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Summary

Lithium iron phosphate (LiFePO4) is considered as a next-generation active material

for lithium ion batteries. This material offers better thermal stability and higher power

density than lithium cobalt oxide (LiCoO2). Currently, most of the advantages and

limitations of LiFePO4 as a cathode material have been identified, and its performance

has been progressively improved by optimizing the synthesis methods, in order to

control the purity and to obtain carbon-coated nanoparticles. Nevertheless, a review on

the recent progress on LiFePO4-based electrodes shows that there is still opportunity

for improving the composition and preparation methods at the electrode level, which is

necessary in order to maximize the capacity at high charge/discharge rates.

For addressing the performance issues at the electrode level, this thesis is focused

on the improvement of the conductivity of LiFePO4-based electrodes in order to achieve

better charge transport throughout the different electrode interphases and to ultimately

improve the rate capability. In order to promote a more effective charge transport, the

general strategy followed in this thesis consisted in the preparation of composite

electrodes with intrinsically conducting polymers of the type

poly(3,4-alkylenedioxythiophene). This type of polymers can be applied to form

conductive coatings and networks that improve the connection between LiFePO4

particles and their contact to the current collector.

Diverse electrochemical polymerization, blending and coating methods were devised

and applied to obtain LiFePO4-based electrodes that incorporate a coating or a network

of conducting polymer. The different methods proposed were published in

peer-reviewed articles that are included in this thesis as individual chapters.

Two innovative electrochemical polymerization methods were devised for preparing

composite electrodes of LiFePO4 with conducting polymer. The first approach for the

electrochemical preparation of the composite electrodes (Chapter 3) consisted in the

formation of a coating by potentiostatic electropolymerization of

3,4-ethylenedioxythiophene (EDOT) over a pre-formed working electrode, based either

on LiFePO4 (uncoated) or LiFePO4/C (carbon-coated). The potentiostatic

electropolymerization of EDOT was carried out in an acetonitrile medium with

tetraethylammonium tetrafluoroborate. The experimental conditions of the potentiostatic



2 Summary

electropolymerization enabled forming a PEDOT conducting polymer coating over the

active material particles, resulting in mechanically stable electrodes of better

electrochemical performance than the electrode based on LiFePO4 without conducting

polymer. This improvement was attributed to the lower electrical resistance of the

composite electrode with conducting polymer, as estimated by means of

electrochemical impedance spectroscopy and manifested as a low charge/discharge

polarization. The PEDOT-coating over LiFePO4 offered the possibility of obtaining an

electrochemical performance at 1C and 2C superior to that of the electrode with

carbon-coated LiFePO4, and comparable to that observed for the LiFePO4 electrode

with carbon-coating and PEDOT-coating. Thus, the possibility of replacing the classical

carbon-coating by PEDOT-coating was demonstrated.

The second approach for preparing composite electrodes by electrochemical

polymerization consisted in the galvanostatic oxidation of EDOT or

3,4-propylenedioxythiophene (ProDOT) monomers over a LiFePO4-based electrode

during the initial charging cycles in a test battery (Chapter 4). This novel approach was

designated as in battery because the polymerization is carried out inside the battery.

The in battery method is based on the oxidative polymerization of monomers over

de-lithiated LiFePO4 (Li1-xFePO4, 0 ≤ x ≤ 1), which is formed during the battery charging.

In this way, there is no need of using any additional oxidizing compound to carry out the

polymerization inside the battery. By the end of the battery charging, the conducting

polymer coating covers the delithiated LiFePO4 and the surface of the electrode. The

Fe2+ to Fe3+ oxidation in Li1-xFePO4 was monitored by Mössbauer spectroscopy, which

revealed that this oxidation process is more efficient upon the formation of the

conducting polymer coating. Upon discharge of the battery, the reduction of Fe3+ to Fe2+

and the lithium reinsertion are facilitated by the conducting polymer coating.

The in battery electrochemical polymerization can be carried out either in one or in

two charging steps. Both variations of the in battery method produced cathodes with

higher initial capacity, superior charge/discharge rate performance, as well as a more

extended cycleability than the uncoated LiFePO4-based electrode. The superior

electrochemical performance of the composite electrodes with conducting polymer was

attributed to the lower resistance of the electrode due to the improvement of the
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connectivity between the active material particles, promoted by the conducting polymer

coating. Due to the usefulness, novelty and simplicity of the one- and the two-steps in

battery electropolymerization methods, a patent application was filed (see Appendix II-

1).

Regarding the preparation of composite electrodes with LiFePO4 and conducting

polymer by blending, this procedure was implemented for PEDOT obtained from two

different sources: i) PEDOT synthesized by electrochemical polymerization, and

ii) PEDOT:PSS (PSS: polystyrene sulfonate), which is commercially available and is

produced by chemical polymerization.

PEDOT synthesized electrochemically was prepared by a potentiostatic

polymerization method, previously reported, over a platinum electrode in an H2O/CH2Cl2
medium with tetraethylammonium tetrafluoroborate. These conditions allowed obtaining

a porous polymer film of PEDOT. Blending LiFePO4 or LiFePO4/C with

electrochemically synthesized PEDOT resulted in an easy and effective way for

preparing stable and active composite electrodes, without the need of using extra

conducting or agglomerating additives. Although this type of composite electrodes

showed a better charge/discharge performance, as compared to previously reported

composites with electrochemically synthesized PEDOT, the potentiostatic method to

synthesize the polymer has a low yield.

The blending method using PEDOT:PSS (Chapter 5) consisted in incorporating the

conducting polymer as an additive for LiFePO4-based electrodes. PEDOT:PSS was

incorporated to the composite electrode by blending the polymer in different proportions

with a mixture of LiFePO4, carbon black and polyvinylidene fluoride (PVDF) binder. It

was found that the presence of 1% w/w of PEDOT:PSS within the bulk of the electrode

resulted in a two-fold increase of the capacity and in an increase of the discharge

plateau voltage in  ca. 0.5 V at 5C, as compared to the electrode without conducting

polymer at the same charge/discharge rate.

In order to further increase the conductivity of PEDOT:PSS, a minute amount of

ethylene glycol or dimethyl sulfoxide secondary dopants was dissolved in the polymer

dispersion. The initial discharge profiles of the electrodes with doped PEDOT:PSS
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showed that only ethylene glycol had a small effect on the charge/discharge voltage,

whereas dimethyl sulfoxide had no effect. The Mössbauer spectroscopy analysis

showed that the oxidation of Fe2+ to Fe3+ upon battery discharge at a rate of C/10 is up

to 10 % more efficient in the electrode that contains PEDOT:PSS doped with ethylene

glycol, as compared to the conventional LiFePO4 electrode. This effect was attributed to

a higher proportion of the PEDOT phase (electronic conductor) relative to the PSS

phase (ionic conductor), as determined by quantitative analysis of XPS spectra.

Additionally, approximated resistance values of the electrodes in charged and in

discharged states were obtained from the fitting of impedance spectra. These analyses

provided evidence on the more effective electrochemical reaction of the active material

promoted by the presence of 1% w/w of PEDOT:PSS mixed conductor, both in undoped

state and when treated with ethylene glycol. These electrodes provide almost 50% of

the theoretical capacity of LiFePO4 in only 6 minutes with a low charge/discharge

polarization and showed excellent capacity retention at 2C during 50 charge/discharge

cycles.

PEDOT:PSS was also tested as a conductive coating for the aluminium current

collector of LiFePO4-based electrodes. This polymer coating was realized by drop

casting PEDOT:PSS over the current collector. Conductivity enhancement by treatment

with ethylene glycol resulted in a high capacity with relatively low charge/discharge

polarization at high charge/discharge rates. The correlation between the initial

impedance, the direct current load resistance and the capacity at moderate and high

rates of the electrodes containing PEDOT:PSS, showed that the interphase between

the electrode layer and the current collector has the highest impact on the performance

in LiFePO4-based electrodes.

We elucidated that the use of ethylene glycol-doped PEDOT:PSS coating over the

current collector is the best strategy among all the procedures described in this thesis

for improving the performance of LiFePO4 composite electrodes with conducting

polymer.

In general, the strategies developed and used for producing composite electrodes

with LiFePO4 and conducting polymer by in battery methods and using PEDOT:PSS, as
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presented in this thesis, are simple and could be implemented with slight modifications

to the current methods for producing LiFePO4-based electrodes.
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Resumen

El fosfato de litio y hierro (LiFePO4) es considerado como un material activo de

nueva generación para baterías de iones litio. Este material ofrece mejor estabilidad

térmica y mayor densidad de potencia comparado con el óxido de cobalto y litio

(LiCoO2). Actualmente, la mayoría de las ventajas y limitaciones del LiFePO4 han sido

identificadas y su desempeño se ha ido mejorando progresivamente mediante la

optimización de los métodos de síntesis, buscando controlar la pureza y la obtención de

nanoparticulas cubiertas de carbón. A pesar de lo anterior, una revisión de los avances

recientes sobre electrodos basados en LiFePO4 muestra que aún es posible mejorar la

composición y los métodos de preparación a nivel del electrodo, lo cual es necesario

para maximizar la capacidad a tasas altas de carga/descarga.

Para abordar la problemática del funcionamiento a nivel del electrodo, esta tesis se

enfoca en la mejora de la conductividad de electrodos basados en LiFePO4 para lograr

un mejor transporte de carga a través de las diferentes interfaces  del electrodo, y así

aumentar el desempeño en carga/descarga. Para promover un transporte de carga

más efectivo, la estrategia general que se siguió en esta tesis consistió en la

preparación de electrodos compuestos con polímeros conductores del tipo

poli(3,4-alquilendioxitiofeno). Con este tipo de polímeros conductores se pueden formar

recubrimientos y redes conductoras que mejoran la conexión entre partículas de

LiFePO4 y el contacto de éstas con el colector de corriente.

Diversos métodos de polimerización electroquímica, mezclado y recubrimiento,

fueron desarrollados y empleados para preparar electrodos basados en LiFePO4 que

incorporan un recubrimiento o una red de polímero conductor. Los diferentes métodos

propuestos fueron publicados en artículos arbitrados que se incluyen en esta tesis

como capítulos individuales.

Dos métodos novedosos de polimerización electroquímica se desarrollaron para

preparar electrodos compuestos de LiFePO4 con polímero conductor. La primera

aproximación para preparar electrodos compuestos por vía electroquímica (Capítulo 3)

consistió en la formación de un recubrimiento mediante electropolimerización

potenciostática de 3,4-etilendioxitiofeno (EDOT) sobre un electrodo basado en LiFePO4

(sin cubrir) o en LiFePO4/C (cubierto de carbón).
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La polimerización del monómero EDOT se llevó a cabo a potencial fijo en un medio

de acetonitrilo con tetrafluoroborato de tetraetilamonio y empleando electrodos LiFePO4

o LiFePO4/C preformados. Las condiciones experimentales de la electro-polimerización

potenciostática permitieron la formación de un polímero conductor sobre las partículas

de material activo, lo que resultó en electrodos mecánicamente estables y de mejor

desempeño electroquímico que el electrodo LiFePO4 sin recubrimiento de polímero

conductor. Dicha mejora se atribuyó a la menor resistencia eléctrica a causa de la

presencia del polímero conductor, como se determinó mediante espectroscopía de

impedancia electroquímica, y que se manifiesta en una menor polarización de

carga/descarga. El recubrimiento de PEDOT sobre LiFePO4 ofreció la posibilidad de

obtener un desempeño electroquímico a 1C y 2C superior al desempeño del LiFePO4

con recubrimiento de carbón y comparable a lo observado para el electrodo LiFePO4

con recubrimiento de carbón y PEDOT. Por tanto, se demostró la posibilidad de

remplazar el recubrimiento de carbón por un recubrimiento de PEDOT.

La segunda aproximación para preparar electrodos mediante polimerización

electroquímica, consistió en la oxidación galvanostática de monómeros EDOT o

monómeros 3,4-propilendioxitiofeno (ProDOT) sobre un electrodo basado en LiFePO4

durante los ciclos iniciales de carga en una batería de prueba (Capítulo 4). Este método

novedoso fue designado como in battery, debido a que la polimerización se lleva a

cabo dentro de la batería. El método in battery se basa en la polimerización oxidativa

de los monómeros sobre LiFePO4 delitiado (Li1-xFePO4, 0 ≤ x ≤ 1), el cual se forma

durante la carga de la batería. De esta forma, no es necesario añadir ningún

compuesto oxidante adicional para efectuar la polimerización dentro de la batería. Al

término de la carga de la batería, el polímero conductor cubre al LiFePO4 oxidado y a la

superficie del electrodo. La oxidación de Fe2+ a Fe3+ en Li1-xFePO4 se siguió mediante

espectroscopia Mössbauer, la cual reveló que este proceso de oxidación es más

eficiente al formarse el recubrimiento de polímero conductor. Al descargar la batería, el

recubrimiento de polímero conductor facilita la reducción de Fe3+ a Fe2+ y la reinserción

de litio.

La polimerización electroquímica in battery se puede efectuar ya sea en uno o en

dos pasos de carga. Ambas variaciones del método in battery producen cátodos con

capacidad inicial más alta, mejor funcionamiento a tasa de carga/descarga, además de
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mayor fiabilidad al ciclar comparado con el electrodo basado en LiFePO4 sin

recubrimiento. El desempeño electroquímico superior de los electrodos compuestos

con polímero conductor fue atribuido a la menor resistencia debido a la mejora de la

conectividad entre las partículas de material activo, promovida por el recubrimiento de

polímero conductor. Debido a la utilidad, novedad y simplicidad del método de

electropolimerización in battery en uno o en dos pasos, se solicitó una patente (véase

Appendix II-1)

Con respecto a la preparación de electrodos compuestos con LiFePO4 y polímero

conductor mediante mezclado, este procedimiento se aplicó para PEDOT obtenido de

dos fuentes distintas: i) PEDOT sintetizado mediante polimerización electroquímica, y ii)

PEDOT:PSS (PSS: poliestireno sulfonato), el cual es un producto comercial y se

produce mediante polimerización química.

El PEDOT sintetizado por vía electroquímica se preparó mediante un método de

polimerización potenciostático, reportado previamente, sobre un electrodo de platino en

un medio de H2O/CH2Cl2 con tetrafluoroborato de tetraetilamonio. Estas condiciones

permitieron obtener una película porosa de PEDOT. La mezcla de LiFePO4 o

LiFePO4/C con PEDOT sintetizado por vía electroquímica resultó en una manera

sencilla y efectiva para preparar electrodos compuestos estables y activos, sin

necesidad de emplear aditivos conductores o aglomerantes extra. A pesar de que este

tipo de electrodos compuestos mostró un mejor funcionamiento en carga/descarga,

comparado con electrodos que contienen PEDOT sintetizado por vía electroquímica

reportados previamente, este método para sintetizar el polímero tiene un bajo

rendimiento.

El método de mezclado empleando PEDOT:PSS (Capítulo 5) consistió en la

incorporación del polímero conductor como un aditivo para electrodos basados en

LiFePO4. El PEDOT:PSS fue incorporado al electrodo compuesto combinándolo en

diferentes proporciones con una mezcla de LiFePO4, negro de carbono y aglomerante

fluoruro de polivinilideno (PVDF). Se encontró que la presencia de 1% w/w de

PEDOT:PSS en el seno del electrodo duplicó la capacidad y aumentó el voltaje de la

meseta de descarga en unos 0.5 V, comparado con el electrodo sin polímero conductor

a la misma tasa de carga/descarga.
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En un intento por incrementar la conductividad del PEDOT:PSS, se disolvieron

pequeñas cantidades de etilenglicol o dimetilsulfóxido en la dispersión de polímero. Los

perfiles iniciales de descarga de los electrodos con PEDOT:PSS dopado mostraron que

solo el etilenglicol tiene un pequeño efecto en el voltaje de descarga, mientras que el

dimetilsulfóxido no tiene efecto. El análisis mediante espectroscopia Mössbauer

permitió verificar que la oxidación de Fe2+ a Fe3+ durante la carga de la batería a C/10

es más eficiente en electrodos que contienen PEDOT:PSS dopado con etilenglicol, en

comparación con el electrodo convencional de LiFePO4. Este efecto se atribuyó a una

mayor proporción de la fase PEDOT (conductor electrónico) con respecto a la fase PSS

(conductor iónico), como se determinó mediante el análisis cuantitativo de espectros

XPS.

Adicionalmente, los valores aproximados de la resistencia de los electrodos con

PEDOT:PSS se determinaron a partir del ajuste de espectros de impedancia. Estos

análisis aportaron evidencia de la influencia positiva sobre la reacción electroquímica

del material activo, promovida por la presencia de 1% w/w de conductor mixto

PEDOT:PSS, tanto sin dopar como dopado con etilenglicol. Estos electrodos

proporcionan casi el 50% de la capacidad teórica del LiFePO4 en solo 6 minutos con

una menor polarización de carga/descarga, además de que mostraron una excelente

retención de la capacidad a 2C durante 50 ciclos de carga/descarga.

El PEDOT:PSS también se probó como recubrimiento conductor para el colector de

corriente de electrodos basados en LiFePO4. Este recubrimiento de polímero se realizó

mediante el depósito de gotas de PEDOT:PSS sobre el colector de corriente. El

aumento de la conductividad mediante tratamiento con etilenglicol resultó en una alta

capacidad con polarización relativamente baja a tasas altas de carga/descarga. La

correlación entre la impedancia inicial, la resistencia de corriente directa y los valores

de capacidad a tasas de descarga moderadas y altas de los electrodos que contiene

PEDOT:PSS, indicó que la interfaz entre la capa del electrodo y el colector de corriente

tiene el mayor impacto en el desempeño de electrodos basados en LiFePO4.

El empleo de PEDOT:PSS dopado con etilenglicol es la mejor estrategia de entre

todos los procedimientos descritos en esta tesis para mejorar el desempeño de

electrodos compuestos con LiFePO4 y polímero conductor.
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En general, las estrategias presentadas en esta tesis para producir electrodos

compuestos de LiFePO4 con polímero conductor mediante el método in battery y

empleando el PEDOT:PSS, son sencillas y se podrían implementar con ligeras

modificaciones a los métodos actuales para producir electrodos basados en LiFePO4.
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Chapter 1

1. Introduction

The progress of our society is linked to the way in which energy is harnessed and

transformed. In the past, in order to subsist, our ancestors made practical use of the

resources available in their communities. As mankind learnt how to apply and transform

materials for building rudimentary tools and machines, the exploitation of natural

resources became more effective. Agriculture offered the possibility of growing new

varieties of food in surplus amounts, which allowed meeting the nourishing

requirements of larger populations. The use of animals, water or wind streams, reduced

the dependence on the human power required to grow and process crops. In these

favourable circumstances the activities and roles of individuals diversified and the

quality of life improved substantially.

In the 18th century the steam engine and the iron mass production powered and

guided some countries towards the industrial revolution. Starting from wood and coal,

soon began the hunt for new energetic resources in order to keep on running the

industrial production. Electricity came into scene in the 19th century with the invention of

the voltaic pile and the widespread distribution of electricity from steam-powered

generators. The invention of the electric motor and the development of storage batteries

pushed forward the popularity of the electric vehicles. However, cheaper and more

reliable internal combustion engine cars running on oil-derived fuels became dominant

in the emerging transportation sector.

Currently, after almost 250 years, our energy system is still based mostly on fossil

fuels. In 2012 almost 82% of the total primary energy was supplied by oil, coal and

natural gas.[1] This situation has raised global concerns and debate about the harmful

effects of the anthropogenic combustion products released to the global ecosystem. As
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our energy requirements continue to grow in amount and complexity, humanity is

obliged to consider more abundant, less polluting and fair priced (economically and

socially) energy sources. The so-called renewables are very appealing for they

constitute a group of energy sources that are presumably inexhaustible or that can be

replenished before severe depletion. The major renewable energy sources come from

sunlight, water reservoirs, biomass, wind or geothermal activity. Although the share of

renewables in 2012 reached approximately 3.5 % of the global, primary energy

supply,[1] in recent years Costa Rica or the Spanish island El Hierro have demonstrated

that some territories are able to meet sustainably all their energy demand from

renewable sources.[2a-b]

Nevertheless, sunlight, wind or water streams provide energy intermittently, with

daily and seasonal fluctuations. Thus, the integration of the energy from renewable

sources into the electrical energy network creates the challenge of maintaining the

balance of the production and demand cycles. In order to tackle that challenge, energy

storage systems could aid by storing the surplus energy from renewable sources. The

stored energy can then be transformed into electricity in order to match the demand with

a lower participation of the generation from fossil fuels. Energy storage technologies

can be classified depending on the form of the stored energy.[3] This classification is

represented in Table 1.

Table 1. Major energy storage technologies. Adapted from ref. [3].

Mechanical Electrical Electrochemical Chemical Thermal

Pumped
hydro

Compressed
air

Flywheel

Capacitors Rechargeable
batteries Fuels

Sensible/latent
heat

Among all these technologies, pumped hydro is currently the most viable for

electrical power generation, provided there are convenient locations for installing the

infrastructure. Although most of the mechanical-based or thermal-based technologies
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are realizable, the indirect energy transformation into electricity presents inherent

efficiency disadvantages.

On the contrary, electrical and electrochemical energy storage technologies are

more attractive systems due to the higher efficiency of the direct release of stored

charge and the transformation of chemical energy into electricity, respectively.

Compared to capacitors, batteries have proven technical and economic viability as

energy storage systems for a wider range of applications. Over the years, rechargeable

batteries have been used for load levelling and backup in the industrial sector. In recent

years, the advances in battery technology have enabled the proliferation of portable

consumer electronics that entertain us, allow us to communicate and to work without

losing pace with our nomadic lifestyle. Nowadays, rechargeable batteries of high energy

and power density are intensively pursued for use in commercial hybrid and battery

vehicles. This way of transportation could reduce the local urban air pollution in the near

future. Additionally, battery systems coupled to solar panels are available for emergency

back-up or even for grid independence in residential applications, which could led

towards a decentralized energy production and distribution.

Batteries have a great potential to become a leding technology for sustainable

energy storage. In order to fulfil this endeavour, future research efforts should address

the optimization of the existent battery technologies and the development of new

materials that provide high energy and power density for a broad range of applications.

The next sections introduce the working principles of batteries and presents an

overview of the advances that have led to the development of today’s most popular

battery technology; the Li-ion battery.

1.1 Electrochemical energy storage in batteries

Batteries are devices that store energy in chemical compounds that are able to

provide electrical energy by means of redox reactions. The basic design of today’s

batteries has not changed much since the first battery described by Alessandro Volta in

1800. The elementary unit of a battery is an individual cell that houses two electrodes

containing different redox active materials. Ionic contact between the electrodes is

ensured by an electrolyte, while electronic contact is prevented by a separator. The two

electrodes of a cell are distinguished by assigning them a positive or negative polarity,



16 Chapter 1: Introduction

depending on the magnitude of the potential of each electrode versus the other. Fig. 1

represents the basic components and operation of a cell. According to the International

Electrochemical Commission, the term battery can be used for referring to an individual

cell. This practice is very common and in this thesis the term battery will be used for

both a single cell and an arrangement of cells, unless otherwise stated.

A battery undergoes discharge when its two electrodes are connected to the

terminals of an external load, for example a wire, an electric motor, etc. In discharge, a

spontaneous oxidation reaction takes place at the negative electrode of the battery,

while a spontaneous reduction occurs at the positive electrode. Electrons released by

the oxidation reaction are collected at the negative electrode and the electrical energy is

used by the external load to do work.

Within the battery, the ions from the electrolyte migrate to the electrodes in order to

maintain the electroneutrality. Recharging the battery consists in applying an external

electric current or voltage in order to reactivate the redox state of the electrode

materials by forcing a reduction at the negative electrode and oxidation at the positive

electrode.

Figure 1. Basic components of batteries and operation mode in a) discharge and b) charge for a
rechargeable battery

According to the IUPAC convention for an electrochemical cell, the oxidation takes

place at the anode, while the reduction takes place at the cathode. In a battery this

situation holds for the spontaneous discharge reaction, therefore it is common to call the

negative electrode anode, and the positive electrode cathode. This convention is

followed in this document unless stated otherwise. Batteries designed for a single full
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discharge are classified as primary, whereas those designed for repetitive

discharge-recharge cycles are classified as secondary or rechargeable.

Batteries are characterized by parameters related to the nature and the amount of

the materials that compose the system. Three of the main battery parameters are:

Voltage, Capacity, and Energy. The voltage of a battery is related to the free energy of

the cell reaction according to Eq. 1:

G  = -n ×  F × V (1)

where G is the change in free energy, n is the amount of electrons transferred, F is the

Faraday constant and V is the potential difference between the two termianals of the

battery. The equilibrium value of V can be calculated according to Eq. 2 from the

equilibrium potentials of the positive electrode (E(+)electrode) and the negative electrode

(E(+)electrode).

V =  E (+ ) electrode - E(-) electrode (2)

The capacity Q of a battery corresponds to the amount of charge involved in the

redox reactions at the electrodes and depends on the amount of active materials. For a

given active material its theoretical specific capacity (Qtheo), usually expressed in Ah g-1,

can be calculated by applying Eq. 3:Qtheo=  n F / Mw (3)

where Mw corresponds to the molecular weight of the active material. For a battery

discharged at constant current I, during a discharge time t, the experimental discharge

capacity Qexp, without considering side-reactions, is given by Eq. 4.Qexp=  I ×t (4)

The most remarkable feature of a battery is its ability to interconvert chemical and

electrical energy. If the energy interconversion is carried out at constant pressure and

temperature, then the energy conservation requires that G = Welec; being Welec the

theoretical, electric energy available from the battery. This energy is related to the

theoretical voltage and to the theoretical specific capacity of the battery by Eq. 5:Welec = - Qtheo×V (5)
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where the negative sign indicates that energy is transferred out of the battery. According

to the parameters described above, the strategies to follow in order to realize a high

performance battery are:

1) Maximize the voltage by using a strong reducing substance for the negative

electrode and strong oxidizing substance for the positive electrode

2) Increase the capacity of the electrodes by increasing the amount of electrons

transferred in the redox reactions

3) Minimize the weight of the active materials, additives and all the other battery

components

4) Minimize the internal resistance of the battery

At the cell level the performance is influenced by the ability of the electrode materials

and the electrolyte to exchange and transport charges. At the battery level, the

performance depends on how several cells are connected (in series or in parallel) and

managed.

1.1.1 Primary batteries

Throughout the years, primary batteries have provided reliable energy for a wide

variety of stationary and portable applications like toys, medical-aid devices, consumer

electronics, military equipment and many other appliances. Primary batteries are easy

to use and replace, they are affordable, can be adapted to fit the application, and

generally they can be stored inactive for long time without significant performance loss.

Table 2 presents a list of the major primary batteries developed and commercialized

since the 1950’s.

Since the first battery proposed by Volta, zinc has been the most used anode

material for aqueous primary batteries because of its practical electrochemical

performance, its abundance and its low cost. Improvements in the battery design and

the combination of zinc anodes with diverse cathode materials and electrolytes has led

to the development of commercially successful batteries, such as the alkaline or the

silver oxide batteries.
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Table 2. Major primary batteries developed and/or commercialized since the 1950’s. Adapted
from ref. [4a, p 7.9].

Battery

type

Global reaction Voltage

(V)

Specific

Capacity

(Ah/kg)

Energy

Density

(Wh/kg)

Alkaline Zn + MnO2  ZnO + Mn2O3 1.50 224 336

Zn/Ag2O Zn + Ag2O + H2O Zn(OH)2 + 2Ag 1.60 180 288

Zinc/air Zn + 1/2O2  ZnO 1.65 820 1353

Li/(CF)n nLi + (CF)n nLiF + nC 3.10 706 2189

Li/MnO2 Li + MnO2  LiMnO2 3.50 286 1001

Although higher capacity can be achieved with lighter and more reactive anodes like

magnesium or aluminium, these anodes suffer from parasitic reactions, which have

limited their application to reserve-type or metal/air batteries. Primary, metal/air

batteries are very attractive because they can provide very high energy density due to

the absence of a contained cathode material, however only zinc/air batteries of

moderate performance have been realized so far.

Lithium metal primary batteries take advantage of the strong reducing character and

the low weight of lithium, which translates into high specific energy and power densities.

Due to the high reactivity of lithium with water, lithium batteries require non-aqueous

solvents. These solvents tend to passivate the anode surface and protect it against

corrosion, which provides stability. Early concepts of lithium metal batteries considered

positive electrodes of transition element halides like CuX2 or NiX2 (X: F, Cl). However,

these compounds suffer from stability and dissolution problems. More stable cathodes

for lithium metal primary batteries consist of halogenated compounds such as carbon

fluoride [(CF)n], I2/poly-2-vinylpiridine complex, SOCl2 or SO2Cl2; oxides: Ag2CrO4, V2O5,

CuO, Ag2V4O11, MnO2 or SO2; or sulphides: FeS and FeS2.[4b]

To date, the alkaline MnO2 battery is the most commercially successful among the

primary batteries. Considerable advances in the materials and design of primary

batteries have led to an increase in the power density and to improvements in shelf life

and safety, particularly for lithium metal batteries that provide higher energy density
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than the most advanced rechargeable batteries available in the market. However, the

energy density of primary batteries has apparently reached its limit due to the lack of

novel, higher capacity active materials. Although primary batteries have become an

essential commodity in life, the faster development of rechargeable batteries in the last

years could provide more appealing batteries in terms of energy output and efficiency.

