK4 algorithm that we have mentioned previously. On the
other hand, particle codes are more elaborated pieces of software. Our research is based on the use of
particle codes to simulate the contact of a plasma with a probe. In this chapter we are going to cover
the theory behind those kind of simulations, as well as some of the details of the parallelisation technique
that we have used to develop our codes.

3.2. Particle simulations and computer experiments

Let us start by defining what we meant by particle simulations. Computer simulations can be de-
scribed in general as the numerical resolution of initial-values-boundary-values problems with the help
of computers. Particle simulation is a generic term that describes a kind of simulation model where
the description of the physical phenomena involves the use of interacting particles. That is, in computer
simulations using particles, the system under study is represented by a certain ensemble of particles in-
teracting according to certain rules. Here, the term “particle” must be understood in the most general
way, however, in most applications the particles are identified with the physical objects that the system is
composed of. Those physical objects can range from planets and starts, in astrophysical simulations, to
ions and electrons, in plasma simulations, which is our case of study. Each particle has a set of attributes
such as mass, charge, position, velocity, spin, etc. Many of those are defining magnitudes of the particles
and, consequently, are constants along the simulation, while others are evolving quantities whose change
is determined by the laws of interaction of the particles.

Initialisation of the
ensemble of particles

Experimental analysis
of the raw data

Evaluation of the forces

Integration of the
equations of motion

Boundary conditions

E
ve

ry
 t

im
e

st
ep

Figure 3.2: General scheme of any computer sim-
ulation using particles.

If we want to perform a particle simulation in a
computer, the following elements have to be provided
in the code of the program. First, some initial condi-
tions for the ensemble of particles that conforms the
system under study are needed. Then, the simulation
needs rules to evaluate the dynamics of the particles
present in the system, i. e. the forces acting on each
particle. Also, appropriate equations of motion are
needed for the simulation program in order to eval-
uate the motion of the particles. The existence of
particles is usually limited to some finite region of the
space, known as “computational box”, on the limiting
surface of which prescribed boundary conditions hold.
So, proper boundary conditions need to be supplied
as well.

Once that we have stablished the minimum in-
formation that is needed, in order to develop the code
of a particle simulation, we can specify the very basic
steps that are taken in every particle simulation from
start to end. These steps can be seen summarised
in the flow chart shown in Fig. 3.2. There we can
see that, first, the ensemble of particles is initialised.
After that, the program evaluates the force acting on
every particle according to the rules prescribed in the
code. Then the corresponding equations of motion are

integrated for each particle, so, new values for the attributes associated with each particle are obtained,
typically new positions and velocities. After that, it is posible that some of the particles have reached the
boundaries of the computational box, so, this possibility has to be handled according to the boundary
conditions implemented into the code. Next, the simulation goes back to the evaluation of the forces step
and starts iterating over the code until the simulation finishes.

There is one last step that appears in the flow chart of Fig. 3.2 and that we have not already
mentioned. This last step is the experimental analysis of the raw data produced by the simulation.
Here is where the term, computer experiment arises. Let us notice that particle codes have more
similarities, from a conceptual point of view, with an experiment than with other simulation approaches
such as MHD, Vlasov or Fokker-Planck codes. In a particle simulation we have a system of particles

60

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

that behaves according to some mathematical model of the physical laws governing the system. Then, in
order to obtain physically meaningful information, measurements have to be performed into the system.
This task is done by analysing the raw data that the simulation manages, i. e. the value of all the
attributes assigned to particles, for each particle in the system and for each time step in the simulation.
Even the simplest particle simulation produces a huge amount of raw data, actually only positions and
velocities by themselves constitute millions of values per time step. This data is then processed, averaged
and analysed in order to obtain macroscopic and significant information, e. g. pressure, temperatures,
electric currents, etc. This process is equivalent to the process of measuring any of those magnitudes in
a physical experiment.

Computer experiments represent a powerful tool that complements both, theoretical and experimental
research. Science has evolved by experiments that push the development of new theories in order to
explain them, and by theories that predict situations that are then confirmed by experiments. Nowadays,
computers have to be seen as a new “laboratory”, where computer experiments are performed in order to
bridge the gaps between both theory and experiments. This is achieved because a computer experiment
is a completely controlled environment where, not even the process of measuring affects the system that
is being measured, and the effect of fundamental laws of physics on complex systems can be studied.
Some of the systems that take advantage of the use of computer experiments are shown in Table 3.1.

Particle simulations greatly depend on the system that is going to be simulated as well as the physical
laws that it is governed by. However, they can be classified into three main categories, depending on how
the evaluation of the forces suffered by every particle is carried out. Those categories are: particle-particle
(PP) models, particle-mesh (PM) models and particle-particle–particle-mesh (PPPM or P3M) models.
Let us explain the difference between them.

Particle-Particle: From the conceptual point of view, PP models represent the simplest approach that
can be followed to develop a particle simulation. PP models rely in the knowledge about the
interaction between pairs of particles present in the system, e. g. the gravitational force between
the different astral bodies in a planetary system. In this case, the way the force suffered by every
particle in the system is evaluated, is rather simple. Let us call f⃗i,j(q⃗i, q⃗j) to the force suffered by
particle i due to particle j, which depends on the attributes of particle i, q⃗i, as well as the attributes
of particle j, q⃗j . Then to obtain the net force suffered by particle i, we just have to evaluate the
quantity:

F⃗i(q⃗i) =
N∑
j=1
j ̸=i

f⃗i,j(q⃗i, q⃗j); ∀ i ∈ [1, N] (3.1)

N being the total number of particles present in the system. Let us notice that Eq. (3.1) has to be
evaluated for each particle in the system.

The main advantages of these models are their simplicity and the fact that the force evaluation
is carried out exactly, without any approximation or simplification. However, as counterpart, the
computational resources needed for the evaluation of the forces, can easily overcome the performance
of even the most up to date hardware. The number of operations needed to complete the force
evaluation scales as O

(
N2) in general, reason with the PP approach is only useful for finite systems

which are relatively small, e. g. the solar system. Nevertheless, in case we are dealing with short-
range interactions, e. g. the Lennard-Jones potential, where a cutoff distance can be defined
for the interaction, every particle in the system would interact only with a certain number of close
neighbours. In this case, the number of operations in the force evaluation no longer scales as O

(
N2),

and bigger systems or even infinite ones (by using cyclic contour conditions) can be simulated with
a PP model.

Particle-Mesh: These models arise in order to overcome the limitations of the PP models, i. e. simulate
systems where there are more than a few hundreds particles that interact through long-range forces.
In order to avoid the costly evaluation of all the forces between pairs of particles, PM models rely on
the evaluation of macroscopic fields instead of microscopic forces between particles. In these models,
the computational box is meshed and, by means of the superposition principle, the macroscopic fields
where the particles move are determined in the nodes of the mesh. Additionally, field equations
could be required in PM models in order to evaluate de forces suffered by the particles, e. g.
Maxwell’s equations when electromagnetic interactions are present.

61

3.2. Particle simulations and computer experiments

E
xam

ple
C

om
puter

particles
P

article
attributes

P
hysical

C
om

puter
m

odel

N
p

L
T

N
p

L
T

1.
C

orr elated
system

s

C
ovalent

liquids
A

tom
s

or
m

olecules

Strength
constants

related
to

quantum
-m

echanicaldipole
and

quadrupole
interactions,m

ass,force,
position,velocity

10
5

10
−

8
10

−
12

10
3

∼
10

4
10

−
8

∼
10

−
9

10
−

12

Ionic
liquids

P
ositive

and
negative

ions
C

harge,m
ass,force,position,velocity,

radius
10

5
10

−
8

10
−

12
10

3
∼

10
4

10
−

8
∼

10
−

9
10

−
12

Stellar
clusters

Stars
M

ass,position,velocity,force,radius
10

2
∼

10
3

10
17

10
15

10
2

∼
10

3
10

17
10

15

G
alaxy

clusters
G

alaxies
M

ass,position,velocity,force,radius
10

4
∼

10
5

10
23

10
17

10
4

∼
10

5
10

23
10

17

2.
C

ollisionless
system

s

C
ollisionless

plasm
a

“Superparticle”
≃

10
8

electrons
or

ions
C

harge,m
ass,position,velocity,

radius
10

9
∼

10
12

10
−

5
∼

10
−

2
10

−
9

∼
10

−
12

<
10

5
10

−
5

∼
10

−
2

10
−

9
∼

10
−

12

G
alaxies

–
spiralstructures

“Superparticle”
≃

10
6

stars
M

ass,position,velocity,radius
10

10
∼

10
11

10
21

10
13

<
10

5
10

21
10

13

3.
C

ol lisionalsystem
s

Sem
iconductor

devices
(m

icroscopic
M

onte-C
arlo

m
odel)

“Superparticle”
≃

10
4

electron
w

avepackets
C

harge,m
ass,position,w

avenum
ber,

radius
10

8
10

−
7

10
−

10
<

10
5

10
−

7
10

−
10

4.
C

ol lision-dom
inated

system
s

Sem
iconductor

devices
(diffusion

m
odel)

“Superparticle”
≃

10
4

electrons
or

holes
C

harge,position
10

9
10

−
6

10
−

9
<

10
5

10
−

6
10

−
9

Inviscid,incom
pressible

fluids
(vortex)

V
ortex

elem
ent

V
orticity,position

cont.
10

−
3

∼
10

6
10

−
3

∼
10

5
<

10
5

10
−

3
∼

10
6

10
−

3
∼

10
5

T able
3.1:

Exam
ples

ofphysicalsystem
s

w
here

particle
sim

ulations
and

com
puter

experim
ents

m
ake

good
sense.

L
is

the
characteristic

length
ofthe

system
,
T

its
characteristic

tim
e

and
N
p

is
the

num
ber

ofparticles
in
L

3.
C

redit:
R

.W
.H

ockney
and

J.W
.Eastw

ood
[50].

62

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

By evaluating macroscopic fields instead of microscopic forces between particles, these models
achieve a much better performance from the computational point of view, and the number of
operations needed for the evaluation of the forces of the particles scales as O (N log(N)) or even
O (N). There are several algorithms to evaluate the macroscopic fields, and which one is used
depends mainly on the kind of interaction that is going to be simulated and the ratio of exactitude
to performance that it is going to be assumed. Among these we can find the Particle-In-Cell
algorithm, which is the one that we are going to use in our simulations.

Particle-Particle–Particle-Mesh: P3M models kind of have the best of both, PP and PM models.
The main problem of PP models is that the number of operations needed to evaluate de forces can
easily become cumbersome, while the problem of PM models is that they tend to neglect the effect
of very short range interactions between particles, i. e. collisions. P3M models are based on a PM
model, but the interaction of each particle with their closest neighbours within a cutoff radius are
also taken into account. In this way, the force suffered by each particle has two contributions, one
due to the macroscopic field, evaluated through the mesh, and the other due to the microscopic
interaction with other particles within a certain distance.

F⃗i(q⃗i) = f⃗i-mesh +
N∑
j=1
j ̸=i

|r⃗ij |≤rcutoff

f⃗i,j(q⃗i, q⃗j); ∀ i ∈ [1, N] (3.2)

where f⃗i-mesh is the force suffered by the i-th particle due to the macroscopic fields, |r⃗ij | is the
distance between particle i and particle j and rcutoff is the distance at which short-range interactions
start to be neglected.

Even though in Eq. (3.2) we have expressed the short range interactions as a sum of forces
between pairs of particles, there are several algorithms to evaluate them that tackle this problem
by different approaches, e. g. Monte Carlo (MC) methods.

The force evaluation probably represents the trickiest part of any particle simulation, while the in-
tegration of the equations of motion is usually a rather simple task. Depending on the velocities of
the particles present in the system, particle simulations can be: relativistic and non-relativistic. Let us
describe both possibilities a little further.

Non-relativistic: When considering the case of non-relativistic systems, i. e. systems where particles
move with small velocities when compared to c, once the force suffered by every particle is known,
all that has to be done is to integrate Newton’s second law for each particle:

F⃗l = dp⃗l
dt

= dmlv⃗l
dt

= ml
d2r⃗l
dt2

; ∀ l ∈ [1, N] (3.3)

where p⃗l is the momentum of the l-th particle, ml its mass, v⃗l its velocity and r⃗l its position.
Eq. (3.3) is easily integrated numerically with a finite difference approximation. Depending on the
precision required, different algorithms and schemes are available.

Relativistic: Contrary to the non-relativistic case, when the velocity of particles present in the system
is on the same order of magnitude as c, relativistic effects must be taken into account during their
motion. For this reason, the relativistic expression of the momentum of the particles, p⃗l = γ(vl)mlv⃗l,
has to be used in Eq. (3.3), where:

γ(vl) = 1√
1 − v2

l

c2

(3.4)

Once we introduce Eq. (3.4) into Eq. (3.3), all that remains is to integrate numerically the
equation of motion with a finite difference algorithm as in the non-relativistic case.

Finally, we can also establish a classification of the different particle simulations depending on the
boundary conditions stablished. In this sense, the walls limiting the computational box of a particle
simulation can be: absorbing, reflecting, emitting or cyclic boundaries. Obviously, in a particle simulation
we can have any mixture of them. Let us characterise a little bit the aforementioned boundaries.

63

3.3. The Particle-In-Cell method

Absorbing boundaries: Particles that cross an absorbing boundary are withdrawn from the compu-
tational box and thus from the simulation itself. Along with other mechanisms, such as particle
annihilation, absorbing boundaries represent one of the means that allow a simulation to decrease
the number or particles within it.

Emitting boundaries: Contrary to the previous one, an emitting boundary emits particles that are
then injected into the simulation. When absorbing boundaries are present in the computational
box, emitting ones (or any other source of particles) needs to be implemented into the simulation.
Otherwise the simulation would end up empty.

Reflecting boundaries: When a closed system is going to be simulated, it usually needs some degree
of reflectiveness in their walls. The law that govern the behaviour of a reflective boundary does not
need to be specular reflection. Instead, different reflection rules can be implemented, in order to
take into account the physical properties of the simulated wall.

Cyclic boundaries: There are situations when it results of great interest to simulate an infinite systems.
Obviously, the problem being that, in order to do that, we would need infinite computational
resources. One of the simplest ways to deal with this problem is to simulate a finite system with
cyclic boundaries. Cyclic boundaries are defined by pairs of walls that are kind of “connected”.
A graphic representation of a cyclic boundary can be seen in Fig. 3.3. By using this boundaries
the particles, virtually, never find a wall in their movement. Under this conditions, the simulation
behaves as if it were infinite, as long as the computational box is large enough to avoid correlations
between particles in the extremes of it.

(a) The computational box is repeated infinite
times to the left, on top, to the right and under
the bottom of the simulation domain.

(b) The computational box is wrapped around
itself in order to connect opposite boundaries so
the simulation domain becomes cyclic.

Figure 3.3: Two different interpretations of a cyclic boundary in a two dimensional domain.

We have to notice that, simulations do not have to fit exactly into one of the previous classifications in
terms of: the force evaluation, the equations of motion and the boundary conditions. Some simulations
consider relativistic equations of motion for one kind of particle and non-relativistic for others, or have
different boundary conditions on different walls of the computational box, or even have different force
evaluation methods for different kind of particles. In the following section we will discuss more in depth
the exact simulations that we are going to use in our research.

3.3. The Particle-In-Cell method

As any other particle code, PIC simulations follow the scheme described in Fig. 3.2. In this section
we are going to explain, in detail, the three parts that represent the core of any PIC simulation, that

64

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

is: the force evaluation, the integration of the equations of motion and the boundary conditions. Let us
start by remembering that we are interested in simulating the contact of a collisionless plasma with a
perfectly absorbing Langmuir probe that is negatively biased with respect to the plasma. So, in order to
simulate this system, the following considerations must be taken into account:

Due to the huge number of particles interacting with electrostatic potentials (long range), we are
going to use a PM model. As collisions are not going to be taken into account, we do not need to
develop a P3M model. Also, we have to take into account Poisson’s equation to obtain the electric
potential distribution in the mesh.

As the velocities involved when the ions and electrons approach the surface of the probe are far
from being relativistic, we are going to use non-relativistic equations of motion, i. e. Eq. (3.3).

We are going to simulate the space between the surface of the probe and the plasma. The boundary
corresponding to the surface of the probe is going to be, obviously, perfectly absorbing, in order to
represent the perfectly absorbing probe. Although, the boundary corresponding to the plasma is
going to be both, absorbing and also emitting, as it has to represent an imaginary surface, far away
from the probe, so that particles cross from the probe towards the plasma (absorbing) and from
the plasma towards the probe (emiting).

What we have just described is a collisionless, non-relativistic, electrostatic Particle-In-Cell (PIC)
simulation of the contact of a plasma with a Langmuir probe. Even though the name Particle-In-Cell
corresponds to one of the algorithms used during the force evaluation, as we will see, “PIC simulation”
has become a usual term to describe almost any PM model that considers electromagnetic interactions
between particles. With such a large scope, it is not our intention to cover here a complete description
of the theory behind PIC simulations, but to give a general description of the main algorithms partic-
ularised for the simulations that we have developed. For a more complete and detailed description of
PIC techniques the reader is referred to the classical monographs written by R. W. Hockney and J. W.
Eastwood [50], and C. K. Birdsall and A. B. Langdon [51].

3.3.1. Force evaluation

The force evaluation is the part of the code that set apart PIC simulations from any other simulation
using particles. As we have previously stablished, PIC simulations are based in PM models where particles
interact with each other through electromagnetic fields.

Evaluation of the forces

Particle weighting

Maxwell’s equations solver

Fields weighting

Figure 3.4: Force evaluation in PIC codes. l index
refers to particles, while k⃗ index refers to nodes.

We have to notice that, in order to properly sim-
ulate a plasma, the electromagnetic fields must be
self-consistently evaluated. That is, the electric and
magnetic fields must be obtained from quantities that
depend on the particles configuration at the moment
of solving them. As it is known, the sources of electro-
magnetic fields are charge and currents densities. So,
before solving Maxwell’s equations, charge and cur-
rents densities must be obtained at the nodes of the
mesh from the particle attributes.

In Fig. 3.4 the general scheme of the force evalu-
ation in PIC codes is shown. There, we can see that
there are three main parts involved in the evaluation
of the forces: the particle weighting, the solution of
Maxwell’s equation and the fields weighting. How-
ever, as our study is centred in the case of unmag-
netised plasmas, magnetic interactions are considered
to be negligible, and from now on we are going to
consider only electrostatic interactions. We made the
same assumption in the previous chapters when re-
viewing the fluid models. The difference with the

65

3.3. The Particle-In-Cell method

scheme shown in Fig. 3.4 is that instead of solving the full set of Maxwell’s equations, we only have
to solve Poisson’s equation:

∇2φ(r⃗) = −ρ(r⃗)
ε0

(3.5)

But, prior to the numerical resolution of Eq. (3.5), it is necessary to grid the space, i. e. r⃗ → r⃗k⃗.
Where k⃗ represents the cartesian coordinates of the nodes of the mesh, e. g. in 2D we have that k⃗ ≡ (i, j)
and r⃗k⃗ ≡ r⃗i,j , as seen in Fig. 3.5. By following with the two dimensional case for the sake of clarity, once
we have defined a mesh in the computational box, Poisson’s equation can be discretized by using a finite
difference scheme (five-point stencil) as follows:

φ(r⃗i−1,j) + φ(r⃗i+1,j) + φ(r⃗i,j−1) + φ(r⃗i,j+1) − 4φ(r⃗i,j)
h2 ≃ ρ(r⃗i,j)

ε0
(3.6)

h being the spacing of the mesh, which is supposed to be the same in any direction.

h

h

(a) Mesh nodes and five-point stencil. (b) Weighting of the charge of l-th particle.

Figure 3.5: Particle weighting in a 2D PIC simulation.

In Eq. (3.6) we can see that, in order to solve Poisson’s equation, the charge density at the position
of the nodes, ρ(r⃗k⃗) ≡ ρ(r⃗i,j), is needed. Here is where the need of the particle weighting step arises.
The particle weighting part of a PIC simulation, handles the obtention of an approximate value of the
charge density at node positions, that is ρk⃗ ≃ ρ(r⃗k⃗), or in the two dimensional case ρi,j ≃ ρ(r⃗i,j). In
order to obtain this approximation, particles are assumed to have a certain “shape” or “size”, depending
of which the charge of each particle is “shared” across one or more of its surrounding nodes. In this way,
the contribution of the l-th particle to the charge density of the k⃗-th node can be expressed as:

ρl
k⃗

= ql
Vc
S
(
r⃗k⃗ − r⃗l

)
(3.7)

where ql is the charge and S
(
r⃗k⃗ − r⃗l

)
the shape function associated with the l-th particle. Also, Vc is the

volume occupied by an individual “cell”1 of the mesh. So the complete charge density associated with
the k⃗-th node is:

ρk⃗ =
N∑
l=0

ql
Vc
S
(
r⃗k⃗ − r⃗l

)
(3.8)

Let us notice that, the stability and the speed of a PIC simulation greatly depends on the exact shape
function considered. For instance, let us consider two limiting cases:

1“Cell” is the name that it is usually given to the subdomain of a PIC simulation defined by adjacent nodes.

66

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

On the one hand, if the shape function is wide enough so that every particle contributes to the
charge density of every node in the mesh, the number of operations needed for the evaluation of
the forces does not differ so much from the PP models. For this reason, shape functions for which
each particle is only weighted to a certain small number of close nodes are preferred.

On the other hand, if we consider the limiting case of assigning the whole charge of a particle
to its nearest grid point, the charge density associated to the nodes would change drastically as
particles move. This would lead to a noisy charge density and, ultimately, to noisy potential and
field distributions, affecting the stability of the simulation.

So, when looking for a shape function, a compromise must be reached between speed of the simulation
and smoothness/stability of the electric potential and field. As we are going to see, this compromise is
found in terms of the maximum number of close nodes to which each particle is weighted. We must notice
that, the functional dependence of the shape functions, S(r⃗k⃗ − r⃗l), can not be whatever we want, instead,
it has to satisfy certain conditions.

The first two conditions are rather simple. First, due to the space isotropy, we have that shape
functions must satisfy:

S
(
r⃗k⃗ − r⃗

)
= S

(
r⃗ − r⃗k⃗

)
(3.9)

And due to the charge conservation constraints, it also has to satisfy:∑
k⃗

S
(
r⃗k⃗ − r⃗

)
= 1 (3.10)

The rest of the conditions that shape functions must satisfy, can be obtained by an increasing accuracy
of the weighting scheme. For the sake of simplicity, let us consider the monodimensional case in order to
obtain these conditions. We start by considering the potential at position x due to a unit charge located
at the point X. Such a potential is given by the Green’s function, G(x − X). Now, if we introduce the
weighting scheme, the potential at point x, created by a particle of charge q located at X, can be written
as:

φ(x) = q
m∑
k=1

S(xk −X)G(x− xk) (3.11)

m being the number of nearest nodes to which the particle is weighted. If we Taylor expand G(x − xk)
around (x−X) we have that:

φ(x) = q

m∑
k=1

S(xk −X)G(x−X) + q

m∑
k=1

S(xk −X)
∞∑
n=1

(X − xk)n

n!
dnG(x−X)

dxn
(3.12)

and by taking Eq. (3.10) into the first term on the right hand side of Eq. (3.12)

φ(x) = qG(x−X) + q
∞∑
n=1

1
n!
dnG(x−X)

dxn

m∑
k=1

S(xk −X)(X − xk)n = qG(x−X) + δφ(x) (3.13)

We can see that, the first term in the right hand side of Eq. (3.13) represents, precisely, the potential
at x due to a particle of charge q located at X. So the term δφ(x) is an unphysical potential introduced
by the weighting scheme. Obviously, it is desirable this term to be as small as possible, which can be
done by requiring:

m∑
k=1

S(xk −X)(X − xk)n = 0 (3.14)

for n = 1, . . . , nmax − 1, nmax − 1 being the last value of n for which Eq. (3.14) is verified. And by taking
Eq. (3.14) into Eq. (3.13), we have that:

δφ(x) = q
∞∑

n=nmax

1
n!
dnG(x−X)

dxn

m∑
k=1

S(xk −X)(X − xk)n

∼ G(x−X)q
m∑
k=1

S(xk −X)
∞∑

n=nmax

(X − xk)n

n!(x−X)n
(3.15)

67

3.3. The Particle-In-Cell method

Thus, at large distances, |X − xk| < |x−X|, we have that δφ(x) decreases as nmax increases.

Finally, the shape functions can be obtained by taking into account the conditions given by Eq. (3.9),
Eq. (3.10) and Eq. (3.14). It has to be noticed that, the value of nmax depends on the maximum number
of closest nodes, m, to which the particle is weighted. Now, we are going to see the two simplest weighting
schemes, which are also the two most used along the history of PIC simulations.

NGP: This is the simplest scheme to obtain the charge density at node positions from the particles
configuration. We even have already briefly mentioned this scheme, and it consist of assigning the
whole charge of the particle to its nearest node. For this reason, it is usually called Nearest-Grid-
Point (NGP). The shape function corresponding to this scheme can be defined as:

S0 (r⃗ − r⃗l) =

{
1 , if |r⃗k − r⃗l| < h

2
0 , otherwise

(3.16)

As we mentioned before, this scheme generates very noisy simulations, reason why its use is
not recommended. However, due to the very low computational resources that it needs, it was
extensively used in the early ages of PIC simulations. In Fig. 3.6 it can be seen the representation
of the shape function of the NGP scheme for the 1D and 2D cases.

h

h

1

(a) 1D case.

1

(b) 2D case.

Figure 3.6: Nearest-grid-point (NGP) weighting scheme.

CIC / PIC: This first order weighting scheme, assigns charge density, not only to the closest node of a
particle, but to all the nodes that delimit the cell where the particle is. So, the number of nodes to
which every particle is weighted is: 2 in the 1D case, 4 in the 2D case and 8 in the 3D case. The
shape function corresponding to this scheme in the 1D case is:

S1 (x− xl) =

1 − |x− xl|
h

, if |x− xl| < h

0 , otherwise
(3.17)

However, Eq. (3.17) can be generalised easily for the case of multidimensional cartesian coordinates
as:

S1 (r⃗ − r⃗l) = S1 (x− xl)S1 (y − yl)S1 (z − zl) (3.18)

This scheme is usually referred to as Cloud-In-Cell or CIC. Because of the form of the shape
function, the particle can be seen as a uniformly charged cloud of width h, whose differential charges
contribute to their nearest grid point. An alternative view is that, every particle resides in a cell and,
consequently, contributes proportionally to the nodes delimiting that cell. From this interpretation
the term Particle-In-Cell or PIC arises. It should come at no surprise that, the kind of simulations
we are dealing with are referred to as PIC simulations, since this is the most widely used weighting
scheme.

68

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

In Fig. 3.7 it can be seen the representation of the shape function of the CIC/PIC scheme for
the 1D and 2D cases. There we can see that this scheme is based on the use of “triangular” function
shapes.

h

1
h h

(a) 1D case.

1

(b) 2D case.

Figure 3.7: Cloud-in-cell (CIC) / Particle-in-cell (PIC) weighting scheme.

Higher order weighting by using quadratic and cubic splines rounds off the roughness in the particle
shape function and, as a result, reduce even further the noise in all the macro-quantities. Also, it can be
probed that, by using higher order schemes, the appearance of nonphysical effects in the simulations is
diminished. However, this is achieved at the expense of a computationally much heavier simulation. The
first order weighting scheme, kind of resides in the sweet spot. Even though CIC/PIC schemes consume
more computer resources than NGP, for a given noise level, they allow both a coarser grid and fewer
particles than NGP, and thus regains some of the additional computer time required per particle.

Once the approximation to the charge density at node positions, ρk⃗, is obtained, the discretized
Poisson’s equation can be numerically solved. In this way, an approximation of the electric potential at
node positions would be obtained, i. e. φk⃗ ≃ φ(r⃗k⃗). As we already introduced, by using a finite difference
approximation, we can transform the resolution of Poisson’s equation in the simulation domain (ODE)
into the resolution of the following system of linear equations:∑

n⃗

cn⃗φn⃗ = −
h2ρk⃗
ε0

(3.19)

where φn⃗ are the unknowns. Eq. (3.19) has to be particularized depending on the dimensionality
considered and the order of the finite difference approximation of the Laplace operator in Eq. (3.5). For
second order approximations in 1D and 2D the resulting systems are:

φi−1 − 2φi + φi+1 = −h2ρi
ε0

; ∀i = 1, . . . , Nx ; (1D) (3.20a)

φi−1,j + φi,j−1 − 4φi,j + φi+1,j + φi,j+1 = −h2ρi,j
ε0

; ∀i = 1, . . . , Nx ; ∀j = 1, . . . , Ny ; (2D) (3.20b)

Nx and Ny being the number of nodes that the simulation has in either direction.

The systems given by Eqs. (3.20) can be easily solved with different numerical algorithms, in order
to obtain the electric potential at any node of the computational box. At the end, the specific numerical
algorithm used depends on a variety of factors. In our case, as we are interested in the parallel execution
of our codes, the resulting system of linear equations is solved by using a Jacobi method. Jacobi method
is simple and readily parallelizable, with a large fraction of its code being 100% parallel, which makes it
perfect for its execution in Graphics Processing Units.

Once the system given by Eq. (3.19) is solved, no matter the algorithm used, it is straightforward to
obtain the electric field a the node positions. Knowing that:

E⃗(r⃗) = −∇⃗φ(r⃗) (3.21)

69

3.3. The Particle-In-Cell method

we only need to perform numerically the derivative of the electric potential. If we use second order
approximations in 1D and 2D, the electric fields would be obtained as:

Exi = φi−1 − φi+1

2h
; (1D) (3.22a)

Exi,j = φi−1,j − φi+1,j

2h
; Eyi,j = φi,j−1 − φi,j+1

2h
; (2D) (3.22b)

Once the fields are determined at node positions, the last step that has to be taken in order to
complete the force evaluation in PIC codes is the field weighting. To a certain extent, this last step is
exactly the opposite to the first one, the particle weighting. During the particle weighting, the value
of microscopic quantities associated with particles, ql, are interpolated in order to obtain macroscopic
quantities associated with the nodes of the mesh, ρk⃗. While during the field weighting, the value of
macroscopic quantities associated with the nodes of the mesh, E⃗k⃗, are interpolated in order to obtain
microscopic quantities associated with the particles, E⃗l.

When it comes to choose a field weighting scheme, there are two main options: momentum conserving-
schemes and energy-conserving schemes. In our case, we decided to use a momentum-conserving scheme.
That is, a scheme where, in the absence of roundoff errors, the total momentum is identically conserved.
It can be probed [52] that, the total momentum is conserved by any particle mesh calculation which fulfil
the following conditions:

1. Identical particle weighting and field weighting schemes are used.

2. Correctly space-centred difference approximations to derivatives are used.

On the one hand, let us notice that, we have already fulfilled the second condition. All the derivatives
approximations that we have used at this point, e. g. Eq. (3.6), Eqs. (3.20) and Eqs. (3.22), are properly
space-centred and second order accurate with respect to the spatial step, i. e. errors scale as O

(
h2).

The reason behind the use of space-centred approximations is not only that we are interested in the use
of a momentum-conserving scheme, since the use of properly space-centred approximations is preferred
whenever possible over forward or backward approximations.

On the other hand, in order to obtain a momentum-conserving scheme, we only have to use the same
shape functions that were used during the particle weighting in the field weighting. So, similarly to Eq.
(3.8), the field at particle positions is found by using the following expression:

E⃗l =
∑
k⃗

E⃗k⃗S
(
r⃗l − r⃗k⃗

)
(3.23)

where the exact same shape function than in Eq. (3.8) should be used. In our case, this will be the
provided by the CIC/PIC scheme, given in Eq. (3.17) and Eq. (3.18).

By using a momentum-conserving scheme, and thus fulfilling the previously mentioned conditions,
we are ensuring that in our PIC simulations, self-forces are null and inter-particle forces are equal and
opposite. That is, that particles do not apply any force to themselves and that the third Newton’s law is
fulfilled.

Once the field weighting is finished, the force evaluation step of the PIC simulation is completed, since
the force suffered by the l-th particle is simply evaluated as:

F⃗l = qlE⃗l (3.24)

In the next section we are going to explain the details involved in the integration of the equations of
motion.

3.3.2. Integration of the equations of motion

The integration of the equations of motion is a fundamental part, not only in PIC codes, but in any
particle simulation. The part of the code that handles this task is usually called “particle mover”. We

70

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

have to notice that, during a PIC simulation, the trajectory of each individual particle in the system is
followed. For this reason, and knowing the large number of particles (≳ 105) present in a PIC simulation,
the two main traits that are appreciated in a particle mover are: high accuracy and speed. Just as in
the force evaluation method, it is not possible to increase the accuracy without reducing the speed of the
simulation, so the sweet spot between these two constraints has to be found.

As we stated at the beginning of Section 3.3, our simulations are going to fall in the non-relativistic
velocity regime. So, the equation of motion that we have to solve is the one shown in Eq. (3.3). Let us
notice that, by considering Eq. (3.24), Eq. (3.3) can be rewritten in the following form:

dr⃗l
dt

= v⃗l (3.25a)

dv⃗l
dt

= ql
ml

E⃗l (3.25b)

Exactly as we did with the field equations in the previous section, in order to numerically solve the
time derivatives that appear in Eqs. (3.25), a finite difference scheme is used. In order to proceed this
way, first, the time in the PIC simulation should be divided into discrete steps, i. e. the time should be
discretized just as the space. Let us remember that, PIC codes are iterative particle simulations (see Fig.
3.2), where different physical magnitudes are evaluated at discrete instants corresponding to the different
iterations of the code. Usually, the time step, ∆t, is constant along the simulation, so that the simulated
time at the p-th iteration is given as: t p = p∗∆t. Accordingly, the value of any magnitude which depends
on the time, A(t) is mapped into discrete values at the corresponding times, A(t) → A p = A(t p). For
instance, the electric field acting on the l-th particle appearing in Eq. (3.24) and Eq. (3.25b), actually
represents the electric field evaluated at the p-th iteration of the PIC simulation, so:

E⃗l ≡ E⃗l(t p) = E⃗ p
l (3.26)

For the discretization of Eqs. (3.25), we have used the leap-frog scheme, which is probably the most
widely used scheme for the integration of the equations of motion. The leap-frog method relies on the
use of time centred approximations, of the derivatives in Eqs. (3.25), for achieving good performance
with a small computational footprint. In order to have centred approximations for both, the position,
Eq. (3.25a), and the velocity, Eq. (3.25b), the method does not calculate particle velocities at usual
instants, i. e. t p. Instead, velocities are evaluated at half time steps, i. e. t p+1/2 = (p + 1/2)∆t. So,
once discretized, the equations of motion would be:

r⃗ p+1
l − r⃗ pl

∆t
= v⃗

p+1/2
l ⇒ r⃗ p+1

l = r⃗ pl + ∆t v⃗ p+1/2
l (3.27a)

v⃗
p+1/2
l − v⃗

p−1/2
l

∆t
= ql
ml

E⃗ p
l ⇒ v⃗

p+1/2
l = v⃗

p−1/2
l + ∆t ql

ml
E⃗ p
l (3.27b)

As it can be seen in Eqs. (3.27), the leap-frog method is an explicit solver. This means that the values
of the quantities that are being actualized depend only on values at older time steps, which are already
known. In Fig. 3.8 a graphical representation of the method can be seen.

Electric field

Particle velocities

Particle positions

Figure 3.8: Graphical visualisation of the leap-frog integration scheme.

71

3.3. The Particle-In-Cell method

We have to notice that, due to the leap-frog scheme shown in Fig. 3.8, the particle velocities have to
be shifted half time step when initiating the simulation. So, this has to be considered when developing
the initialization step shown in Fig. 3.2.

3.3.3. Boundary conditions

The last part of PIC simulations that has to be discussed is the boundary conditions module. Here,
we are going to consider only the cases of: absorption and injection of particles by the boundaries, since
those are the boundary conditions that we are going to implement in our simulations. From the physical
point of view, the aforementioned boundary conditions are rather simple: particles can be absorbed at
any boundary or injected from them with any distribution function.

Absorption of particles by a boundary is trivial to implement into the simulations. Particles are
withdrawn from the simulation as soon as they cross the corresponding wall. Nevertheless, from the
computational point of view, injection of particles can be a little bit tricky. The two main problems are
that:

1. Positions and velocities of particles are shifted in time ∆t/2, as we have just said when discussing
the particle mover.

2. Positions and velocities of particles are known at discrete time steps, while particle can cross the
boundaries of the simulation at any moment.

The way this problems are handled is by introducing an extra particle mover step with an adjustable
time step. By doing so, we can adjust the properties of the particles from the instant when they enter
into the computational box to the proper time steps of the simulation. So, all that remains is to evaluate
the flux of particles that the simulation is going to be fed with.

Let us start by taking into account that the boundary that our simulation is going to be fed through,
should represent the sheath edge. So, the particles entering the simulation should have the properties of
the quasineutral zone that we talked about in Section 1.4.1. In that zone, particles are described by the
following distribution function:

f(v⃗) = n

(√
m

2πkBT

)3

exp
(

− m

2kBT
(v2
x + v2

y + (vz − vd)2)
)

(3.28)

n being the density of particles, m the particle mass, T the particles temperature and vd a drift velocity.

Figure 3.9: Diagram to evaluate the flux of
particles through a wall.

We have to notice that, the previous expression, has
not been particularized for any kind of particle, as any of
them can be described by it. The drift velocity included
in the distribution, takes account of the potential drop
that takes place from the plasma to the presheath. This
potential drop can be seen for the case of a planar probe
in the low ionization limit in Fig. 1.7. We have to say
that, when describing electrons, the drift velocity must
be set to zero. As we are considering the case o negatively
biased probes, electrons are repelled by it and, thus, they
are not accelerated but retarded through the presheath.

In order to evaluate the flux of particles through a
wall, let us start by thinking in the number of particles
with velocities v⃗ ∈ [v⃗, v⃗ + d⃗v]. These particles would
have suffered a displacement v⃗ dt, a time dt later. Now,
if we consider a differential surface area, dS, in the xy
plane, every particle with velocities v⃗ ∈ [v⃗, v⃗ + d⃗v] that
are initially located inside the cylinder shown in Fig. 3.9,
would have crossed the surface dS a time dt later. The
volume of such a cylinder could be evaluated as:

dV = dS v dt cos θ (3.29)

72

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

So, the number of particles with velocities v⃗ ∈ [v⃗, v⃗ + d⃗v] that are located inside the cylinder shown
in Fig. 3.9 at a certain instant, would be given by the following expression:

dN(v⃗) = dV f(v⃗)d⃗v (3.30)

And, consequently, the number of particles with velocities v⃗ ∈ [v⃗, v⃗+ d⃗v] that cross the xy plane per time
and surface units, is given by:

Φ(v⃗) d⃗v = dN(v⃗)
dS dt

= v cos θf(v⃗) d⃗v (3.31)

where, v cos θ = vz, so:
Φ(v⃗) d⃗v = vz f(v⃗) d⃗v (3.32)

As we are interested in the flux, through the xy plane and in the z direction, of particles with any
velocity, we have to integrate Eq. (3.32) for every velocity v⃗ for which vz > 0. That is:

Φ0 =
∫

∀v⃗,vz>0

Φ(v⃗) d⃗v =
∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

0
dvz vz f(v⃗)

= n

√
kT

2πm
exp

(
− m

2kT
v2
d

)
︸ ︷︷ ︸

Φth

+n
vd
2

(
1 + erf

(√
m

2kT
vd

))
︸ ︷︷ ︸

Φvd

(3.33)

The first term in the right hand side of Eq. (3.33), denoted as Φth, is the part of the flux due to the
thermal motion of particles, while the second term, denoted as Φvd

, is the part of the flux due to their
drift velocity. If we consider the case vd = 0, we have that Φvd

= 0 and Φth = n
√
kBT/2πm, which is the

thermal flux due to purely maxwellian particles through a surface. On the contrary, if we consider the
case kBT = 0, we have that Φth = 0 and Φvd

= nvd, which is the flux due to monoenergetical particles
moving with velocity vd.

Now, by defining the thermal velocity as vth =
√

2kBT/m we can write Eq. (3.33) in the following
way:

Φ0 (vd, vth) = nvth
2

 1√
π
e

−

(
vd
vth

)2

+ vd
vth

(
1 + erf

(
vd
vth

)) (3.34)

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2

Figure 3.10: Transition from purely thermal to
drift velocity driven flux. Solid line correspond
to Eq. (3.34), while the dashed one correspond
to vth = 0 and the dotted one to vd = 0.

In Fig. 3.10, it is shown the dependence of this flux
with respect to the ratio of the drift to thermal velo-
city. There, we can see how the two limiting cases of
thermal and drift velocity driven flux, are recovered.
Also, it can be seen that when vd/vth ≳ 1 the flux can
be approximated by the flux due to a monoenergetic
beam of particles:

Φ0

(
vd
vth

≳ 1
)

∼ nvd (3.35)

Despite the fact that we have obtained the ap-
proximation shown in Eq. (3.35), we will always use
Eq. (3.34) to evaluate the number of particles that
enter the simulation per time unit. However, the
graph in Fig. 3.10 will become particularly interest-
ing when analysing the results of the simulation of the
cylindrical probe.

Finally, the velocity distribution of particles en-
tering the simulation is given by finc(v⃗) ∝ vzf(v⃗).
Where vz is the component of the velocity normal to
the influx surface, and f(v⃗) is given by Eq. (3.28).

73

3.4. Need of parallelism and the GPGPU approach

The previous velocity distribution can be factorised in order to obtain the distribution for the different
components of the velocity. By doing so, we obtain that the distribution for the component of the velocity
normal to the surface is given by the following Rayleigh distribution:

finc.(vz) = vz

√
m

2πkBT
exp

(
−m(vz − vd)2

2kBT

)
(3.36)

while the distribution for the other components of the velocity is given by a Gaussian distribution:

finc.(vx) =
√

m

2πkBT
exp

(
− mv2

x

2kBT

)
; finc.(vy) =

√
m

2πkBT
exp

(
−
mv2

y

2kBT

)
(3.37)

We have to notice that, during the calculations performed in this section, without loss of generality, we
have assumed a cartesian geometry where the drift velocity is assigned to the z direction. Nevertheless,
as long as the drift velocity is perpendicular to the surface, all the calculations performed here are still
valid.

We have already discussed most of the theory behind PIC simulations that is needed to develop our
simulations. In the following section we will discuss the parallelisation techniques that we have used.

3.4. Need of parallelism and the GPGPU approach

Even though the basic theory behind PIC simulations, or in general any particle simulation, was
already developed almost four decades ago, they have become relevant tools in the study of complex
systems only in the past fifteen years approximately. This should come at no surprise.

Processor Year Clock
frequency #transistors time per

operation

4004 1971 740 kHz 2300 1.35 µs

8080 1974 2 MHz 6000 0.50 µs

8086 1978 5 MHz 20000 0.20 µs

8088 1979 10 MHz 29000 0.10 µs

80286 1982 12 MHz 134000 83.3 ns

80386 1985 16 MHz 275000 62.5 ns

80486 1989 25 MHz 1180235 40.0 ns

i860 1991 50 MHz N. A. 20.0 ns

Pentium 1994 100 MHz 3100000 10.0 ns

Pentium III 1999 600 MHz 9500000 1.67 ns

Pentium IV 2003 3.2 GHz 169M 0.31 ns

i7 980X 2010 3.3 GHz 1170M 0.30 ns

i7 5960X 2014 3.5 GHz 1400M 0.29 ns

Table 3.2: Raw performance of different Intel processors from the
early 70s till nowadays. Number or transistors, and time per opera-
tion are approximate values.

On the one hand, obviously,
performance of computer experi-
ments is intimately related to the
performance of computers them-
selves. And, it is well known
that, raw performance of com-
puters has grown exponentially
since the early ages of compu-
tation. For example, the clock
speed of processors has quickly in-
creased from kHz, to MHz and
from MHz to GHz. Also, as stated
by the well known Moore’s law,
the number of transistor packed
into a single microprocessor is
doubled roughly every two years.
These facts, among others, have
allowed the exponential evolution
in the number of operations that a
computer can perform per second.
Let us notice that, as can be seen
in Table 3.2, the time needed by
a processor to perform a single
operation has been reduced from
microseconds, in the early 70s,
to nanoseconds, nowadays. This
means that, computers are more
than a thousand times faster now
than forty years ago. So, because
of the huge number of operations

needed to perform just one iteration of a particle code, it has been only recently when computers have
been powerful enough to run such simulations.

74

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

On the other hand, even though performance of computers has been greatly improved, it is not enough
to explain the recent wide spreading of particle simulations. There is another mayor breakthrough in
computer technology that has allowed this growth, and this is parallelism. As can be seen in Table 3.2,
during the last ten years the clock frequency of processors has not changed that much due to thermal
restrictions. However, the density of transistors that can be packed into a processor is still increasing2.
For this reasons, since ten years ago, the trend in the processor manufacturing industry has been to
develop multicore processors. That is, processors with more than one ALU (Arithmetic Logic Unit),
which can perform more than one instruction at a time.

To put it in perspective, let us do some approximate calculations. According to some rough estimations
[50], the number of operations needed to do a single time step iteration is:

10N2
p −Np −→ PP model (3.38a)

20Np + 5N3
m log2 N

3
m −→ PM model (3.38b)

Np being the number of particles to simulate and Nm the number of nodes in any direction of a three
dimensional mesh.

PP model PM model

#operations 1011 2 × 108 s

execution time
old hardware
(τ = 10−6 s)

105 s 2 × 102 s

execution time
new hardware
(τ = 10−10 s)

101 s 2 × 10−2 s

Table 3.3: Time needed to perform sequentially all
the operations of a single iteration. Np = 105, Nm =
128.

In Table 3.3 we can see the approximate num-
ber of operations needed to perform a single itera-
tion of a particle simulation for both, PP and PM
models. We have assumed typical values for the
number of particles and mesh points, as we are in-
terested in the order of magnitude only. Also, two
times per operation, τ , have been assumed, for old
and new hardware. As we can see, the execution
times are prohibitive for PP and PM models ex-
ecuted in old hardware. On the contrary, for new
hardware, the execution time for PP models are
still prohibitive for large number of particles, and
moderately assumable for PM models. For this
reason particle simulations with reasonable num-
bers of particles have only be used in the recent
past.

We have to notice that, in the results shown
in Table 3.3, we have considered only the time needed to perform the calculations, neglecting the time
needed for any other task that needs to be done in any computer simulation. In particular, memory
accesses have not been taken into account. As we will see in the next section, memory instructions can
have a huge impact in the global performance of the code, since their characteristic time can be a few
orders of magnitude higher than τ .

So, if we consider a reasonable number of iterations, 105 − 106, and take account of the memory
accesses, even PM models constitute and enormous challenge even for the most up to date hardware.
However, it has to be said that, until now, we have considered a sequential execution of the simulation.
That is, the computer perform one action at a time in a sequential fashion. Nevertheless, we have already
mentioned that, in the last ten years, computing technology has move towards the use of multicore
processors in order to spread the workload over more than one ALU. Obviously, if a certain number of
processors, NP , are available, the time to execute a program can be divided almost3 by the same number.

In order to take advantage of the execution across multiple processing units, a program must be divis-
ible into different parts that are unrelated from each other, so that they can be executed independently
at the same time. There are two main kinds of parallelism:

Task parallelism: when independent tasks are performed by different processing units.

Data parallelism: when the same task is performed by different processing units using different data.
2Manufacturers realised some time ago that they are about to reach the transistor density peak, and even Gordon E.

Moore recently stated that its famous law will stop being valid in about ten years. This is due to the fact that, transistors
are reaching the atomic size, and thus they can not be further miniaturised.

3Even in the case of a 100% parallel code, due to the time involved in communications between the different processing
units, the execution time is never divided by the number of processors. This fact is known as Amdahl’s law.

75

3.4. Need of parallelism and the GPGPU approach

Particle simulations take advantage of the second kind of parallelism, i. e. data parallelism. As an
example, we can think in the particle mover algorithm. Once the electric field, E⃗ p

l , suffered by each
particle at a certain instant is known, Eqs. (3.27) have to be solved in order to obtain the new particle
positions and velocities. If there are Np particles in the system, this implies Np equations sets that have
to be solved, the resolution of which is independent from each other. So, the evaluation of Eqs. (3.27)
for each l ∈ [1, Np] can be performed at the same time. Ideally, if we had Np processors, each one would
handle the evaluation of the new position and velocity for one single particle, so all the particles would
be moved at the same time. Let us notice that this is data parallelism, since each processor is performing
the exact same task (evaluate Eqs. (3.27)) but on different data sets (position, velocity and electric field
of each particle).

By using the same example of the particle mover, we can see that, PIC simulations are extremely
parallelizable. That is, PIC codes have a huge percentage of their operations that can be done in a
parallel fashion. However, there is no code 100% parallel as there is always some kind of sequentiality.
For example, by looking at Eqs. (3.27), we can see that Eq. (3.27b) has to be evaluated before Eq.
(3.27a), since the latter depends on the result of the former. The remaining parts of PIC simulations are
also highly parallelizable as we will see.

Now it is clear that our codes: on the one hand, perform a huge number of operations per time step,
and thus, require huge computational resources, and on the other hand, most of the operations that have
to be performed consist of the evaluation of the exact same expression with different data, and thus, can
be performed in parallel (data parallelism). We only have to decide which technology to use in order to
implement the parallelisation in our code.

There are multiple approaches when it comes to implement parallelism, being the main difference
between them the hardware that is going to be used. Before the appearance of multicore processors,
in order to execute parallel programs, multiple computers had to be connected, so the program can be
executed in all of them. Typically, this was done with ethernet cables and using a communication library,
such as MPI (Message Passing Interface), in order to coordinate the execution of the program in the
different processors and to share data among them. This setup, which is usually called cluster, has been,
and still is, one of the main approaches to parallelism. However, there are some flaws to this approach:

In order to have a reasonable impact in the performance of the simulations, the number of nodes
(this is how the different computers in a cluster are referred to) needed is high.

Communications between different nodes are orders of magnitude slower than any other part of the
code, even memory accesses, which already are orders of magnitude slower than operations in the
processor.

Cluster infraestructures are big and expensive. Modern clusters, even small ones, are complex
systems which require: expensive hardware, a lot of power, a lot of space, room cooling systems,
etc.

Cluster management is not a trivial task, and require specific knowledge.

Most of the previous flaws, have been diminished since de advent of multicore processors. Modern
CPUs (Central Processing Units) have multiple cores, and can be used as small but fast clusters. Small
because the limited number of cores that a single CPU have. Even the most up to date, top of the line,
server grade, CPUs available have a maximum of 16 physical cores (with technologies such as Intel’s
hyperthreading each core behaves virtually as 2). While modern clusters could have hundreds, if not
thousands, of available cores. And fast because, as all the cores are within the same computer, external
communications between nodes are avoided.

However, the most extreme multicore processors are found in GPUs (Graphic Processing Units).
Because of the specificity of GPUs and the parallel nature of the algorithms that it typically executes,
when it comes to multicore processor architecture, the approach of GPU manufacturers has been different
compared to CPU manufacturers. The main difference between both architectures is shown in Fig. 3.11.

The total size of the processor is roughly the same in CPUs and GPUs, so, as we can see in Fig.
3.11, the main difference between both is how the space in the die is used, i. e. how many transistors
are devoted to each task. CPUs devote less space to less, but big and powerful, cores and more space
to big on-chip memory and control unit. While, on the other side, GPUs devote most of the space to a

76

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

massive number of small, and not so powerful, cores and less space to small on-chip memory and control
units. We have to notice that in Fig. 3.11b we have used the CUDA terminology, more of which will be
explained in the following section.

Cores

CPU

system RAM

Control

Cache

DRAM

ALU ALU

ALU ALU

(a) Typical CPU architecture design.

DRAM Graphics RAM

GPUGPU

Streaming
Multiprocessor
(SM)

CUDA Cores

(b) Typical GPU architecture design.

Figure 3.11: CPU vs GPU approach to multicore processors.

