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Rafael Medina-Carnicer · Sebastián Ventura

Received: date / Revised: date

Abstract Markerless Motion Capture (MMOCAP) is the

problem of determining the pose of a person from images

captured by one or several cameras simultaneously without

using markers on the subject. Evaluation of the solutions

is frequently the most time-consuming task, making most

of the proposed methods inapplicable in real-time scenar-

ios. This paper presents an efficient approach to parallelize

the evaluation of the solutions in CPUs and GPUs. Our pro-

posal is experimentally compared on six sequences of the

HumanEva-I dataset using the CMAES algorithm. Multi-

ple algorithm’s configurations were tested to analyze the

best trade-off in regard to the accuracy and computing time.

The proposed methods obtain speedups of 8× in multi-core

CPUs, 30× in a single GPU and up to 110× using 4 GPUs.

1 Introduction

MMOCAP is an emerging field with applications in areas

like the animation industry [30], medical rehabilitation [49],

and video surveillance [29], amongst others. The problem

consists in determining the joints’ angles of an articulated

body model that best matches the pose of a subject recorded

by one or several video cameras. It is a high-dimensional

problem in which the evaluation of a single solution is a

very time consuming task. As a consequence, most of the

proposed methods either require a high number of evalua-

tions (leading to computing times unsuitable for real-time

applications) or rely on simple human models (leading to

suboptimal tracking results).
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This paper presents an efficient approach to evaluate

the solutions in the MMOCAP problem and three strategies

to parallelize their computation. First, we propose a paral-

lelization strategy based on Streaming SIMD Extensions

(SSE), which increase the performance by processing

multiple elements simultaneously. Second, a strategy based

on a multi-threading approach which takes advantage of the

parallel capabilities of multi-core CPUs is presented. Third,

we propose a parallelization strategy that delegates compu-

tation on Graphic Processing Units (GPUs). In particular,

our proposal can be parallelized in multiple GPUs making

it very scalable. In addition, this work aims at evaluating

multiple algorithm configurations in order to determine

the one achieving the best trade-off between the model

accuracy and the computing time. The higher the model

accuracy, the better it fits to observations, but also, the more

computing time is required. Thereby, an experimental study

is conducted to measure the performance and efficiency of

the model in regard to the body model resolution and the

number of evaluations of the algorithm.

The parallelization strategies have been evaluated on six

sequences of the HumanEva-I dataset [41]. The experimen-

tal results show the performance improvements of the differ-

ent parallelization approaches namely, 2× for the SSE ap-

proach, 4× for the multi-threading approach, and 8× for the

multi-threading + SSE approach. Specifically, GPUs have

demonstrated to achieve high performance and significantly

reduce the evaluation time, up to 30× when using 1 GPU,

60× when using 2 GPUs, and 110× when using 4 GPUs.

The remainder of this paper is structured as follows. Sec-

tion 2 revises the related work. Section 3 formulates the

problem of pose estimation, and describes the body models

and the fitness function. Section 4 and 5 present the paral-

lelization strategies addressed. Section 6 shows the experi-

mental results. Finally, Section 7 draws some conclusions.
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2 Background

This section provides an overview of the related works.

First, we review the main optimization approaches applied

to the problem. Then, we focus on the most relevant

parallelization strategies for the MMOCAP problem found

in the literature.

2.1 Optimization approaches

The first solutions for the MMOCAP problem consist in

the use of particle filters. In particular, the Condensation

algorithm is the most prevalent of such algorithms and has

been widely employed for the tracking task [21]. However,

when applied to this problem, it has been repeatedly

shown that it suffers from the curse of dimensionality.

Therefore, Deutscher and Reid proposed the Annealed

Particle Filter (APF) [13], which combines the ideas of the

Condensation and the Annealed search so as to improve

the tracking results. Corazza et al. propose also a custom

version of adapted fast simulated annealing [8] for body

tracking using as input data a visual hull reconstruction and

an a priori model of the subject. Another popular approach

for tracking articulated objects is the use of Partitioned

Sampling (PS) [27]. The technique was initially employed

for tracking several objects using particle filters, but then it

was successfully applied to hand tracking. Unlike the APF,

PS imposes a strong partition of the search space. Bandouch

et al. proposed the Partitioned Sampling Annealed Particle

Filter (PSAPF) [1] as an attempt to combine the strengths

of PS and the Annealed Search. To do so, they incorporate

the APF within a PS framework by applying an appropriate

weighted resampling in each sub-space. As they report, they

are able to cope with high-dimensional models, but at the

cost of employing a very high number of evaluations per

frame.