1.1.2 Rechargeable batteries

Unlike primary batteries, rechargeable batteries can be safely restored several times

to an active and useful state. This remarkable characteristic translates into a longer

useful life and the possibility of using rechargeable batteries as accumulators that can

store and deliver energy when other energy source is not available or is insufficient to

meet the demand. Table 3 lists some of the major secondary batteries developed and/or

commercialized since the nineteenth century.

The first rechargeable battery was the led-acid battery invented by G. Planté in

1859. In its early years, Planté’s battery was recharged by primary batteries and was

used in telegraphy and for powering vehicles’ lights. The development of the dynamo

and several design modifications and improvements of the led-acid battery enabled the

proliferation of internal combustion engine vehicles where the battery was, and is still

used, for starting, lightning and ignition (SLI) purposes. The largest drawback of the

lead-acid battery for portable applications is its heavy weight, which limits its energy

density. In spite of that disadvantage, lead-acid batteries are widely used for powering

small electric service vehicles and for backup systems.

In order to achieve higher specific energy than the lead-acid battery, different

rechargeable batteries with alkaline electrolytes and nickel-based cathodes were

developed between 1899 and 1970. The basic difference among these nickel alkaline

batteries arises from the use of diverse anode materials like iron, zinc, cadmium or

metal hydrides (MH). The nickel-cadmium (Ni-Cd) battery offered advantages over its

nickel-iron and nickel-zinc counterparts, and it was commercially successful. However,

the long-term negative effects of cadmium on human health raised concerns about the

production, use and disposal of Ni-Cd batteries. Besides, a major performance limitation
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of Ni-Cd batteries is the so-called memory effect, which limits the charging voltage and

capacity if the battery was not fully discharged previously.

Table 3. Major commercial secondary batteries. Adapted from ref. [4a, p 22.12].

Battery

type
Global reaction

Voltage

(V)

Specific

Capacity

(Ah/kg)

Energy

Density

(Wh/kg)

Lead-

acid
Pb + PbO2 +H2SO4 2PbSO4 + 2H2O 2.1 120 252

Ni-Cd Cd + NiOOH + 2H2O Ni(OH)2 + Cd(OH)2 1.35 181 244

Ni-MH MH + NiOOHM +Ni(OH)2 1.35 178 240

Li-ion LixC6 + Li1-xCo2 LiCoO2 + C6 3.7 158 585

A successor of the Ni-Cd battery is the nickel-metal hydride battery (Ni-MH), in which

a metal hydride with adsorbed hydrogen constitutes the anode. Ni-MH batteries provide

higher energy density and present less memory effect than the Ni-Cd batteries. Such

advantages have caused the gradual replacement of nickel-cadmium by nickel-metal

hydride batteries in most popular low drain applications. Nowadays large Ni-MH battery

systems provide the critical energy density, cycle life and safety required for hybrid

electric vehicles (HEV), as shown in Fig. 2. In the next years, the success of the electric

vehicle (EV) will be strongly influenced by the availability of higher performance

rechargeable batteries based on light materials. Lithium-based rechargeable batteries

are one of the strongest candidates to enable electric transportation.

1.2 Lithium metal and lithium-ion batteries

For more than forty years, lithium metal has been considered as an ideal candidate

for the anode of high performance rechargeable batteries. For this endeavour, early

attempts consisted in achieving reversibility for the reaction of lithium primary batteries

such as Li/(CF)n or Li/MnO2, the latter being successful and initially commercialized by
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Sanyo in solar rechargeable calculators. Although some systems working at nearly

500º C with molten lithium anode and sulphur cathode resulted unviable, these systems

set the basis for the development of the more successful sodium/sulphur battery.

Figure 2. Relative performance of different energy storage systems for electric vehicle
applications. Taken from ref. [5].

By 1970, there was evidence of the electrochemical incorporation of guest ions

within the structure of host materials; a process later referred to as electrochemical

intercalation.[6] Further research on the intercalation of lithium into layered

dichalcogenides led to the development of lithium metal anode batteries with TiS2 and

MoS2 cathodes manufactured by Exxon and MoliEnergy, respectively. However, the

potential of these systems is lower than 2.5 V (vs. Li+/Li) and their repeated cycling

leads to irregular deposition of lithium. This later fact results not only in the total failure

of the battery due to short-circuiting of both electrodes, but also in a potential fire risk.

Alloys with aluminium, silicon, zinc, and other elements were proposed as a way to

avoid the irregular deposition of lithium. Nevertheless, upon reaction with lithium, the

crystal lattice of the lithium-element alloy suffers large volume changes that cause great

stress, and result in cracking and crumbling of the alloy particles; this situation leads to

capacity failure after several charge-discharge cycles.[7]



Daniel Cíntora Juárez – Doctoral Thesis 23

Considering structural similarities to layered dichalcogenides, Goodenough’s group

identified LiCoO2 as a higher potential cathode for the electrochemical

insertion/extraction of lithium.[8] Regarding the safety problems associated to the use of

lithium metal, graphite and synthetic coke were proposed as anode materials due to

their ability to insert/extract lithium reversibly.[9a-b] The combination of a LiCoO2

cathode with a coke anode led to the development of the first lithium-ion (Li-ion) battery

introduced to the market by Sony in 1991.[10] Today’s Li-ion battery technology is

constituted by a family of anode and cathode materials that can be combined to realize

a battery for a given application.

Figure 3. Representation of the multi-scale components and working principle of a lithium ion
battery.

Fig. 3 shows a diagram of the working principle of a Li-ion battery. The cathode is a

composite electrode with a transition metal oxide (LiCoO2, LiMn2O4, etc.) or a

phosphate (LiFePO4) as active material mixed with conducting and agglomerating

additives, all deposited over an aluminium current collector. Graphite or other

carbon-based active materials mixed with additives and deposited over a cooper current

collector form the composite electrode used as the anode in commercial Li-ion batteries.
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Both composite electrodes are separated by a polymeric, plastic membrane typically

made of polypropylene or polvynilidene fluoride (PVDF).[11] This plastic membrane is

permeable to the electrolyte, which typically consists of a lithium salt (i.e. LiPF6)

dissolved in mixtures of alkyl carbonates of low molecular weight containing soluble

additives.

Li-ion batteries are usually sold in charged state and most suppliers recommend fully

charging these batteries before their use, in order to recover the capacity lost due to

self-discharge. During the charging process, lithium is extracted from the positive

electrode’s active material as this is oxidized. Simultaneously, lithium is inserted into the

negative electrode’s active material as this undergoes a reduction reaction, thus

allowing the energy storage. In discharge, the electrode reactions and the lithium flow

are reversed, thus allowing the energy release.

The performance and safety criteria for developing or selecting electrode materials

for Li-ion batteries are:

1) The materials have to be as light as possible and able to exchange reversibly

large amount of lithium ions in order to provide high specific capacity

2) In order to provide high energy density, the reaction with lithium must occur at a

high potential for a cathode material. For an anode material, the reaction must

occur at a low (positive) potential

3) The intrinsic/extrinsic electronic and ionic conductivity of the active materials

must be high in order to allow fast charge exchange.

4) The stability and compatibility of the materials in presence of the electrolyte and

the internal components of the battery has to be retained in charged, in

discharged state or during operation

5) Upon successive charge/discharge cycles, the structural changes of the active

materials must be minimal in order to achieve energy efficiency and prolonged

cycle life

6) The materials have to be cost effective and environmentally friendly

The following sections present an overview of a series of insertion compounds that

have been identified as viable or that are currently used as anode or cathode materials.

For a detailed description of electrolytes for Li-ion batteries see refs. [12a-b].
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1.2.1 Anode materials for Li-ion batteries

Anode materials for Li-ion batteries can be classified depending on their

electrochemical reaction with lithium as: insertion/extraction; alloy/de-alloy; or

conversion materials (Fig. 4). The following overview focuses on carbonaceous

insertion/extraction materials. Recent reviews cover the advances on another attractive

insertion material: lithium titanium oxide (LTO),[13a] as well as the development of

alloy/de-alloy and conversion materials that are considered for the next generation of

Li-ion batteries.[13b-d]

It has been demonstrated that several carbonaceous materials can undergo

practical, reversible insertion/extraction of lithium at low potentials vs. Li+/Li. Such

carbons, usually classified as soft (graphitic) or hard (non-graphitic), intercalate lithium

between graphene layers to an extent that depends on their morphology, crystallinity

and ordering.[14] For instance, turbostratic, disordered coke is able to intercalate low

amounts of Li+, and thus form LixC6 (0 < x < 0.5). Graphite also forms LixC6, and its

ordered layered structure allows the intercalation of higher amount of Li+ (0 < x < 1),

which translates into a maximal specific capacity of 372 mAh g-1.[15]

Figure 4. Potential and specific capacity of diverse types of anode materials for lithium-based
batteries. Taken from ref. [13c].
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Commercially available types of graphite for Li-ion batteries include: Mesocarbon

Microbeadss (MCMB), vapour grown carbon fibres (VGCF), Massive Artificial Graphite

(MAG), among others.[14] Despite the availability, low cost and acceptable performance

of graphitic carbons, these materials present undesirable features such as an

unpractical volumetric capacity for large-format batteries, and a high initial irreversibility

due to the formation of a passivating solid electrolyte interphase over the carbon

material caused by the decomposition of the electrolyte.

Hard carbons offer a higher specific capacity (400 – 600 mAh g-1), which arises from

the random alignment of graphene sheets that provide sites for lithium accommodation.

Strategies such as surface modification and formation of protective coatings have been

applied in order to overcome the irreversible capacity and low tap density of hard,

porous carbons.[16a-b] Carbon nanotubes (CNTs) and graphene constitute another

group of ordered carbons that have been applied to Li-ion batteries. These versatile

materials can be used as active materials, as support for active metal or oxide particles

or as conductive additives in composite electrodes. High capacity has been reported for

single wall carbon nanotubes (1116 mAh g-1) based on an average LiC2

stoichiometry.[13c]
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1.2.2 Cathode materials for Li-ion batteries

A vast diversity of active compounds has been considered for the cathode of Li-ion

batteries. Inorganic compounds with transition elements are among the most attractive

cathode materials, as they have crystalline structures that enable reversible lithium

insertion/extraction at practical voltage values vs. Li+/Li. This section provides an

overview on three types of cathode materials: layered oxides, spinel-type compounds

and phospho-olivines; all of which are currently used in commercial Li-ion batteries.

Figure 5. Polyhedral representation of the structure of three types of insertion materials. Lithium
is depicted as green spheres.

1.2.2-a Layered oxides: LiMO2 (M: Mn, Co, Ni)

The success of LiCoO2 as a cathode material in commercial batteries prompted the

research on the family of layered oxides LiMO2 (M: Mn, Co, Ni). LiCoO2 is isostructural

to rhombohedral -NaFeO2 (R-3m space group) with the oxygen atoms in a cubic close

packed arrangement. In this ordering, two-dimensional paths exist along the ab

direction, which allows for diffusion of lithium ions, as shown in Fig. 5a. Rearrangement
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of the oxygen lattice into a hexagonal close packing takes place if the fraction x of

extracted lithium in Li1-xCoO2 is higher than 0.5. This irreversible change in the crystal

structure can be prevented by limiting the charge potential. However, this action limits

the practical capacity to ca. 135 mAh g-1.[17] Furthermore, Co4+ from delithiated

Li1-xCoO2 can oxidize the organic solvents of the battery electrolyte, especially upon

heating. This situation can lead to the ignition of the battery, a risk that renders LiCoO2

unattractive for large format batteries.

Although more appealing in terms of cheaper production costs, LiNiO2 presents

similar structural and thermal instabilities as LiCoO2. LiNiO2 is isostructural to LiCoO2,

however the two-dimensional paths in LiNiO2 usually are partially blocked by excess

nickel atoms that limit the Li-ion diffusion rate. The instabilities of LiNiO2 can be

overcome by replacing a fraction of nickel by cobalt and aluminium. Cobalt mitigates the

blocking of the two-dimensional paths,[18] while aluminium prevents the full delithiation

and oxidation of LiNiO2.[19] These strategies have led to the development of the mixed

oxide LiNi0.8Co0.15Al0.05O2, which is now used in the battery packs that power some

models of Tesla electric cars.

LiMnO2 (LMO) is also an interesting alternative to LiCoO2 cathode material in terms

of safety, performance and cost. LMO has a stable orthorhombic structure (o-LMO),

although it can also be obtained with a metastable monoclinic structure (m-LMO)

through lithium exchange from NaMnO2.[20] Both o-LMO and m-LMO have the cation

ordering of layered -NaFeO2 but upon lithium insertion/extraction they tend to

transform into LiMn2O4 with spinel structure (Fig. 5b), that has lower capacity and

voltage. Stabilization of oxides containing manganese with the α-NaFeO2 structure has

been achieved by partial substitution of Mn by Co and Ni. These mixed oxides have a

general formula Li[NixMnyCoy]O2, where nickel is the predominant redox active element

in the 2+ and 4+ oxidation states. The optimal composition with the best compromise

between thermal stability and performance has been found for

LiNi0.33Mn0.33Co0.33O2.[21] In this compound manganese exists as Mn4+ and provides

stability to the lattice, while Co3+ plays an active role at the later stages of lithium

removal, apart from enhancing the conductivity and stabilizing the layered structure of

the mixed oxide.
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1.2.2-b Spinel-type compounds: LiM2O4 (M: Mn, Co, Ni)

LiMn2O4 is one of most representative spinel-type compounds used in Li-ion

batteries. It has a cubic structure where lithium ions occupy 8a tetrahedral sites, Mn

ions occupy 16c octahedral sites, while oxygen ions occupy the 32e positions forming a

cubic close packed lattice. In this arrangement, MnO6 octahedra share edges and form

a three-dimensional cubic array that can tolerate isotropic expansion and shrinkage

upon lithium extraction/insertion.[22] This three-dimensional arrangement (Fig. 5b)

enables fast and reversible lithium diffusion required for high rate applications. The full

electrochemical insertion/extraction of Li+ takes place at two stages, the first at ca. 4.0 V

and the second at ca. 3.0 V. This second stage is usually considered unpractical

because it entails a detrimental structure transformation.

The theoretical, specific capacity of LiMn2O4 is 148 mAh g-1 but in practice it can

reach ca. 85% of this value when cycled between 3.5 V and 4.3 V. Capacity fading of

LiMn2O4 has been attributed mainly to Mn dissolution and destabilization of the spinel

structure. It has been shown that the dissolution of Mn is triggered by the presence of

hydrogen fluoride in the battery electrolyte, which has been avoided by using fluoride-

ion getters and fluoride-free salts such as lithium bis(oxalato)borate.[23] Regarding the

stabilization of the spinel structure, partial substitution of manganese by nickel in

LiNi0.5Mn1.5O2 has been effective not only to limit the Jahn-Teller distortion of Mn3+ that

causes the transition from cubic to tetragonal structure, but also to increase the

operational voltage to ca. 4.7 V.

1.2.2-c Phospho-olivines: LiMPO4 (M: Fe, Mn, Co, Ni)

Lithium transition-metal phosphates LiMPO4 (M: Fe, Mn, Co, Ni) with olivine-type

structure constitute a group of polyanionic compounds that were proposed by

Goodenough’s group as safer alternatives to cathode materials based on lithium

transition-metal oxides for lithium-ion batteries.[24] In particular, lithium iron phosphate

(LiFePO4) has been the focus of intense research for almost two decades by virtue of its

appealing electrochemical characteristics, its convenient thermal stability, its

competitive cost and presumable low toxicity.
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The four members of the LiMPO4 family have similar capacity values. Therefore, the

differences in energy density arise from their different operational voltages (Table 4 and

Fig. 6a). The trend in the operational voltage: Fe < Mn < Co < Ni, is correlated to the

d-electron configurations of each of the M2+/M3+ redox couples, and the crystal field

splitting in octahedral configuration as represented in Fig. 6b.[25a-b]

Table 4. Characteristics of synthetic phospho-olivines relevant to battery applications.

Phosphate
Voltage

(V vs. Li+/Li)

Specific

Capacity

(mAh/g)

Specific Energy

(Wh/kg)

LiFePO4 ~ 3.4 ~ 170 ~ 578

LiMnPO4 ~ 4.1 ~ 171 ~ 701

LiCoPO4 ~ 4.8 ~ 167 ~ 800

LiNiPO4 ~ 5.1 ~ 167 ~ 851

With an operational voltage of ~3.4 V, LiFePO4 provides the lowest energy density,

which is the main drawback of this material. LiMnPO4 operates ~0.7 V above the voltage

of LiFePO4, hence, the former has the potential to compete with common 4 V cathode

materials based on transition metal oxides. Unfortunately, LiMnPO4 has an intrinsic

conductivity of approximately five orders of magnitude lower than that of LiFePO4 (as

measured at ~500 K), which translates into a limited rate capability.[26] Solid solutions

of the type LiMn1-yFeyPO4 (0 ≤ y ≤ 1) were initially proposed by Goodenough´s group,

and later developed as an strategy for operating at 4.1 V and at nearly 3.5 V; without

significant detriment to the specific capacity at moderate rates.[27a-b]

Although LiCoPO4 and LiNiPO4 could offer high theoretical energy density, these

materials operate at voltage values close to the stability limit of conventional

carbonate-based electrolytes, which leads to deterioration and safety issues. Therefore,

the development of high operating voltage LiCoPO4 and LiNiPO4 materials is strongly

linked to the development of more stable electrolytes.[28a-b]
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(a) (b)

Figure 6. (a) Discharge profiles of LiMPO4 phospho-olivines.[29] (b) Crystal field splitting
diagrams and relative energies of the M2+ cations in octahedral coordination.[25b]

To date, among the LiMPO4 phospho-olivines, only LiFePO4 provides the

satisfactory performance and the vital safety requirements for stationary/portable

commercial applications such as: power tools, electric bikes/motorcycles, systems for

electric vehicle conversion, or even commercial electric cars or grid power storage. The

following sections describe relevant properties of LiFePO4 and the mechanisms of

charge transport and phase transformation of this material that account for its attractive

electrochemical performance. A summary of the two types of industrial synthesis and

the strategies developed in order to maximize the performance of LiFePO4 is presented.

1.3 Background on LiFePO4

1.3.1 Crystalline structure and voltage of LiFePO4

LiFePO4, also known as triphylite, has the orthorhombic, olivine-type crystal structure

(Pnmb space group) with typical lattice parameters a: 10.332 Å, b: 6.01 Å, c: 4.692 Å,

and a volume of 291.4 Å3.[30] The atomic arrangement of LiFePO4 can be considered

as a distorted hexagonal packing of oxygen atoms, with lithium and iron occupying

one-half of the octahedral sites, while phosphorous occupies one-eight of the
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tetrahedral sites. Each FeO6 octahedra is linked through common corners to other four

FeO6 octahedra in the bc plane. Along the b-axis, LiO6 octahedra are connected to each

other by one edge forming a lithium diffusion path (Fig. 7). One FeO6 octahedron has

common edges with two LiO6 octahedra. PO4 tetrahedra share one edge with a FeO6

octahedron and two edges with LiO6 octahedra. The de-lithiated phase, FePO4

(heterosite), preserves the same framework, although with different lattice parameters,

which causes a reduction of the cell volume at approximately 6.8 %.

Figure 7. Representations of the atomic arrangement in LiFePO4. Projections along [010] (left)
and along [001] (right). Adaptedn from ref. [31].

Prior to its pioneering work on LiFePO4, the group of Goodenough studied the

compositional modifications of a series of transition-metal polyanionic compounds with

the NASICON-type crystal structure.[32] These compounds have a general formula

AxMM’(XO4)3, where A is a mobile cation; M and M´ are the same or different transition

metal element; and X is a metallic or non-metallic element.  In this structure MO6 and

M´O6 octahedra share all corners with XO4 tetrahedra, forming an open structure that

enables reversible insertion/extraction of mobile ions. For a series of iron-based

NASICON-type compounds the substitution of X in the XO4 anionic framework offers the

possibility of tuning the redox potential of the Fe2+/Fe3+ pair relative to Li/Li+. The

iron-based NASICON-type compounds operate at convenient voltages vs. Li+/Li:
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Li3Fe2(PO4)3 (2.8 V), Fe2(MoO4)3 or Fe2(WO4)3 (3.0 V), Fe2(SO4)3 (3.6 V).

The differences in the operating voltage among these compounds arise from the

capacity of the XO4 anions to alter the covalent character of the Fe-O bonds through the

inductive effect. The strength of the inductive effect on the Fe-O bonds depends on the

electronegativity of the X atom in the Fe-O-X linkage. For instance, sulphate, as

compared to a phosphate, decreases the covalent character of the Fe-O bond to a

higher degree. This causes the antibonding states to rise in energy to a lower extent,

resulting in a higher voltage versus Li+/Li.[25b]

The higher redox potential of Fe2+/Fe3+ in LiFePO4 (~3.45 V) with olivine structure,

compared to the potential of Li3Fe2(PO4)3 (~2.8 V) with NASICON-type structure, has

been related to their different polyhedral connectivity. For LiFePO4, sharing one edge

between one FeO6 octahedron and one PO4 tetrahedron (Fig. 8) brings the two cations

closer than they are in the NASICON structure, where FeO6 and PO4 share corners.

This situation means that for LiFePO4 the stronger cation-cation repulsion reduces the

spatial electric potential within the crystal lattice (Madelung potential) and lowers the

Fe2+/Fe3+ redox energy, thus increasing the voltage with respect to Li+/Li.[25b].

1.3.2 Electronic and ionic conductivity of LiFePO4

In their seminal paper, Goodenough’s group reported that the electrochemical

activity of LiFePO4 at room temperature was limited to ~0.6 mol of lithium

inserted/extracted at low discharge current. This limited performance was originally

attributed by the authors to a sluggish lithium transport across an extending

LixFePO4/Li1-xFePO4 (0 ≤ x ≤ 1) interphase.[24] Ravet et al. were the first to show that

the performance of both natural and synthetic LiFePO4 was greatly improved by

covering the particles of the active material with a carbon-coating prepared from

different carbon precursors.[33a-b] This conducting-coating strategy set a breakthrough

that led to the exploration of diverse methods for reducing the intrinsic resistivity of

LiFePO4 and the bulk resistance of LiFePO4-based electrodes. Furthermore, such a

breakthrough motivated the search for a detailed description of the electronic and ionic

conduction processes that are responsible for the advantages and limitations that

condition the rate capability of this material.
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1.3.2-a Electronic conductivity

The process of electronic conduction in LiFePO4 has been consensually described

as a thermally-activated hopping mechanism of small polaron holes between Fe3+ sites

and neighbouring Fe2+ sites.[34] Those polarons originate from lithium vacancies and

therefore the amount of polarons is set by the amount of lithium, and/or by the presence

of impurities and defects. The electronic conductivity is determined by the concentration

of polarons as charge carriers, and by the activation energy required to exchange Fe3+

ions to adjacent Fe2+ ions upon polaron hopping.[35] The reported values of the

activation energy for the polaron hopping in bare LiFePO4 range from 0.156 eV to 0.63

eV, while the values of the electronic conductivity, determined either by DC or AC

techniques, range from 10-7 to 10-9 S cm-1 for the lithiated phase, [26, 36] and 10-10 to

10-11 S cm-1 for the delithiated phase.[37] The uncertainty among these reported values

may be associated not only to different experimental set-ups or to the use of different

techniques, but also to the difficulties in measuring exclusively the intrinsic electronic

conductivity of LiFePO4 without interference from its ionic conductivity, or from electrode

scale contributions.[35]

1.3.2-b Ionic conductivity

Regarding the conduction process of lithium in LiFePO4, Morgan et al. determined

through first-principles techniques that the migration of lithium has the lowest activation

barrier (0.27 eV) for the pathway along the [010] direction.[38] According to the authors,

Fe siting on Li sites can limit the mobility of lithium. Using atomistic modelling

techniques, Islam et al. confirmed the preferred diffusion of lithium along the [010]

direction, and also suggested a curved trajectory between adjacent Li sites.[39].

Nishimura et al. provided the experimental confirmation of the curved, one-dimensional

trajectory for lithium motion by analysing high-temperature powder neutron diffraction

data.[40]

1.3.2-c Electronic conductivity vs. ionic conductivity in LiFePO4

The rate limitations for charge transport in LiFePO4 have been commonly attributed

to a low intrinsic electronic conductivity of this material. This paradigm has been
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objected by the following reports concerning the effects of the particle size and the

lithium ion transport on the conductivity of the phosphate:

i) Amin et al. reported that the ionic conductivity of LiFePO4 single crystals is

~4 orders of magnitude less than the respective electronic conductivities

along the a, b and c axes.[41a-b]

ii) Delacourt et al. have reported a notable electrochemical performance for

LiFePO4 without carbon-coating, when the particle size is lower than a

threshold value of ~150 nm.[42] Gaberscek et al. have also reported that

the particle size has a more important effect on the conductivity and on the

electrochemical performance, as compared to the effect of the

carbon-coating.[43]

iii) As initially suggested by Morgan et al.,[38] and later discussed by Malik et

al.,[35] and by Yang et al.[44] based on theoretical calculations, defects and

impurities can hinder the mobility of lithium, especially in the [010] direction,

and cause significant poor rate performance.

During charge/discharge operation, the electroneutrality principle requires that the

transfer or transport of electrons (or polarons) and lithium ions take place

simultaneously within a particle or between neighbouring particles. Using DFT methods,

Maxisch et al.[45] calculated that the binding energy of the Li+/polaron couple is

approximately 0.5 eV. Thisvalue value is comparable to the values calculated for the

polaron migration barrier (0.4 to 0.65 eV),[26, 46] which in turn are comparable to the

theoretical values for the lithium migration energy (0.55 eV).[39]

Based reports mentioned above, the question of whether the electronic conductivity

or the ionic conductivity determines the rate performance of LiFePO4 remains unsolved.

Nevertheless, the evidence highlights the necessity of optimizing both mechanisms by

modifying intrinsic properties of LiFePO4 or by using additives of mixed conductor

character, in order to minimize the resistivity at the electrode level.
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1.3.3 Lithium extraction/insertion mechanisms of LiFePO4

The mechanism by which LixFePO4 (0 ≤ x ≤ 1) transforms upon electrochemical

lithium extraction/insertion has been the focus of intense research since 1997, and

several models have been considered to account for some intriguing observations, such

as the prevalence of either a solid-solution or two-phases. This section presents some

of the models proposed throughout the years in order to gain understanding on the

process responsible for the peculiar performance of LiFePO4.

Padhi et al. suggested that the poor performance of LiFePO4 at high current is

associated to a limited diffusion of lithium across a LiFePO4/FePO4 interface (Fig. 8a).

Upon lithium insertion/extraction, the two-phase boundary would extend to a critical

area that could not sustain the rate of lithium transport that is necessary to meet the

imposed current.[25] Two similar models proposed by Andersson et al., the radial model

and the mosaic model (Fig. 8b), consider the core-shell configuration put forward by

Padhi et al., as well as the presence of inactive phases within particles that remain

isolated due to poor ionic diffusion or low electronic conductivity; which may accounts

for the irreversible capacity after the first cycle.[47]

Srinivasan et al. developed a mathematical model for the two phase transformation

via a shrinking core, where a shell of one phase covers a core of the second phase

upon extraction/insertion of lithium.[48] Similarly to the above mentioned core-shell

models, the shrinking core model takes into account the limitations of the diffusion of

lithium through the shell, but considering the effects of charge transport through the

different interphases within the matrix of the porous electrode and the current collector;

a situation that could partially explain why LiFePO4 performs better when it is coated by

carbon.

The three models described above are intuitive as they assume the coexistence of

two-phases within the particles, as well as isotropic lithium diffusion. More descriptive

models of the phase transformation mechanism of LiFePO4 consider the well known

anisotropic diffusion of Li+,[38-40] as well as the coherence strain between the lithiated

and the delithiated phases.[51] For instance, experimental evidence on the directionality

of the LixFePO4/Li1-xPO4 phase transformation was provided by Chen et al. and Laffont
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et al., by using high resolution electron microscopy[52] and electron energy loss

spectroscopy,[53]  respectively. Both studies concluded that the preferential diffusion of

lithium parallel to the b-axis guides the formation of the LixFePO4/Li1-xFePO4 interface

along the same direction. These observations support the good electrochemical

performance commonly observed for LiFePO4 with platelet morphologies having short

crystal size along the b-axis.[54]

Figure 8. Phase transformations models for LiFePO4: a) by Padhi et al.,[25] b) “Mosaic” by
Andersson et al.,[47] c) “Domino-cascade” by Delmas et al.,[49] and d) “Single-phase
transformation” by Malik et al.[50] The figures were adapted from their respective sources.