Previously, we stated that 32 is the maximum number of parallel tasks that a single CPU can perform,
16 cores × 2 threads per core. While a top of the class GPU, such as the Nvidia TITAN X have 3072
CUDA cores, grouped into 24 SM (Streaming Multiprocessors), each one capable of executing up to 2048
parallel threads, giving a maximum number of parallel threads of 49152 in a single GPU. We have to
remember that, this kind of massively parallel processor, is obtained at the expense of less powerful cores
and a small on-chip memory, when compared with a CPU. However, when it comes to execute massively
parallel codes, such as the ones we are dealing with, it is difficult to beat the performance of a GPU
without a large cluster. And, obviously, the GPU represents a simpler, cheaper, quieter and more power
efficient approach.

Then, the last question to answer is, how to execute a simulation into a GPU. GPUs are obviously
designed to handle graphics in a computer. Nevertheless, when developers realised the huge potential of
GPUs as parallel processors, several APIs and programming languages appeared in order to use them as
general processors. That was when the term GPGPU (General Purpose Graphics Processing Unit) was
coined.

In the following section we are going to explain the main characteristics of the API and programming
language that we chose to develop our simulations.

3.5. The CUDA R⃝ framework

In November 2006, Nvidia introduced CUDA R⃝ (Compute Unified Device Architecture), a general
purpose parallel computing platform and programming model. CUDA is the API and programming
language that our simulations have been developed with. It was designed to provide an easy way to
develop general purpose software that takes advantage of the parallel capabilities of Nvidia GPUs.

The CUDA programming language is based in C/C++, which constitutes a high level language easy
to learn for developers. It includes several extensions that allow the management of the GPU as well as
the execution of code into it. However, CUDA supports other programming languages such as Fortran,
Java, Python, etc. It also is included in several libraries which can be readily used without any knowledge
about CUDA, e. g. in Mathematica and MATLAB.

At the core of the CUDA programming model there are three key abstractions: a hierarchy of thread
groups, shared memories, and barrier synchronization. These abstractions provide fine-grained data par-
allelism and thread parallelism, nested within coarse-grained data parallelism and task parallelism. They
guide the programmer to partition the problem into coarse sub-problems that can be solved independently
in parallel by blocks of threads, and each sub-problem into finer pieces that can be solved cooperatively
in parallel by all the threads within the block.

By using this programming model, threads are allowed to cooperate when solving each sub-problem.
Also, automatic scalability is enabled. When executing a CUDA program, each block of threads can be
scheduled on any of the available SM within the GPU, in any order, concurrently or sequentially. So, a
compiled CUDA program can be executed on any number of multiprocessors as illustrated in Fig. 3.12,

77

3.5. The CUDA R⃝ framework

Multithreaded CUDA program

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

GPU with 4 SMs

SM 0 SM 1 SM 2 SM 3

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

GPU with 2 SMs

SM 0 SM 1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

t

t

Figure 3.12: Automatic scalability enabled by the CUDA programming model.

and only the runtime system needs to know the physical multiprocessor count. This scalable programming
model allows the GPU architecture to evolve between one generation and the following by simply scaling
the number of multiprocessors and memory partitions.

For further details on the CUDA ecosystem, hardware implementation, current version, etc. the
reader is referred to the online CUDA documentation provided by Nvidia [53]. However, in the following
section we are going to introduce the basic concepts of the CUDA programming model.

3.5.1. Thread hierarchy

As we have previously introduced, the CUDA programming language is based in C/C++. Basically,
CUDA C/C++ consist of a set of extensions that allow the parallel execution of pieces of code in a
separate “device”, which is the GPU, opposing to the “host” where the main code is executed, which is
the CPU.

The aforementioned extension of the plain C/C++ provided by CUDA, is obtained by allowing the
definition of a special kind of functions, called “kernels”. When called, a kernel is executed in the
device N times in parallel. A kernel is defined by using the __global__ declaration specifier and, once
defined, it can be called anywhere from the host specifying its corresponding “execution configuration”.
The execution configuration of a kernel, which is given by using the syntax <<<GridDim,BlockDim>>>,
specifies how many parallel instances of it are to be executed in the device. Each “thread”, i. e. individual
instance of the kernel, that executes the kernel has a unique thread ID, that is accessible within the kernel
through the built-in threadIdx variable.

1 // Kernel definition
2 __global__ void VecAdd(float* A, float* B, float* C)
3 {
4 int i = threadIdx.x;
5 C[i] = A[i] + B[i];
6 }
7

8 int main()
9 {
10 ...
11 // Kernel invocation with N threads
12 VecAdd <<<1, N>>>(A, B, C);
13 ...
14 }

Code 3.1: Simple kernel that adds two vectors A and B of size N (N≤1024) and stores the result into
vector C.

78

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

In Code 3.1, the source code of a simple kernel that adds two vectors is shown. As we can see,
the declaration of the VecAdd kernel is preceded with the __global__ declaration specifier. Inside the
definition of the kernel, the threadIdx variable is used, so that each thread performs one pair-wise
addition. If the size of the vectors that are being added is N then, the same number of threads must
execute the kernel. This is specified by the execution configuration, during the kernel call. In the previous
example, N threads are launched grouped into one single block of threads.

It has to be noticed that, threadIdx is a three component vector. In this way, threads can be identified
with the elements of a one-dimensional, two-dimensional or three-dimensional array. This is a convenient
feature, since it provides a natural way to invoke computation across the elements of a domain such as
segments (vectors), surfaces (matrix) or volumes (three-dimensional arrays).

1 // Kernel definition
2 __global__ void MatAdd(float A[N][N], float B[N][N],
3 float C[N][N])
4 {
5 int i = threadIdx.x;
6 int j = threadIdx.y;
7 C[i][j] = A[i][j] + B[i][j];
8 }
9

10 int main()
11 {
12 ...
13 // Kernel invocation with one block of N * N * 1 threads
14 int numBlocks = 1;
15 dim3 threadsPerBlock(N, N);
16 MatAdd <<<numBlocks , threadsPerBlock >>>(A, B, C);
17 ...
18 }

Code 3.2: Simple kernel that adds two matrixes A and B of size N×N (N≤32) and stores the result into
matrix C.

In Code 3.2, the source code of a simple kernel that adds two matrixes is shown. The code is pretty
much the same that the Code 3.1. However, in this case, threads are grouped into a two-dimensional
block of threads. In this way, each thread has a two-index thread ID, so threads can be mapped into the
elements of the matrixes.

Grid of Blocks

Block (0,0) Block (0,1) Block (0,2)

Block (1,2)Block (1,1)Block (1,0)

Block (1,1)

Thread (0,0) Thread (0,1) Thread (0,2)

Thread (1,0) Thread (1,1) Thread (1,2)

Thread (2,0) Thread (2,1) Thread (2,2)

Figure 3.13: Thread hierarchy for a two-dimensional grid of two-dimensional thread blocks.

In the previously shown codes, a single block of threads executes the kernel (Line 12 in Code 3.1 and
Lines 14 and 16 in Code 3.2), while the number of threads in the block depends on the size of the vector
or matrix respectively, N or N*N. However, the number of threads that a block can contain is limited by

79

3.5. The CUDA R⃝ framework

CUDA. Depending on the compute capability of the GPU that is being used, a maximum of 1024 threads
per block are allowed. For example, in Code 3.2, if N is any larger than 32, the program would launch
an error message at runtime and would stop its execution. Nevertheless, CUDA provides a feature to
overcome such a problem. A kernel can be executed by a “grid” of equally shaped thread blocks. In the
same way that threads can be grouped into 1D, 2D or 3D blocks of threads; blocks can be grouped into
a 1D, 2D or 3D grid of blocks. In Fig. 3.13 thread hierarchy for a two-dimensional grid of blocks, as well
as a two-dimensional block of threads, is shown. So, the total number of threads that execute a kernel
is obtained as the number of threads per block multiplied by the number of blocks in the grid, which is
unlimited.

Now, in order to unequivocally identify each thread, the block ID must be considered. In the same
way that each thread within a block has a unique thread ID retrievable through the variable threadIdx,
the ID of each block is retrievable through the variable blockIdx. For example, the highlighted thread
in Fig. 3.13, has a value of threadIdx (0,1), and a value of blockIdx (1,1). Also, the dimensionality
of a block can be obtained by each thread through the variable blockDim. The dimensionality of the
grid must be specified in the execution configuration of any kernel call, just as the dimensionality of the
blocks.

1 // Kernel definition
2 __global__ void MatAdd(float A[N][N], float B[N][N],
3 float C[N][N])
4 {
5 int i = blockIdx.x * blockDim.x + threadIdx.x;
6 int j = blockIdx.y * blockDim.y + threadIdx.y;
7 if (i < N && j < N)
8 C[i][j] = A[i][j] + B[i][j];
9 }
10

11 int main()
12 {
13 ...
14 // Kernel invocation
15 dim3 threadsPerBlock (16, 16);
16 dim3 numBlocks(N/threadsPerBlock.x+1, N/threadsPerBlock.y+1);
17 MatAdd <<<numBlocks , threadsPerBlock >>>(A, B, C);
18 ...
19 }

Code 3.3: Simple kernel that adds two matrixes A and B of size N×N (arbitrary N) and stores the result
into matrix C.

A modified version of the Code 3.2, that is able to deal with matrixes larger than 32×32, is shown in
Code 3.3. There, it can be seen that each thread block evaluates a submatrix of 16×16 elements (Lines
15 and 17 in Code 3.3). Also, a global thread ID is obtained by using the variables threadIdx, blockIdx
and blockDim (Lines 5 and 6 in Code 3.3). This global index is used to map all the threads into the
elements of the matrix, reason why the if statement is needed (Line 7 in Code 3.3).

3.5.2. Thread synchronisation and memory hierarchy

The different blocks within a grid, should be developed so that they could be executed independently
from each other. This is a CUDA requirement, since they can be scheduled to be executed in any order,
sequentially or in parallel, across any number of SM, as can be seen in Fig. 3.12. For this reason, threads
are not allowed to cooperate across different block. However, they are allowed to cooperate with other
threads within the same block.

In order to allow the cooperation between threads belonging to the same block, two features are offered
by CUDA: synchronisation barriers and a shared memory space. Threads within a block can cooperate
by sharing data, through a memory space which is accessible by all of them, and by synchronising their
execution in order to coordinate the memory accesses.

80

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

The synchronisation between the threads that reside in the same block is performed with the intrinsic
CUDA function __syncthreads(). This function, when called, sets a synchronisation point inside the
code of a kernel, acting as a barrier at which the execution of all threads in the block is temporarily
halted. Once all the threads of the block have reached the aforementioned synchronisation point, they
can continue their execution.

Grid 0

Block (0,0) Block (0,1) Block (0,2)

Block (1,2)Block (1,1)Block (1,0)BlockThread

Grid 1

Block (0,0) Block (0,1)

Block (1,1)Block (1,0)

Block (2,1)Block (2,0)

Global memory
Per-block

shared memory
Per-thread

Local memory

Figure 3.14: Memory hierarchy in a CUDA program.

In order for the cooperation between threads to be efficient, the memory space through which threads
share data is expected to be low-latency and, the __syncthreads() function is expected to be lightweight.
In order to accomplish the low-latency requirement for the memory, the memory hierarchy shown in Fig.
3.14 is available.

The outer memory space is called “global memory”, it is accessible by every thread of every block
in every kernel launch. Global memory is large but very high-latency, much like system memory
for the CPU, so it is not recommended to use it for cooperation between threads.

Then, there is a shared memory space accessible only by the threads within a block and whose
lifetime is the same of the block. This shared memory is low-latency and it is physically very near
to each SM, similar to an L1 cache in a CPU. For this reasons, shared memory is intended to be
used by the threads in a block in order to share data between them, as its name implies. However,
the size of the shared memory space is limited, so its usage must be moderate.

Last, but not least, each thread has its own local memory space, which is only accessible by it. This
memory space shares most of the characteristics of the shared memory, but its size is even smaller.
For this reason, special care must be taken in order not to misuse it. It is in this memory space
where variables such as threadIdx are stored.

Additionally to the memory spaces shown in Fig. 3.14, that have been described previously, there are
two more memory spaces: the constant and texture memory spaces. These read-only memory spaces are
accessible by all threads, just as the global memory is. However, they are optimised for different memory
usages and, since we do not used them in our simulations, we are not going to give further details about
them.

3.5.3. Heterogeneous programming model

As we have mentioned before, the CUDA programming language consists of an extension to the
C/C++ language that allows the execution of parallel code, i. e. kernels, in the device (GPU). However,

81

3.5. The CUDA R⃝ framework

a CUDA program does not have to be composed exclusively of kernels, and so it can contain sequential
code which is executed in the host (CPU).

HOST

DEVICE

DEVICE

C/C++ Program
Sequential execution

Serial code

Parallel kernel
kernel0<<<···>>>()

Serial code

kernel1<<<···>>>()

Parallel kernel

HOST

Grid 0

Block (0,0) Block (0,1) Block (0,2)

Block (1,2)Block (1,1)Block (1,0)

Grid 1

Block (0,0) Block (0,1)

Block (1,1)Block (1,0)

Block (2,1)Block (2,0)

Figure 3.15: Scheme of a CUDA program showing the heterogeneous programming model.

In Fig. 3.15 the heterogeneous programming model of CUDA is shown by means of the scheme of a
generic CUDA program. There we can see that, the C/C++ sequential code is executed in the host, just
as in any regular C/C++ program. Then, when a kernel call is reached in the code, the execution control
of the program is transferred to the device, which operates as a coprocessor to the host. After that, the
device executes the kernel by a certain number of threads, grouped into blocks, which are scheduled in
the available SMs of the GPU. Once the execution of the kernel is completed, the execution control of
the program is transferred back to the host, until another kernel call is reached or the program finishes.

It has to be noticed that the host and the device are physically separated hardware. Accordingly,
the CUDA programming model assumes that both, the host and the device, maintain their own memory
spaces in DRAM. These two memory spaces are usually referred to as “host memory” and “device

82

Chapter 3. Particle-In-Cell simulations & parallelisation techniques

memory”. Actually, in the previous section, we have introduced the different kinds of memory available
within the device memory.

Therefore, in order for the host and the device to cooperate, the CUDA programming language
provides several functions for memory management. Among these, there are functions for allocation and
deallocations of device memory, e. g. cudaMalloc() and cudaFree() , as well as functions to transfer
data between host and device memories, e. g. cudaMemcpy().

3.6. Conclusion

In this chapter we have given a general idea of the different techniques that can be used to simulate
a plasma, paying special attention to particle models, since they overcome some of the problems that
fluid models have. A brief introduction to particle models and their peculiarities have been made, and
the computationally heavy nature of them has been highlighted. Then PIC models have been more
thoroughly explained, since they are the models our simulations are based on. And, finally, the basic
concepts behind GPGPU and CUDA, the parallelisation technique and framework that our simulations
have been developed with, have been presented.

The following chapter is devoted to the description of the simulation of the contact of an infinite
planar Langmuir probe with a plasma that we have developed, as well as the results obtained with it.

83

Chapter 4

PIC simulation of a planar Langmuir
probe (CUPIC1D1V_PP)

4.1. Introduction

When studying the behaviour of electrostatic Langmuir probes immersed in plasmas, the infinite
planar geometry is the simplest approach. Actually, it was the geometry considered in the first model
that we developed of the contact of a plasma with a metallic surface, in Section 1.4. For this reason, even
though one of the main objectives of this work is to study the behaviour of ions in the surroundings of a
cylindrical Langmuir probe, first, we developed a simulation for the planar case.

As we will see, the simulation of the planar Langmuir probe will allow us:

To develop the necessary skills, in PIC algorithms and CUDA programming, to establish a steady
base from which to develop the cylindrical Langmuir probe simulation that we are interested in.

To test the behaviour of the simulations, under simple conditions, by comparing their results with
the ones provided by the fluid model developed in Section 1.4.

To find the best initial conditions in order to quickly reach the steady state which is our interest.

To develop a novel particle injection method that prevent the appearance of a “source sheath”.

In this chapter, we are going to showcase the main characteristics and results obtained with the sim-
ulation that we have developed of the contact of a planar Langmuir probe with a plasma, CUPIC1D1V_PP.
The complete source code of the simulation can be found in Appendix B. The meaning of the name given
to the software can be explained as: “CUPIC” stands for CUDA PIC, “1D1V” remarks the dimensionality
of the code1 and, “PP” stands for Planar Probe.

4.2. Computational abstraction of the system

In order to simulate any physical system, there are some steps that need to be taken to prior develop
the actual code of the simulation. The reason being that, the real physical world and its magnitudes,
have to be described in a way that results comprehensible by a computer.

One of the first questions that needs to be addressed when developing a simulation is, what is the
simulation domain? In other words, what is the physical space that we would like to simulate? In
our case, the answer is clear, we want to simulate the space between a planar Langmuir probe and
an unperturbed plasma. However, in order to avoid end corrections, we are considering the case of an

1It has to be noticed that, the dimensionality of PIC codes is usually expressed as nDmV, where n and m represent
the dimensionality in ordinary and velocity spaces, respectively. In this sense, it is clear why the name of our simulation
includes 1D1V, since we are only considering one dimension in both spatial and velocity spaces.

85

4.2. Computational abstraction of the system

infinitely large probe, so the space between the probe surface and the plasma is also infinitely large. But,
our computational box, and thus the simulation domain, has to remain finite in order to fit into the, also
finite, computational resources available. Nevertheless, once the end corrections have been neglected,
the only dimension that has to be considered is the one perpendicular to the probe surface. We have
already used the same assumption in Chapter 1, when developing the fluid model of Section 1.4. In this
way, the spatial dependence of all the physically meaningful quantities, is restricted to the dimension
perpendicular to the probe surface.

Quasineutral
zone

Width and height
of the simulation

Length of the simulation

Planar probe

(a) Simulation domain.

Emitting/Absorbing
surface

Absorbing
surface

(b) Computational box and boundary conditions.

Nodes

Cells

rho[]

phi[]

E_x[]

(c) Discretisation and computer variables.

Figure 4.1: Computational abstraction of the simu-
lation domain between a planar Langmuir probe and
a neutral plasma.

Taking into account the previous considera-
tions, the simulation domain would be something
like the one shown in Fig. 4.1a. There, we can
see that the relevant dimension is the one perpen-
dicular to the probe surface. The system we are
going to simulate is the ensemble of particles in-
side the simulation domain of Fig. 4.1a. The width
and height of the simulation domain are irrelevant,
apart from the fact that they have to be adjusted
in order to have a reasonable number of particles
in the simulation. On the other hand, the sim-
ulation has to be long enough, so that the right
hand side of it is located at some point along the
preseath, where the quasineutral condition holds.
We have to remember that, as we have developed
a collisionless simulation, the quasineutral zone is
infinitely long (see Fig. 1.10a).

In Fig. 4.1b, it can be seen an scheme of the
computational box corresponding to the simula-
tion domain shown in Fig. 4.1a. We have to notice
that, since the simulation is unidimensional, the
computational box is actually a segment. How-
ever, in Fig. 4.1b a three-dimensional abstraction
is shown for the sake of ease of view. Also, the
boundary conditions in the frontiers of the com-
putational box are shown. The left hand side of
it, represents the surface of the probe, so perfectly
absorbing conditions are implemented there. At
the right hand side, perfectly absorbing and also
emitting conditions are implemented. This is be-
cause this frontier represents a certain point along
the presheath, and so, particles enter and leave the
simulation at this point.

Finally, the computational domain must be
gridded in order to solve the field equations, i. e.
Poisson’s equation and field derivation. In Figs.
4.1b and 4.1c, the mesh of nodes, in which the
computational box is decomposed, is shown. All
the macroscopic magnitudes of the simulation are
associated to this mesh, and the values of those
macroscopic magnitudes at node positions are cal-
culated every time step of the simulation. The
values of each macroscopic quantity at node pos-
itions, are stored in the computer as an array of
double precision floats, whose size is equal to the
number of nodes in which the computational box
is divided.

Once the simulation domain, as well as the
macroscopic quantities associated with it, have been described, we have to think in the system that

86

Chapter 4. PIC simulation of a planar Langmuir probe (CUPIC1D1V_PP)

is to be simulated. That is, the ensemble of particles that fill the space inside the simulation domain. As
we did in the previous chapters when developing fluid models, we are going to consider a plasma com-
posed of electrons and singly ionised ions only. So, in our simulation we have described two populations
of particles: ions, and electrons.

Each particle in the simulation is described by the value of four attributes: its mass, its charge, its
position and its velocity. It has to be noticed that, since our simulations is 1D1V, for each particle we are
only considering one component of the position, i. e. the distance from the probe surface to the particle,
and one component of the velocity, towards or backwards the probe.

e[1].x

e[1].v

e[2].x

e[2].v

e[3].x

e[3].v

e[4].x

e[4].v
e[]

me
qe

i[1].x

i[1].v

i[2].x

i[2].v

i[3].x

i[3].v

i[4].x

i[4].v

i[5].x

i[5].v
i[]

mi
qi

Figure 4.2: Computational abstraction of the
particle system present in the simulation domain.

In Fig. 4.2, an scheme representing the com-
putational abstraction of the particle system is
shown. Since there are two kind of particles
present in our system, i. e. ions and electrons, we
are considering two ensembles, one for each kind
of particle.

On the one hand, obviously, the values of two
of the four attributes we are considering, are com-
mon for all the particles within the same ensemble,
since the mass and the charge are defining attrib-
utes for each kind of particle. For this reason, we
do not need to store the values of mass and charge
for each individual particle in the system. Instead,
we have four variables (doble precision floats) me,
qe, mi and qi, that store the values of the electron
mass, electron charge, ion mass and ion charge re-
spectively.

On the other hand, in order to store the other
two attributes that define each individual particle
we used a particle structure, whose definition
can be seen in Code B.14 (lines 29-33). There we
can see that the particle structure has two mem-
bers, both of which are double precision floats, to store the position and velocity of the corresponding
particle.

As schematised in Fig. 4.2, each ensemble is represented by: two variables storing the charge and
the mass of the corresponding type of particle and an array that stores the position and velocity of each
particle in the ensemble. The elements of the array are of particle type, and its size is determined by
the number of particles in the ensemble. It has to be noticed that, contrary to what it is shown in Fig.
4.2, particles are not sorted in the array. That is, the first element of the array does not have to store
the position and velocity of the closest particle to the probe. Also, the size of the electron and ion arrays
are adjusted dynamically as particles enter and leave the simulation.

Finally, once we have explained the computational abstraction of the domain that is going to be
simulated, as well as the particle system that it contains, we have that the main variables in our simulation
are:

To characterise the mesh: rho[], phi[] and E_x[].

To characterise the particles: me, qe, e[], mi, qi and i[].

Additionally there are many other variables, as can be seen in Appendix B where the source code
of the simulation can be found. For example, variables that store the particles temperatures and drift
velocities at the sheath edge, which will be commented in Section 4.3.5 when dealing with the plasma
source. It also has to be noticed that, in the source code shown in Appendix B, variables usually appear
preceded by d_, h_, g_, sh_ or reg_, meaning that the variable is allocated in the device, host, global,
shared or register memory spaces respectively.

Finally, there is one last thing that has to be stablished, the units that the simulation is going to
work with. When performing any kind of numerical simulation in a computer, it is always desirable to
work with numbers as close to the unity as possible. The reason is that, avoiding the use of huge or

87

4.3. CUPIC1D1V_PP implementation

tiny numbers, the rounding errors accumulated after millions and millions of arithmetic operations are
diminished. The easiest way to work with numbers close to the unity, is by defining a set of dimensionless
units where everything is measured in terms of the largest/smallest value of each magnitude. In our case,
we have already defined such units. In Section 1.4, when developing a fluid model of the contact of a
planar probe with a plasma, we defined a set of dimensionless units by Eqs. (1.21).

Once we have stablished the computational abstraction of the system that we want to simulate, we
can explain the simulation itself.

4.3. CUPIC1D1V_PP implementation

In this section we will briefly discuss the parallelisation schemes and some other key aspect used in
the main parts of the simulation. The explanations that we are going to give should provide the reader
enough information to understand the complete sources of the simulation found in Appendix B. There,
it is also provided a makefile that automates the compilation process, shown in Code B.17, as well as an
example of the input file from which the simulation reads its parameters, shown in Code B.18.

4.3.1. Initial conditions and steady state

As we have previously mentioned, setting the initial conditions for our simulation is rather straight-
forward. We only have to specify an initial density and velocity distribution in the simulation domain.
Once we have such information, the initial electron and ion ensembles are created. However, there are a
few things related to the initial conditions of the simulations that should be highlighted.

It has to be noticed that, the steady state reached by our simulation should be independent of
the initial conditions considered, depending only on the simulation parameters such as plasma density,
particle temperatures, etc.. What really depends on the initial conditions is the transient state. During
this state, the values of macroscopic quantities evolve from their initial values to their steady state values.
Particularly, there exists a huge dependence of the transient duration upon the initial conditions.

For this reason, on the one hand, one of the first tests that we performed, in order to verify the correct
behaviour of the developed simulation, was to verify the independence of the steady state on the initial
conditions. To accomplish that, we executed two runs of the simulation with exactly the same parameters
but different initial conditions. In case both runs produce the same results, it does not mean that our
simulation is correct, but otherwise it would mean that the simulation is not working properly. On the
other hand, we are interested in the steady state rather than the transient, which depending on the initial
conditions considered would be more or less physically meaningful. So, in order to obtain results as fast
as possible, we are interested in finding the initial conditions for which the steady state is reached the
soonest.

To accomplish the previous objetives, the effect of different initial conditions on the simulation where
studied. However, there are two main options when it comes to decide the initial conditions: to consider
an empty system or to consider a system filled with particles. In this case, and for the sake of clarity we
are going to showcase only two different initial conditions:

(a) The first initial conditions considered are very simple: the system is initialised completely empty.

(b) The second initial conditions considered are those corresponding to the plasma. Ions and electrons
are thermalised, each one with its corresponding temperature, and their densities are equal and
coinciding with their densities at the plasma.

In Fig. 4.3 the dependence of the transient state on the different initial conditions is shown. This is
done by means of representing the phase space of the ions ensemble at different time steps. On the one
hand, Fig. 4.3a shows the evolution of the simulation with empty initial conditions. It can be seen that,
as ions enter the simulation, they quickly adjust their properties to those of the steady state and, for
t ≳ 2500, the system is already in its steady state configuration. On the other hand, Fig. 4.3b shows the
evolution of the simulation whith initial conditions consisting of a filled system. There we can see that,
even though the system is evolving towards the same configuration reached in Fig. 4.3a, the time needed

88

Chapter 4. PIC simulation of a planar Langmuir probe (CUPIC1D1V_PP)

to reach it is much larger. As it can be seen, when a filled system is considered for the initial state of the
simulation, the existing ions get trapped into potential wells in the right hand side of the simulation, i.
e. 50 ≤ x ≤ 100, the population of which slowly decreases. However, when initially there are no particles
inside the computational box, the particles entering the simulation fall through a monotonic decreasing
potential, and potential wells are not developed, thus trapped particles do not exist.

It has to be noticed that, the time-dependent nature of transient states makes difficult to show
the evolution of system in an “static” document like the present one. For this reason, the reader is
recommended to view the videos showing the evolution of the phase space by scanning the corresponding
QR codes in Fig. 4.3 with a mobile device as, by doing so, the previously given explanations become
much more clear.

(a) Initial conditions: empty system.

(b) Initial conditions: filled system.

Figure 4.3: Dependence of the evolution of the phase space for ions on the initial conditions. All
magnitudes are expressed in simulation units.

89

4.3. CUPIC1D1V_PP implementation

4.3.2. Particle weighting

As we already stated in the previous chapter, the particle weighting algorithm is where the term
PIC comes from. In this section we are going to review the implementation of this fundamental part of
PIC simulations in our code. In particular, we will review the parallelisation strategy that we use and
some aspects of its CUDA implementation, in order to explain concepts such as thread idling and atomic
operations, which are used in the code of our simulation.

Let us start by remembering that, as we are going to use a CIC/PIC algorithm, the shape function
that allows us to interpolate charge from the particle positions to the nodes is given by Eq. (3.17). By
using this shape function, each particle contributes to the charge of its two nearest nodes, as can be seen
in Fig. 3.7a. So, the algorithm implemented in our simulation can be resumed in the following steps:

1. As the nodes have fixed positions in the computational box, the two nearest nodes of each particle
are found by looking their positions.

2. By using the shape function of Eq. (3.17), the corresponding fraction of the particle charge is added
to each node.

Obviously, these rather simple steps must be done for every single particle in the system. In our case,
we have two kind of particles: ions and electrons. However, in the rest of the section we are going to
consider that we only have one kind of particle, since the algorithm is independent of the kind of particle.
At the end we will see that, considering more that one kind of particle, consists simply in calling the
function that perform the particle weighting with different arguments. In the case of serial execution, the
code would be rather simple. The previous steps would be enclosed in a structure that loops over all the
elements of the particle array. Nevertheless, the parallel execution is a little bit tricky, and thats what
we are going to explain here.

Let us consider one kind of particle whose charge is qp. In the computer the charge of those particles
is stored in the variable q, and the particle ensemble itself is stored in an array g_p[] whose elements are
of type particle and its length is stored in the variable num_p (number of particles). Also, the charge
density at node positions is stored in the array g_rho[] whose elements are of type double and its length
is stored in the variable nn (number of nodes). Finally, the spacing of our one-dimensional mesh is stored
in the variable ds. With these variables as arguments, we define the kernel particle_to_grid() that
performs the particle weighting in parallel. The complete definition of the kernel can be seen in Code B.4
(lines 145-205). We have to notice that the arguments of a kernel are stored in the global memory, reason
why the names of some of the previous variables start with g_, in order to differentiate those variables
from their corresponding versions in the shared memory.

First, we are going to explain the execution configuration of the kernel. If we have num_p particles, it
is obvious that we want to launch an equal number of parallel threads, each one handling the weighting of
a single particle. However, due to the restriction in the number of threads per block that can be requested
(1024) and the large number of particles that it is usually considered (num_p ≫ 1024), the threads must
be grouped into different blocks. In this sense, the execution configuration used in our simulation during
the particle weighting is schematised in Fig. 4.4.

blockIdx.x

threadIdx.x
tid

0 1 2 3 4

0

0 1 2 3 4

1

0 1 2 3 4

2

0 1 2 3 4

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

g_p[]
num_p=17

2 3 4
17 18 19

Idled threads

Figure 4.4: Scheme of the execution configuration of particle_to_grid() kernel.

The block size, i. e. the number of threads per block, that we choose for the particle_to_grid()
kernel is 512, as can be seen in Code B.5 (line 21), while the number of blocks depends on the number

90

Chapter 4. PIC simulation of a planar Langmuir probe (CUPIC1D1V_PP)

of particles that are in the simulation at the moment. In this way, each thread has a unique ID (Code
B.4 line 153), tid, that allows it to know which particle to access within the array of particles in order
to weight its charge into its two nearest nodes.

It has to be noticed that, in general, the total number of threads that are going to be launched is
not going to be the same than the number of particles. Actually, the number of threads has to be larger
or equal to the number of particles. But, all the threads within a block and all blocks within the grid
must execute the same code (the kernel code). For example, if a thread has to read the memory address
corresponding to the tid element of the g_p[] particle array, the thread number 2 of block number 3 in
Fig. 4.4 would try to read g_p[17]. In this case, two things can happen: that the memory address is not
allocated and the simulation halts throwing an error message, or, that the memory address is allocated
but belongs to another array (e. g. another particle array) and thus a wrong datum is read without we
even noticing it. Any of the previous options is not desirable in our code, so special care must be taken
into account in order to idle the extra threads that should do nothing. This is done by evaluating the
tid variable before any read or write operation, then, if its value is larger than num_p-1, the thread does
nothing.

Thread idling is an important concept in CUDA programming and has to be thoughtfully considered
when developing in CUDA. Specially because of the, sometimes obscure, debugging of wrong memory
access errors in CUDA.

Once the execution configuration is established, when the kernel is called:

1. each thread reads the information of the tid particle,

2. each thread finds the two nearest nodes of particle tid and evaluates the contribution to their
charge density,

3. each thread saves the contributions to the charge density due to particle tid in the corresponding
elements of the array sh_rho[], which belongs to the shared memory of the block,

4. once all the threads within a block have finished to weight its corresponding particles, which is
ensured by using the function __syncthreads(), the contributions of the particles analysed by
each block are saved into the array g_rho[], which belongs to the global memory of the device.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

g_p[]
num_p=17

sh_rho[]

g_rho[]

Block 0 Block 2

nn=10

nn=10

__syncthreads()

Figure 4.5: Write collisions during the execution of particle_to_grid() kernel.

In Fig. 4.5, the previous steps are schematised for blocks 0 and 2 of Fig. 4.4. Threads within a block
usually perform the same tasks at exactly the same moment. For this reason, it is possible that different
threads within a block attempt to write in the same shared memory address at the same time. Also, once
all the threads within a block are finished, the information in sh_rho[] must be added to g_rho[] and,
since different blocks can be scheduled to be executed at the same time, more than one block could try
to write in the same global memory address at the same moment. This causes what is called a memory
write collision. When write collisions are not properly handled the behaviour is, as stablished in the
CUDA documentation [53], unpredictable. In order to properly perform the aforementioned memory
writes, atomic functions must be used. The operations performed by such functions are atomic in the

91

4.3. CUPIC1D1V_PP implementation

sense that they are guaranteed to be performed without interference from other threads. In other words,
no other thread can access these addresses until the operations are completed. This is the reason why
atomicAdd() and atomicSub() functions were implemented, as can be seen in Code B.12 (lines 56-86).
This functions allow multiple threads to add contributions to the charge density of the same node at the
same time without interfering.

Although there are more details that need to be taken into account, a general idea of the implementa-
tion of the particle_to_grid() kernel has been given. The interested reader is referred to Appendix B,
where its complete source code can be read. There, the definition of the function charge_deposition()
can be found in Code B.4 (lines 15-55). This function handles the process of obtaining the complete charge
density at node positions from the particles information. It makes two calls to the particle_to_grid()
kernel, one for electrons and another for ions.

In the next section, we are going to explain how Poisson’s equation is solved once that g_rho[] is
obtained.

4.3.3. Poisson solver

The solution of Poisson’s equation is at the core of the force evaluation method in a PIC simulation.
In a parallelised simulation, where particles can be moved very quickly, as we will see in the next section,
the solution of Poisson’s equation constitutes one of the mayor bottlenecks of a PIC simulation. For this
reason, it is probably the part of the code that needs to be optimised the most.

As we already stablished in Section 3.3.1, the approach that we have taken, in order to solve Poisson’s
equation, is the finite difference scheme. So, instead of solving an ordinary differential equation, we have
to solve a system of linear equations. In our monodimensional case, the system that has to be solved is
given by Eqs. (3.20a). It has to be noticed that, the number of equations and unknowns that we have to
solve is given by the number of nodes in the mesh of our simulation. For this reason, we have opted for
an iterative method to solve the system of equations, in particular the Jacobi method. Iterative methods
are preferred for large systems, i. e. with more than 300 equations and unknowns, in order to diminish
the numerical errors. In the method, we start with an approximation for the potential at node positions
which is successively improved in terms of the previous approximations. In the Jacobi method, the new
approximations are obtained by the expression:

φnew
i = φold

i + 1
2
(
h2ρi + φold

i−1 + φold
i+1
)

; ∀i = 1, . . . , Nn − 2 (4.1)

h being the mesh spacing and Nn the number of nodes in the mesh. We have to notice that, in our case,
there are two equations and unknowns less than mesh nodes, since the first and last nodes have a fixed
value for the potential because of the boundary conditions. The iterative method stops when the error
in one iteration is smaller than a certain threshold, and the error is evaluated as the maximum difference
between the new and the old approximations in a node.

Now, we are going to explain the parallelisation scheme that we use in the implementation of the
Jacobi method for the solution of Poisson’s equation. We, will see how the use of shared memories and
synchronisation barriers allow the cooperation between threads within a block. But first, let us establish
the main steps that need to be performed in every single iteration of the Jacobi method:

1. obtain the new values of the potential in every node of the mesh,

2. obtain the maximum difference between the new and the old approximation of the potential across
all the nodes of the mesh.

We have to notice that, the obtention of the new approximations of the potential and the difference
between the new and old approximations for each node (node error) is a task 100% parallelizable. How-
ever, in order obtain the global error of the iteration, all node errors have to be compared, which is a
task not so parallelizable and that implies thread cooperation.

So, in order to solve Poisson’s equation in our simulation, we have developed the kernel called
jacobi_iteration(), which performs one iteration of the method and evaluates the error in that it-
eration. Then this error is compared with a certain threshold and it is decided if another call to

92

Chapter 4. PIC simulation of a planar Langmuir probe (CUPIC1D1V_PP)

jacobi_iteration() is needed. The definition of the kernel can be seen in Code B.4 (lines 207-267). It
seem obvious that, for the execution configuration of this kernel, we launch as many threads as nodes
in our mesh, nn, as by doing so each thread deals with the obtention of the new approximation and the
error for one single node. However, since the values of the potential at the first and last nodes are fixed
by the boundary conditions, as we will see in Section ??, we only have to solve Poisson’s equation in the
inner nodes of the mesh. So, the number of threads that needs to be launched is nn-2. Because of the
same reasons argued in the previous section, instead of specifying one single block with nn-2 threads in
it, we divide the total number of threads into several blocks.

blockIdx.x

threadIdx.x
tid

0 1 2 3 4

0

0 1 2 3 4

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4
0 1 2 3 4

1

5 6 7 8 9 10 11 12 13 14

g_phi[]
nn=14

2 3 4

13

12 13 14

Idled threads

Figure 4.6: Scheme of the execution configuration of jacobi_iteration() kernel.

In Fig. 4.6 the execution configuration of jacobi_iteration() is schematised. As we can see, the
configuration is almost the same as the one corresponding to the particle_to_grid() kernel (Fig. 4.4),
however instead of a particle array now we are dealing with a mesh array. Also, for the same reasons as
in the particle_to_grid() kernel, here we have to deal with idled threads. The main difference in the
execution configuration is that, in the case of the jacobi_iteration() kernel, the number of threads
per block is 128, as can be seen in Code B.5 (line 22).

Once we know the execution configuration, we are going to explain the steps taken within the
jacobi_iteration() kernel:

1. each thread loads the value of the potential at its corresponding node position into the shared
memory,

2. the first and last threads of each block, load the value of the potential at the previous and next
nodes of the block,

3. each thread obtains the new approximations of the potential (saved into local registers) and the
errors associated to its corresponding node (saved into the shared memory),

4. threads within each block cooperate to obtain the maximum error of the nodes corresponding to
the block,

5. the first thread of each block saves its partial maximum error in the global memory.

In Fig. 4.7 an scheme of the previous steps can be seen. In the first two steps, all the values of
the potential that are needed by the threads within a block are loaded into the shared memory. This
allows each thread to read the three values of the potential needed to evaluate Eq. (4.1), from the shared
memory (fast), instead of doing it from the global memory (slow). This constitutes the first example
of thread cooperation. Instead of reading three values from the global memory, which is a very slow
operation, each thread reads only one (except for two threads per block that read two values). Then, all
the threads share the data they have read from the global memory through the shared memory. It has to
be noted that, since in the third step the task performed by each thread relies on information provided
by other threads, a synchronisation barrier has to be stablished after the second step. This ensures that
the third step is not performed by any thread until all the threads within the same block have finished
the second, thus all the required values of the potential are available in the shared memory. The third
step is rather simple: each thread evaluates the new approximation of the potential in the corresponding
node. Also, with the new and the old approximations, each thread evaluates the local error and saves it
in an array in the shared memory. In the forth step we can see another example of thread cooperation.
We can see how this step consist of a series of n iterations where 2n threads are idled in each iteration

93

4.3. CUPIC1D1V_PP implementation

and, the rest of the threads compare two errors each and store the maximum in its corresponding shared
memory address. After this, we end up with the maximum error of the block saved in the first element of
sh_error[]. Finally, the fifth step consist of saving the partial maximum errors into the global memory,
where the host can perform the final comparison to obtain the maximum error and decide if another
iteration of the Jacobi method is needed.

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Physical mesh

Block 0 Block 1 Block 2

Block 0 Block 1 Block 2

0 1 2 3 4 5 6

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

2

0 1 2 3 4

Idled threads

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2

g_phi[]
nn=14

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Block 0 Block 1 Block 2

0 1 2 3 4 5 6

0 4
0 4

0 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13g_phi[]
nn=14

sh_phi[]
blockDim.x+2

sh_phi[]
blockDim.x+2

F
ir

st
 s

te
p

S
ec

on
d
 s

te
p

T
h
ir

d
 s

te
p

F
if
th

 s
te

p

F
ou

rt
h
 s

te
p

sh_phi[]
blockDim.x+2

0 1 2 3 4sh_error[]
blockDim.x

0 1 2 3 4sh_error[]
blockDim.x

0 1 2 3 4sh_error[]
blockDim.x

0 1 2 3 4

0 1 2 3 40 1 2 3 4 0 1 2 3 4

sh_error[]
blockDim.x

sh_error[]
blockDim.x

reg_phi

g_error[]
gridDim.x

0 2 4

0 4

0

Host comparison

0 0 0

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

Block 2

3 4 5 6

2 3 4

13

Block 2

3 4 5 6

4

13

2 3 4

Figure 4.7: Scheme of the jacobi_iteration() kernel.

94

Chapter 4. PIC simulation of a planar Langmuir probe (CUPIC1D1V_PP)

After the Poisson’s equation is solved, the first derivative of the potential must be evaluated in order to
obtain the electric field. This is done by using Eq. (3.22a) for each node. This task is performed in parallel
by the field_derivation() kernel, whose definition can be seen in Code B.4 (lines 269-318). For the
sake of briefness we are not going to cover here its implementation since, once the jacobi_iteration()
kernel is explained, it is easy to understand it by reading the sources.

4.3.4. Particle mover

The particle mover is a fundamental part of any PIC simulation. As we explained in Section 3.3.2,
the algorithm we are using to integrate the equations of motion for particles is the leap-frog algorithm.
There, we stated that the positions and velocities of particles were updated by using Eqs. (3.27), which
in our unidimensional case can be rewritten as:

v
p+1/2
l = v

p−1/2
l + ∆t ql

ml
E p
l (4.2a)

r p+1
l = r pl + ∆t v p+1/2

l (4.2b)

where the l index is referred to the particle in the system and the p index is referred to the iteration of
the PIC algorithm.

It has to be noticed that, in order to solve Eqs. (4.2), we only need the particle attributes ql and
ml, and the value of the electric field at particle position, E p

l . However, since we know the value of the
electric field at node positions, we have to perform the field weighting step that we talked about in the
previous chapter.

In order to evaluate Eqs. (4.2), for each particle in the simulation, we define the kernel function
leap_frog_step(), whose definition can be seen in Code B.6 (lines 64-114). Even though the name
of the kernel is due to the algorithm used to integrate the equations of motion, in order to increase
the computational load of the kernel, it also performs the field weighting step. This leads to a higher
performance, since a higher operation to memory access ratio is achieved, and allows us to avoid the use
of an intermediate array to store the values of the electric field at particle positions.

0 1 2 3 4 5 6 7g_E[]
nn=8

5 6 7 8 9g_p[]
num_p>nn

sh_E[]

Block 1

nn=8

0 1 2 3 4 5 6 7sh_E[]
nn=8

0 1 2 3 4

5 6 7 8 9reg_p

Block 1

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4 5 6 7

Block 1

3 4

Idled threads__syncthreads()

Figure 4.8: Scheme of the leap_frog_step() kernel.
Only on block of threads is shown.

The execution configuration of both leap_frog_step()
and particle_to_grid() kernels are exactly
the same. This is explained because of their
similarities, since both have to deal with
particles and mesh arrays at the same time.
The execution configuration can be seen schem-
atised in Fig. 4.4, there we see that enough
threads are launched so that each thread actu-
alise the position and velocity of one particle
only. Those threads are grouped into blocks of
512 threads each, as can be seen in Code B.7
(line 22).

In Fig. 4.8 the workflow of each thread
block that executes the leap_frog_step()
kernel is schematised. First, the array that con-
tains the values of the electric field is loaded
into the shared memory. In order to perform
this step, in case the number of threads per
block is smaller than the number of nodes,
several read operations are performed by each
thread. Also, in general, several threads should
be idled. Then, once the load of g_E[] into
sh_E[] is completed, which is ensured by the
use of a synchronisation barrier, each thread handles the actualisation of the position and velocity of one
particle. First, each thread loads the information of its corresponding particle into the thread registers.
Then, the two nodes from which the value of the electric field should be interpolated are found and, the
electric field at the particle position is obtained. Finally, once the electric field at the particle position is

95

4.3. CUPIC1D1V_PP implementation

known, the thread evaluates Eqs. (4.2) in order to obtain the new values of position and velocity for its
particle. Those values are then stored in the corresponding address in the global memory.

It should be noticed that, for the field weighting, we use the same shape function than the one used
in the particle weighting step, in order to preserve momentum in our simulation. Also, as we stated in
Section 4.3.2, in general, the number of threads that are launched is not going to be the same than the
number of particles to move. For this reason, some threads of the last block should be idled, as shown in
Fig. 4.4.

4.3.5. Particle injection and boundary effects

This is the last part of the code of our simulation we are going to discuss and, probably, the most
interesting one from a physical point of view. It may seem that boundary conditions are straightforward
to establish, but the truth is that the physical behaviour of the simulation greatly depends on small
details in the boundary conditions configuration.

We have to notice that, in our simulation, two “sets” of boundary conditions must be stablished:
one for the mesh, i. e. boundary conditions for the potential in order to solve Poisson’s equation, and
another for the particles, i. e. absorbing and emitting conditions for particles. Both sets consist of
conditions established at the limits of our simulation domain/computational box. Since our simulation
is unidimensional, we have two boundaries where conditions can be established. These boundaries can
be seen greyed out in Figs. 4.1a and 4.1b.

On the one hand, boundary conditions at the left hand side of the simulation, i. e. the probe surface,
are rather simple:

The boundary condition for the potential at the probe surface consists in fixing the value of the
potential in the first node of the mesh. The value at which phi[0] is fixed corresponds with the
biasing potential of the probe, φp that we wish to simulate. As we have already mentioned in the
previous section, this is the reason why the first element of the potential array is not changed during
the execution of the Poisson solver.

The boundary condition for the particles, since we are simulating a probe which is perfectly absorb-
ing, consist in removing from the simulation all the particles that cross this boundary. Noticing that
positions are measured as the distance to the probe surface, all particles with negative positions
are immediately withdrawn from the corresponding particle array.

On the other hand, boundary conditions at the right hand side of the simulation are not that straight-
forward. One of the reasons for such a difference is that particles enter the simulation at this point, so
emitting conditions are also needed. However, the main problem when defining the boundary conditions
at this point is that, as we already introduced in Section 4.2, the right hand side of the simulation corres-
ponds with a point along the presheath and not the plasma. As we are not taking into account ionisation
in our simulation, the length of the presheath is infinitely large. So, no matter how long we made our
simulation, its right hand side is going to be located along the presheath.

If we could impose plasma conditions to the right hand side of the simulation, its boundary conditions
would be almost as simple as the left hand side ones. First, the potential of the last node of the
simulation would be fixed with a value equal to the plasma potential. Since we are considering the
plasma as the reference for the potential, this value would be zero. Then, as particles in the plasma can
be assumed to be at thermal equilibrium, the influx of particles could be evaluated as the effusion of
particles with a Maxwellian distribution. That is, the influx rate of particles can be obtained from Eq.
(3.34) by considering vd = 0, and the velocity distribution of the incoming particles would be given by
the corresponding Rayleigh distribution.

We are going to see how the use of such boundary conditions lead to wrong results. Actually, these
are the boundary conditions that we used in Section 4.2 to produce the results shown in Fig. 4.3. As it
can be seen by observing the steady state reached in Fig. 4.3a, when using this boundary conditions, ions
are accelerated near the right hand side of the simulation, then their velocity remains stable and finally
they are accelerated again before reaching the probe. It has to be noticed that this is a quite strange
behaviour compared with all that we know from fluid models. As we saw in Section 1.4, ions coming
from the plasma should be slowly accelerated along the presheath until they reach the Bohm velocity, so

96

Chapter 4. PIC simulation of a planar Langmuir probe (CUPIC1D1V_PP)

the sheath can be developed, and then ions are further accelerated along the sheath until they reach the
probe.

In Fig. 4.9, the electric potential and field distribution corresponding to the aforementioned steady
state is shown. In particular, this graph is obtained by means of averaging the data from iteration 400000
to iteration 500000. The strange behaviour of ions is explained once we see the potential distribution
shown in Fig. 4.9a. There, we can see that the first acceleration of ions that takes place near the source
of particles, is explained because of the potential drop occurring there.

-25

-20

-15

-10

-5

 0

 0 20 40 60 80 100

(a) Potential distribution

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 20 40 60 80 100

(b) Field distribution

Figure 4.9: Appearance of a source sheath during
the simulation of a planar probe without a proper
particle injection.

Being the problem that, the potential distribution
shown in Fig. 4.9a does not make any sense from
a physical point of view. We have tried to impose
boundary conditions in the right hand side of the
simulation corresponding to those of the unperturbed
plasma. Nevertheless, as it is readily seen in Fig. 4.9b,
the value of the electric field at the right hand side of
the simulation is far from being zero, which is the
value it should have at the plasma. The reason is
that, since we are not considering ionisation we can
not try to impose plasma conditions at any finite dis-
tance from the probe, as we have previously said. The
structure developed at the right hand side in Fig. 4.9
is usually called a “source sheath”, since is a sheath
like structure due to the particle source. Source sheats
are simulation artefacts due to the fact that ions are
not properly injected into the simulation.

Then, the question is, how do we set up proper
particle injection and boundary conditions for the
potential at the right hand side of the simulation?
The answer is found by understanding the nature of
the presheath or quasineutral region that connects
the sheath with the plasma. As we saw in Section
1.4, in order for the presheath to be able to con-
nect the plasma with the sheath, ions are accelerated
while maintaining quasineutrality, until they reach
the Bohm velocity, so that the sheath can be de-
veloped. However, due to the continuity equation,
when ions are accelerated their density tends to de-
crease. For this reason, a “presheath mechanism”
that increases the ion density is needed, in order to
partially compensate the decrease due to their ac-
celeration, so that the ion density does not fall be-
low the electron one. Therefore, the net effect of the
presheath is to increase the flux of ions while main-
taining quasineutrality.

Once it is understood what happens along the
presheath, the conditions that we should impose in
the right hand side of our simulation become clearer.
On the one hand, we know that ions should have a cer-
tain drift velocity, which is acquired from the plasma
to the point of the presheath where the right hand side of the simulation is located, which we will call
the sheath edge. This drift velocity is due to a certain potential drop between the plasma, which is
our reference for the potential, and the sheath edge. Also, because of the energy conservation, the drift
velocity of ions and the potential at the sheath edge must fulfil the equation:

1
2
miv

2
d = eφs ⇒ φs = miv

2
d

2e
(4.3)

So, ions should be injected by considering that, at the sheath edge, their velocity distribution function is
given by Eq. (3.28), so the influx rate is given by Eq. (3.34) and the velocity distribution of the incoming

97

4.3. CUPIC1D1V_PP implementation

particles is given by the corresponding Rayleigh distribution. On the other hand, as we are considering
negative probe biasing potentials with respect to the plasma, electrons are repelled by the probe and
thus their drift velocity should be zero. So, the expressions considered for electrons are the same but
with vd = 0. Obviously, because of the quasineutrality condition the distribution functions for ions and
electrons should be normalised to the same particle density.