The MMOCAP problem is a continuous optimization

problem for which Evolutionary Algorithms [26] have re-

peatedly proven to provide excellent results. John et al [22]

applied the Particle Swarm Optimization (PSO) algorithm

with great success, reporting relevant improvements over

APF and PSAPF. The main advantages of the PSO al-

gorithm become particularly evident when tracking fast

movements, since it has demonstrated a good performance

without requiring any motion prior. Zhao and Liu [47]

proposed a Hierarchical Annealed Genetic Algorithm to

infer the three-dimensional pose from a single monocular

camera. Yeguas-Bolivar et al [44] perform an experimental

comparison of three relevant evolutionary algorithms

namely Covariance Matrix Adaptation Evolutionary Strat-

egy (CMAES) [19], Differential Evolution (DE) [35],

and PSO [23], with two particle filters, namely APF [13]

and PSAPF [1]. The results obtained show that the evolu-

tionary algorithms evaluated performed significantly better

than particle filters. In particular, the CMAES algorithm

obtained the best performance.

In spite of the advances achieved over the last years, mo-

bility limitations often are imposed to the body models em-

ployed so as to obtain reasonable performance in manage-

able computing times. For instance, there are works [4,13,

16,22] which employ models with no more than 32 degrees

of freedom (DOF) and assume no mobility in dorsal spine,

hands and feet. This simplification of the human anatomy

allows a tractable computation of the model while achiev-

ing acceptable results for some applications. However, some

other applications require a more precise modeling of the

human body so as to measure biomechanical parameters [3,

6,10,25]. In such cases, the need of a high number of evalua-

tions deters from using MMOCAP in real-time applications.

Thus it would be desirable to reduce the time employed for

evaluating solutions.

2.2 Parallelization approaches

Three main sources of parallelization can be exploited

in current mass-produced hardware. First, most of the

current processors include SIMD (Single Instruction

Multiple Data) instructions, which provide a limited form

of parallelism that can be exploited to obtain relevant

improvements [7]. Second, multi-core CPUs are able to

solve high-performance applications more efficiently by

using parallel computing [9]. Third, GPUs have gained an

important role in the area of parallel computing [5,34].

In particular, the Compute Unified Device Architecture

(CUDA) [33] is a parallel computing architecture developed

by NVIDIA. It has attracted increasing attention over the

last few years, providing massive parallel computation for

solving highly parallelizable high-dimensional optimization

problems and data intensive tasks.

In recent years various approaches have been proposed

for the MMOCAP problem using parallel techniques, and

these based on GPU computing have gained much of the

attention. Model-based object detection is tackled by GPU

implementations of soft computing techniques [37], where

CUDA is used for accelerating a tracking algorithm based

on adaptive appearance models and PSO. Based on an

articulated 3D body model, in [24] the GPU is used to

implement a real-time full-body tracking algorithm using

a limited number of DOF. The method is directly based

on the sequential approach presented in [22]. PSO is the

most popular algorithm in parallel implementations because

of its inherent parallel nature [32,38,50]. Nonetheless,

some works like [43] apply other easily parallelizable

metaheuristics (e.g. DE) for a fast search and to reach good

results in human body pose estimation.
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Other approaches incorporate a multi-layer framework

for model-based pose searching where a stochastic approach

(e.g. PSO) can be inserted. In [45,46], two layers of search,

with an efficient GPU implementation, support robust and

accurate pose recovery: a sampling algorithm with a weak

dynamical model introducing a non-parameter niching tech-

nique into the particle filter and a hierarchical local opti-

mization to refine the estimation of sampling. Body pose

tracking is performed in 3D space using 3D data recons-

tructed at every frame. Another approach is proposed in [17]

where a probabilistic filtering framework employs a highly

accurate generative model with a discriminative model and

the GPU is exploited to perform large numbers of likelihood

evaluations efficiently. In this case, the human motion cap-

ture task is approached using time-of-flight sensors.