Delmas et al. proposed the domino cascade model (Fig. 8c) to explain the

coexistence of individual particles composed either of LiFePO4 or FePO4, as detected

by XRD and electron microscopy.[49] The authors suggest that the nucleation process

is the rate determining step and that the growth of a phase at the expense of the other,
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by the extraction/insertion reaction, creates a distorted interphase. This interphase has

an enhanced lithium and electron conductivity that favours the progressive, full phase

transformation at a given particle, by a process driven by the minimization of the stress

originated by the lattice mismatch between the LixFePO4 and Li1-xPO4 phases.[55]

Single-phase models have also been developed considering not only the existence

of a solid solution of LixFePO4 (0 ≤ x ≤ 1) above 300º C, but also the possibility of

extending the single-phase region by reducing the particle size below a critical value of

~45 nm.[56a-b] A single phase model proposed by  Malik et al. (Fig. 8d) considers that

an activation overpotential of ~30 mV is required to access a non-equilibrium

solid-solution state.[50] This value is close to the experimental value of 20 mV

determined at a rate of C/1000, as reported by Dreyer et al.[57] Once the single phase

starts to form within LiFePO4 crystallites, the insertion/reaction can follow a

nucleation-growth mechanism until the reaction is completed, or proceed through a

relaxation pathway towards the two-phase growth within crystallites. Whether the

transformation of LiFePO4 involves one or two phases strong dependency on the

particle size, the integrity of the crystalline structure, the reaction rate, and the

conditions (equilibrium or non-equilibrium) at which the measurements are carried out,

among other parameters.[58]

1.3.4 Synthesis of LiFePO4

LiFePO4 exists in nature as the mixed iron/manganese phosphate Li[FeMn]PO4,

known as triphylin, which was firstly described by von Fuchs in 1834.[59] Although

Ravet et al. showed that some natural, impure ores of LiFePO4 can undergo

electrochemical extraction/insertion of lithium,[33a] it is well known that the presence of

unwanted impurities or structural defects have detrimental impact on the performance of

this material.[58] Therefore, only synthetic LiFePO4 is considered for practical

applications. Several methods have been adapted and developed for the synthesis of

LiFePO4, not only aiming to obtain a high performance material and to gain

understanding on fundamental properties, but also to produce LiFePO4 at industrial

scale at a competitive cost. The following sections present an overview on two of the

main methods that have been applied for the preparation of LiFePO4 at industrial scale:

a) high temperature solid-state synthesis and b) mild temperature hydrothermal
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synthesis. Further details on other synthesis methods can be found in comprehensive

reviews from the perspective of academic and industrial players.[60a-d]

1.3.4-a High temperature solid-state synthesis
Two different approaches are common for the high temperature synthesis of

LiFePO4: i) solid state reaction of appropriate lithium and phosphate precursors with

ferrous compounds; ii) solid state, carbothermal reduction of ferric compounds and

reaction with lithium and phosphate precursors.[61] For any of these two approaches,

elemental carbon or carbon-containing compounds are commonly used for providing

reducing power, for preventing oxidation of the ferrous precursors, or for reducing ferric

precursors. Additionally, carbon forms a coating over LiFePO4 that not only enhances

the electronic conductivity, but also limits the growth of LiFePO4 particles.[62]

Common precursors for the solid state synthesis or carbothermal synthesis of

LiFePO4 include: lithium hydroxide or carbonate, Fe(II) oxalate or acetate, Fe(III) oxide

or phosphate, and ammonium phosphate. Both methods consist in heating the

precursors in two steps under inert (Ar, N2) or reducing (Ar/H2) atmosphere. After a

thorough mixing of the precursors, the first heating step is carried out at temperature

values between 200-400ºC, in order to decompose the precursors. The product of the

first heating step is then re-mixed and/or pelletized, and heated between

600-1000º C.[63a-b] Critical parameters for obtaining pure, active LiFePO4 include: the

stoichiometric proportions of the precursors, the reaction atmosphere, the carbon

source, the heating temperature and the heating time. The main disadvantages of the

high temperature methods include the high energy consumption required for the several

heating and mixing steps, the difficulties for obtaining nano-sized primary particles,

preventing agglomeration, and avoiding the presence of impurities such as Li3PO4,

Li3Fe2(PO4)3, Fe2O3 or iron phosphides.

1.3.4-b Mild temperature hydrothermal synthesis
Mild temperature methods for synthesizing LiFePO4 take advantage of the solubility

of the precursors in water or in other solvents under different temperature, pH and

pressure conditions. In general, these methods require an initial, mild temperature

exchange reaction of the starting precursors, which can led to precipitating LiFePO4

directly or by forming intermediate phases. This is achieved by co-precipitation
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reactions, sol-gel methods, hydrothermal/solvothermal or ionothermal reactions.[60c] In

most of the cases, it is necessary an additional high temperature heating of the mild

temperature product in presence of a carbonaceous compound, in order to form

crystalline, active LiFePO4.

Currently, one of the most successful mild temperature methods for synthesizing

LiFePO4 is the autogenous hydrothermal method, which was pioneered by

Whittingham’s group. Common precursors for the hydrothermal synthesis are:

FeSO4*7H2O, LiOH and H3PO4, which react in aqueous solution inside an autoclave at

temperatures ranging from 100-250º C with autogenous pressure. Yang et al.

demonstrated that the reaction at 120º C favours the amount of Fe on Li sites, which

blocks the diffusion of lithium and causes the poor performance of samples prepared

below ~180º C.[64] This type of disorder is readily removed by heat treatment above

700º C. On the other hand, the problem of iron oxidation in aqueous solution has been

addressed by adding reductants such as sucrose, ascorbic acid or citric acid.  One of

the most appealing advantages of the hydrothermal/solvothermal methods is the

possibility of tuning the particle size and morphology by using of surfactants such as

Cetyl Trimethyl Ammonium Bromide or Polysorbate.[65]

1.3.5 Improving the conductivity of LiFePO4 and LiFePO4-based
electrodes

The low intrinsic conductivity of LiFePO4 has been considered as the limiting factor

for achieving efficient lithiation/delithiation at fast charge/discharge rates. After the work

of Ravet et al. on the beneficial effects of carbon-coating,[33a] most efforts have been

directed towards increasing the electronic conductivity of LiFePO4. In this regard, Chung

et al. published a report claiming that “controlled cation non-stoichiometry combined

with solid-solution doping by metals supervalent to Li+ increases the electronic

conductivity of LiFePO4 by a factor of ~108”.[66]  However, some authors have criticized

this affirmation by pointing out that the abrupt increase in electric conductivity could be

either due to the formation of a carbon-coating over LiFePO4 particles by decomposition

of the used carbon-containing precursors, or due to the reduction of the aliovalent ions

to a metallic, conducting phase. Currently, there is still debate on whether aliovalent
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ions can be incorporated or not in the olivine structure by doping, either on Fe or Li

sites.[67a-c]

Another controversial report was published by Kang et al. regarding the formation of

ionically conductive coatings over LiFePO4 nano-particles and the possibility to achieve

ultrafast charge/discharge rates of up to ~400C (~ 9 seconds).[68] The authors claimed

that such an ultrafast rate was enabled by the presence of an intentionally produced,

poorly crystallized coating, probably composed of Li3PO4 and Li4P2O7, which promotes

rapid lithium transport to the surface of LiFePO4 nanoparticles. Zaghib et al. put forward

a challenging critic to that report, suggesting that Li4P2O7 occurs as an impurity that

forms nanoparticles that stick to the surface of LiFePO4, and thus the reported rate

performance could be mostly due to the conducting carbon-coating over the active

material nanoparticles.[69] As pointed out later by Ceder & Kang, the composition and

origin of the phases, other than LiFePO4, obtained by reacting off-stoichiometric

proportions of precursors is uncertain.[70]

Fig. 9 presents a classification of the different approaches that have been proposed

in order to improve the electronic and/or ionic conductivity of LiFePO4 and

LiFePO4-based electrodes at different scales. Some of the proved and most common

approaches are discussed below, with an emphasis on the use of intrinsically

conducting polymers.

1.3.5-a Carbon-coating
The most common approach adopted for increasing the electronic conductivity of

LiFePO4-based electrodes has been the formation of carbon coatings over the active

material particles. Such coatings are formed over LiFePO4 either by carbonization of

precursors or by high energy milling with carbon powders. Carbonization can be carried

out during the synthesis of LiFePO4 or on ready prepared LiFePO4 at temperatures

ranging from 500-700º C by decomposition of carbon-containing precursors such as:

organic salts (acetates, oxalates, carbonates, citrates, etc.), sugars (sucrose, glucose,

lactose), surfactants, or polymers.[71a-d]

The quality of the carbon-coating is determined by the following factors: thickness

(preferably lower than 5 nm); degree of graphitization (high sp2/sp3 ratio); the amount of

carbon (preferably less than 5% wt.); the porosity and homogeneity.[72] Apart from

raising the conductivity of LiFePO4 by ~7 orders of magnitude, carbon-coating can
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restrict the particle overgrowth by avoiding inter-particle coalescence, and also induce

the recrystallization of the particle’s surface layer.[73] All of these effects led ultimately

to an improvement of the electrochemical performance that does not originate from an

increase of the intrinsic conductivity of LiFePO4, but from the effective connectivity

between the particles and their wiring throughout the electrode and to the current

collector. The main disadvantage of applying a carbon coating over LiFePO4 is the

decrease of the tap density, which can limit the practical cell volumetric energy.[74]

Furthermore, the carbonization of organics is a high energy consuming process that

generates contaminants. Therefore, alternative, less energy-consuming methods could

reduce the environmental footprint of the conventional fabrication of carbon-coated

LiFePO4.

Figure 9. Different approaches for enhancing the conductivity mechanism (electronic or ionic) at
different levels for LiFePO4 and LiFePO4-based electrodes.
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1.3.5-b Particle size reduction and morphology

The reduction of the particle size of LiFePO4 has been experimentally proven as an

effective way for improving the rate performance. This improvement is associated to a

decrease of the electrode’s resistance, which in turn is attributed to the short distance

for lithium and/or electron diffusion/migration in nanoparticles. LiFePO4 nano-particles

ranging from ~300 to ~5 nm can be produced by low-temperature methods such as

hydrothermal,[75] polyol,[76] co-precipitation,[77a-b] or mechanochemical

activation.[78] Although the combination of carbon-coating and nano-particles typically

results in a synergistic effect for LiFePO4,[79a-b] according to the reports of Delacourt

et al.,[42] and Gaberscek et al.,[43] the role of particle size is more important than that

of carbon-coating for LiFePO4 particles smaller than ~150 nm.

Together with the particle size, the morphology of the particles plays an important

role in enabling fast charge/discharge rates of LiFePO4, as it has been observed for

particles that grow in different shapes.[80a-c] Such observations were supported by the

theoretical study of Fisher and Islam, who calculated the equilibrium surface energy and

the non-equilibrium surface attachment associated to low-index planes of LiFePO4

crystals.[81] These authors provided an explanation for the charge/discharge rate

improvement in terms of the prevalence of the lowest energy (201) and (010) surfaces

in the equilibrium and in the non-equilibrium particle morphology. The latter surface

provides the most facile pathway for lithium ion conduction,[81] provided no anti-site

defects are present along the lithium migration channels.

1.3.5-c Conducting inorganic additives and coatings

i) Carbons

Carbons are widely used as conductive additives to reduce the resistance of

LiFePO4-based electrodes and other positive or negative electrodes for Li-ion batteries.

Carbon materials that have been used for creating electron-conducting networks in

LiFePO4-based electrodes are of diverse type and form, these include carbon black or

graphite particles,[82a-b] carbon fibres,[83a-b] as well as other advanced carbons such

as nanotubes or graphene, which have been reviewed recently.[84a-b]
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The type and the optimal amount of carbon conducting additive used in LiFePO4-based

electrodes is determined by the shape and size distributions of the active material

particles, which determine the percolation threshold for electron conduction by

point-to-point contact or by tunnelling effect. The morphological characteristics of

carbon additives not only influence the electronic conductivity, but also the ionic

conductivity as the electrolyte availability and the ionic transport rate are affected by the

porosity and tortuosity of the electrode.[85]

Typically, carbons are attached to the active particles by polymeric binders such as

PVDF. Despite being used in small amounts (usually less than 10%), most carbons can

absorb the binder and thus influence the electrode’s manufacturing process and the

mechanical properties of the composite electrodes.[86] Currently, carbon black, graphite

or carbon fibres are the most used conducting additives for LiFePO4-based electrodes

in commercial batteries. Apart from being cost effective, these additives provide the best

compromise between electronic conductivity and low electrolyte or binder absorption,

which results in optimal electrode performance due to effective electrolyte wettability

and mechanical stability.[87]

ii) Iron phosphides

Herle et al. reported on the attempt to carry out the synthesis of LiFePO4 doped by

Zr,[67] as previously reported by Chung et al.,[66] concluding that the conductivity

enhancement of LiFePO4-based electrodes was due to the presence of “a percolating

nano-network of metal-rich phosphides”. According to Herle et al., such conducting

phases are formed upon carbothermal reaction of the precursor above 800º C,

independently of the presence or absence of Zr dopant. Under such conditions,

carbon-containing iron salt precursor forms LiFePO4 with Fe2P and/or iron

phosphocarbide (Fe75P15C10) at grain boundaries, whereas FeP has been detected at

the bulk by SEM/EDX. Further evidence on the presence of Fe2P and FeP phases was

presented by Rho et al., based on Mössbauer and XPS spectroscopies.[88a-b]
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iii) Metal particles

The presence of dispersed metal particles of copper or silver formed during the

synthesis of LiFePO4 has been reported to improve the rate performance.[89a-b]

Although these metal-added composites provide better charge/discharge characteristics

than metal-free composites, issues such as the corrosion/passivation of metal particles

and their higher cost as compared to other conducting additives, such as carbons,

renders the use of metal particles unattractive for mass production.

iv) Coatings over the current collector

The resistance of the interface between the current collector and the layer containing

the active material requires special attention as it contributes to the ohmic drop and can

limit the rate capability,[90] even if an optimized LiFePO4 is used. Besides, this

interphase has to ensure the electrical contact in order to enable high material utilization

and reversibility. Furthermore, when corrosive electrolytes are used (e.g. LiTFSI-based

), the anodic oxidation of aluminium above ~ 3.7 V can compromise the electrode’s

integrity and limit the cycle life.[91] Considering these issues, protective coatings based

on carbons have been applied over the aluminium current collector.

Carbon-coated aluminium has been prepared by diverse methods such as i) casting of

slurries containing a binder and dispersed carbon particles;[92a] ii) dry impregnation of

carbon and a binder over aluminium by pressing;[92b] or iii) high temperature reduction

of methane over aluminium.[92c] In general, the improvement in rate capability and

cycle life of LiFePO4-based electrodes with protected aluminium current collector has

been attributed to a better adhesion and mechanical integrity of the composite layer or

to the removal of the native, insulating Al2O3 layer.

1.3.5-d Coatings and films of intrinsically conducting polymers

Intrinsically conducting polymers (ICPs) resemble inorganic insertion compounds as

the former undergo electrochemical oxidation/reduction reactions and can insert or

extract ions in order to maintain electroneutrality (see section 1.4 for an overview on

ICPs). Their ability to conduct electrons and ions, together with their stability in common

lithium battery electrolytes, enable the use of ICPs as active materials for lithium-based

batteries[93a-d] or as functional additives in composite materials with LiMnO2,[94]
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LiMn2O4,[95a-b] LiV2O5[96a-b], LiCoO2,[97a-b] among other active materials that have

been recently reviewed.[98a-b]

LiFePO4 and C-LiFePO4 have also been combined with common ICPs such as

polyaniline,[99a-f] polypyrrole,[100a-f] and polythiophene,[101] taking advantage of the

favourable redox states of these conducting polymers at the operational voltage of

LiFePO4. Although their mechanical properties are not as good as those of common

polymeric binders, ICPs improve the connectivity between the active material particles

and provide conducting pathways that extend to the current collector, thus enabling

higher material utilization and homogeneous current distribution. Additionally, ICPs have

been applied for corrosion inhibition and protection of the aluminium current collector in

lithium batteries.[99g] Thus, ICPs could offer several advantages over previously

reported carbon-coatings, either when applied over the LiFePO4 particles or over the

aluminium current collector of LiFePO4-based electrodes. These advantages include:

i) the formation of compact, functional polymeric coatings and layers that can be

prepared chemically, electrochemically or by mechanical deposition methods;

ii) contribution to the electrode capacity;[100d] iii) enabling the lithium

insertion/extraction reaction fronts from the current collector towards the

electrode/separator interface;[102] or iv) overcharge/overdischarge protection by virtue

of the polymer’s voltage-dependent conductivity.[103a-b]

Poly(3,4-ethylenedioxithiophene) [PEDOT] is one of the most studied ICPs for

LiFePO4/ICP composites due to its high conductivity in the doped state. Besides,

PEDOT is commercially available as a complex with polystyrene sulfonate

(PEDOT:PSS), which facilitates the formation and processing of composites.

Different methods have been applied for synthesizing PEDOT and for combining it

with LiFePO4. In general, oxidative chemical polymerization and electropolymerization

are the most common ways to synthesize ICPs, as detailed in section 1.4.1. Regarding

the formation of the LiFePO4/PEDOT composites, two general approaches are usually

applied: 1) blending LiFePO4 and ready synthesized PEDOT;[104a-h] and 2) chemical

or electrochemical polymerization of EDOT monomers in presence of LiFePO4.[104i-j]

Table 5 lists a selection of reports on the preparation of LiFePO4-based electrodes

with different conducting polymers published in the last years, with an emphasis on the

use of PEDOT.
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Figure 10. Plot of the gravimetric capacity and energy density of a series of LiFePO4-based
composites listed in Table 5. Both capacity and energy are referred to the weight of the
electrode without considering the current collector. Circles: data @ 1C, squares: data @ 2C,
tringles: data @ 5C, diamonds: data @ 10C. The doted line indicates the theoretical limit
assuming a constant voltage of 3.42 V for an electrode composed of only LiFePO4.
DOD≡Depth of discharge, PPY≡Polypyrrole, PANI≡Polyaniline.

Fig. 10 presents a graphical comparison of the gravimetric capacity and the

gravimetric energy density at a dept of discharge (DOD) of 50% at 1C, 2C, 5C and 10C

discharge rates for a selection of composites listed in Table 5. The reader may consult

Appendix III (Galvanostatic cycling) for a description on how to estimate the values at

50 % DOD. The benchmark performance considered here is set by an electrode

prepared with commercial C-LiFePO4 by a standard procedure and without conducting

polymer.[83b] One must keep in mind that the performance of LiFePO4-based

electrodes is affected by factors such as the quality of the active material, the presence

of carbon-coating, the electrode composition, the preparation steps, as well as the
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cycling conditions. Due to the marked different experimental conditions listed in Table 5,

the comparison presented in Fig. 10 has to be considered only as indicative of the effect

of the different conducting polymers on the performance of the electrodes. Having

considered the previous statements, the electrodes containing chemically synthesized

PEDOT may be considered superior in terms of rate performance than the electrode

without conducting polymer or the electrodes containing chemically synthesized

polyaniline (PANI) or polypyrrole (PPy).

To date, only a few reports deal with LiFePO4-based composites with conducting

polymers formed by electropolymerization. The reviewed reports on such

electrochemically prepared composites containing PPY or PEDOT present very poor

rate performance, most probably due to the bad incorporation of active material to the

polymer during electropolymerization. Therefore, there is an opportunity to develop new

strategies to carry out the electrochemical polymerization of monomers, EDOT in

particular, in presence of the active material or directly over the electrodes. Preferably,

such electrochemical strategies for preparing LiFePO4/ICP composites have to be

simple, without causing major modifications to the of state-of-the-art methods for

producing LiFePO4-based electrodes.
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1.4 Overview of intrinsically conducting polymers

Intrinsically conducting polymers (ICPs) are organic, polymeric materials which show

conductivity values in the range of semiconductors to metals (~10-8 to ~103 S cm-1),

depending on the oxidation and doping level of the polymer.[105] The designation

“intrinsically” is used for specifying that the conductivity is inherent to the polymer and

not due to an added conducting component, as it is the case for blends of polymers and

carbons or metallic particles. The first studies concerning ICPs date back to the works

done in the 19th century by Runge, Lightfoot, Letheby, among others, on the reactivity

and the electropolymerization of aniline.[106a-c] During the second half of the 20th

century, fundamental studies on polypyrrole, poly(sulfurnitride), and mainly on the

doping of polyacetylene, promoted the consolidation of the field of conducting polymers

leded by the 2000 Chemistry Nobel Prize recipients A. J. Hegeer, A. G. MacDiarmid and

H. Shirakawa.

The combination of metallic conductivity and plasticity has prompted the commercial

use of ICPs. Nowadays, these materials are available for electronic or photographic

applications that require conducting, thin protective films to prevent corrosion or static

dust contamination. Other technological applications of ICPs include sensors,

electromagnetic shielding, electrochromic windows, LEDs or devices for energy storage

and conversion, among other applications that have been summarized and discussed in

recent reviews.[93d, 107a-b]

1.4.1 Synthesis of ICPs

Intrinsically conducting polymers have alternating single and double C-C bonds

forming a π-conjugated system by the overlapping of carbon pz orbitals. In some

conjugated polymers with heteroatoms, such as polyaniline, the heteroatom is also

involved in the conjugated system. Table 6 presents a list of conducting polymers and

reported values for their bandgap, conductivity and redox potential. These properties

are affected by several factors that involve the π–conjugation and bond length, the

effect of substituents, as well as inter-chain and intra-chain interactions.

Conjugated polymers are synthesized by chemical, electrochemical or by

photochemical polymerization methods. Each of these methods allows obtaining the

final polymer in different forms, either as an insoluble powder, as a film coating an
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electrode, or even as a stable dispersion. The chemical and the electrochemical

synthesis of ICPs are briefly described in the following sections.

Table 6. Reported values for selected properties of a series of intrinsically conducting
polymers. Most of the values were taken from refs. [93b and 98a].

Polymer Repeating unit Band gap
(ev)

Conductivity
(S cm-1)

Oxidation-
reduction

potential in
LiPF6-based
electrolyte
(V vs. Li+/Li)

Polyacetylene 1.4 – 1.5 200 – 1000 3.8
[93d]

Polypyrrole 3.1 40 – 200 4.0 – 3.0

Polyaniline 3.2 1 – 100 4.0 – 3.0

Polythiophene 2.0 10 – 100 4.0 – 3.1

PEDOT 1.4 – 2.5 1 – 1000
4.06 – 2.38
[This work

Ch. 4]

PProDOT 1.8
[108a]

≤ 350
[108b]

4.18– 2.52
[This work

Ch. 4]

PEDOT:PSS 2.2
[108c]

10-3 – 1000
[108b] 3.8 –2.63
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1.4.1-a Chemical polymerization

Conventional polymer synthesis routes have been adapted for the chemical

synthesis of conducting polymers, as it is the case of the polymerization of

polyacetylene using the Ziegler-Natta catalyst. Polycondensation reactions of

halogenated alkylthiophene derivatives, either through Grignard reactions, in presence

of a nickel catalyst NiCl2[3-bis(diphenylphosphino)propane] or by self-oxidation, can be

applied for synthesizing poly-alkylthiophenes of controlled regioselectivity.[109] One of

the most common ways to synthesize ICPs is by oxidative polymerization in alcohols or

in aprotic polar solvents (e.g. n-butanol or acetonitrile), using Fe(III) salts (e.g. chloride,

nitrate and tosylate), peroxydisulfates ((NH4)2S2O8, Na2S2O8), organic peroxides,

etc.[108b] Fig. 11 presents reaction schmes for the chemical synthesis of

PEDOT[FeCl4] and PEDO:PSS.

Figure 11. Reaction schemes for the chemical synthesis of PEDOT[FeCl4] and PEDOT:PSS.
Adapted from ref. [108b].
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The oxidative, chemical polymerization of monomers has been described by a

radical cation coupling mechanism, as presented in Fig. 12 for the polymerization of

thiophene.[109] The transformation steps involve:

(1) the oxidation of the monomer by electron transfer to an oxidant

(2) coupling between radical cations at the α- or β-position

(3) stabilization of a dimer by loss of two protons

(4) oxidation of the dimer

(5) further coupling and proton loss until reaction completion to produce the

polymer in neutral or in doped state

Figure 12. Ilustration of the mechanism for the chemical, oxidative polymerization of thiophene. Adapted
from ref. [109].

1.4.1-b Electrochemical polymerization

The oxidative polymerization of monomers for obtaining ICPs can also be promoted

electrochemically inside a two or three-electrode cell by oxidation (less commonly by

reduction) of monomers over an electrode. By electropolymerization, the polymer grows

as a conducting film or as a deposit directly over the working electrode. In an

electropolymerization experiment, the composition of the solution (solvent, electrolyte,



54 Chapter 1: Introduction

impurities, etc.), the composition and shape of the working electrode affect the

properties of the final polymer. Furthermore, the way to impose the potential or the

current, either at fixed values or in steps, allows tuning some properties of the deposited

polymer, such as the morphology or the conductivity.

Similarly to the chemical synthesis of ICPs, the electropolymerization is described as

an electrophilic substitution proceeding via radical cation intermediates. The first step

involves the electrochemical activation of the monomer by formation of a radical cation

at the surface of the electrode. The reaction mechanism continues as described before

for the chemical polymerization (Fig. 12); through steps (2) to (5). Oligomers can go into

solution or deposit onto the electrode to form nucleation sites that continue to react with

monomers, thus forming so-called polymer islands. Coalescence of these islands

triggers the two-dimensional growth of a primer, usually compact polymer layer over the

electrode. In an advanced stage, one-dimensional growth and branching of polymer

chains create a less compact structure. As the polymer deposit grows thicker, the rate

of polymerization reaction is slowed down due to resistive and transport limitations.[110]

Tuning the potential not only allows controlling the activation of monomers and the

reactivity of intermediate oligomers, but it also influences the oxidation state of the

formed polymer and prevents the electrolyte decomposition. The potentiodynamic

cycling is usually more effective than the potentiostatic mode as the former causes a

partial reduction of the oligomers, which promotes the polymerization reaction. The

control of the current provides a way to set the extent of the polymerization by affecting

the growth mechanism and the structure of the polymer.[111] Usually, the

polymerization of monomers is irreversible, although the polymer can undergo oxidation

or reduction linked to insertion/release of ions by process referred to as doping.

1.4.2 Doping and charge transport
The pristine, neutral form of π-conjugated polymers has low conductivity as such a

system has no partially filled bands, but a completely filled π-band (valence band) and

an empty π*-band (conduction band) separated by an energy gap, as illustrated in Fig.

13a. In order to enable electronic conductivity, free charge carriers have to be available.

This is achieved either by oxidation, or by reduction, both of which result in the

presence of electronic and counterbalancing ionic charge carriers in the bulk of the

conducting polymer. Upon oxidation or reduction of the polymer, unpaired electrons



Daniel Cíntora Juárez – Doctoral Thesis 55

occupy new energy levels within the energy gap, closer to the valence band or closer to

the conduction band, respectively (Fig. 13b). By oxidation, the generated radical cation

is equivalent to a positive charge polaron delocalized in the polymer backbone within

several repeating units. Further oxidation withdraws more electrons from the valence

band causing the merging the localized polaronic levels into a continuous polaronic

band (Fig. 13c).

Figure 13. Band diagrams of a non-degenerate π-conjugated polymer related to different
doping levels. (a) Undoped (neutral state); (b) Slightly doped polymer with localized polaronic
levels; (c) Moderately doped polymer with polaronic bands; (d) Heavily doped polymer with
bipolaronic bands. Taken from ref. [105].

Overoxidation results in the spin recombination of polaronic charge carriers forming

spinless, double charged bipolarons (dications) that expand their own bands in the gap

at the expense of the polaronic and valence bands (Fig. 13d).

Doping of an ICP can take place as the polymer is synthesized (chemically or

electrochemically) or can be carried out for ready synthesized polymers. The

incorporation of anions from the oxidizing compound is the most common way of

doping, although the polymer can incorporate other ions or solvent molecules present in

solution. When the polymer is subjected to oxidation/reduction cycles, ions are released

or inserted depending on the oxidation state of the polymer and the size of the ions. For

instance, during reduction, large anions such as poly(4-styrene sulfonate) remain

trapped within the polymer and instead, the polymer inserts cations in order to attain

electroneutrality. Therefore, in addition to the electronic transport by polarons or

bipolarons, the ionic transport also influences the kinetics of the oxidation/reduction

reactions of ICPs.
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1.4.3 General characteristics of PEDOT and PProDOT

Poly(alkylenedioxythiophenes) constitute a family of oxygen-substituted

polythiophenes that were developed in order to improve the stability of this type of

polymer against air and/or moisture, as well as to simplify its processing. Despite the

low solubility of most conducting polymers in common solvents, polythiophene is more

attractive for practical applications than other conducting polymers that are more

conducting but present lower stability (e.g. polycetylene), or that are highly toxic (e.g.

polyaniline). Substitution in the 3- and 4-position of polythiophene has proven to be

effective for eliminating the undesired α-β coupling reactions during polymerization and,

in the case of alkoxy-substituted polythiophenes, it has resulted in an increase of the

conductivity by stabilization of the bipolaronic state.[108b]

A technological breakthrough on the conductivity and stability of 3,4-substituted

thiophenes was achieved by synthesizing bicyclic systems. In particular,

poly(3,4-ethylenedioxythiophene) [PEDOT] can reach a high conductivity (400-600 S

cm-1) in the doped state, depending on the counterion and the polymerization

method.[112] For instance, when PEDOT is polymerized in presence of

polystyrenesulfonic acid, the complex PEDOT:PSS is formed (see Fig. 11). This

complex not only can be dispersed in water and form stable deposits, but also can

reach conductivity values of up to 1000 S cm-1 or higher when treated with oxygenated

conductivity enhancement agents such as ethylene glycol, dimethyl sulfoxide,

N-methylpyrrolydone, among other solvents.