Then, the only remaining question is, what value should we use for the drift velocity? The answer
to this question is not easy, since it depends on the length of the simulation, i. e. how far do we go
into the presheath. Obviously, as the simulation is made larger this drift velocity is decreased, since it
should be null at the plasma. However, we know that, as the quasineutral condition must hold at any
point along the presheath, the electric field should be negligible there. So, the drift velocity for ions can
be selfconsistently adjusted so that the electric field at the right hand side of the simulation becomes
negligible. Also, as the drift velocity changes, the boundary condition for the potential at the right hand
side of the simulation must be updated by using Eq. (4.3). This calibration of the ion drift velocity
is performed by the function calibrate_ion_flux(), whose definition can be seen in Code B.8 (lines
219-254).

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5

-1.2

-0.8

-0.4

 0

D
ri

ft
 v

el
oc

it
y
 (

v
B
)

Iteration (millions)

 0.6

 0.8

 1

 1.2

 0 0.02 0.04 0.06 0.08 0.1

-1.2

-0.8

-0.4

 0

Figure 4.10: Calibration of the ion flux to avoid the ap-
pearance of a source sheath. Black solid line represents
drift velocity and grey solid line represents the electric
field at the sheath edge.

With the previously described method, as
the simulation evolves, the electric field at the
sheath edge slowly decreases. So, the source
sheath that appears in Fig. 4.9 becomes smal-
ler and smaller until it almost disappears. In
Fig. 4.10 the evolution of the drift velocity for
ions is shown, along with the evolution of the
value of the electric field at the sheath edge, i.
e. the right hand side node of the simulation.
In order to compare the results with the simple
model developed in Section 1.4, the temper-
ature of ions was set to zero, so ions entering
the simulation consist of a monoenergetic beam
with velocity vd. As it can be seen in the in-
set of the graph, the drift velocity is increased
until the source sheath disappears, i. e. the
electric field at the sheath edge becomes neg-
ligible. Then, after a transient stage, the drift
velocity decreases to reach its stable value.

A few things have to be noticed. First, in
Fig. 4.10 the drift velocity is measured in units
of the Bohm velocity. Let us remember that,
the Bohm velocity is the minimum velocity that

ions should have in order for the sheath to be developed. So, as can be seen in Fig. 4.10, the stable
value of the drift velocity is slightly higher than that, which implies that the calibration algorithm works
flawlessly. Then, the reason why the drift velocity does not reach a stable value exactly equal to the
Bohm velocity is that, the value we have chosen for the electric field at the sheath edge is negligible,
but not zero. The actual value we have chosen is −10−2 in simulation units, as can be seen in Code B.8
(line 227). It is important to choose a slightly negative value, for the electric field at the sheath edge,
because an electric field at the sheath edge exactly equal to zero would be compatible with any drift
velocity higher than vB. So, by doing this, the drift velocity would increase indefinitely, which is not a
desirable behaviour of the simulation. The closer to zero that we choose the value of the electric field
at the sheath edge, the closer to Bohm velocity that the stable value of the drift velocity is. However,
because of the noise in the simulation, this value can not be chosen as small as we want, since it would
become indistinguishable from zero, which would cause, as we said, the indefinite increase of the drift
velocity.

98

Chapter 4. PIC simulation of a planar Langmuir probe (CUPIC1D1V_PP)

4.4. Comparison with fluid models

Since we are going to use our simulations to study situations that are not covered by fluid models,
it seems reasonable to see if it produces the same results that fluids model under simple circumstances.
In order to do that, we have compared the results of the simulation shown in Fig. 4.10 with those
provided by the fluid model developed in Section 1.4. In particular, we are going to compare the results
of CUPIC1D1V_PP with the sheath solution because, as we have already stated, our simulation does not
take into account ionisation processes.

On the one hand, the results of the simulation are obtained by means of averaging the values of the
macroscopic quantities associated with the simulation, over a certain number of iterations. Obviously, in
order to start averaging data, we have to be sure that the simulation has reached the steady state. In
this case, we have averaged the data from iteration 1400000 to iteration 1500000, i. e. over half a million
of iterations of the PIC simulation. On the other hand, the results of the fluid model are obtained in
the same fashion that the ones shown in Fig. 1.9, but considering the same parameters as in the PIC
simulation, e. g. same biasing potential for the probe.

-25

-20

-15

-10

-5

 0

 0 5 10 15 20 25 30

(a) Electric potential distribution.

-2.5

-2

-1.5

-1

-0.5

 0

 0 5 10 15 20 25 30

(b) Electric field distribution.

 0

 1

 2

 3

 4

 5

 6

 7

-25 -20 -15 -10 -5 0

(c) Squared electric field versus electric potential.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

P
ar

ti
cl

e
d
en

si
ti
es

(d) Particle densities distribution.

Figure 4.11: Comparison between PIC simulation and fluid model of Section 1.4. Black solid lines
correspond to PIC simulation while grey dashed lines correspond to fluid model.

The previously mentioned results can be seen compared in Fig. 4.11. There we can see compared
the electric potential and field distributions, the squared electric field versus the electric potential and

99

4.5. Conclusion

the particles densities. The first thing that has to be noticed by observing Fig. 4.11, is the astonishing
agreement between the PIC simulation and the fluid model, meaning that our simulation is properly
describing the physical behaviour of the system. Also, by observing the potential and field distributions
in Fig. 4.11a and Fig. 4.11b, we can see that, once the ions are properly injected into the simulation, it
does not appear any kind of source sheath. In those graphs it can also be seen that, the right hand side
of the simulation is located at some point along the presheath, since the electric field there is negligible.
This fact can be observed as well in Fig. 4.11d, where the quasineutral character of the presheath is
recovered for X ≳ 25.

4.5. Conclusion

In this chapter we have described the implementation of the CUPIC1D1V_PP code, as well as the main
results obtained with it. This code simulates the contact of an infinite planar probe with a plasma. Even
though our main objective is to simulate the contact of a cylindrical probe with a plasma, this simulation
will be the base code from which the cylindrical simulation will be developed. Also, the planar simulation
has allowed us: to find the best initial conditions in order to quickly reach the steady state, and to develop
a particle injection method that will have a great importance in the cylindrical simulation. Finally, the
results provided by the simulation have been validated by comparing them with those obtained with a
fluid model.

The following chapter will be devoted to explain the implementation of the cylindrical simulation, as
well as the results obtained with it, which constitutes the main objective of this work.

100

Chapter 5

PIC simulation of a cylindrical
Langmuir probe (CUPIC1D2V_CP)

5.1. Introduction

There are several reasons to study the behaviour of cylindrical Langmuir probes which are negatively
biased with respect to the plasma. All these reasons have already been discussed in previous chapters,
however they can be resumed into two. On the one hand, from an experimental point of view, the
cylindrical geometry is widely used for its convenience and ease of manufacturing. On the other hand,
the interest in using the ion saturation zone of the I −V characteristic curve is motivated because of the
negligible perturbation of the plasma that is produced.

Nevertheless, as we saw in Chapter 2, there are several models that predict the ion current collected
by the probe, all of which can be classified into: orbital or radial theories. The problem being that
each one produces different results when used to diagnose a plasma. So, there exists an interest in the
plasma physics community to know which model better describes the ion current collected by the probe
depending on the experimental conditions.

The complete kinetic description that PIC simulations provide, will allow us to shed light into the
aforementioned problem, which has been the main objective and motivation of the present work. In this
sense, the present chapter is devoted to explain the main parts of the developed simulation of a cylindrical
Langmuir probe, CUPIC1D2V_CP, as well as the results concerning the transition from radial to orbital
models that has been observed with it.

We will showcase the main parts of the code by explaining the differences with the code CUPIC1D1V_PP,
which was explained in the previous chapter and in which the code CUPIC1D2V_CP is based on. Then, the
results obtained with the simulation will be shown by means of Sonin-plots, in order to compare them
with the results provided by the OML and ABR theoretical models.

As we did with the CUPIC1D1V_PP code, we are not going to provide here an exhaustive description of
the simulation. However, the interested reader can check out the complete source code of the simulation,
which can be found in Appendix C. The meaning of the name given to the software is analogous to the
one in the previous chapter: “CUPIC” stands for CUDA PIC, “1D2V” indicates the dimensionality of
the simulation and, “CP” stands for Cylindrical Probe.

5.2. Computational abstraction of the system

Just like in the simulation of the planar probe, the first thing we have to define, in order to develop
a simulation, is the physical space that we are going to simulate, i. e. the simulation domain. The
answer is very similar to the one we gave in the previous chapter, since we want to simulate the space
between a cylindrical Langmuir probe and an unperturbed plasma. Also, to avoid end corrections, we
are going to consider the probe to be infinitely long. This causes the space between the probe and the

101

5.2. Computational abstraction of the system

plasma to become infinitely large as well. However, when the probe is considered infinitely long, so the
end corrections are neglected, the axial dimension becomes superfluous, and the motion of particles can
be constricted to a plane perpendicular to the probe axis.

Probe radius
(r

p
)

z

Amplitude of
the simulation

Width of
the simulation

Length of the simulation

Quasineutral
zone

(a) Simulation domain.

Emitting/absorbing
surfaceAbsorbing

surface

(b) Computational box and boundary conditions.

rho[]

Nodes

Cells

phi[]

E_r[]

(c) Discretisation and computer variables.

Figure 5.1: Computational abstraction of the simula-
tion domain between a cylindrical Langmuir probe and
a neutral plasma.

By taking into account the previous consid-
erations, the simulation domain should be an
annular disk, whose inner radius would be given
by the probe radius and the outer one should
be located in the quasineutral zone. However,
as we already stablished and considered when
solving fluid models in Chapter 2, the problem
we are dealing with has cylindrical symmetry.
That is, all the physical magnitudes involved in
the problem only depends on the radial direc-
tion, i. e. the distance to the probe axis. For
this reason, instead of considering the complete
annulus around the probe, our simulation do-
main is defined as an annular sector.

The previously described simulation do-
main can be seen in Fig. 5.1a. There we can
see that instead of the whole annulus, a small
slab is considered. This allows us to restrict the
amount of particles in the simulation domain to
a reasonable number. Actually, there are two
parameters that are adjusted so that the num-
ber of particles in the simulation domain does
not become overwhelming: the width and the
amplitude of the simulation. These two para-
meters control the total volume and thus the
number of particles that are simulated. For
example, we could consider the amplitude of
the simulation to be 360◦, however, in order to
have a moderate number of particles the width
of the simulation should be really small.

As we have already said, the only relev-
ant dimension in our simulation is the radial
one. For this reason, the computational box is
a segment, as in the planar case. This com-
putational box can be seen in Fig. 5.1b. It
has to be noticed that, even though the com-
putational box is a segment, in Fig. 5.1b the
simulation domain is superimposed for the sake
of ease of view. There are also represented the
boundary conditions of the computational box,
which are the same than in the planar case, ex-
cept for the fact that the surfaces where they
are implemented are different.

Also, just like in the previous chapter, the
computational box is gridded in order to solve
Poisson’s equation. So finally, the computa-
tional box is discretised and represented by a

bunch of nodes and the corresponding cells, as can be seen in Fig. 5.1c. In the computer, this abstraction
is represented by the three arrays which are schematised in Fig. 5.1c. These arrays store the values of
the three relevant macroscopic quantities at node positions, i. e. charge density, electric potential, an
radial component of the electric field.

As can be observed by comparing Fig. 5.1 and Fig. 4.1, even though the geometries are very
different, the computational box and the computer variables representing it, are the same in the planar

102

Chapter 5. PIC simulation of a cylindrical Langmuir probe (CUPIC1D2V_CP)

and cylindrical probe cases. However, there is a significant difference between both cases. In Fig. 4.1b we
can see that, for the case of planar geometry, the volumes corresponding to the cells are all the same across
the whole computational box. However, in Fig. 5.1b we can see that, for the case of cylindrical geometry,
the volumes of each cell are different. Specifically, the volumes of the cells decrease as the left hand side
of the simulation, i. e. the probe surface, is approached. This fact was already shown in Fig. 2.7 in
Section 2.4.1, where we stated that the decrease of volumes as the probe surface is approached represents
a presheath mechanism due to the geometry instead of ionisation. This fact has to be considered in the
particle weighting step of the simulation, as well as during the iparticle injection, as we will see.

e[1].r

e[1].vr

e[1].vt

e[2].r

e[2].vr

e[2].vt

e[3].r

e[3].vr

e[3].vt

e[4].r

e[4].vr

e[4].vt

e[]

me
qe

i[1].r

i[1].vr

i[1].vt

i[2].r

i[2].vr

i[2].vt

i[3].r

i[3].vr

i[3].vt

i[4].r

i[4].vr

i[4].vt

i[5].r

i[5].vr

i[5].vt

i[]

mi
qi

Figure 5.2: Computational abstraction of the
particle system present in the simulation domain.

Once the simulation domain and the computa-
tional box are determined and characterised, it is
time to describe the system of particles in it. The
first thing that we have to notice is that the di-
mensionality of the cylindrical probe simulation is
no longer 1d1v, instead we must consider two com-
ponents of the velocity, i. e. 1d2v. For the spatial
dimension we are considering the distance from the
probe axis, while for the velocity we are consider-
ing the radial as well as the azimuthal components.
The axial component of the velocity is superfluous
since the probe is considered to be infinitely long.
However, the azimuthal component must be taken
into account, since, in order to consider the mo-
tion of particles restricted to the radial dimension,
a centrifugal force term, which depends on the azi-
muthal component of the velocity, has to be con-
sidered. As we will see, this has to be carefully con-
sidered when developing the particle mover step.

In Fig. 5.2 the computational abstraction of
the particle system is schematised. There, we can
see that the number of attributes considered for
each particle is 5. On the one hand, we have 4
attributes which are just the same than the ones
in the planar probe simulation: the mass of the
particle, its charge, its position and its component of the velocity towards or backwards the probe surface.
On the other hand, now we have another extra attribute for the azimuthal component of the velocity.
Just like in the previous chapter, we are considering two ensembles of particles, one for electrons and
another for ions. Each ensemble is characterised by the corresponding values of mass and charge, and a
particle array that stores the position and both components of the velocity for each particle. Obviously,
the definition of the particle struct, which can be found in Code C.14 (lines 29-34), has to consider the
extra component of the velocity.

Finally, once that we have defined the simulation domain and the particle system that we are going to
simulate, as well as their computational abstractions, we have that the main variables in our simulation
are:

To characterise the mesh: rho[], phi[] and E_r[].

To characterise the particles: me, qe, e[], mi, qi and i[]

The previous variables are almost equal to the variables in the previous chapter, being the only
difference the new definition of the particle structure. Also, as we mentioned in the previous chapter,
the names of these and all the variables that appear in the source code in Appendix C, are usually
preceded by d_, h_, g_, sh_ or reg_, meaning that the variable is allocated in the device, host, global,
shared or register memory spaces, respectively.

Once we have described the computational abstraction of the system, we can showcase the main
traits of the principal parts of the simulation. However, code of CUPIC1D2V_CP is based in the code of
CUPIC1D1V_PP, and only small details are different between both of them. For this reason, the following
section will be devoted to highlight the differences between both codes.

103

5.3. Differences between CUPIC1D2V_CP and CUPIC1D1V_PP

5.3. Differences between CUPIC1D2V_CP and CUPIC1D1V_PP

As we have already mentioned, most of the code of the simulation of the cylindrical probe is shared
with the simulation of the planar probe. In particular, all the kernels defined in CUPIC1D2V_CP have the
same execution configuration that their counterparts in CUPIC1D1V_PP. Actually, these kernels execute
almost the same code except for a few differences that we are going to highlight in this section. However,
the complete sources of the simulation found in Appendix C. There, it is also provided a makefile that
automates the compilation process, shown in Code C.17, as well as an example of the input file from
which the simulation reads its parameters, shown in Code C.18.

5.3.1. Initial conditions

There is not much to say about the initial conditions used in CUPIC1D2V_CP. The same behaviour with
respect to the initial conditions is observed in the cylindrical probe simulation than in the planar one.
When the system is initialised with particles in it, those particles tend to end up in trapped trajectories
in potential wells, whose population decrease very slowly in time, and as a consequence, the transient
state lasts longer. As our study is focused in the steady state, particularly we pursuit the value of the
steady current collected by the probe as we will see, we are interested again in the initial conditions that
reach the steady state the fastest. As we saw in Section 4.3.1, the fastest way to reach the steady state is
to initialise the simulation with an empty system. In this way, as the simulation is filled with particles,
they acquire the configuration corresponding to the steady state.

So, for the sake of performance, the initial conditions considered for the simulation have been those
of an empty system. This can be seen in Code C.2 (line 141), where the initial number of particles is set
to zero, while in the CUPIC1D1V_PP code two options where programmed, i. e. empty and filled system,
as can be seen in Code B.2 (lines 140-142).

5.3.2. Particle weighting

In the particle weighting step there is a small modification with respect to the code of the planar
probe simulation. The shape function considered is again the one corresponding to the CIC/PIC scheme,
i. e. the function defined in Eq. (3.17), where the coordinates x and xl are considered to be the distance
from the probe axis to the particles and the nodes respectively. However the main difference is due to the
cell volumes. Let us remember that, when the particle weighting step was explained in Section 3.3.1, for
the sake of simplicity, we assumed a regular mesh and thus a constant cell volume across the whole grid,
being Vc this volume as can be seen in Eq. (3.7) and Eq. (3.8). However, since the volume associated
with each node/cell in our simulation is no longer constant (see Fig. 5.1b), the previously referenced
equations have to be slightly modified.

By taking into account the previous considerations, the contribution of the l-th particle to the charge
density of the k⃗-th node, can be expressed in the most general way as:

ρl
k⃗

= ql
Vk⃗
S
(
r⃗k⃗ − r⃗l

)
(5.1)

ql being the charge and S
(
r⃗k⃗ − r⃗l

)
the shape function associated with the l-th particle. Also, Vk⃗ is the

volume associated with the k⃗-th node. So the complete charge density associated with the k⃗-th node is:

ρk⃗ =
N∑
l=0

ql
Vk⃗
S
(
r⃗k⃗ − r⃗l

)
(5.2)

So, the main difference between the codes of CUPIC1D1V_PP and CUPIC1D2V_CP is that, in the former,
the volume associated with each node was constant (Code B.4 lines 186-195), while, in the latter, the
volume associated with each node is evaluated independently (Code C.4 lines 194-203)

104

Chapter 5. PIC simulation of a cylindrical Langmuir probe (CUPIC1D2V_CP)

5.3.3. Poisson solver

The differences in the Poisson solver part of the code in the cylindrical probe simulation with respect
to the planar probe simulation, come from the fact that the expression of the Laplace operator, which
appears in Poisson’s equation, is different when expressed in cylindrical or cartesian coordinate systems.

It has to be noticed that, when explaining the force evaluation method in PIC simulations in Section
3.3.1, for the sake of simplicity, again, cartesian coordinates where assumed. By doing so, the resolution
of Poisson’s equation can be turned into the resolution of the system of linear equations given by Eqs.
(3.20a), which leads the Jacobi method shown in Eqs. (4.1). However, when a cylindrical coordinate
system is considered (r, θ, z), Poisson’s equation is written as follows:

∇2φ(r⃗) = 1
r

∂

∂r

(
r
∂φ(r⃗)
∂r

)
+ 1
r2
∂2φ(r⃗)
∂θ2 + ∂2φ(r⃗)

∂z2

= ∂2φ(r⃗)
∂r2 + 1

r

∂φ(r⃗)
∂r

+ 1
r2
∂2φ(r⃗)
∂θ2 + ∂2φ(r⃗)

∂z2 = −ρ(r⃗)
ε0

(5.3)

By considering the symmetry reasons already argued multiple times, the derivatives with respect to
θ and z are null. So, Poisson’s equation is finally written as:

d2φ(r⃗)
dr2 + 1

r

dφ(r⃗)
dr

= −ρ(r⃗)
ε0

(5.4)

The derivatives appearing in Eq. (5.4) can be substituted by the following second order centred finite
difference approximations:

dφ(r⃗)
dr

∣∣∣∣
rk

≃ φk+1 − φk−1

2h
(5.5a)

d2φ(r⃗)
dr2

∣∣∣∣
rk

≃ φk+1 − 2φk + φk−1

h2 (5.5b)

h being the spacing of the mesh, and k the subindex which indicates the value at the k-th node.

Now, by taking into account the approximations in Eqs. (5.5), we can transform the differential
equation in Eq. (5.3) into the following system of linear equations:

φk = 1
2

[
h2ρk
ε0

+ φk+1

(
1 + h

2rk

)
+ φk−1

(
1 − h

2rk

)]
; ∀k = 1, . . . , Nn − 2 (5.6)

Nn being the number of nodes in the mesh.

Finally, the system of equations given by Eqs. (5.6) can be solved with the Jacobi method. In order
to do so, successively improving approximations of the potential at node positions are obtained by using
the following expression:

φnew
k = φold

k + 1
2

[
h2ρk
ε0

+ φold
k+1

(
1 + h

2rk

)
+ φold

k−1

(
1 − h

2rk

)]
; ∀k = 1, . . . , Nn − 2 (5.7)

This can be seen in the definition of the jacobi_iteration() kernel in Code C.4 (lines 277-280),
where Eqs. (5.7) are used. Instead, in the code of CUPIC1D1V_PP, Eqs. (4.1) were used, as can be seen in
Code B.4 (lines 243-245). Also, let us to notice that, in Eqs. (5.6) and Eqs. (5.7), the first and last nodes
of the mesh are not considered since their values are fixed by the boundary conditions, as we already
stated in Section 4.3.3.

5.3.4. Particle mover

In the previous sections, we have seen some minor changes in the code of CUPIC1D2V_CP with respect
to the code of CUPIC1D1V_PP, which are strictly due to the fact that we have changed the geometry of the
simulation from cartesian to cylindrical. Nevertheless, the changes in the particle mover, however minor
as well, are due to more physical than geometrical reasons.

105

5.3. Differences between CUPIC1D2V_CP and CUPIC1D1V_PP

Let us start by remembering that, when developing these simulations, the planar and the cylindrical
one, in order to avoid end corrections, we have considered the probes to be infinitely large. In the planar
geometry, this means that there are two dimensions which become infinite and thus superfluous, so the
motion of particles can be described with only one dimension. However, in the case of cylindrical geometry,
in order to neglect the end corrections, we only have to consider one dimension to be infinitely large, i.
e. its length. This means that, the axial dimension becomes superfluous and the motion of particles can
be described in the plane perpendicular to the probe, as we mentioned in Section 5.2. Nevertheless, as
we have mentioned previously, we are only considering one component of the position of the particles, i.
e. their distance to the probe axis. In order to do so, and still consider the orbital motion of particles
around the probe, a centrifugal force term must be taken into account. This centrifugal force depends on
the azimuthal velocity and takes account of the fact that, for particles with high azimuthal velocity, it is
harder to approach the probe and vice versa. This is also the reason why two components of the velocity
are considered in the simulation, while only one component of the position is taken into account.

Now, bearing in mind the previous considerations, let us see how the equations of motion should be
integrated. First, the equation of motion that has to be integrated is, as always, the second Newton’s
law, in the form shown in Eq. (3.3). However, contrary to the case of the planar probe, the force is not
only due to the electrostatic force, since the centrifugal force must also be taken into account. So, Eq.
(3.3) can be written as:

qlE⃗l + F⃗cl = ml
d2r⃗l
dt2

; ∀l ∈ [1, N] (5.8)

F⃗cl being the centrifugal force suffered by the l-th particle, which can be written in terms of its azimuthal
velocity and its distance to the probe axis as:

F⃗cl = ml
v2
θl

rl
u⃗r (5.9)

As we see in Eq. (5.9), the centrifugal force term only has a radial component. And, because of the
symmetry of the problem, the electric field only has a radial component as well. So, finally, the equation
of motion in the radial dimension, for the l-th particle, can be written as:

qlEl +ml
v2
θl

rl
= ml

d2rl
dt2

(5.10)

which, by introducing the radial component of the velocity for the l-th particle, vrl, can be split into two
first order differential equations as follows:

drl
dt

= vrl (5.11a)

dvrl
dt

= 1
ml

(
qlEl +ml

v2
θl

rl

)
(5.11b)

As we can see in Eq. (5.11b), the integration of the radial component of the velocity, vrl depends on
the azimuthal component of the velocity, vθl. Eqs. (5.11) could be easily integrated by using the same
leap-frog scheme that we used in the simulation of the planar probe. However, in order to do this, we
need and equation to describe the evolution of vθl. It has to be noticed that, even though there are no
forces in the azimuthal direction, the azimuthal component of the velocity is not a constant of motion.
The reason is that, since we are describing the motion of a particle in a plane, the angular momentum of
the particle must be conserved, and so:

Jl = mlrlvθl ≡ const. ⇒ rl(t0)vθl(t0) = rl(t)vθl(t) (5.12)

Once that we have equations to describe the evolution of the position and the two components of
the velocity that are being considered, it is easy to implement the leap-frog integration scheme, only one
more thing has to be considered. Since the azimuthal component of the velocity appears in the force
term of the second Newton’s law, i. e. right hand side of Eq. (5.11b), instead being evaluated at half
time steps, like the radial component, it has to be evaluated at full time steps, like the electric field or

106

Chapter 5. PIC simulation of a cylindrical Langmuir probe (CUPIC1D2V_CP)

the position, see Fig. 3.8. So the integration of the equations of motions would be like:

v
p+1/2
rl = v

p−1/2
rl + ∆t

ml

(
qlE

p
l +ml

v2 p
θl

r pl

)
(5.13a)

r p+1
l = r pl + ∆t v p+1/2

rl (5.13b)

v p+1
θl =

r pl v
p
θl

r p+1
l

(5.13c)

where Eq. (5.13c) is obviously derived from Eq. (5.12).

The actual implementation of Eqs. (5.13) into the particle mover module of the simulation can be
seen in the definition of the leap_frog_step() kernel, which appears in Code C.6 (lines 54-107).

5.3.5. Particle injection

In the particle injection code of the CUPIC1D2V_CP simulation, there are a two main differences with
respect to the corresponding code of the CUPIC1D1V_PP simulation. One of them is due to the different
dimensionality of the simulation, 1d2v versus 1d1v, while the other is due to the fact that a different
presheath mechanism is present in the cylindrical probe case.

Let us start by remembering that Eq. (3.34), which gives us the flux of particles crossing a certain
surface and thus allows us to evaluate the number of particles entering into the simulation each time step,
is valid whatever it is the geometry. Even though in Section 3.3.3 we considered a cartesian coordinate
system, the only restriction to the calculations performed there was that, the drift velocity of particles
must be perpendicular to the surface through which the flux is going to be evaluated. As we have
previously said multiple times, in the case of cylindrical probes, due to its symmetry, the dependence of
all macroscopic quantities is restricted to the radial dimension. That is the case of the electric potential,
reason why the potential drop and thus the acceleration originated in the quasineutral zone, is produced in
the radial dimension. So, in the quasineutral zone, particles will be described by the following distribution
function:

f(v⃗) = n

(√
m

2πkBT

)3

exp
(

− m

2kBT
((vr − vd)2) + v2

θ + v2
z

)
(5.14)

Now, as can be seen in the right hand side of the computational box in Fig. 5.1b, the surface through
which particles enter into the simulation is perpendicular to the radial direction. So Eq. (3.34) can be
used to evaluate the flux of incoming particles. Once we know this, let us focus in the differences with
the previous code.

On the one hand, in CUPIC1D2V_CP we are considering one extra component of the velocity with respect
to CUPIC1D1V_PP, which consequently has to be initialised for each particle entering the simulation. The
different components of the velocity of incoming particles are initialised by obtaining random numbers
from the corresponding probability distribution functions. We know that, the probability distribution
function of the incoming particles, is given by finc.(r⃗) ∝ vr f(r⃗). This distribution can be factorised into
three different distributions, one for each component of the velocity. So, the probability distribution for
the radial component of the velocity is given by the following Rayleigh distribution:

finc.(vr) = vr

√
m

2πkBT
exp

(
−m(vr − vd)2

2kBT

)
(5.15)

which is the same distribution as the one corresponding to the component of the velocity perpendicular
to the planar probe, i. e. the one we were considering in CUPIC1D1V_PP. Then, the other components of
the velocity, being the azimuthal the only one relevant for us, will be described by Gaussian distribution
functions. Specifically, the azimuthal component will be described by:

finc.(vθ) =
√

m

2πkBT
exp

(
− mv2

θ

2kBT

)
(5.16)

On the other hand, the calibration method for the drift velocity of ions that we explained in Section
4.3.5, is slightly different. There, we imposed an arbitrarily small value for the electric field at the sheath

107

5.3. Differences between CUPIC1D2V_CP and CUPIC1D1V_PP

edge. This was done in order to find a value for the drift velocity that ensures that quasineutrality is
achieved at the right hand side of the simulation. That method worked incredibly well, as it was confirmed
by the results shown in Fig. 4.11. However, it would be desirable to have a value for the electric field
at the sheath edge that it is somehow related to the physics of the system that is being simulated. The
only way to introduce such information is by considering a value of the electric field provided by the
quasineutral solution of a fluid model.

As we stablished in Section 4.3.5, the presheath, or quasineutral zone, rely in the existence of a
presheath mechanism, by means of which the ion flux can increase. For this reason, the aforementioned
approach was not implemented in the planar probe simulation, since the usual presheath mechanism in
planar geometry is the ionisation, which is not taken into account by our simulation. This can be seen
in the quasineutral solution given by Eq. (1.26), which depends on the ionisation rate. However, in the
cylindrical probe case, the presheath mechanism is the cylindrical geometry itself, as it was noticed in
Section 2.4.1. For this reason, the quasineutral solution does not depends on parameters that are not
taken into account by our simulation. This can be seen in the quasineutral solution provided by Eq.
(2.68) and Eq. (2.69), which can be combined in order to obtain the following expression for the electric
field in the quasineutral zone:

E(R) = 2
R

(ψ(R) − 2β)e2ψ(R) + 2βe3ψ(R)

(1 + 2ψ(R) − 4β)e2ψ(R) + 6βe3ψ(R) (5.17)

The implementation of the quasineutral solution given by Eq. (5.17) can be seen in the code of the
calibrate_ion_flux() function in Code C.8 (lines 193-249).

 0.4

 0.8

 1.2

 1.6

 2

 0 0.05 0.1 0.15 0.2
-0.5

-0.4

-0.3

-0.2

-0.1

 0

D
ri

ft
 v

el
oc

it
y
 (

v
th

)

E
le

ct
ri

c
fi
el

d
 (

s.
u
.)

Iteration (millions)

 0.4

 0.8

 1.2

 1.6

 2

 0 0.01 0.02 0.03 0.04 0.05
-0.5

-0.4

-0.3

-0.2

-0.1

 0

Figure 5.3: Calibration of the ion flux by considering
the quasineutral solution in Eq. (5.17). Black solid line
represents drift velocity and grey solid line represents
the electric field at the sheath edge.

In Fig. 5.3 the calibration process for the
ion drift velocity is shown. Just as in the case of
the planar probe simulation, it can be seen that
as the drift velocity is adjusted the electric field
at the sheath edge becomes negligible. The
main difference with respect to CUPIC1D1V_PP
is that, the steady value reached by the electric
field at the sheath edge, is in accordance with
the quasineutral solution given by Eq. (5.17).

It also has to be noticed that, in Fig. 5.3,
instead of using the Bohm velocity as the unit
for the drift velocity, like it was done in Fig.
4.10, we have chosen to use the thermal velocity
of ions. The reason being that, by doing so,
we can easily see the drift velocity to thermal
velocity ratio reached at the steady state of the
simulation. This quantity is interesting since,
by taking into account the graph in Fig. 3.10, it
allows us to understand if the ion influx during
the steady state is dominated by the drift or
thermal velocities.

However, it should be highlighted that, des-
pite the fact of using different units in Fig.
5.3 and Fig. 3.10, the drift velocity is on the
same order of magnitude in both cases. Actu-
ally, there is not much difference between both

scales, as can be seen from the values of the Bohm and thermal velocities in the dimensionless units we
have been using:

VB =
√

1
γ

(5.18a)

Vth =

√
2β
γ

(for ions) (5.18b)

108

Chapter 5. PIC simulation of a cylindrical Langmuir probe (CUPIC1D2V_CP)

For example, in the simulation whose evolution is shown in Fig. 5.3 the ion to electron temperature
ratio was β = 0.1. These values yield a ratio Vth/VB ≃ 0.45.

5.4. Hybrid code optimisation

In this section we are going to explain a significant optimisation introduced in the CUPIC1D2V_CP code.
This optimisation was introduced mainly in order to speedup the simulation, reducing the computational
times and thus accelerating the obtention of results. By means of the aforementioned optimisation, we
have been able to perform a huge number of simulations, which would have been otherwise impossible
due to time restrictions. It has to be noticed that, in the code shown in Appendix C the optimisation
is already implemented. For this reason, if the code of CUPIC1D2V_CP has been thoroughly checked out,
the reader has probably noticed what we are going to discuss in here.

Let us start by stating a couple facts:

On the one hand, even though our interest has been to simulate and study the behaviour of Langmuir
probes in the ion saturation zone of the I − V characteristic curve, i. e. ψp ≪ 0, the simulations
that we have developed are not restricted to those conditions. In particular, the biasing potential
of the probe can be set to any value in the input file of the simulations, as can be seen in Code
B.18 (line 14) and Code C.18 (line 17).

On the other hand, the main reason of the huge computational time required by PIC simulations
is that, in order to not to accumulate huge numerical errors during the integration of the equations
of motion, the time step of the simulation should be small enough, so that the spatial motion of
the fastest particles during one time step is small when compared to the mesh spacing. Due to its
higher temperature and smaller mass, electrons have much more mobility than ions, and thus are
the fastest particles in our simulations. Actually, this is one of the reasons why the time units of
the simulation are defined as the inverse of the electron plasma frequency. Let us remember that
this electron plasma frequency was introduced at the end of Section 1.3 and, its definition can be
seen in Eq. (1.9c). So, our simulations must advance with a time step suited for the fast electrons,
which results in a time step ridiculously small for the motion of ions. As a consequence, a large
number of time steps has to be performed so that ions move a little bit. Obviously, the simulation
does not reach its steady state until the slowest specie, i. e. ions, reach it. That is the reason why
in Section 4.3.1 the phase space of ions was used in Fig. 4.3 to determine when the steady state
was reached.

Now we can answer the question: how do we reduce the computational time needed by our simulations
in order to reach the steady state? Because of the second fact mentioned before, the previous answer can
be changed by the following: how can we increase the time step of our simulations without compromising
the precision with which electrons are described? Additionally, in order to answer this question, the
first fact has to be taken into account. Since we are going to perform simulations where the probe is
going to be high negatively biased, we can introduce modifications in our code that are only valid for
such conditions. The actual modification that we introduced consist of describing the electrons in the
simulation by using a fluid description, instead of describing them as particles, as explained in Section
5.2. By doing so, our simulation can no longer be considered a “pure” particle simulation, since it better
fits under the hybrid simulation category shown in Fig. 3.1.

Let us find out if a fluid description for electrons can be introduced without loosing relevant inform-
ation in our simulations. First, when in the ion saturation zone, from a fluid point of view, the complete
description of electrons is readily known. As we have already stated multiple times during Chapters 1
and 2, when the biasing potential of the probe is negative with respect to the plasma, electrons are in
thermal equilibrium with the electric field, so their distribution function is given by Eq. (1.2) or its
cylindrical counterpart. Furthermore, as long as the biasing potential of the probe is negative enough,
ψ ≤ −10, their density distribution is also known and given by Eq. (1.3) in the planar case, or Eq. (2.44)
in the cylindrical case. So, in the dimensionless units of the simulation, the electron density should be
described by the following expression:

Ne(R) = eψ(R) (5.19)

109

5.5. Radial to Orbital motion transition

So, instead of considering an ensemble of particles to describe electrons, as during the PIC simulation
the electric potential is evaluated every single time step at node positions, Eq. (5.19) can be used
to evaluate the electron density at node positions, and thus the charge density there due to electrons.
Then, the charge density due to ions would be evaluated by the particle weighting algorithm previously
explained, so Poisson’s equation can be solved normally. Finally, with the values of the electric potential
at the new time step, the electron density at the new time step can be evaluated, again with Eq. (5.19),
without being needed the integration of the equations of motion for electrons. By using the previous
scheme we can avoid the integration of the equations of motion for electrons, so a larger time step can be
used, which will be best suited for the motion of ions. Obviously, by considering a larger time step, more
physical time can be simulated with fewer time steps, so the obtention of results is effectively accelerated.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 1 1 2 2 3

D
en

si
ty

 (
a.

u
.)

Figure 5.4: Comparison between the electron
density by using particles (grey solid line) or the
fluid approximation given by Eq. (5.19) (circles).

It can be probed, that the exact same results are
obtained for the macroscopic quantities by simulat-
ing the electrons as particles or by using Eq. (5.19).
For example, in Fig. 4.11d the particle densities cor-
responding to the PIC simulation where obtained by
means of histograms of the particle positions, and
we can compare this electron density with the one
provided by Eq. (5.19) using the values of the electric
potential obtained with the PIC simulation that are
shown in Fig. 4.11a.

In Fig. 5.4 the previous comparison is shown. As
can be seen, both methods provide the exact same
electron density, and thus the same charge density,
electric potential and forces suffered by the ions. So,
electrons can be safely removed from the simulation,
as long as their presence is considered by means of Eq.
(5.19), and ions are not going to notice their absence.
It has to be noticed that, for the sake of brevity, only
the case in Fig. 5.4 is shown, however the same ex-
act results are obtained by using the cylindrical sim-
ulation, other simulation conditions or even data ob-
tained from the transient state.

Once we are sure that the hybrid optimisation works properly, the evaluation of the electron density
was carried out by the function virtual_to_grid(), whose definition can be seen in Code C.4 (lines
215-238). There, the actual implementation of Eq. (5.19) can be seen at line 231. With this hybrid code,
the number of iterations needed in order to reach the steady state is one ore two orders of magnitude
smaller than with electrons as particles. This can be seen by comparing Fig. 5.3 with Fig. 4.10. In the
former, with the hybrid optimisation implemented, we can see that the drift velocity reaches its steady
state after 50000 iterations approximately, while in the former, without this optimisation, more than a
million iterations are needed.

5.5. Radial to Orbital motion transition

In this section we are going to show the results concerning the transition from a radial to an orbital
behaviour of ions, in the surroundings of a negatively biased cylindrical Langmuir probe, that have been
obtained with the CUPIC1D2V_CP simulation. These results, as it was stated in the objectives section of
the document, constitute the main aim that motivated this work.

First, we are going to explain how the results provided by the simulation are going to be analysed. As
we stated in Section 2.5, the Sonin-plot represents a powerful tool that allows us to identify if the motion
of ions can be classified as radial, orbital, or something in between. Let us remember that, the Sonin-plot,
was determined by the representation of two coordinates, (xsonin, ysonin), the definition of which where
provided by Eq. (2.85) and Eq. (2.84). However, by using the dimensionless variables, that we have been

110

Chapter 5. PIC simulation of a cylindrical Langmuir probe (CUPIC1D2V_CP)

working with during the whole document, the coordinates of the Soning-plot can also be defined as:

ysonin(Rp, ψp, β) =
I∗√

γ
√

2πNe0

1
Rp

(5.20a)

xsonin(Rp, ψp, β) =
I∗√

γ
√

2πNe0
Rp (5.20b)

where I∗ = iλD/eωpe, which is the parameter that we are going to measure from the raw data provided
by the simulation. Also, in Section 2.5, we obtained the Sonin-plot representation corresponding to the
OML model, given by Eqs. (2.88), as well as the ABR model, obtained by numerical integration and
using Eqs. (2.90). The actual representation of both theories can be seen in Fig. 2.14.

Obviously, the Sonin-plot depends on the value of the biasing potential of the probe. In our case,
ψp = −25 is the biasing potential chosen for all the simulations performed for the obtention of the results
presented here. Also the ion to electron mass ratio was chosen to be γ = 7296.0, which is the value
corresponding to Helium ions. This value was chosen because it is the gas with which J. M. Díaz-Cabrera
et. al. [47] experimentally observed the transition from ABR to OML behaviours.

With these parameters, several simulations where performed for different values of the ion to electron
temperature ratio, β ∈ [0, 1], and dimensionless probe radius, Rp ∈ [0.5, 4]. It has to be noticed that, the
previous ranges where considered in order to be representative for most of the low temperature and low
pressure plasmas, which is the kind of plasmas on which our research is focused. Values β ≥ 1 are rarely
found except, for example, in fusion plasmas. Also, Rp ≤ 0.5 or Rp ≥ 4 values are either very small or
very large for a cylindrical probe and, in those cases, the behaviour is mainly explained as OML or ABR
as we will see.

5

10

15

20

25

30

y
so

n
in

x
sonin

β = 0.0
β = 0.1
β = 0.2
β = 0.3

0 20 40 60 80 100
0

Rp = 0.5

Rp = 1.0

Rp = 2.0

Rp = 4.0

Figure 5.5: Dependence of the Sonin-plot on the di-
mensionless probe radius for different β values. ABR
(thick solid), OML (thick dashed) and constant Rp
(thin solid) are also shown.

First, we performed a set of simulations where
different Rp values where considered for a fixed β
values. These results can be seen in Fig. 5.5 for
β =0.0, 0.1, 0.2 and 0.4. There we can see how,
independently of the probe radius, the ABR model
is the theory that properly describes the behaviour
of ions in the limiting case β → 0, while for β ̸= 0
the behaviour of ions depends on the probe radius.
In order to analyse those results, two regimes have
to be defined: small probe radii (Rp ≲ 2) and large
probe radii (Rp ≳ 2).

On the one hand, for probe radii approximately
smaller than 2, we can see that as we increase β,
a transition is found from the ABR to the OML
theory. This is due to a decrease in the dimen-
sionless current collected by the probe, I∗, as the
temperature of ions is increased with respect to the
electron one. We can also see that, as the dimen-
sionless probe radius is decreased, the transition
becomes more pronounced.

On the other hand, for probe radii approxim-
ately larger than 2, we can see that as we increase
β, the behaviour of ions can no longer be described
by the ABR theory. The difference with the previous case is that the dimensionless current collected by
the probe, I∗, does not decrease, as an orbital behaviour would suggest. Contrary to that, the current
collected becomes larger than the prediction of the ABR theory. A current larger than the one obtained
with the ABR model can be obtained with a radial theory that considers the thermal motion of ions,
such as the model developed by Fernández Palop et. al. [14] that was reviewed in Section 2.4.2. So, we
can conclude that for large probe radii the behaviour of ions remains mostly radial as β is increased.

So, as it can be seen in Fig. 5.5 and we have stated, once the dimensionless probe radius is fixed,
the behaviour of ions is determined by the value of ion to electron temperature ratio. For this reason, a
second set of simulations where performed later. In this case, the Rp value was fixed while β varies from
0 to 1.

111

5.5. Radial to Orbital motion transition

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

 5

 10

 15

 20

 25

 30

 0 0.02 0.04 0.06 0.08 0.1

Figure 5.6: Dependence of the ordinate of the
Sonin-plot on the ion to electron temperature ra-
tio for different Rp values. ABR (circles) and
OML (thick dashed) are also shown.

Since in this case we want to see the dependence on
β, instead of using a regular Sonin-plot, we are going
to show the results by plotting ysonin versus β. In Fig.
5.6 the results of this set of simulations can be seen.
There, the prediction of the OML model as well as the
predictions of the ABR model for every probe radius
are also shown. Obviously, since the ABR theory is
only valid for the case β = 0, only those points are
shown.

The first thing we notice from the results shown
in Fig. 5.6 is what we have already seen in Fig.
5.5. That is, the radial theory is recovered as the
ion to electron temperature ratio tends to zero, for
every probe radii. This means that the radial model
provides a better prediction when the ion temperat-
ure is negligible compared with the one of electrons,
although collisions are not taken into account. On
the other hand, for high ion temperature values the
orbital theory provides a better description of the be-
haviour of ions in the surroundings of the probe. This
is because as we increase β the angular momentum of
ions also increases, so the fraction of ions that are able

to orbit around the probe becomes dominant in the sheath dynamics.

We can conclude that between negligible and high ion temperatures, a transition from the radial
behaviour to an orbital one is found. The transition is explained because the fraction of ions that orbit
around the probe goes from negligible to dominant. Also, the dimensionless probe radius is found to
be a key parameter on the way this transition occurs. This is reasonable, because the larger the probe
radius the harder it is for an ion to orbit around the probe. Actually, as can be seen in Fig. 5.5 the
aforementioned transition is only found for relatively small probe radii, i. e. Rp ≲ 2. This behaviour can
also be seen in the inset of Fig. 5.6, where it is clear that the transition from ABR to OML occurs for
smaller β values as the probe radius becomes smaller. Also, as the probe radius increases and the probe
becomes more planar-like, the transition gets less prominent, which is reasonable since the difference
between both models also decreases.

6

8

10

12

14

16

β

0 0.2 0.4 0.6 0.8 1

Figure 5.7: Dependence of the ordinate of the Sonin-
plot on the ion to electron mass ratio for different Rp
and β values. He+ (dotted lines), Ar+ (dashed lines),
ABR (circles) and OML (solid line) are shown.

Finally, we decided to perform another set of
simulations considering a different ion mass. The
motivation for this last set of simulations was that,
J. M. Díaz-Cabrera et. al. [54] recently informed
that the transition that they found for the Helium
plasma was not observed for the case of Argon.
For this reason, we decided to perform also a set
of simulations just like the previous one but for
γ = 72821.0, which is the value corresponding to
Argon ions.

In Fig. 5.7 we can see the results of the simu-
lations for Helium plasmas compared to the ones
for Argon. It is clear that the behaviour is ex-
actly the same for both cases, which leads us to
the conclusion that the transition between the ra-
dial and orbital behaviours is independent of the
mass of the ions, and must be due to the different
collisionality rates in Argon and Helium plasmas.
Since our simulation properly describes the beha-
viour of a Helium plasma while not taking into
account collisions, it means that in the case of He-
lium, probably due to its smaller size, collisions
are negligible in the conditions studied by J. M.

112

Chapter 5. PIC simulation of a cylindrical Langmuir probe (CUPIC1D2V_CP)

Díaz-cabrera et. al.. However, the lack of transition in the Argon plasma means that, contrary to the
Helium plasma, collisions can not be neglected. This is reasonable, since Argon has a smaller mean free
path than Helium [55]

5.6. Conclusion

In this chapter we have described the implementation of the CUPIC1D2V_CP code by showing the
differences with CUPIC1D1V_PP. This code simulates the contact of an infinite cylindrical probe with a
plasma. We have also shown the results concerning the transition from radial to orbital motion of ions
in the surroundings of a negatively biased cylindrical Langmuir probe, that have been obtained with
it. This results have allowed the understanding of experimental results previously found by the research
group where I have developed this work, and are in accordance to those reported by other authors like
Chen [41].

With this chapter we finish the second and main part of the thesis, where we have described the
simulations developed. We have also reported the results obtained with those simulations. The following
part will be devoted to summarise this work as well as to state future outlooks, perspectives and ideas.

113

Part III

Final remarks & Conclusions

115

Chapter 6

Summary, contributions and future
perspectives

6.1. Introduction

It is not easy to summarise all the work that has been carried out during a PhD research over more
than four years. However, in this final chapter, I will try to put it in a nutshell. The structure of the
chapter is going to be as follows:

First, a brief chronological description of the activities that have been carried out is included. There,
I comment the developments and activities performed during my research, as well as some of the
problems found that have not been included in this document for the sake of clarity.

Then, an enumeration of the main results obtained during this research is included. There, it is
highlighted their relevance for the field of plasma physics in general, and the probe diagnosing
techniques in particular.

Finally, a compendium of future perspectives and ideas to continue the research started during my
PhD stage is included. There I detail, among others, future expansions for the developed codes
that we plan to accomplish.

Last, but not least, some final conclusions will be included to bring this work to a close.

6.2. Summary

I should start this section by stating something about the type of codes developed during this research,
I mean, any kind of particle simulation. Even though they may look simple, at a first glance, because
they are based in firsts principles simulations, they constitute complex pieces of software. Especially
because of the, almost mandatory, requirement of parallelisation techniques. In general, parallel codes
require the investment of extra time during their development stage. For this reason, parallel codes only
worth the time needed for their development when: really big (computationally speaking) problems are
being solved and the final program is going to be extensively used once developed. Both of these criteria
are fulfilled in our case. Nevertheless, this does not mean that the extra time is not going to be needed,
specially when developing in a relatively new platform, as CUDA.

Now, we can briefly describe the chronological progress of the work developed during my PhD:

The first year was devoted to establish the state of the art about plasma diagnosing with Langmuir
probes. In particular, the extensive bibliographic review about theories that predict the ion current
collected by Langmuir probes shown in Chapter 2 was performed. I also familiarise myself with
the previous research developed by the group where I have worked. Finally, even though I have

117

6.2. Summary

been learning different aspects of the CUDA framework and programming language till nowadays,
mainly because it is a young platform still in development, during this first year was when I learned
all the basics of CUDA and the GPGPU paradigm. Besides, I set up the workstation that I have
been using all these years.

During the second year, I started the development of the first simulation. It has to be noticed
that, actually, this simulation has not been covered here. It was a 2d2v simulation of the contact
of a planar probe with a plasma. In order to develop this code, I also learned all the basis about
particle simulations, particularly what is related to PIC codes. This simulation was significantly
more complex that CUPIC1D1V_PP or CUPIC1D2V_CP, the reason being that, because of the size of
a two dimensional system, the use of sorting algorithms for the particles was mandatory. Sorting
algorithms are not particularly complex by themselves, however they are not very well suited for
their parallel execution. For this reason, the debugging of this code lasted several months, and
even after that, the simulation crashed after several hundred thousands of iterations. Nevertheless,
all the results provided by the simulation, before crashing, showed that the second dimension was
superfluous and, no relevant information was lost by diminishing it.

It was on the third year when the first versions of CUPIC1D1V_PP and CUPIC1D2V_CP were developed.
First, the simulation of the planar probe was developed. This was done by modifying the code of
the two dimensional simulation. The smaller system allowed us to remove the sorting algorithm
from the code, and thus to avoid the problems that caused the simulation to crash. Then, the first
test runs of the simulation where performed and several improvements were introduced. Among
these, those explained in Chapter 4 related to the initial conditions and the appearance of a source
sheath. Also, we found out that, under certain conditions the simulation became unstable. After
considering several types of instabilities, physical and numerical, we realised that the problem was
caused by streaming instabilities. This instabilities have a physical origin, they are due to the fact
that a stream of particles, ions in our case, move with a drift velocity through a quasineutral zone.
Several authors solve this problem by introducing artificially high collision rates in order to dampen
the oscillations. However, we realised that the length of the simulation was the key factor and,
instabilities do not appear if we do not try so simulate a longer than necessary quasineutral zone.
Once the simulation was tested, by comparing their results with those provided by fluid models,
the development of the first version of CUPIC1D2V_CP was carried out. The first preliminary results,
related to the behaviour of ions in the surroundings of a cylindrical Langmuir probe, were also
obtained at that time. Nonetheless, further improvements of the code were needed before obtaining
the final results shown in Section 5.5.

During the last year, several different things were performed:

• On the one hand, I realised a three months stay with Prof. Tomaž Gyergyek at the Univer-
sity of Ljubljana (Slovenia). Specifically, the stay was performed in the Faculty of electrical
engineering of the University of Ljubljana as well as the Reaktor Center of the Jožef Stephan
Institute (IJS), also in Ljubljana, where Prof. Gyergyek develops his research. Thanks to this
stay I was able to use the powerful cluster of GPUs available at the IJS Reaktor Center. Also,
during the stay, Prof. Gyergyek’s group and the group were I have developed my thesis have
started a collaboration that hopefully will extend over the following years. This collaboration
was forge on the base of the common interests shared by both groups. In particular, during
my stay I developed a modification of the planar probe simulation in order to consider two
populations of electrons with different temperatures. The development of this simulation was
aimed towards the study of some effects predicted by a kinetic model previously developed by
Prof. Gyergyek. Even though very promising results were obtained by the end of the stay, the
simulation needs further improvements in order to provide results suited for their publication.
Specifically, we think that a presheath mechanism has to be included in order to avoid the
dependence of the results with the length of the simulation.