Finally, the work of Zhang et al. [46] proposes an evalu-

ation strategy based on a volumetric reconstruction. The au-

thors design a system that employs GPUs to speed up several

steps of the evaluation process. However, the use of volu-

metric reconstruction (based on foreground silhouettes) has

the problem of propagating the segmentation errors to the

3D space. So, almost perfect segmentations or robust meth-

ods to deal with inconsistent silhouettes [14,15,31] are re-

quired to obtain correct volumetric reconstructions. In con-

trast, other authors evaluate the foreground images directly

[1,4,13] to deal with segmentation errors.

3 Problem formulation

Our problem can be formulated as estimating the pose xt of

a subject at each time step t from a set of synchronized and

calibrated video cameras. For that purpose, a body model

comprised of a skin model (triangular mesh) and a skele-

ton model (internal structure of articulations) is employed.

The skeleton is modeled as a hierarchical structure where

each node represents a joint which is subject to rotations in

the three axes (Rx, Ry and Rz). It is employed to apply the

body movements to the skin model in such a way that the

transformation of a node affects all its children. Fig. 1(a)

shows the skin and skeleton models employed in our work,

whereas Fig. 1(b) depicts its hierarchical structure.

As can be seen, the hierarchical model has a root node

(root joint) which defines the global rotations and transla-

tions. In total, our model is comprised of 16 joints, so that a

complete transformation of such model is defined by 3 trans-

lation components (Tx, Ty and Tz) plus 16×3 rotations, i.e.,

a total of 51 parameters (DOF) constituting the dimensionD

of the problem.

x = {Tx, Ty, Tz, R
1
x, R

1
y, R

1
z, . . . , R

16
x , R16

y , R16
z } ∈ R

D.

However, considering that some of these parameters corre-

spond to invalid rotations (e.g., ankles have only 2 DOF),
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Fig. 1: Body model employed: (a) Skin and Skeleton

Models. The skin is a 3D model representing the surface

of the body while the skeleton represents the internal struc-

ture of the articulations (joints and bones). (b) Hierarchi-

cal Structure of the Skeleton Model. Each node represents

a joint which is subject to rotations in the three axes. The

transformation of a node affects all its children.

the final model employed in this work can be reduced to

D = 39 parameters.

A fitness function f(x) must be defined indicating the

likelihood of a model configuration to be correct. For each

new frame, the minimization procedure relies on the results

obtained in the previous one so as to improve the results. For

the first frame, an initial body configuration x0 is provided.

In this work, we propose f(x) as an optimized version

of the silhouette matching function employed in most re-

lated works [1,4,13,16,22,44]. In short, given a model con-

figuration x, its projection (silhouette) in all the cameras

is matched against the foreground information obtained by

background subtraction. The degree of overlap between the

real and synthetic silhouettes is measured aiming at maxi-

mizing it. The evaluation process can thus be divided into

three main steps, foreground estimation, model projection

and fitness evaluation, which are explained in detail below.

3.1 Foreground estimation

In an initial phase, a background model capturing the color

statistics of each pixel is created. This process is done prior

to the recording of the scene. Then, using background sub-

traction techniques, the foreground images are obtained in-

dicating which pixels belong to the moving objects in the

scene. Let us denote by

F t = {F t
c | c = 1, . . . , Nc}, (1)
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the set of foreground images obtained at time instant t with

the Nc cameras available. A pixel F t
c(p) is 1 if it belongs to

the foreground and 0 otherwise. The foreground images are

employed for all the evaluations of the frame t, so that they

are computed only once. In this work we have employed the

background approach proposed by Horprasert et al. [20].

3.2 Model projection

The projection of the model is the most repetitive task since

it needs to be computed for each configuration x. It is com-

prised of two stages. First, it is necessary to calculate the

three-dimensional position of the body meshes, according to

the configuration x. Then, it is required to render the meshes

in each image given that the camera parameters are known.

In this work, we propose a simplified projection ap-

proach that reduces the computing time. Instead of drawing

the triangle meshes, we calculate the projection of its

vertices and draw a rectangular patch around it.