Poly(3,4-propylenedioxythiophene) [PProDOT] shares some of the characteristics of

PEDOT, although the former can reach only half the conductivity values of PEDOT and

it cannot form the PProDOT:PSS complex. Nevertheless, PProDOT can be

functionalized in the 2-position of the propylene bridge, thus offering the possibility to

synthesize soluble derivatives depending on the length of the substituent chain.

PEDOT and PProDOT share a similar voltammetric response. Fig. 14 presents

voltammograms that show the characteristic redox behaviour of EDOT monomers and

PEDOT reported vs. the Ag/AgCl electrode, and referred to the Li+/Li redox pair. The

peak at ~4.2 V (vs. Li+/Li) is attributed to the irreversible oxidation of EDOT in the initial

forward scan. In the backward scan, the two peaks at ~2.9 and ~2.5 V (vs. Li+/Li)

evidence the reduction of the polymer grown over the electrode. Upon repeated scans,
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the switching between the oxidized and the reduced states takes place in the range of

~3.0 V to ~2.3 V (vs. Li+/Li). Further polymerization of EDOT causes the current to

increase, whereas the oxidation potential shifts towards lower values as the reactivity of

the oligomers is higher when the conjugation length increases. The oxidation potential

of ProDOT is slightly higher (70-120 mV) than that of PEDOT. This is related to the

decrease of the π-overlap along the conjugated backbone caused by the extra

methylene group, which causes an increase in the bandgap. Nevertheless, PProDOT is

characterized by a faster switching redox behaviour between the neutral and the

p-doped states.[112]

Figure 14. Cyclic voltammetry profiles for (a) EDOT (17 mM) and (b) PEDOT (17 mM EDOT). Both
tests were carried out in a supporting electrolyte of tetrabutyl ammonium hexafluorophosphate
(0.1 M) in propylene carbonate, at a scan rate of 100 mV s-1. The blue scale was added for
referring to the potential of the Li+/Li redox pair. Figures adapted from ref. [108a].

Considering the information exposed in this section and in section 1.3.5-d, the

interest in using PEDOT or PProDOT in composite electrodes with LiFePO4 stems from

the mixed conductor character of these polymers and from the compatibility between

the switching potentials of the polymers and the redox potential of LiFePO4. In this way,

the polymer molecules may not only provide ionic/electronic communication to LiFePO4,

but also assist in the oxidation/reduction process of the active material.
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Chapter 2

Hypotheses, objectives and approaches

In the previous chapter, the characteristics of LiFePO4 were detailed, together with

the limitations and advantages that determine the performance of this active material.

The review of the recent strategies applied for improving the electrochemical

performance of LiFePO4-based electrodes shows that there is still opportunity for

improving the charge transport between particles, throughout the electrode and at the

interphase with the current collector.  Furthermore, the use of conducting polymers as

additives for LiFePO4-based electrodes was identified as a promising strategy in order

to improve both the ionic and the electronic conductivity. Considering these aspects, the

hypotheses of this work are the following:

H1) Conducting polymers of the poly(alkylenedioxythiophene) family can form

active and stable composites with LiFePO4 or with LiFePO4-based

electrodes when these composites are prepared by electrochemical

polymerization of monomers or by mechanical processing methods using

ready available polymers.

H2) The use of poly(alkylenedioxythiophene) conducting polymers as additives

for LiFePO4-based electrodes will have a positive influence on the charge

transport and on the electrochemical performance of the active material,

provided coatings or networks of conducting polymer can be formed at or

extended to the different interphases of the electrode where ionic or

electronic transport are limiting.
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Based on the hypotheses, the main objective of the work consists in developing and

applying electrochemical polymerization, blending and coating methods to produce

composite electrodes of LiFePO4 with poly(alkylenedioxythiophene) [PXDOT] in order to

increase the charge transport and the electrochemical performance of LiFePO4-based

electrodes.

The following approaches were investigated in order to combine LiFePO4 and the

conducting polymer into a composite electrode by electropolymerization, blending or

coating methods. A reference is included to the chapter in this document where each

approach is developed.

A1) Electropolymerization of monomers over LiFePO4-based electrodes

a. Potentiostatic electropolymerization of EDOT over a LiFePO4-based

electrode in acetonitrile medium with tetraethyl ammonium

tetrafluoroborate salt. (Chapter 3 )

b. Galvanostatic electropolymerization of EDOT or ProDOT monomers

over a delithiated Li1-xFePO4 electrode inside a test battery upon

charging in one step or in two steps. (Chapter 4)

A2) Blending LiFePO4 with PEDOT obtained by electropolymerization

a. Electropolymerization of EDOT at a platinum electrode in

acetonitrile/water medium with tetraethyl ammonium tetrafluoroborate

salt. Blending of the obtained PEDOT with LiFePO4 to form a composite

electrode. (Chapter 3)

A3) Use of commercial PEDOT:PSS as an additive for LiFePO4 in combination with

other conducting and agglomerating additives

a. Blending PEDOT:PSS with LiFePO4, carbon black and polyvinylidene

fluoride in different proportions to form a composite electrode. (Chapter

5)
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b. Similar to A3a, but using PEDOT:PSS treated with ethylene glycol and

dimethylsulfoxide as conductivity enhancement agents. (Chapter 5)

A4) Coating the aluminium current collector with PEDOT:PSS

a. Drop-casting PEDOT:PSS over the aluminium current collector and

formation of a LiFePO4-based electrode. (Chapter 5)

b. Similar to A4a, but using PEDOT:PSS treated with ethylene glycol or

dimethylsulfoxide as conductivity enhancement agents. (Chapter 5)

The following techniques were applied for characterizing the different composite

materials and electrodes:

- Scanning electron microscopy in order to visualize the morphology of the

particles and the texture of the electrodes.

- Galvanostatic cycling of test batteries in order to evaluate the charge/discharge

performance of the electrodes.

- Electrochemical impedance spectroscopy in order to estimate the resistance of

the electrodes.

- Mössbauer spectroscopy and X-ray photoelectron spectroscopy in order to

follow the bulk and surface variation of the oxidation state of iron at different

states of charge.
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Abstract

LiFePO4 composite cathode materials with PEDOT

[poly(3,4-ethylenedioxythiophene)] were prepared by electropolymerization or by

blending methods. The cycling performance of these composites in lithium test cells

were then evaluated and compared with bare and carbon-coated LiFePO4. The

electrodes were further fine-tuned by optimizing the materials and different preparative

methods adopted. It was found that the LiFePO4/PEDOT composite obtained by direct

electropolymerization over the cathode shows better cycling performance in terms of

capacity (110 mAh/gLFP at 2C) and capacity retention (125 mAh/gLFP after 50 cycles at

C/2). We attribute the improved performance to an enhanced conductivity, as evidenced

by the initial impedance of the cathodes and low charge–discharge polarization during

cycling.

1. Introduction
Lithium-ion batteries incorporating LiFePO4 or other LiMPO4 (M: Mn, Co, Ni)

olivine-related compounds are attractive in terms of safety, energy and power density,

general performance and cost.1–3 However, these compounds possess low electronic

conductivity and poor ionic diffusivity, which ultimately result in poor cycling

performance for Li-ion batteries.4

Strategies to improve the electronic conductivity of the active material include

coating with carbon or conducting polymers,5–7 the control of the particle size and

morphology, blending with metallic additives, ionic doping or substitution in the

crystalline lattice, among other approaches that have been adopted.8,9 To overcome the

current bottleneck in these materials the electronic and ionic wiring of the active material

is one of the strategies which can be applied to increase the rate performance and

mechanical stability of the electrode. For this, electron-conducting additives and

polymeric binders are usually incorporated to the formulation. In the past, various kinds

of carbon black and fluorinated polymers have been used as common additives;

however, such materials do not contribute to the electrode capacity and thus reduce the

energy and power density of the battery.10

In this scenario the incorporation of conducting polymers to the electrode formulation

is an attractive option, as it can act in two folds. First, as electron conducting additive



76 Chapter 3: Improving the cycling performance of LiFePO4 cathode material by
poly(3,4-ethylenedioxythiophene) coating

and as binder, and secondly, to provide enhanced electrochemical performance, apart

from improving the mechanical properties of the electrodes, and protecting the battery

electrolyte from decomposition by the formation of protective layers.11,12 The role of

polypyrrole, polyaniline and poly(3,4-ethyl-enedioxythiophene) [PEDOT] on the

performance of LiFePO4 in lithium batteries has been investigated during recent

years.2,6,7,11,13

Composite electrode materials with PEDOT are especially attractive in terms of high

electronic conductivity, contribution to the electrode capacity and the ability to improve

Li-ion transport.12a

PEDOT has low band gap, chemical stability and can withstand cycling for practical

applications, and was also shown to be efficient cathode in dye sensitized solar cells for

the reduction of redox electrolyte.12b,c

Various methods have been proposed to prepare LiFePO4/conducting polymer

composites, including blending with a chemically synthesized polymer,14–16 chemical

polymerization in the presence of LiFePO4 or Li1-xFePO4,13 potentiostatic or

potentiodynamic electropolymerization of monomers to form a deposit in the presence

of LiFePO4,6,7 among other approaches. It is well known that a different synthetic

procedure leads to different stoichiometry and microstructure that largely influence the

physico-chemical properties of the material. In order to further improve the cycling

performance of LiFePO4, synthetic approach was fine tuned to incorporate PEDOT into

LiFePO4 by electropolymerization or by mechanical blending. The results presented

here are obtained from moderate-performance LiFePO4, which allows evaluating more

clearly the response of the composites. To understand the performance of different

preparative methods adopted, a comparative study of PEDOT-coated LiFePO4 (LFP)

has been carried out which was hereto unreported. This is paramount to choose the

right chemistry, to yield higher performance materials.

2. Results and discussion
2.1 Characterization of LFP and LFP/C

X-ray powder diffraction (XRD) patterns were obtained from a Siemens D5000

diffractometer using Cu Kα radiation in the 2θ range from 15 to 80º in steps of 0.04º at

20 s per step. The XRD patterns of LFP and LFP/C pristine materials (ESI†) showed the

characteristic reflections for the orthorhombic structure of LiFePO4 (JCPDS 40-1499),
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except for very weak signals in the 2θ interval from 22.3 to 34.3º, attributed to Li3PO4

(JCPDS 15-0760). These reflections are almost undetectable in the pattern of the

carbon-coated sample. The refinement of the lattice parameters for LFP with space

group Pnmb provided the values a = 6.004(1) Å,  b = 10.322(4) Å, c = 4.691(1) Å, which

is in accordance with previous reports.17,18 However, refined unit cell parameters for

LFP/C showed no significant difference.

2.2 Electrochemical properties
2.2.1 Initial charge–discharge performance

Fig. 1 compares the initial charge-discharge profiles at C/10 for the LFP and LFP/C

samples and their composites with PEDOT. The LFP and LFP/C samples show the

typical profiles with a potential plateau at ca. 3.4–3.5 V, characteristic of the two phase

transformation of LiFePO4 into isostructural FePO4 upon lithium extraction/re-insertion.

The charge capacity for the bare sample reaches 91 mAh g-1 and in discharge the cell

delivers a reversible capacity of only 77 mAh g-1. In this article the reported capacities

are referred to the total weight of the composite electrode, including LFP active material

and additives.

0 20 40 60 80 100 120 140 160

2,5

3,0

3,5

4,0

0 20 40 60 80 100 120 140 160

2,5

3,0

3,5

4,0

Capacity/ mAh g-1

(a)

E
 v

s.
 L

i+ /L
i /

 V

bare
 3phase
 blend
 edep

C-coated
 3phase
 blend
 edep

(b)

E
 v

s.
 L

i+ /L
i  

/V

Fig. 1 Initial charge/discharge
profiles at C/10 for (a) LFP–PEDOT
composites and (b) LFP/C–PEDOT
composites.



78 Chapter 3: Improving the cycling performance of LiFePO4 cathode material by
poly(3,4-ethylenedioxythiophene) coating

For benchmark purposes, common loadings of active material range from

70–85% w, which would correspond to capacity values of ca. 130 mAh g-1. The

carbon-coated sample shows higher capacity than the bare sample, reaching 134 mAh

g-1 in charge and 110 mAh g-1 in discharge. In spite of the improvement in the discharge

capacity observed for the carbon-coated sample, this composite illustrates irreversible

capacity, while also contains electrochemically inactive carbon black (CB) and

polymeric binder (polyvinylidene fluoride [PVDF]) additives. Recently, Trinh et al.6

adapted a dynamic three phase interline electropolymerization to produce cathode films

that incorporate PEDOT and LFP without the need of carbon black and PVDF additives,

thus improving the power and energy densities. We have adopted the three phase

(3phase) method to prepare LFP/C–PEDOT composites and extended it for preparing

LFP–PEDOT composites, designated, respectively, as LFP/C–3phase and LFP–

3phase.

Fig. 1a displays the initial charge and discharge profiles for the LFP–3phase

composite. The charge and discharge profiles present the characteristic voltage

plateaus for LFP at nearly 3.45–3.37 V. In charge, a particular feature for this sample is

the abrupt change of slope at ca. 4.0 V, in the region where de-lithiation of active

LiFePO4 has taken place. To further investigate the abnormal profile above 4.0 V, we

performed a linear voltammetry test for the EDOT monomer in the battery conditions

over a platinum electrode. The voltammetry test (ESI†) revealed an oxidation onset

potential at nearly 4.0 V, and a current peak at 4.13 V (vs. Li+/Li), in agreement with

previous reports.12 Therefore, we attribute the 4.0 V signal in the charge profile of the

LFP–3phase composite to the oxidation of unreacted EDOT monomers or oligomeric

species trapped within the LFP–3phase composite during its preparation. In discharge,

the potential profile for the LFP–3phase composite is similar to that of the LFP sample

and the discharge capacity reaches ca. 53 mAh g-1, a value that is close compared to

the reported6 (ca. 45 mAh g-1). Fig. 1b shows the charge-discharge profiles for the

LFP/C–3phase composite. The charge profile for this sample presents a smooth

increase in potential from the open circuit potential to the characteristic plateau at ca.

3.45 V. The potential then continues to rise up to a capacity of 216 mAh g-1 (off-scale) at

the cut-off potential. In discharge, the LFP/C–3phase composite shows a short plateau

at ca. 3.4 V, with further potential decrease until reaching the cut-off potential and a total
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discharge capacity of ca. 91 mAh g-1. The poor discharge capacity in the 3.4 V plateau

region for the LFP–3phase, and particularly for the LFP/C–3phase samples, reflects the

difficulties for incorporating active LFP into the composite. Contrary to the report,6 we

have found that the composite was fragile and required additional reprocessing to form

an electrode. Considering these obstacles, the sample LFP/C–3phase was not chosen

to study further. To control better the amount of PEDOT in the composite and improving

its electrochemical performance, EDOT was electropolymerized using the 3phase

method,6,19 and then blended with LFP or LFP/C active materials.

Table 1. Characteristics of the different composite cathodes

Fig. 1 shows the charge-discharge profiles for the LFP–blend and the LFP/C–blend

samples. The charge-discharge profiles for the LFP–blend sample (Fig. 1a) show flat

potential plateaus at ca. 3.47–3.38 V. The charge capacity for this sample reaches ca.

122 mAh g-1, without any profile abnormality near 4.0 V, which was observed for the

LFP–3phase composite. These findings suggest an enhanced stability of the polymer
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against further oxidation, in the absence of LFP during the electropolymerization using

three-phase method. In discharge, the LFP–blend sample delivers a total capacity of

115 mAh g-1, which is close to the benchmark capacity of 130 mAh g-1. These results

indicate a notable improvement in performance compared to those obtained for LFP–

3phase, and show the importance of incorporating PEDOT with higher degree of

polymerization to the active LFP material. In Fig. 1b, the charge-discharge profiles of

LFP/C–blend present the plateau at ca. 3.48–3.40 V and capacities of 119 and 113

mAh g-1 in charge and discharge, respectively, which are very close to the capacity

values obtained for the LFP–blend composite.

Charge-discharge profiles of the samples obtained by direct electrodeposition (edep)

of PEDOT on cathodes are shown in Fig. 1. In charge, the LFP–edep composite (Fig.

1a) show a short plateau at 3.5 V, followed by an increase in potential and an abrupt

change of slope at c.a. 4.0 V, yielding charge capacity at the cut-off potential close to 61

mAh g-1. The charge profiles for the LFP–edep and the LFP–3phase samples are

similar, showing that the electropolymerization of EDOT monomers over LFP cathode

was incomplete and produced redox active oligomeric species. The LFP–edep

composite has the lowest discharge potential and a capacity of ca. 78 mAh g-1. While

the LFP/C–edep sample (Fig. 1b) indicates that the charge profile lacks the potential

abnormality observed for the LFP–edep composite. This was in accordance to our

understanding, as the extent of electrodeposition will be higher over more conducting

surface (carbon-coated LFP particles). The fact that the discharge capacity for both

LFP–edep and LFP/C–edep samples was higher than their corresponding charge

capacity, indicates simultaneous delithiation of LFP and oxidation of EDOT monomers

during the preparation of the composites by the electrodeposition method.

2.2.2 Slow vs. moderate rate performance

Fig. 2 shows average discharge curves at C/10 and 2C for the standard LFP and

LFP/C, and their different composites with PEDOT. Comparison between slow and

moderate rate indicates that both standard LFP and LFP/C samples show capacity loss

and potential drop with the increase in rate. The performance of the LFP–3phase

composite is inferior among all the samples at C/10 (Fig. 2a). However, at higher rate

(Fig. 2b) it retains 80% of its capacity at C/10 and is free from large potential drop found

for the LFP and LFP/C. The performance of the LFP–blend composite also deteriorates
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considerably at 2C, losing more than 50% of its low rate capacity and suffering

considerable drop in potential. The lower performance of the LFP–blend at 2C (Fig. 2b)

contrasts with the better performance of the LFP/C–blend at similar rate (Fig. 2d).

Earlier it was found that carbon materials are compatible with conducting polymers and

give synergistic results in electroactive composites.22 We believe that the chemical

affinity of TEABF4-doped PEDOT and the carbon coating of LFP/C particles favours the

anchoring of PEDOT. Therefore, a more extended conducting polymer matrix is

expected to form when both the inorganic and organic materials are blended. Improved

performance, compared to parent LFP, was also observed for the cathode materials

prepared by the electrodeposition method, especially at 2C. Thus, the LFP–edep

sample shows a reversible capacity of ca. 87 mAh g-1 and 72 mAh g-1 at C/10 and 2C,

respectively, with a voltage drop of less than 100 mV.

Fig. 2 Discharge curves at C/10 and 2C for (a-b) LFP–PEDOT composites and (c–d) LFP/C–PEDOT
composites.
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2.2.3 Charge–discharge polarization and cathode impedance

Fig. 3 shows polarization graphs for the standard samples and PEDOT composites.

As expected, composites with polymer show lower charge-discharge polarization than

the standard samples. Particularly, the composite prepared by electrodeposition over

the LFP cathode shows the lowest polarization, which reflects its increased conductivity

and reactivity for extraction-reinsertion of lithium ions in the active material. Comparison

against the polarization of LFP/C–edep composite (Fig. 3b) suggests that carbon

coating is not necessary for the LFP–edep composite. Electrochemical impedance

spectroscopy (EIS) was employed to investigate the effect of PEDOT on the conducting

properties of the composite cathodes.
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In the past, EIS studies on LFP cathode materials were reported, and the spectra

can be fitted by using an equivalent electrical circuit consisting of a high and a

medium-to-low frequency semicircles (R-Q elements), the former corresponding to the

lithium ion migration resistance in the SEI and the later to the charge transfer

resistance. Semi-infinite diffusion and differential intercalation capacity are usually fitted

by a series capacitance and a Warburg element in the low frequency region. Besides,

the equivalent circuit includes an inductor and a resistor to account for the cables

inductance and the contact resistances in the cell. Fig. 4a presents the experimental

and fitted spectra by using the above mentioned equivalent circuit. The resistance

values obtained from the fitting procedure are listed in Table 2.

Fig. 4. AC impedance spectra of pristine composites.  a) LFP–PEDOT and b) LFP/C–PEDOT.
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Table 2. Data of the fitting of the EIS spectra shown in Fig. 4. RTotal = Ro + RSEI + Rct

It is evident from Fig. 4 that the charge transfer resistance values for the

LFP–PEDOT composites are lower than for the parent LFP. In particular, the lowest

resistance values were found for the LFP–edep composite, which translates into a lower

polarization and a higher cycling performance. The lowest impedance value was found

for the composite prepared by electrodeposition, which suggests that the polymerization

over LFP active material particles favours the growth of a highly conducting polymer

that improves the electrical wiring between LFP particles. The impedance data of the

C-coated samples show the improvement in the total conductivity for the sample

prepared by electrodeposition. However, the sample prepared by blending C-coated

LFP and PEDOT give the high value of impedance. This observation can be explained

in terms of formation of poorly conducting PEDOT that requires activation in order to

reach an ideal polymerization degree and doping. The higher resistance for blend

samples can also be related to the textural properties of the composites (Fig. 6). For

PEDOT-bearing samples, the information provided by SEM showed that the particles

are visible after PEDOT addition. However, for blend samples the surface is more

abrupt, which is indicative of a less uniform distribution of the polymer.

2.2.4 Extended cycling

Fig. 5 presents the cycling performance of the standard samples and the different

LFP–PEDOT and LFP/C–PEDOT composites. During the first 50 cycles, the capacity of

all samples decreases progressively as rate increases. After 50 cycles, all the samples,

except for the LFP–3phase and LFP–blend (Fig. 5a), recover at least 90% of their initial
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capacity at C/10 rate. The best performance, in terms of capacity values and capacity

retention at C/2 during the first 50 cycles, was found for the LFP–edep sample. After

110 cycles at variable rates, only the LFP–edep sample recovers ca. 99% of its initial

capacity at C/10, which confirms its remarkable cycling performance. The enhanced

cycleability obtained for the LFP–edep cathode materials suggests that the PEDOT

obtained by this method is more chemically and mechanically stable (tethered) over

LFP in the battery environment.

Fig. 5b presents the cycling performance of two LFP/C–PEDOT composites. During

the initial cycles at low rates (C/10–C/5), only the LFP/C–blend composite outperforms

the LFP/C sample. At moderate rates (C/2–2C), both LFP/C–blend and LFP/C–edep

composites outperform the LFP and the LFP/C samples.

Fig. 5 Cycleability at different rates for (a-b) LFP–PEDOT and (c-d) LFP/C–PEDOT composites.

After 50 cycles, both LFP/C–PEDOT composites recover almost 99% of its initial

capacity at C/10, and show good capacity retention at C/2, and after 110 cycles both

LFP/C–PEDOT samples recover more than 95% of the initial capacity. Comparing the

performance of the composites prepared by the blending method, the carbon coating in
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the LFP/C active material could provide a good substrate that favours the formation of a

more extended conducting polymer matrix. In electrodeposition, the higher

electrodeposition time for the LFP–edep composite allows better wetting of the LFP

active material by EDOT monomers, promoting a more quantitative PEDOT

electrodeposition.

Fig. 6 Scanning Electron Micrographs of composites (a) electrodeposition and (b) blend based on
LiFePO4.

3. Conclusions

A comparative study of LFP–PEDOT and LFP/C–PEDOT composites prepared by

different methods such as electropolymerization and blending methods were carried
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out. The LiFePO4/PEDOT composite obtained by direct electrodeposition over the

cathode showed the best cycling performance, with a reversible capacity of ca.

110 mAh gLFP
-1 at 2C, notable capacity retention at C/2 (125 mAh gLFP

-1 after 50 cycles),

and low charge–discharge polarization. The improved performance is ascribed to an

enhanced overall conductivity of the electrode (active material plus additives) emerging

from the conductive nature of polymer. PEDOT alone can well improve the performance

of phosphate materials and thus the combination of carbon and PEDOT coating is not

necessary to improve the performance of the phosphate.

4. Experimental section
4.1 Electrode preparation and materials

LiFePO4 and carbon-coated LiFePO4 (LFP/C) active materials were obtained as

described elsewhere.4 LFP and LFP/C electrodes were prepared by mixing the active

material with carbon black (CB) and PVDF additives (85 : 8 : 7 wt%) in N-methyl

pyrrolidone to form slurry. The slurry was ultrasonicated, deposited over an aluminium

disk (0.64 cm2) and dried at 80º C under vacuum for 12 h. The average amount of

active material ranges from 3–5 mg cm-2. 3,4-ethylenedioxythiophene (EDOT) and

tetraethylammonium tetrafluoroborate (TEABF4) were obtained from Aldrich, and were

used without any further treatment. The preparative methods used to obtain the

composites with PEDOT and LFP or LFP/C active materials are described below.

4.2 Materials synthesis

Three phase electropolymerization (3phase) consisted in the potentiostatic

electropolymerization of PEDOT in the presence of LFP or LFP/C through interphasial

electropolymerization.6 The three-phase reaction medium contained TEABF4 (0.1 M)

dissolved in water, EDOT (0.1 M) dissolved in dichloromethane and the active material

spread over the aqueous/organic phase boundary. The experiment was carried out in a

three-electrode cell with platinum wire as working electrode situated across the

interphase, a carbon rod as counter electrode and an Ag/AgCl (3 M KCl, AgCl sat.)

reference electrode, both electrodes immersed in the aqueous phase. The

electropolymerization of EDOT monomer took place over platinum at the

aqueous/organic interphase when a potential difference of 1.3 V was applied. The

obtained composite film was grinded, washed with deionized water followed by
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acetonitrile, and dried for 12 h under vacuum at 60º C. The dry product was dispersed

in NMP and deposited on an aluminium current collector. Finally it was dried for 12 h

under vacuum at 80º C. Composites prepared by this method with LFP or LFP/C will be

referred as LFP–3phase and LFP/C–3phase, respectively. The blending method

consisted of mixing PEDOT, prepared by 3phase electropolymerization, and the active

material (without CB and PVDF additives) in N-methyl pyrrolidone to form slurry. The

slurry was ultrasonicated, deposited over an aluminium disk and dried at 80–100º C

under vacuum for 12 h. Composites prepared by this method will be henceforth referred

to as LFP–blend or LFP/C–blend. Electrodeposition of PEDOT was performed on LFP

and LFP/C cathodes as the substrate. The electrodeposition was carried out using the

cathode as working electrode in a three electrode cell with an aluminium disk as counter

electrode and Ag/AgCl (3 M KCl, AgCl sat.) as reference electrode. The reaction

medium consisted of a 0.1 M EDOT, 0.1 M TEABF4 solution in acetonitrile. The

electropolymerization over the LFP and LFP/C electrodes was performed

potentiostatically at 1.3 V (Ag/AgCl) during 30 and 3 min, respectively. After

electropolymerization, the composite electrode was washed with acetonitrile and dried

at 80º C under vacuum for 12 h. The samples prepared with LFP and LFP/C will be

henceforth referred to as LFP–edep and LFP/C–edep, respectively. Table 1

summarizes the characteristics of the different LFP–PEDOT and LFP/C–PEDOT

composites.

4.3 Battery testing

Batteries were assembled in two-electrode Swagelok-type cells, using the cathode

as working electrode, 1 M LiPF6 (EC : DEC, 1 : 1 volume ratio) electrolyte (SelectiLyte

LP40, Merk), with Whatman glass-paper as separator and 1.5 mm thick lithium metal

foil as reference/counter electrode. The cells were assembled in a glove box under

controlled argon atmosphere (H2O, O < 1 ppm). Galvanostatic cycling at different

C-rates (C = 1 Li h-1 mol-1) was carried out at room temperature using a Biologic MPG

station. The cut-off potential for charge and discharge were set at 4.2 and 2.2 V (vs.

Li+/Li), respectively. The reported capacities refer to the total weight of the composite

electrode, including LFP active material and additives. Extended cycling was performed

in order to evaluate the rate capability, the capacity recovery and the capacity retention

of the different samples. Rate capability was assessed by repeated and progressive
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cycling at rates of: C/10, C/5, C/2, C and 2C (10 cycles each). Afterwards, a first

evaluation of the capacity recovery at C/10 (10 cycles) was carried out. The capacity

retention was evaluated at C/2 for 50 cycles. At the end of the capacity retention test, a

second capacity recovery test was carried out by cycling at C/10 for 10 cycles.

Electrochemical impedance spectra were recorded for the cathode materials in an

Autolab PGSTAT12 station. Measurements were done in three-electrode Swagelok

cells housing LFP-based composites as working electrode, lithium metal counter

electrode and a perpendicularly aligned lithium reference electrode. The applied ac

voltage was 10 mV and the frequency was varied in the range from 1 MHz to 10 mHz.
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Electronic supporting Information (ESI)

Fig. S1:  XRD patterns of LFP and LFP/C active materials.