• On the other hand, after finishing the stay and, enlightened by the results obtained there, the
use of the presheath solution was introduced in CUPIC1D2V_CP code, as stated in Section 5.3.5.
This modification allowed us to obtain, for the first time, conclusive results concerning the
transition from radial to orbital behaviour of ions. However, in order to speedup the obtention
of results, the hybrid code optimisation described in Section 5.4 was introduced. This was
the last modification of the code and, after that, the results that have been shown in Section

118

Chapter 6. Summary, contributions and future perspectives

5.5 were obtained. Those results were published as a letter in Plasma Sources Science and
Technology, which is the second journal of its category (Physics, Fluids & Plasmas) at JCR.

Finally, the past months have been devoted to writing, revising and correcting the present document.

6.3. Contributions

The different results derived from the work presented here, have been mentioned along the text.
However, in this section, we are going to enumerate them. Also, some brief comments about the relevance
or these results are going to be included. So, without further ado, the following results have been obtained
during the my PhD research:

A 1d1v PIC simulation of the contact of an infinitely large planar Langmuir probe with a plasma
has been developed, CUPIC1D1V_PP. In the simulation, the probe is assumed to be perfectly ab-
sorbing and, its biasing potential with respect to the plasma can be fixed or leaved floating. The
simulated plasma consist of electrons and singly ionised ions and, collisions have not been taken into
account. The code has been developed under the CUDA framework for its execution in GPGPU
environments, allowing a great reduction of the execution times of the simulation with respect to a
sequential code.

A wide variety of initial conditions have been tested with CUPIC1D1V_PP, finding out that the initial
conditions which fastest reach the steady state consist in an empty system. This is true, except in
the case that the exact distribution function for the different particles at the steady state, is known
beforehand, which is not usual at all. This statement might be applicable to any open particle
simulation.

An original method for the injection of ions has been implemented into the code of CUPIC1D1V_PP.
The method is based in the fact that quasineutral conditions, i. e. negligible electric field, have
to be fulfilled at the particle source. With this method, the appearance of a source sheath is
avoided, also the Bohm velocity is obtained. With this method implemented, the results provided by
CUPIC1D1V_PP are in great agreement with those provided by fluid models under simple conditions.

A 1d2v PIC simulation of the contact of an infinitely long cylindrical Langmuir probe with a
plasma has been developed, CUPIC1D2V_CP. In the simulation, the probe is assumed to be perfectly
absorbing and its biasing potential with respect to the plasma can be fixed or leaved floating.
The simulated plasma consist of electrons and singly ionised ions and collisions have not been
taken into account. In this simulation, the same injection method developed for CUPIC1D1V_PP has
been implemented. The code has been developed under the CUDA framework for its execution in
GPGPU environments, allowing a great reduction of the execution times of the simulation with
respect to a sequential code.

A fluid approximation has been used to describe the electrons in CUPIC1D2V_CP. This approximation
is only valid for the case of a high negatively biased probe. However, it has allowed us to further
decrease execution times, to approximately a few hours, in order for a timely obtention of results.

The aforementioned PIC simulation has been used to study the transition from a radial to an orbital
behaviour of ions in the surroundings of a cylindrical Langmuir probe. The results obtained from
the simulation describe the same transition previously found, by the group where I have developed
my PhD, in an helium plasma. It has been found that the ion to electron temperature ratio is the
parameter that explains this transition. It has also been found that the dimensionless probe radius
greatly affects the shape of the transition, which only occurs for relatively small probe radii. These
results will enlighten the pursuit of a theoretical model that includes both, the radial and orbital
theory, as limiting cases. Such model would allow a precise diagnose of plasmas by using Langmuir
probes in the ion saturation zone of the characteristic for any plasma conditions. For these reason,
this result has been published [56] as a a letter in Plasma Sources Science and Technology, which
is the second journal of its category (Physics, Fluids & Plasmas) at JCR.

CUPIC1D2V_CP has also been used to study the dependence of the previous result on the ion mass.
It has been found that this parameter does not affect at all to the transition from radial to orbital

119

6.4. Future perspectives

behaviour. Since the lack of this transition has been observed by our group for Argon plasmas, this
means that collisions, less frequent in Helium plasmas due to their larger collision mean free path,
must be responsible for this behaviour.

Finally I would like to notice that, even though it may not look like that, the development of the codes
CUPIC1D1V_PP and CUPIC1D2V_CP is the main result from this thesis. Not only because most of the time
of this thesis has been devoted to its development, but also because, once developed, these simulations
will allow us to study a lot of different problems by introducing small modifications into the code. The
transition from radial to orbital behaviour of ions being the first problem tackled with them. More about
the expandability of the simulations will be said in the following section.

6.4. Future perspectives

As we have said in the previous section, the codes developed during this thesis have been designed
with “upgradability” in mind. For this reason, a long term goal of this work is: to develop a set of codes
that allow the simulation of the behaviour of different Langmuir probes under diverse conditions and
considering a variety of processes. That is why, this thesis represents only the first stage of a project
where we will keep working in the foreseeable future. Some of the ideas that we would like to tackle next
are:

Without the need of introducing any modification in the codes that we have presented here, we
can obtain several different results: floating potentials, I − V characteristic curves, ion velocity
distribution functions along the sheath, transient states of a cavity filled with plasma, transient
states after a sudden change in the biasing potential,. . .

The introduction of collisional processes in the CUPIC1D2V_CP code. Since the moment we noticed
that the transition between radial and orbital motion had nothing to do with the mass of the
ion, we have guessed that collisions might be the reason why such a transition is not observed in
Argon plasmas. Furthermore, one of the referees of the paper published in PSST, encouraged us to
take account for collisions and to report the results obtained. This highlights the importance that,
finding a model which properly describes the behaviour of ions, has among the plasma diagnosing
community. For this reason this is the most timely improvement that we would like to implement
in our simulation.

The introduction of ionisation processes in the CUPIC1D1V_PP code. Since this code does not
take into account any presheath mechanism, as it has been previously stated, the results of the
simulation are in accordance to the sheath solution introduced in Chapter 1, instead of the complete
solution. However, in order to improve the results obtained, the simulation should provide results
compatible with the complete solution. In this sense, the inclusion of ionisation processes, might
help to solve the problems we were having when comparing the results of the modified version of
CUPIC1D1V_PP with two electron populations with those provided by the model developed by Prof.
Tomaž Gyergyek.

The introduction of multiple species in both simulations. In this sense, the introduction of hot
electrons in the cylindrical probe simulation, will have direct applications to the experimental
study that is being currently developed in our group with respect the diagnose of bi-maxwelliam
plasmas with Langmuir probes. Also, to consider a population of negative ions will be interesting
for the study of the potential oscillations predicted by fluid models.

The introduction of different processes at the probe surface. To consider these processes will repres-
ent a step towards the realism of the results provided by our simulations. Particularly important are
the processes of secondary electron emission, as well as ion reflection, both of which are relatively
common when high negative biasing potentials are chosen for the probe.

Obviously there exist many more processes and ideas that could be implemented into our codes:
external magnetic fields, exotic probe geometries and configurations, plasma chemistry processes, etc.
However we have mentioned the ones that are easily implemented and affordable with nowadays hardware
(it has to be noticed that the more processes included the more computational resources are needed).

120

Chapter 6. Summary, contributions and future perspectives

Also, the mentioned improvements of the simulations should quickly report interesting results highly
demanded by the plasma diagnosing community.

6.5. Conclusions

In this chapter we have summarised the main tasks developed during this research. Also, the main
results derived from it have been outlined. Then, the future perspectives and ideas to continue the
research that we have just started have been also enumerated. During this last part, special emphasis
has been considered when talking about the aspects that more timely need to be addressed.

Finally, I started this chapter by stating the fact that it is not easy to summarise all that has been
done and learned during more than four years. For the same reasons, it is not easier to bring to a close
this thesis. The last remark that I would like to make is that, all the problems encountered during this
research, most of which have been tackled and successfully solved, as well as the experience accumulated,
have allowed me to grow as a physicist and a scientist. For this reason, at the end of this stage, I think
I have developed the necessary skills to endeavour my research career.

121

Part IV

Appendixes

123

Appendix A

Fluid approximation in plasmas:
Boltzmann equation and its first
moments.

Even though one of the aims of this work has been to showcase the benefits of studying a plasma as a
particle system and through simulations, most of the theoretical models used in the study of the contact
of a plasma with a Langmuir probe rely on a fluid approximation of the species present in the plasma. As
a proof of it, all the models that have been presented in Chapters 1 and 2 rely on fluid approximations
to describe ions and electrons. Here we are going to explain some of the equations that have been taken
for granted during those chapters.

A.1. Boltzmann transport equation

The Boltzmann transport equation, more commonly known as Boltzmann equation simply, is the
equation that describes the statistical behaviour of a thermodynamic system whether it is or not in
thermodynamic equilibrium. The equation was named after Ludwig Boltzmann, since he devised it in
1872. It is written in terms of the distribution function of the particles composing the system, f(r⃗, v⃗),
which can be defined as the number of particles in a differential volume d3r⃗ d3v⃗ in the phase space r⃗, v⃗.
The most general form of the equation is written as:

∂f

∂t
=
(
∂f

∂t

)
force

+
(
∂f

∂t

)
diffusion

+
(
∂f

∂t

)
collisions

(A.1)

In view of Eq. (A.1), the meaning of the Boltzmann equation becomes pretty obvious. The temporal
evolution of the distribution function can be decomposed into the change due to external forces acting
on the particles of the system, the change due to the diffusion of particles through the system, and the
change due to particle collisions within the system. After some calculations, with the help of Hamilton’s
equation and Liouville’s theorem, Eq. (A.1) can be transformed into the commonly known version of the
Boltzmann equation:

df

dt
= ∂f

∂t
+ v⃗ · ∇⃗f︸ ︷︷ ︸

diffusion

+ F⃗

m
· ∂f
∂v⃗︸ ︷︷ ︸

force

=
(
∂f

∂t

)
collisions

(A.2)

where m is the mass of the particles in the system and F⃗ is the force field acting on the particles of the
system.

Now, we are going to use the aforementioned Boltzmann equation in order to study our problem, which
is the steady flow, ∂f/∂t = 0, of positive ions, m = mi, moving towards the surface of a Langmuir probe.
The external force that ions suffer is the electrostatic force, so, F⃗ = −e∇⃗φ. All these considerations lead

125

A.2. First and second moments of the Boltzmann equation

us to the following Boltzmann equation:

v⃗ · ∇⃗f − e

mi

(
∇⃗φ(r⃗)

)
· ∂f
∂v⃗

=
(
∂f

∂t

)
collisions

(A.3)

In particular we are going to consider the planar case developed in Chapter 1, as it is the only
case that needs considering ionisation (due to electron-neutral collisions) as the presheath mechanism.
Nevertheless, the reasonings that we are going to use are applicable to the cylindric or spherical case. So,
as in the planar case the problem is monodimensional, Eq. (A.3) is written as:

v
∂f(x, v)
∂x

− e

mi

dφ(x)
dx

∂f(x, v)
∂v

=
(
∂f(x, v)
∂t

)
collisions

(A.4)

Last but not least, we have to take care of the collision term in Eq. (A.4). Ionisation is taken into
account in the collision term, as it is due to binary collision between electrons and neutral atoms present
in the plasma. So, the right hand side of Eq. (A.4) can be written as:(

∂f(x, v)
∂t

)
collisions

= Zne(x)fnew(v) (A.5)

Z being the ionisation collision frequency, ne(x) the electron density at x and fnew(v) the velocity
distribution function of the new ions created by ionisation. So, finally the Boltzmann equation for our
problem would be:

v
∂f(x, v)
∂x

− e

mi

dφ(x)
dx

∂f(x, v)
∂v

= Zne(x)fnew(v) (A.6)

There are a few options when it comes to choose the velocity distribution function of the new ions.
Many models and texts assume newly created ions to be at rest, so their velocity distribution function
would be determined by a delta function centred at zero, fnew(v) = δ(v). The problem of this assumption
is that, as we will see, it leads to wrong results in the limiting case of low ionisation, Z → 0. On the other
hand, newly created ions could be assumed to be in equilibrium with the ions coming from the plasma, so
both would have the same velocity distribution function, fnew(v) = f(x, v)/ni(x). Where ni(x) is the ion
density at x. This assumption, even it may looks unreasonable, leads to right results in the case of low
ionisation. This statements will become clear in the next section, where we will find the firsts moments
of Eq. (A.6).

fnew =


δ(v) (A.7a)
f(x, v)
ni(x)

(A.7b)

A.2. First and second moments of the Boltzmann equation

Instead of working directly with the Boltzmann equation (A.6), it is usual to use a simplified approach
by working with its moments, as by doing so there is no need to work with the distribution function of
ions but with their density and velocity fields, ni(x) and vi(x). The integrations needed to obtain the
different moments of the Boltzmann equation are more or less straightforward, however further details of
the specific integration process can be found in chapter 7 of reference [57].

The first moment of the Boltzmann equation is obtained through direct integration in the velocity
space of Eq. (A.6). No matter which velocity distribution we choose for the ions created through
ionisation, Eq. (A.7a) or Eq. (A.7b), the first moment of the Boltzmann equation yields the same result:

dni(x)v
dx

= dni(x)vi(x)
dx

= Zne(x) (A.8)

where v̄ is the mean value of the velocity, which is equal to the drift velocity of the ion fluid vi(x). The
velocity of an ion could be written as v = vi(x) + vth, vth being the thermal velocity. As vi(x) is already
an averaged value, we have that vi(x) + vth = vi(x) + vth = vi(x), since vth = 0. Usually Eq. (A.8) is

126

Chapter A. Fluid approximation in plasmas: Boltzmann equation and its first moments.

referred to as the continuity equation. Let us notice that Eq. (A.8) is the same as Eq. (1.17), except
for the sign criterion of the ion velocity.

The second moment of the Boltzmann equation, usually called balance momentum equation, is
obtained by multiplying Eq. (A.6) by v and then integrating it over the velocity space. Contrary to the
previous result, the second moment yields different results when Eq. (A.7a) or Eq. (A.7b) are considered.
In the first place, if we consider Eq. (A.7a), the following first moment of the Boltzmann equation is
obtained:

dni(x)vv
dx

+ e

mi
ni(x)dφ(x)

dx
= 0 ⇒

⇒ dni(x)v2
i (x)

dx
+
d�����: pi(x)/mi

ni(x)v2
th

dx
+ d2ni(x)vi(x)��* 0

vth
dx

+ e

mi
ni(x)dφ(x)

dx
= 0 ⇒

dni(x)v2
i (x)

dx
+ 1
mi

dpi(x)
dx

+ e

mi
ni(x)dφ(x)

dx
= 0 (A.9)

Where pi(x) is the partial pressure of the ion fluid. The term dpi(x)/dx, or in general ∇⃗ · P, P being the
stress tensor, is the diffusion term in the moment balance equation. We have to notice that this term is
due to the thermal motion of ions, so, in case the ions are considered monoenergetic, it can be neglected.
From now on, we are going to neglect this term, since here we are developing the planar case of chapter 1,
where ions where considered to be monoenergetic. However, in chapter 2 we considered this term when
reviewing Fernández Palop’s model in section 2.4.2.

Now, after neglecting the diffusion term, if we take Eq. (A.8) into Eq. (A.9):

ni(x)vi(x)dvi(x)
dx

+ vi(x)Zne(x) + e

mi
ni(x)dφ(x)

dx
= 0 (A.10)

The second term in Eq. (A.10) is usually called “ionisation drag force”. Its name is due to the fact
that ions are created at rest and, consequently, the flow velocity of ions is decreased with respect to the
velocity that ions coming from the plasma have. This term was diminished in Section 1.4 arguing that in
the case of low ionisation the drag force does not contribute significantly to the dynamic of the motion
of ions. So, by neglecting the drag force term, Eq. (A.10) becomes Eq. (1.15), which is the balance
momentum equation considered in Section 1.4. Nevertheless we are going to see how Eq. (A.9) yields
wrong results in the limiting case Z → 0.

Eq. (A.9) can be written as:

dni(x)v2
i (x)

dφ(x)
dφ(x)
dx

+ e

mi
ni(x)dφ(x)

dx
= 0 ⇒ dni(φ)v2

i (φ)
dφ

+ e

mi
ni(φ) = 0 (A.11)

Also, we know that the quasineutral solution is given by:

ni(φ) = ne(φ) = ne0 exp
(

eφ

kBTe

)
(A.12)

Now, if we take Eq. (A.12) into Eq. (A.11) and solve for vi(φ), we can obtain the following expression:

vi(φ) = 1
√
mi

kBTe
(

1 − exp
(

eφ

kBTe

))
exp

(
eφ

kBTe

)


1/2

(A.13)

Eq. (A.13) is independent of the ionisation rate, so it must be valid for any Z value, in particular it
should be correct for Z = 0. But, for the case of no ionisation, we know that the energy conservation law
yields:

vi(φ) =
√

−2eφ
mi

(A.14)

127

A.2. First and second moments of the Boltzmann equation

So, because of the contradictory results given by Eq. (A.14) and Eq. (A.13) we can say that Eq. (A.9)
is not correct for the case of low ionisation, and so Eq. (A.10) does.

Now, let us obtain the second moment of the Boltzmann equation considering that the new ions
created by ionisation are in equilibrium with ions coming from the plasma. So, by considering Eq. (A.7b),
multiplying Eq. (A.6) by v and integrating in the velocity space, we obtain the following expression:

dni(x)v2
i (x)

dx
+ e

mi
ni(x)dφ(x)

dx
= Zne(x)vi(x) (A.15)

where we have again neglected the diffusion term. And if we take Eq. (A.8) into Eq. (A.15):

ni(x)vi(x)dvi(x)
dx

+ e

mi
ni(x)dφ(x)

dx
= 0 (A.16)

We can see that Eq. (A.16) is equal to Eq. (1.15), which is the equation that leads to correct results
in the limit of low ionisation. When the second term in Eq. (A.10) is neglected we are artificially using
the right moment balance equation. Nevertheless, there is no need of neglecting the ionisation drag force
term if we assume that newly created ions are in equilibrium with ions coming from the plasma, as we
have seen. The problem of using Eq. (A.7a) is that we are trying to describe with the same velocity field
ions that comes from the plasma with a certain velocity and ions that are created along the sheath at
rest.

We have to remark here that, independently of the assumptions considered, the proper balance mo-
mentum equation that should be used for the case of low ionisation is given by Eq. (A.16). We also have
to notice that these results can be also obtained in the case of cylindrical or spherical probes. Actually
in those cases, if ionisation is not taken into account, the collision term in Eq. (A.4) is neglected, and
calculations are straightforward.

128

Appendix B

CUPIC1D1V_PP sources

This appendix is devoted to the source code of our simulation of the contact of a planar Langmuir
probe with a plasma. The code is divided into seven modules, each one taking care of an specific
task. Also, there are a few extra header files that are loaded from the previous modules whenever they
are needed, and a makefile that takes care of the compilation of the different modules to produce the
simulation binary (makefile).

In the following sections the source files of the different modules are shown.

B.1. Main module

This is the main module of the simulation, it handles the simulation by calling functions that belongs
to the rest of the modules. (sources: main.cu)

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "stdh.h"
12 # include "init.h"
13 # include "cc.h"
14 # include "mesh.h"
15 # include "particles.h"
16 # include "diagnostic.h"
17

18 /* *** MAIN FUNCTION *** */
19

20 int main (int argc , const char* argv [])
21 {
22 /* -------------------------------------- function variables ---------------------------------------*/
23 // host variables definition
24 const double dt = init_dt (); // time step
25 const int n_ini = init_n_ini (); // number of first iteration
26 const int n_prev = init_n_prev (); // number of iterations before start analizing
27 const int n_save = init_n_save (); // number of iterations between diagnostics
28 const int n_fin = init_n_fin (); // number of last iteration
29 const int nn = init_nn (); // number of nodes
30

31 double t; // time of simulation
32 int num_e , num_i; // number of particles (electrons and ions)
33 double U_e , U_i; // system energy for electrons and ions
34 double mi = init_mi (); // ion mass
35 double dtin_e = init_dtin_e (); // time between electron insertions
36 double dtin_i = init_dtin_i (); // time between ion insertions
37 double vd_e = init_vd_e (); // drift velocity of electrons
38 double vd_i = init_vd_i (); // drift velocity of ions
39 double q_p = 0; // probe ’s acumulated charge
40 char filename [50]; // filename for saved data
41

42 ifstream ifile;
43 ofstream ofile;

129

B.1. Main module

44

45 // device variables definition
46 double *d_rho , *d_phi , *d_E; // mesh properties
47 double *d_avg_rho , *d_avg_phi , *d_avg_E; // mesh averaged properties
48 double *d_avg_ddf_e , *d_avg_vdf_e; // density and velocity distribution function for electrons
49 double v_max_e = init_v_max_e (); // maximun velocity of electrons (for histograms)
50 double v_min_e = init_v_min_e (); // minimun velocity of electrons (for histograms)
51 double *d_avg_ddf_i , *d_avg_vdf_i; // density and velocity distribution function for ions
52 double v_max_i = init_v_max_i (); // maximun velocity of ions (for histograms)
53 double v_min_i = init_v_min_i (); // minimun velocity of ions (for histograms)
54 int count_df_e = 0; // |
55 int count_df_i = 0; // |
56 int count_rho = 0; // |-> counters for avg data
57 int count_phi = 0; // |
58 int count_E = 0; // |
59 particle *d_e , *d_i; // particles vectors
60 curandStatePhilox4_32_10_t *state; // philox state for __device__ random number generation
61

62 /* -- function body --*/
63

64 // ---- INITIALITATION OF SIMULATION
65

66 // initialize device and simulation variables
67 init_dev ();
68 init_sim (&d_rho , &d_phi , &d_E , &d_avg_rho , &d_avg_phi , &d_avg_E , &d_e , &num_e , &d_i , &num_i ,
69 &d_avg_ddf_e , &d_avg_vdf_e , &d_avg_ddf_i , &d_avg_vdf_i , &t, &state);
70

71 // save initial state
72 sprintf(filename , "../ output/particles/electrons_t_%d", n_ini);
73 particles_snapshot(d_e , num_e , filename);
74 sprintf(filename , "../ output/particles/ions_t_%d", n_ini);
75 particles_snapshot(d_i , num_i , filename);
76 sprintf(filename , "../ output/charge/avg_charge_t_%d", n_ini);
77 save_mesh(d_avg_rho , filename);
78 sprintf(filename , "../ output/potential/avg_potential_t_%d", n_ini);
79 save_mesh(d_avg_phi , filename);
80 sprintf(filename , "../ output/field/avg_field_t_%d", n_ini);
81 save_mesh(d_avg_E , filename);
82 t += dt;
83

84 // ---- SIMULATION BODY
85

86 for (int i = n_ini +1; i <= n_fin; i++, t += dt) {
87 // simulate one time step
88 charge_deposition(d_rho , d_e , num_e , d_i , num_i);
89 poisson_solver (1.0e-4, d_rho , d_phi);
90 field_solver(d_phi , d_E);
91 particle_mover(d_e , num_e , d_i , num_i , d_E);
92 cc(t, &num_e , &d_e , &dtin_e , &vd_e , &num_i , &d_i , &dtin_i , &vd_i , &q_p , d_phi , d_E , state);
93

94 // average mesh variables and distribution functions
95 avg_mesh(d_rho , d_avg_rho , &count_rho);
96 avg_mesh(d_phi , d_avg_phi , &count_phi);
97 avg_mesh(d_E , d_avg_E , &count_E);
98 eval_df(d_avg_ddf_e , d_avg_vdf_e , v_max_e , v_min_e , d_e , num_e , &count_df_e);
99 eval_df(d_avg_ddf_i , d_avg_vdf_i , v_max_i , v_min_i , d_i , num_i , &count_df_i);

100

101 // store data
102 if (i>= n_prev && i%n_save ==0) {
103 // save particles (snapshot)
104 sprintf(filename , "../ output/particles/electrons_t_%d", i);
105 particles_snapshot(d_e , num_e , filename);
106 sprintf(filename , "../ output/particles/ions_t_%d", i);
107 particles_snapshot(d_i , num_i , filename);
108

109 // save mesh properties
110 sprintf(filename , "../ output/charge/avg_charge_t_%d", i);
111 save_mesh(d_avg_rho , filename);
112 sprintf(filename , "../ output/potential/avg_potential_t_%d", i);
113 save_mesh(d_avg_phi , filename);
114 sprintf(filename , "../ output/field/avg_field_t_%d", i);
115 save_mesh(d_avg_E , filename);
116

117 // save distribution functions
118 sprintf(filename , "../ output/particles/electrons_ddf_t_%d", i);
119 save_ddf(d_avg_ddf_e , filename);
120 sprintf(filename , "../ output/particles/ions_ddf_t_%d", i);
121 save_ddf(d_avg_ddf_i , filename);
122 sprintf(filename , "../ output/particles/electrons_vdf_t_%d", i);
123 save_vdf(d_avg_vdf_e , v_max_e , v_min_e , filename);
124 sprintf(filename , "../ output/particles/ions_vdf_t_%d", i);
125 save_vdf(d_avg_vdf_i , v_max_i , v_min_i , filename);
126

127 // save log
128 U_e = eval_particle_energy(d_phi , d_e , 1.0, -1.0, num_e);
129 U_i = eval_particle_energy(d_phi , d_i , mi, 1.0, num_i);
130 save_log(t, num_e , num_i , U_e , U_i , vd_e , vd_i , d_phi);

130

Chapter B. CUPIC1D1V_PP sources

131 }
132 }
133

134 // ---- END OF SIMULATION
135

136 // update input data file and finish simulation
137 ifile.open("../ input/input_data");
138 ofile.open("../ input/input_data_new");
139 if (ifile.is_open () && ofile.is_open ()) {
140 ifile.getline(filename , 50);
141 ofile << filename << endl;
142 ifile.getline(filename , 50);
143 ofile << "n_ini␣=␣" << n_fin << ";" << endl;
144 ifile.getline(filename , 50);
145 while (! ifile.eof ()) {
146 ofile << filename << endl;
147 ifile.getline(filename , 50);
148 }
149 }
150 ifile.close ();
151 ofile.close ();
152 system("mv␣../ input/input_data_new␣../ input/input_data");
153

154 cout << "Simulation␣finished!" << endl;
155 return 0;
156 }

Code B.1: CUPIC1D1V_PP source file main.cu

B.2. Initialisation module

This is the module that handles the initialisation of the different variables of the simulation. It also
prescribes the initial conditions for the system. (sources: init.cu, init.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "init.h"
12

13 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
14

15 void init_dev(void)
16 {
17 /* -------------------------------------- function variables ---------------------------------------*/
18 // host memory
19 int dev;
20 int devcnt;
21 cudaDeviceProp devProp;
22 cudaError_t cuError;
23

24 // device memory
25

26 /* -- function body --*/
27

28 // check for devices instaled in the host
29 cuError = cudaGetDeviceCount (& devcnt);
30 if (0 != cuError)
31 {
32 printf("Cuda␣error␣(%d)␣detected␣in␣’init_dev(void)’\n", cuError);
33 cout << "exiting␣simulation ..." << endl;
34 exit (1);
35 }
36 cout << devcnt << "␣devices␣present␣in␣the␣host:" << endl;
37 for (dev = 0; dev < devcnt; dev ++)
38 {
39 cudaGetDeviceProperties (&devProp , dev);
40 cout << "␣␣-␣Device␣" << dev << ":" << endl;
41 cout << "␣␣␣␣#␣" << devProp.name << endl;
42 cout << "␣␣␣␣#␣Compute␣capability␣" << devProp.major << "." << devProp.minor << endl;
43 }
44

45 // ask wich device to use
46 cout << "Select␣in␣wich␣device␣simulation␣must␣be␣run:␣0" << endl;
47 dev = 0; //cin >> dev;
48

131

B.2. Initialisation module

49 // set device to be used and reset it
50 cudaSetDevice(dev);
51 cudaDeviceReset ();
52

53 return;
54 }
55

56 void init_sim(double **d_rho , double **d_phi , double **d_E , double **d_avg_rho , double **d_avg_phi ,
57 double **d_avg_E , particle **d_e , int *num_e , particle **d_i , int *num_i ,
58 double ** d_avg_ddf_e , double ** d_avg_vdf_e , double ** d_avg_ddf_i , double ** d_avg_vdf_i ,
59 double *t, curandStatePhilox4_32_10_t ** state)
60 {
61 /* -------------------------------------- function variables ---------------------------------------*/
62 // host memory
63 const double dt = init_dt ();
64 const int n_ini = init_n_ini ();
65

66 // device memory
67

68 /* -- function body --*/
69

70 cout << "n␣=␣" << init_n () << endl;
71 // check if simulation start from initial condition or saved state
72 if (n_ini == 0) {
73 // adjust initial time
74 *t = 0.;
75

76 // create particles
77 create_particles(d_i , num_i , d_e , num_e , state);
78

79 // initialize mesh variables and their averaged counterparts
80 initialize_mesh(d_rho , d_phi , d_E , *d_i , *num_i , *d_e , *num_e);
81

82 // adjust velocities for leap -frog scheme
83 adjust_leap_frog (*d_i , *num_i , *d_e , *num_e , *d_E);
84

85 // initialize diagnostic variables
86 initialize_avg_mesh(d_avg_rho , d_avg_phi , d_avg_E);
87 initialize_avg_df(d_avg_ddf_e , d_avg_vdf_e , d_avg_ddf_i , d_avg_vdf_i);
88

89 cout << "Simulation␣initialized␣with␣" << *num_e *2 << "␣particles." << endl << endl;
90 } else if (n_ini > 0) {
91 // adjust initial time
92 *t = n_ini*dt;
93

94 // read particle from file
95 load_particles(d_i , num_i , d_e , num_e , state);
96

97 // initialize mesh variables
98 initialize_mesh(d_rho , d_phi , d_E , *d_i , *num_i , *d_e , *num_e);
99

100 // initialize diagnostic variables
101 initialize_avg_mesh(d_avg_rho , d_avg_phi , d_avg_E);
102 initialize_avg_df(d_avg_ddf_e , d_avg_vdf_e , d_avg_ddf_i , d_avg_vdf_i);
103

104 cout << "Simulation␣state␣loaded␣from␣time␣t␣=␣" << *t << endl;
105 } else {
106 cout << "Wrong␣input␣parameter␣(n_ini <0)" << endl;
107 cout << "Stoppin␣simulation" << endl;
108 exit (1);
109 }
110

111 return;
112 }
113

114 void create_particles(particle **d_i , int *num_i , particle **d_e , int *num_e ,
115 curandStatePhilox4_32_10_t **state)
116 {
117 /* -------------------------------------- function variables ---------------------------------------*/
118 // host memory
119 const double n = init_n (); // plasma density
120 const double mi = init_mi (); // ion’s mass
121 const double me = init_me (); // electron ’s mass
122 const double kti = init_kti (); // ion’s thermal energy
123 const double kte = init_kte (); // electron ’s thermal energy
124 const double L = init_L (); // size of simulation
125 const double ds = init_ds (); // spacial step
126 cudaError_t cuError; // cuda error variable
127

128 // device memory
129

130 /* -- function body --*/
131

132 // initialize curand philox states
133 cuError = cudaMalloc ((void **) state , CURAND_BLOCK_DIM*sizeof(curandStatePhilox4_32_10_t));
134 cu_check(cuError , __FILE__ , __LINE__);
135 cudaGetLastError ();

132

Chapter B. CUPIC1D1V_PP sources

136 init_philox_state <<<1, CURAND_BLOCK_DIM >>>(*state);
137 cu_sync_check(__FILE__ , __LINE__);
138

139 // calculate initial number of particles
140 //*num_i = int(n*ds*ds*L);
141 *num_i = 0;
142 *num_e = *num_i;
143

144 // allocate device memory for particle vectors
145 cuError = cudaMalloc ((void **) d_i , (*num_i)* sizeof(particle));
146 cu_check(cuError , __FILE__ , __LINE__);
147 cuError = cudaMalloc ((void **) d_e , (*num_e)* sizeof(particle));
148 cu_check(cuError , __FILE__ , __LINE__);
149

150 // create particles (electrons)
151 cudaGetLastError ();
152 create_particles_kernel <<<1, CURAND_BLOCK_DIM >>>(*d_e , *num_e , kte , me, L, *state);
153 cu_sync_check(__FILE__ , __LINE__);
154

155 // create particles (ions)
156 cudaGetLastError ();
157 create_particles_kernel <<<1, CURAND_BLOCK_DIM >>>(*d_i , *num_i , kti , mi, L, *state);
158 cu_sync_check(__FILE__ , __LINE__);
159

160 return;
161 }
162

163 void initialize_mesh(double **d_rho , double **d_phi , double **d_E , particle *d_i , int num_i ,
164 particle *d_e , int num_e)
165 {
166 /* -------------------------------------- function variables ---------------------------------------*/
167 // host memory
168 const double phi_p = init_phi_p (); // probe ’s potential
169 const double phi_s = -0.5* init_mi ()* init_vd_i ()* init_vd_i (); // sheath edge potential
170 const int nn = init_nn (); // number of nodes
171 const int nc = init_nc (); // number of cells
172 double *h_phi; // host vector for potentials
173 cudaError_t cuError; // cuda error variable
174

175 // device memory
176

177 /* -- function body --*/
178

179 // allocate host memory for potential
180 h_phi = (double *) malloc(nn*sizeof(double));
181

182 // allocate device memory for mesh variables
183 cuError = cudaMalloc ((void **) d_rho , nn*sizeof(double));
184 cu_check(cuError , __FILE__ , __LINE__);
185 cuError = cudaMalloc ((void **) d_phi , nn*sizeof(double));
186 cu_check(cuError , __FILE__ , __LINE__);
187 cuError = cudaMalloc ((void **) d_E , nn*sizeof(double));
188 cu_check(cuError , __FILE__ , __LINE__);
189

190 // initialize potential (host memory)
191 for (int i = 0; i < nn; i++)
192 {
193 h_phi[i] = phi_p + double(i)*(phi_s -phi_p)/ double(nc);
194 }
195

196 // copy potential from host to device memory
197 cuError = cudaMemcpy (*d_phi , h_phi , nn*sizeof(double), cudaMemcpyHostToDevice);
198 cu_check(cuError , __FILE__ , __LINE__);
199

200 // free host memory
201 free(h_phi);
202

203 // deposit charge into the mesh nodes
204 charge_deposition (*d_rho , d_e , num_e , d_i , num_i);
205

206 // solve poisson equation
207 poisson_solver (1.0e-4, *d_rho , *d_phi);
208

209 // derive electric fields from potential
210 field_solver (*d_phi , *d_E);
211

212 return;
213 }
214

215 void initialize_avg_mesh(double **d_avg_rho , double **d_avg_phi , double ** d_avg_E)
216 {
217 /* -------------------------------------- function variables ---------------------------------------*/
218 // host memory
219 const int nn = init_nn (); // number of nodes
220 cudaError_t cuError; // cuda error variable
221

222 // device memory

133

B.2. Initialisation module

223

224 /* -- function body --*/
225

226 // allocate device memory for averaged mesh variables
227 cuError = cudaMalloc ((void **) d_avg_rho , nn*sizeof(double));
228 cu_check(cuError , __FILE__ , __LINE__);
229 cuError = cudaMalloc ((void **) d_avg_phi , nn*sizeof(double));
230 cu_check(cuError , __FILE__ , __LINE__);
231 cuError = cudaMalloc ((void **) d_avg_E , nn*sizeof(double));
232 cu_check(cuError , __FILE__ , __LINE__);
233

234 // initialize to zero averaged variables
235 cuError = cudaMemset ((void *) *d_avg_rho , 0, nn*sizeof(double));
236 cu_check(cuError , __FILE__ , __LINE__);
237 cuError = cudaMemset ((void *) *d_avg_phi , 0, nn*sizeof(double));
238 cu_check(cuError , __FILE__ , __LINE__);
239 cuError = cudaMemset ((void *) *d_avg_E , 0, nn*sizeof(double));
240 cu_check(cuError , __FILE__ , __LINE__);
241

242 return;
243 }
244

245 void initialize_avg_df(double ** d_avg_ddf_e , double ** d_avg_vdf_e , double ** d_avg_ddf_i ,
246 double ** d_avg_vdf_i)
247 {
248 /* -------------------------------------- function variables ---------------------------------------*/
249 // host memory
250 const int n_bin_ddf = init_n_bin_ddf (); // number of bins for density distribution function
251 const int n_bin_vdf = init_n_bin_vdf (); // number of bins for velocity distribution function
252 const int n_vdf = init_n_vdf (); // number of velocity distribution functions to calculate
253 cudaError_t cuError; // cuda error variable
254

255 // device memory
256

257 /* -- function body --*/
258

259 // allocate device memory for averaged distribution functions
260 cuError = cudaMalloc ((void **) d_avg_ddf_e , n_bin_ddf*sizeof(double));
261 cu_check(cuError , __FILE__ , __LINE__);
262 cuError = cudaMalloc ((void **) d_avg_ddf_i , n_bin_ddf*sizeof(double));
263 cu_check(cuError , __FILE__ , __LINE__);
264 cuError = cudaMalloc ((void **) d_avg_vdf_e , n_bin_vdf*n_vdf*sizeof(double));
265 cu_check(cuError , __FILE__ , __LINE__);
266 cuError = cudaMalloc ((void **) d_avg_vdf_i , n_bin_vdf*n_vdf*sizeof(double));
267 cu_check(cuError , __FILE__ , __LINE__);
268

269 // initialize to zero averaged distribution functions
270 cuError = cudaMemset ((void *) *d_avg_ddf_e , 0, n_bin_ddf*sizeof(double));
271 cu_check(cuError , __FILE__ , __LINE__);
272 cuError = cudaMemset ((void *) *d_avg_ddf_i , 0, n_bin_ddf*sizeof(double));
273 cu_check(cuError , __FILE__ , __LINE__);
274 cuError = cudaMemset ((void *) *d_avg_vdf_e , 0, n_bin_vdf*n_vdf*sizeof(double));
275 cu_check(cuError , __FILE__ , __LINE__);
276 cuError = cudaMemset ((void *) *d_avg_vdf_i , 0, n_bin_vdf*n_vdf*sizeof(double));
277 cu_check(cuError , __FILE__ , __LINE__);
278

279 return;
280 }
281

282 void adjust_leap_frog(particle *d_i , int num_i , particle *d_e , int num_e , double *d_E)
283 {
284 /* -------------------------------------- function variables ---------------------------------------*/
285 // host memory
286 const double mi = init_mi (); // ion’s mass
287 const double me = init_me (); // electron ’s mass
288 const double ds = init_ds (); // spatial step size
289 const double dt = init_dt (); // temporal step size
290 const int nn = init_nn (); // number of nodes
291

292 dim3 griddim , blockdim; // kernel execution configurations
293 size_t sh_mem_size; // shared memory size
294

295 // device memory
296

297 /* -- function body --*/
298

299 // set grid and block dimensions for fix_velocity kernel
300 griddim = 1;
301 blockdim = PAR_MOV_BLOCK_DIM;
302

303 // set shared memory size for fix_velocity kernel
304 sh_mem_size = nn*sizeof(double);
305

306 // fix velocities (electrons)
307 cudaGetLastError ();
308 fix_velocity <<<griddim , blockdim , sh_mem_size >>>(-1.0, me , num_e , d_e , dt , ds, nn, d_E);
309 cu_sync_check(__FILE__ , __LINE__);

134

Chapter B. CUPIC1D1V_PP sources

310

311 // fix velocities (ions)
312 cudaGetLastError ();
313 fix_velocity <<<griddim , blockdim , sh_mem_size >>>(1.0, mi , num_i , d_i , dt, ds, nn, d_E);
314 cu_sync_check(__FILE__ , __LINE__);
315

316 return;
317 }
318

319 void load_particles(particle **d_i , int *num_i , particle **d_e , int *num_e ,
320 curandStatePhilox4_32_10_t ** state)
321 {
322 /* -------------------------------------- function variables ---------------------------------------*/
323 // host memory
324 char filename [50];
325 cudaError_t cuError; // cuda error variable
326

327 // device memory
328

329 /* -- function body --*/
330

331 // initialize curand philox states
332 cuError = cudaMalloc ((void **) state , CURAND_BLOCK_DIM*sizeof(curandStatePhilox4_32_10_t));
333 cu_check(cuError , __FILE__ , __LINE__);
334 cudaGetLastError ();
335 init_philox_state <<<1, CURAND_BLOCK_DIM >>>(*state);
336 cu_sync_check(__FILE__ , __LINE__);
337

338 // load particles
339 sprintf(filename , "./ions.dat");
340 read_particle_file(filename , d_i , num_i);
341 sprintf(filename , "./ electrons.dat");
342 read_particle_file(filename , d_e , num_e);
343

344 return;
345 }
346

347 void read_particle_file(string filename , particle **d_p , int *num_p)
348 {
349 /* -------------------------------------- function variables ---------------------------------------*/
350 // host memory
351 particle *h_p; // host vector for particles
352 ifstream myfile; // file variables
353 char line [150];
354 cudaError_t cuError; // cuda error variable
355

356 // device memory
357

358 /* -- function body --*/
359

360 // get number of particles (test if n is correctly evaluated)
361 *num_p = 0;
362 myfile.open(filename.c_str ());
363 if (myfile.is_open ()) {
364 myfile.getline(line , 150);
365 while (! myfile.eof ()) {
366 myfile.getline(line , 150);
367 *num_p += 1;
368 }
369 } else {
370 cout << "Error.␣Can’t␣open␣" << filename << "␣file" << endl;
371 }
372 myfile.close ();
373

374 // allocate host and device memory for particles
375 h_p = (particle *) malloc (*num_p*sizeof(particle));
376 cuError = cudaMalloc ((void **) d_p , *num_p*sizeof(particle));
377 cu_check(cuError , __FILE__ , __LINE__);
378

379 // read particles from file and store in host memory
380 myfile.open(filename.c_str ());
381 if (myfile.is_open ()) {
382 myfile.getline(line , 150);
383 for (int i = 0; i<* num_p; i++) {
384 myfile.getline(line , 150);
385 sscanf (line , "␣%le␣%le␣\n", &h_p[i].r, &h_p[i].v);
386 }
387 } else {
388 cout << "Error.␣Can’t␣open␣" << filename << "␣file" << endl;
389 }
390 myfile.close ();
391

392 // copy particle vector from host to device memory
393 cuError = cudaMemcpy (*d_p , h_p , *num_p*sizeof(particle), cudaMemcpyHostToDevice);
394 cu_check(cuError , __FILE__ , __LINE__);
395

396 // free host memory

135

B.2. Initialisation module

397 free(h_p);
398

399 return;
400 }
401

402 template <typename type > void read_input_file(type *data , int n)
403 {
404 /* -------------------------------------- function variables ---------------------------------------*/
405 ifstream myfile;
406 char line [80];
407

408 /* -- function body --*/
409 myfile.open("../ input/input_data");
410 if (myfile.is_open ()) {
411 for (int i = 0; i < n; i++) myfile.getline(line , 80);
412 if (sizeof(type) == sizeof(int)) {
413 sscanf (line , "%*s␣=␣%d;\n", (int*) data);
414 } else if (sizeof(type) == sizeof(double)) {
415 sscanf (line , "%*s␣=␣%lf;\n", (double *) data);
416 }
417 } else {
418 cout << "Error.␣Input␣data␣file␣could␣not␣be␣opened" << endl;
419 exit (1);
420 }
421 myfile.close ();
422 return;
423 }
424

425 double init_qi(void)
426 {
427 /* -------------------------------------- function variables ---------------------------------------*/
428

429 /* -- function body --*/
430

431 return 1.0;
432 }
433

434 double init_qe(void)
435 {
436 /* -------------------------------------- function variables ---------------------------------------*/
437

438 /* -- function body --*/
439

440 return -1.0;
441 }
442

443 double init_mi(void)
444 {
445 /* -------------------------------------- function variables ---------------------------------------*/
446 static double gamma = 0.0;
447

448 /* -- function body --*/
449

450 if (gamma == 0.0) read_input_file (&gamma , 12);
451 return gamma;
452 }
453

454 double init_me(void)
455 {
456 /* -------------------------------------- function variables ---------------------------------------*/
457

458 /* -- function body --*/
459

460 return 1.0;
461 }
462

463 double init_kti(void)
464 {
465 /* -------------------------------------- function variables ---------------------------------------*/
466 static double beta = 0.0;
467

468 /* -- function body --*/
469

470 if (beta == 0.0) read_input_file (&beta , 9);
471 return beta;
472 }
473

474 double init_kte(void)
475 {
476 /* -------------------------------------- function variables ---------------------------------------*/
477

478 /* -- function body --*/
479

480 return 1.0;
481 }
482

483 double init_vd_i(void)

136

Chapter B. CUPIC1D1V_PP sources

484 {
485 /* -------------------------------------- function variables ---------------------------------------*/
486 static double vd_i = -10.0;
487

488 /* -- function body --*/
489

490 if (vd_i == -10.0) read_input_file (&vd_i , 11);
491 return vd_i;
492 }
493

494 double init_vd_e(void)
495 {
496 /* -------------------------------------- function variables ---------------------------------------*/
497 static double vd_e = -10.0;
498

499 /* -- function body --*/
500

501 if (vd_e == -10.0) read_input_file (&vd_e , 10);
502 return vd_e;
503 }
504

505 double init_phi_p(void)
506 {
507 /* -------------------------------------- function variables ---------------------------------------*/
508 static double phi_p = 0.0;
509

510 /* -- function body --*/
511

512 if (phi_p == 0.0) read_input_file (&phi_p , 14);
513 return phi_p;
514 }
515

516 double init_n(void)
517 {
518 /* -------------------------------------- function variables ---------------------------------------*/
519 const double Dl = init_Dl ();
520 static double n = 0.0;
521

522 /* -- function body --*/
523

524 if (n == 0.0) {
525 read_input_file (&n, 7);
526 n *= Dl*Dl*Dl;
527 }
528 return n;
529 }
530

531 double init_L(void)
532 {
533 /* -------------------------------------- function variables ---------------------------------------*/
534 static double L = init_ds () * (double) init_nc ();
535

536 /* -- function body --*/
537

538 return L;
539 }
540

541 double init_ds(void)
542 {
543 /* -------------------------------------- function variables ---------------------------------------*/
544 static double ds = 0.0;
545

546 /* -- function body --*/
547

548 if (ds == 0.0) read_input_file (&ds, 17);
549 return ds;
550 }
551

552 double init_dt(void)
553 {
554 /* -------------------------------------- function variables ---------------------------------------*/
555 static double dt = 0.0;
556

557 /* -- function body --*/
558

559 if (dt == 0.0) read_input_file (&dt, 18);
560 return dt;
561 }
562

563 double init_epsilon0(void)
564 {
565 /* -------------------------------------- function variables ---------------------------------------*/
566 double Te;
567 const double Dl = init_Dl ();
568 static double epsilon0 = 0.0;
569 /* -- function body --*/
570

137

B.2. Initialisation module

571 if (epsilon0 == 0.0) {
572 read_input_file (&Te , 8);
573 epsilon0 = CST_EPSILON; // SI units
574 epsilon0 /= pow(Dl*sqrt(CST_ME /(CST_KB*Te)),2); // time units
575 epsilon0 /= CST_E*CST_E; // charge units
576 epsilon0 *= Dl*Dl*Dl; // length units
577 epsilon0 *= CST_ME; // mass units
578 }
579 return epsilon0;
580 }
581

582 int init_nc(void)
583 {
584 /* -------------------------------------- function variables ---------------------------------------*/
585 static int nc = 0;
586

587 /* -- function body --*/
588

589 if (nc == 0) read_input_file (&nc, 16);
590 return nc;
591 }
592

593 int init_nn(void)
594 {
595 /* -------------------------------------- function variables ---------------------------------------*/
596 static int nn = init_nc ()+1;
597

598 /* -- function body --*/
599

600 return nn;
601 }
602

603 double init_dtin_i(void)
604 {
605 /* -------------------------------------- function variables ---------------------------------------*/
606 const double n = init_n ();
607 const double ds = init_ds ();
608 const double mi = init_mi ();
609 const double kti = init_kti ();
610 const double vd_i = init_vd_i ();
611 const double phi_s = -0.5* init_mi ()* init_vd_i ()* init_vd_i ();
612 const double phi_p = init_phi_p ();
613 static double dtin_i = 0.0;
614

615 /* -- function body --*/
616

617 if (dtin_i == 0.0) {
618 dtin_i = n*sqrt(kti /(2.0* PI*mi))* exp (-0.5*mi*vd_i*vd_i/kti); // thermal component of input flux
619 dtin_i -= 0.5*n*vd_i *(1.0+ erf(sqrt (0.5* mi/kti)*(-vd_i))); // drift component of input flux
620 dtin_i *= exp(phi_s)*0.5*(1.0+ erf(sqrt(phi_s -phi_p))); // correction on density at sheath edge
621 dtin_i *= ds*ds; // number of particles that enter the simulation per unit of time
622 dtin_i = 1.0/ dtin_i; // time between consecutive particles injection
623 }
624 return dtin_i;
625 }
626

627 double init_dtin_e(void)
628 {
629 /* -------------------------------------- function variables ---------------------------------------*/
630 const double n = init_n ();
631 const double ds = init_ds ();
632 const double me = init_me ();
633 const double kte = init_kte ();
634 const double vd_e = init_vd_e ();
635 const double phi_s = -0.5* init_mi ()* init_vd_i ()* init_vd_i ();
636 const double phi_p = init_phi_p ();
637 static double dtin_e = 0.0;
638

639 /* -- function body --*/
640

641 if (dtin_e == 0.0) {
642 dtin_e = n*sqrt(kte /(2.0* PI*me))* exp (-0.5*me*vd_e*vd_e/kte); // thermal component of input flux
643 dtin_e -= 0.5*n*vd_e *(1.0+ erf(sqrt (0.5* me/kte)*(-vd_e))); // drift component of input flux
644 dtin_e *= exp(phi_s)*0.5*(1.0+ erf(sqrt(phi_s -phi_p))); // correction on density at sheath edge
645 dtin_e *= ds*ds; // number of particles that enter the simulation per unit of time
646 dtin_e = 1.0/ dtin_e; // time between consecutive particles injection
647 }
648 return dtin_e;
649 }
650

651 double init_Dl(void)
652 {
653 /* -------------------------------------- function variables ---------------------------------------*/
654 double ne, Te;
655 static double Dl = 0.0;
656

657 /* -- function body --*/

138

Chapter B. CUPIC1D1V_PP sources

658

659 if (Dl == 0.0) {
660 read_input_file (&ne, 7);
661 read_input_file (&Te, 8);
662 Dl = sqrt(CST_EPSILON*CST_KB*Te/(ne*CST_E*CST_E));
663 }
664 return Dl;
665 }
666

667 int init_n_ini(void)
668 {
669 /* -------------------------------------- function variables ---------------------------------------*/
670 static int n_ini = -1;
671

672 /* -- function body --*/
673

674 if (n_ini < 0) read_input_file (&n_ini , 2);
675 return n_ini;
676 }
677

678 int init_n_prev(void)
679 {
680 /* -------------------------------------- function variables ---------------------------------------*/
681 static int n_prev = -1;
682

683 /* -- function body --*/
684

685 if (n_prev < 0) read_input_file (&n_prev , 3);
686 return n_prev;
687 }
688

689 int init_n_save(void)
690 {
691 /* -------------------------------------- function variables ---------------------------------------*/
692 static int n_save = -1;
693

694 /* -- function body --*/
695

696 if (n_save < 0) read_input_file (&n_save , 4);
697 return n_save;
698 }
699

700 int init_n_fin(void)
701 {
702 /* -------------------------------------- function variables ---------------------------------------*/
703 static int n_fin = -1;
704

705 /* -- function body --*/
706

707 if (n_fin < 0) read_input_file (&n_fin , 5);
708 return n_fin;
709 }
710

711 int init_n_bin_ddf(void)
712 {
713 /* -------------------------------------- function variables ---------------------------------------*/
714 static int n_bin_ddf = -1;
715