Let us consider the Nv vertices of the triangle meshes

that comprise the body model shown in Fig. 1(a). Each ver-

tex v = [x, y, z] is assigned to a joint j, so that its movement

affects all the vertices assigned to this joint (skinning). We

denote by Vj the set of vertices assigned to the joint j.

A three-dimensional transformation can be easily mod-

eled in homogeneous coordinates as a 4x4 matrix multipli-

cation. This notation is specially appropriated since multiple

transformations can be concatenated by multiplying the cor-

responding matrices. So, we can denote by Tj the matrix

that transforms the vertices in Vj .

The previous transformation produces the location of the

model’s vertices given by the configuration x. Afterwards,

it is required to project the model onto the cameras. For

that purpose, the extrinsic and intrinsic camera parameters

are needed. These parameters are calculated prior to the se-

quence recording in a process called calibration.

The camera’s extrinsics define the three-dimensional

relationship between the camera reference system (CRFS)

and a global reference system (GRFS) shared amongst all

cameras. The camera extrinsics Ec is a 4x4 matrix which

translates a three-dimensional point (in homogeneous

coordinates) from the GRFS to the CRFS. Once a point

is expressed in the CRFS, the camera’s intrinsics allow

to determine its projection onto the camera image (pixel

coordinates). Assuming a pin-hole model, the intrinsic

matrix of camera c is defined as:

Kc =





fx 0 ρx
0 fy ρy
0 0 1



 (2)

where fx, fy are the focal lengths in both axes and ρx, ρy is

the optical center.

Real cameras are always affected by distortion making

the ideal pin-hole model invalid in realistic scenarios. Re-

moving the distortion of a point is an iterative process that

can be time consuming if applied to each vertex. However,

it is possible to precompute the undistortion map for each

camera, and apply it to the foreground image. Thus, the

undistortion model is applied only once and we can assume

in the following that the camera follows the ideal pin-hole

model. As a consequence, the projection of a vertex v in the

camera c can be completely expressed as:




x′

y′

w′



 = Kc





1 0 0 0

0 1 0 0

0 0 1 0



EcTj

[

vt

1

]

= χj
c

[

vt

1

]

(3)

where χj
c is the matrix that projects all the points from Vj

to the camera c. The final camera coordinate is obtained as

(x′/w′ , y′/w′). The main advantage of using this notation

is that a single matrix χj
c is employed for all the points in

Vj , making the model projection very fast.

Projecting exclusively the vertices instead of the trian-

gles would produce a sparse set of points instead of a filled

silhouette. Therefore, a small patch around each vertex pro-

jection is drawn so as to obtain a filled silhouette. The size

of each patch is computed according to the distance of the

model to the camera. The nearer the model from the camera,

the larger the patch, and vice versa. The patch size employed

is the same for all vertices in a body part to avoid computa-

tion overhead. So, it is expected the area of the triangles not

to diverge a lot from the mean to avoid leaving holes in the

silhouette. Let lt be the average length of the triangle sides

of the body model employed. Then, a rectangle of similar

area would have a side length lr =
√

l2t /2. Considering that

the average distance of the points to the camera is d, and that

f = fx ≃ fy , the size in pixels of the rectangle p is given

applying the pin-hole model as:

p ≈
fd

lr
(4)

In practice, d is not computed as the average distance but as

the distance of a representative vertex of the body part. To

avoid gaps in the projection it is important to have a mesh

with vertices of similar area and vertices evenly distributed

along the surface.

Finally, the vertex normals of the meshes can be used

to determine whether they are seen from the “front” or the

“back” side. These seen from the back side, can be ignored

so that only these seen from the front are projected to gen-

erate the body silhouette. As a consequence, the number of

vertices projected is reduced to half. To do that, let us con-

sider the normal orientation to each vertex n. Given the con-

figuration x, the new orientation n′ can be obtained multi-

plying n by the upper 3x3 matrix of EcTj . If n′
x > 0, the

normal points towards the camera and the point must be pro-

jected. Otherwise, the point is ignored, saving time.
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3.3 Fitness evaluation

Using the above equations, the silhouettes of a body model

configuration x are computed in all cameras. Let us denote

by

M(x) = {Mx
c | c = 1, . . . , Nc}. (5)

these silhouette images, so that a pixel Mx
c (p) is 1 if it be-

longs to the model’s silhouette and 0 otherwise.