Fig. S2:  Linear voltammetry plot of 0.01 M EDOT in the LiPF6-based battery electrolyte.
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Abstract

Molecular wiring concept was induced in LiFePO4 cathodes by in battery

polymerization methods. This was performed by the addition of alkylthiophene

monomers over the LiFePO4-based cathode during the first charging step in lithium test

cells. The driving force for the in battery polymerization of the monomers was supplied

by the oxidizing current and by the physical contact of monomers with delithiated

Li1-xFePO4 formed during the charging of the battery. The resulted molecularly

engineered cathodes give higher initial capacity, superior rate capability and improved

cycleability compared to the pristine LiFePO4 compound. Further, to observe changes in

the oxidation state of iron, Mössbauer spectroscopy was employed and the results were

correlated with impedance spectroscopy, which reveal a significant increase in

conductivity during charging. The presented methods allow simple, yet effective routes

to manufacture efficient cathode materials at room temperature, without the need of

additional oxidizing compounds to carry out the polymerization process, and to rival high

temperature based carbon coatings.

1. Introduction
Electricity generation through energy conversion is a discontinuous process

and requires energy storage at cost effective rate. In this scenario,

electrochemical systems play a crucial role as they have proven to be highly

efficient for storing and converting energy, and major technological solutions are

considered to be in the use of batteries and supercapacitors. Currently,

lithium-ion batteries are seen as one of the most mature technologies available

for powering portable electronic devices and have found niches in electric

vehicles and stationary applications. Materials used in electric vehicle batteries

should provide fast charging/discharging rates, high energy density and cycle life,

be safe and producible at low cost. The key component in lithium ion batteries is

the cathode and it imposes performance and costs limitations to the widespread

implementation of this technology.1,2

After the seminal work of Padhi et al. on olivine structured lithium transition

metal phosphates (LiMPO4) as cathode materials, significant efforts were made,

in particular for LiFePO4 (LFP), due to its attractive features of being cost
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effective, environmentally friendly, electrochemically and thermally stable.3

However, LFP and related cathode materials suffer from disadvantages, such as

low ionic and/or electronic conductivities, which makes the task for the

lithiation/delithiation processes uneasy, while making electron transfer to active

sites cumbersome.4 In this direction, different approaches have been explored to

increase the conductivity of LiFePO4, for example: blending with metal particles,

aliovalent ion doping and reducing the particle size down to the nanoscale.5-8

To date, the most common approach adopted to increase conductivity of

LiFePO4 is the formation of homogeneous carbon-coatings over the active

material particles, which can be achieved by calcination of sugars or surfactants

at 500-700° C.9-11a-c However, apart from the high energy consumption, the

decomposition of the organics generates contaminants that pose severe

environmental hazards. Thus, the electrochemical and mechanical performance

of electrodes can be further improved by using carbon or polymer as additives to

form conducting networks.12 On the contrary, these electrochemically inactive

additives entail a decrease of the practical energy/power density, as the additives

do not contribute to the electrode capacity.

Earlier, it was shown that conducting polymers like polypyrroles and

polythiophenes can enhance the performance of LiFePO4 and other cathode

active materials.13 In particular, poly(3,4-ethylenedioxythiophene) [PEDOT] has

drawn special attention due to its high electronic conductivity in the doped state,

contribution to the electrode discharge capacity and the ability to improve Li-ion

transport due to its highly nanoporous structure, which provides deep

accessibility to ions into the inner matrix of the polymer layer.14

Therefore, different methods have been used to make LiFePO4/polymer,

including blending with chemically synthesized conducting polymer15-17 chemical

polymerization in presence of LiFePO4 or Li1-xFePO4,18 or by electro-

polymerization over substrates containing LiFePO4.19,20 For such

LiFePO4/polymer, it is expected that, upon charging, conjugated polymer delivers

the charge to the LFP particles by intermolecular hopping, leading to reversible

Li+ extraction, while the process can be reversed on discharge. Additionally, the

redox polymer can also act as binder, which offers the possibility to reduce

further the use of electrode additives and produce higher energy density
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batteries. Within this context, we applied the molecular-wiring concept to improve

the conduction in the insulating LFP material by in battery electro-polymerization

of thiophene-based monomers directly over LFP-based electrodes under battery

operation conditions (scheme1), and eliminating the need of any external

chemical oxidant. The use of a set of electrochemical and spectroscopic

techniques allowed us to confirm the effective electronic communication between

the redox polymer and LFP, as the resulting composite electrodes show higher

initial capacity, superior rate capability and improved cycleability than the pristine

LFP material.

Scheme 1. Illustrating the one and the two step polymerization methods adopted for inducing
the molecular wiring approach.

2. Results and discussion

2.1. In battery polymerization process

Figure 1 presents the plot of the two first charge/discharge cycles for the

one-step in battery formation of LFP/PEDOT and

LFP/poly(3,4-propylenedioxythiophene) [PProDOT]. In both systems, the initial

part of the profile shows a first stage involving the oxidation of Fe2+ to Fe3+, linked

to the de-lithiation of LFP, with the characteristic charge plateau at ca. 3.5 V. As

the galvanostatic charging proceeds, the oxidative polymerization of EDOT and

ProDOT monomers appears as a pseudo plateau above 3.8 V. Compared to

EDOT, the higher oxidation potential of ProDOT relates to the influence of the

extra methylene group on the conjugated ring, which decreases the π-overlap

along the backbone, leading to an increase of the bandgap.21 In the first
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discharge, the profile for both LFP/PEDOT and LFP/PProDOT shows the

characteristic plateau at ca. 3.4 V, attributed to the Fe3+ to Fe2+ reduction and

reinsertion of lithium ions. Independently of the monomer, the discharge

capacities are higher than the charge capacities measured near 3.8 V before the

beginning of the polymerization. This observation suggests that de-lithiation of

LFP takes place simultaneously with the formation of PEDOT and PProDOT

during the first charging step up to 4.2 V. This will be discussed in detail with our
57Fe Mössbauer results in next section.

Figure 1. Initial charge/discharge and differential capacity plots for the one-step in battery
formation of composites from a-b) EDOT and c-d) ProDOT.

For both monomers, the second cycle presents flatter charge/discharge

plateaus having lower polarization and increased capacity, thus pointing towards

the better active material utilization and revealing the positive effect of PEDOT or

PProDOT on the conductivity of the fabricated cathodes. At the end of the second

charge, the oxidation of both monomers is almost complete, as evidenced by the

0 5 10 15 20 25 30 35 40

2,5

3,0

3,5

4,0

0 5 10 15 20 25 30 35 40

2,5

3,0

3,5

4,0

2,5 3,0 3,5 4,0

0

2,5 3,0 3,5 4,0

0

EDOT oxdn.
discharge

P
ot

en
tia

l /
 V

(v
s.

 L
i+ /L

i)

delithiation 2nd cycle

dischargedelithiation
ProDOT oxdn.

2nd cycle

P
ot

en
tia

l /
 V

(v
s.

 L
i+ /L

i)

Time (h)

(d)(c)

(b)(a)

dQ
/d

V
 (a

u)
dQ

/d
V

 (a
u)

(12x)

(12x)

(12x)

(12x)

(12x)
(12x)

(12x)

(12x)

(12x)

(12x)
(12x)(12x)

Potential / V (vs. Li+/Li)

(10x)

(10x) (10x)



Daniel Cíntora Juárez – Doctoral Thesis 99

remnant trace above 3.8 V and by the lower intensity of the respective polymer

oxidation peaks in the differential capacity plots (Figure 1b and 1d). For

subsequent charge/discharge cycles, the pseudo plateau near 3.8 V vanishes,

indicating the end of the oxidative polymerization.

The voltammogram for EDOT and ProDOT monomers (Figure S1) dissolved

in the LiPF6-based electrolyte, shows the signals ascribed to the initial oxidation

of monomers, followed by undoping and reduction of deposited polymer.22 It is

evident (Figure1b and 1d) that the redox processes of the polymer occur over the

LFP electrode in the range from ca. 4.0 to 2.5 V, which lies within the potential

window used to cycle LFP (4.2 - 2.2 V). These signals arising from the polymer

are minute. Therefore, the contribution from PEDOT and PProDOT to the total

discharge capacity in successive cycles is negligible as compared to the capacity

from LFP active material.

Figure 2 presents the first and second charge/discharge cycles for batteries

with monomers polymerized over de-lithiated LFP via the two-steps method. The

observed profiles are in accordance to those for the one-step method (Figure 1),

except for the first charging/delithiation step, which was carried out in the

absence of a polymerizable monomer. After the first charging step, the cell was

open and the monomer was added to the cathode. In a second step, the

re-assembled battery was charged to induce the electropolymerization of the

monomers over de-lithiated LFP. As shown in Figure 2, for the second charge

step, there is a minimal initial contribution coming from Fe2+ to Fe3+ oxidation

near 3.5 V indicating that the Fe2+ to Fe3+ oxidation was almost completed at the

end of the first charge step. Due to the rise in potential (>3.8 V), polymerization of

EDOT or ProDOT monomers takes place and continues up to the cut-off voltage

at 4.2 V. The lower polarization in the second cycle observed for this two-step

method suggests an improvement in the conductivity of the resulting

LFP-Polymer cathode.

Figure 2b and 2d show the inverse derivative of the capacity as a function of

potential. Additional to the main signals coming from LFP (3.4 and 3.5 V on

charge and discharge, respectively), the other oxidation and reduction signals

can be attributed to the redox processes of PEDOT and PProDOT previously

described for the one-step method.
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Figure 2. Initial charge/discharge and differential capacity plots for the two-steps in battery
formation of composites from a-b) EDOT and c-d) ProDOT.

Figure 3 presents scanning electron microscopy images of the surface of the

LFP-based cathode including binder and conductive additives as a function of the

charge potential. Figure 3a shows irregular individual particles of pristine LFP. At

3.7 V, the partially delithiated cathodes with EDOT or ProDOT monomers

displayed no variation with respect to the pristine LFP cathode. Contrary to this,

the surface of the electrode at 4.2 V shown in Fig. 3b, illustrates the characteristic

globular structure of PEDOT grown in close contact with the LFP particles,

yielding a material with enhanced mechanical and conductive communication

between the active particles. These features were also observed in case of

LFP-PProDOT. The polymers prepared electrochemically in the absence of LFP

(Fig. 3c) show a completely different texture,14c,d which emphasizes the role of

LFP in the formation of the polymer by the in battery method.
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Figure 3. SEM pictures of the cathode surface as a function of charge potential. a) pristine LFP,
b) LFP + EDOT charged at 4.2 V and c) PEDOT.

2.2. Mössbauer analysis

In order to elucidate the delithiation process of LFP in the presence of EDOT

and ProDOT monomers, Mössbauer spectra were recorded at different depth of

charge/discharge corresponding to different stages of the in battery

polymerization process. Figure 4 shows the experimental and calculated 57Fe

Mössbauer spectra of the LFP active material, both in absence and in presence

of EDOT monomers at different charge/discharge potentials. Table S1 provides

the hyperfine parameters obtained from the fitting of the spectra. The spectrum of

pristine LFP shows a main doublet with isomer shift (IS) value of 1.22 mm/s and

a quadrupolar splitting (QS) of 2.96 mm/s. These values are characteristic of Fe2+

ions in high spin configuration, distorted octahedral coordination, as found in LFP.

Additionally, a second doublet of lower intensity with IS = 0.48 mm/s and

QS = 0.79 is ascribable to Fe3+. The hyperfine parameters allow assigning this

signal to FeP impurities.23 This signal has been previously described in the

literature, and is commonly found in samples prepared under carbothermal

reducing conditions.24 In our sample, this impurity accounts for ca. 5-7 % of the

total iron content. It has been firmly demonstrated that iron phosphide impurities

for less than 10 % decrease the capacity of the LiFePO4 but enhance the

utilization efficiency at high discharge rate, due to the high electron conductivity

FeP.25,26

Pristine LFP was charged galvanostatically at 3.7 V. At this potential the main

signal consists of a doublet with IS = 0.44 mm/s and QS = 1.51 mm/s. These

values are consistent with Fe3+ phosphate in high spin configuration, distorted
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octahedral coordination. Additionally, the contribution of the signal previously

assigned to Fe2+ strongly decreases. These observations provide evidence of the

progressive oxidation of Fe2+ to Fe3+ linked to the extraction of Li+ to form FePO4.

At this potential, ca. 16 % of the total iron remain unoxidized, corresponding to a

fraction x = 0.84 of lithium extracted from LFP.

Figure 4. Mössbauer spectra at different potentials for a-b) LFP and c-e) LFP with EDOT.

The Mössbauer analysis for the LFP sample in presence of PEDOT and

charged at 3.7 V shows that the amount of unoxidized Fe2+ decreases to ca. 9 %.
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This indicates that the use of the monomer in the battery results in a higher

efficiency for the lithium extraction, compared to the LFP without

monomer/polymer. We speculate that the observed improvement is related to an

enhanced conductivity of the materials, which is in agreement with our

impedance analysis. After charging to 4.2 V, the Mössbauer spectrum of the

LFP/PEDOT composite showed only one doublet ascribable to Fe3+, indicating

the full delithiation and transformation of LiFePO4 into FePO4. The further

discharge of the battery down to 2.2 V results in the full reduction of Fe3+ into

Fe2+ and reinsertion of Li+, as evidenced by the signal in the Mössbauer spectrum

ascribable to Fe2+, similar to that observed for the pristine LFP.

2.3. Battery cycling

The charge/discharge profiles, at C/10 and 1C rates, for LFP and the

composites with PEDOT and PProDOT are shown in Figure 5. In the following

discussion, the presented data correspond to the average results from 10 cycles

at each rate.

The profiles for all the samples present the characteristic charge/discharge

plateaus centred near 3.4 V. At C/10, pristine LFP shows the lowest performance

with a discharge capacity of ca. 130 mAh g-1, which represents 76 % of the

theoretical value for LFP (Qtheo ca. 170 mAh g-1). Higher capacities were found for

the cathode with PEDOT or PProDOT, confirming an improvement arising from

incorporation of the polymers. For PEDOT based cathode, the capacity value

obtained via one-step method was 132 mAh g-1, whereas the two-step method

gave an unprecedented, higher capacity of 165 mAh g-1 (25% increase), very

close to the theoretical value. On the contrary, the inverse situation was observed

for PProDOT, as the capacity value obtained via the one-step method (148 mAh

g-1) is slightly higher than the value measured for the composite obtained by the

two-step method (144 mAh g-1). This indicates that the different properties of the

monomers —structure and redox potentials— influence the formation of the

composites under similar preparation conditions. Although the performance at 1C

rate is lower than at C/10, all the samples with PEDOT and PProDOT display
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enhanced capacity and notably lower charge/discharge polarization, when

compared to pristine LFP.

Figure 5. Charge/discharge plots for the different composites at a) C/10 rate and b) 1C rate.

Figure 6a presents the discharge capacity as a function of the cycle number at

different rates for all the composites. All the samples with polymer outperform the

pristine LFP in terms of capacity at increasing rates. Apart from this, the

incorporation of PEDOT and PProDOT polymers allows the recovery of more

than 95% of the initial capacity at C/10 after 60 cycles.
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igure 6b presents the results for the evaluation of the capacity retention at C/2 for

50 cycles. Prior to the capacity retention test, all the samples were subjected to

three charge/discharge cycles at C/10 in order to form the LFP/polymer

interphase and to activate LFP. It is evident that pristine LFP not only shows

lower initial capacity, but also marked capacity fade of nearly 60% after 30

cycles. On the contrary, the capacity fading of our engineered LFP/polymer

cathodes was less than 4 % of the initial capacity at C/2 rate, giving rise to longer

and more practical cycle life.
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The best electrochemical results were obtained for PEDOT based sample by the

two-step preparation. This behaviour has a two-fold origin. First, the conductivity

of PEDOT is significantly higher as compared with ProDOT,21 which is in

accordance with our EIS data. On the other hand, a first activation for the

polymerization process was achieved by adding the monomer to a previously

charged electrode, which constitutes the basis of the two-step procedure.

2.4. EIS analysis

We explored the variation of the total resistance of the cathode as a function of the

charge and discharge potential by means of impedance spectroscopy. Fig. 7a

compares the spectra at a particular potential of 4.2 V at which polymerization has

occurred. We fitted the experimental spectra to an equivalent electrical circuit described

previously for LFP-based electrodes.27 The circuit consists of a high and a medium-

to-low frequency semicircles, the former corresponding to the lithium ion migration

resistance in the solid electrolyte interface (SEI), while the later to the charge transfer

resistance. Semi-infinite diffusion and differential intercalation capacity are usually fitted

by a series of constant phase elements and a Warburg element in the low frequency

region. Besides, the equivalent circuit includes an inductor and a resistor to account for

the cables inductance and the contact resistances in the cell (inset Figure 7a). It is

worth to mention that during battery charging the total resistance progressively drops as

the monomers oxidizes over the cathode (Fig. 7b). Charging the battery until 4.2 V can

lead to p-doped, highly conducting forms of PEDOT and PProDOT that favour the

discharge performance of LFP.
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Figure 7. a) Impedance spectra of the composites at for the first charge/discharge cycle at 4.2 V.
b) Variation of the total resistance of the cell for the first charge/discharge cycle.
RTotal = Ro + RSEI + Rct
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3. Conclusions

A simple and cost effective method is proposed to improve the performance of

LFP electrodes, by using in battery polymerization of alkylthiophenes (ProDOT,

preferably EDOT) in one- or two-steps. The procedures differ in the addition of

the monomer, prior or after in battery electrochemical delithiation of the

phosphate cathode. The latter is particularly attractive as it allows capacities

close to the theoretical limit, low polarization, low cycling losses, excellent rate

performance, and improved capacity retentions after 50 cycles. 57Fe Mössbauer

spectroscopy reveals that the oxidation of Fe2+ to Fe3+ takes place during the

polymerization-doping step. The enhanced electronic conduction in the materials,

particularly when using the two-step procedure is the main origin of the improved

performance.

4. Experimental section

LiFePO4 was synthesized as described elsewhere24. The battery electrolyte

consisted of conventional 1 M LiPF6 dissolved in

ethylenecarbonate:diethylcarbonate (EC:DEC, 1:1 volume ratio).

3,4-ethylenedioxythiophene monomer (EDOT) and 3,4-propylenedioxythiophene

(ProDOT) monomer were purchased from Aldrich and used as such. Electrodes

were prepared by mixing the LFP active material with carbon black and

polyvinylidene fluoride (85:8:7wt.) in N-methyl pyrrolidone. The mixture was

sonicated and the obtained ink was deposited over an aluminum disk (0.64 cm2)

and dried at 80°C under vacuum for 12 h. The average amount of LFP in the

electrodes was estimated to 5 mg cm-2.

LFP test batteries without monomers were assembled in two-electrode

Swagelok-type cells using the cathode as working electrode, Whatman

glass-paper separator soaked with electrolyte, and 1.5 mm thick lithium metal foil

as reference/counter electrode. All the cells were assembled inside a glove box

under controlled argon atmosphere.

Galvanostatic cycling at different C-rates (C = 1 Li h-1 mol-1) was carried out at

room temperature using a Biologic VMP or MPG station. The cut-off potential for

charge and discharge were set at 4.2 and 2.2 V (vs. Li+/Li), respectively.
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The modified cathodes of LFP with conducting polymer were prepared inside test

batteries by polymerization of EDOT and ProDOT monomers, using two different

methods. The first method consisted in assembling the battery with a pristine LFP

cathode covered by a solution of monomer (0.02 M in battery electrolyte) and

applying a single charging step to the battery, in order to perform the cathode

delithiation and the polymerization of the monomers in one step. The composites

prepared by the single charging step are referred as “one-step”. The second in

battery method consisted in charging a test battery with a pristine cathode at

C/10, in order to de-lithiate LFP. Afterwards, the battery housing the delithiated

cathode was opened inside the glove box and monomers were added over the

cathode surface. Polymerization of the monomers was carried out by applying a

second galvanostatic charge at C/10. LFP/polymer cathodes prepared by the two

charging steps are referred to as “two-steps”. The amount of added monomer

was 3.6 wt. % of the total electrode mass.

To estimate the contribution of the resulting conductive polymer to the total

discharge capacity of the composite electrodes, the electroactivity (reversible

doping) of the polymer was determined by measuring the capacity associated to

the peak at 3.75-3.60 V during cell discharge, and referred to the capacity of LFP.

The result was less than 1 %, and thus it was not considered further.

Cyclic voltammetry of the battery electrolyte, EDOT and ProDOT monomers was

performed in a three-electrode cell at room temperature at a scanning rate of 1

mV/s from 2.2 - 4.2 V. Platinum wire was used as working electrode fitted

between two glass fiber separator wetted with the electrolyte and solution of

monomers. Two lithium disks acted as reference and counter electrodes.

Electrochemical impedance spectra of the cathode materials were made with the

help of Biologic SP-150. The measurements were carried out in three-electrode

Swagelok cells with the LFP-based composite as working electrode, lithium metal

counter electrode and lithium reference electrode. The applied sinus amplitude

was fixed at 5 mV and the frequency was scanned from 1 MHz to 1 mHz.
57Fe Mössbauer spectra were recorded at room temperature with an EG&G

spectrometer at constant acceleration and transmission mode. The gamma radiation

source was 57Co (Rh matrix). The velocity scale was calibrated from the sextet lines

recorded for high-purity iron foil. The spectra were fitted to Lorenzian profiles by a least
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square method using WinISO software. Scanning electron microscopy (SEM) images

were obtained in a JEOL JSM63000 microscope.
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electrolyte solution (20 mM). The second forward scan is depicted with dotted lines.
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Table S1. Results from the fitting of the experimental Mössbauer spectra showed in Figure 4

*IS = Isomer Shift, QS = Quadrupole Splitting and LW = Line Width.

Sample Monomer Assignation
IS

[mm/s]

QS

[mm/s]

LW

[mm/s]

Contribution

[%]

Pristine LFP No Fe2+ 1.220(1) 2.96(1) 0.275(2) 94(1)

FeP 0.47(2) 0.74(2) 0.31(3) 6(1)

Charged at 3.7 V No Fe2+ 1.30(2) 2.81(3) 0.33(4) 16(4)

Fe3+ 0.442(2) 1.514(6) 0.264(5) 84(4)

Charged at 3.7 V EDOT Fe2+ 1.39(3) 2.56(4) 0.32(7) 9(6)

Fe3+ 0.432(2) 1.518(6) 0.268(5) 91(6)

Charged at 4.2 V EDOT Fe3+ 0.435(3) 1.542(5) 0.337(9) 100

Discharged at 2.2 V EDOT Fe2+ 1.220(2) 2.96(1) 0.266(6) 100
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Abstract

LiFePO4 electrodes were built in different architectures using a

poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) mixed conductor

as an additive. Conductivity enhancement of PEDOT:PSS was achieved by the addition

of ethylene glycol and dimethyl sulfoxide solvents. The amounts of conducting polymer

and solvent additives strongly influence the discharge capacity and potential of LiFePO4

electrodes at high rates. The initial impedance and the direct current resistance were

correlated with the discharge performance at high rates. The optimized amount of

PEDOT:PSS added within the bulk resulted in a lower value of impedance, lower load

resistance and higher capacity as compared to the standard preparation. Furthermore
57Fe Mössbauer spectroscopy and X-ray photoelectron spectroscopy were employed to

probe the bulk transformation of the LiFePO4 active material and the surface changes of

the composite electrodes with the conducting polymer upon lithiation. The electrode with

PEDOT:PSS coated on the aluminium current collector and doped with ethylene glycol

showed highly competitive performance (132 mAh g-1 at 5C and 145 mAh g-1 at 2C for

50 cycles).

1. Introduction
Lithium ion batteries are the current choice for powering consumer electronic

devices, and are considered for use in electric vehicles and stationary back-up for

renewable energy sources. Electric vehicles and power gadgets require batteries able

to sustain high charge/discharge currents safely and provide high energy density and

long cycle life. In the present Li-ion batteries, the positive electrode (cathode) imposes

performance and cost requirements that limit the implementation of a sustainable

market for electric cars. The pioneering work of Padhi et al.1 on lithium transition metal

phosphates (LiMPO4, M: Fe, Mn, Co, Ni) as positive electrode materials set the

cornerstone for the development and commercialization of lithium iron phosphate

(LiFePO4), a new-generation material that offers safety and performance advantages

over typical LiCoO2. Besides, LiFePO4 (LFP) is considered as environmentally friendly

and can be produced at competitive cost by different synthetic routes.2,3 In spite of their

outstanding features, the low intrinsic conductivity of lithium transition metal

phosphates, ranging from 10-7 to 10-11 S cm-1 for LFP,4,5 was considered as the limiting

factor to achieve fast lithiation/delithiation in these materials. However, it was later
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demonstrated that structural and compositional modifications of the surface and the bulk

of LiFePO4 can turn it into a material with high rate capability. For instance, the ionic

diffusivity of LFP has been improved by reducing the diffusion paths along the less

impeded [010] direction in nano-particles6 or by coating the surface of LFP with glassy

lithium pyrophosphate.7

For the enhancement of electronic conductivity of LFP, the currently adopted

strategy consists of carbon-coating over the active material particles through ball milling

with inorganic carbon or by calcination of organic carbonaceous compounds.8,9 In order

to ensure the electronic connection between particles and to the current collector,

composite electrodes are formed using carbon additives in combination with polymeric

binders like polyvinylidene fluoride (PVDF). Conducting polymers are known for their

excellent electronic properties and mechanical stability. These polymers can be utilized

for the design of composite electrodes in order to increase the conductivity without

penalizing the electrochemical performance.10,11 In particular for LiFePO4, composites

with polyaniline,12,13 polypyrrole14,15 and polythiophene16,17 derivatives have been

prepared by blending LFP with chemically synthesized polymers, by chemical or

electrochemical polymerization in the presence of the phosphate.18–20

Recently, we reported the improved performance of LFP-conducting polymer

composites obtained directly over LFP-based electrodes by electrodeposition in an

acetonitrile medium21 and on the battery electrode by polymerization of

alkylenedioxythiophene-based monomers under battery operation conditions.22 In our

present approach to further improve the performance of LFP-based electrodes, mixed

conductor poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) has

been used as a conducting additive to develop an ionic/electronic conducting network

for the interconnection of the LFP particles. PEDOT:PSS is a commercial product and

provides conductivity due to the coexistence of the PEDOT electron conducting phase

complexed with polystyrene sulfonate (PSS), where the sulfonate group is able to

solvate Li+ ions.23 Besides, the conductivity of PEDOT:PSS can be further increased by

2–3 orders of magnitude by the use of additives (so-called secondary doping) with

oxygenated compounds like ethylene glycol or dimethyl sulfoxide.24,25 In order to discern

the main contribution of PEDOT:PSS to the conductivity of the LFP-based composite

electrodes, we investigated the effects of the conducting polymer when it is coated over

the aluminium current collector and/or dispersed within the bulk of the electrode.
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2. Experimental section

LiFePO4 (LFP) was synthesized as described elsewhere.26 Standard LFP electrodes

(standard) were prepared by dispersing the active material with carbon black (CB) and

polyvinylidene fluoride (PVDF) (85 : 8 : 7 by weight) in N-methyl pyrrolidone. The

obtained ink was deposited over an aluminium current collector (0.64 cm2) and dried at

80º C under vacuum for 12 h. The average load of LFP in the electrodes was estimated

to be 5–6mg cm-2. Commercial PEDOT:PSS polymer aqueous dispersion 1.1% w/w

(Clevios PH1000, Heraeus) was filtered using Whatman 0.45 mm pore size filters. The

conducting polymer was incorporated into the LFP-based electrode in three different

ways: (i) over the current collector, (ii) in the bulk, and (iii) both over the current collector

and in the bulk. The PEDOT:PSS coating over the current collector was achieved by

drop-casting the polymer dispersion (30 μL cm-2) and allowing it to dry at 100º C for 24

h under vacuum. Afterwards, the LFP based ink was deposited over PEDOT:PSS-

coated aluminium and the electrode was prepared as described above for the standard

sample. The second preparation consisted in blending LFP with CB, PVDF and

PEDOT:PSS (79:7:7:7 or 84:8:7:1 by weight) to form the electrode in a similar fashion to

that of the standard LFP-based electrodes (see above). Finally, both methods were

combined in order to form an electrode containing PEDOT:PSS both over the Al current

collector and in the bulk. The different samples will be referred to as: collector, bulk, and

coll-bulk, respectively, considering where the polymer is present in the electrode.

Finally, all the electrodes were pressed at 1.5 ton cm-2.