716 /* -- function body --*/
717

718 if (n_bin_ddf < 0) read_input_file (&n_bin_ddf , 20);
719 return n_bin_ddf;
720 }
721

722 int init_n_bin_vdf(void)
723 {
724 /* -------------------------------------- function variables ---------------------------------------*/
725 static int n_bin_vdf = -1;
726

727 /* -- function body --*/
728

729 if (n_bin_vdf < 0) read_input_file (&n_bin_vdf , 22);
730 return n_bin_vdf;
731 }
732

733 int init_n_vdf(void)
734 {
735 /* -------------------------------------- function variables ---------------------------------------*/
736 static int n_vdf = -1;
737

738 /* -- function body --*/
739

740 if (n_vdf < 0) read_input_file (&n_vdf , 21);
741 return n_vdf;
742 }
743

744 double init_vth_e(void)

139

B.2. Initialisation module

745 {
746 /* -------------------------------------- function variables ---------------------------------------*/
747 static double kte = init_kte (); // thermal energy of electrons
748 static double me = init_me (); // electron mass
749 static double vth_e = sqrt (2*kte/me); // thermal velocity of electrons
750

751 /* -- function body --*/
752

753 return vth_e;
754 }
755

756 double init_vth_i(void)
757 {
758 /* -------------------------------------- function variables ---------------------------------------*/
759 static double kti = init_kti (); // thermal energy of ions
760 static double mi = init_mi (); // ion mass
761 static double vth_i = sqrt (2*kti/mi); // thermal velocity of ions
762

763 /* -- function body --*/
764

765 return vth_i;
766 }
767

768 double init_v_max_e(void)
769 {
770 /* -------------------------------------- function variables ---------------------------------------*/
771 static double v_max_e = 0; // max velocity to consider in velocity histograms
772

773 /* -- function body --*/
774

775 if (v_max_e == 0) read_input_file (&v_max_e , 23);
776 return v_max_e;
777 }
778

779 double init_v_min_e(void)
780 {
781 /* -------------------------------------- function variables ---------------------------------------*/
782 static double v_min_e = 0; // min velocity to consider in velocity histograms
783

784 /* -- function body --*/
785

786 if (v_min_e == 0) read_input_file (&v_min_e , 24);
787 return v_min_e;
788 }
789

790 double init_v_max_i(void)
791 {
792 /* -------------------------------------- function variables ---------------------------------------*/
793 static double v_max_i = 0; // max velocity to consider in velocity histograms
794

795 /* -- function body --*/
796

797 if (v_max_i == 0) read_input_file (&v_max_i , 25);
798 return v_max_i;
799 }
800

801 double init_v_min_i(void)
802 {
803 /* -------------------------------------- function variables ---------------------------------------*/
804 static double v_min_i = 0; // min velocity to consider in velocity histograms
805

806 /* -- function body --*/
807

808 if (v_min_i == 0) read_input_file (&v_min_i , 26);
809 return v_min_i;
810 }
811

812 bool calibration_is_on(void)
813 {
814 /* -------------------------------------- function variables ---------------------------------------*/
815 static int calibration_int = -1;
816

817 /* -- function body --*/
818

819 if (calibration_int < 0) {
820 read_input_file (& calibration_int , 28);
821 if (calibration_int != 0 && calibration_int != 1) {
822 cout << "Found␣error␣in␣input_data␣file.␣Wrong␣ion_current_calibration !\ nStoping␣simulation .\n"
823 << endl;
824 exit (1);
825 }
826 }
827 if (calibration_int == 1) return true;
828 else return false;
829 }
830

831 bool floating_potential_is_on(void)

140

Chapter B. CUPIC1D1V_PP sources

832 {
833 /* -------------------------------------- function variables ---------------------------------------*/
834 static int floating_potential_int = -1;
835

836 /* -- function body --*/
837

838 if (floating_potential_int < 0) {
839 read_input_file (& floating_potential_int , 30);
840 if (floating_potential_int != 0 && floating_potential_int != 1) {
841 cout << "Found␣error␣in␣input_data␣file.␣Wrong␣floating_potential !\ nStoping␣simulation .\n"
842 << endl;
843 exit (1);
844 }
845 }
846 if (floating_potential_int == 1) return true;
847 else return false;
848 }
849

850 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
851

852 __global__ void init_philox_state(curandStatePhilox4_32_10_t *state)
853 {
854 /* --------------------------- kernel variables -----------------------*/
855

856 // kernel shared memory
857

858 // kernel registers
859 int tid = (int) threadIdx.x + (int) blockIdx.x * (int) blockDim.x;
860 curandStatePhilox4_32_10_t local_state;
861

862 /* --------------------------- kernel body ----------------------------*/
863

864 // load states in local memory
865 local_state = state[tid];
866

867 // initialize each thread state (seed , second seed , offset , pointer to state)
868 curand_init (0, tid , 0, &local_state);
869

870 // store initialized states in global memory
871 state[tid] = local_state;
872

873 return;
874 }
875

876 __global__ void create_particles_kernel(particle *g_p , int num_p , double kt, double m, double L,
877 curandStatePhilox4_32_10_t *state)
878 {
879 /* --------------------------- kernel variables -----------------------*/
880

881 // kernel shared memory
882

883 // kernel registers
884 particle reg_p;
885 double sigma = sqrt(kt/m);
886 int tid = (int) threadIdx.x + (int) blockIdx.x * (int) blockDim.x;
887 int bdim = (int) blockDim.x;
888 curandStatePhilox4_32_10_t local_state;
889 double rnd;
890

891 /* --------------------------- kernel body ----------------------------*/
892

893 // ---- load philox states from global memory
894 local_state = state[tid];
895

896 // ---- create particles
897 for (int i = tid; i < num_p; i+=bdim) {
898 rnd = curand_uniform_double (& local_state);
899 reg_p.r = rnd*L;
900 rnd = curand_normal_double (& local_state);
901 reg_p.v = rnd*sigma;
902 // store particles in global memory
903 g_p[i] = reg_p;
904 }
905 __syncthreads ();
906

907 // ---- store philox states in global memory
908 state[tid] = local_state;
909

910 return;
911 }
912

913 __global__ void fix_velocity(double q, double m, int num_p , particle *g_p , double dt , double ds ,
914 int nn , double *g_E)
915 {
916 /* --------------------------- kernel variables -----------------------*/
917

918 // kernel shared memory

141

B.2. Initialisation module

919 double *sh_E = (double *) sh_mem;
920

921 // kernel registers
922 int tid = (int) threadIdx.x; // thread Id
923 int bdim = (int) blockDim.x; // block dimension
924 particle reg_p; // register particles
925 int ic; // cell index
926 double dist; // distance from particle to nearest down vertex (normalized to ds)
927 double F; // force suffered for each register particle
928

929 /* --------------------------- kernel body ----------------------------*/
930

931 // ---- load electric field in shared memory
932 for (int i = tid; i<nn; i+=bdim) {
933 sh_E[i] = g_E[i];
934 }
935 __syncthreads ();
936

937 // ---- load and analize and fix particles
938 for (int i = tid; i<num_p; i += bdim) {
939 // load particles from global to shared memory
940 reg_p = g_p[i];
941

942 // analize particles
943 ic = __double2int_rd(reg_p.r/ds);
944

945 // evaluate particle forces
946 dist = fabs(reg_p.r-ic*ds)/ds;
947 F = q*(sh_E[ic]*(1- dist)+sh_E[ic+1]* dist);
948

949 // fix particle velocities
950 reg_p.v -= 0.5*dt*F/m;
951

952 // store back particles in global memory
953 g_p[i] = reg_p;
954 }
955

956 return;
957 }

Code B.2: CUPIC1D1V_PP source file init.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef INIT_H
10 # define INIT_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15 # include "random.h"
16 # include "mesh.h"
17 # include "particles.h"
18 # include "dynamic_sh_mem.h"
19 # include "cuda.h"
20

21 /* *************************************** SIMBOLIC CONSTANTS ** */
22

23 # define CST_ME 9.109e-31 // electron mass (kg)
24 # define CST_E 1.602e-19 // electron charge (C)
25 # define CST_KB 1.381e-23 // boltzmann constant (m^2 kg s^-2 K^-1)
26 # define CST_EPSILON 8.854e-12 // free space electric permittivity (s^2 C^2 m^-3 kg^-1)
27

28 /* *************************************** FUNCTION PROTOTIPES *************************************** */
29

30 // host functions
31 void init_dev(void);
32 void init_sim(double **d_rho , double **d_phi , double **d_E , double **d_avg_rho , double **d_avg_phi ,
33 double **d_avg_E , particle **d_e , int *num_e , particle **d_i , int *num_i ,
34 double ** d_avg_ddf_e , double ** d_avg_vdf_e , double ** d_avg_ddf_i , double ** d_avg_vdf_i ,
35 double *t, curandStatePhilox4_32_10_t ** state);
36 void create_particles(particle **d_i , int *num_i , particle **d_e , int *num_e ,
37 curandStatePhilox4_32_10_t **state);
38 void initialize_mesh(double **d_rho , double **d_phi , double **d_E , particle *d_i , int num_i ,
39 particle *d_e , int num_e);
40 void initialize_avg_mesh(double **d_avg_rho , double **d_avg_phi , double ** d_avg_E);
41 void initialize_avg_df(double ** d_avg_ddf_e , double ** d_avg_vdf_e , double ** d_avg_ddf_i ,
42 double ** d_avg_vdf_i);
43 void adjust_leap_frog(particle *d_i , int num_i , particle *d_e , int num_e , double *d_E);
44 void load_particles(particle **d_i , int *num_i , particle **d_e , int *num_e ,
45 curandStatePhilox4_32_10_t **state);

142

Chapter B. CUPIC1D1V_PP sources

46 void read_particle_file(string filename , particle **d_p , int *num_p);
47 template <typename type > void read_input_file(type *data , int n);
48 double init_qi(void);
49 double init_qe(void);
50 double init_mi(void);
51 double init_me(void);
52 double init_kti(void);
53 double init_kte(void);
54 double init_vd_i(void);
55 double init_vd_e(void);
56 double init_phi_p(void);
57 double init_n(void);
58 double init_L(void);
59 double init_ds(void);
60 double init_dt(void);
61 double init_dtin_i(void);
62 double init_dtin_e(void);
63 double init_epsilon0(void);
64 int init_nc(void);
65 int init_nn(void);
66 double init_Dl(void);
67 int init_n_ini(void);
68 int init_n_prev(void);
69 int init_n_save(void);
70 int init_n_fin(void);
71 int init_n_bin_ddf(void);
72 int init_n_bin_vdf(void);
73 int init_n_vdf(void);
74 double init_vth_e(void);
75 double init_vth_i(void);
76 double init_v_max_e(void);
77 double init_v_min_e(void);
78 double init_v_max_i(void);
79 double init_v_min_i(void);
80 bool calibration_is_on(void);
81 bool floating_potential_is_on(void);
82

83 // device kernels
84 __global__ void init_philox_state(curandStatePhilox4_32_10_t *state);
85 __global__ void create_particles_kernel(particle *g_p , int num_p , double kt, double m, double L,
86 curandStatePhilox4_32_10_t *state);
87 __global__ void fix_velocity(double q, double m, int num_p , particle *g_p , double dt , double ds ,
88 int nn , double *g_E);
89

90 #endif

Code B.3: CUPIC1D1V_PP source file init.h

B.3. Mesh module

This is the module in charge of all the mesh related algorithms, including: particle weighting, Poisson’s
equation solver, and field derivation. (sources: mesh.cu, mesh.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "mesh.h"
12

13 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
14

15 void charge_deposition(double *d_rho , particle *d_e , int num_e , particle *d_i , int num_i)
16 {
17 /* -------------------------------------- function variables ---------------------------------------*/
18 // host memory
19 static const double ds = init_ds (); // spatial step
20 static const int nn = init_nn (); // number of nodes
21 dim3 griddim , blockdim;
22 size_t sh_mem_size;
23 cudaError_t cuError;
24

25 // device memory
26

27 /* -- function body --*/
28

29 // initialize device memory to zeros

143

B.3. Mesh module

30 cuError = cudaMemset(d_rho , 0, nn*sizeof(double));
31 cu_check(cuError , __FILE__ , __LINE__);
32

33 // set size of shared memory for particle_to_grid kernel
34 sh_mem_size = nn*sizeof(double);
35

36 // set dimensions of grid of blocks and block of threads for particle_to_grid kernel (electrons)
37 blockdim = CHARGE_DEP_BLOCK_DIM;
38 griddim = int(num_e/CHARGE_DEP_BLOCK_DIM)+1;
39

40 // call to particle_to_grid kernel (electrons)
41 cudaGetLastError ();
42 particle_to_grid <<<griddim , blockdim , sh_mem_size >>>(ds , nn , d_rho , d_e , num_e , -1.0);
43 cu_sync_check(__FILE__ , __LINE__);
44

45 // set dimensions of grid of blocks and block of threads for particle_to_grid kernel (ions)
46 blockdim = CHARGE_DEP_BLOCK_DIM;
47 griddim = int(num_i/CHARGE_DEP_BLOCK_DIM)+1;
48

49 // call to particle_to_grid kernel (ions)
50 cudaGetLastError ();
51 particle_to_grid <<<griddim , blockdim , sh_mem_size >>>(ds , nn , d_rho , d_i , num_i , 1.0);
52 cu_sync_check(__FILE__ , __LINE__);
53

54 return;
55 }
56

57 void poisson_solver(double max_error , double *d_rho , double *d_phi)
58 {
59 /* -------------------------------------- function variables ---------------------------------------*/
60 // host memory
61 static const double ds = init_ds (); // spatial step
62 static const int nn = init_nn (); // number of nodes
63 static const double epsilon0 = init_epsilon0 (); // electric permitivity of free space
64

65 double *h_error;
66 double t_error = max_error *10;
67 int min_iteration = 2*nn;
68

69 dim3 blockdim , griddim;
70 size_t sh_mem_size;
71 cudaError_t cuError;
72

73 // device memory
74 double *d_error;
75

76 /* -- function body --*/
77

78 // set dimensions of grid of blocks and blocks of threads for jacobi kernel
79 blockdim = JACOBI_BLOCK_DIM;
80 griddim = (int) ((nn -2)/ JACOBI_BLOCK_DIM) + 1;
81

82 // define size of shared memory for jacobi_iteration kernel
83 sh_mem_size = (2* JACOBI_BLOCK_DIM +2)* sizeof(double);
84

85 // allocate host and device memory for vector of errors
86 cuError = cudaMalloc ((void **) &d_error , griddim.x*sizeof(double));
87 cu_check(cuError , __FILE__ , __LINE__);
88 h_error = (double *) malloc(griddim.x*sizeof(double));
89

90 // execute jacobi iterations until solved
91 while(min_iteration >=0 || t_error >= max_error) {
92 // launch kernel for performing one jacobi iteration
93 cudaGetLastError ();
94 jacobi_iteration <<<griddim , blockdim , sh_mem_size >>>(nn , ds , epsilon0 , d_rho , d_phi , d_error);
95 cu_sync_check(__FILE__ , __LINE__);
96

97 // copy error vector from device to host memory
98 cuError = cudaMemcpy(h_error , d_error , griddim.x*sizeof(double), cudaMemcpyDeviceToHost);
99 cu_check(cuError , __FILE__ , __LINE__);

100

101 // evaluate max error of the iteration
102 t_error = 0;
103 for (int i = 0; i<griddim.x; i++)
104 {
105 if (h_error[i] > t_error) t_error = h_error[i];
106 }
107

108 // actualize counter
109 min_iteration --;
110 }
111

112 // free device memory
113 cudaFree(d_error);
114 free(h_error);
115

116 return;

144

Chapter B. CUPIC1D1V_PP sources

117 }
118

119 void field_solver(double *d_phi , double *d_E)
120 {
121 /* -------------------------------------- function variables ---------------------------------------*/
122 // host memory
123 static const double ds = init_ds (); // spatial step
124 static const int nn = init_nn (); // number of nodes
125 dim3 blockdim , griddim;
126

127 // device memory
128

129 /* -- function body --*/
130

131 // set dimensions of grid of blocks and blocks of threads for jacobi kernel
132 blockdim = JACOBI_BLOCK_DIM;
133 griddim = (int) ((nn -2)/ JACOBI_BLOCK_DIM) + 1;
134

135 // launch kernel for performing the derivation of the potential to obtain the electric field
136 cudaGetLastError ();
137 field_derivation <<<griddim , blockdim >>>(nn, ds, d_phi , d_E);
138 cu_sync_check(__FILE__ , __LINE__);
139

140 return;
141 }
142

143 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
144

145 __global__ void particle_to_grid(double ds , int nn, double *g_rho , particle *g_p , int num_p , double q)
146 {
147 /* --------------------------------------- kernel variables --*/
148 // kernel shared memory
149 double *sh_partial_rho = (double *) sh_mem; // partial rho of each bin
150

151 // kernel registers
152 int tidx = (int) threadIdx.x;
153 int tid = (int) (threadIdx.x + blockIdx.x*blockDim.x);
154 int bdim = (int) blockDim.x;
155 int ic; // cell index of each particle
156 particle reg_p; // register copy of particle analized
157 double dist; // distance to down vertex of the cell
158

159 /* --- kernel body ---*/
160

161 // ---- initialize shared memory variables
162

163 // initialize charge density in shared memory to 0.0
164 for (int i = tidx; i < nn; i+=bdim) {
165 sh_partial_rho[i] = 0.0;
166 }
167 __syncthreads ();
168

169 // --- deposition of charge
170

171 if (tid < num_p) {
172 // load particle in registers
173 reg_p = g_p[tid];
174 // calculate what cell the particle is in
175 ic = __double2int_rd(reg_p.r/ds);
176 if (reg_p.r == (nn -1)*ds) ic = nn -2;
177 if (ic >= nn -1) printf("error␣2␣on␣tid␣=␣%d,␣ic␣=␣%d,␣p.r␣=␣%f\n", tidx , ic, reg_p.r);
178 // calculate distances from particle to down vertex of the cell
179 dist = fabs(__int2double_rn(ic)*ds -reg_p.r)/ds;
180 // acumulate charge in partial rho
181 atomicAdd (& sh_partial_rho[ic], q*(1.0 - dist)); //down vertex
182 atomicAdd (& sh_partial_rho[ic+1], q*dist); // upper vertex
183 }
184 __syncthreads ();
185

186 // ---- volume correction (shared memory)
187

188 for (int i = tidx +1; i < nn -1; i+=bdim) {
189 sh_partial_rho[i] /= ds*ds*ds;
190 }
191 if (tidx == 0) {
192 sh_partial_rho [0] /= 0.5*ds*ds*ds;
193 sh_partial_rho[nn -1] /= 0.5*ds*ds*ds;
194 }
195 __syncthreads ();
196

197 // ---- charge acumulation in global memory
198

199 for (int i = tidx; i < nn; i+=bdim) {
200 atomicAdd (&g_rho[i], sh_partial_rho[i]);
201 }
202 __syncthreads ();
203

145

B.3. Mesh module

204 return;
205 }
206

207 __global__ void jacobi_iteration (int nn , double ds, double epsilon0 , double *g_rho , double *g_phi ,
208 double *g_error)
209 {
210 /* --------------------------------------- kernel variables --*/
211 // shared memory
212 double *sh_old_phi= (double *) sh_mem; //
213 double *sh_error = (double *) &sh_old_phi[JACOBI_BLOCK_DIM +2]; // manually set up shared memory
214

215 // registers
216 double new_phi , dummy_rho;
217 int tid = (int) threadIdx.x;
218 int sh_tid = (int) threadIdx.x + 1;
219 int g_tid = (int) (threadIdx.x + blockDim.x * blockIdx.x) + 1;
220 int bdim = (int) blockDim.x;
221 int bid = (int) blockIdx.x;
222 int gdim = (int) gridDim.x;
223

224 /* --- kernel body ---*/
225

226 // load phi data from global to shared memory
227 if (g_tid < nn - 1) sh_old_phi[sh_tid] = g_phi[g_tid];
228

229 // load comunication zones
230 if (bid < gdim -1) {
231 if (sh_tid == 1) sh_old_phi[sh_tid -1] = g_phi[g_tid -1];
232 if (sh_tid == bdim) sh_old_phi[sh_tid +1] = g_phi[g_tid +1];
233 } else {
234 if (sh_tid == 1) sh_old_phi[sh_tid -1] = g_phi[g_tid -1];
235 if (g_tid == nn -2) sh_old_phi[sh_tid +1] = g_phi[g_tid +1];
236 }
237 __syncthreads ();
238

239 // load charge density data into registers
240 if (g_tid < nn - 1) dummy_rho = ds*ds*g_rho[g_tid]/ epsilon0;
241 __syncthreads ();
242

243 // actualize interior mesh points
244 if (g_tid < nn - 1) new_phi = 0.5*(dummy_rho + sh_old_phi[sh_tid -1] + sh_old_phi[sh_tid +1]);
245 __syncthreads ();
246

247 // store new values of phi in global memory
248 if (g_tid < nn - 1) g_phi[g_tid] = new_phi;
249 __syncthreads ();
250

251 // evaluate local errors
252 if (g_tid < nn - 1) sh_error[tid] = fabs(new_phi -sh_old_phi[sh_tid]);
253 __syncthreads ();
254

255 // reduction for obtaining maximum error in current block
256 for (int stride = 1; stride < bdim; stride <<= 1) {
257 if ((tid%(stride *2) == 0) && (tid+stride < bdim) && (g_tid+stride < nn -1)) {
258 if (sh_error[tid]<sh_error[tid+stride]) sh_error[tid] = sh_error[tid+stride];
259 }
260 __syncthreads ();
261 }
262

263 // store maximun error in global memory
264 if (tid == 0) g_error[bid] = sh_error[tid];
265

266 return;
267 }
268

269 __global__ void field_derivation (int nn , double ds, double *g_phi , double *g_E)
270 {
271 /* --------------------------------------- kernel variables --*/
272 // shared memory
273 __shared__ double sh_phi[JACOBI_BLOCK_DIM +2];
274

275 // registers
276 double reg_E;
277 int sh_tid = (int) threadIdx.x + 1;
278 int g_tid = (int) (threadIdx.x + blockDim.x * blockIdx.x) + 1;
279 int bdim = (int) blockDim.x;
280 int bid = (int) blockIdx.x;
281 int gdim = (int) gridDim.x;
282

283 /* --- kernel body ---*/
284

285 // load phi data from global to shared memory
286 if (g_tid < nn - 1) {
287 sh_phi[sh_tid] = g_phi[g_tid];
288 }
289 // load comunication zones
290 if (bid < gdim -1) {

146

Chapter B. CUPIC1D1V_PP sources

291 if (sh_tid == 1) sh_phi [0] = g_phi[g_tid -1];
292 if (sh_tid == bdim) sh_phi[sh_tid +1] = g_phi[g_tid +1];
293 } else {
294 if (sh_tid == 1) sh_phi[sh_tid -1] = g_phi[g_tid -1];
295 if (g_tid == nn -1) sh_phi[sh_tid] = g_phi[g_tid];
296 }
297 __syncthreads ();
298

299 // calculate electric fields in interior points
300 if (g_tid < nn - 1) {
301 reg_E = (sh_phi[sh_tid -1]- sh_phi[sh_tid +1])/(2.0* ds);
302 }
303 __syncthreads ();
304

305 // store electric fields of interior points in global memory
306 if (g_tid < nn - 1) g_E[g_tid] = reg_E;
307

308 // calculate electric fields at proble and plasma
309 if (g_tid == nn -1) {
310 reg_E = (sh_phi[sh_tid -1]- sh_phi[sh_tid])/ds;
311 g_E[g_tid] = reg_E;
312 } else if (g_tid == 1) {
313 reg_E = (sh_phi[sh_tid -1]- sh_phi[sh_tid])/ds;
314 g_E[g_tid -1] = reg_E;
315 }
316

317 return;
318 }

Code B.4: CUPIC1D1V_PP source file mesh.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef MESH_H
10 # define MESH_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15 # include "init.h"
16 # include "dynamic_sh_mem.h"
17 # include "cuda.h"
18

19 /* *************************************** SIMBOLIC CONSTANTS ** */
20

21 # define CHARGE_DEP_BLOCK_DIM 512 //block dimension for particle2grid kernel
22 # define JACOBI_BLOCK_DIM 128 //block dimension for jacovi_iteration kernel
23

24 /* *************************************** FUNCTION PROTOTIPES *************************************** */
25

26 // host function
27 void charge_deposition(double *d_rho , particle *d_e , int num_e , particle *d_i , int num_i);
28 void poisson_solver(double max_error , double *d_rho , double *d_phi);
29 void field_solver(double *d_phi , double *d_E);
30

31 // device kernels
32 __global__ void particle_to_grid(double ds , int nn, double *g_rho , particle *g_p , int num_p , double q);
33 __global__ void jacobi_iteration (int nn, double ds , double epsilon0 , double *g_rho , double *g_phi ,
34 double *g_error);
35 __global__ void field_derivation (int nn, double ds , double *g_phi , double *g_E);
36

37 // device functions
38

39 #endif

Code B.5: CUPIC1D1V_PP source file mesh.h

B.4. Particles module

This is the module that manage the particles motion. It includes the field weighting algorithm as well
as the particle mover, i. e. leap-frog algorithm. (sources: particles.cu, particles.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *

147

B.4. Particles module

4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "particles.h"
12

13 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
14

15 void particle_mover(particle *d_e , int num_e , particle *d_i , int num_i , double *d_E)
16 {
17 /* -------------------------------------- function variables ---------------------------------------*/
18 // host memory
19 static const double me = init_me (); // electron ’s mass
20 static const double mi = init_mi (); // ion’s mass
21 static const double qe = init_qe (); // electron ’s charge
22 static const double qi = init_qi (); // ions’s charge
23 static const double ds = init_ds (); // spatial step
24 static const double dt = init_dt (); // time step
25 static const int nn = init_nn (); // number of nodes
26

27 dim3 griddim , blockdim;
28 size_t sh_mem_size;
29

30 // device memory
31

32 /* -- function body --*/
33

34 // set size of __shared__ memory for leap_frog kernel
35 sh_mem_size = nn*sizeof(double);
36

37 // ---- move electrons
38

39 // set dimensions of grid of blocks and blocks of threads for leap_frog kernel
40 blockdim = PAR_MOV_BLOCK_DIM;
41 griddim = int(num_e/PAR_MOV_BLOCK_DIM)+1;
42

43 // call to leap_frog_step kernel (electrons)
44 cudaGetLastError ();
45 leap_frog_step <<<griddim , blockdim , sh_mem_size >>>(qe, me, num_e , d_e , dt, ds, nn, d_E);
46 cu_sync_check(__FILE__ , __LINE__);
47

48 // ---- move ions
49

50 // set dimensions of grid of blocks and blocks of threads for leap_frog kernel
51 blockdim = PAR_MOV_BLOCK_DIM;
52 griddim = int(num_i/PAR_MOV_BLOCK_DIM)+1;
53

54 // call to leap_frog_step kernel (ions)
55 cudaGetLastError ();
56 leap_frog_step <<<griddim , blockdim , sh_mem_size >>>(qi, mi, num_i , d_i , dt, ds, nn, d_E);
57 cu_sync_check(__FILE__ , __LINE__);
58

59 return;
60 }
61

62 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
63

64 __global__ void leap_frog_step(double q, double m, int num_p , particle *g_p , double dt, double ds,
65 int nn , double *g_E)
66 {
67 /* --------------------------------------- kernel variables --*/
68 // kernel shared memory
69 double *sh_E = (double *) sh_mem; // manually set up shared memory variables
70

71 // kernel registers
72 int tidx = (int) threadIdx.x;
73 int tid = (int) threadIdx.x + (int) blockDim.x * (int) blockIdx.x; // thread Id
74 int bdim = (int) blockDim.x; // block dimension
75 particle reg_p; // register particles
76 int ic; // cell index
77 double dist; // distance from particle to nearest down vertex (normalized to ds)
78 double F; // force suffered for each register particle
79

80 /* --- kernel body ---*/
81

82 // ---- initialize shared memory variables
83

84 // load fields from global memory
85 for (int i = tidx; i<nn; i += bdim) {
86 sh_E[i] = g_E[i];
87 }
88 __syncthreads ();
89

90 // ---- Process batches of particles

148

Chapter B. CUPIC1D1V_PP sources

91

92 if (tid < num_p) {
93 // load particle data in registers
94 reg_p = g_p[tid];
95

96 // find cell index
97 ic = __double2int_rd(reg_p.r/ds);
98

99 // evaluate distance to nearest down vertex (normalized to ds)
100 dist = fabs(reg_p.r-ic*ds)/ds;
101

102 // calculate particle ’s forces
103 F = q*(sh_E[ic]*(1.0 - dist) + sh_E[ic+1]* dist);
104

105 // move particles
106 reg_p.v += dt*F/m;
107 reg_p.r += dt*reg_p.v;
108

109 // store particle data in global memory
110 g_p[tid] = reg_p;
111 }
112

113 return;
114 }

Code B.6: CUPIC1D1V_PP source file particles.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef PARTICLES_H
10 # define PARTICLES_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15 # include "init.h"
16 # include "diagnostic.h"
17 # include "dynamic_sh_mem.h"
18 # include "cuda.h"
19

20 /* *************************************** SIMBOLIC CONSTANTS ** */
21

22 # define PAR_MOV_BLOCK_DIM 512 // block dimension for defragmentation kernel
23

24 /* *************************************** FUNCTION PROTOTIPES *************************************** */
25

26 // host function
27 void particle_mover(particle *d_e , int num_e , particle *d_i , int num_i , double *d_E);
28

29 // device kernels
30 __global__ void leap_frog_step(double q, double m, int num_p , particle *g_p , double dt, double ds,
31 int nn, double *g_E);
32

33 // device functions
34

35 #endif

Code B.7: CUPIC1D1V_PP source file particles.h

B.5. Boundary conditions module

This is the module that takes care for the influx of particles coming from the plasma, as well as the
absorption of particles at both boundaries. (sources: cc.cu, cc.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "cc.h"

149

B.5. Boundary conditions module

12

13 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
14

15 void cc (double t, int *num_e , particle **d_e , double *dtin_e , double *vd_e , int *num_i ,
16 particle **d_i , double *dtin_i , double *vd_i , double *q_p , double *d_phi , double *d_E ,
17 curandStatePhilox4_32_10_t *state)
18 {
19 /* -------------------------------------- function variables ---------------------------------------*/
20

21 // host memory
22 static const double me = init_me (); //
23 static const double mi = init_mi (); // particle
24 static const double kte = init_kte (); // properties
25 static const double kti = init_kti (); //
26

27 static double tin_e = t+(* dtin_e); // time for next electron insertion
28 static double tin_i = t+(* dtin_i); // time for next ion insertion
29

30 static bool fp_is_on = floating_potential_is_on (); // probe is floating or not
31 static bool flux_cal_is_on = calibration_is_on (); // probe is floating or not
32 static int nc = init_nc (); // number of cells
33 static double ds = init_ds (); // spatial step
34 static double epsilon0 = init_epsilon0 (); // epsilon0 in simulation units
35

36 double phi_s; // sheath edge potential
37 double phi_p; // probe potential
38

39 cudaError cuError; // cuda error variable
40

41 // device memory
42

43 /* -- function body --*/
44

45 // ---- electrons contour conditions
46 abs_emi_cc(t, &tin_e , *dtin_e , kte , *vd_e , me, -1.0, q_p , num_e , d_e , d_E , state);
47

48 // ---- ions contour conditions
49 abs_emi_cc(t, &tin_i , *dtin_i , kti , *vd_i , mi, +1.0, q_p , num_i , d_i , d_E , state);
50

51 // ---- evaluate probe and sheath edge potentials in case fp or flux_cal are on
52 if (fp_is_on || flux_cal_is_on) {
53 cuError = cudaMemcpy (&phi_p , &d_phi[0], sizeof(double), cudaMemcpyDeviceToHost);
54 cu_check(cuError , __FILE__ , __LINE__);
55 cuError = cudaMemcpy (&phi_s , &d_phi[nc], sizeof(double), cudaMemcpyDeviceToHost);
56 cu_check(cuError , __FILE__ , __LINE__);
57 }
58

59 // ---- actulize ion drift velocity in order to ensure zero field at sheath edge
60 if (flux_cal_is_on) {
61 calibrate_ion_flux(vd_i , d_E , &phi_s);
62 }
63

64 // ---- actualize probe potential because of the change in probe charge
65 if (fp_is_on) {
66 phi_p = 0.5*(* q_p)*nc/(ds*epsilon0);
67 if (phi_p > phi_s) phi_p = phi_s;
68 }
69

70 // ---- store new probe and sheath edge potentials in d_phi and recalculate electron and ion dtin
71 if (fp_is_on || flux_cal_is_on) {
72 cuError = cudaMemcpy (& d_phi[0], &phi_p , sizeof(double), cudaMemcpyHostToDevice);
73 cu_check(cuError , __FILE__ , __LINE__);
74 cuError = cudaMemcpy (& d_phi[nc], &phi_s , sizeof(double), cudaMemcpyHostToDevice);
75 cu_check(cuError , __FILE__ , __LINE__);
76 recalculate_dtin(dtin_e , dtin_i , *vd_e , *vd_i , phi_p , phi_s);
77 }
78

79 return;
80 }
81

82 void abs_emi_cc(double t, double *tin , double dtin , double kt , double vd, double m, double q,
83 double *q_p , int *h_num_p , particle **d_p , double *d_E ,
84 curandStatePhilox4_32_10_t *state)
85 {
86 /* -------------------------------------- function variables ---------------------------------------*/
87

88 // host memory
89 static const double L = init_L (); //
90 static const double ds = init_ds (); // geometric properties
91 static const int nn = init_nn (); // of simulation
92

93 static const double dt = init_dt (); //
94 double fpt = t+dt; // timing variables
95 double fvt = t+0.5* dt; //
96

97 int in = 0; // number of particles added at plasma frontier
98 int h_num_abs_p; // host number of particles absorved at the probe

150

Chapter B. CUPIC1D1V_PP sources

99

100 cudaError cuError; // cuda error variable
101 dim3 griddim , blockdim; // kernel execution configurations
102

103 // device memory
104 int *d_num_p; // device number of particles
105 int *d_num_abs_p; // device number of particles absorved at the probe
106 particle *d_dummy_p; // device dummy vector for particle storage
107

108 /* -- function body --*/
109

110 // calculate number of particles that flow into the simulation
111 if((* tin) < fpt) in = 1 + int((fpt -(*tin))/ dtin);
112

113 // copy number of particles from host to device
114 cuError = cudaMalloc ((void **) &d_num_p , sizeof(int));
115 cu_check(cuError , __FILE__ , __LINE__);
116 cuError = cudaMemcpy (d_num_p , h_num_p , sizeof(int), cudaMemcpyHostToDevice);
117 cu_check(cuError , __FILE__ , __LINE__);
118

119 // initialize number of particles absorbed at the probe
120 cuError = cudaMalloc ((void **) &d_num_abs_p , sizeof(int));
121 cu_check(cuError , __FILE__ , __LINE__);
122 cuError = cudaMemset ((void *) d_num_abs_p , 0, sizeof(int));
123 cu_check(cuError , __FILE__ , __LINE__);
124

125 // execution configuration for particle remover kernel
126 griddim = 1;
127 blockdim = P_RMV_BLK_SZ;
128

129 // execute particle remover kernel
130 cudaGetLastError ();
131 pRemover <<<griddim , blockdim >>>(*d_p , d_num_p , L, d_num_abs_p);
132 cu_sync_check(__FILE__ , __LINE__);
133

134 // copy number of particles absorbed at the probe from device to host (and free device memory)
135 cuError = cudaMemcpy (& h_num_abs_p , d_num_abs_p , sizeof(int), cudaMemcpyDeviceToHost);
136 cu_check(cuError , __FILE__ , __LINE__);
137 cuError = cudaFree(d_num_abs_p);
138 cu_check(cuError , __FILE__ , __LINE__);
139

140 // actualize probe acumulated charge
141 *q_p += q*h_num_abs_p;
142

143 // copy new number of particles from device to host (and free device memory)
144 cuError = cudaMemcpy (h_num_p , d_num_p , sizeof(int), cudaMemcpyDeviceToHost);
145 cu_check(cuError , __FILE__ , __LINE__);
146 cuError = cudaFree(d_num_p);
147 cu_check(cuError , __FILE__ , __LINE__);
148

149 // resize of particle vector with new number of particles
150 cuError = cudaMalloc ((void **) &d_dummy_p , ((* h_num_p)+in)* sizeof(particle));
151 cu_check(cuError , __FILE__ , __LINE__);
152 cuError = cudaMemcpy(d_dummy_p , *d_p , (* h_num_p)* sizeof(particle), cudaMemcpyDeviceToDevice);
153 cu_check(cuError , __FILE__ , __LINE__);
154 cuError = cudaFree (*d_p);
155 cu_check(cuError , __FILE__ , __LINE__);
156 cuError = cudaMalloc ((void **) d_p , ((* h_num_p)+in)* sizeof(particle));
157 cu_check(cuError , __FILE__ , __LINE__);
158 cuError = cudaMemcpy (*d_p , d_dummy_p , (* h_num_p)* sizeof(particle), cudaMemcpyDeviceToDevice);
159 cu_check(cuError , __FILE__ , __LINE__);
160 cuError = cudaFree(d_dummy_p);
161 cu_check(cuError , __FILE__ , __LINE__);
162

163 // add particles
164 if (in != 0) {
165 // execution configuration for pEmi kernel
166 griddim = 1;
167 blockdim = CURAND_BLOCK_DIM;
168

169 // launch kernel to add particles
170 cudaGetLastError ();
171 pEmi <<<griddim , blockdim >>>(*d_p , *h_num_p , in , d_E , sqrt(kt/m), vd , q/m, nn , L, fpt , fvt , *tin ,
172 dtin , state);
173 cu_sync_check(__FILE__ , __LINE__);
174

175 // actualize time for next particle insertion
176 (*tin) += double(in)*dtin;
177

178 // actualize number of particles
179 *h_num_p += in;
180 }
181

182 return;
183 }
184

185 void recalculate_dtin(double *dtin_e , double *dtin_i , double vd_e , double vd_i , double phi_p ,

151

B.5. Boundary conditions module

186 double phi_s)
187 {
188 /* -------------------------------------- function variables ---------------------------------------*/
189

190 // host memory
191 static const double n = init_n ();
192 static const double ds = init_ds ();
193 static const double me = init_me ();
194 static const double kte = init_kte ();
195 static const double mi = init_mi ();
196 static const double kti = init_kti ();
197

198 // device memory
199

200 /* -- function body --*/
201

202 // ---- recalculate electron dtin
203 *dtin_e = n*sqrt(kte /(2.0* PI*me))*exp(-0.5*me*vd_e*vd_e/kte); // thermal component of input flux
204 *dtin_e -= 0.5*n*vd_e *(1.0+ erf(sqrt (0.5* me/kte)*(-vd_e))); // drift component of input flux
205 *dtin_e *= exp(phi_s)*0.5*(1.0+ erf(sqrt(phi_s -phi_p))); // corrected density at sheath edge
206 *dtin_e *= ds*ds; // number of particles that enter the simulation per unit of time
207 *dtin_e = 1.0/(* dtin_e); // time between consecutive particles injection
208

209 // ---- recalculate ion dtin
210 *dtin_i = n*sqrt(kti /(2.0* PI*mi))*exp(-0.5*mi*vd_i*vd_i/kti); // thermal component of input flux
211 *dtin_i -= 0.5*n*vd_i *(1.0+ erf(sqrt (0.5* mi/kti)*(-vd_i))); // drift component of input flux
212 *dtin_i *= exp(phi_s)*0.5*(1.0+ erf(sqrt(phi_s -phi_p))); // corrected density at sheath edge
213 *dtin_i *= ds*ds; // number of particles that enter the simulation per unit of time
214 *dtin_i = 1.0/(* dtin_i); // time between consecutive particles injection
215

216 return;
217 }
218

219 void calibrate_ion_flux(double *vd_i , double *d_E , double *phi_s)
220 {
221 /* -------------------------------------- function variables ---------------------------------------*/
222

223 // host memory
224 static const double mi = init_mi ();
225 static const int nc = init_nc ();
226

227 double E_ps = -1.0e-2;
228 double h_Es;
229 const double increment = 1.0e-6;
230

231 cudaError cuError; // cuda error variable
232

233 // device memory
234

235 /* -- function body --*/
236

237 // ---- Actualize ion drift velocity acording to the value of electric field at plasma frontier
238

239 // copy field from device to host memory
240 cuError = cudaMemcpy (&h_Es , &d_E[nn -1], sizeof(double), cudaMemcpyDeviceToHost);
241 cu_check(cuError , __FILE__ , __LINE__);
242

243 // actualize ion drift velocity
244 if (h_Es <E_ps && *vd_i > -2.0/ sqrt(mi)) {
245 *vd_i -= increment;
246 } else if (h_Es >E_ps && *vd_i < 0.0) {
247 *vd_i += increment;
248 }
249

250 // actualize sheath edge potential
251 *phi_s = -0.5*mi*(* vd_i)*(* vd_i);
252

253 return;
254 }
255

256 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
257

258 __global__ void pEmi(particle *g_p , int num_p , int n_in , double *g_E , double vth , double vd , double qm ,
259 int nn, double L, double fpt , double fvt , double tin , double dtin ,
260 curandStatePhilox4_32_10_t *state)
261 {
262 /* --------------------------------------- kernel variables --*/
263

264 // kernel shared memory
265 __shared__ double sh_E;
266

267 // kernel registers
268 particle reg_p;
269 int tid = (int) threadIdx.x + (int) blockIdx.x * (int) blockDim.x;
270 int tpb = (int) blockDim.x;
271 curandStatePhilox4_32_10_t local_state;
272 double2 rnd;

152

Chapter B. CUPIC1D1V_PP sources

273

274 /* --- kernel body ---*/
275

276 // ---- initialize shared memory
277 if (tid == 0) sh_E = g_E[nn -1];
278 __syncthreads ();
279

280 // ---- initialize registers
281 local_state = state[tid];
282 __syncthreads ();
283

284 // ---- generate particles
285 for (int i = tid; i < n_in; i+=tpb) {
286 // generate register particles
287 reg_p.r = L;
288 if (vth > 0.0) {
289 rnd = curand_normal2_double (& local_state);
290 reg_p.v = -sqrt(rnd.x*rnd.x+rnd.y*rnd.y)*vth+vd;
291 } else reg_p.v = vd;
292

293 // simple push
294 reg_p.r += (fpt -(tin+double(i)*dtin))* reg_p.v;
295 reg_p.v += (fvt -(tin+double(i)*dtin))* sh_E*qm;
296

297 // store new particles in global memory
298 g_p[num_p+i] = reg_p;
299 }
300 __syncthreads ();
301

302 // ---- store local state in global memory
303 state[tid] = local_state;
304

305 return;
306 }
307

308 __global__ void pRemover (particle *g_p , int *g_num_p , double L, int *g_num_abs_p)
309 {
310 /* --------------------------------------- kernel variables --*/
311

312 // kernel shared memory
313 __shared__ int sh_tail;
314 __shared__ int sh_num_abs_p;
315

316 // kernel registers
317 int tid = (int) threadIdx.x;
318 int bdim = (int) blockDim.x;
319 int N = *g_num_p;
320 int ite = (N/bdim)*bdim;
321 int reg_tail;
322 particle reg_p;
323

324 /* --- kernel body ---*/
325

326 // ---- initialize shared memory
327 if (tid == 0) {
328 sh_tail = 0;
329 sh_num_abs_p = 0;
330 }
331 __syncthreads ();
332

333 // ---- analize full batches of particles
334 for (int i = tid; i<ite; i+=bdim) {
335 // load particles from global memory to registers
336 reg_p = g_p[i];
337

338 // analize particle
339 if (reg_p.r >= 0 && reg_p.r <= L) {
340 reg_tail = atomicAdd (&sh_tail , 1);
341 } else {
342 reg_tail = -1;
343 if (reg_p.r < 0.0) atomicAdd (& sh_num_abs_p , 1);
344 }
345 __syncthreads ();
346

347 // store accepted particles in global memory
348 if (reg_tail >= 0) g_p[reg_tail] = reg_p;
349 __syncthreads ();
350 }
351 __syncthreads ();
352

353 // ---- analize last batch of particles
354 if (ite+tid < N) {
355 // loag particles from global memory to registers
356 reg_p = g_p[ite+tid];
357

358 // analize particle
359 if (reg_p.r >= 0 && reg_p.r <= L) {

153

B.6. Diagnostic

360 reg_tail = atomicAdd (&sh_tail , 1);
361 } else {
362 reg_tail = -1;
363 if (reg_p.r < 0.0) atomicAdd (& sh_num_abs_p , 1);
364 }
365 }
366 __syncthreads ();
367

368 // store accepted particles of last batch in global memory
369 if (ite+tid < N && reg_tail >= 0) g_p[reg_tail] = reg_p;
370

371 // store new number of particles in global memory
372 if (tid == 0) {
373 *g_num_p = sh_tail;
374 *g_num_abs_p = sh_num_abs_p;
375 }
376

377 return;
378 }

Code B.8: CUPIC1D1V_PP source file cc.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef CC_H
10 # define CC_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15 # include "init.h"
16 # include "random.h"
17 # include "diagnostic.h"
18 # include "cuda.h"
19 # include "dynamic_sh_mem.h"
20

21 /* *************************************** SIMBOLIC CONSTANTS ** */
22

23 # define P_RMV_BLK_SZ 1024 // block dimension for particle remover kernel
24

25 /* *************************************** FUNCTION PROTOTIPES *************************************** */
26

27 // host function
28 void cc (double t, int *num_e , particle **d_e , double *dtin_e , double *vd_e , int *num_i ,
29 particle **d_i , double *dtin_i , double *vd_i , double *q_p , double *d_phi , double *d_E ,
30 curandStatePhilox4_32_10_t *state);
31 void abs_emi_cc(double t, double *tin , double dtin , double kt , double vd, double m, double q,
32 double *q_p , int *h_num_p , particle **d_p , double *d_E ,
33 curandStatePhilox4_32_10_t *state);
34 void recalculate_dtin(double *dtin_e , double *dtin_i , double vd_e , double vd_i , double phi_p ,
35 double phi_s);
36 void calibrate_ion_flux(double *vd_i , double *d_E , double *phi_s);
37

38 // device kernels
39 __global__ void pEmi(particle *g_p , int num_p , int n_in , double *g_E , double vth , double vd , double qm ,
40 int nn, double L, double fpt , double fvt , double tin , double dtin ,
41 curandStatePhilox4_32_10_t *state);
42 __global__ void pRemover (particle *g_p , int *g_num_p , double L, int *g_num_abs_p);
43

44 #endif

Code B.9: CUPIC1D1V_PP source file cc.h

B.6. Diagnostic

This is the module that contains all the functions and algorithms that analyse raw data from the
simulation on the fly, it also saves data into files for its subsequent analysis. (sources: diagnostic.cu,
diagnostic.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *

154

Chapter B. CUPIC1D1V_PP sources

6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "diagnostic.h"
12

13 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
14

15 void avg_mesh(double *d_foo , double *d_avg_foo , int *count)
16 {
17 /* -------------------------------------- function variables ---------------------------------------*/
18

19 // host memory
20 static const int nn = init_nn (); // number of nodes
21 static const int n_save = init_n_save (); // number of iterations to average
22

23 dim3 griddim , blockdim;
24 cudaError_t cuError;
25

26 // device memory
27

28 /* -- function body --*/
29

30 // check if restart of avg_foo is needed
31 if (* count == n_save) {
32 //reset count
33 *count = 0;
34

35 //reset avg_foo
36 cuError = cudaMemset ((void *) d_avg_foo , 0, nn*sizeof(double));
37 cu_check(cuError , __FILE__ , __LINE__);
38 }
39

40 // set dimensions of grid of blocks and block of threads for kernels
41 blockdim = AVG_MESH_BLOCK_DIM;
42 griddim = int(nn/AVG_MESH_BLOCK_DIM)+1;
43

44 // call to mesh_sum kernel
45 cudaGetLastError ();
46 mesh_sum <<<griddim , blockdim >>>(d_foo , d_avg_foo , nn);
47 cu_sync_check(__FILE__ , __LINE__);
48

49 // actualize count
50 *count += 1;
51

52 // normalize average if reached desired number of iterations
53 if (* count == n_save) {
54 cudaGetLastError ();
55 mesh_norm <<<griddim , blockdim >>>(d_avg_foo , (double) n_save , nn);
56 cu_sync_check(__FILE__ , __LINE__);
57 }
58

59 return;
60 }
61

62 void eval_df(double *d_avg_ddf , double *d_avg_vdf , double vmax , double vmin , particle *d_p , int num_p ,
63 int *count)
64 {
65 /* -------------------------------------- function variables ---------------------------------------*/
66

67 // host memory
68 static const int n_bin_ddf = init_n_bin_ddf (); // number of bins density distribution functions
69 static const int n_bin_vdf = init_n_bin_vdf (); // number of bins velocity distribution functions
70 static const int n_vdf = init_n_vdf (); // number of velocity distribution functions
71 static const int n_save = init_n_save (); // number of iterations to average
72 static const double L = init_L (); // lenght of simulation
73

74 dim3 griddim , blockdim;
75 size_t sh_mem_size;
76 cudaError_t cuError;
77

78 // device memory
79

80 /* -- function body --*/
81

82 // check if restart of distribution functions is needed
83 if (* count == n_save) {
84 //reset count
85 *count = 0;
86

87 // reset averaged distribution functions
88 cuError = cudaMemset ((void *) d_avg_ddf , 0, n_bin_ddf*sizeof(double));
89 cu_check(cuError , __FILE__ , __LINE__);
90 cuError = cudaMemset ((void *) d_avg_vdf , 0, n_bin_vdf*n_vdf*sizeof(double));
91 cu_check(cuError , __FILE__ , __LINE__);
92 }

155

B.6. Diagnostic

93

94 // set dimensions of grid of blocks and block of threads for kernel and shared memory size
95 blockdim = PARTICLE2DF_BLOCK_DIM;
96 griddim = int(num_p/PARTICLE2DF_BLOCK_DIM) + 1;
97 sh_mem_size = sizeof(int)*(n_bin_ddf +(n_bin_vdf +1)* n_vdf);
98

99 // call to mesh_sum kernel
100 cudaGetLastError ();
101 particle2df <<<griddim , blockdim , sh_mem_size >>>(d_avg_ddf , n_bin_ddf , L, d_avg_vdf , n_vdf ,
102 n_bin_vdf , vmax , vmin , d_p , num_p);
103 cu_sync_check(__FILE__ , __LINE__);
104

105 // actualize count
106 *count += 1;
107

108 // normalize average if reached desired number of iterations
109 //if (* count == n_save) {
110 // cudaGetLastError ();
111 //kernel <<<griddim , blockdim >>>();
112 // cu_sync_check(__file__ , __line__);
113 //}
114

115 return;
116 }
117

118 double eval_particle_energy(double *d_phi , particle *d_p , double m, double q, int num_p)
119 {
120 /* -------------------------------------- function variables ---------------------------------------*/
121

122 // host memory
123 static const int nn = init_nn (); // number of nodes
124 static const double ds = init_ds (); // spacial step
125 double *h_partial_U; // partial energy of each block
126 double h_U = 0.0; // total energy of particle system
127

128 dim3 griddim , blockdim;
129 size_t sh_mem_size;
130 cudaError_t cuError;
131

132 // device memory
133 double *d_partial_U;
134

135 /* -- function body --*/
136

137 // set execution configuration of the kernel that evaluates energy
138 blockdim = ENERGY_BLOCK_DIM;
139 griddim = int(num_p/ENERGY_BLOCK_DIM)+1;
140

141 // allocate host and device memory for block ’s energy
142 cuError = cudaMalloc ((void **) &d_partial_U , griddim.x*sizeof(double));
143 cu_check(cuError , __FILE__ , __LINE__);
144 h_partial_U = (double *) malloc(griddim.x*sizeof(double));
145