Using the above defined concepts, a model can be eval-

uated by matching the degree of overlap of its projected sil-

houette and the foreground image. Thus, let us define the

evaluation function as:

f t
c(x) =

1

2|D(Mx
c )|

∑

p∈D(Mx
c
)

Mx
c (p)−F t

c(p)+

1

2|D(F t
c)|

∑

p∈D(Ft
c
)

F t
c(p)−Mx

c (p) (6)

where the function D(·) indicates only these pixels with

value 1. The first term of Eq. 6 accounts for these model

points that project on foreground points, i.e., it decreases as

the degree of overlap between the model and the mask in-

creases. On the other hand, the second term of the equation

accounts for the pixels of the foreground image that are not

covered by the model’s projection. Consequently, the func-

tion behaves as the logical XOR function of the two images,

and it is evaluated f t
c(x) = 0 when the model projection fits

exactly the foreground mask. On the contrary, f t
c(x) tends

to 1 as the degree of overlap decreases.

Due to illumination changes and color similarities

between the subject and the background, it is unlikely

to achieve a perfect match between the model and the

foreground images. The use of multiple cameras helps not

only to alleviate these problems but also to infer the three-

dimensional configuration of the subject. The evaluations of

the model in all the camera images are fused as:

f t(x) =
1

Nc

∑

c

f t
c(x). (7)

Therefore, values of Eq. 7 near 0 indicate that x is a good

solution and values near 1 indicate that x is a poor solution.

Fig. 2 helps to clarify the above explanation. Given the pose

encoding x, it summarizes the evaluation process that com-

prises the skeleton modeling, the body skin projection and

the matching with the foreground images extracted from the

multiple cameras.

The high complexity of the evaluation process is caused

by the high number of operations carried out to generate the

body model pose, the projection of the silhouette and the

matching with the camera’s foreground image. This process

x = {Tx , Ty , Tz , Rx, Ry, Rz, . . . , Rx, Ry, Rz}

c) Body mesh

projection

d) Foreground

extraction

e) Camera

images

a) Pose

encoding

XOR XOR XORFitness

b) 3D body

model

Fig. 2: Evaluation process: a) Encoding of the pose x. b)

3D skeleton modeling of the pose x. c) Model silhouette af-

ter mesh projection. d) Foreground images obtained from e)

camera images, by background subtraction techniques and

showing in white pixels belonging to the moving objects in

the scene.

is repeated for every camera view and every tentative model

in the population of the evolutionary algorithm. Moreover,

the algorithm iterates to improve the fitness along a certain

number of generations until the limit of the number of eval-

uations is reached. Eventually, the whole process is repeated

for every frame in the video sequence. Consequently, this

causes a high complexity and demands significant compu-

tation resources. Therefore, it is necessary to apply paral-

lelization strategies to speed up this process.
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4 CPU Parallelization strategies

This section presents the parallelization strategies proposed

to speed up the evaluation of solutions using CPUs. First,

the use of CPU’s Streaming SIMD Extensions is presented.

Second, the use of multi-threading on multi-core CPUs is

described.

4.1 Streaming SIMD Extensions

The proper use of the SSE instructions has been shown to

yield high performance levels [7]. The SIMD nature of the

SSE instruction set ideally suits for two major components

of the evaluation process. The former comprises the vertex

projection of the reference body model using the transfor-

mation matrix. The latter represents the XOR function of

the projected body model image and the foreground image.

4.1.1 Vertex projection

The vertex projection process involves the matrix multipli-

cation between the vertices vt and the transformation matri-

ces χj
c. The computational complexity is due to the many

times this multiplication is performed. Code 1 shows the

naive matrix multiplication, and its corresponding SSE in-

struction set. These SSE instructions are capable of calculat-

ing the multiplication and sum of four values concurrently.

The mm load ps function loads from memory four single-

precision floating-point values, representing a row of the

transformation matrix. The mm mul ps function multiplies

each of the four values of the transformation matrix with the

vertex elements. The mm hadd ps function performs a hor-

izontal add, meaning that adjacent elements in the operand

are added together.