To further enhance the PEDOT:PSS conductivity either 5% v/v ethylene glycol (EG)

or dimethyl sulfoxide (DMSO) was used as an additive for the polymer dispersion. Test

batteries were assembled in two or three-electrode Swagelok-type cells using the above

mentioned LFP-based electrodes, a Whatman glass-paper separator soaked with the

electrolyte (1 M LiPF6 in ethylene carbonate:diethyl carbonate, 1:1 weight ratio) and

lithium metal foil as the reference/counter electrode. All the cells were assembled inside

a glovebox under a controlled argon atmosphere (H2O, O2 < 1 ppm). Galvanostatic

cycling at different C-rates (1 C = 1Li h-1 mol-1) was carried out at room temperature

using a Biologic VMP or MPG station. The cut-off potential for charge and discharge

was set at 4.2 and 2.2 V (vs. Li+/Li), respectively. Electrochemical impedance spectra

were recorded in a Biologic SP-150 equipment using a three-electrode Swagelok-type
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cell with the LFP-based composite as the working electrode, lithium counter electrode

and lithium reference electrode. The applied sinus amplitude was fixed at 10 mV and

the frequency was scanned from 1 MHz to 10 mHz. X-ray photoelectron spectroscopy

(XPS) studies were performed with a Phoibos 150MCD (SPECS) instrument under

vacuum (4 x 10-9 mbar) at room temperature with an Mg Kα source. Prior to the

analysis, all the samples were maintained overnight inside the chamber under constant

vacuum. The samples taken from test batteries were rinsed with propylene carbonate

solvent, dried and then carefully transferred into the instrument's chamber, minimizing

contact with the external atmosphere. Fitting of the experimental spectra was performed

with CasaXPS software, applying Gaussian-Lorentzian symmetric or asymmetric line

shapes, and considering the software's library of relative sensitivity factors for the

quantitative analysis. The energy scale was referenced to the C 1s level (285 eV) from

adventitious carbon.

57Fe Mössbauer spectra were recorded at room temperature using an EG&G

spectrometer at constant transmission and acceleration mode. The gamma radiation

source was 57Co (Rh matrix). The sextet lines recorded for high-purity iron foil were

used to calibrate the velocity scale. The fitting of the spectra to Lorentzian profiles was

carried out by a least squares method using WinISO software. The microstructure was

imaged with the use of a Hitachi S5200 field-emission scanning electron microscope

(FE-SEM) operating at 5.0 keV.

3. Results and discussion
Fig. 1 presents SEM images of the LFP-based standard electrode and different

electrode preparations incorporating PEDOT:PSS. The standard electrode was

composed of varying shapes of LFP particles (ca. 80–300 nm), homogeneously mixed

with CB and PVDF (Fig. 1a). The cross-section view (Fig. 1b) shows that the porosity

was preserved though the sample was pressed to improve the contact to the current

collector and between particles.

Fig. 1c shows a cross-sectional profile of the PEDOT:PSS deposit used for the

collector sample. The PEDOT:PSS film (ca. 3 m) forms into a compact lamellar

structure rich in the PSS phase as previously described.27 Fig. 1d displays a close view

of the composite formed by the collector method, where the PEDOT:PSS film over the
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current collector provides a compatible surface for the active material particles. The

texture of the bulk 1% and bulk 7% electrodes can be observed in Fig. 1e and f. The

primary particles in the bulk appear embedded in a continuous PEDOT:PSS network,

the polymer acted as a glue that provides mechanical and conductive interconnection

between LFP active particles. The texture and cross-section profiles of the coll-bulk

samples were very similar to the features of the bulk electrodes.

Fig. 1. SEM images. (a and b) Particles and cross-section of the LFP standard electrode, (c)
PEDOT:PSS film formed over the aluminium current collector, (d) collector sample, (e) bulk 1%
sample and (f) bulk 7% sample.
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Fig. 2. Mössbauer spectra of (a) pristine LFP-based electrode, and charged electrodes: (b)
LFP-based, (c) bulk 1% and (d) EG-bulk 1%.

Mössbauer spectroscopy was used to investigate the oxidation state of iron in the

pristine LFP-based electrode (Fig. 2a). The Mössbauer spectrum of this sample

features an intense doublet with characteristic hyperfine parameters typical of high spin

Fe2+ ions in distorted octahedral coordination (IS = 1.22 mm s-1 and QS = 2.96 mm s-1)

as previously reported.26,28,29 The fitting was improved by considering the contribution of

an additional, less intense doublet (IS = 0.48 mm s-1 and QS = 0.79 mm s-1) ascribable

to FeP, which was formed under carbothermal, reducing synthesis conditions26,30 and

constitutes ~7% of the total iron content in the pristine electrode.
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Fig. 3. Fe(2p) XPS spectra of (a) pristine LFP electrode and two charged electrodes with the
conducting polymer: (b) bulk 1% and (c) EG-bulk 1%.

In order to complement the sample analysis, XPS was used to characterize the

pristine state of the surface of the standard electrode. Fig. 3a presents the XPS signal

of the Fe(2p) core levels. By comparing the peak position with the usual location of Fe3+

and Fe2+ marked with dashed lines in Fig. 3, it can be concluded that in the pristine

sample iron exists as Fe2+ with 2p3/2 and 2p1/2 split levels at binding energy values of ca.

711 and ca. 725 eV, respectively, in accordance with previous reports for LiFePO4.31,32

The broad signals at ca. 714 and ca. 728 eV correspond to satellite signals. The

characteristic signals of FeP were un-resolved, which suggests a lower proportion of

this impurity on the surface of the electrode. Fig. 4a presents the initial charge at C/10

and the discharge profiles at increasing rates of the LFP standard sample. The

characteristic charge/discharge plateaus are centred near the equilibrium potential for
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the redox pair Fe3+/Fe2+ at 3.43 V, with a charge/discharge polarization of ca. 69 mV.

The initial charge capacity of ca. 149 mAh g-1 corresponds to 0.88 mole of lithium

extracted from LiFePO4. This value indicates limited active material utilization as

confirmed by Mössbauer spectroscopy of the charged sample (Fig. 2b), which shows a

considerable contribution of ca. 10% of the total iron assigned to Fe2+, according to the

hyperfine parameters presented in Table S1.† The reduced charge efficiency is evident

upon lithium reinsertion as the discharge capacity of 144 mAh g-1 corresponds to 85%

of the theoretical capacity for LiFePO4 (Qtheo.: 170 mA h g-1).

Fig. 4. Initial discharge profiles at increasing rates of the different LFP-based composite
electrodes.

Although iron phosphide is known to improve the electronic conductivity of LiFePO4
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while the polarization increases due to transport limitations, as not all the particles can

sustain high rates.34 Thus, at 5C, the discharge capacity drastically decreases to 50

mAh g-1 and the discharge potential at half of the total delivered capacity (EQ1/2) reaches

2.49 V. This value translates into a poor energy and power density. Aiming to improve

the active material utilization, a PEDOT:PSS film was formed over aluminium to act as a

conductive interface to promote the electrical contact of LFP particles to the current

collector. The initial capacity (145 mAh g-1) of this collector sample (Fig. 4b) is the same

as that of the standard preparation. However, at 5C, the higher capacity (86 mAh g-1)

and the higher discharge potential (EQ1/2: 2.97 V at 5C) indicate an improvement in the

energy and power density. The effect of PEDOT:PSS present within the bulk of the

electrode was also tested. Fig. 4c shows that for the bulk 7% sample, PEDOT:PSS

shows a beneficial impact on the discharge voltage (EQ1/2: 3.05 V at 5C) with no

capacity improvement at low and high rates (QC/10: 148 mAh g-1, Q5C : 56 mAh g-1).

In order to take advantage of the features found for the collector (high capacity) and

the bulk (high voltage) preparations, these architectures were simultaneously applied to

form a single composite electrode with PEDOT:PSS coated over the aluminium current

collector and also blended in the bulk (7% w) of the electrode. The resulting preparation

was named coll-bulk 7%. For the initial discharge, this preparation (Fig. 4d) provided ca.

92% of Qtheo. However, at 5 C, the discharge capacity faded to 32 mAh g-1, indicating

the inefficient use of the active material. Despite the inferior rate capability of this

coll-bulk 7% sample, its discharge potential (EQ1/2: 3.01 V) holds near the level found for

the collector sample, although its power density is expected to drop as a consequence

of the lower proportion of the active material.

As a way to increase the gravimetric energy and power densities of the LFP-based

electrodes, the amount of PEDOT:PSS additive in the bulk was reduced to 1% w. In this

manner, the bulk 1% preparation provided ca. 90% of the theoretical capacity at C/10 in

discharge, a value considerably higher than that observed for the standard LFP sample

(83%). The improved performance of the bulk 1% sample was confirmed at higher rates

as the discharge capacity at 5C reaches 114 mAh g-1 (Fig. 4e) and it was possible to

discharge ca. 50% of the theoretical capacity in 6 minutes (10C rate) at EQ1/2 ~ 2.96 V.

These observations reflect a higher efficiency for the lithium extraction/re-insertion

linked to the Fe2+ to Fe3+ oxidation when a small amount of PEDOT:PSS is present in
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the bulk of the electrode. This was further supported by Mössbauer spectroscopy and

XPS results of the charged bulk 1% sample. The Mössbauer spectrum (Fig. 2c) shows

a symmetric doublet assigned to Fe3+, while no Fe2+ doublet could be resolved. As

expected, most of the iron in the charged electrode is ascribable to Fe3+ and the

contribution from the FeP component is similar to that of the pristine LFP electrode

(Table S1†). Fig. 3b presents the Fe(2p) XPS spectrum of the charged bulk 1% sample.

The position of the Fe(2p3/2) and Fe(2p1/2) bands appear ca. 1.1 eV shifted to a higher

binding energy compared to the pristine LFP-based electrode (Table S2†). This shift

has been described previously and it is attributed to the Fe2+ to Fe3+ oxidation.31,32

The characteristic signals of FeP were not resolved neither in the Fe(2p) region nor

in the P(2p) region (not shown). Regarding the electrochemical performance of the

coll-bulk 1% sample (Fig. 4f), it also showed improvement in terms of capacity at 5C

(104 mAh g-1) with respect to its col-bulk 7% analogue and to the standard electrode,

although its performance at 10C is inferior to that achieved by the bulk 1% preparation.

Therefore, 1% w of the conducting polymer in the bulk is pointed out as the optimum

strategy to achieve high rate performance with undoped PEDOT:PSS.

Fig. 5. Initial discharge profiles at increasing rates of the different LFP-based composite
electrodes with doped PEDOT:PSS.
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Fig. 5 shows the discharge profiles of the LFP-based composites with PEDOT:PSS

treated with EG and DMSO conductivity enhancement agents, and tested for the

collector and bulk 1% preparations. Both additives act as an agent to increase the

conductivity of PEDOT:PSS by 2–3 orders of magnitude, reaching values as high as

1000 S cm-1 for 5% v/v DMSO.35 Thus, for the collector preparation with DMSO (Fig.

3a), we found substantial improvement for both the capacity (101 mAh g-1) and the

discharge potential (EQ1/2: 3.1 V) at 5C, as compared to its undoped analogue (Fig. 4b).

Ethylene glycol boosted the performance of the collector preparation even further as it

discharges higher capacity at 5 C (132 mAh g-1) and also at 10C (93 mAh g-1) as shown

in Fig. 5b. For the bulk 1% preparations, doping with DMSO was ineffective as its

discharge characteristics are very similar to those of the standard sample (see Fig. 4a).

Fig. 6. XPS plots of the S(2p) core level of undoped (a–c) and EG-doped samples (d–f). (a)
PEDOT:PSS, (b) PEDOT:PSS @ C/10, (c) bulk 1% @ C/10. (d) EG-PEDOT:PSS, (e) EG-PEDOT:PSS @
C/10, and (f) EG-bulk 1% @ C/10.
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Compared to the undoped bulk 1% preparation (Fig. 4e), the EG-doped sample

showed similar capacity values at high rates, with a substantial improvement in the

discharge potential at 10C (EQ1/2: 3.03 V). Similarly for the undoped bulk 1% sample,

the Mössbauer spectroscopy and XPS results of the EG-bulk 1% sample (Fig. 2d and

3c, respectively) showed no signals ascribable to Fe2+, indicating that the oxidation of

Fe2+ to Fe3+ was complete. As observed for the standard and the bulk 1% preparations,

FeP was detected using Mössbauer spectroscopy of the charged EG-bulk 1% sample

(Table S1†). From the results presented above, it is evident that the incorporation of

undoped and doped PEDOT:PSS has a beneficial impact on the discharge performance

of the composite electrodes at high rates.

Several studies have explained the mechanism of the conductivity enhancement of

PEDOT:PSS with secondary dopants in terms of the segregation of the insulating,

excess PSS phase.36,37 Ethylene glycol (EG) and dimethylsulfoxide (DMSO) are among

the most common secondary dopants. Also, the modifications of the conformation, the

size and morphology of PEDOT:PSS, have been pointed out as reasons for the

conductivity improvement of PEDOT:PSS, as supported by atomic force microscopy

and XPS.37–39 In particular, the segregation of the PSS phase has been correlated to the

decrease of the PSS/PEDOT ratio, which can be estimated from the intensity ratio of

the well resolved S(2p) XPS signals attributed to PSS and PEDOT sulphur atoms of

different bonding environments.39 We applied this approach to estimate the

PSS/PEDOT ratios of undoped and EG-doped polymer deposits over the current

collector and for the bulk 1% preparations in pristine and charged states.

Fig. 6 presents the XPS plots of the S(2p) levels of the different samples. The S(2p)

spectra of all the samples with PEDOT:PSS display two peaks, irrespective of the

charge state or the presence of the EG secondary dopant. The lower binding energy

peak is attributed to the sulphur atoms in PEDOT. Due to the presence of

electronegative oxygen atoms in the sulfonate fragments, the characteristic peak of

PSS appears at a higher binding energy. The two peaks were deconvoluted into

doublets according to the S(2p3/2) and S(2p1/2) spin–orbit splitting. An asymmetric peak

shape was considered for the PEDOT doublet in order to account for the positive

charge delocalization over adjacent PEDOT rings.37 The signals of neutral and ionic

polystyrene (PS) sulfonate (PS-SO3H and PS-SO3
-) are commonly separated by an
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energy of ca. 0.4 eV,39 resulting in a high overlapping that leads to accuracy problems in

the signal resolution. Taking this disadvantage under consideration, we used only one

component for the refinement of these spectra. The results of the fitting and the

quantitative analysis are listed in Table S3.† Fig. 6a–c show the S(2p) XPS spectra of

the samples with undoped PEDOT:PSS. A comparison of the XPS signals of the

pristine and the charged PEDOT:PSS deposits over aluminium shows that the chemical

environment of sulphur is preserved after the initial charge inside a test battery. The

variation of the PSS/PEDOT ratio from 3.7 in the pristine state to 3.33 in the charged

state indicates a slight decrease of the PSS amount upon charging. This finding

suggests a modification of the PEDOT:PSS complex in the presence of the battery

electrolyte, where the acidic PSS fragment could react with LiPF6 according to Eqn. (1).

LiPF6 is known to undergo decomposition reactions in in the presence of water and

other acidic species.40,41 If a fraction of PSS were engaged in the reaction represented

in Eqn. (1), then PF6
- could act as an alternative counterion for positively charged

PEDOT. Conductivity values ranging from 100–300 S cm-1 have been reported for

electropolymerized PEDOT films doped with PF6
-.42–44 The microstructures (pores) in

such thin films show different morphologies depending on the size of the anion and the

cation from the electrolyte used in the polymerization.45

LiPF6 + PS-(SO3H) PF5 + HF + PS-(SO3Li) (1)

For the bulk 1% sample the PSS/PEDOT ratio of 1.74 indicates a more pronounced

decrease of the PSS phase. This observation could arise from a combination of the

PF6
-1 counter ion effect described above, and also to a certain extent from the contact

with N-methyl pyrrolidone (NMP) that was used as the solvent for the PVDF binder

during the electrode preparation. In the past, the conductivity enhancement of

PEDOT:PSS by NMP treatment was reported and reasoned in terms of a decrease of

the thickness of the excess, insulating PSS phase.36,46 The EG-doped samples showed

the same tendency in the PSS/PEDOT ratio variation upon charging as observed for

undoped samples. However, the use of EG as the secondary dopant causes a more

pronounced reduction of the PSS/PEDOT ratio, in agreement with previous

observations.37,47 Thus, the charged EG-bulk 1% sample shows the lowest PSS/PEDOT

ratio of ~1.19, indicating a notably large decrease of the PSS content. Fig. 7 presents
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the charge/discharge polarization of the different samples as a function of the

charge/discharge current. Polarization tends to increase with the rate due to the thermo-

dynamics of the de-lithiation/lithiation reaction in LFP, and also due to the transport

hindrance through the electrode interfaces.49 In the absence of PEDOT:PSS, the

polarization can be as high as 1.54 V at 5 C, resulting in a poor charge/discharge

energy efficiency for the standard sample.

Among the undoped samples (Fig. 7a), the bulk 1% architecture has the lowest

polarization at 5 C (0.54 V), which is almost three times lower than the value for the LFP

standard sample. For the undoped samples, the polarization tends to increase with the

amount of PEDOT:PSS. Interestingly, at 5C, the polarization of the coll-bulk 7% sample

matches the value found for the collector sample. These observations suggest the

existence of a threshold where the amount of undoped polymer in the bulk has no

beneficial effect at high rates. Regarding the doped samples, the collector and bulk 1%

preparations with EG showed the lowest polarization at 5C: 0.42 and 0.37 V,

respectively. We verified that DMSO had little effect on the polarization of the bulk 1%

(0.54 V) and the collector (1.37 V) preparations. Dreyer et al.48 described the

thermodynamical origin of the charge/discharge hysteresis (polarization) in LiFePO4 at

nearly zero current (20 mV @ C/1000), which arises from the inherent multiple-particle

equilibria involving Li+ insertion/extraction. It is expected that these equilibria were

affected by the presence of PEDOT:PSS that acts as a mixed ionic and electronic

network with enhanced charge transport.
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Fig. 7 Charge/discharge polarization plots of the standard and the different LFP-based
composite electrodes with (a) undoped PEDOT:PSS and (b) doped PEDOT:PSS with EG or DMSO.
Inset: comparison of the zero-current polarization (computed by extrapolation).
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We estimated the zero-current polarization for the different samples (insets in Fig. 7)

by extrapolation of linear plots of polarization vs. current (not shown). The value

determined for the standard LFP sample was 40 mV and differs from the reported value

of 20 mV,48 most probably due to the different characteristics of our sample. To support

our estimation, we recorded a charge/discharge cycle for standard LiFePO4 at C/200.

The experimental value was 48 mV, while at C/10 the polarization was 69 mV. Among

the undoped samples (inset Fig. 7a), the collector preparation has the lowest zero

current polarization value (31 mV), which contrasts with its high polarization values

found at higher currents. For the samples containing PEDOT:PSS in the bulk, low

amounts of PEDOT:PSS result in lower zero-current polarization, namely: 35 mV for

bulk 1% compared to 40 mV for bulk 7%. Regarding the doped samples, the zero-

current polarization values are very similar, ranging from 29 to 33 mV.  Thus, we

suggest that the presence of a conducting medium between the current collector and

the active particles is crucial to promote their electronic connectivity and improve the

current distribution and charge collection/delivery efficiencies, especially at high rates.
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Fig. 8 Impedance spectra of the standard and the different LFP-based composite electrodes with
(a) PEDOT:PSS and (b) PEDOT:PSS doped with EG or DMSO. Inset: equivalent circuit used to fit
the experimental data (hollow symbols).
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Fig. 8 presents the impedance spectra of the different samples after the initial charge

at C/10. A previously reported equivalent circuit49 was used to estimate the high-to-mid

frequency resistance. In that equivalent circuit (shown in the inset of Fig. 8), Re

corresponds to the electrolyte resistance, R0 and Q0, respectively, to the resistance and

capacitance of the interface between the current collector and the active material

particles (including additives). The sum in series of the charge transfer resistance (Rct)

and the diffusion impedance (Zw) is added in parallel to the interfacial (double layer)

capacitance (Qdl) that develops around active particles. The resistance (Rf) and

capacitance (Qf) of films (e.g. SEI) formed around the active particles are also

considered in the model. In order to improve the quality of the fitting, constant phase

elements (Q) were used instead of simple capacitors.

In the spectra (Fig. 8a), three features considered in the equivalent circuit can be

distinguished at different frequency ranges for undoped samples, namely: two

depressed semicircles in the high and mid frequency range and the diffusional tail at

lower frequencies. Additionally, for the samples with PEDOT:PSS over the current

collector, a small bump is distinguishable at high frequencies. The spectra of EG and

DMSO-doped samples (Fig. 8b) have similar features to those of undoped samples,

however at high frequency the semi- arc is better resolved in the collector samples with

EG and DMSO, which highlights the attribution of this feature to the interface between

the conducting polymer-coated current collector and the active material particles. In

order to obtain comparative resistance values for the different samples, we considered

only the high to mid frequency range (1 MHz > n > 10 Hz).

Fig. 9 shows the high-to-mid frequency impedance in charged and discharged

states, correlated with capacity values at 1 C, 2 C and 5 C. The comparison of the

impedance values in charged and discharged states shows how the electronic

conductivity of all the samples is lower in the charged state. For LFP, the lower

impedance in the charged state has been related to some rearrangement of particles

when Li+ ions are extracted from the phosphate.49 For PEDOT and other conjugated

polymers, the lower impedance in charge is related to the higher conductivity in the

p-doped oxidized state.50 The initial impedance values in the charged state reflect the

quality of the electronic wiring throughout the electrode achieved during the preparation

step. However, it is well known that new interfaces (e.g. SEI) develop as a function of

time in open circuit and during the first charging/discharging of the battery.
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In order to gain further insight into the performance of the different samples, the

direct current resistance (Rdc) at the voltage plateau was calculated from the slope of

the polarization vs. current plot (not shown). Fig. 9a shows that the higher the

resistance of the standard LFP electrode, the lower the capacity at moderate and high

rates. This observation indicates that solely carbon black particles and PVDF are

ineffective to ensure the connectivity of the active material particles, and highlights the

importance of the electrode composition and architecture.

Fig. 9. Discharge capacity and resistances for the standard and the different LFP based
composite electrodes with (a) PEDOT:PSS and (b) PEDOT:PSS doped with EG or DMSO. Z` and Rdc

refer to the real part of the impedance and the direct current resistance, respectively.
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The particle connectivity is notably improved by using a low amount of PEDOT:PSS

mixed conductor in the bulk 1% electrode, resulting in a lower initial impedance and Rdc.

The PEDOT:PSS network thus formed promotes the ionic and electronic wiring of the

LFP particles, including their contact to the current collector. In this way the capacity

increases as the charge is transferred and collected more efficiently throughout the

electrode. In the bulk 7% sample, the higher amount of polymer does improve the

electronic conductivity of the electrode, as evidenced from its low initial impedance

values. However, its lower capacity, compared to bulk 1%, could arise from an increase

in the length of the conduction pathways at the PSS phase within the bulk.27,36,51 This

condition limits the initial discharge performance and could affect the stability of the

electrode for extended cycling.

The PEDOT:PSS coating on the aluminium current collector tends to increase its

impedance due to the thickening of the conduction length and the formation of

aluminium oxide by reaction with the polystyrene sulfonic acid.52 Nevertheless, these

drawbacks are compensated by an increase of the effective contact points between the

aluminium current collector and the active material as the PEDOT:PSS coating acts as

a plastic cushion that can adapt to the shape of LFP particles and accommodate them

closely. This architecture results in a higher utilization of LFP and thus a higher capacity

than the standard sample. The coll-bulk 1% combines the features of the bulk 1% and

collector preparations, although this combination does not result in a synergistic effect.

During the preparation of the coll-bulk 7% and coll-bulk 1%, we noticed that the

PEDOT:PSS dispersion present in the cathode slurry tends to dissolve the PEDOT:PSS

film deposited on the collector. This was reflected in the higher polarization of these

samples in Fig. 7a, and the higher direct current resistance shown in Fig. 9a. For this

reason, we discarded the coll-bulk preparations with EG or DMSO dopants. Thus, the

improvement in the conduction paths between the LFP particles due to the presence of

a three-dimensional, conducting polymer network in the bulk leads to a higher discharge

potential (lower charge/discharge polarization), which results in a higher power density

of the battery. The better contact between the current collector and the electrode

materials through a conducting PEDOT:PSS interface improves the active material

utilization. This last characteristic was found for the EG-doped collector sample (Fig.

9b), which yielded the highest capacity values among all the studied samples.
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Fig. 10 presents the rate performance of the different samples as a function of the

number of cycles. For undoped samples, the best performance at all rates is confirmed

for the sample with the lowest amount of polymer, namely bulk 1%. This sample is able

to discharge almost 50% of the theoretical capacity at 10 C and delivers a stable

capacity of 133 mAh gLFP
-1 at 2 C for 50 cycles, which outperforms the standard sample.

Fig. 10 Cycling performance of the standard and the different LFP-based composite electrodes
with PEDOT:PSS. (a and b) Samples with PEDOT:PSS and c and d) samples doped with EG and
DMSO.
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the tested electrode architectures as it can discharge 90 mA h gLFP
-1 at a high rate of

10 C, and deliver 145 mA h gLFP
-1 continuously at 2 C during 50 cycles. As previously

reported by other authors, EG or DMSO increases the surface proportion of

electron-conducting PEDOT in the final polymer film. Therefore, the EG-collector and

the DMSO-collector could present a more conducting PEDOT:PSS/Al interface at which

the charge collection could be efficient during cycling at high rates. For the undoped

collector, the surface proportion of non-conducting PSS is higher, therefore the less

conducting PEDOT:PSS/Al interface could limit the charge collection at high rates.

4. Conclusions

LiFePO4 electrodes were built in different architectures encompassing PEDOT:PSS

conducting polymer. The incorporation of PEDOT:PSS additives within the bulk of the

electrode was achieved by a simple blending technique and provides a

three-dimensional, mixed conducting network that notably improves the performance of

LiFePO4 electrodes. The addition of a small amount of PEDOT:PSS resulted in high

capacity values specially at high rates, achieving a reversible capacity of 114 mA h g-1

at 5 C and 132 mA h g-1 at 2 C for extended cycling. We found that the use of ethylene

glycol as a conductivity enhancement agent for PEDOT:PSS deposited over the

aluminium collector is an effective strategy to boost the performance of LiFePO4

electrodes. The electrodes thus formed show lower load resistance with a discharge

plateau above 3.0 V at high rates and deliver 132 mA h g-1 at 5 C. These features and

the excellent capacity retention of 145 mA h g-1 at 2 C for the measured 50 cycles are

attributed to the enhanced conductivity of EG-doped PEDOT:PSS that arises from the

segregation of insulating PSS, as evidenced from the XPS analysis. The presented

methods are easy to scale-up and could be applied to other electrode active materials

for alkali ion batteries.
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Electronic supplementary information (ESI)

Table S1. Fitted hyperfine parameters for pristine and charged electrodes. (IS: Isomer shift, QS:
Quadrupolar splitting, LW: Line width)

Table S2. Fitted binding energy (BE) of the Fe(2p) levels and satellite (Sat) signals for LFP-based
electrodes.

Sample
BE 2p3/2

(eV)
BE 2p1/2

(eV)
BE Sat 1

(eV)
BE Sat 2

(eV)
standard (pristine) 710.98 724.64 713.73 727.38

bulk 1% (charged) 712.03 725.75 713.80 727.52

EG-bulk 1% (charged) 711.98 725.80 714.20 728.03

Sample Polymer Assignation IS
(mm/s)

QS
(mm/s)

LW
(mm/s)

Contribution
(%)

LFP
pristine No

Fe2+ 1.220(1) 2.96(1) 0.245(3) 93(2)

FeP 0.48(3) 0.79(4) 0.38(6) 7(2)

LFP
Charged No

Fe2+ 1.22(3) 2.87(4) 0.33(6) 10(4)

Fe3+ 0.427(3) 1.526(7) 0.326(7) 85(4)

FeP 0.42(4) 0.78(5) 0.26(1) 5(4)

bulk 1%
Charged

PEDOT:PSS
Fe3+ 0.431(3) 1.534(7) 0.301(8) 92(1)

FeP 0.41(6) 0.9(1) 0.4(1) 8(1)

EG-
bulk1%

Charged

EG-
PEDOT:PSS

Fe3+ 0.426(3) 1.525(7) 0.285(7) 95(7)

FeP 0.48 0.7(1) 0.4(2) 5(7)
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Table S3. Fitted peak positions for the S(2p3/2) level and calculated PSS / PEDOT ratios with
associated standard deviation values. The binding energy (BE) of the corresponding S(2p1/2)
signals was fixed 1.2 eV above the corresponding S(2p3/2) signals.

Sample State
BE  S(2p3/2) (eV) PSS/PEDOT

ratioPEDOT PSS

PEDOT:PSS pristine 164.12 168.46 3.70(2)

PEDOT:PSS charged C/10 164.14 168.57 3.3(2)

bulk 1% charged C/10 164.11 168.44 1.74(3)

EG-PEDOT:PSS pristine 164.14 168.38 2.90(2)

EG-PEDOT:PSS charged C/10 164.17 168.47 2.43(3)

EG-bulk 1% charged C/10 164.13 168.50 1.186(3)
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Chapter 6

Final conclusions1

The following three general conclusions are deduced by comparing the hypothesis and

objectives to the main results presented in Chapters 3, 4 and 5:

1) Composite electrodes based on LiFePO4 and poly(alkylenedioxithiophene)

[PXDOT] were successfully prepared by electropolymerization, by blending or

by coating methods. Different variations of these methods were devised and

applied for obtaining cathodes that are active for the reversible

insertion/extraction of lithium in test batteries. The effectiveness of the prepared

electrodes depends on the synthesis conditions of the conducting polymer and

on how this is combined with LiFePO4 to form the composite electrode.