146 // define size of shared memory for energy_kernel
147 sh_mem_size = (ENERGY_BLOCK_DIM+nn)* sizeof(double);
148

149 // launch kernel to evaluate energy of the whole system
150 cudaGetLastError ();
151 energy_kernel <<<griddim , blockdim , sh_mem_size >>>(d_partial_U , d_phi , nn , ds , d_p , m, q, num_p);
152 cu_sync_check(__FILE__ , __LINE__);
153

154 // copy sistem energy from device to host
155 cuError = cudaMemcpy (h_partial_U , d_partial_U , griddim.x*sizeof(double), cudaMemcpyDeviceToHost);
156 cu_check(cuError , __FILE__ , __LINE__);
157

158 // reduction of block ’s energy
159 for (int i = 0; i<griddim.x; i++) h_U += h_partial_U[i];
160

161 //free host and device memory for block ’s energy
162 cuError = cudaFree(d_partial_U);
163 cu_check(cuError , __FILE__ , __LINE__);
164 free(h_partial_U);
165

166 return h_U;
167 }
168

169 void particles_snapshot(particle *d_p , int num_p , string filename)
170 {
171 /* -------------------------------------- function variables ---------------------------------------*/
172

173 // host memory
174 particle *h_p;
175 FILE *pFile;
176 cudaError_t cuError;
177

178 // device memory
179

156

Chapter B. CUPIC1D1V_PP sources

180

181 /* -- function body --*/
182

183 // allocate host memory for particle vector
184 h_p = (particle *) malloc(num_p*sizeof(particle));
185

186 // copy particle vector from device to host
187 cuError = cudaMemcpy (h_p , d_p , num_p*sizeof(particle), cudaMemcpyDeviceToHost);
188 cu_check(cuError , __FILE__ , __LINE__);
189

190 // save snapshot to file
191 filename.append(".dat");
192 pFile = fopen(filename.c_str(), "w");
193 for (int i = 0; i < num_p; i++) {
194 fprintf(pFile , "␣%.17e␣%.17e␣\n", h_p[i].r, h_p[i].v);
195 }
196 fclose(pFile);
197

198 // free host memory
199 free(h_p);
200

201 return;
202 }
203

204 void save_mesh(double *d_m , string filename)
205 {
206 /* -------------------------------------- function variables ---------------------------------------*/
207

208 // host memory
209 static const int nn = init_nn ();
210 double *h_m;
211 FILE *pFile;
212 cudaError_t cuError;
213

214 // device memory
215

216

217 /* -- function body --*/
218

219 // allocate host memory for mesh vector
220 h_m = (double *) malloc(nn*sizeof(double));
221

222 // copy particle vector from device to host
223 cuError = cudaMemcpy (h_m , d_m , nn*sizeof(double), cudaMemcpyDeviceToHost);
224 cu_check(cuError , __FILE__ , __LINE__);
225

226 // save snapshot to file
227 filename.append(".dat");
228 pFile = fopen(filename.c_str(), "w");
229 for (int i = 0; i < nn; i++) {
230 fprintf(pFile , "␣%d␣%.17e␣\n", i, h_m[i]);
231 }
232 fclose(pFile);
233

234 // free host memory
235 free(h_m);
236

237 return;
238 }
239

240 void save_ddf(double *d_avg_ddf , string filename)
241 {
242 /* -------------------------------------- function variables ---------------------------------------*/
243

244 // host memory
245 static const double L = init_L (); // size of simulation
246 static const int n_bin_ddf = init_n_bin_ddf (); // number of bins of ddf
247 static const double bin_size = L/double(n_bin_ddf); // size of each bin
248

249 double *h_avg_ddf; // host memory for ddf
250

251 FILE *pFile;
252 cudaError_t cuError;
253

254 // device memory
255

256 /* -- function body --*/
257

258 // allocate host memory for ddf
259 h_avg_ddf = (double *) malloc(n_bin_ddf*sizeof(double));
260

261 // copy ddf from device to host
262 cuError = cudaMemcpy (h_avg_ddf , d_avg_ddf , n_bin_ddf*sizeof(double), cudaMemcpyDeviceToHost);
263 cu_check(cuError , __FILE__ , __LINE__);
264

265 // save bins to file
266 filename.append(".dat");

157

B.6. Diagnostic

267 pFile = fopen(filename.c_str(), "w");
268 for (int i = 0; i < n_bin_ddf; i++) {
269 fprintf(pFile , "␣%lf␣%lf␣\n", (double(i)+0.5)* bin_size , h_avg_ddf[i]);
270 }
271 fclose(pFile);
272

273 //free host memory for particle vector
274 free(h_avg_ddf);
275

276 return;
277 }
278

279 void save_vdf(double *d_avg_vdf , double vmax , double vmin , string filename)
280 {
281 /* -------------------------------------- function variables ---------------------------------------*/
282

283 // host memory
284 static const double L = init_L (); // size of simulation
285 static const int n_vdf = init_n_vdf (); // number of vdfs
286 static const int n_bin_vdf = init_n_bin_vdf (); // number of bins of vdf
287 static const double r_bin_size = L/double(n_vdf); // size of spatial bins
288 const double v_bin_size = (vmax -vmin)/ n_bin_vdf; // size of velocity bins
289

290 double *h_avg_vdf; // host memory for ddf
291

292 FILE *pFile;
293 cudaError_t cuError;
294

295 // device memory
296

297 /* -- function body --*/
298

299 // allocate host memory for vdf
300 h_avg_vdf = (double *) malloc(n_vdf*n_bin_vdf*sizeof(double));
301

302 // copy vdf from device to host
303 cuError = cudaMemcpy (h_avg_vdf , d_avg_vdf , n_vdf*n_bin_vdf*sizeof(double), cudaMemcpyDeviceToHost);
304 cu_check(cuError , __FILE__ , __LINE__);
305

306 // save bins to file
307 filename.append(".dat");
308 pFile = fopen(filename.c_str(), "w");
309 for (int i = 0; i < n_vdf; i++) {
310 for (int j = 0; j < n_bin_vdf; j++) {
311 fprintf(pFile , "␣%g␣%g␣%g␣\n", (double(i)+0.5)* r_bin_size , (double(j)+0.5)* v_bin_size+vmin ,
312 h_avg_vdf[j+n_bin_vdf*i]);
313 }
314 fprintf(pFile , "\n");
315 }
316 fclose(pFile);
317

318 //free host memory for particle vector
319 free(h_avg_vdf);
320

321 return;
322 }
323

324 void save_log(double t, int num_e , int num_i , double U_e , double U_i , double vd_e , double vd_i ,
325 double *d_phi)
326 {
327 /* -------------------------------------- function variables ---------------------------------------*/
328

329 // host memory
330 double dummy_phi_p;
331 string filename = "../ output/log.dat";
332 FILE *pFile;
333

334 cudaError cuError; // cuda error variable
335

336 // device memory
337

338 /* -- function body --*/
339

340 // copy probe ’s potential from device to host memory
341 cuError = cudaMemcpy (& dummy_phi_p , &d_phi [0], sizeof(double), cudaMemcpyDeviceToHost);
342 cu_check(cuError , __FILE__ , __LINE__);
343

344 // save log to file
345 pFile = fopen(filename.c_str(), "a");
346 if (pFile == NULL) {
347 printf ("Error␣opening␣log␣file␣\n");
348 exit (1);
349 } else fprintf(pFile , "␣%.17e␣%d␣%d␣%.17e␣%.17e␣%.17e␣%.17e␣%.17e␣\n", t, num_e , num_i , U_e , U_i ,
350 vd_e , vd_i , dummy_phi_p);
351 fclose(pFile);
352

353 return;

158

Chapter B. CUPIC1D1V_PP sources

354 }
355

356 double calculate_vd_i(double dtin_i)
357 {
358 /* -------------------------------------- function variables ---------------------------------------*/
359

360 // host memory
361 static const double n = init_n (); // plasma density
362 static const double ds = init_ds (); // spatial step
363

364 // device memory
365

366 /* -- function body --*/
367

368 return 1.0/(n*dtin_i*ds*ds);
369 }
370

371 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
372

373 __global__ void mesh_sum(double *g_foo , double *g_avg_foo , int nn)
374 {
375 /* --------------------------------------- kernel variables --*/
376

377 // kernel shared memory
378

379 // kernel registers
380 double reg_foo , reg_avg_foo;
381

382 int tid = (int) (threadIdx.x + blockIdx.x * blockDim.x);
383

384 /* --- kernel body ---*/
385

386 // load data from global memory to registers
387 if (tid < nn) {
388 reg_foo = g_foo[tid];
389 reg_avg_foo = g_avg_foo[tid];
390 }
391 __syncthreads ();
392

393 // add foo to avg foo
394 if (tid < nn) {
395 reg_avg_foo += reg_foo;
396 }
397 __syncthreads ();
398

399 // store data y global memory
400 if (tid < nn) {
401 g_avg_foo[tid] = reg_avg_foo ;
402 }
403

404 return;
405 }
406

407 __global__ void mesh_norm(double *g_avg_foo , double norm_cst , int nn)
408 {
409 /* --------------------------------------- kernel variables --*/
410

411 // kernel shared memory
412

413 // kernel registers
414 double reg_avg_foo;
415

416 int tid = (int) (threadIdx.x + blockIdx.x * blockDim.x);
417

418 /* --- kernel body ---*/
419

420 // load data from global memory to registers
421 if (tid < nn) reg_avg_foo = g_avg_foo[tid];
422

423 // normalize avg foo
424 if (tid < nn) reg_avg_foo /= norm_cst;
425 __syncthreads ();
426

427 // store data in global memory
428 if (tid < nn) g_avg_foo[tid] = reg_avg_foo ;
429

430 return;
431 }
432

433 __global__ void particle2df(double *g_avg_ddf , int n_bin_ddf , double L, double *g_avg_vdf , int n_vdf ,
434 int n_bin_vdf , double vmax , double vmin , particle *g_p , int num_p)
435 {
436 /* --------------------------------------- kernel variables --*/
437

438 // kernel shared memory
439 int *sh_ddf = (int *) sh_mem; // shared density distribution function
440 int *sh_vdf = &sh_ddf[n_bin_ddf]; // shared velocity distribution functions (vdf)

159

B.6. Diagnostic

441 int *sh_num_p_vdf = &sh_vdf[n_bin_vdf*n_vdf]; // shared number of partilces in each vdf
442

443 // kernel registers
444 particle reg_p;
445 int bin_index;
446 int vdf_index;
447 double bin_size;
448

449 int tidx = (int) threadIdx.x;
450 int bdim = (int) blockDim.x;
451 int tid = (int) (threadIdx.x + blockIdx.x * blockDim.x);
452

453 /* --- kernel body ---*/
454

455 // initialize shared memory
456 for (int i = tidx; i < n_bin_ddf +(n_bin_vdf +1)* n_vdf; i+=bdim) sh_ddf[i] = 0;
457 __syncthreads ();
458

459 // analize particles
460 if (tid < num_p) {
461 // load particle data from global memory to registers
462 reg_p = g_p[tid];
463

464 // add information to shared density distribution functions
465 bin_size = L/n_bin_ddf;
466 bin_index = __double2int_rd(reg_p.r/bin_size);
467 atomicAdd (& sh_ddf[bin_index], 1);
468

469 // add information to shared velocity distribution function
470 bin_size = L/n_vdf;
471 vdf_index = __double2int_rd(reg_p.r/bin_size);
472 bin_size = (vmax -vmin)/ double(n_bin_vdf);
473 bin_index = __double2int_rd ((reg_p.v-vmin)/ bin_size);
474 if (bin_index < 0) {
475 bin_index = 0;
476 } else if (bin_index >= n_bin_vdf) {
477 bin_index = n_bin_vdf -1;
478 }
479 atomicAdd (& sh_vdf[bin_index+vdf_index*n_bin_vdf], 1);
480 atomicAdd (& sh_num_p_vdf[vdf_index], 1);
481 }
482

483 // syncronize threads to wait until all particles have been analized
484 __syncthreads ();
485

486 // normalize density distribution function and add it to global averaged one
487 for (int i = tidx; i < n_bin_ddf; i += bdim) {
488 atomicAdd (& g_avg_ddf[i], double(sh_ddf[i])/ double(num_p));
489 }
490 __syncthreads ();
491

492 // normalize velocity distribution functions and add them to global averaged ones
493 for (int i = tidx; i < n_vdf*n_bin_vdf; i += bdim) {
494 if (sh_num_p_vdf[i/n_bin_vdf] != 0) {
495 atomicAdd (& g_avg_vdf[i], double(sh_vdf[i])/ double(sh_num_p_vdf[i/n_bin_vdf]));
496 }
497 }
498

499 return;
500 }
501

502 __global__ void energy_kernel(double *g_U , double *g_phi , int nn , double ds , particle *g_p , double m,
503 double q, int num_p)
504 {
505 /* --------------------------------------- kernel variables --*/
506

507 // kernel shared memory
508 double *sh_phi = (double *) sh_mem; // mesh potential
509 double *sh_U = &sh_phi[nn]; // acumulation of energy in each block
510

511 // kernel registers
512 int tid = (int) (threadIdx.x + blockIdx.x * blockDim.x);
513 int tidx = (int) threadIdx.x;
514 int bid = (int) blockIdx.x;
515 int bdim = (int) blockDim.x;
516

517 int ic;
518 double dist;
519

520 particle reg_p;
521

522 /* --- kernel body ---*/
523

524 // load potential data from global to shared memory
525 for (int i = tidx; i < nn; i += bdim) {
526 sh_phi[i] = g_phi[i];
527 }

160

Chapter B. CUPIC1D1V_PP sources

528

529 // initialize energy acumulation ’s variables
530 sh_U[tidx] = 0.0;
531 __syncthreads ();
532

533 // analize energy of each particle
534 if (tid < num_p) {
535 // load particle in registers
536 reg_p = g_p[tid];
537 // calculate what cell the particle is in
538 ic = __double2int_rd(reg_p.r/ds);
539 // calculate distances from particle to down vertex of the cell
540 dist = fabs(__int2double_rn(ic)*ds -reg_p.r)/ds;
541 // evaluate potential energy of particle
542 sh_U[tidx] = (sh_phi[ic]*(1.0 - dist)+ sh_phi[ic+1]* dist)*q;
543 // evaluate kinetic energy of particle
544 sh_U[tidx] += 0.5*m*reg_p.v*reg_p.v;
545 }
546 __syncthreads ();
547

548 // reduction for obtaining total energy in current block
549 for (int stride = 1; stride < bdim; stride *= 2) {
550 if ((tidx%(stride *2) == 0) && (tidx+stride < bdim)) {
551 sh_U[tidx] += sh_U[tidx+stride];
552 }
553 __syncthreads ();
554 }
555

556 // store total energy of current block in global memory
557 if (tidx == 0) g_U[bid] = sh_U [0];
558

559 return;
560 }

Code B.10: CUPIC1D1V_PP source file diagnostic.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef DIAGNOSTIC_H
10 # define DIAGNOSTIC_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15 # include "init.h"
16 # include "cuda.h"
17

18 /* *************************************** SIMBOLIC CONSTANTS ** */
19

20 # define AVG_MESH_BLOCK_DIM 512 // block dimension for mesh_sum and mesh_norm
21 # define ENERGY_BLOCK_DIM 512 // block dimension for energy solver kernel
22 # define PARTICLE2DF_BLOCK_DIM 512 // block dimension for particle2df kernel
23

24 /* *************************************** FUNCTION PROTOTIPES *************************************** */
25

26 // host function
27 void avg_mesh(double *d_foo , double *d_avg_foo , int *count);
28 void eval_df(double *d_avg_ddf , double *d_avg_vdf , double vmax , double vmin , particle *d_p , int num_p ,
29 int *count);
30 double eval_particle_energy(double *d_phi , particle *d_p , double m, double q, int num_p);
31 void particles_snapshot(particle *d_p , int num_p , string filename);
32 void save_mesh(double *d_m , string filename);
33 void save_ddf(double *d_avg_ddf , string filename);
34 void save_vdf(double *d_avg_vdf , double vmax , double vmin , string filename);
35 void save_log(double t, int num_e , int num_i , double U_e , double U_i , double vd_e , double vd_i ,
36 double *d_phi);
37 // double calculate_vd_i(double dtin_i);
38

39 // device kernels
40 __global__ void mesh_sum(double *g_foo , double *g_avg_foo , int nn);
41 __global__ void mesh_norm(double *g_avg_foo , double norm_cst , int nn);
42 __global__ void particle2df(double *g_avg_ddf , int n_bin_ddf , double L, double *g_avg_vdf , int n_vdf ,
43 int n_bin_vdf , double vmax , double vmin , particle *g_p , int num_p);
44 __global__ void energy_kernel(double *g_U , double *g_phi , int nn, double ds, particle *g_p , double m,
45 double q, int num_p);
46

47 // device functions
48

49 #endif

Code B.11: CUPIC1D1V_PP source file diagnostic.h

161

B.7. CUDA module

B.7. CUDA module

This module contains a few functions related to the use of the GPU including CUDA errors handling
and intrinsic function definitions. (sources: cuda.cu, cuda.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "cuda.h"
12

13 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
14

15 void cu_check(cudaError_t cuError , const string file , const int line)
16 {
17 /* -------------------------------------- function variables ---------------------------------------*/
18

19 /* -- function body --*/
20

21 if (0 == cuError)
22 {
23 return;
24 } else
25 {
26 cout << "CUDA␣error␣found␣in␣file␣" << file << "␣at␣line␣" << line << ".␣(error␣code:␣"
27 << cuError << ")" << endl;
28 cout << "Exiting␣simulation" << endl;
29 exit (1);
30 }
31 }
32

33 void cu_sync_check(const string file , const int line)
34 {
35 /* -------------------------------------- function variables ---------------------------------------*/
36 cudaError_t cuError;
37

38 /* -- function body --*/
39

40 cudaDeviceSynchronize ();
41 cuError = cudaGetLastError ();
42 if (0 == cuError)
43 {
44 return;
45 } else
46 {
47 cout << "CUDA␣error␣found␣in␣file␣" << file << "␣at␣line␣" << line << ".␣(error␣code:␣" << cuError
48 << ")" << endl;
49 cout << "Exiting␣simulation" << endl;
50 exit (1);
51 }
52 }
53

54 /* *********************************** DEVICE FUNCTION DEFINITIONS *********************************** */
55

56 __device__ double atomicAdd(double* address , double val)
57 {
58 /* -------------------------------------- function variables ---------------------------------------*/
59 unsigned long long int* address_as_ull = (unsigned long long int*) address;
60 unsigned long long int old = *address_as_ull , assumed;
61

62 /* -- function body --*/
63 do
64 {
65 assumed = old;
66 old = atomicCAS(address_as_ull , assumed , __double_as_longlong(val+__longlong_as_double(assumed)));
67 } while (assumed != old);
68

69 return __longlong_as_double(old);
70 }
71

72 __device__ double atomicSub(double* address , double val)
73 {
74 /* -------------------------------------- function variables ---------------------------------------*/
75 unsigned long long int* address_as_ull = (unsigned long long int*) address;
76 unsigned long long int old = *address_as_ull , assumed;
77

78 /* -- function body --*/
79 do
80 {
81 assumed = old;

162

Chapter B. CUPIC1D1V_PP sources

82 old = atomicCAS(address_as_ull , assumed , __double_as_longlong(val -__longlong_as_double(assumed)));
83 } while (assumed != old);
84

85 return __longlong_as_double(old);
86 }

Code B.12: CUPIC1D1V_PP source file cuda.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef CUDA_H
10 # define CUDA_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15

16 /* *************************************** SIMBOLIC CONSTANTS ** */
17

18 /* *************************************** FUNCTION PROTOTIPES *************************************** */
19 // host function
20 void cu_check(cudaError_t cuError , const string file , const int line);
21 void cu_sync_check(const string file , const int line);
22

23 // device kernels
24

25

26 // device functions (overload atomic functions for double precision support)
27 __device__ double atomicAdd(double* address , double val);
28 __device__ double atomicSub(double* address , double val);
29

30 #endif

Code B.13: CUPIC1D1V_PP source file cuda.h

B.8. Extra headers

Extra header files loaded in the previous modules. (sources: stdh.h, random.h, dynamic_sh_mem.h)
1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef STD_H
10 # define STD_H
11

12 /* *** HEADERS *** */
13

14 # include <stdlib.h>
15 # include <math.h>
16 # include <stdio.h>
17 # include <iostream >
18 # include <fstream >
19 # include <string >
20

21 using namespace std;
22

23 /* *************************************** SIMBOLIC CONSTANTS ** */
24

25 # define PI 3.1415926535897932 // symbolic constant for PI
26

27 /* *************************************** PARTICLE STRUCTURE ** */
28

29 struct particle
30 {
31 double r;
32 double v;
33 };
34

35 #endif

Code B.14: CUPIC1D1V_PP source file stdh.h

163

B.9. Additional files

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef RAND_H
10 # define RAND_H
11

12 /* *** HEADERS *** */
13

14 # include <curand_kernel.h> // curand library for random number generation (__device__ functions)
15

16 /* *************************************** SIMBOLIC CONSTANTS ** */
17

18 # define CURAND_BLOCK_DIM 64 //block dimension for curand kernels
19

20 /* *************************************** FUNCTION PROTOTIPES *************************************** */
21

22 #endif

Code B.15: CUPIC1D1V_PP source file random.h

1 /* **
2 * *
3 * This file is part of CUPIC1D1V_PP , a code that simulates the interaction between a plasma and *
4 * a planar Langmuir probe in 1D using PIC techniques accelerated with the use of GPU hardware *
5 * (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef DYNAMIC_SH_MEM_H
10 # define DYNAMIC_SH_MEM_H
11

12 // variable for allowing dynamic allocation of __shared__ memory (used in several kernels)
13 extern __shared__ float sh_mem [];
14

15 #endif

Code B.16: CUPIC1D1V_PP source file dynamic_sh_mem.h

B.9. Additional files

File that automates the compilation process and input file to configure simulation parameters. (sources:
makefile, input_data)

1 # Configuration
2

3 CC = g++
4 NVCC = nvcc
5 ARCHITECTURE = sm_20
6 NVCCFLAGS = -arch=$(ARCHITECTURE) #-Xptxas -v
7 LINKERFLAGS = -arch=$(ARCHITECTURE) -lcurand
8

9 OBJECTS = main.o init.o cc.o mesh.o particles.o diagnostic.o cuda.o
10

11

12 # Makefile orders
13

14 CUPIC : $(OBJECTS)
15 $(NVCC) $(LINKERFLAGS) $(OBJECTS) -o cupic
16 rm -f *~
17 mv ./ cupic ../ bin/cupic
18

19 main.o : main.cu
20 $(NVCC) $(NVCCFLAGS) -dc main.cu -o main.o
21

22 init.o : init.cu init.h
23 $(NVCC) $(NVCCFLAGS) -dc init.cu -o init.o
24

25 cc.o : cc.cu cc.h
26 $(NVCC) $(NVCCFLAGS) -dc cc.cu -o cc.o
27

28 mesh.o : mesh.cu mesh.h
29 $(NVCC) $(NVCCFLAGS) -dc mesh.cu -o mesh.o
30

31 particles.o : particles.cu particles.h
32 $(NVCC) $(NVCCFLAGS) -dc particles.cu -o particles.o
33

164

Chapter B. CUPIC1D1V_PP sources

34 diagnostic.o : diagnostic.cu diagnostic.h
35 $(NVCC) $(NVCCFLAGS) -dc diagnostic.cu -o diagnostic.o
36

37 cuda.o : cuda.cu cuda.h
38 $(NVCC) $(NVCCFLAGS) -dc cuda.cu -o cuda.o
39

40 .PHONY : clean lines
41

42 clean :
43 rm -f *.o *~
44 clear
45

46 lines :
47 git ls-files | xargs wc -l

Code B.17: CUPIC1D1V_PP compilation file makefile

1 #execution configuration
2 n_ini = 0;
3 n_prev = 0;
4 n_save = 1000;
5 n_fin = 10000000;
6 #plasma properties
7 ne = 1.0e9;
8 Te = 1.0e3;
9 beta = 0.0e-2;

10 vd_e = 0.0;
11 vd_i = -0.02;
12 gamma = 1.0e3;
13 #probe properties
14 phi_p = -25.0e0;
15 #sizes of simulation
16 nc = 200;
17 ds = 2.0e-1;
18 dt = 1.0e-1;
19 #diagnostic properties
20 num_of_bins_ddf = 100;
21 num_of_vdf = 100;
22 num_of_bins_vdf = 100;
23 max_num_of_vth_e = 5.0;
24 min_num_of_vth_e = -5.0;
25 max_num_of_vth_i = 0.0;
26 min_num_of_vth_i = -0.3;
27 #calibration configuration
28 ion_current_calibration = 1;
29 #floating potential configuration
30 floating_potential = 0;

Code B.18: CUPIC1D1V_PP input file input_data

165

B.9. Additional files

166

Appendix C

CUPIC1D2V_CP sources

This appendix is devoted to the source code of our simulation of the contact of a cylindrical Langmuir
probe with a plasma. The code is divided into seven modules, each one taking care of an specific
task. Also, there are a few extra header files that are loaded from the previous modules whenever they
are needed, and a makefile that takes care of the compilation of the different modules to produce the
simulation binary (makefile).

In the following sections the source files of the different modules are shown.

C.1. Main module

This is the main module of the simulation, it handles the simulation by calling functions that belongs
to the rest of the modules. (sources: main.cu)

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "stdh.h"
12 # include "init.h"
13 # include "cc.h"
14 # include "mesh.h"
15 # include "particles.h"
16 # include "diagnostic.h"
17

18 /* ************************** MAIN FUNCTION *************************** */
19

20 int main (int argc , const char* argv [])
21 {
22 /* --------------------------- function variables -----------------------*/
23

24 // host variables definition
25 double t; // time of simulation
26 const double dt = init_dt (); // time step
27 const int n_ini = init_n_ini (); // number of first iteration
28 const int n_prev = init_n_prev (); // number of iterations before start analizing
29 const int n_save = init_n_save (); // number of iterations between diagnostics
30 const int n_fin = init_n_fin (); // number of last iteration
31 int num_i; // number of particles (electrons and ions)
32 int nn = init_nn (); // number of nodes
33 double U_i; // system energy for electrons and ions
34 double mi = init_mi (); // ion mass
35 double dtin_i = init_dtin_i (); // time between ion insertions
36 double q_pi = 0; // probe ’s positive acumulated charge (ions)
37 double vd_i = init_vd_i (); // ion’s drift velocity
38 char filename [50]; // filename for saved data
39

40 ifstream ifile;
41 ofstream ofile;
42

43 // device variables definition

167

C.1. Main module

44 double *d_rho , *d_phi , *d_E; // mesh properties
45 double *d_avg_rho , *d_avg_phi , *d_avg_E; // mesh averaged properties
46 double *d_avg_ddf_i , *d_avg_vdf_i; // density and velocity distribution function for ions
47 double v_max_i = init_v_max_i (); // maximun velocity of ions (for histograms)
48 double v_min_i = init_v_min_i (); // minimun velocity of ions (for histograms)
49 int count_df_i = 0; // |
50 int count_rho = 0; // |-> counters for avg data
51 int count_phi = 0; // |
52 int count_E = 0; // |
53 particle *d_i; // particles vectors
54 curandStatePhilox4_32_10_t *state; // philox state for __device__ random number generation
55

56 /* ----------------------------- function body -------------------------*/
57

58 // ---- INITIALITATION OF SIMULATION
59

60 // initialize device and simulation variables
61 init_dev ();
62 init_sim (&d_rho , &d_phi , &d_E , &d_avg_rho , &d_avg_phi , &d_avg_E , &d_i , &num_i , &d_avg_ddf_i ,
63 &d_avg_vdf_i , &t, &state);
64

65 // save initial state
66 sprintf(filename , "../ output/particles/ions_t_%d", n_ini);
67 particles_snapshot(d_i , num_i , filename);
68 sprintf(filename , "../ output/charge/avg_charge_t_%d", n_ini);
69 save_mesh(d_avg_rho , filename);
70 sprintf(filename , "../ output/potential/avg_potential_t_%d", n_ini);
71 save_mesh(d_avg_phi , filename);
72 sprintf(filename , "../ output/field/avg_field_t_%d", n_ini);
73 save_mesh(d_avg_E , filename);
74 t += dt;
75

76 // ---- SIMULATION BODY
77

78 for (int i = n_ini +1; i <= n_fin; i++, t += dt) {
79 // simulate one time step
80 charge_deposition(d_rho , d_phi , d_i , num_i);
81 poisson_solver (1.0e-4, d_rho , d_phi);
82 field_solver(d_phi , d_E);
83 particle_mover(d_i , num_i , d_E);
84 cc(t, &num_i , &d_i , &dtin_i , &vd_i , &q_pi , d_phi , d_E , state);
85

86 // average mesh variables and distribution functions
87 avg_mesh(d_rho , d_avg_rho , &count_rho);
88 avg_mesh(d_phi , d_avg_phi , &count_phi);
89 avg_mesh(d_E , d_avg_E , &count_E);
90 eval_df(d_avg_ddf_i , d_avg_vdf_i , v_max_i , v_min_i , d_i , num_i , &count_df_i);
91

92 // store data
93 if (i>= n_prev && i%n_save ==0) {
94 // save particles (snapshot)
95 sprintf(filename , "../ output/particles/ions_t_%d", i);
96 particles_snapshot(d_i , num_i , filename);
97

98 // save mesh properties
99 sprintf(filename , "../ output/charge/avg_charge_t_%d", i);

100 save_mesh(d_avg_rho , filename);
101 sprintf(filename , "../ output/potential/avg_potential_t_%d", i);
102 save_mesh(d_avg_phi , filename);
103 sprintf(filename , "../ output/field/avg_field_t_%d", i);
104 save_mesh(d_avg_E , filename);
105

106 // save distribution functions
107 sprintf(filename , "../ output/particles/ions_ddf_t_%d", i);
108 save_ddf(d_avg_ddf_i , filename);
109 sprintf(filename , "../ output/particles/ions_vdf_t_%d", i);
110 save_vdf(d_avg_vdf_i , v_max_i , v_min_i , filename);
111

112 // save log
113 U_i = eval_particle_energy(d_phi , d_i , mi, 1.0, num_i);
114 save_log(t, num_i , U_i , &q_pi , vd_i , d_phi);
115

116 cout << "iteration␣=␣" << i << endl;
117 }
118 }
119

120 // ---- END OF SIMULATION
121

122 cout << "Simulation␣finished!" << endl;
123 return 0;
124 }

Code C.1: CUPIC1D2V_CP source file main.cu

168

Chapter C. CUPIC1D2V_CP sources

C.2. Initialisation module

This is the module that handles the initialisation of the different variables of the simulation. It also
prescribes the initial conditions for the system. (sources: init.cu, init.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "init.h"
12

13 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
14

15 void init_dev(void)
16 {
17 /* -------------------------------------- function variables ---------------------------------------*/
18 // host memory
19 int dev;
20 int devcnt;
21 cudaDeviceProp devProp;
22 cudaError_t cuError;
23

24 // device memory
25

26 /* -- function body --*/
27

28 // check for devices instaled in the host
29 cuError = cudaGetDeviceCount (& devcnt);
30 if (0 != cuError)
31 {
32 printf("Cuda␣error␣(%d)␣detected␣in␣’init_dev(void)’\n", cuError);
33 cout << "exiting␣simulation ..." << endl;
34 exit (1);
35 }
36 cout << devcnt << "␣devices␣present␣in␣the␣host:" << endl;
37 for (dev = 0; dev < devcnt; dev ++)
38 {
39 cudaGetDeviceProperties (&devProp , dev);
40 cout << "␣␣-␣Device␣" << dev << ":" << endl;
41 cout << "␣␣␣␣#␣" << devProp.name << endl;
42 cout << "␣␣␣␣#␣Compute␣capability␣" << devProp.major << "." << devProp.minor << endl;
43 }
44

45 // ask wich device to use
46 cout << "Select␣in␣wich␣device␣simulation␣must␣be␣run:␣0" << endl;
47 dev = 0; //cin >> dev;
48

49 // set device to be used and reset it
50 cudaSetDevice(dev);
51 cudaDeviceReset ();
52

53 return;
54 }
55

56 void init_sim(double **d_rho , double **d_phi , double **d_E , double **d_avg_rho , double **d_avg_phi ,
57 double **d_avg_E , particle **d_i , int *num_i , double ** d_avg_ddf_i , double ** d_avg_vdf_i ,
58 double *t, curandStatePhilox4_32_10_t **state)
59 {
60 /* -------------------------------------- function variables ---------------------------------------*/
61 // host memory
62 const double dt = init_dt ();
63 const int n_ini = init_n_ini ();
64

65 // device memory
66

67 /* -- function body --*/
68

69 cout << "n␣=␣" << init_n () << endl;
70 // check if simulation start from initial condition or saved state
71 if (n_ini == 0) {
72 // adjust initial time
73 *t = 0.;
74

75 // create particles
76 create_particles(d_i , num_i , state);
77

78 // initialize mesh variables and their averaged counterparts
79 initialize_mesh(d_rho , d_phi , d_E , *d_i , *num_i);
80

81 // adjust velocities for leap -frog scheme

169

C.2. Initialisation module

82 adjust_leap_frog (*d_i , *num_i , *d_E);
83

84 // initialize diagnostic variables
85 initialize_avg_mesh(d_avg_rho , d_avg_phi , d_avg_E);
86 initialize_avg_df(d_avg_ddf_i , d_avg_vdf_i);
87

88 cout << "Simulation␣initialized␣with␣" << *num_i << "␣particles." << endl << endl;
89 } else if (n_ini > 0) {
90 // adjust initial time
91 *t = n_ini*dt;
92

93 // read particle from file
94 load_particles(d_i , num_i , state);
95

96 // initialize mesh variables
97 initialize_mesh(d_rho , d_phi , d_E , *d_i , *num_i);
98

99 // initialize diagnostic variables
100 initialize_avg_mesh(d_avg_rho , d_avg_phi , d_avg_E);
101 initialize_avg_df(d_avg_ddf_i , d_avg_vdf_i);
102

103 cout << "Simulation␣state␣loaded␣from␣time␣t␣=␣" << *t << endl;
104 } else {
105 cout << "Wrong␣input␣parameter␣(n_ini <0)" << endl;
106 cout << "Stoppin␣simulation" << endl;
107 exit (1);
108 }
109

110 return;
111 }
112

113 void create_particles(particle **d_i , int *num_i , curandStatePhilox4_32_10_t **state)
114 {
115 /* -------------------------------------- function variables ---------------------------------------*/
116 // host memory
117 const double n = init_n (); // plasma density
118 const double me = init_me (); // electron ’s mass
119 const double mi = init_mi (); // ion’s mass
120 const double kte = init_kte (); // electron ’s thermal energy
121 const double kti = init_kti (); // ion’s thermal energy
122 const double vd_e = init_vd_e (); // electron ’s drift velocity
123 const double vd_i = init_vd_i (); // ion’s drift velocity
124 const double L = init_L (); // size of simulation
125 const double ds = init_ds (); // spacial step
126

127 cudaError_t cuError; // cuda error variable
128

129 // device memory
130

131 /* -- function body --*/
132

133 // initialize curand philox states
134 cuError = cudaMalloc ((void **) state , CURAND_BLOCK_DIM*sizeof(curandStatePhilox4_32_10_t));
135 cu_check(cuError , __FILE__ , __LINE__);
136 cudaGetLastError ();
137 init_philox_state <<<1, CURAND_BLOCK_DIM >>>(*state);
138 cu_sync_check(__FILE__ , __LINE__);
139

140 // calculate initial number of particles
141 *num_i = 0;
142

143 // allocate device memory for particle vectors
144 cuError = cudaMalloc ((void **) d_i , (* num_i)* sizeof(particle));
145 cu_check(cuError , __FILE__ , __LINE__);
146

147 // create particles (ions)
148 cudaGetLastError ();
149 create_particles_kernel <<<1, CURAND_BLOCK_DIM >>>(*d_i , *num_i , sqrt(kti/mi), vd_i , L, *state);
150 cu_sync_check(__FILE__ , __LINE__);
151

152 return;
153 }
154

155 void initialize_mesh(double **d_rho , double **d_phi , double **d_E , particle *d_i , int num_i)
156 {
157 /* -------------------------------------- function variables ---------------------------------------*/
158 // host memory
159 const double phi_p = init_phi_p (); // probe ’s potential
160 const double phi_s = -0.5* init_mi ()* init_vd_i ()* init_vd_i (); // sheath ’s edge potential
161 const int nn = init_nn (); // number of nodes
162 const int nc = init_nc (); // number of cells
163

164 double *h_phi; // host vector for potentials
165

166 cudaError_t cuError; // cuda error variable
167

168 // device memory

170

Chapter C. CUPIC1D2V_CP sources

169

170 /* -- function body --*/
171

172 // allocate host memory for potential
173 h_phi = (double *) malloc(nn*sizeof(double));
174

175 // allocate device memory for mesh variables
176 cuError = cudaMalloc ((void **) d_rho , nn*sizeof(double));
177 cu_check(cuError , __FILE__ , __LINE__);
178 cuError = cudaMalloc ((void **) d_phi , nn*sizeof(double));
179 cu_check(cuError , __FILE__ , __LINE__);
180 cuError = cudaMalloc ((void **) d_E , nn*sizeof(double));
181 cu_check(cuError , __FILE__ , __LINE__);
182

183 // initialize potential (host memory)
184 for (int i = 0; i < nn; i++)
185 {
186 h_phi[i] = phi_p + double(i)*(phi_s -phi_p)/ double(nc);
187 }
188

189 // copy potential from host to device memory
190 cuError = cudaMemcpy (*d_phi , h_phi , nn*sizeof(double), cudaMemcpyHostToDevice);
191 cu_check(cuError , __FILE__ , __LINE__);
192

193 // free host memory
194 free(h_phi);
195

196 // deposit charge into the mesh nodes
197 charge_deposition (*d_rho , *d_phi , d_i , num_i);
198

199 // solve poisson equation
200 poisson_solver (1.0e-4, *d_rho , *d_phi);
201

202 // derive electric fields from potential
203 field_solver (*d_phi , *d_E);
204

205 return;
206 }
207

208 void initialize_avg_mesh(double **d_avg_rho , double **d_avg_phi , double ** d_avg_E)
209 {
210 /* -------------------------------------- function variables ---------------------------------------*/
211 // host memory
212 const int nn = init_nn (); // number of nodes
213

214 cudaError_t cuError; // cuda error variable
215

216 // device memory
217

218 /* -- function body --*/
219

220 // allocate device memory for averaged mesh variables
221 cuError = cudaMalloc ((void **) d_avg_rho , nn*sizeof(double));
222 cu_check(cuError , __FILE__ , __LINE__);
223 cuError = cudaMalloc ((void **) d_avg_phi , nn*sizeof(double));
224 cu_check(cuError , __FILE__ , __LINE__);
225 cuError = cudaMalloc ((void **) d_avg_E , nn*sizeof(double));
226 cu_check(cuError , __FILE__ , __LINE__);
227

228 // initialize to zero averaged variables
229 cuError = cudaMemset ((void *) *d_avg_rho , 0, nn*sizeof(double));
230 cu_check(cuError , __FILE__ , __LINE__);
231 cuError = cudaMemset ((void *) *d_avg_phi , 0, nn*sizeof(double));
232 cu_check(cuError , __FILE__ , __LINE__);
233 cuError = cudaMemset ((void *) *d_avg_E , 0, nn*sizeof(double));
234 cu_check(cuError , __FILE__ , __LINE__);
235

236 return;
237 }
238

239 void initialize_avg_df(double ** d_avg_ddf_i , double ** d_avg_vdf_i)
240 {
241 /* -------------------------------------- function variables ---------------------------------------*/
242 // host memory
243 const int n_bin_ddf = init_n_bin_ddf (); // number of bins for density distribution function
244 const int n_bin_vdf = init_n_bin_vdf (); // number of bins for velocity distribution function
245 const int n_vdf = init_n_vdf (); // number of velocity distribution functions to calculate
246

247 cudaError_t cuError; // cuda error variable
248

249 // device memory
250

251 /* -- function body --*/
252

253 // allocate device memory for averaged distribution functions
254 cuError = cudaMalloc ((void **) d_avg_ddf_i , n_bin_ddf*sizeof(double));
255 cu_check(cuError , __FILE__ , __LINE__);

171

C.2. Initialisation module

256 cuError = cudaMalloc ((void **) d_avg_vdf_i , n_bin_vdf*n_vdf*sizeof(double));
257 cu_check(cuError , __FILE__ , __LINE__);
258

259 // initialize to zero averaged distribution functions
260 cuError = cudaMemset ((void *) *d_avg_ddf_i , 0, n_bin_ddf*sizeof(double));
261 cu_check(cuError , __FILE__ , __LINE__);
262 cuError = cudaMemset ((void *) *d_avg_vdf_i , 0, n_bin_vdf*n_vdf*sizeof(double));
263 cu_check(cuError , __FILE__ , __LINE__);
264

265 return;
266 }
267

268 void adjust_leap_frog(particle *d_i , int num_i , double *d_E)
269 {
270 /* -------------------------------------- function variables ---------------------------------------*/
271 // host memory
272 const double mi = init_mi (); // ion’s mass
273 const double me = init_me (); // electron ’s mass
274 const double r_p = init_r_p (); // probe radius
275 const double ds = init_ds (); // spatial step size
276 const double dt = init_dt (); // temporal step size
277 const int nn = init_nn (); // number of nodes
278

279 dim3 griddim , blockdim; // kernel execution configurations
280 size_t sh_mem_size; // shared memory size
281

282 // device memory
283

284 /* -- function body --*/
285

286 // set grid and block dimensions for fix_velocity kernel
287 griddim = 1;
288 blockdim = PAR_MOV_BLOCK_DIM;
289

290 // set shared memory size for fix_velocity kernel
291 sh_mem_size = nn*sizeof(double);
292

293 // fix velocities (ions)
294 cudaGetLastError ();
295 fix_velocity <<<griddim , blockdim , sh_mem_size >>>(1.0, mi , num_i , d_i , dt , ds, r_p , nn, d_E);
296 cu_sync_check(__FILE__ , __LINE__);
297

298 return;
299 }
300

301 void load_particles(particle **d_i , int *num_i , curandStatePhilox4_32_10_t **state)
302 {
303 /* -------------------------------------- function variables ---------------------------------------*/
304 // host memory
305 char filename [50];
306

307 cudaError_t cuError; // cuda error variable
308

309 // device memory
310

311 /* -- function body --*/
312

313 // initialize curand philox states
314 cuError = cudaMalloc ((void **) state , CURAND_BLOCK_DIM*sizeof(curandStatePhilox4_32_10_t));
315 cu_check(cuError , __FILE__ , __LINE__);
316 cudaGetLastError ();
317 init_philox_state <<<1, CURAND_BLOCK_DIM >>>(*state);
318 cu_sync_check(__FILE__ , __LINE__);
319

320 // load particles
321 sprintf(filename , "./ions.dat");
322 read_particle_file(filename , d_i , num_i);
323

324 return;
325 }
326

327 void read_particle_file(string filename , particle **d_p , int *num_p)
328 {
329 /* -------------------------------------- function variables ---------------------------------------*/
330 // host memory
331 particle *h_p; // host vector for particles
332

333 ifstream myfile; // file variables
334 char line [150];
335

336 cudaError_t cuError; // cuda error variable
337

338 // device memory
339

340 /* -- function body --*/
341

342 // get number of particles (test if n is correctly evaluated)

172

Chapter C. CUPIC1D2V_CP sources

343 *num_p = 0;
344 myfile.open(filename.c_str ());
345 if (myfile.is_open ()) {
346 myfile.getline(line , 150);
347 while (! myfile.eof ()) {
348 myfile.getline(line , 150);
349 *num_p += 1;
350 }
351 } else {
352 cout << "Error.␣Can’t␣open␣" << filename << "␣file" << endl;
353 }
354 myfile.close ();
355

356 // allocate host and device memory for particles
357 h_p = (particle *) malloc (*num_p*sizeof(particle));
358 cuError = cudaMalloc ((void **) d_p , *num_p*sizeof(particle));
359 cu_check(cuError , __FILE__ , __LINE__);
360

361 // read particles from file and store in host memory
362 myfile.open(filename.c_str ());
363 if (myfile.is_open ()) {
364 myfile.getline(line , 150);
365 for (int i = 0; i<* num_p; i++) {
366 myfile.getline(line , 150);
367 sscanf (line , "␣%le␣%le␣%le␣\n", &h_p[i].r, &h_p[i].vr , &h_p[i].vt);
368 }
369 } else {
370 cout << "Error.␣Can’t␣open␣" << filename << "␣file" << endl;
371 }
372 myfile.close ();
373

374 // copy particle vector from host to device memory
375 cuError = cudaMemcpy (*d_p , h_p , *num_p*sizeof(particle), cudaMemcpyHostToDevice);
376 cu_check(cuError , __FILE__ , __LINE__);
377

378 // free host memory
379 free(h_p);
380

381 return;
382 }
383

384 template <typename type > void read_input_file(type *data , int n)
385 {
386 /* -------------------------------------- function variables ---------------------------------------*/
387 // function variables
388 ifstream myfile;
389 char line [80];
390

391 /* -- function body --*/
392 myfile.open("../ input/input_data");
393 if (myfile.is_open ()) {
394 for (int i = 0; i < n; i++) myfile.getline(line , 80);
395 if (sizeof(type) == sizeof(int)) {
396 sscanf (line , "%*s␣=␣%d;\n", (int*) data);
397 } else if (sizeof(type) == sizeof(double)) {
398 sscanf (line , "%*s␣=␣%lf;\n", (double *) data);
399 }
400 } else {
401 cout << "Error.␣Input␣data␣file␣could␣not␣be␣opened" << endl;
402 exit (1);
403 }
404 myfile.close ();
405

406 return;
407 }
408

409 int init_n_ini(void)
410 {
411 /* -------------------------------------- function variables ---------------------------------------*/
412 static int n_ini = -1;
413

414 /* -- function body --*/
415

416 if (n_ini < 0) read_input_file (&n_ini , 2);
417

418 return n_ini;
419 }
420

421 int init_n_prev(void)
422 {
423 /* -------------------------------------- function variables ---------------------------------------*/
424 static int n_prev = -1;
425

426 /* -- function body --*/
427

428 if (n_prev < 0) read_input_file (&n_prev , 3);
429

173

C.2. Initialisation module

430 return n_prev;
431 }
432

433 int init_n_save(void)
434 {
435 /* -------------------------------------- function variables ---------------------------------------*/
436 static int n_save = -1;
437

438 /* -- function body --*/
439

440 if (n_save < 0) read_input_file (&n_save , 4);
441

442 return n_save;
443 }
444

445 int init_n_fin(void)
446 {
447 /* -------------------------------------- function variables ---------------------------------------*/
448 static int n_fin = -1;
449

450 /* -- function body --*/
451

452 if (n_fin < 0) read_input_file (&n_fin , 5);
453

454 return n_fin;
455 }
456

457 double init_n(void)
458 {
459 /* -------------------------------------- function variables ---------------------------------------*/
460 const double Dl = init_Dl ();
461 static double n = 0.0;
462

463 /* -- function body --*/
464

465 if (n == 0.0) {
466 read_input_file (&n, 7);
467 n *= Dl*Dl*Dl;
468 }
469

470 return n;
471 }
472

473 double init_kte(void)
474 {
475 /* -------------------------------------- function variables ---------------------------------------*/
476

477 /* -- function body --*/
478

479 return 1.0;
480 }
481

482 double init_kti(void)
483 {
484 /* -------------------------------------- function variables ---------------------------------------*/
485 static double beta = 0.0;
486

487 /* -- function body --*/
488

489 if (beta == 0.0) read_input_file (&beta , 9);
490

491 return beta;
492 }
493

494 double init_vd_e(void)
495 {
496 /* -------------------------------------- function variables ---------------------------------------*/
497 static double vd_e = -1000.0;
498

499 /* -- function body --*/
500

501 if (vd_e == -1000.0) read_input_file (&vd_e , 10);
502

503 return vd_e;
504 }
505

506 double init_vd_i(void)
507 {
508 /* -------------------------------------- function variables ---------------------------------------*/
509 static double vd_i = -1000.0;
510

511 /* -- function body --*/
512

513 if (vd_i == -1000.0) read_input_file (&vd_i , 11);
514

515 return vd_i;
516 }

174

Chapter C. CUPIC1D2V_CP sources

517

518 double init_me(void)
519 {
520 /* -------------------------------------- function variables ---------------------------------------*/
521

522 /* -- function body --*/
523

524 return 1.0;
525 }
526

527 double init_mi(void)
528 {
529 /* -------------------------------------- function variables ---------------------------------------*/
530 static double gamma = 0.0;
531

532 /* -- function body --*/
533

534 if (gamma == 0.0) read_input_file (&gamma , 12);
535

536 return gamma;
537 }
538

539 double init_qe(void)
540 {
541 /* -------------------------------------- function variables ---------------------------------------*/
542

543 /* -- function body --*/
544

545 return -1.0;
546 }
547

548 double init_qi(void)
549 {
550 /* -------------------------------------- function variables ---------------------------------------*/
551

552 /* -- function body --*/
553

554 return 1.0;
555 }
556

557 double init_r_p(void)
558 {
559 /* -------------------------------------- function variables ---------------------------------------*/
560 static double r_p = 0.0;
561

562 /* -- function body --*/
563

564 if (r_p == 0.0) read_input_file (&r_p , 14);
565

566 return r_p;
567 }
568

569 double init_l_p(void)
570 {
571 /* -------------------------------------- function variables ---------------------------------------*/
572 static double l_p = 0.0;
573

574 /* -- function body --*/
575

576 if (l_p == 0.0) read_input_file (&l_p , 15);
577

578 return l_p;
579 }
580

581 double init_theta_p(void)
582 {
583 /* -------------------------------------- function variables ---------------------------------------*/
584 static double theta_p = 0.0;
585

586 /* -- function body --*/
587

588 if (theta_p == 0.0) read_input_file (&theta_p , 16);
589

590 return theta_p;
591 }
592

593 double init_phi_p(void)
594 {
595 /* -------------------------------------- function variables ---------------------------------------*/
596 static double phi_p = 0.0;
597

598 /* -- function body --*/
599

600 if (phi_p == 0.0) read_input_file (&phi_p , 17);
601

602 return phi_p;
603 }

175

C.2. Initialisation module

604

605 int init_nc(void)
606 {
607 /* -------------------------------------- function variables ---------------------------------------*/
608 static int nc = 0;
609

610 /* -- function body --*/
611

612 if (nc == 0) read_input_file (&nc, 19);
613

614 return nc;
615 }
616

617 double init_ds(void)
618 {
619 /* -------------------------------------- function variables ---------------------------------------*/
620 static double ds = 0.0;
621

622 /* -- function body --*/
623

624 if (ds == 0.0) read_input_file (&ds, 20);
625

626 return ds;
627 }
628

629 double init_dt(void)
630 {
631 /* -------------------------------------- function variables ---------------------------------------*/
632 static double dt = 0.0;
633

634 /* -- function body --*/
635

636 if (dt == 0.0) read_input_file (&dt, 21);
637

638 return dt;
639 }
640

641 int init_n_bin_ddf(void)
642 {
643 /* -------------------------------------- function variables ---------------------------------------*/
644 static int n_bin_ddf = -1;
645

646 /* -- function body --*/
647

648 if (n_bin_ddf < 0) read_input_file (&n_bin_ddf , 23);
649

650 return n_bin_ddf;
651 }
652

653 int init_n_vdf(void)
654 {
655 /* -------------------------------------- function variables ---------------------------------------*/
656 static int n_vdf = -1;
657

658 /* -- function body --*/
659

660 if (n_vdf < 0) read_input_file (&n_vdf , 24);
661

662 return n_vdf;
663 }
664

665 int init_n_bin_vdf(void)
666 {
667 /* -------------------------------------- function variables ---------------------------------------*/
668 static int n_bin_vdf = -1;
669