Code 1: Naive and SSE matrix multiplication.

void matrixMul_naive(float* vT, float* v, float* M) {

vT[0]=v[0]*M[0] + v[1]*M[1] + v[2]*M[2] + v[3]*M[3];

vT[1]=v[0]*M[4] + v[1]*M[5] + v[2]*M[6] + v[3]*M[7];

vT[2]=v[0]*M[8] + v[1]*M[9] + v[2]*M[10] + v[3]*M[9];

vT[3]=v[0]*M[12] + v[1]*M[13] + v[2]*M[14] + v[3]*M[15];

}

void matrixMul_SSE(float* vT, float* v, float* M) {

__m128 row1,row2,row3,row4,in_out,a,b,c,d;

row1=_mm_load_ps(M);

row2=_mm_load_ps(M+4);

row3=_mm_load_ps(M+8);

row4=_mm_load_ps(M+12);

in_out=_mm_load_ps(v);

a=_mm_mul_ps(row1,in_out);

b=_mm_mul_ps(row2,in_out);

c=_mm_mul_ps(row3,in_out);

d=_mm_mul_ps(row4,in_out);

a=_mm_hadd_ps(a,b);

b=_mm_hadd_ps(c,d);

in_out=_mm_hadd_ps(a,b);

_mm_store_ps((float*) vT, in_out);

}

4.1.2 Fitness evaluation

The fitness evaluation (Eqs. 6 and 7) can be performed by

a pixelwise XOR operation that compares the body projec-

tions with the foreground images. Since image pixels are

represented by 8-bit values, the SSE instruction set can pro-

vide an ideal speedup of 16. Code 2 shows the naive XOR

function of the images, and its parallelization using the SSE

instruction set.

The XOR function first loads 16 pixels (8-bit elements)

from the two images into two 128-bit registers using the

mm load si128 function. Then, the mm sad epu8 function

computes the absolute difference of the 16 elements of the

two registers. Since the feasible values are 8-bit integers

(0 for black and 255 for white), the absolute difference

function actually behaves as a logical XOR which indicates

pixel error. Finally, we seek to count the number of errors

of the whole image. Thereby, the mm sad epu8 function

also sums the XOR values packing two partial semi-sums,

which are eventually added to produce the error sum for

the given 16 pixels. This process is embedded in a loop to

process the complete image, and it is repeated for each of

the camera views and each of the body projections.

Code 2: Naive and SSE XOR function.

int xor_naive(char* image_1,char* image_2,int imgSize) {

int errorSum = 0;

for (int p = 0; p < imgSize; p++ )

if(image_1[p] xor image_2[p]) errorSum++;

return errorSum;

}

int xor_SSE(__m128i* image_1,__m128i* image_2,

int imgSize) {

int errorSum = 0;

for (int p = 0; p< imageSize; image_1++, image_2++,

p+=16) {

__m128i r1 = _mm_load_si128 ( image_1 );

__m128i r2 = _mm_load_si128 ( image_2 );

__m128i res = _mm_sad_epu8 ( r1,r2 );

errorSum += _mm_extract_epi16( res,0 ) +

_mm_extract_epi16( res,4 );

}

return errorSum/255;

}

Pixels of binary images might use a 1-bit representation

to reduce the memory size. However, the time required to

convert from a 8-bit representation to a 1-bit representation

is high. Consider that mapping one bit into a 8-bit word re-

quires a mask operation. Therefore, mapping 8 bits requires

8 mask operations on the same memory position, i.e., atomic

operations that are performed in sequential order. Although

the bitwise XOR would be faster, the memory load/store in-

structions using a mask would increase the total runtime.

4.2 Multi-core CPU

Microprocessor industry have moved to multi-core archi-

tectures in order to continue to increase the computational
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power of their processors. Today, desktop CPUs are

multi-core processors usually having four cores capable of

processing multiple tasks concurrently. Taking advantage

of the multiple cores of a CPU is a straightforward process

using multithreading directives. Open Multi-Processing

(OpenMP) is an implementation of multithreading, which

forks a specified number of slave threads and a task is

divided among them. The threads then run concurrently,

with the runtime environment allocating threads to different

processors.

An efficient and commonly-used parallelization strategy

using multi-core CPUs is the population parallel approach,

which operates by multiple candidate solutions being eval-

uated in parallel by separate threads of execution. Thereby,

the population is divided into multiple chunks that are eval-

uated in the multiple cores concurrently. Code 3 shows the

loop for the evaluation of the individuals of the population.