2) The preparation conditions of the composite electrodes with LiFePO4 and

PXDOT affect their electrical resistance, their morphology and their texture.

Besides, the way in which the conducting polymer interacts with LiFePO4

particles and with the other components of the electrode influences the charge

transport through the different interphases of the electrode.

1 NOTE: In order to enable a performance comparison between the different electrodes, the total
discharge capacity at 2C and the corresponding energy density at 50 % DOD (Depth Of
Discharge) were determined and are referred to the weight of LiFePO4 in the electrode. A
graphical comparison of these parameters is presented in Figure 1 (Appendix I). The reader can
consult in Figure 2 (Appendix I) the same type of comparison but referred to the weight of the
composite electrodes without considering the weight of the current collector.
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3) The strategies presented in this thesis for preparing and analyzing

LiFePO4/PXDOT composite electrodes highlight the relevance of charge

transport through interphases in battery electrodes. In general, these strategies

could be implemented with slight modifications to the present methods for

preparing LiFePO4-based electrodes. Furthermore, these strategies could be

applied to other families of active materials and conducting polymers that

present redox compatibility and stability when combined in order to form

composite electrodes for alkali-ion batteries.

The conclusions listed below are derived from the individual analysis and from the

comparison of the results presented in Chapters 3, 4 and 5. For clarity, the conclusions

are classified into two groups according to the general method used for preparing the

composite electrodes. The reference to the corresponding chapters is included for each

of the conclusions.

Electropolymerization methods

4) The potentiostatic electropolymerization (electrodeposition: edep) of EDOT

monomers in an acetonitrile medium over cathodes based on LiFePO4 or

LiFePO4/C produces stable electrodes coated by PEDOT. In these electrodes,

LiFePO4 undergoes oxidation and lithium extraction reactions during the

potentiostatic polymerization of the monomers. Nevertheless, these

modifications of LiFePO4 do not limit the reversibility of the redox and

insertion/extraction reactions of the active material in further charge/discharge

cycles.

Chapter 3, sections 2.2.1 and 2.2.4

5) During the preparation of the LFP-edep electrode, EDOT monomers or

oligomers are incorporated to the composite electrode and these species

undergo further polymerization during the first charge in a test battery. This

situation is not observed for the LFP/C-edep composite electrode due to the

more efficient polymerization of the monomers and oligomers over the

carbon-coated LiFePO4 particles.
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Chapter 3, section 2.2.1

6) The presence of 19 % w/w PEDOT in the LFP-edep electrode enables a higher

capacity and a higher energy density, as compared to the LFP/C-edep

electrode. Although the amount of PEDOT in the LFP/C-edep electrode is

considerably lower (3 % w/w), both electrodes formed by the edep method

showed a very similar cycling stability, which demonstrates the possibility of

obtaining good electrochemical performance for the LiFePO4-based electrode

by coating it with PEDOT. A further increase of the capacity and energy density

values could be achieved by adjusting the amount of PEDOT and pressing the

electrode in order to improve the utilization of the active material.

Chapter 3, sections 2.2.3 and 2.2.4

7) The in battery electropolymerization of EDOT or ProDOT monomers produces

PEDOT or PProDOT coatings over electrochemically de-lithiated

LiFePO4-based electrodes upon the first battery charging up to 4.2 V. The

reaction of Li1-xFePO4 upon discharge is facilitated by the conducting polymer

coating. The polymer coating improves the active material utilization in further

charge/discharge cycles due to a better connectivity between the active

material particles throughout the electrode, which also confers mechanical

stability.

Chapter 4, section 2.1

8) 57Fe Mössbauer spectroscopy analysis indicated that the oxidation of LiFePO4

is more efficient for the electrode charged in one step up to 3.7 V in presence of

EDOT, as compared to the charging process of the electrode without

monomers. This higher efficiency was attributed to the presence of PEDOT,

which is formed through oxidation over Li1-xFePO4 and over the conducting

substrates (current collector and carbon particles) by effect of the anodic

current. PEDOT formed in battery not only facilitates the oxidation of the active

materials upon charging up to 4.2 V, but also the inverse reaction upon

discharge, which results in a high efficiency and stability upon successive

charge/discharge cycles.
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Chapter 4, section 2.2

9) The electric resistance of all the composite electrodes formed in

battery decreases progressively as the potential during the initial charge

increases. This resistance decrease was evidenced through impedance

spectroscopy analysis, which allowed proving that PEDOT or PProDOT are

progressively formed over the LiFePO4-based electrode. These polymers attain

a conducting state due to the oxidation and doping processes that take place

upon charging the battery up to 4.2 V. The composite electrodes formed in

battery have a total resistance of at least one order of magnitude lower than the

standard LiFePO4-based electrode in charged state at 4.2 V. This lower

resistance is related to the improvement in the charge/discharge rate capability

and the stability observed for the electrodes formed in battery.

Chapter 4, sections 2.3 and 2.4

10) Due to their simplicity and effectiveness, the galvanostatic in battery methods

constitute a more attractive strategy for the electropolymerization of monomers

over LiFePO4-based electrodes, as compared to the potentiostatic edep

method, which requires additional reagents and processing steps. In particular,

the one step in battery method is compatible with existing battery production

processes as it requires adding a small amount of EDOT or ProDOT monomers

to the battery electrolyte and charging the battery as a conditioning step.

Chapters 3 and 4
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Blending methods and coating of the current collector

11) PEDOT obtained by potentiostatic electropolymerization using the 3phase

method can be used as an agglomerating and conducting additive in

carbon-free LiFePO4 electrodes (LFP-blend), or in LiFePO4 electrodes with

carbon-coating (LFP/C-blend). These composite electrodes with PEDOT are

mechanically stable and provide very similar capacity at low discharge rate. At

higher charge/discharge rates, the better performance and cycling stability of

the LFP/C-blend electrode, as compared to LFP-blend and LFP/C electrodes, is

attributed to the compatibility between PEDOT and the carbon-coating, and to

their synergistic effect for lowering the electrode resistance.

Chapter 3

12) It is possible to incorporate PEDOT:PSS to a mixture of LiFePO4, carbon black

and PVDF binder by blending. The presence of 7 % w/w of PEDOT:PSS in the

bulk of an LiFePO4-based electrode has a positive effect on the

charge/discharge capacity and potential, although a high amount of conducting

polymer lowers the energy density. By reducing the amount of PEDOT:PSS to

1 % w/w, the capacity and energy density values are higher than the values

determined for the electrode without conducting polymer. This improvement is

related to the higher efficiency of the redox reaction of LiFePO4 in presence of a

small amount of the mixed conductor, as it was determined through 57Fe

Mössbauer spectroscopy.

Chapter 5

13) The PEDOT:PSS coating over the aluminum current collector provides a

compatible surface for depositing the ink that contains an standard mixture of

LiFePO4 and additives. This conducting polymer coating not only facilitates the

formation of the electrode film, but also improves notably the capacity and the

energy density, as compared to the electrode formed over the uncoated current

collector. The joint use of PEDOT:PSS within the bulk of the electrode (7 or 1 %

w/w) and over the current collector does not result in a synergistic effect.

Chapter 5
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14) Doping PEDOT:PSS by ethylene glycol (EG) slightly improves the

charge/discharge capacity and potential when the polymer is used within the

bulk of the electrode, as compared to the electrode with undoped 1% w/w

PEDOT:PSS. On the contrary, doping by dimethylsulfoxide (DMSO) results

detrimental to the electrochemical performance. EG- and DMSO-doped

PEDOT:PSS coating over the current collector boosts the capacity and lowers

the charge/discharge polarization at high charge/discharge rates. The high

performance of the LiFePO4-based electrodes containing EG-doped

PEDOT:PSS is attributed to a high proportion of the electron conducting

PEDOT phase, as evidenced from the quantitative XPS analysis.

Chapter 5

15) The correlation between the initial impedance, the direct current load resistance

and the capacity at high discharge rate showed that the interphase between the

electrode layer and the current collector has the highest impact on the

performance of the electrodes that contain PEDOT:PSS. Thus, the application

of EG-doped PEDOT:PSS coating over the current collector is pointed out as

the best procedure among all the strategies described in this thesis for

improving the performance in LiFePO4-based electrodes.

Chapter 5

16) The composite electrodes with PEDOT:PSS showed higher discharge capacity

and voltage at fast rates than those obtained from electrochemically

synthesized PEDOT due to three factors: 1) the higher conductivity of undoped

and doped PEDOT:PSS, 2) the difficulties for dispersing the pulverized PEDOT

synthesized electrochemically, and 3) the better film-forming properties of

PEDOT:PSS.

Chapters 3 and 5
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Conclusiones finales1

Las siguientes tres conclusiones generales se deducen al comparar las hipótesis y

objetivos (Capítulo 2) con los principales resultados presentados en los Capítulos 3, 4 y

5:

1) Se logró la preparación de electrodos compuestos basados en LiFePO4 y

polímeros conductores poli(alquilendioxitiofeno) [PXDOT] mediante métodos de

electropolimerización, mezclado y recubrimiento. Se desarrollaron y se

aplicaron variaciones de estos métodos para obtener cátodos que son activos

para la inserción/extracción reversible de litio en baterías de prueba. La

efectividad de los electrodos preparados depende de las condiciones de

síntesis del polímero conductor y de como éste se combina con LiFePO4 para

formar el electrodo compuesto.

2) Las condiciones de preparación de los electrodos compuestos con LiFePO4 y

PXDOT afectan su resistencia eléctrica, su morfología y textura. Además, la

manera en como el polímero conductor interactúa con el material activo y con

los demás componentes del electrodo, influye en el transporte de carga a

través de las diferentes interfaces del electrodo.

1 NOTA: Para posibilitar una comparación de las prestaciones de los diferentes electrodos, la
capacidad total de descarga a 2C y la correspondiente densidad de energía al 50 % DOD (Depth
Of Discharge) se determinaron y se refirieron al peso de LiFePO4 en los electrodos. Una
comparación gráfica de estos parámetros se presenta en la Figura 1 (Appendix I). El lector puede
consultar en la Figura 2 (Appendix I) el mismo tipo de comparación pero referida al peso del
electrodo sin considerar el peso del colector de corriente.
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3) Las estrategias de preparación y análisis de electrodos compuestos

LiFePO4/PXDOT presentadas en esta tesis destacan la relevancia del

transporte de carga a través de interfaces en electrodos para baterías. En

general, estas estrategias podrían ser implementadas con ligeras

modificaciones a los métodos actuales de preparación de electrodos basados

en LiFePO4. Además, estas estrategias podrían aplicarse para otras familias de

materiales activos y polímeros conductores que presenten compatibilidad redox

y estabilidad al combinarse para formar electrodos compuestos para baterías

de iones alcalinos.

Las conclusiones que se listan a continuación se derivan a partir del análisis individual

y a partir de la comparación de los resultados presentados en los capítulos 3, 4  y 5.

Para mayor claridad, las conclusiones se clasifican en dos grupos según el método

general empleado para preparar los electrodos compuestos. La referencia al capítulo

correspondiente se incluye para cada una de las conclusiones.

Métodos de electropolimerización

4) La electropolimerización potenciostática (electrodeposition: edep) de

monómeros EDOT en un medio de acetonitrilo sobre cátodos basados en

LiFePO4 o LiFePO4/C produce electrodos estables cubiertos con PEDOT. En

estos electrodos las reacciones de oxidación y de extracción de litio del

LiFePO4 ocurren durante la electropolimerización potenciostática de los

monómeros. Sin embargo, estas modificaciones del LiFePO4 no limitan la

reversibilidad de la reacción redox ni la de inserción/extracción en el material

activo en ciclos sucesivos de carga/descarga.

Chapter 3, sections 2.2.1 and 2.2.4

5) Durante la preparación del electrodo LFP-edep los monómeros u oligómeros de

EDOT se incorporan al electrodo compuesto y dichas especies polimerizan

durante la primera carga al emplearse en una batería. Esta situación no se

observa al emplear el electrodo compuesto LFP/C-edep, lo cual se atribuye a



Daniel Cíntora Juárez – Doctoral Thesis 153

una reacción más eficiente de los monómeros u oligómeros sobre las partículas

de LiFePO4 cubiertas de carbón.

Chapter 3, section 2.2.1

6) La presencia de 19 % w/w de PEDOT en el electrodo LFP-edep permite una

mayor capacidad y una mayor densidad de energía comparado con el

electrodo LFP/C-edep. A pesar de que la cantidad de PEDOT en el electrodo

LFP/C-edep es considerablemente menor (3 % w/w), ambos electrodos

formados mediante el método edep presentaron una estabilidad muy similar

durante el ciclado, lo cual demuestra la posibilidad de obtener buen

comportamiento electroquímico para el electrodo basado en LiFePO4 al cubrirlo

con PEDOT. Se podría lograr un aumento de los valores de capacidad

específica y densidad de energía mediante el ajuste de la cantidad de PEDOT

y prensando el electrodo para mejorar el uso del material activo.

Chapter 3, sections 2.2.3 and 2.2.4

7) La electropolimerización in battery de monómeros EDOT o ProDOT produce

recubrimientos de PEDOT o PProDOT sobre electrodos basados en LiFePO4 al

cargar la batería por primer vez hasta 4.2 V. El recubrimiento de polímero

conductor facilita la reacción del Li1-xFePO4 durante la descarga de la batería.

El recubrimiento de polímero conductor mejora la utilización del material activo

en ciclos sucesivos de carga/descarga debido a una mejor conectividad entre

las partículas de material activo a través del electrodo, lo cual confiere también

estabilidad mecánica.

Chapter 4, section 2.1

8) El análisis mediante espectroscopía Mössbauer de 57Fe indicó que la oxidación

de LiFePO4 es más eficiente para el electrodo cargado en un paso hasta 3.7 V

en presencia de EDOT, comparado con el proceso de carga del electrodo en

ausencia de monómeros. Esta mayor eficiencia se atribuyó a la presencia de

PEDOT, el cual se forma por oxidación sobre Li1-xFePO4 y sobre los sustratos

conductores (colector de corriente o partículas de carbón) por efecto de la

corriente anódica. El PEDOT formado in battery no solo facilita la oxidación del
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material activo al cargar hasta 4.2 V, sino también la reacción inversa al

descargar, resultando en un una mayor eficiencia y estabilidad en ciclos

sucesivos de carga/descarga.

Chapter 4, section 2.1

9) La resistencia eléctrica de los electrodos formados in battery disminuye

progresivamente conforme se incrementa el potencial durante la primera carga

de la batería. Esta disminución de la resistencia se hizo evidente mediante

análisis de espectroscopía de impedancia, lo que permitió probar que el

PEDOT y el PProDOT se forman progresivamente sobre el electrodo basado

en LiFePO4. Estos polímeros alcanzan un estado conductor debido al proceso

de oxidación y dopado que ocurre al cargar la batería hasta 4.2 V. Los

electrodos compuestos preparados in battery tienen valores de resistencia de

al menos un orden de magnitud menores que el electrodo estándar cargado a

4.2 V. Esta menor resistencia está relacionada con las mejores prestaciones de

carga/descarga y la estabilidad observada al ciclar los electrodos formados in

battery.

Chapter 4, sections 2.3 and 2.4.

10) Debido a su sencillez y efectividad, el método galvanostático in battery

constituye una estrategia más atractiva para la electropolimerización de

monómeros sobre electrodos basados en LiFePO4 en comparación con el

método potenciostático edep, el cual requiere reactivos y etapas de

preparación adicionales. En particular, el método in battery en una etapa es

compatible con los procesos actuales de producción de baterías ya que solo se

requiere la adición de pequeñas cantidades de monómeros EDOT o ProDOT

en el electrolito y cargar la batería a manera de etapa de acondicionamiento.

Chapters 3 and 4.
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Métodos de mezclado y de recubrimiento del colector de corriente

11) El PEDOT obtenido por electropolimerización potenciostática empleando el

método 3phase se puede emplear como aditivo aglomerante y conductor en

electrodos de LiFePO4 sin carbón (LFP-blend), o en electrodos de LiFePO4

cubierto con carbón (LFP/C-blend). Estos electrodos compuestos con PEDOT

son mecánicamente estables y proporcionan valores de capacidad muy similar

a velocidades de descarga bajas. A velocidades de carga/descarga más altas,

el mejor rendimiento y estabilidad al ciclar el electrodo LFP/C-blend,

comparado con los electrodos LFP-blend y LFP/C, se atribuye a la

compatibilidad entre el PEDOT y el recubrimiento de carbón, y a su efecto

sinérgico para disminuir la resistencia del electrodo.

Chapter 3.

12) Es posible incorporar PEDOT:PSS a una mezcla de LiFePO4, negro de

carbono y aglomerante PVDF mediante mezclado. La presencia de 7 % w/w de

PEDOT:PSS en la masa de un electrodo basado en LiFePO4 tiene un efecto

positivo en la capacidad y en el potencial de carga/descarga, aunque una alta

cantidad de polímero conductor disminuye la densidad de energía. Al reducir la

cantidad de PEDOT:PSS a un 1 % w/w, los valores de capacidad, potencial y

densidad de energía son mayores a los valores determinados para el electrodo

sin polímero conductor. Esta mejora se relaciona a la alta eficiencia de la

reacción redox del LiFePO4 en presencia de una pequeña cantidad de

conductor mixto, como se determinó mediante espectroscopia Mössbauer.

Chapter 5.

13) El recubrimiento de PEDOT:PSS sobre el colector de corriente de aluminio

ofrece una superficie compatible para depositar la tinta que contiene una

mezcla estándar de LiFePO4 y aditivos. Este recubrimiento no solo mejora la

formación de la película del electrodo, también mejora la capacidad y densidad

de energía en comparación con el electrodo formado sobre el colector de

corriente sin recubrimiento. El uso conjunto de PEDOT:PSS en la masa del
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electrodo (7 o 1 % w/w) y sobre el colector de corriente no resulta en un efecto

sinérgico.

Chapter 5

14) El dopaje de PEDOT:PSS con etilenglicol (EG) mejora ligeramente la

capacidad y potencial en carga/descarga cuando el polímero se usa en la masa

del electrodo, comparado con lo observado para el electrodo con 1 % w/w de

PEDOT:PSS sin dopar. Por el contrario, el dopaje con dimetilsulfóxido  (DMSO)

resulta perjudicial para el comportamiento electroquímico. El recubrimiento de

PEDOT:PSS dopado mediante EG o DMSO, y depositado sobre el colector de

corriente incrementa la capacidad del electrodo basado en LiFePO4 y

disminuye su polarización a tasas altas de carga/descarga. Las buenas

prestaciones de los electrodos que contienen PEDOT:PSS dopado mediante

EG se atribuyen a la alta proporción de la fase conductora electrónica PEDOT,

como se evidenció mediante el análisis XPS cuantitativo.

Chapter 5

15) La correlación entre los valores de impedancia inicial, de resistencia de

corriente directa y de capacidad a velocidades altas de descarga, mostró que la

interface entre la capa de electrodo y el colector de corriente tiene el mayor

impacto en el comportamiento electroquímico de los electrodos que contienen

PEDOT:PSS. En este sentido, el PEDOT:PSS dopado con EG y empleado

como recubrimiento del colector de corriente se destaca como el mejor

procedimiento entre todas las estrategias descritas en esta tesis para mejorar

el funcionamiento de electrodos basados en LiFePO4.

Chapter 5

16) Los electrodos compuestos con PEDOT:PSS presentan mayor voltaje y

capacidad en descarga que los electrodos compuestos con PEDOT sintetizado

por vía electroquímica debido a tres factores: 1) la mayor conductividad del

PEDOT:PSS sin dopar y dopado, 2) las dificultades para dispersar el polvo de

PEDOT sintetizado por vía electroquímica, y 3) las mejores propiedades de

formación de película del PEDOT:PSS. Chapters 3 and 5.
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Appendix I
Comparison of the performance of LiFePO4-based composite electrodes with
conducting polymer
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Figure 1. Comparison
of capacity and energy
density values at 2C
rate, referred to the
weight of the active
material.

Figure 2. Comparison of
capacity and energy
density values at 2C rate,
referred to the weight of
the electrode (active
material, additives and
conducting polymer)
without considering the
current collector.
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1. Galvanostatic battery cycling

Different protocols are available for evaluating the charge/discharge performance of
battery electrodes and full batteries. These protocols differ both in the parameters that
are controlled or monitored during the experiment (e.g. potential, current, resistance,
charge) and in the way to carry out the control (e.g. fixed value, stepped or intermittent
variation). Galvanostatic cycling with potential limitation (GCPL) is one of the most
popular protocols for testing Li-ion batteries. GCPL consists in setting a constant
charging or discharging current between a counter and a working electrode, and
monitoring the voltage of the later as a function of time until a specified cut-off voltage
value is reached. The cut-off voltages for charge and for discharge are set at specific
values in order to avoid triggering detrimental reactions of the battery components.

GCPL resembles the standard constant-current constant-voltage protocol (CCCV)
used for charging Li-ion batteries. CCCV consists in applying a constant current until the
battery reaches a certain voltage at which the charging mode switches to constant
voltage until the charging current drops to a low value. In this sense, GCPL provides the
first insights into the charge/discharge characteristics of battery electrodes and batteries
such as the voltage profiles, the capacity values, the coulombic efficiency, the
reversibility, the cycle life, among other features.

The theory for the galvanostatic reduction of freely-diffusing O species that transform
into R, both species being characterized by rapid electron transfer reactions in an
homogeneous medium, provides a Nernstian relationship between the potential and the
time as expressed in Eq. 1.
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In the above equation E0≡standard redox potential, R≡universal gas constant,
n≡mole number of electrons transferred, F≡Faraday constant, DO≡Diffusion coefficient
of O, DR≡Diffusion coefficient of R, t≡time and	≡transition time. The transition time is
related to the time during which the flux of O species can maintain the imposed
current.[1] Fig. 1a shows a constant current program and the corresponding potential
vs. time profiles that follow Eq. 1. The E vs. t profiles shown in Fig. 1a resemble the
profiles determined by galvanostatic cycling of some rechargeable batteries, including
batteries based on insertion materials. Nevertheless, the thermodynamical and the
kinetic considerations needed for deducing a relationship between the potential and
other time-related parameters (charge or composition) of insertion materials require
models that consider features proper of the topotactic insertion/extraction reaction of a
guest ion into or out of a redox-active host compound. One of such models is the lattice
gas model, which considers an insertion compound AyMX as an ideal solution
composed by the guest ions A (the solute) and the host lattice MX (the solvent).[2] The
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thermodynamical description of this ideal solution approximation requires the following
assumptions: i) one ion occupies one random site in the host lattice, ii) electroneutrality
is observed, iii) there is no strong interaction between particles, and iv) the chemical
potential of electrons is constant.

Figure 1. a) Galvanostatic cyclic programs and the corresponding theoretical potential profiles
for a system composed of a freely-diffusing reactant and a product in homogeneous medium.
Adapted from ref.[1] b) Theoretical variation of the potential as a function of inserted fraction y
according to the lattice gas model.

Under the above mentioned assumptions, the chemical potential () for the guest ion
in the host corresponds to the change in the Gibbs free energy (G) with the number of
the intercalated ions (n), which is related to the enthalpy (H) variation, to the
temperature (T) and to the entropy (S) variation, as expressed in Eq. 2.
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Statistical mechanics can be applied for deriving the entropy of the possible states of
a fraction y of ions distributed over N available sites in the lattice. Considering the
relation between the chemical potential and the electrochemical potential: nFE ,

and expression of the partial entropy:  )1/(ln yyknS  , where k≡Boltzmann
constant, the potential variation as a function of the y fraction is given by Eq. 3:












y

y

nF

RT
EyE

1
ln)( 0 (3)

For most insertion compounds, the ions inserted into the lattice may experience the
energy field of neighbouring ions. To account for the ionic interactions, the term
J(y–0.5), with J≡interaction parameter, is considered and Eq. 3 transforms into Eq. 4.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

J < 0
J = 0
0 < J < 4RT/F
J > 4RT/F

Po
te

nt
ia

l (
V)

y in A yMX

(b)



170 Appendix III: Characterization techniques

)5.0(
1

ln)( 0 









 yJ
y

y

nF

RT
EyE (4)

The intensity of the interaction, as quantified by the J parameter, has been
associated to the type of transformation that the insertion compound undergoes as a
function of the y fraction. It is said that the insertion/extraction reaction involve a single
phase (or solid solution) in the following cases: J=0 (no interaction), J < 0 (repulsive
interaction), or 0 < J < 4RT/F (small attractive interaction). Thus, as shown in Fig. 1b,
the potential varies almost constantly as a function of y for a single phase insertion
reaction. For J > 4RT/F, Fig. 1b shows a composition interval of constant potential, also
referred to as plateau. This feature is characteristic for a two phase system, as deduced
by applying the phase rule to a system of two components (guest and host) and a
degree of freedom (potential).

Regardless of its reaction mechanism, the electrochemical performance of active
materials for batteries is characterized by two general features: i) the free energy
change and ii) the extent of the electrochemical reaction. The change in free energy is
related to the potential, which varies depending on the extent of the electrochemical
reactions as the electrode delivers or accepts charge up to a degree determined by its
capacity. Fig. 2 presents potential vs. capacity profiles of a half cell with LiFePO4-based
positive electrode in a battery tested using the GCPL protocol. The GCPL test
parameters are indicated together with the data determined from the test, where
Qch≡Capacity in charge, Qdisch≡Capacity in discharge, ΔE≡Charge/discharge
polarization, Qdisch50%DoD≡Capacity in discharge at 50% depth of discharge (DoD),
Edisch50%DoD≡Potential in discharge at 50% DoD and Energy50%DoD≡Energy density in
discharge at 50% DoD (Energy50%DoD Qdisch_50%DoD	 	Edisch_50%DoD).

Figure 2. Test parameters and determination of different parameters used for describing and
comparing the performance of a battery electrode from its charge/discharge plots.
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2. Electrochemical impedance spectroscopy

Electrochemical Impedance spectroscopy is an analytical technique used for
characterising the electrical properties of bulk materials and/or the interphases that
these form as part of an electrochemical system. By analysing the response of the
system upon excitation by a periodical voltage or current signal over a wide range of
frequencies in a single experiment, it is possible to gain insight into the kinetics of
charge transfer, the reaction mechanisms, the mobility of charge carriers, the dynamics
of charge transport, among other properties and processes. EIS has been used for
studying materials (solids, liquid or gels) that may be electronic conductors, ionic
conductors, mixed electronic-ionic conductors, semiconductors or even insulators. In
recent years, the application of EIS to the analysis of electrochemical devices such as
batteries, fuel cells, capacitors or solar cells has led to a better understanding of some
of the crucial physicochemical phenomena that affect the energy storage and
conversion effectiveness of such devices.

The components of electrochemical systems (electrode materials, current collectors,
electrolyte, membranes, coatings, etc.) resist to the flow of charge depending on their
intrinsic properties and on external conditions. The parameter that quantifies the extent
to which a material opposes a direct current is the resistance (R), defined by Ohm’s law
as the ratio between the potential and the current: R = E/I. Nevertheless, this definition
is valid only for ideal resistors. A more general concept of resistance, the impedance
(Z), extends to systems that show a frequency-dependant electric response to periodic,
alternating current or potential stimuli, as well as a phase difference between the
stimulus and the response signals.
The most common way to measure the impedance of an electrochemical system is by
applying an alternating potential E(t) and then measuring the phase-shifted current I(t).
For an excitation of potential with known frequency, the ratio between the potential
stimulus and the current response defines the impedance in the time domain, as
expressed in Eq. 5.

(5)

In Eq. 5 the cero sub-indexes refer to the amplitude, ≡angular frequency
(f, where f is the frequency), t≡time, and ≡phase shift. Deducing electrical
properties of a system from its time variant response to periodic voltage or current
stimuli often involves the solution of intricate differential equations. Fourier
transformation can be used to convert the voltage and current functions from the time
domain into the frequency domain. This mathematical treatment provides reliable data if
the system under study satisfies the conditions of linearity, causality and stability.
Linearity, or pseudo-linearity, are promoted by applying stimuli of low amplitude (eg. a
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potential <10 mV) in order to produce a response with a high signal/noise ratio, but
without altering the steady state. Causality means that the response of the system must
be triggered only by the applied electrical stimulus, whereas stability implies that the
system may preserve its composition, dimensions, temperature and other properties
during the analysis. Eq. 6 expresses the impedance in the frequency domain, where j is
the imaginary number. In this way, the impedance can be represented as a vector that
may be plotted in polar or in rectangular coordinates.
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There are two general approaches for analysing experimental EIS data. One
approach consists in using or developing models based on physical theories that lead to
the mathematical expression of the impedance function. The other approach considers
that the physical processes and behaviour of the components of the system under study
can be related to the individual or to the collective behaviour of idealized circuit
elements (resistors, capacitors, inductors) arranged in different ways to constitute an
equivalent circuit. For any of the two approaches, experimental impedance data are to
be fitted in order to extract physicochemical parameters and to propose models that
describe the properties and processes of the whole electrochemical system or its
components.