670 /* -- function body --*/
671

672 if (n_bin_vdf < 0) read_input_file (&n_bin_vdf , 25);
673

674 return n_bin_vdf;
675 }
676

677 double init_v_max_e(void)
678 {
679 /* -------------------------------------- function variables ---------------------------------------*/
680 static double v_max_e = 0; // max velocity to consider in velocity histograms
681

682 /* -- function body --*/
683

684 if (v_max_e == 0) read_input_file (&v_max_e , 26);
685

686 return v_max_e;
687 }
688

689 double init_v_min_e(void)
690 {

176

Chapter C. CUPIC1D2V_CP sources

691 /* -------------------------------------- function variables ---------------------------------------*/
692 static double v_min_e = 0; // min velocity to consider in velocity histograms
693

694 /* -- function body --*/
695

696 if (v_min_e == 0) read_input_file (&v_min_e , 27);
697

698 return v_min_e;
699 }
700

701 double init_v_max_i(void)
702 {
703 /* -------------------------------------- function variables ---------------------------------------*/
704 static double v_max_i = 0; // max velocity to consider in velocity histograms
705

706 /* -- function body --*/
707

708 if (v_max_i == 0) read_input_file (&v_max_i , 28);
709

710 return v_max_i;
711 }
712

713 double init_v_min_i(void)
714 {
715 /* -------------------------------------- function variables ---------------------------------------*/
716 static double v_min_i = 0; // min velocity to consider in velocity histograms
717

718 /* -- function body --*/
719

720 if (v_min_i == 0) read_input_file (&v_min_i , 29);
721

722 return v_min_i;
723 }
724

725 bool floating_potential_is_on(void)
726 {
727 /* -------------------------------------- function variables ---------------------------------------*/
728 static int floating_potential_int = -1;
729

730 /* -- function body --*/
731

732 if (floating_potential_int < 0) {
733 read_input_file (& floating_potential_int , 31);
734 if (floating_potential_int != 0 && floating_potential_int != 1) {
735 cout << "Found␣error␣in␣input_data␣file.␣Wrong␣floating_potential !\ nStoping␣simulation .\n" <<
736 endl;
737 exit (1);
738 }
739 }
740

741 if (floating_potential_int == 1) return true;
742 else return false;
743 }
744

745 bool flux_calibration_is_on(void)
746 {
747 /* -------------------------------------- function variables ---------------------------------------*/
748 static int flux_calibration_is_on = -1;
749

750 /* -- function body --*/
751

752 if (flux_calibration_is_on < 0) {
753 read_input_file (& flux_calibration_is_on , 33);
754 if (flux_calibration_is_on != 0 && flux_calibration_is_on != 1) {
755 cout << "Found␣error␣in␣input_data␣file.␣Wrong␣flux_calibration_is_on␣!\ nStoping␣simulation .\n"
756 << endl;
757 exit (1);
758 }
759 }
760

761 if (flux_calibration_is_on == 1) return true;
762 else return false;
763 }
764

765 double init_increment(void)
766 {
767 /* -------------------------------------- function variables ---------------------------------------*/
768 static double increment = -1;
769

770 /* -- function body --*/
771

772 if (increment < 0) {
773 read_input_file (&increment , 34);
774 }
775

776 return increment;
777 }

177

C.2. Initialisation module

778

779 int init_avg_nodes(void)
780 {
781 /* -------------------------------------- function variables ---------------------------------------*/
782 static int avg_nodes = -1;
783

784 /* -- function body --*/
785

786 if (avg_nodes < 0) {
787 read_input_file (&avg_nodes , 35);
788 }
789

790 return avg_nodes;
791 }
792

793 double init_field_tol(void)
794 {
795 /* -------------------------------------- function variables ---------------------------------------*/
796 static double tol = -1;
797

798 /* -- function body --*/
799

800 if (tol < 0) {
801 read_input_file (&tol , 36);
802 }
803

804 return tol;
805 }
806

807 double init_dtin_e(void)
808 {
809 /* -------------------------------------- function variables ---------------------------------------*/
810 const double n = init_n ();
811 const double l_p = init_l_p ();
812 const double r_p = init_r_p ();
813 const double theta = init_theta_p ();
814 const double L = init_L ();
815 const double me = init_me ();
816 const double kte = init_kte ();
817 const double vd_e = init_vd_e ();
818 const double phi_s = -0.5* init_mi ()* init_vd_i ()* init_vd_i ();
819 static double dtin_e = 0.0;
820

821 /* -- function body --*/
822

823 if (dtin_e == 0.0) {
824 dtin_e = n*sqrt(kte /(2.0* PI*me))* exp (-0.5*me*vd_e*vd_e/kte); // thermal component of input flux
825 dtin_e += 0.5*n*(-vd_e)*(1.0+ erf(sqrt (0.5* me/kte)*(-vd_e))); // drift component of input flux
826 dtin_e *= exp(phi_s); // correction on density at sheath edge
827

828 dtin_e *= (r_p+L)*theta*l_p; // number of particles that enter the simulation per unit of time
829 dtin_e = 1.0/ dtin_e; // time between consecutive particles injection
830 }
831

832 return dtin_e;
833 }
834

835 double init_dtin_i(void)
836 {
837 /* -------------------------------------- function variables ---------------------------------------*/
838 const double n = init_n ();
839 const double l_p = init_l_p ();
840 const double r_p = init_r_p ();
841 const double theta = init_theta_p ();
842 const double L = init_L ();
843 const double mi = init_mi ();
844 const double kti = init_kti ();
845 const double vd_i = init_vd_i ();
846 const double phi_s = -0.5* init_mi ()* init_vd_i ()* init_vd_i ();
847 static double dtin_i = 0.0;
848

849 /* -- function body --*/
850

851 if (dtin_i == 0.0) {
852 dtin_i = n*sqrt(kti /(2.0* PI*mi))* exp (-0.5*mi*vd_i*vd_i/kti); // thermal component of input flux
853 dtin_i += 0.5*n*(-vd_i)*(1.0+ erf(sqrt (0.5* mi/kti)*(-vd_i))); // drift component of input flux
854 dtin_i *= exp(phi_s); // density fix at sheath edge
855

856 dtin_i *= (r_p+L)*theta*l_p; // number of particles that enter the simulation per unit of time
857 dtin_i = 1.0/ dtin_i; // time between consecutive particles injection
858 }
859

860 return dtin_i;
861 }
862

863 int init_nn(void)
864 {

178

Chapter C. CUPIC1D2V_CP sources

865 /* -------------------------------------- function variables ---------------------------------------*/
866 static int nn = init_nc ()+1;
867

868 /* -- function body --*/
869

870 return nn;
871 }
872

873 double init_L(void)
874 {
875 /* -------------------------------------- function variables ---------------------------------------*/
876 static double L = init_ds () * (double) init_nc ();
877

878 /* -- function body --*/
879

880 return L;
881 }
882

883 double init_epsilon0(void)
884 {
885 /* -------------------------------------- function variables ---------------------------------------*/
886 double Te;
887 const double Dl = init_Dl ();
888 static double epsilon0 = 0.0;
889

890 /* -- function body --*/
891

892 if (epsilon0 == 0.0) {
893 read_input_file (&Te, 8);
894 epsilon0 = CST_EPSILON; // SI units
895 epsilon0 *= CST_KB*Te; // energy units
896 epsilon0 /= CST_E*CST_E; // charge units
897 epsilon0 *= Dl; // length units
898 }
899

900 return epsilon0;
901 }
902

903 double init_Dl(void)
904 {
905 /* -------------------------------------- function variables ---------------------------------------*/
906 double ne , Te;
907 static double Dl = 0.0;
908

909 /* -- function body --*/
910

911 if (Dl == 0.0) {
912 read_input_file (&ne, 7);
913 read_input_file (&Te, 8);
914 Dl = sqrt(CST_EPSILON*CST_KB*Te/(ne*CST_E*CST_E));
915 }
916

917 return Dl;
918 }
919

920 double init_vth_e(void)
921 {
922 /* -------------------------------------- function variables ---------------------------------------*/
923 static double kte = init_kte (); // thermal energy of electrons
924 static double me = init_me (); // electron mass
925 static double vth_e = sqrt(kte/me); // thermal velocity of electrons
926

927 /* -- function body --*/
928

929 return vth_e;
930 }
931

932 double init_vth_i(void)
933 {
934 /* -------------------------------------- function variables ---------------------------------------*/
935 static double kti = init_kti (); // thermal energy of ions
936 static double mi = init_mi (); // ion mass
937 static double vth_i = sqrt(kti/mi); // thermal velocity of ions
938

939 /* -- function body --*/
940

941 return vth_i;
942 }
943

944 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
945

946 __global__ void init_philox_state(curandStatePhilox4_32_10_t *state)
947 {
948 /* --------------------------------------- kernel variables --*/
949 // kernel shared memory
950

951 // kernel registers

179

C.2. Initialisation module

952 int tid = (int) threadIdx.x + (int) blockIdx.x * (int) blockDim.x;
953 curandStatePhilox4_32_10_t local_state;
954

955 /* --- kernel body ---*/
956

957 // load states in local memory
958 local_state = state[tid];
959

960 // initialize each thread state (seed , second seed , offset , pointer to state)
961 curand_init (0, tid , 0, &local_state);
962

963 // store initialized states in global memory
964 state[tid] = local_state;
965

966 return;
967 }
968

969 __global__ void create_particles_kernel(particle *g_p , int num_p , double sigma , double vd , double L,
970 curandStatePhilox4_32_10_t *state)
971 {
972 /* --------------------------------------- kernel variables --*/
973 // kernel shared memory
974

975 // kernel registers
976 particle reg_p;
977 int tid = (int) threadIdx.x + (int) blockIdx.x * (int) blockDim.x;
978 int bdim = (int) blockDim.x;
979 curandStatePhilox4_32_10_t local_state;
980 double2 rnd;
981

982 /* --- kernel body ---*/
983

984 // ---- load philox states from global memory
985 local_state = state[tid];
986

987 // ---- create particles
988 for (int i = tid; i < num_p; i+=bdim) {
989 rnd.x = curand_uniform_double (& local_state);
990 reg_p.r = rnd.x*L;
991 rnd = curand_normal2_double (& local_state);
992 reg_p.vr = rnd.x*sigma+vd;
993 reg_p.vt = rnd.y*sigma;
994 // store particles in global memory
995 g_p[i] = reg_p;
996 }
997 __syncthreads ();
998

999 // ---- store philox states in global memory
1000 state[tid] = local_state;
1001

1002 return;
1003 }
1004

1005 __global__ void fix_velocity(double q, double m, int num_p , particle *g_p , double dt, double ds ,
1006 double r_p , int nn , double *g_E)
1007 {
1008 /* --------------------------------------- kernel variables --*/
1009 // kernel shared memory
1010 double *sh_E = (double *) sh_mem;
1011

1012 // kernel registers
1013 int tid = (int) threadIdx.x; // thread Id
1014 int bdim = (int) blockDim.x; // block dimension
1015 particle reg_p; // register particles
1016 int ic; // cell index
1017 double dist; // distance from particle to nearest down vertex (normalized to ds)
1018 double F; // force suffered for each register particle
1019

1020 /* --- kernel body ---*/
1021

1022 // ---- load electric field in shared memory
1023 for (int i = tid; i<nn; i+=bdim) {
1024 sh_E[i] = g_E[i];
1025 }
1026 __syncthreads ();
1027

1028 // ---- load and analize and fix particles
1029 for (int i = tid; i<num_p; i += bdim) {
1030 // load particles from global to shared memory
1031 reg_p = g_p[i];
1032

1033 // analize particles
1034 ic = __double2int_rd(reg_p.r/ds);
1035

1036 // evaluate particle forces
1037 dist = fabs(reg_p.r-ic*ds)/ds;
1038 F = q*(sh_E[ic]*(1- dist)+sh_E[ic+1]* dist)+m*reg_p.vt*reg_p.vt/(reg_p.r+r_p);

180

Chapter C. CUPIC1D2V_CP sources

1039

1040 // fix particle velocities
1041 reg_p.vr -= 0.5*dt*F/m;
1042

1043 // store back particles in global memory
1044 g_p[i] = reg_p;
1045 }
1046

1047 return;
1048 }

Code C.2: CUPIC1D2V_CP source file init.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef INIT_H
10 # define INIT_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15 # include "random.h"
16 # include "mesh.h"
17 # include "particles.h"
18 # include "dynamic_sh_mem.h"
19 # include "cuda.h"
20

21 /* *************************************** SIMBOLIC CONSTANTS ** */
22

23 # define CST_ME 9.109e-31 // electron mass (kg)
24 # define CST_E 1.602e-19 // electron charge (C)
25 # define CST_KB 1.381e-23 // boltzmann constant (m^2 kg s^-2 K^-1)
26 # define CST_EPSILON 8.854e-12 // free space electric permittivity (s^2 C^2 m^-3 kg^-1)
27

28 /* *************************************** FUNCTION PROTOTIPES *************************************** */
29 // host functions
30 void init_dev(void);
31 void init_sim(double **d_rho , double **d_phi , double **d_E , double **d_avg_rho , double **d_avg_phi ,
32 double **d_avg_E , particle **d_i , int *num_i , double ** d_avg_ddf_i , double ** d_avg_vdf_i ,
33 double *t, curandStatePhilox4_32_10_t **state);
34 void create_particles(particle **d_i , int *num_i , curandStatePhilox4_32_10_t ** state);
35 void initialize_mesh(double **d_rho , double **d_phi , double **d_E , particle *d_i , int num_i);
36 void initialize_avg_mesh(double **d_avg_rho , double **d_avg_phi , double ** d_avg_E);
37 void initialize_avg_df(double ** d_avg_ddf_i , double ** d_avg_vdf_i);
38 void adjust_leap_frog(particle *d_i , int num_i , double *d_E);
39 void load_particles(particle **d_i , int *num_i , curandStatePhilox4_32_10_t ** state);
40 void read_particle_file(string filename , particle **d_p , int *num_p);
41 template <typename type > void read_input_file(type *data , int n);
42 int init_n_ini(void);
43 int init_n_prev(void);
44 int init_n_save(void);
45 int init_n_fin(void);
46 double init_n(void);
47 double init_kte(void);
48 double init_kti(void);
49 double init_vd_e(void);
50 double init_vd_i(void);
51 double init_me(void);
52 double init_mi(void);
53 double init_qe(void);
54 double init_qi(void);
55 double init_r_p(void);
56 double init_l_p(void);
57 double init_theta_p(void);
58 double init_phi_p(void);
59 int init_nc(void);
60 double init_ds(void);
61 double init_dt(void);
62 int init_n_bin_ddf(void);
63 int init_n_vdf(void);
64 int init_n_bin_vdf(void);
65 double init_v_max_e(void);
66 double init_v_min_e(void);
67 double init_v_max_i(void);
68 double init_v_min_i(void);
69 bool floating_potential_is_on(void);
70 bool flux_calibration_is_on(void);
71 double init_increment(void);
72 int init_avg_nodes(void);
73 double init_field_tol(void);
74 double init_dtin_e(void);

181

C.3. Mesh module

75 double init_dtin_i(void);
76 int init_nn(void);
77 double init_L(void);
78 double init_epsilon0(void);
79 double init_Dl(void);
80 double init_vth_e(void);
81 double init_vth_i(void);
82

83 // device kernels
84 __global__ void init_philox_state(curandStatePhilox4_32_10_t *state);
85 __global__ void create_particles_kernel(particle *g_p , int num_p , double sigma , double vd , double L,
86 curandStatePhilox4_32_10_t *state);
87 __global__ void fix_velocity(double q, double m, int num_p , particle *g_p , double dt, double ds ,
88 double r_p , int nn , double *g_E);
89

90 #endif

Code C.3: CUPIC1D2V_CP source file init.h

C.3. Mesh module

This is the module in charge of all the mesh related algorithms, including: particle weighting, Poisson’s
equation solver, and field derivation. (sources: mesh.cu, mesh.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "mesh.h"
12

13 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
14

15 void charge_deposition(double *d_rho , double *d_phi , particle *d_i , int num_i)
16 {
17 /* -------------------------------------- function variables ---------------------------------------*/
18 // host memory
19 static const double n = init_n (); // number density of particles at plasma
20 static const double ds = init_ds (); // spatial step
21 static const double l_p = init_l_p (); // lengh of cilindrical probe
22 static const double r_p = init_r_p (); // probe radius
23 static const double theta = init_theta_p (); // angular amplitude of probe
24 static const int nn = init_nn (); // number of nodes
25

26 dim3 griddim , blockdim;
27 size_t sh_mem_size;
28 cudaError_t cuError;
29

30 // device memory
31

32 /* -- function body --*/
33

34 // initialize device memory to zeros
35 cuError = cudaMemset(d_rho , 0, nn*sizeof(double));
36 cu_check(cuError , __FILE__ , __LINE__);
37

38 // set size of shared memory for particle_to_grid kernel
39 sh_mem_size = nn*sizeof(double);
40

41 // set dimensions of grid of blocks and blocks of threads for virtual_to_grid kernel
42 blockdim = JACOBI_BLOCK_DIM;
43 griddim = (int) ((nn -2)/ JACOBI_BLOCK_DIM) + 1;
44

45 // call to virtual_to_grid kernel (electrons)
46 cudaGetLastError ();
47 virtual_to_grid <<<griddim , blockdim >>>(nn , ds , l_p , r_p , theta , d_rho , d_phi , n, -1.0);
48 cu_sync_check(__FILE__ , __LINE__);
49

50 // set dimensions of grid of blocks and block of threads for particle_to_grid kernel (ions)
51 blockdim = CHARGE_DEP_BLOCK_DIM;
52 griddim = int(num_i/CHARGE_DEP_BLOCK_DIM)+1;
53

54 // call to particle_to_grid kernel (ions)
55 cudaGetLastError ();
56 particle_to_grid <<<griddim , blockdim , sh_mem_size >>>(nn , ds , l_p , r_p , theta , d_rho , d_i , num_i , 1.0);
57 cu_sync_check(__FILE__ , __LINE__);
58

182

Chapter C. CUPIC1D2V_CP sources

59 return;
60 }
61

62 void poisson_solver(double max_error , double *d_rho , double *d_phi)
63 {
64 /* -------------------------------------- function variables ---------------------------------------*/
65 // host memory
66 static const double ds = init_ds (); // spatial step
67 static const int nn = init_nn (); // number of nodes
68 static const double epsilon0 = init_epsilon0 (); // electric permitivity of free space
69 static const double r_p = init_r_p (); // probe radius
70

71 double *h_error;
72 double t_error = max_error *10;
73 int min_iteration = 2*nn;
74

75 dim3 blockdim , griddim;
76 size_t sh_mem_size;
77 cudaError_t cuError;
78

79 // device memory
80 double *d_error;
81

82 /* -- function body --*/
83

84 // set dimensions of grid of blocks and blocks of threads for jacobi kernel
85 blockdim = JACOBI_BLOCK_DIM;
86 griddim = (int) ((nn -2)/ JACOBI_BLOCK_DIM) + 1;
87

88 // define size of shared memory for jacobi_iteration kernel
89 sh_mem_size = (2* JACOBI_BLOCK_DIM +2)* sizeof(double);
90

91 // allocate host and device memory for vector of errors
92 cuError = cudaMalloc ((void **) &d_error , griddim.x*sizeof(double));
93 cu_check(cuError , __FILE__ , __LINE__);
94 h_error = (double *) malloc(griddim.x*sizeof(double));
95

96 // execute jacobi iterations until solved
97 while(min_iteration >=0 || t_error >= max_error) {
98 // launch kernel for performing one jacobi iteration
99 cudaGetLastError ();

100 jacobi_iteration <<<griddim , blockdim , sh_mem_size >>>(nn , ds , r_p , epsilon0 , d_rho , d_phi , d_error);
101 cu_sync_check(__FILE__ , __LINE__);
102

103 // copy error vector from device to host memory
104 cuError = cudaMemcpy(h_error , d_error , griddim.x*sizeof(double), cudaMemcpyDeviceToHost);
105 cu_check(cuError , __FILE__ , __LINE__);
106

107 // evaluate max error of the iteration
108 t_error = 0;
109 for (int i = 0; i<griddim.x; i++)
110 {
111 if (h_error[i] > t_error) t_error = h_error[i];
112 }
113

114 // actualize counter
115 min_iteration --;
116 }
117

118 // free device memory
119 cudaFree(d_error);
120 free(h_error);
121

122 return;
123 }
124

125 void field_solver(double *d_phi , double *d_E)
126 {
127 /* --------------------------- function variables -----------------------*/
128

129 // host memory
130 static const double ds = init_ds (); // spatial step
131 static const int nn = init_nn (); // number of nodes
132 dim3 blockdim , griddim;
133

134 // device memory
135

136 /* ----------------------------- function body -------------------------*/
137

138 // set dimensions of grid of blocks and blocks of threads for jacobi kernel
139 blockdim = JACOBI_BLOCK_DIM;
140 griddim = (int) ((nn -2)/ JACOBI_BLOCK_DIM) + 1;
141

142 // launch kernel for performing the derivation of the potential to obtain the electric field
143 cudaGetLastError ();
144 field_derivation <<<griddim , blockdim >>>(nn, ds, d_phi , d_E);
145 cu_sync_check(__FILE__ , __LINE__);

183

C.3. Mesh module

146

147 return;
148 }
149

150 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
151

152 __global__ void particle_to_grid(int nn, double ds , double l_p , double r_p , double theta ,
153 double *g_rho , particle *g_p , int num_p , double q)
154 {
155 /* --------------------------------------- kernel variables --*/
156 // kernel shared memory
157 double *sh_partial_rho = (double *) sh_mem; // partial rho of each bin
158

159 // kernel registers
160 int tidx = (int) threadIdx.x;
161 int tid = (int) (threadIdx.x + blockIdx.x*blockDim.x);
162 int bdim = (int) blockDim.x;
163 int ic; // cell index of each particle
164 particle reg_p; // register copy of particle analized
165 double dist; // distance to down vertex of the cell
166

167 /* --- kernel body ---*/
168

169 // ---- initialize shared memory variables
170

171 // initialize charge density in shared memory to 0.0
172 for (int i = tidx; i < nn; i+=bdim) {
173 sh_partial_rho[i] = 0.0;
174 }
175 __syncthreads ();
176

177 // --- deposition of charge
178

179 if (tid < num_p) {
180 // load particle in registers
181 reg_p = g_p[tid];
182 // calculate what cell the particle is in
183 ic = __double2int_rd(reg_p.r/ds);
184 if (reg_p.r == (nn -1)*ds) ic = nn -2;
185 if (ic >= nn -1) printf("error␣2␣on␣tid␣=␣%d,␣ic␣=␣%d,␣p.r␣=␣%f\n", tidx , ic , reg_p.r);
186 // calculate distances from particle to down vertex of the cell
187 dist = fabs(__int2double_rn(ic)*ds-reg_p.r)/ds;
188 // acumulate charge in partial rho
189 atomicAdd (& sh_partial_rho[ic], q*(1.0 - dist)); //down vertex
190 atomicAdd (& sh_partial_rho[ic+1], q*dist); // upper vertex
191 }
192 __syncthreads ();
193

194 // ---- volume correction (shared memory)
195

196 for (int i = tidx +1; i < nn -1; i+=bdim) {
197 sh_partial_rho[i] /= l_p*ds*theta*(i*ds+r_p);
198 }
199 if (tidx == 0) {
200 sh_partial_rho [0] /= 0.5* l_p*theta*ds*(r_p +0.25* ds);
201 sh_partial_rho[nn -1] /= 0.5* l_p*theta*ds*(r_p+(nn -1.25)* ds);
202 }
203 __syncthreads ();
204

205 // ---- charge acumulation in global memory
206

207 for (int i = tidx; i < nn; i+=bdim) {
208 atomicAdd (& g_rho[i], sh_partial_rho[i]);
209 }
210 __syncthreads ();
211

212 return;
213 }
214

215 __global__ void virtual_to_grid(int nn, double ds , double l_p , double r_p , double theta , double *g_rho ,
216 double *g_phi , double n, double q)
217 {
218 /* --------------------------------------- kernel variables --*/
219 // kernel shared memory
220

221 // kernel registers
222 double reg_phi , reg_rho;
223 int g_tid = (int) (threadIdx.x + blockDim.x * blockIdx.x);
224

225 /* --- kernel body ---*/
226

227 // load phi data from global to shared memory
228 if (g_tid < nn) reg_phi = g_phi[g_tid];
229

230 // --- deposition of charge
231 reg_rho = n*exp(reg_phi)*q;
232

184

Chapter C. CUPIC1D2V_CP sources

233 // ---- store virtual charge in global memory
234 if (g_tid < nn) g_rho[g_tid] = reg_rho;
235 __syncthreads ();
236

237 return;
238 }
239

240

241 __global__ void jacobi_iteration (int nn, double ds , double r_p , double epsilon0 , double *g_rho ,
242 double *g_phi , double *g_error)
243 {
244 /* --------------------------------------- kernel variables --*/
245 // shared memory
246 double *sh_old_phi= (double *) sh_mem; //
247 double *sh_error = (double *) &sh_old_phi[JACOBI_BLOCK_DIM +2]; // manually set up shared memory
248

249 // registers
250 double new_phi , dummy_rho;
251 int tid = (int) threadIdx.x;
252 int sh_tid = (int) threadIdx.x + 1;
253 int g_tid = (int) (threadIdx.x + blockDim.x * blockIdx.x) + 1;
254 int bdim = (int) blockDim.x;
255 int bid = (int) blockIdx.x;
256 int gdim = (int) gridDim.x;
257

258 /* --- kernel body ---*/
259

260 // load phi data from global to shared memory
261 if (g_tid < nn - 1) sh_old_phi[sh_tid] = g_phi[g_tid];
262

263 // load comunication zones
264 if (bid < gdim -1) {
265 if (sh_tid == 1) sh_old_phi[sh_tid -1] = g_phi[g_tid -1];
266 if (sh_tid == bdim) sh_old_phi[sh_tid +1] = g_phi[g_tid +1];
267 } else {
268 if (sh_tid == 1) sh_old_phi[sh_tid -1] = g_phi[g_tid -1];
269 if (g_tid == nn -2) sh_old_phi[sh_tid +1] = g_phi[g_tid +1];
270 }
271 __syncthreads ();
272

273 // load charge density data into registers
274 if (g_tid < nn - 1) dummy_rho = ds*ds*g_rho[g_tid]/ epsilon0;
275 __syncthreads ();
276

277 // actualize interior mesh points
278 if (g_tid < nn - 1) new_phi = 0.5*(dummy_rho + sh_old_phi[sh_tid +1]*(1.0+ ds /(2.0*(g_tid*ds+r_p))) +
279 sh_old_phi[sh_tid -1]*(1.0 -ds /(2.0*(g_tid*ds+r_p))));
280 __syncthreads ();
281

282 // store new values of phi in global memory
283 if (g_tid < nn - 1) g_phi[g_tid] = new_phi;
284 __syncthreads ();
285

286 // evaluate local errors
287 if (g_tid < nn - 1) sh_error[tid] = fabs(new_phi -sh_old_phi[sh_tid]);
288 __syncthreads ();
289

290 // reduction for obtaining maximum error in current block
291 for (int stride = 1; stride < bdim; stride <<= 1) {
292 if ((tid%(stride *2) == 0) && (tid+stride < bdim) && (g_tid+stride < nn -1)) {
293 if (sh_error[tid]<sh_error[tid+stride]) sh_error[tid] = sh_error[tid+stride];
294 }
295 __syncthreads ();
296 }
297

298 // store maximun error in global memory
299 if (tid == 0) g_error[bid] = sh_error[tid];
300

301 return;
302 }
303

304 __global__ void field_derivation (int nn, double ds , double *g_phi , double *g_E)
305 {
306 /* --------------------------------------- kernel variables --*/
307 // shared memory
308 __shared__ double sh_phi[JACOBI_BLOCK_DIM +2];
309

310 // registers
311 double reg_E;
312 int sh_tid = (int) threadIdx.x + 1;
313 int g_tid = (int) (threadIdx.x + blockDim.x * blockIdx.x) + 1;
314 int bdim = (int) blockDim.x;
315 int bid = (int) blockIdx.x;
316 int gdim = (int) gridDim.x;
317

318 /* --- kernel body ---*/
319

185

C.3. Mesh module

320 // load phi data from global to shared memory
321 if (g_tid < nn - 1) {
322 sh_phi[sh_tid] = g_phi[g_tid];
323 }
324 // load comunication zones
325 if (bid < gdim -1) {
326 if (sh_tid == 1) sh_phi [0] = g_phi[g_tid -1];
327 if (sh_tid == bdim) sh_phi[sh_tid +1] = g_phi[g_tid +1];
328 } else {
329 if (sh_tid == 1) sh_phi[sh_tid -1] = g_phi[g_tid -1];
330 if (g_tid == nn -1) sh_phi[sh_tid] = g_phi[g_tid];
331 }
332 __syncthreads ();
333

334 // calculate electric fields in interior points
335 if (g_tid < nn - 1) {
336 reg_E = (sh_phi[sh_tid -1]- sh_phi[sh_tid +1])/(2.0* ds);
337 }
338 __syncthreads ();
339

340 // store electric fields of interior points in global memory
341 if (g_tid < nn - 1) g_E[g_tid] = reg_E;
342

343 // calculate electric fields at proble and plasma
344 if (g_tid == nn -1) {
345 reg_E = (sh_phi[sh_tid -1]- sh_phi[sh_tid])/ds;
346 g_E[g_tid] = reg_E;
347 } else if (g_tid == 1) {
348 reg_E = (sh_phi[sh_tid -1]- sh_phi[sh_tid])/ds;
349 g_E[g_tid -1] = reg_E;
350 }
351

352 return;
353 }

Code C.4: CUPIC1D2V_CP source file mesh.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef MESH_H
10 # define MESH_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15 # include "init.h"
16 # include "dynamic_sh_mem.h"
17 # include "cuda.h"
18

19 /* *************************************** SIMBOLIC CONSTANTS ** */
20

21 # define CHARGE_DEP_BLOCK_DIM 512 // block dimension for particle2grid kernel
22 # define JACOBI_BLOCK_DIM 128 // block dimension for jacovi_iteration kernel
23

24 /* *************************************** FUNCTION PROTOTIPES *************************************** */
25

26 // host function
27 void charge_deposition(double *d_rho , double *d_phi , particle *d_i , int num_i);
28 void poisson_solver(double max_error , double *d_rho , double *d_phi);
29 void field_solver(double *d_phi , double *d_E);
30

31 // device kernels
32 __global__ void particle_to_grid(int nn, double ds , double l_p , double r_p , double theta ,
33 double *g_rho , particle *g_p , int num_p , double q);
34 __global__ void virtual_to_grid(int nn, double ds , double l_p , double r_p , double theta , double *g_rho ,
35 double *g_phi , double n, double q);
36 __global__ void jacobi_iteration (int nn , double ds, double r_p , double epsilon0 , double *g_rho ,
37 double *g_phi , double *g_error);
38 __global__ void field_derivation (int nn , double ds, double *g_phi , double *g_E);
39

40 // device functions
41

42 #endif

Code C.5: CUPIC1D2V_CP source file mesh.h

186

Chapter C. CUPIC1D2V_CP sources

C.4. Particles module

This is the module that manage the particles motion. It includes the field weighting algorithm as well
as the particle mover, i. e. leap-frog algorithm. (sources: particles.cu, particles.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */
10

11 # include "particles.h"
12

13 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
14

15 void particle_mover(particle *d_i , int num_i , double *d_E)
16 {
17 /* -------------------------------------- function variables ---------------------------------------*/
18 // host memory
19 static const double me = init_me (); // electron ’s mass
20 static const double mi = init_mi (); // ion’s mass
21 static const double qe = init_qe (); // electron ’s charge
22 static const double qi = init_qi (); // ions’s charge
23 static const double ds = init_ds (); // spatial step
24 static const double r_p = init_r_p (); // spatial step
25 static const double dt = init_dt (); // time step
26 static const int nn = init_nn (); // number of nodes
27

28 dim3 griddim , blockdim;
29 size_t sh_mem_size;
30

31 // device memory
32

33 /* -- function body --*/
34

35 // set size of __shared__ memory for leap_frog kernel
36 sh_mem_size = nn*sizeof(double);
37

38 // ---- move ions
39

40 // set dimensions of grid of blocks and blocks of threads for leap_frog kernel
41 blockdim = PAR_MOV_BLOCK_DIM;
42 griddim = int(num_i/PAR_MOV_BLOCK_DIM)+1;
43

44 // call to leap_frog_step kernel (ions)
45 cudaGetLastError ();
46 leap_frog_step <<<griddim , blockdim , sh_mem_size >>>(qi , mi , num_i , d_i , dt , ds , r_p , nn , d_E);
47 cu_sync_check(__FILE__ , __LINE__);
48

49 return;
50 }
51

52 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
53

54 __global__ void leap_frog_step(double q, double m, int num_p , particle *g_p , double dt, double ds,
55 double r_p , int nn , double *g_E)
56 {
57 /* --------------------------------------- kernel variables --*/
58 // kernel shared memory
59 double *sh_E = (double *) sh_mem; // manually set up shared memory variables
60

61 // kernel registers
62 int tidx = (int) threadIdx.x;
63 int tid = (int) threadIdx.x + (int) blockDim.x * (int) blockIdx.x; // thread Id
64 int bdim = (int) blockDim.x; // block dimension
65 particle reg_p; // register particles
66 int ic; // cell index
67 double dist; // distance from particle to nearest down vertex (normalized to ds)
68 double F; // force suffered for each register particle
69 double dummy_r; // intermediate new position
70

71 /* --- kernel body ---*/
72

73 // ---- initialize shared memory variables
74

75 // load fields from global memory
76 for (int i = tidx; i<nn; i += bdim) {
77 sh_E[i] = g_E[i];
78 }
79 __syncthreads ();
80

81 // ---- Process batches of particles

187

C.5. Boundary conditions module

82

83 if (tid < num_p) {
84 // load particle data in registers
85 reg_p = g_p[tid];
86

87 // find cell index
88 ic = __double2int_rd(reg_p.r/ds);
89

90 // evaluate distance to nearest down vertex (normalized to ds)
91 dist = fabs(reg_p.r-ic*ds)/ds;
92

93 // calculate particle ’s forces
94 F = q*(sh_E[ic]*(1.0 - dist) + sh_E[ic+1]* dist)+m*reg_p.vt*reg_p.vt/(reg_p.r+r_p);
95

96 // move particles
97 reg_p.vr += dt*F/m;
98 dummy_r = reg_p.r + dt*reg_p.vr;
99 reg_p.vt *= (reg_p.r+r_p)/(dummy_r+r_p);

100 reg_p.r = dummy_r;
101

102 // store particle data in global memory
103 g_p[tid] = reg_p;
104 }
105

106 return;
107 }

Code C.6: CUPIC1D2V_CP source file particles.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef PARTICLES_H
10 # define PARTICLES_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15 # include "init.h"
16 # include "diagnostic.h"
17 # include "dynamic_sh_mem.h"
18 # include "cuda.h"
19

20 /* *************************************** SIMBOLIC CONSTANTS ** */
21

22 # define PAR_MOV_BLOCK_DIM 512 // block dimension for defragmentation kernel
23

24 /* *************************************** FUNCTION PROTOTIPES *************************************** */
25

26 // host function
27 void particle_mover(particle *d_i , int num_i , double *d_E);
28

29 // device kernels
30 __global__ void leap_frog_step(double q, double m, int num_p , particle *g_p , double dt, double ds,
31 double r_p , int nn , double *g_E);
32

33 // device functions
34

35 #endif

Code C.7: CUPIC1D2V_CP source file particles.h

C.5. Boundary conditions module

This is the module that takes care for the influx of particles coming from the plasma, as well as the
absorption of particles at both boundaries. (sources: cc.cu, cc.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* *** HEADERS *** */

188

Chapter C. CUPIC1D2V_CP sources

10

11 # include "cc.h"
12

13 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
14

15 void cc (double t, int *num_i , particle **d_i , double *dtin_i , double *vd_i , double *q_pi ,
16 double *d_phi , double *d_E , curandStatePhilox4_32_10_t *state)
17 {
18 /* -------------------------------------- function variables ---------------------------------------*/
19 // host memory
20 static const double me = init_me (); //
21 static const double mi = init_mi (); //
22 static const double kte = init_kte (); // particle
23 static const double kti = init_kti (); // properties
24 static const double vd_e = init_vd_e (); //
25

26 static const double r_p = init_r_p (); // probe radius
27 static const double theta = init_theta_p (); // angular amplitude of the simulation
28 static const bool fp_is_on = floating_potential_is_on (); // probe is floating or not
29 static const bool flux_cal_on = flux_calibration_is_on (); // ion flux calibration is activated or not
30 static const int nc = init_nc (); // number of cells
31 static const double ds = init_ds (); // spatial step
32 static const double epsilon0 = init_epsilon0 (); // epsilon0 in simulation units
33

34 static double tin_i = t+(* dtin_i); // time for next ion insertion
35

36 static double q_p = 0.0; // net charge acumulated by the probe (not reseted)
37 double phi_s = -0.5*mi*(* vd_i)*(* vd_i); // potential at sheath edge
38 double dummy_phi_p; // dummy probe potential
39

40 cudaError cuError; // cuda error variable
41

42 // device memory
43

44 /* -- function body --*/
45

46 // ---- ions contour conditions
47 abs_emi_cc(t, &tin_i , *dtin_i , kti , mi, *vd_i , +1.0, q_pi , num_i , d_i , d_E , state);
48

49 // ---- actualize probe potential because of the change in charge collected by the probe
50 if (fp_is_on) {
51 q_p += *q_pi;
52 dummy_phi_p = q_p /(2.0* theta*epsilon0*r_p);
53 if (dummy_phi_p > phi_s) dummy_phi_p = phi_s;
54 cuError = cudaMemcpy (&d_phi [0], &dummy_phi_p , sizeof(double), cudaMemcpyHostToDevice);
55 cu_check(cuError , __FILE__ , __LINE__);
56 }
57

58 // ---- actulize ion drift velocity if calibration is on
59 if (flux_cal_on) {
60 calibrate_ion_flux(vd_i , dtin_i , d_E , d_phi);
61 }
62

63 return;
64 }
65

66 void abs_emi_cc(double t, double *tin , double dtin , double kt, double m, double vd, double q,
67 double *q_p , int *h_num_p , particle **d_p , double *d_E ,
68 curandStatePhilox4_32_10_t *state)
69 {
70 /* -------------------------------------- function variables ---------------------------------------*/
71 // host memory
72 static const double L = init_L (); //
73 static const double r_p = init_r_p (); // geometric properties
74 static const double ds = init_ds (); // of simulation
75 static const int nn = init_nn (); //
76

77 static const double dt = init_dt (); //
78 double fpt = t+dt; // timing variables
79 double fvt = t+0.5*dt; //
80

81 int in = 0; // number of particles added at plasma frontier
82 int h_num_abs_p; // host number of particles absorved at the probe
83

84 double dv; //
85 int i; // variables for
86 double xmax , ymax , y1 , y2; // rejection method
87 double vth = sqrt(kt/m); //
88

89 cudaError cuError; // cuda error variable
90 dim3 griddim , blockdim; // kernel execution configurations
91

92 // device memory
93 int *d_num_p; // device number of particles
94 int *d_num_abs_p; // device number of particles absorved at the probe
95 particle *d_dummy_p; // device dummy vector for particle storage
96

189

C.5. Boundary conditions module

97 /* -- function body --*/
98

99 // calculate number of particles that flow into the simulation
100 if((* tin) < fpt) in = 1 + int((fpt -(* tin))/ dtin);
101

102 // copy number of particles from host to device
103 cuError = cudaMalloc ((void **) &d_num_p , sizeof(int));
104 cu_check(cuError , __FILE__ , __LINE__);
105 cuError = cudaMemcpy (d_num_p , h_num_p , sizeof(int), cudaMemcpyHostToDevice);
106 cu_check(cuError , __FILE__ , __LINE__);
107

108 // initialize number of particles absorbed at the probe
109 cuError = cudaMalloc ((void **) &d_num_abs_p , sizeof(int));
110 cu_check(cuError , __FILE__ , __LINE__);
111 cuError = cudaMemset ((void *) d_num_abs_p , 0, sizeof(int));
112 cu_check(cuError , __FILE__ , __LINE__);
113

114 // execution configuration for particle remover kernel
115 griddim = 1;
116 blockdim = P_RMV_BLK_SZ;
117

118 // execute particle remover kernel
119 cudaGetLastError ();
120 pRemover <<<griddim , blockdim >>>(*d_p , d_num_p , L, d_num_abs_p);
121 cu_sync_check(__FILE__ , __LINE__);
122

123 // copy number of particles absorbed at the probe from device to host (and free device memory)
124 cuError = cudaMemcpy (& h_num_abs_p , d_num_abs_p , sizeof(int), cudaMemcpyDeviceToHost);
125 cu_check(cuError , __FILE__ , __LINE__);
126 cuError = cudaFree(d_num_abs_p);
127 cu_check(cuError , __FILE__ , __LINE__);
128

129 // actualize probe acumulated charge
130 *q_p += q*h_num_abs_p;
131

132 // copy new number of particles from device to host (and free device memory)
133 cuError = cudaMemcpy (h_num_p , d_num_p , sizeof(int), cudaMemcpyDeviceToHost);
134 cu_check(cuError , __FILE__ , __LINE__);
135 cuError = cudaFree(d_num_p);
136 cu_check(cuError , __FILE__ , __LINE__);
137

138 // resize of particle vector with new number of particles
139 cuError = cudaMalloc ((void **) &d_dummy_p , ((* h_num_p)+in)* sizeof(particle));
140 cu_check(cuError , __FILE__ , __LINE__);
141 cuError = cudaMemcpy(d_dummy_p , *d_p , (* h_num_p)* sizeof(particle), cudaMemcpyDeviceToDevice);
142 cu_check(cuError , __FILE__ , __LINE__);
143 cuError = cudaFree (*d_p);
144 cu_check(cuError , __FILE__ , __LINE__);
145 cuError = cudaMalloc ((void **) d_p , ((* h_num_p)+in)* sizeof(particle));
146 cu_check(cuError , __FILE__ , __LINE__);
147 cuError = cudaMemcpy (*d_p , d_dummy_p , (* h_num_p)* sizeof(particle), cudaMemcpyDeviceToDevice);
148 cu_check(cuError , __FILE__ , __LINE__);
149 cuError = cudaFree(d_dummy_p);
150 cu_check(cuError , __FILE__ , __LINE__);
151

152 // add particles
153 if (in != 0) {
154 // prepare rejection algorithm for particle velocity generation in case it’s needed
155 if (vd != 0.0 && vth != 0.0) {
156 dv = (vth >fabs(vd)) ? vth /100.0 : fabs(vd)/100.0;
157 i = 0;
158 y1 = host_vdf(double(i)*dv, vth , fabs(vd));
159 do {
160 y2 = host_vdf(double(i+1)*dv , vth , fabs(vd));
161 ymax = (y1 >y2) ? y1 : y2;
162 i++;
163 y1 = y2;
164 } while (ymax==y2);
165 do {
166 y2 = host_vdf(double(i+1)*dv , vth , fabs(vd));
167 i++;
168 } while (y2 >0.001* ymax);
169 ymax *= 1.05;
170 xmax = double(i)*dv;
171 }
172

173 // execution configuration for pEmi kernel
174 griddim = 1;
175 blockdim = CURAND_BLOCK_DIM;
176

177 // launch kernel to add particles
178 cudaGetLastError ();
179 pEmi <<<griddim , blockdim >>>(*d_p , *h_num_p , in , d_E , vth , vd , q/m, nn , L, r_p , fpt , fvt , *tin ,
180 dtin , xmax , ymax , state);
181 cu_sync_check(__FILE__ , __LINE__);
182

183 // actualize time for next particle insertion

190

Chapter C. CUPIC1D2V_CP sources

184 (*tin) += double(in)*dtin;
185

186 // actualize number of particles
187 *h_num_p += in;
188 }
189

190 return;
191 }
192

193 void calibrate_ion_flux(double *vd_i , double *dtin_i , double *d_E , double *d_phi)
194 {
195 /* -------------------------------------- function variables ---------------------------------------*/
196 // host memory
197 static const double n = init_n ();
198 static const double l_p = init_l_p ();
199 static const double r_p = init_r_p ();
200 static const double theta = init_theta_p ();
201 static const double L = init_L ();
202 static const double mi = init_mi ();
203 static const double kti = init_kti ();
204 static const double me = init_me ();
205 static const double kte = init_kte ();
206 static const double vd_e = init_vd_e ();
207 static const int nn = init_nn ();
208

209 double phi_s , E_s , E_cs;
210 static const double increment = init_increment ();
211

212 cudaError cuError; // cuda error variable
213

214 // device memory
215

216 /* -- function body --*/
217

218 // ---- Actualize ion drift velocity acording to the value of electric field at plasma frontier
219

220 // copy field from device to host memory
221 cuError = cudaMemcpy (&E_s , &d_E[nn -1], sizeof(double), cudaMemcpyDeviceToHost);
222 cu_check(cuError , __FILE__ , __LINE__);
223

224 // evaluate theoretical field
225 phi_s = -0.5*mi*(* vd_i)*(* vd_i);
226 E_cs = (2./L)*((phi_s -2.* kti)*exp (2.* phi_s)+2.* kti*exp (3.* phi_s))/((1.+2.* phi_s -4.* kti)*exp (2.* phi_s)+
227 6.* kti*exp (3.* phi_s));
228

229 // actualize ion drift velocity
230 if (E_s <E_cs && *vd_i > -1.0/ sqrt(mi)) {
231 *vd_i -= increment;
232 } else if (E_s >E_cs && *vd_i <0.0) {
233 *vd_i += increment;
234 }
235

236 // actualize sheath edge potential
237 phi_s = -0.5*mi*(* vd_i)*(* vd_i);
238 cuError = cudaMemcpy (& d_phi[nn -1], &phi_s , sizeof(double), cudaMemcpyHostToDevice);
239 cu_check(cuError , __FILE__ , __LINE__);
240

241 // ---- Actualize time between ion/electron insertions
242 *dtin_i = n*sqrt(kti /(2.0* PI*mi))*exp(-0.5*mi*(* vd_i)*(* vd_i)/kti); // thermal input flux
243 *dtin_i += 0.5*n*(-(* vd_i))*(1.0+ erf(sqrt (0.5* mi/kti)*(-(* vd_i)))); // drift input flux
244 *dtin_i *= exp(phi_s); // density fix sheath edge
245 *dtin_i *= (r_p+L)* theta*l_p; // number of particles that enter the simulation per unit of time
246 *dtin_i = 1.0/(* dtin_i); // time between consecutive particles injection
247

248 return;
249 }
250

251 inline double host_vdf(double v, double vth , double vd)
252 {
253 /* -------------------------------------- function variables ---------------------------------------*/
254 // host variables definition
255

256 // device variables definition
257

258 /* -- function body --*/
259

260 return v*exp(-(v-vd)*(v-vd)/(2.0* vth*vth));
261 }
262

263 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
264

265 __global__ void pEmi(particle *g_p , int num_p , int n_in , double *g_E , double vth , double vd , double qm,
266 int nn, double L, double r_p , double fpt , double fvt , double tin , double dtin ,
267 double xmax , double ymax , curandStatePhilox4_32_10_t *state)
268 {
269 /* --------------------------------------- kernel variables --*/
270 // kernel shared memory

191

C.5. Boundary conditions module

271 __shared__ double sh_E;
272

273 // kernel registers
274 particle reg_p;
275 int tid = (int) threadIdx.x + (int) blockIdx.x * (int) blockDim.x;
276 int tpb = (int) blockDim.x;
277 curandStatePhilox4_32_10_t local_state;
278 double2 rnd;
279 double dummy_r;
280

281 /* --- kernel body ---*/
282

283 // ---- initialize shared memory
284 if (tid == 0) sh_E = g_E[nn -1];
285 __syncthreads ();
286

287 // ---- initialize registers
288 local_state = state[tid];
289 __syncthreads ();
290

291 // ---- generate particles
292 for (int i = tid; i < n_in; i+=tpb) {
293 // generate register particles position
294 reg_p.r = L;
295 // generate register particles radial velocity
296 if (vd == 0.0) {
297 rnd = curand_normal2_double (& local_state);
298 reg_p.vr = -sqrt(rnd.x*rnd.x+rnd.y*rnd.y)*vth;
299 } else if (vth != 0.0) {
300 do {
301 rnd = curand_uniform2_double (& local_state);
302 rnd.x *= xmax;
303 rnd.y *= ymax;
304 } while (rnd.y > device_vdf(rnd.x, vth , fabs(vd)));
305 reg_p.vr = copysignf(rnd.x, vd);
306 } else {
307 reg_p.vr = vd;
308 }
309

310 // generate register particles tangential velocity
311 rnd = curand_normal2_double (& local_state);
312 reg_p.vt = rnd.x*vth;
313

314 // simple push
315 dummy_r = reg_p.r + (fpt -(tin+double(i)*dtin))* reg_p.vr;
316 reg_p.vt *= reg_p.r/dummy_r;
317 reg_p.r = dummy_r;
318 reg_p.vr += (fvt -(tin+double(i)*dtin))*(sh_E*qm+reg_p.vt*reg_p.vt/(L+r_p));
319

320 // store new particles in global memory
321 g_p[num_p+i] = reg_p;
322 }
323 __syncthreads ();
324

325 // ---- store local state in global memory
326 state[tid] = local_state;
327

328 return;
329 }
330

331 __global__ void pRemover (particle *g_p , int *g_num_p , double L, int *g_num_abs_p)
332 {
333 /* --------------------------------------- kernel variables --*/
334 // kernel shared memory
335 __shared__ int sh_tail;
336 __shared__ int sh_num_abs_p;
337

338 // kernel registers
339 int tid = (int) threadIdx.x;
340 int bdim = (int) blockDim.x;
341 int N = *g_num_p;
342 int ite = (N/bdim)*bdim;
343 int reg_tail;
344 particle reg_p;
345

346 /* --- kernel body ---*/
347

348 // ---- initialize shared memory
349 if (tid == 0) {
350 sh_tail = 0;
351 sh_num_abs_p = 0;
352 }
353 __syncthreads ();
354

355 // ---- analize full batches of particles
356 for (int i = tid; i<ite; i+=bdim) {
357 // load particles from global memory to registers

192

Chapter C. CUPIC1D2V_CP sources

358 reg_p = g_p[i];
359

360 // analize particle
361 if (reg_p.r >= 0 && reg_p.r <= L) {
362 reg_tail = atomicAdd (&sh_tail , 1);
363 } else {
364 reg_tail = -1;
365 if (reg_p.r < 0.0) atomicAdd (& sh_num_abs_p , 1);
366 }
367 __syncthreads ();
368

369 // store accepted particles in global memory
370 if (reg_tail >= 0) g_p[reg_tail] = reg_p;
371

372 __syncthreads ();
373 }
374 __syncthreads ();
375

376 // ---- analize last batch of particles
377 if (ite+tid < N) {
378 // loag particles from global memory to registers
379 reg_p = g_p[ite+tid];
380

381 // analize particle
382 if (reg_p.r >= 0 && reg_p.r <= L) {
383 reg_tail = atomicAdd (&sh_tail , 1);
384 } else {
385 reg_tail = -1;
386 if (reg_p.r < 0.0) atomicAdd (& sh_num_abs_p , 1);
387 }
388 }
389 __syncthreads ();
390

391 // store accepted particles of last batch in global memory
392 if (ite+tid < N && reg_tail >= 0) g_p[reg_tail] = reg_p;
393

394 // store new number of particles in global memory
395 if (tid == 0) {
396 *g_num_p = sh_tail;
397 *g_num_abs_p = sh_num_abs_p;
398 }
399

400 return;
401 }
402

403 __device__ inline double device_vdf(double v, double vth , double vd)
404 {
405 /* --------------------------------------- kernel variables --*/
406

407 /* --- kernel body ---*/
408

409 return v*exp(-(v-vd)*(v-vd)/(2.0* vth*vth));
410 }

Code C.8: CUPIC1D2V_CP source file cc.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef CC_H
10 # define CC_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15 # include "init.h"
16 # include "random.h"
17 # include "diagnostic.h"
18 # include "cuda.h"
19 # include "dynamic_sh_mem.h"
20

21 /* *************************************** SIMBOLIC CONSTANTS ** */
22

23 # define P_RMV_BLK_SZ 1024 // block dimension for particle remover kernel
24

25 /* *************************************** FUNCTION PROTOTIPES *************************************** */
26 // host function
27 void cc(double t, int *num_i , particle **d_i , double *dtin_i , double *vd_i , double *q_pi ,
28 double *d_phi , double *d_E , curandStatePhilox4_32_10_t *state);
29 void abs_emi_cc(double t, double *tin , double dtin , double kt, double m, double vd, double q,
30 double *q_p , int *h_num_p , particle **d_p , double *d_E ,
31 curandStatePhilox4_32_10_t *state);

193

C.6. Diagnostic

32 void calibrate_ion_flux(double *vd_i , double *dtin_i , double *d_E , double *d_phi);
33 inline double host_vdf(double v, double vth , double vd);
34

35 // device kernels
36 __global__ void pEmi(particle *g_p , int num_p , int n_in , double *g_E , double vth , double vd , double qm ,
37 int nn, double L, double r_p , double fpt , double fvt , double tin , double dtin ,
38 double xmax , double ymax , curandStatePhilox4_32_10_t *state);
39 __global__ void pRemover(particle *g_p , int *g_num_p , double L, int *g_num_abs_p);
40

41 // device functions
42 __device__ inline double device_vdf(double v, double vth , double vd);
43

44 #endif

Code C.9: CUPIC1D2V_CP source file cc.h

C.6. Diagnostic

This is the module that contains all the functions and algorithms that analyse raw data from the
simulation on the fly, it also saves data into files for its subsequent analysis. (sources: diagnostic.cu,
diagnostic.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 /* --------------------------------------- kernel variables --*/
10 /* --- kernel body ---*/
11

12 /* *** HEADERS *** */
13

14 # include "diagnostic.h"
15

16 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
17

18 void avg_mesh(double *d_foo , double *d_avg_foo , int *count)
19 {
20 /* -------------------------------------- function variables ---------------------------------------*/
21 // host memory
22 static const int nn = init_nn (); // number of nodes
23 static const int n_save = init_n_save (); // number of iterations to average
24

25 dim3 griddim , blockdim;
26 cudaError_t cuError;
27

28 // device memory
29

30 /* -- function body --*/
31

32 // check if restart of avg_foo is needed
33 if (*count == n_save) {
34 // reset count
35 *count = 0;
36

37 // reset avg_foo
38 cuError = cudaMemset ((void *) d_avg_foo , 0, nn*sizeof(double));
39 cu_check(cuError , __FILE__ , __LINE__);
40 }
41

42 // set dimensions of grid of blocks and block of threads for kernels
43 blockdim = AVG_MESH_BLOCK_DIM;
44 griddim = int(nn/AVG_MESH_BLOCK_DIM)+1;
45

46 // call to mesh_sum kernel
47 cudaGetLastError ();
48 mesh_sum <<<griddim , blockdim >>>(d_foo , d_avg_foo , nn);
49 cu_sync_check(__FILE__ , __LINE__);
50

51 // actualize count
52 *count += 1;
53

54 // normalize average if reached desired number of iterations
55 if (*count == n_save) {
56 cudaGetLastError ();
57 mesh_norm <<<griddim , blockdim >>>(d_avg_foo , (double) n_save , nn);
58 cu_sync_check(__FILE__ , __LINE__);
59 }

194

Chapter C. CUPIC1D2V_CP sources

60

61 return;
62 }
63

64 void eval_df(double *d_avg_ddf , double *d_avg_vdf , double vmax , double vmin , particle *d_p , int num_p , int *count)
65 {
66 /* -------------------------------------- function variables ---------------------------------------*/
67 // host memory
68 static const int n_bin_ddf = init_n_bin_ddf (); // number of bins for density distribution functions
69 static const int n_bin_vdf = init_n_bin_vdf (); // number of bins for velocity distribution functions
70 static const int n_vdf = init_n_vdf (); // number of velocity distribution functions
71 static const int n_save = init_n_save (); // number of iterations to average
72 static const double L = init_L (); // lenght of simulation
73

74 dim3 griddim , blockdim;
75 size_t sh_mem_size;
76 cudaError_t cuError;
77

78 // device memory
79

80 /* -- function body --*/
81

82 // check if restart of distribution functions is needed
83 if (* count == n_save) {
84 //reset count
85 *count = 0;
86

87 // reset averaged distribution functions
88 cuError = cudaMemset ((void *) d_avg_ddf , 0, n_bin_ddf*sizeof(double));
89 cu_check(cuError , __FILE__ , __LINE__);
90 cuError = cudaMemset ((void *) d_avg_vdf , 0, n_bin_vdf*n_vdf*sizeof(double));
91 cu_check(cuError , __FILE__ , __LINE__);
92 }
93

94 // set dimensions of grid of blocks and block of threads for kernel and shared memory size
95 blockdim = PARTICLE2DF_BLOCK_DIM;
96 griddim = int(num_p/PARTICLE2DF_BLOCK_DIM) + 1;
97 sh_mem_size = sizeof(int)*(n_bin_ddf +(n_bin_vdf +1)* n_vdf);
98

99 // call to particle2df kernel
100 cudaGetLastError ();
101 particle2df <<<griddim , blockdim , sh_mem_size >>>(d_avg_ddf , n_bin_ddf , L, d_avg_vdf , n_vdf ,
102 n_bin_vdf , vmax , vmin , d_p , num_p);
103 cu_sync_check(__FILE__ , __LINE__);
104

105 // actualize count
106 *count += 1;
107

108 // normalize average if reached desired number of iterations
109 //if (* count == n_save) {
110 // cudaGetLastError ();
111 //kernel <<<griddim , blockdim >>>();
112 // cu_sync_check(__file__ , __line__);
113 //}
114

115 return;
116 }
117

118 double eval_particle_energy(double *d_phi , particle *d_p , double m, double q, int num_p)
119 {
120 /* -------------------------------------- function variables ---------------------------------------*/
121 // host memory
122 static const int nn = init_nn (); // number of nodes
123 static const double ds = init_ds (); // spacial step
124 double *h_partial_U; // partial energy of each block
125 double h_U = 0.0; // total energy of particle system
126

127 dim3 griddim , blockdim;
128 size_t sh_mem_size;
129 cudaError_t cuError;
130

131 // device memory
132 double *d_partial_U;
133

134 /* -- function body --*/
135

136 // set execution configuration of the kernel that evaluates energy
137 blockdim = ENERGY_BLOCK_DIM;
138 griddim = int(num_p/ENERGY_BLOCK_DIM)+1;
139

140 // allocate host and device memory for block ’s energy
141 cuError = cudaMalloc ((void **) &d_partial_U , griddim.x*sizeof(double));
142 cu_check(cuError , __FILE__ , __LINE__);
143 h_partial_U = (double *) malloc(griddim.x*sizeof(double));
144

145 // define size of shared memory for energy_kernel
146 sh_mem_size = (ENERGY_BLOCK_DIM+nn)* sizeof(double);

195

C.6. Diagnostic

147

148 // launch kernel to evaluate energy of the whole system
149 cudaGetLastError ();
150 energy_kernel <<<griddim , blockdim , sh_mem_size >>>(d_partial_U , d_phi , nn , ds , d_p , m, q, num_p);
151 cu_sync_check(__FILE__ , __LINE__);
152

153 // copy sistem energy from device to host
154 cuError = cudaMemcpy (h_partial_U , d_partial_U , griddim.x*sizeof(double), cudaMemcpyDeviceToHost);
155 cu_check(cuError , __FILE__ , __LINE__);
156

157 // reduction of block ’s energy
158 for (int i = 0; i<griddim.x; i++) h_U += h_partial_U[i];
159

160 //free host and device memory for block ’s energy
161 cuError = cudaFree(d_partial_U);
162 cu_check(cuError , __FILE__ , __LINE__);
163 free(h_partial_U);
164

165 return h_U;
166 }
167

168 void particles_snapshot(particle *d_p , int num_p , string filename)
169 {
170 /* -------------------------------------- function variables ---------------------------------------*/
171 // host memory
172 particle *h_p;
173 FILE *pFile;
174 cudaError_t cuError;
175

176 // device memory
177

178 /* -- function body --*/
179

180 // allocate host memory for particle vector
181 h_p = (particle *) malloc(num_p*sizeof(particle));
182

183 // copy particle vector from device to host
184 cuError = cudaMemcpy (h_p , d_p , num_p*sizeof(particle), cudaMemcpyDeviceToHost);
185 cu_check(cuError , __FILE__ , __LINE__);
186

187 // save snapshot to file
188 filename.append(".dat");
189 pFile = fopen(filename.c_str(), "w");
190 for (int i = 0; i < num_p; i++) {
191 fprintf(pFile , "␣%.17e␣%.17e␣%.17e␣\n", h_p[i].r, h_p[i].vr, h_p[i].vt);
192 }
193 fclose(pFile);
194

195 // free host memory
196 free(h_p);
197

198 return;
199 }
200

201 void save_mesh(double *d_m , string filename)
202 {
203 /* -------------------------------------- function variables ---------------------------------------*/
204 // host memory
205 static const int nn = init_nn ();
206 double *h_m;
207 FILE *pFile;
208 cudaError_t cuError;
209

210 // device memory
211

212 /* -- function body --*/
213

214 // allocate host memory for mesh vector
215 h_m = (double *) malloc(nn*sizeof(double));
216

217 // copy particle vector from device to host
218 cuError = cudaMemcpy (h_m , d_m , nn*sizeof(double), cudaMemcpyDeviceToHost);
219 cu_check(cuError , __FILE__ , __LINE__);
220

221 // save snapshot to file
222 filename.append(".dat");
223 pFile = fopen(filename.c_str(), "w");
224 for (int i = 0; i < nn; i++) {
225 fprintf(pFile , "␣%d␣%.17e␣\n", i, h_m[i]);
226 }
227 fclose(pFile);
228

229 // free host memory
230 free(h_m);
231

232 return;
233 }

196

Chapter C. CUPIC1D2V_CP sources

234

235 void save_ddf(double *d_avg_ddf , string filename)
236 {
237 /* -------------------------------------- function variables ---------------------------------------*/
238 // host memory
239 static const double l_p = init_l_p (); // probe lenght
240 static const double theta_p = init_theta_p (); // probe angular amplitude
241 static const double r_p = init_r_p (); // probe radius
242 static const double L = init_L (); // size of simulation
243 static const int n_bin_ddf = init_n_bin_ddf (); // number of bins of ddf
244 static const double bin_size = L/double(n_bin_ddf); // size of each bin
245

246 double *h_avg_ddf; // host memory for ddf
247

248 FILE *pFile;
249 cudaError_t cuError;
250

251 // device memory
252

253 /* -- function body --*/
254

255 // allocate host memory for ddf
256 h_avg_ddf = (double *) malloc(n_bin_ddf*sizeof(double));
257

258 // copy ddf from device to host
259 cuError = cudaMemcpy (h_avg_ddf , d_avg_ddf , n_bin_ddf*sizeof(double), cudaMemcpyDeviceToHost);
260 cu_check(cuError , __FILE__ , __LINE__);
261

262 // save bins to file
263 filename.append(".dat");
264 pFile = fopen(filename.c_str(), "w");
265 for (int i = 0; i < n_bin_ddf; i++) {
266 double bin_pos = (double(i)+0.5)* bin_size+r_p;
267 fprintf(pFile , "␣%lf␣%lf␣\n", bin_pos , h_avg_ddf[i]/(l_p*bin_size*theta_p*bin_pos));
268 }
269 fclose(pFile);
270

271 //free host memory for particle vector
272 free(h_avg_ddf);
273

274 return;
275 }
276

277 void save_vdf(double *d_avg_vdf , double vmax , double vmin , string filename)
278 {
279 /* -------------------------------------- function variables ---------------------------------------*/
280 // host memory
281 static const double r_p = init_r_p (); // probe radius
282 static const double L = init_L (); // size of simulation
283 static const int n_vdf = init_n_vdf (); // number of vdfs
284 static const int n_bin_vdf = init_n_bin_vdf (); // number of bins of vdf
285 static const double r_bin_size = L/double(n_vdf); // size of spatial bins
286 const double v_bin_size = (vmax -vmin)/ n_bin_vdf; // size of velocity bins
287

288 double *h_avg_vdf; // host memory for ddf
289

290 FILE *pFile;
291 cudaError_t cuError;
292

293 // device memory
294

295 /* -- function body --*/
296

297 // allocate host memory for vdf
298 h_avg_vdf = (double *) malloc(n_vdf*n_bin_vdf*sizeof(double));
299

300 // copy vdf from device to host
301 cuError = cudaMemcpy (h_avg_vdf , d_avg_vdf , n_vdf*n_bin_vdf*sizeof(double), cudaMemcpyDeviceToHost);
302 cu_check(cuError , __FILE__ , __LINE__);
303

304 // save bins to file
305 filename.append(".dat");
306 pFile = fopen(filename.c_str(), "w");
307 for (int i = 0; i < n_vdf; i++) {
308 double bin_pos = (double(i)+0.5)* r_bin_size+r_p;
309 for (int j = 0; j < n_bin_vdf; j++) {
310 double bin_vel = (double(j)+0.5)* v_bin_size+vmin;
311 fprintf(pFile , "␣%g␣%g␣%g␣\n", bin_pos , bin_vel , h_avg_vdf[j+n_bin_vdf*i]);
312 }
313 fprintf(pFile , "\n");
314 }
315 fclose(pFile);
316

317 //free host memory for particle vector
318 free(h_avg_vdf);
319

320 return;

197

C.6. Diagnostic

321 }
322

323 void save_log(double t, int num_i , double U_i , double *q_pi , double vd_i , double *d_phi)
324 {
325 /* -------------------------------------- function variables ---------------------------------------*/
326 // host memory
327 double dummy_phi_p;
328 string filename = "../ output/log.dat";
329 FILE *pFile;
330

331 cudaError cuError; // cuda error variable
332

333 // device memory
334

335 /* -- function body --*/
336

337 // copy probe ’s potential from device to host memory
338 cuError = cudaMemcpy (& dummy_phi_p , &d_phi [0], sizeof(double), cudaMemcpyDeviceToHost);
339 cu_check(cuError , __FILE__ , __LINE__);
340

341 // save log to file
342 pFile = fopen(filename.c_str(), "a");
343 if (pFile == NULL) {
344 printf ("Error␣opening␣log␣file␣\n");
345 exit (1);
346 } else {
347 fprintf(pFile , "␣%.17e␣%d␣%.17e␣%.17e␣%.17e␣%.17e␣\n", t, num_i , U_i , *q_pi , vd_i , dummy_phi_p);
348 }
349 fclose(pFile);
350

351 // reset negative and positive current acumulated
352 *q_pi = 0.0;
353

354 return;
355 }
356

357 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
358

359 __global__ void mesh_sum(double *g_foo , double *g_avg_foo , int nn)
360 {
361 /* --------------------------------------- kernel variables --*/
362 // kernel shared memory
363

364 // kernel registers
365 double reg_foo , reg_avg_foo;
366

367 int tid = (int) (threadIdx.x + blockIdx.x * blockDim.x);
368

369 /* --- kernel body ---*/
370

371 // load data from global memory to registers
372 if (tid < nn) {
373 reg_foo = g_foo[tid];
374 reg_avg_foo = g_avg_foo[tid];
375 }
376 __syncthreads ();
377

378 // add foo to avg foo
379 if (tid < nn) {
380 reg_avg_foo += reg_foo;
381 }
382 __syncthreads ();
383

384 // store data y global memory
385 if (tid < nn) {
386 g_avg_foo[tid] = reg_avg_foo ;
387 }
388

389 return;
390 }
391

392 __global__ void mesh_norm(double *g_avg_foo , double norm_cst , int nn)
393 {
394 /* --------------------------------------- kernel variables --*/
395 // kernel shared memory
396

397 // kernel registers
398 double reg_avg_foo;
399

400 int tid = (int) (threadIdx.x + blockIdx.x * blockDim.x);
401

402 /* --- kernel body ---*/
403

404 // load data from global memory to registers
405 if (tid < nn) reg_avg_foo = g_avg_foo[tid];
406

407 // normalize avg foo

198

Chapter C. CUPIC1D2V_CP sources

408 if (tid < nn) reg_avg_foo /= norm_cst;
409 __syncthreads ();
410

411 // store data in global memory
412 if (tid < nn) g_avg_foo[tid] = reg_avg_foo ;
413

414 return;
415 }
416

417 __global__ void particle2df(double *g_avg_ddf , int n_bin_ddf , double L, double *g_avg_vdf , int n_vdf ,
418 int n_bin_vdf , double vmax , double vmin , particle *g_p , int num_p)
419 {
420 /* --------------------------------------- kernel variables --*/
421 // kernel shared memory
422 int *sh_ddf = (int *) sh_mem; // shared density distribution function
423 int *sh_vdf = &sh_ddf[n_bin_ddf]; // shared velocity distribution functions
424 int *sh_num_p_vdf = &sh_vdf[n_bin_vdf*n_vdf]; // shared number of partilces in each vdf
425

426 // kernel registers
427 particle reg_p;
428 int bin_index;
429 int vdf_index;
430 double bin_size;
431

432 int tidx = (int) threadIdx.x;
433 int bdim = (int) blockDim.x;
434 int tid = (int) (threadIdx.x + blockIdx.x * blockDim.x);
435

436 /* --- kernel body ---*/
437

438 // initialize shared memory
439 for (int i = tidx; i < n_bin_ddf +(n_bin_vdf +1)* n_vdf; i+=bdim) sh_ddf[i] = 0;
440 __syncthreads ();
441

442 // analize particles
443 if (tid < num_p) {
444 // load particle data from global memory to registers
445 reg_p = g_p[tid];
446

447 // add information to shared density distribution functions
448 bin_size = L/n_bin_ddf;
449 bin_index = __double2int_rd(reg_p.r/bin_size);
450 atomicAdd (& sh_ddf[bin_index], 1);
451

452 // add information to shared velocity distribution function
453 bin_size = L/n_vdf;
454 vdf_index = __double2int_rd(reg_p.r/bin_size);
455 bin_size = (vmax -vmin)/ double(n_bin_vdf);
456 bin_index = __double2int_rd ((reg_p.vr-vmin)/ bin_size);
457 if (bin_index < 0) {
458 bin_index = 0;
459 } else if (bin_index >= n_bin_vdf) {
460 bin_index = n_bin_vdf -1;
461 }
462 atomicAdd (& sh_vdf[bin_index+vdf_index*n_bin_vdf], 1);
463 atomicAdd (& sh_num_p_vdf[vdf_index], 1);
464 }
465

466 // syncronize threads to wait until all particles have been analized
467 __syncthreads ();
468

469 // normalize density distribution function and add it to global averaged one
470 for (int i = tidx; i < n_bin_ddf; i += bdim) {
471 atomicAdd (& g_avg_ddf[i], double(sh_ddf[i]));
472 }
473 __syncthreads ();
474

475 // normalize velocity distribution functions and add them to global averaged ones
476 for (int i = tidx; i < n_vdf*n_bin_vdf; i += bdim) {
477 if (sh_num_p_vdf[i/n_bin_vdf] != 0) {
478 atomicAdd (& g_avg_vdf[i], double(sh_vdf[i])/ double(sh_num_p_vdf[i/n_bin_vdf]));
479 }
480 }
481

482 return;
483 }
484

485 __global__ void energy_kernel(double *g_U , double *g_phi , int nn, double ds,
486 particle *g_p , double m, double q, int num_p)
487 {
488 /* --------------------------------------- kernel variables --*/
489 // kernel shared memory
490 double *sh_phi = (double *) sh_mem; // mesh potential
491 double *sh_U = &sh_phi[nn]; // acumulation of energy in each block
492

493 // kernel registers
494 int tid = (int) (threadIdx.x + blockIdx.x * blockDim.x);

199

C.6. Diagnostic

495 int tidx = (int) threadIdx.x;
496 int bid = (int) blockIdx.x;
497 int bdim = (int) blockDim.x;
498

499 int ic;
500 double dist;
501

502 particle reg_p;
503

504 /* --- kernel body ---*/
505

506 // load potential data from global to shared memory
507 for (int i = tidx; i < nn; i += bdim) {
508 sh_phi[i] = g_phi[i];
509 }
510

511 // initialize energy acumulation ’s variables
512 sh_U[tidx] = 0.0;
513 __syncthreads ();
514

515 // analize energy of each particle
516 if (tid < num_p) {
517 // load particle in registers
518 reg_p = g_p[tid];
519 // calculate what cell the particle is in
520 ic = __double2int_rd(reg_p.r/ds);
521 // calculate distances from particle to down vertex of the cell
522 dist = fabs(__int2double_rn(ic)*ds-reg_p.r)/ds;
523 // evaluate potential energy of particle
524 sh_U[tidx] = (sh_phi[ic]*(1.0 - dist)+ sh_phi[ic+1]* dist)*q;
525 // evaluate kinetic energy of particle
526 sh_U[tidx] += 0.5*m*(reg_p.vr*reg_p.vr+reg_p.vt*reg_p.vt);
527 }
528 __syncthreads ();
529

530 // reduction for obtaining total energy in current block
531 for (int stride = 1; stride < bdim; stride *= 2) {
532 if ((tidx%(stride *2) == 0) && (tidx+stride < bdim)) {
533 sh_U[tidx] += sh_U[tidx+stride];
534 }
535 __syncthreads ();
536 }
537

538 // store total energy of current block in global memory
539 if (tidx == 0) g_U[bid] = sh_U [0];
540

541 return;
542 }

Code C.10: CUPIC1D2V_CP source file diagnostic.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef DIAGNOSTIC_H
10 # define DIAGNOSTIC_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15 # include "init.h"
16 # include "cuda.h"
17

18 /* *************************************** SIMBOLIC CONSTANTS ** */
19

20 # define AVG_MESH_BLOCK_DIM 512 // block dimension for mesh_sum and mesh_norm
21 # define ENERGY_BLOCK_DIM 512 // block dimension for energy solver kernel
22 # define PARTICLE2DF_BLOCK_DIM 512 // block dimension for particle2df kernel
23

24 /* *************************************** FUNCTION PROTOTIPES *************************************** */
25 // host function
26 void avg_mesh(double *d_foo , double *d_avg_foo , int *count);
27 void eval_df(double *d_avg_ddf , double *d_avg_vdf , double vmax , double vmin , particle *d_p , int num_p ,
28 int *count);
29 double eval_particle_energy(double *d_phi , particle *d_p , double m, double q, int num_p);
30 void particles_snapshot(particle *d_p , int num_p , string filename);
31 void save_mesh(double *d_m , string filename);
32 void save_ddf(double *d_avg_ddf , string filename);
33 void save_vdf(double *d_avg_vdf , double vmax , double vmin , string filename);
34 void save_log(double t, int num_i , double U_i , double *q_pi , double vd_i , double *d_phi);
35

36 // device kernels

200

Chapter C. CUPIC1D2V_CP sources

37 __global__ void mesh_sum(double *g_foo , double *g_avg_foo , int nn);
38 __global__ void mesh_norm(double *g_avg_foo , double norm_cst , int nn);
39 __global__ void particle2df(double *g_avg_ddf , int n_bin_ddf , double L, double *g_avg_vdf , int n_vdf ,
40 int n_bin_vdf , double vmax , double vmin , particle *g_p , int num_p);
41 __global__ void energy_kernel(double *g_U , double *g_phi , int nn, double ds,
42 particle *g_p , double m, double q, int num_p);
43

44 // device functions
45

46 #endif

Code C.11: CUPIC1D2V_CP source file diagnostic.h

C.7. CUDA module

This module contains a few functions related to the use of the GPU including CUDA errors handling
and intrinsic function definitions. (sources: cuda.cu, cuda.h)

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8 /* *** HEADERS *** */
9

10 # include "cuda.h"
11

12 /* ************************************ HOST FUNCTION DEFINITIONS ************************************ */
13

14 void cu_check(cudaError_t cuError , const string file , const int line)
15 {
16 /* -------------------------------------- function variables ---------------------------------------*/
17

18 /* -- function body --*/
19

20 if (0 == cuError)
21 {
22 return;
23 } else
24 {
25 cout << "CUDA␣error␣found␣in␣file␣" << file << "␣at␣line␣" << line << ".␣(error␣code:␣" <<
26 cuError << ")" << endl;
27 cout << "Exiting␣simulation" << endl;
28 exit (1);
29 }
30 }
31

32 void cu_sync_check(const string file , const int line)
33 {
34 /* -------------------------------------- function variables ---------------------------------------*/
35 cudaError_t cuError;
36

37 /* -- function body --*/
38

39 cudaDeviceSynchronize ();
40 cuError = cudaGetLastError ();
41 if (0 == cuError)
42 {
43 return;
44 } else
45 {
46 cout << "CUDA␣error␣found␣in␣file␣" << file << "␣at␣line␣" << line << ".␣(error␣code:␣" <<
47 cuError << ")" << endl;
48 cout << "Exiting␣simulation" << endl;
49 exit (1);
50 }
51 }
52

53 /* ************************************ DEVICE KERNELS DEFINITIONS *********************************** */
54

55 /* *********************************** DEVICE FUNCTION DEFINITIONS *********************************** */
56

57 __device__ double atomicAdd(double* address , double val)
58 {
59 /* -------------------------------------- function variables ---------------------------------------*/
60 unsigned long long int* address_as_ull = (unsigned long long int*) address;
61 unsigned long long int old = *address_as_ull , assumed;
62

63 /* -- function body --*/
64 do

201

C.8. Extra headers

65 {
66 assumed = old;
67 old = atomicCAS(address_as_ull , assumed , __double_as_longlong(val + __longlong_as_double(assumed)));
68 } while (assumed != old);
69

70 return __longlong_as_double(old);
71 }
72

73 __device__ double atomicSub(double* address , double val)
74 {
75 /* -------------------------------------- function variables ---------------------------------------*/
76 unsigned long long int* address_as_ull = (unsigned long long int*) address;
77 unsigned long long int old = *address_as_ull , assumed;
78

79 /* -- function body --*/
80 do
81 {
82 assumed = old;
83 old = atomicCAS(address_as_ull , assumed , __double_as_longlong(val - __longlong_as_double(assumed)));
84 } while (assumed != old);
85

86 return __longlong_as_double(old);
87 }

Code C.12: CUPIC1D2V_CP source file cuda.cu

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef CUDA_H
10 # define CUDA_H
11

12 /* *** HEADERS *** */
13

14 # include "stdh.h"
15

16 /* *************************************** SIMBOLIC CONSTANTS ** */
17

18 /* *************************************** FUNCTION PROTOTIPES *************************************** */
19 // host function
20 void cu_check(cudaError_t cuError , const string file , const int line);
21 void cu_sync_check(const string file , const int line);
22

23 // device kernels
24

25

26 // device functions (overload atomic functions for double precision support)
27 __device__ double atomicAdd(double* address , double val);
28 __device__ double atomicSub(double* address , double val);
29

30 #endif

Code C.13: CUPIC1D2V_CP source file cuda.h

C.8. Extra headers

Extra header files loaded in the previous modules. (sources: stdh.h, random.h, dynamic_sh_mem.h)
1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef STD_H
10 # define STD_H
11

12 /* *** HEADERS *** */
13

14 # include <stdlib.h>
15 # include <math.h>
16 # include <stdio.h>
17 # include <iostream >
18 # include <fstream >

202

Chapter C. CUPIC1D2V_CP sources

19 # include <string >
20

21 using namespace std;
22

23 /* *************************************** SIMBOLIC CONSTANTS ** */
24

25 # define PI 3.1415926535897932 // symbolic constant for PI
26

27 /* *************************************** FUNCTION PROTOTIPES *************************************** */
28

29 struct particle
30 {
31 double r;
32 double vr;
33 double vt;
34 };
35

36 #endif

Code C.14: CUPIC1D2V_CP source file stdh.h

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef RAND_H
10 # define RAND_H
11

12 /* *** HEADERS *** */
13

14 # include <curand_kernel.h> // curand library for random number generation (__device__ functions)
15

16 /* *************************************** SIMBOLIC CONSTANTS ** */
17

18 # define CURAND_BLOCK_DIM 64 // block dimension for curand kernels
19

20 /* *************************************** FUNCTION PROTOTIPES *************************************** */
21

22 #endif

Code C.15: CUPIC1D2V_CP source file random.h

1 /* **
2 * *
3 * This file is part of CUPIC1D2V_CP , a code that simulates the interaction between a plasma and *
4 * a cylindrical Langmuir probe in 1D using PIC techniques accelerated with the use of GPU *
5 * hardware (CUDA , extension of C/C++) *
6 * *
7 ** */
8

9 # ifndef DYNAMIC_SH_MEM_H
10 # define DYNAMIC_SH_MEM_H
11

12 // variable for allowing dynamic allocation of __shared__ memory (used in several kernels)
13 extern __shared__ float sh_mem [];
14

15 #endif

Code C.16: CUPIC1D2V_CP source file dynamic_sh_mem.h

C.9. Additional files

File that automates the compilation process and input file to configure simulation parameters. (sources:
makefile, input_data)

1 # Configuration
2

3 CC = g++
4 NVCC = nvcc
5 ARCHITECTURE = sm_20
6 NVCCFLAGS = -arch=$(ARCHITECTURE) #-Xptxas -v
7 LINKERFLAGS = -arch=$(ARCHITECTURE) -lcurand
8

9 OBJECTS = main.o init.o cc.o mesh.o particles.o diagnostic.o cuda.o
10

11

203

C.9. Additional files

12 # Makefile orders
13

14 CUPIC : $(OBJECTS)
15 $(NVCC) $(LINKERFLAGS) $(OBJECTS) -o cupic
16 rm -f *~
17 mv ./ cupic ../ bin/cupic
18

19 main.o : main.cu
20 $(NVCC) $(NVCCFLAGS) -dc main.cu -o main.o
21

22 init.o : init.cu init.h
23 $(NVCC) $(NVCCFLAGS) -dc init.cu -o init.o
24

25 cc.o : cc.cu cc.h
26 $(NVCC) $(NVCCFLAGS) -dc cc.cu -o cc.o
27

28 mesh.o : mesh.cu mesh.h
29 $(NVCC) $(NVCCFLAGS) -dc mesh.cu -o mesh.o
30

31 particles.o : particles.cu particles.h
32 $(NVCC) $(NVCCFLAGS) -dc particles.cu -o particles.o
33

34 diagnostic.o : diagnostic.cu diagnostic.h
35 $(NVCC) $(NVCCFLAGS) -dc diagnostic.cu -o diagnostic.o
36

37 cuda.o : cuda.cu cuda.h
38 $(NVCC) $(NVCCFLAGS) -dc cuda.cu -o cuda.o
39

40 .PHONY : clean lines
41

42 clean :
43 rm -f *.o *~
44 clear
45

46 lines :
47 git ls -files | xargs wc -l

Code C.17: CUPIC1D2V_CP compilation file makefile

1 #execution configuration
2 n_ini = 0;
3 n_prev = 0;
4 n_save = 100;
5 n_fin = 50000;
6 #plasma properties
7 ne = 1.00 e15;
8 Te = 2000;
9 beta = 0.00;
10 vd_e = 0.0;
11 vd_i = -1.0e-2;
12 gamma = 7296.0;
13 #probe properties
14 radius = 3.50;
15 lenght = 2.5e-0;
16 amplitude = 5.0e-1;
17 phi_p = -25.0;
18 #sizes of simulation
19 nc = 80;
20 ds = 1.0e-1;
21 dt = 5.0e-1;
22 #diagnostic properties
23 num_of_bins_ddf = 100;
24 num_of_vdf = 100;
25 num_of_bins_vdf = 100;
26 max_v_e = 5.0;
27 min_v_e = -5.0;
28 max_v_i = 0.3;
29 min_v_i = -0.3;
30 #floating potential configuration
31 floating_potential = 0;
32 #calibration configuration
33 calibrate_ion_flux = 1;
34 increment = 1.0e-5;
35 avg_nodes = 3;
36 field_tol = -0.0e-1;

Code C.18: CUPIC1D2V_CP input file input_data

204

Bibliography

[1] H. M. Mott-Smith, “History of Plasmas”, Nature, volume 233(5316):pp. 219–219 (1971), URL:
http://dx.doi.org/10.1038/233219a0

[2] J. I. Fernández Palop, J. Ballesteros, M. A. Hernández, R. Morales Crespo, and S. Borrego del Pino,
“A Simplified Model Joining the Sheath and the Plasma in Electronegative Plasmas”, Czechoslovak
Journal of Physics, volume 54(2):pp. 225–238 (2004), URL: http://dx.doi.org/10.1023/B:
CJOP.0000014404.80357.d3

[3] I. Langmuir, “Positive Ion Currents in the Positive Column of the Mercury Arc”, General Electric
Review, volume 26(11):pp. 731–735 (1923)

[4] I. Langmuir, “Positive ion currents from the positive column of mercury arcs”, Science,
volume 58(1502):pp. 290–291 (1923), URL: http://dx.doi.org/10.1126/science.58.1502.290

[5] I. Langmuir, “The pressure effect and other phenomena in gaseous discharges”, Journal of
the Franklin Institute, volume 196(6):pp. 751–762 (1923), URL: http://dx.doi.org/10.1016/
S0016-0032(23)90859-8

[6] I. Langmuir and H. M. Mott-Smith, General Electric Review, volume 27:pp. 449, 538, 616, 762,
810 (1924)

[7] H. M. Mott-Smith and I. Langmuir, “The Theory of Collectors in Gaseous Discharges”, Physical
Review, volume 28(4):pp. 727–763 (1926), URL: http://dx.doi.org/10.1103/PhysRev.28.727

[8] T. E. Sheridan, “Ion focusing by an expanding, two-dimensional plasma sheath”, Applied Physics
Letters, volume 68(14):pp. 1918–1920 (1996), URL: http://dx.doi.org/10.1063/1.115625

[9] S. Qian, H. Cao, X. Liu, and C. Ding, “Nanotube array controlled carbon plasma deposition”, Applied
Physics Letters, volume 102(24):p. 243109 (2013), URL: http://dx.doi.org/10.1063/1.4811747

[10] G. D. Severn, X. Wang, E. Ko, and N. Hershkowitz, “Experimental Studies of the Bohm Cri-
terion in a Two-Ion-Species Plasma Using Laser-Induced Fluorescence”, Physical Review Letters,
volume 90(14):p. 145001 (2003), URL: http://dx.doi.org/10.1103/PhysRevLett.90.145001

[11] V. Demidov, C. DeJoseph, and A. Kudryavtsev, “Anomalously High Near-Wall Sheath Potential
Drop in a Plasma with Nonlocal Fast Electrons”, Physical Review Letters, volume 95(21):p. 215002
(2005), URL: http://dx.doi.org/10.1103/PhysRevLett.95.215002

[12] D. Lee, L. Oksuz, and N. Hershkowitz, “Exact Solution for the Generalized Bohm Criterion in a
Two-Ion-Species Plasma”, Physical Review Letters, volume 99(15):p. 155004 (2007), URL: http:
//dx.doi.org/10.1103/PhysRevLett.99.155004

[13] M. D. Campanell, A. V. Khrabrov, and I. D. Kaganovich, “Absence of Debye Sheaths due to
Secondary Electron Emission”, Physical Review Letters, volume 108(25):p. 255001 (2012), URL:
http://dx.doi.org/10.1103/PhysRevLett.108.255001

[14] J. I. Fernández Palop, J. Ballesteros, V. Colomer, and M. A. Hernández, “Theoretical ion current to
cylindrical Langmuir probes for finite ion temperature values”, Journal of Physics D: Applied Physics,
volume 29(11):pp. 2832–2840 (1996), URL: http://dx.doi.org/10.1088/0022-3727/29/11/017

205

http://dx.doi.org/10.1038/233219a0
http://dx.doi.org/10.1023/B:CJOP.0000014404.80357.d3
http://dx.doi.org/10.1023/B:CJOP.0000014404.80357.d3
http://dx.doi.org/10.1126/science.58.1502.290
http://dx.doi.org/10.1016/S0016-0032(23)90859-8
http://dx.doi.org/10.1016/S0016-0032(23)90859-8
http://dx.doi.org/10.1103/PhysRev.28.727
http://dx.doi.org/10.1063/1.115625
http://dx.doi.org/10.1063/1.4811747
http://dx.doi.org/10.1103/PhysRevLett.90.145001
http://dx.doi.org/10.1103/PhysRevLett.95.215002
http://dx.doi.org/10.1103/PhysRevLett.99.155004
http://dx.doi.org/10.1103/PhysRevLett.99.155004
http://dx.doi.org/10.1103/PhysRevLett.108.255001
http://dx.doi.org/10.1088/0022-3727/29/11/017

BIBLIOGRAPHY

[15] A. I. Eriksson, R. Boström, R. Gill, L. Åhlén, S. E. Jansson, J. E. Wahlund, M. André, A. Mälkki,
J. A. Holtet, B. Lybekk, A. Pedersen, and L. G. Blomberg, “RPC-LAP: The Rosetta Langmuir
Probe Instrument”, Space Science Reviews, volume 128(1-4):pp. 729–744 (2007), URL: http://
dx.doi.org/10.1007/s11214-006-9003-3

[16] N. J. T. Edberg, A. I. Eriksson, U. Auster, S. Barabash, A. Bößwetter, C. M. Carr, S. W. H.
Cowley, E. Cupido, M. Fränz, K. H. Glassmeier, R. Goldstein, M. Lester, R. Lundin, R. Modolo,
H. Nilsson, I. Richter, M. Samara, and J. G. Trotignon, “Simultaneous measurements of Martian
plasma boundaries by Rosetta and Mars Express”, Planetary and Space Science, volume 57(8-9):pp.
1085–1096 (2009), URL: http://dx.doi.org/10.1016/j.pss.2008.10.016

[17] M. Cacace, T. Batal, Y. Corre, G. Di Gironimo, J. P. Gunn, J.-Y. Pascal, and S. Salasca, “Langmuir
probes design for the actively cooled divertor baffle in WEST”, Fusion Engineering and Design,
volume 93:pp. 15–18 (2015), URL: http://dx.doi.org/10.1016/j.fusengdes.2015.02.009

[18] B. M. Annaratone and N. S. J. Braithwaite, “A comparison of a passive (filtered) and an active
(driven) probe for RF plasma diagnostics”, Measurement Science and Technology, volume 2(8):pp.
795–800 (1991), URL: http://dx.doi.org/10.1088/0957-0233/2/8/014

[19] C.-S. Yip and N. Hershkowitz, “Effect of a virtual cathode on the I V trace of a planar Langmuir
probe”, Journal of Physics D: Applied Physics, volume 48(39):p. 395201 (2015), URL: http://dx.
doi.org/10.1088/0022-3727/48/39/395201

[20] M. Zanáška, J. Adámek, M. Peterka, P. Kudrna, and M. Tichý, “Comparative measurements of
plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma”, Physics
of Plasmas, volume 22(3):p. 033516 (2015), URL: http://dx.doi.org/10.1063/1.4916572

[21] S. Ghosh, K. K. Barada, P. K. Chattopadhyay, J. Ghosh, and D. Bora, “Resolving an anomaly in elec-
tron temperature measurement using double and triple Langmuir probes”, Plasma Sources Science
and Technology, volume 24(1):p. 015017 (2015), URL: http://dx.doi.org/10.1088/0963-0252/
24/1/015017

[22] J. D. Swift and M. J. R. Schwar, Electrical Probes for Plasma Diagnostics, Iliffe Books (1970), ISBN
9780444196941

[23] J. I. Fernández Palop, J. Ballesteros, V. Colomer, and M. Hernández, “A new smoothing method for
obtaining the electron distribution function in plasmas by the numerical differentiation of the I-V
probe characteristic”, Review of scientific instruments, volume 66(9):pp. 4625–4636 (1995), URL:
http://dx.doi.org/10.1063/1.1145300

[24] I. B. I. Bernstein and I. I. N. Rabinowitz, “Theory of Electrostatic Probes in a Low-Density Plasma”,
Physics of Fluids, volume 2(2):pp. 112–121 (1959), URL: http://dx.doi.org/10.1063/1.1705900

[25] J. G. Laframboise, “Theory of spherical and cylindrical langmuir probes in a collisionless, maxwellian
plasma at rest”, University of Toronto Institute for Aerospace Studies, (Report - 100):pp. 1–216
(1966). Unpublished

[26] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of mathematical func-
tions, volume 5, Cambridge University Press, New York, NY (USA) (2010), ISBN 9780521140638,
URL: http://dlmf.nist.gov/

[27] D. Bhom, H. E. S. Burhop, and H. S. W. Massey, The Characteristics of Electrical Discharges in
Magnetic Fields, McGraw-Hill Book Company, Inc., New York (1949). (Eds. A. Guthrie and R. K.
Walerling). The National Nuclear Energy Series, Division I: Electromagnetic Separation Project,
Volume I-5

[28] S. H. Lam, “Unified Theory for the Langmuir Probe in a Collisionless Plasma”, Physics of Fluids,
volume 8(1):p. 73 (1965), URL: http://dx.doi.org/10.1063/1.1761103

[29] J. E. Allen, R. L. F. Boyd, and P. Reynolds, “The Collection of Positive Ions by a Probe Immersed
in a Plasma”, Proceedings of the Physical Society. Section B, volume 70(3):pp. 297–304 (1957),
URL: http://dx.doi.org/10.1088/0370-1301/70/3/303

206

http://dx.doi.org/10.1007/s11214-006-9003-3
http://dx.doi.org/10.1007/s11214-006-9003-3
http://dx.doi.org/10.1016/j.pss.2008.10.016
http://dx.doi.org/10.1016/j.fusengdes.2015.02.009
http://dx.doi.org/10.1088/0957-0233/2/8/014
http://dx.doi.org/10.1088/0022-3727/48/39/395201
http://dx.doi.org/10.1088/0022-3727/48/39/395201
http://dx.doi.org/10.1063/1.4916572
http://dx.doi.org/10.1088/0963-0252/24/1/015017
http://dx.doi.org/10.1088/0963-0252/24/1/015017
http://dx.doi.org/10.1063/1.1145300
http://dx.doi.org/10.1063/1.1705900
http://dlmf.nist.gov/
http://dx.doi.org/10.1063/1.1761103
http://dx.doi.org/10.1088/0370-1301/70/3/303

BIBLIOGRAPHY

[30] F. F. Chen, “Numerical computations for ion probe characteristics in a collisionless plasma”, Journal
of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research, volume 7(1):pp.
47–67 (1965), URL: http://dx.doi.org/10.1088/0368-3281/7/1/306

[31] R. M. Crespo, J. I. Fernández Palop, M. A. Hernández, and J. Ballesteros, “Analytical fit of the IV
probe characteristic for finite ion temperature values: Justification of the radial model applicability”,
Journal of Applied Physics, volume 95(6):p. 2982 (2004), URL: http://dx.doi.org/10.1063/1.
1650540

[32] B. M. Annaratone, M. W. Allen, and J. E. Allen, “Ion currents to cylindrical Langmuir probes
in RF plasmas”, Journal of Physics D: Applied Physics, volume 25(3):pp. 417–424 (1992), URL:
http://dx.doi.org/10.1088/0022-3727/25/3/012

[33] J. E. Allen, “Probe theories and applications: modern aspects”, Plasma Sources Science and Tech-
nology, volume 4(2):pp. 234–241 (1995), URL: http://dx.doi.org/10.1088/0963-0252/4/2/007

[34] C. M. C. Nairn, B. M. Annaratone, and J. E. Allen, “Theory of double probes in the absence of
ion saturation”, Plasma Sources Science and Technology, volume 4(3):pp. 416–423 (1995), URL:
http://dx.doi.org/10.1088/0963-0252/4/3/011

[35] K. U. Riemann, “The Bohm criterion and sheath formation”, Journal of Physics D: Applied Physics,
volume 24(4):pp. 493–518 (1991), URL: http://dx.doi.org/10.1088/0022-3727/24/4/001

[36] E. Zawaideh, F. Najmabadi, and R. W. Conn, “Generalized fluid equations for parallel transport
in collisional to weakly collisional plasmas”, Physics of Fluids, volume 29(2):p. 463 (1986), URL:
http://dx.doi.org/10.1063/1.865731

[37] F. F. Chen, “Langmuir probes in RF plasma: surprising validity of OML theory”, Plasma Sources
Science and Technology, volume 18(3):p. 035012 (2009), URL: http://dx.doi.org/10.1088/
0963-0252/18/3/035012

[38] M. a. Hassouba, a. R. Galaly, and U. M. Rashed, “Analysis of cylindrical Langmuir probe using
experiment and different theories”, Plasma Physics Reports, volume 39(3):pp. 255–262 (2013),
URL: http://dx.doi.org/10.1134/S1063780X13030033

[39] E. Passoth, P. Kudrna, C. Csambal, J. F. Behnke, M. Tichý, and V. Helbig, “An experimental study
of plasma density determination by a cylindrical Langmuir probe at different pressures and magnetic
fields in a cylindrical magnetron discharge in heavy rare gases”, Journal of Physics D: Applied
Physics, volume 30(12):pp. 1763–1777 (1997), URL: http://dx.doi.org/10.1088/0022-3727/
30/12/013

[40] J. M. Díaz-Cabrera, M. V. Lucena-Polonio, J. I. Fernández Palop, R. Morales Crespo, M. A. Hernán-
dez, A. Tejero-del Caz, and J. Ballesteros, “Experimental study of the ion current to a cylindrical
Langmuir probe taking into account a finite ion temperature”, Journal of Applied Physics, volume
111(6):p. 063303 (2012), URL: http://dx.doi.org/10.1063/1.3698313

[41] F. F. Chen, J. D. Evans, and W. Zawalski, “Calibration of Langmuir probes against microwaves
and plasma oscillation probes”, Plasma Sources Science and Technology, volume 21(5):p. 055002
(2012), URL: http://dx.doi.org/10.1088/0963-0252/21/5/055002

[42] C. H. Shih and E. Levi, “Determination of the collision parameters by means of Langmuir probes.”,
AIAA Journal, volume 9(12):pp. 2417–2421 (1971), URL: http://dx.doi.org/10.2514/3.6525

[43] J. E. Allen, “Probe theory - the orbital motion approach”, Physica Scripta, volume 45(5):pp.
497–503 (1992), URL: http://dx.doi.org/10.1088/0031-8949/45/5/013

[44] I. D. Sudit and R. C. Woods, “A study of the accuracy of various Langmuir probe theories”, Journal
of Applied Physics, volume 76(8):p. 4488 (1994), URL: http://dx.doi.org/10.1063/1.357280

[45] V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, “Electron energy distribution function meas-
urements and plasma parameters in inductively coupled argon plasma”, Plasma Sources Science and
Technology, volume 11(4):pp. 525–543 (2002), URL: http://dx.doi.org/10.1088/0963-0252/
11/4/320

207

http://dx.doi.org/10.1088/0368-3281/7/1/306
http://dx.doi.org/10.1063/1.1650540
http://dx.doi.org/10.1063/1.1650540
http://dx.doi.org/10.1088/0022-3727/25/3/012
http://dx.doi.org/10.1088/0963-0252/4/2/007
http://dx.doi.org/10.1088/0963-0252/4/3/011
http://dx.doi.org/10.1088/0022-3727/24/4/001
http://dx.doi.org/10.1063/1.865731
http://dx.doi.org/10.1088/0963-0252/18/3/035012
http://dx.doi.org/10.1088/0963-0252/18/3/035012
http://dx.doi.org/10.1134/S1063780X13030033
http://dx.doi.org/10.1088/0022-3727/30/12/013
http://dx.doi.org/10.1088/0022-3727/30/12/013
http://dx.doi.org/10.1063/1.3698313
http://dx.doi.org/10.1088/0963-0252/21/5/055002
http://dx.doi.org/10.2514/3.6525
http://dx.doi.org/10.1088/0031-8949/45/5/013
http://dx.doi.org/10.1063/1.357280
http://dx.doi.org/10.1088/0963-0252/11/4/320
http://dx.doi.org/10.1088/0963-0252/11/4/320

BIBLIOGRAPHY

[46] L. S. Pilling and D. A. Carnegie, “Validating experimental and theoretical Langmuir probe analyses”,
Plasma Sources Science and Technology, volume 16(3):pp. 570–580 (2007), URL: http://dx.doi.
org/10.1088/0963-0252/16/3/016

[47] J. M. Díaz-Cabrera, J. Ballesteros, J. I. F. Palop, and A. Tejero-del Caz, “Experimental radial
motion to orbital motion transition in cylindrical Langmuir probes in low pressure plasmas”, Plasma
Sources Science and Technology, volume 24(2):p. 025026 (2015), URL: http://dx.doi.org/10.
1088/0963-0252/24/2/025026

[48] A. A. Sonin, “Free-molecule Langmuir probe and its use in flow-field studies.”, AIAA Journal,
volume 4(9):pp. 1588–1596 (1966), URL: http://dx.doi.org/10.2514/3.3740

[49] J. Ballesteros, J. I. Fernández Palop, M. A. Hernández, and R. Morales Crespo, “Influence of the
positive ion temperature in cold plasma diagnosis”, Applied Physics Letters, volume 89(10):p.
101501 (2006), URL: http://dx.doi.org/10.1063/1.2345252

[50] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, IOP Publishing Ltd.
(1988), ISBN 0-85274-392-0

[51] C. Birdsall and A. Langdon, Plasma Physics via Computer Simulations, Adam Hilger (1991), ISBN
0-07-005371-5

[52] D. Tskhakaya, K. Matyash, R. Schneider, and F. Taccogna, “The Particle-In-Cell Method”, Con-
tributions to Plasma Physics, volume 47(8-9):pp. 563–594 (2007), URL: http://dx.doi.org/10.
1002/ctpp.200710072

[53] Nvidia Corporation, “CUDA Toolkit Documentation”, URL: https://docs.nvidia.com/cuda/
index.html. Accessed: 17/04/2016

[54] J. M. Díaz-Cabrera, A. Tejero-del Caz, J. I. Fernández Palop, and J. Ballesteros, “Influence of the
positive ion thermal motion in the radial motion to orbital motion to cylindrical Langmuir probes in
low pressure plasmas. Part I: Ar+”, in XXXII International Conference on Phenomena in Ionized
Gases (ICPIG), Iaşi (Romanía) (2015). P1.58

[55] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing,
Wiley (New York) (2005), ISBN 978-0-471-72001-0

[56] A. Tejero-del Caz, J. I. Fernández Palop, J. M. Díaz-Cabrera, and J. Ballesteros, “Radial-to-orbital
motion transition in cylindrical Langmuir probes studied with particle-in-cell simulations”, Plasma
Sources Science and Technology, volume 25(1):p. 01LT03 (2016), URL: http://dx.doi.org/10.
1088/0963-0252/25/1/01LT03

[57] F. F. Chen, Introduction to Plasma Physics, Springer US (1974), ISBN 9978-1-4757-0459-4, URL:
http://dx.doi.org/10.1007/978-1-4757-0459-4

208

http://dx.doi.org/10.1088/0963-0252/16/3/016
http://dx.doi.org/10.1088/0963-0252/16/3/016
http://dx.doi.org/10.1088/0963-0252/24/2/025026
http://dx.doi.org/10.1088/0963-0252/24/2/025026
http://dx.doi.org/10.2514/3.3740
http://dx.doi.org/10.1063/1.2345252
http://dx.doi.org/10.1002/ctpp.200710072
http://dx.doi.org/10.1002/ctpp.200710072
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
http://dx.doi.org/10.1088/0963-0252/25/1/01LT03
http://dx.doi.org/10.1088/0963-0252/25/1/01LT03
http://dx.doi.org/10.1007/978-1-4757-0459-4