The equivalent circuit approach is the most common one for fitting experimental EIS
data. The general method for developing or using an equivalent circuit consists in
recognizing the analogies between the behaviour of certain circuit elements and the
nature of the physicochemical processes of the electrochemical system. For instance,
resistors may account for the conductivity of a material or for the ease of charge transfer
associated to an electrode reaction, whereas capacitors and inductors can be
associated to space charge polarization and to adsorption phenomena, respectively.[3]
Circuit elements are arranged depending on the known or hypothetical nature of the
current paths and potential drops of the whole electrochemical system or its interacting
components. Thus, when the total current is the sum of individual current contributions
the circuit elements are arranged in parallel. If the total potential drop is the sum of
individual contributions, then the circuit elements are arranged in series. A simple
electrochemical system formed by an electrode in contact with and electrolyte can be
modelled by the circuit shown in Fig. 3.

In the circuit above Re≡resistance of the electrolyte, Cdl≡double layer capacitance
and Zf≡faradaic impedance. For a single electron reaction on a uniform electrode where

Figure 3. Equivalent circuit
representation for an electrode
in contact with an electrolyte.
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mass transport is relevant (i.e. mixed kinetic and diffusion control), the faradaic
impedance is considered as a charge transfer resistance (Rct) connected in series to the
so-called Warburg impedance (Zw). Additional circuit elements and their combinations
are required for more complex systems that involve multistep reactions, adsorption
phenomena, growth of passivating layers, etc. Besides, real systems have microscopic
features that are distributed in space, which may be the case for non-uniform, rough
surfaces or for polycrystalline electrodes with grain boundaries. In such cases, the ideal
capacitor can be replaced by a constant phase element (CPE). The systems with
space-distributed properties show a distribution of relaxation time (also known as time
constant ), which can be related to a distribution of activation energy barriers for
charge transfer, hopping, diffusion, among other thermally activated processes.[4]

Fig. 4 shows different graphic representations of the simulated impedance of an
electrochemical system characterized by two different relaxation time constants fitted by
the equivalent circuit abbreviated as R0+(R1/C1)+(R2/C2). The resistance values can be
obtained from the intercept of the semicircles at the Z’-axis, whereas capacitance at the
characteristic frequency can be calculated as shown in Fig. 4a. These values can be
useful as initial input for fitting the whole impedance spectrum using methods such as
complex nonlinear least squares (CNLS) or deconvolution, both of which consider
simultaneously a larger range of data.

Figure 4. (a) Simulated data (blue) and individual semicircles (red) determined from fitting to the
equivalent circuit (i) defined by its impedance function (ii). The calculation of R and C
parameters is shown (iii). Frequency range:  1 Mhz-1mHz. R0=20R1=60R3=100C1=1E-8 F,
C1=1E-6 F. (b) Niquist plot of simulated impedance data, (c) Bode plots of the modulus and
phase.
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3. X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) is a technique useful for the elemental
analysis of the surface of materials such as metals, ceramics, semiconductors,
polymers, among others with diverse forms including foils, thin films, powders etc. XPS
is based on the analysis of the electrons emitted by the atoms in a sample upon
excitation by X-ray photons from a source. The incident and the emitted radiation have
characteristic, discrete energy values, which allow calculating the energies of the
electronic states of the elements in the sample, and to relate these states to certain
chemical configurations (oxidation state, partial charge, hybridization, etc.) of the atoms
that compose surface layers of the sample. This technique has a detection limit of about
0.1 atom % at a depth of 1 to 10 nm, which corresponds to approximately 10 to 100
monolayers.

The ejection of X-ray photoelectrons from a material is caused by absorption and
emission processes. When X-ray photons of characteristic energy pass through a
sample, the incident photons can transfer energy to the electrons of the atoms by
absorption processes that excite the electronic states. When excited electrons do not
return to their initial state, the excess energy can cause photoelectrons to escape from
the material leaving an electron vacancy (hole). X-ray absorption and photoelectron
emission processes are depicted in Fig. 5a, together with the so-called Auger process,
which is a relaxation mechanism consisting in the occupation of the inner electron
vacancy by an electron lying in a state of lower binding energy. The energy released by
the Auger process causes ejection of a second electron, so-called called Auger
electron. Other processes such as fluorescence, auto-ionization or direct two-electron
ejection can lead to the emission of X-rays and electrons of characteristic energy.

Regarding the photoelectron emission, the kinetic energy (K.E.) gained by the
electrons can be calculated form the energy conservation equation shown below:

K.E. = h - B.E. -     (7)

Where h≡energy of the incident photon, B.E.≡binding energy of the electron in a
given state and 	≡work function of the spectrometerFig. 5b presents a scheme of the
energy barriers that the electron surmounts upon photoemission, and how the binding
energy value may be deduced as: B.E. = h - K.E. - 
 

In general, XPS is considered as a non-destructive method of analysis, although
some samples can undergo degradation due to charging or heating upon X-ray
irradiation. Modern XPS apparatuses are equipped with Al and Mg X-ray sources that
provide characteristic energies (K lines) of 1.4866 and 1.2536 keV, respectively.
Electron and ion guns are also available in most spectrometers for Auger Electron
Spectroscopy and for depth profiling analysis, respectively. The XPS experiment is
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carried out under vacuum (< 10-8 mbar) in order to avoid gas molecules to contaminate
the surface of the sample or to scatter the ejected electrons, which are focused onto an
analyser, where they are counted as a function of their kinetic energy at certain time
intervals. Thus, the X-ray photoelectron spectrum plot displays peaks at discrete energy
values due to the emission of electrons from states of specific binding energies

Figure 5. (a) Schematic representation of the main absorption/emission processes in XPS. (b) The
relation between binding energy (B.E.), kinetic energy (K.E.) and work function ( between the
sample (s) and the instrument (XPS). Taken from ref.[5]

A routine XPS analysis consist in recording a survey spectrum that covers a broad
interval of binding energy values, and then scanning specific regions depending on the
elements and their electronic transitions of interest. Fig. 6 shows an XPS survey
spectrum of a LiFePO4-based electrode as those described in Chapter 5.

Several databases and handbooks list binding energy values of photoelectron lines
and Auger lines that can be used as reference. Nevertheless, expected shifts towards
higher or lower binding energy values with respect to the reported reference values are
indicative of the chemical environment of the atom due to variations in the oxidation
state, substitution, proximity to electron donating or electron withdrawing atoms or
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fragments, or due to effects related to the particle size or to the position of the atoms
relative to the surface.[6] Thus, identification of elements and qualitative analysis is
mostly based on the position of the peaks (both photoelectron and Auger) and on the
shape of the peaks, which may be a sum of components due to overlapping of
individual peaks from different contributions of the same element in different chemical
states. Furthermore, for electronic transitions involving p, d or f orbitals, coupling
between the electron spin and the orbital angular momentum causes splitting into two
energy levels of different occupancy. For instance, in p orbitals, spin-orbit coupling
totals an angular momentum of either 1/2 or 3/2, which in the emission spectrum results
in a doublet of relative intensity 1:2. Additionally to the photoelectron and Auger lines,
the XPS spectrum contains low background signals, as well as other features caused by
inelastic scattering through interaction of the ejected electron with phonons (plasmon
loss). Signals of lower intensity than the principal XPS lines (X-ray satellite) are present
due to the non-monochromatic nature of the X-ray source. Other energy-loss
processes, so-called, shake-up and shake-off satellites, may appear, respectively, due
to excitation of a valence electron to unfilled higher energy levels and due to the
excitation of a valence electron to an unbound, continuum state.

Quantitative analysis in XPS to obtain the composition of the sample mainly requires
fitting, de-convoluting and integrating the XPS peaks, as well as background
subtraction. Peak analysis is carried out using specialized software that considers
theoretical or empirical models for the peak characteristics and applies constraints to
the parameters of the signal, which include: position, line shape, area, FWHM and the
sensitivity factor (S). For a homogeneous sample, considering a given photoelectron
transition, the atomic concentration of an element is proportional to the peak intensity I
as defined by Eq. 8:= · · · · · · = (8)

where n	≡	number of atoms per cm3, f	≡	the X-ray flux irradiated on the sample, σ	≡	the
photoelectric cross section for the atomic orbital of interest, θ	≡ the angular efficiency
factor for the instrument, y ≡	the efficiency of primary photoelectron  production, λ	≡ the
mean free path of the photoelectrons in the sample, A≡ analyzed area of the sample
and T≡ the detection efficiency.[5] The sensitivity factor depends both on the type of
photoelectron transition and the instrument, and can be calculated or determined
empirically by using standard samples. If the constituent elements and the chemical
formula of an analyte are known, the fractional atomic concentration of an element A
(CA) can be estimated considering the sum of the ratios between peak intensities and
sensitivity factors from all elements in the sample being analyzed [∑ ( )]⁄ , as
expressed in  Eq. 9:

= ⁄∑ ( )⁄ (9)
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4. Scanning electron microscopy
Scanning electron microscopy (SEM) is an electron beam technique, which take

advantage of the possibility of focusing and tuning the energy of an electron beam in
order to probe different depths of a sample and provide 3-D images of its surface. The
different signals generated through the interaction of the electron beam and the sample
may provide information related to the sample’s topography, its morphology, its
elemental composition, phase distribution, crystal orientation, among other properties.
SEM has three major advantages over optical microscopy: (i) a wide range of
magnification from 3-10x to 150000x, (ii) a depth of field ca. 300 times higher than that
of the optical microscope, and (iii) resolution of 1-10 nm. Although non-conducting
samples may require a conducting coating of gold or carbon for SEM analysis, typically
no special preparation is required other than adjusting the size or shape for fitting the
specimen to the sample holder.

Due to its versatility scanning electron microscopes are used in diverse fields,
including materials science, biologic and medical sciences, metallurgy, semiconductor
industry, forensic-science, among others. The applications of SEM for investigating
batteries span over a multi-scale range, from the materials level (elemental mapping,
primary particle size and shape distributions, etc.) to the cell level (grains, pores,
interphases, etc.), complementing other analytical techniques for providing insight on
the synthesis, reactivity and failure mechanisms of battery materials.

In a scanning electron microscope the primary beam of electrons is generated by a
thermionic (Tungsten) gun or by a field emission gun (LaB6 or Shotky emitter).
Electromagnetic condenser and objective lenses are used, respectively, for reducing the
crossover diameter of the primary beam and for forming an electron probe with a
nanometric diameter (1-10 nm). A beam deflection system (scan coils) incorporated
close to the objective lens moves the probe over the surface of specimen in a
rectangular pattern of parallel scanning lines. A fraction of the backscattered or emitted
electrons from the specimen are collected by a detector, amplified, and used for
generating an image on a display. Fig. 4a shows a diagram of the main components of
a scanning electron microscope. The depth of field and resolution of the SEM images
relies on the correct setting of the operational variables such as: acceleration voltage,
probe current, working distance and aperture, which determine the diameter or the
electron probe, its brightness and its convergence angle, respectively.[7]

The signals analysed in SEM are generated or triggered by the interaction of fhe
incident, primary electrons with the atoms of the sample by elastic or inelastic scattering
mechanisms, thus creating different signals depending on the penetration and
interaction depth, as shown in Fig. 4b. Elastic interaction generates a signal of so-called
backscattered electrons (BSE), characterized by changes in the trajectory (θ > 90º) with
almost no energy loss, as compared to the primary electrons. The intensity of the BSE
signal is a function of the atomic number (Z), and heavier, denser elements will produce
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more BSEs. Inelastic interaction generates secondary electrons (SE) by energy transfer
from the incident beam to valence or conduction electrons of the sample. A fraction of
the transferred energy raises the potential energy of the secondary electrons and these
may leave the sample if created from within a small depth below the surface. Secondary
electrons created deeper within the sample interact with other atomic electrons and are
scattered inellastically.[8]

(a) (b)

Figure 4. a) Illustration of the components of the scanning electron microscope, and b) the
interaction zone of electrons and specimen atoms below a specimen surface. Figures taken from
ref. [7].

The simultaneous elastic and inelastic interaction of electrons take place within a
defined interaction volume of the sample and provide information from a sampling
volume. Thus, the BSE signal may be used for generating SEM images that show
brightness contrast due to variations in the chemical composition of the specimen,
whereas the SE signal show contrast of the surface structure. Characteristic X-rays and
Auger electrons are other kind of signals which are generated by inelastic interaction of
the primary electrons with inner shell electrons from the sample. In this type of
interactions ionization of the sample is a consequence of relaxation processes in which
a higher energy, outer shell electron fills the hole created at the inner shell, thus causing
the emission of Auger electrons or X-ray photons. X-ray photons are detected by an
energy-dispersive detector and processed for obtaining an energy spectrum from the
characteristic x-rays of different elements. In this way, Energy-Dispersive Spectroscopy
(EDS) can be used for identifying and quantifying the elements within a sampling spot of
a few microns as shown in Fig. 5a-c, and for creating elemental composition maps over
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a wider area as shown in Fig. 5d for a composite LiFePO4-based electrode with PEDOT
obtained by in battery electropolymerization in one-step.

(a) (b) (c)

(d)

Figure 5. SEM images and EDS analysis of a composite electrode based on LiFePO4 with PEDOT
obtained by one-step in battery electropolymerization as described in chapter 5. (a) SEM image
at 20000x and its corresponding EDX spectrum (b) with the quantification for a set of elements
(c). Elemental maps for Fe, P, Al and S (d).
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5. Mössbauer spectroscopy

Mössbauer spectroscopy (MS) is a resonance method useful for investigating the
valence state, spin state, magnetic moment, among other electronic, magnetic and
structural properties of certain elements in solid compounds. This technique is based on
the nuclear, recoil-free, resonant emission-absorption of -rays by certain elements.
This effect was initially observed by R. L. Mössbauer in 191Ir, and it was later described
for other elements such as K, Fe, Ni, Zn, Ge, Kr, I, Xe, Cs; among other metallic
elements heavier than iron. By recording the spectrum of energies at which so-called
Mössbauer nuclei absorb -rays of specific energy due to nuclear transitions and
perturbations of the nuclear states, valuable information is obtained about the chemical,
structural or magnetic environments that surround a nucleus.

The qualitative and quantitative applications of MS in chemistry, physics, material
science, biology, as well as in industry are diverse, especially for samples that contain
57Fe and 119Sn. For battery-related materials, MS may provide valuable information
about compounds with Fe, Ni, Zn, Ge, Ag, Sn, Sb, among other elements, that are
either used in commercial Li-ion batteries or that have been tested as components of
positive and/or negative electrodes that may undergo insertion, intercalation, conversion
or alloying reactions.[9]

Nuclear transitions that concern to Mössbauer spectroscopy are associated to the
emission and absorption of -rays. For instance, for 57Fe, the transition from the ground
state (I = 1/2) to the first excited state (I = 3/2) requires an energy of 14.41 keV, which
may be provided by a 57Co source when the later undergoes β-decay. However, one of
the limitations for achieving a resonant emission-absorption process is the attenuation
of the emitted and the absorbed energy due to the thermal vibrations and to the recoil
energy dissipated by momentum transfer upon emission or absorption of -rays. The
energy values associated to thermal vibrations and recoil are about 106 times higher
than the uncertainty (ΔE = 4.7 E-9 eV) of the energy associated to the first excited state
of 57Fe, thus the probability for resonant emission-absorption is very small.[10]

The approach followed by R. L. Mössbauer for increasing the efficiency of the
resonant emission-absorption consisted in modulating, both through thermal Doppler
broadening and Doppler shift, the -radiation from the emitter in order to compensate for
the energy lost by recoil. Thus, the resonant absorption is increased when both the
emitter and the absorber are cooled to liquid nitrogen temperature, and also when either
the emitter or the absorber is subjected to mechanical motion. Furthermore, when the
atoms of the emitter and the absorber are embedded in a solid lattice, the energy loss
by recoil is minimized and resonant absorption takes place to an extent determined by
the recoil-free fraction, also known as Lamb-Mössbauer factor. The energy precision of
the recoil-free emitted and -rays provides enough resolution for triggering and
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measuring the nuclear transitions and the hyperfine Interactions, namely: isomer shift
(IS), electric quadrupole splitting (QS) and hyperfine magnetic field (HMF).
The isomer shift is related to the electron density close to the nucleus, where the
excited state nuclear energy levels are perturbed by the s-electrons, due to variations of
the nuclear radius and due to screening effects of valence electrons. For 57Fe, an
increase in the number of 3d-electrons lowers the s-electron density at the nucleus, thus
shifting the energy to positive values.[11] Other contributions related to changes in bond
length or coordination number also play a significant role in the variation of the isomer
shift as shown in Fig. 7.[12]

Figure 7. Isomer shifts for 57Fe in different oxidation states and coordination configurations.
Adapted from ref. [12].

The isomer shift is often correlated to the electric quadrupole splitting in order to gain
insight into the local atomic arrangement. The electric quadrupole of the nucleus
originates from its asymmetry, which varies depending on the nuclear spin in the ground
and in the excited state. In a symmetric arrangement of atoms, (e.g. a cubic structure),
the nuclear charge distribution has a constant Coulomb energy and a corresponding
single line in the Mössbauer spectrum (see Fig. 8a). On the contrary, an electronic
distribution of reduced symmetry generates an electric field gradient, which will have
different interaction for different alignment of the electric quadrupole moment of the
nucleus. Thus, the excited state (I=3/2) splits in two levels, which are associated to two
lines in the Mössbauer spectrum (see Fig. 8b).

In the presence of a magnetic field, the nuclear spins can be oriented by virtue of its
magnetic dipole moment. This magnetic interaction is also known as Magnetic Zeeman
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Effect. In 57Fe, this effect causes the splitting of the ground state into two sub states,
and also the splitting of the excited state into four sub states, which together account for
the six lines (allowed transitions) in the Mössbauer spectrum shown in Fig. 8c. The
relative intensity of the six lines can indicate the orientation of magnetic field with
respect the direction in which the -rays propagate. The value of the magnetic field
splitting provides a measure of the effective magnetic field acting on the nucleus, which
may be composed of an externally applied magnetic field or of an internal magnetic
field, the later caused primarily by the influence that unpaired 3d electrons valence
electrons have on the density of s electrons.

Mössbauer spectra are typically recorded in transmission geometry, the sample
being the absorber that contains a stable Mössbauer isotope. The reduced variety of
isotopes that can be analyzed by MS is determined by the limited availability of
relatively long half-life-radiation sources, as the emitter must decay to the same
isotope as those to be studied in the sample in order for the nuclear resonance to occur.
For the most common Mössbauer nucleus: 57Fe, the radiation source consists of 57Co
embedded in a rhodium matrix of fcc crystal lattice. The energy modulation of the
-radiation by Doppler Effect is typically achieved by moving the source in periodical
back and forth oscillations, usually of constant acceleration (~10 mm/s for a 57Co
source). Thus, the Mössbauer spectrum displays a count of the -rays transmitted
through the absorber recorded as a function of the Doppler velocity, where the velocity
zero is defined as the center of the calibration spectrum.

Recording a Mössbauer spectrum may take hours or days depending on the
abundance of the Mössbauer nucleus and the thickness of the sample, which may be in
the range of 1.0 mg/cm2 of natural iron and less than 50 m, respectively, in order not to
cause distortion of the lines. Attenuation of the -rays from the source is caused by
recoil-free resonant absorption in the absorber, although effects such as Compton
scattering, mass absorption or other non-resonant absorption processes contribute to
the recorded signal that constitute the background and noise

Extraction of Hyperfine parameters from Mössbauer spectra is carried out by using
software that analyzes the data through deconvolution and fitting algorithms considering
Lorentzian line shapes, Gaussian distribution of Lorentzian or Voigt profiles. Special
care must be paid as different types of hyperfine distributions are simultaneously
present in a single spectrum. For example, a spectrum that has been broadened by an
EFG distribution, or even an HMF distribution, can be fit perfectly with an IS distribution.
In such cases it may be necessary to consider correlations between the hyperfine
parameters, the use standards or modifying the experimental conditions in order to
discern line contributions.[10]
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Figure 8. Diagrams representing the
energy shifts due to hyperfine interactions
and showing the corresponding Mössbauer
spectrum profiles. a) Isomer shift (),
b) Quadrupole splitting (EQ) and
c) Magnetic hyperfine splitting (EM).
e:exited, g:ground, s:source, A:absorber.
Adapted from ref. [11].
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Appendix IV
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- Improved cycling performance of LiFePO4 cathode material by coating with
PEDOT conducting. Presented at the 64th ISE Meeting, Quéretaro, México,
2013.

- Polimerización electroquímica de alquilendioxitiofeno sobre fosfato de litio
y hierro para cátodos de baterías de iones litio.  Presented at Nano UCO V,
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Improved cycling performance of LiFePO4 cathode material by
coating with PEDOT conducting polymer

D. Cíntora-Juáreza, C. Pérez-Vicentea, Shahzada Ahmadb, J. L. Tiradoa

aLaboratorio de Química Inorgánica, Campus de Rabanales, Universidad de
Córdoba 14071 Córdoba, Spain

bCampus Palmas Altas, C/ Energía Solar, Abengoa Research
41014-Sevilla, Spain

z02cijud@uco.es

Lithium-ion batteries incorporating LiFePO4 or other LiMPO4 (M= Mn, Co, Ni)
olivine compounds as cathode material are very attractive in terms of safety,
energy and power density, general performance and cost. Unfortunately, these
olivine compounds have low electronic conductivity and poor ionic diffusivity,
which cause bad cycling performance in Li-ion batteries. Strategies to improve
their electrochemical activity include the use of carbon or conducting polymers,
the control of the particle size and morphology, blending with carbon or metallic
additives, ionic doping or substitution in the crystalline lattice, among other
approaches [1-2]. Within this context, we explored different routes to prepare
PEDOT [Poly(3,4-ethylenedioxythiophene)] conducting polymer coatings on
LiFePO4.
We have observed that electropolymerization over the cathode improves the
cycling performance of bare LiFePO4. The reasons for this improved
performance could be attributed to enhanced electronic an ionic conductivities,
as reflexed from the low charge/discharge polarization and the impedance of the
battery. Optimization of the cathode’s composition and implementation of the
different preparation methods to obtain composites with other LiMPO4 olivine
compounds are under progress.
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POLIMERIZACIÓN ELECTROQUÍMICA DE
ALQUILENDIOXITIOFENO SOBRE FOSFATO DE LITIO Y HIERRO

PARA CÁTODOS DE BATERÍAS DE IONES LITIO

Daniel Cíntora-Juáreza, Carlos Pérez-Vicentea, Shahzada Ahmadb y José Luis Tiradoa

a Laboratorio de Química Inorgánica, Campus de Rabanales, Universidad de Córdoba, 14071, España.
b Abengoa Research, C/ Energía Solar 11, Campus Palmas Altas, 41014, España.

Hoy en día las baterías de iones litio se emplean en los dispositivos electrónicos portátiles más
comunes y en años recientes se ha planteado su uso en vehículos eléctricos. Entre los diferentes
compuestos disponibles para el electrodo positivo (cátodo), el fosfato de litio y hierro (LiFePO4),
inicialmente propuesto por Padhi et al. 1, ofrece ventajas por su estabilidad térmica y su buen
desempeño electroquímico. Para obtener la mayor capacidad del LiFePO4 a cinéticas de descarga
rápidas es necesario incrementar su conductividad iónica y electrónica, lo cual es posible
mediante la nanoestructuración y la formación de recubrimientos de carbón sobre nanopartículas
de LiFePO4.

2,3 Respecto a la formación de recubrimientos de carbón, el método más común
consiste en la calcinación de azucares a temperaturas entre 500-800º C.4, Desafortunadamente,
tales métodos implican un alto consumo energético, además de la generación directa de gases
contaminantes.

Se ha demostrado que al incorporar polímeros conductores producidos por vía química o
electroquímica a electrodos basados en LiFePO4 y otros materiales activos se mejora
notablemente el desempeño. Cuando la polimerización se efectúa en ausencia del material activo
y posteriormente se mezcla con éste, el contacto no es óptimo, lo que limita la utilización de toda
la capacidad del electrodo. Por otra parte, en los métodos de polimerización directa sobre
LiFePO4 o Li1-xFePO4 se emplean disolventes y oxidantes que pueden generar subproductos que
afecten a los componentes de la batería.5,6

Recientemente hemos propuesto un método sencillo para polimerizar 3,4-alquilendioxitiofeno
directamente sobre LiFePO4 durante la primera carga dentro de una batería de prueba.7 La
polimerización se efectúa en presencia de Li1-xFePO4 (conteniendo Fe3+) que actúa como
oxidante y sustrato. De esta forma se crea un cableado a nivel del electrodo que facilita la
transferencia de carga y la movilidad iónica entre partículas del material activo. El cambio de
estado de oxidación del hierro y la variación de la impedancia del electrodo a diferentes estados
de carga se estudiaron mediante espectroscopía Mössbauer e impedancia electroquímica,
respectivamente. Cuando la polimerización se lleva a cabo dentro de la propia batería, se
obtienen de manera fácil electrodos con valores de capacidad más altos y de mejor fiabilidad al
ciclar respecto al material de referencia.

1 Padhi, A.K.;  Nanjundaswamy K.S.; Goodenough J.B., J. Electrochem. Soc. , 2007, 144(4),
1188.
2 Yamada, A.; Chung, S.; Hinokuma, K., J. Electrochem. Soc., 2001, 148, A224.
3 Ravet, N.; Chouinard, Y.; Magnan, J.F.; Besner, S.; Gautier, M.; Armand, M., J. Power Sources,
2001, 97, 503.
4 Chen Z.; Dahn, J. J. Electrochem. Soc., 2002, 149, A1184.
5 Trinh, N.D.; Saulnier, M.; Lepage, D.; Schougaard, S.B.; J. Power Sources, 2013, 221, 284.
6 Lepage, D.; Michot, C.; Liang, G.; Gauthier, M.; Schougaard, S.B.; Angew. Chem. Int. Ed. 2011,
50, 6884.
7 Cíntora-Juárez, D.; Pérez-Vicente, C.; Ahmad, S.; Tirado, J.L., Phys. Chem. Chem. Phys., 2014,
16, 20724.
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Judicious design of lithium iron phosphate electrodes with
poly(3,4 ethylenedioxythiophene):polystyrene sulfonate for high

performance battery
Daniel Cíntora Juárez1, Carlos Pérez Vicente1, Samrana Kazim2, Shahzada Ahmad2, José

Luis Tirado1

1Laboratorio de Química Inorgánica, Campus de Rabanales, Universidad de Córdoba, 14071, Spain.
2Abengoa Research, Abengoa, C/ Energía Solar nº 1, Campus Palmas Altas, 41014, Spain.

Lithium-ion batteries are the most advanced energy storage technology for portable electronics
and are also considered for electric-vehicle applications. Different materials are available for the cathode
and anode in a lithium-ion battery, however, due to safety and performance reasons, some of them are
unsuitable for use in electric vehicles. LiFePO4 (LFP), firstly described by Padhi et al.1, offers advantages as
a cathode active material in terms of power and energy density, as well as lower cost and reduced
environmental impact compared to lithium transition metal oxides.2 The synthesis and optimization
efforts around LFP have focused mainly on decreasing the particle size and creation of conducting coatings
in order to achieve fast lithiation kinetics and electronic conductivity, which are paramount for high
charge/discharge currents.2 LFP composite electrodes are mainly composed of carbon-coated LFP mixed
with PVDF-based binders and carbon particles as electron conducting additive. However in such
formulations the electrical contact between active particles is limited by the homogeneity of the carbon
coating over LFP and by the amount of carbon additive. Thus an additive able to extend the electronic
communication between LFP particles and the current collector is most sought after. For this purpose,
common cathode active materials have been combined with conducting polymers due to their mechanical
stability and their ability for charge transport.3

Here we describe the preparation of LFP-based
electrodes with different architectures using
poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate
(PEDOT:PSS) as mixed conductor additive. We found that
the discharge capacity and potential of LFP electrodes at
fast rates can be substantially improved by the presence
of the conducting polymer within the bulk of the
electrode and more notably when the polymer is coated
over the aluminium current collector (Figure 1). Further
to increase the conductivity small amounts of ethylene
glycol or dimethyl sulfoxide were added to PEDOT:PSS.
The superior electrochemical performance was ascribed
to the low initial impedance and load resistance of the
composite electrodes with conducting polymer.
Furthermore 57Fe Mössbauer and XPS spectroscopies
were used, respectively, to follow the bulk transformation
of the LFP active material and the surface changes of the
composite electrodes upon lithiation.

References:
1.   A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough. J. Electrochem. Soc.
1997, 144, 1188.

2. Yuan, L.-X., Wang, Z.-H., Zhang, W.-X., Hu, X.-L., Chen, J.-T., Huang, Y.-H., &
Goodenough, J. B., Ener. Environ. Sci., 2011, 4, 269.

3. Cíntora-Juárez, D., Pérez-Vicente, C., Ahmad, S., & Tirado, J. L., RSC Advances, 2014, 4, 26108.
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