The #pragma omp parallel for directive enables automati-

cally the concurrent execution of the evaluation of each in-

dividual using multiple threads that take advantage of the

multiple cores of the CPU.

Code 3: Population parallel approach using OpenMP.

void evaluate(float[][] population) {

#pragma omp parallel for

for(int i = 0; i < Nsolutions; i++) {

evaluate(population[i]);

}

}

5 GPU parallelization approaches

GPUs are intrinsically aimed for the parallel processing of

computer images and there are many opportunities to use

their power in order to speed up the evaluation of solutions.

It must be noted, though, than when using GPUs, part of the

application runs on CPU, and that there is a communication

and memory transfers between them that must be minimized

in order to avoid delays. This is a small disadvantage of GPU

computing that makes some applications which work faster

on GPUs are still done on CPU, as of the limited memory

itself and the required overhead by copying data from CPU

to GPU and vice versa. In this work, we propose a GPU

parallelization approach that proceeds as follows.

In an initial step, the reference body model (vertices and

joints) are copied to the GPU. Then, for each frame, the fore-

ground images are computed and transferred to the GPU

memory. Then, the evolutionary algorithm is run on CPU

and at some point it requires the solutions to be evaluated.

The GPU is then employed to evaluate the solutions in par-

allel, producing the fitness values that are passed to the evo-

lutionary algorithm to compute the next population set.

The work performed on the GPU is divided in the five

stages that are outlined in Code 4, where Ntb is the num-

ber of threads per block of the grid (we employed 256 to

maximize the GPU occupancy), HtoD represents host to

device and DtoH device to host transfers. First, the set of

solutions that comprise the population are transferred to the

GPU. This small transaction is performed prior the evalua-

tion and comprises Ns ·D · sizeof(float) bytes, where Ns

stands for the number of solutions to be evaluated. Second,

the projection matrices χj
c required for the whole population

are computed in parallel. Third, the projections of the body

vertices are computed. Fourth, the fitness is evaluated using

the XOR. Fifth, the fitness values are transferred to CPU.

This transaction comprises Ns · sizeof(float) bytes.

Due to space limitations the kernel functions cannot be

displayed in the article document, and the reader is referred

to this website for further details1.

Code 4: GPU kernel calls.

// Copy population to GPU

cudaMemcpy(d_pop, h_pop, sizePopBytes, HtoD);

dim3 gridMatrix(Njoints,Ncameras);

matrix_computation <<< Nsolutions, gridMatrix >>>

(d_tmatrix, d_pop, ...);

dim3 gridProjection(Nvertices/Ntb,Ncameras,Nsolutions);

vertex_projection <<< gridProjection, Ntb >>>

(d_proj, d_vertices, d_tmatrix, ...);

dim3 gridFitness(Nsolutions, Ncameras);

fitness_evaluation <<< gridFitness, Ntb >>>

(d_fitness, d_proj, d_img, ...);

// Retrieve fitness values from GPU

cudaMemcpy(h_fitness,d_fitness, sizeFitnessBytes, DtoH);

5.1 Computation of the χj
c matrices

As denoted in Section 3, a solution x encodes a translation

and a set of rotations which produce a transformation matrix

Tj for each of the body joints. These matrices are multiplied

by the camera extrinsics Ec and intrinsics Kc to consider

the cameras position and angles. The outcome are the χj
c

matrices that projects all the points from Vj to the camera

c. This process is implemented on the GPU in a 3D kernel

to compute the transformation matrices for each body joint,

solution, and camera view.

5.2 Vertex projection

Next, each vertex of the reference body model is multiplied

with the transformation matrix χj
c of its body joint to pro-

duce the motion effect and camera projection. This process

is repeated for all the solutions encoded in the population

1 Detailed information about the MMOCAP implementation, the

GPU kernels source code and experimental results is available at:

http://www.uco.es/grupos/kdis/wiki/MMOCAP
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of the algorithm. The computational cost of this function

is given by the high number of vertices of the reference

model that are multiplied with the transformation matrices

for each camera view and solution. Fortunately, these mul-

tiplications can be computed concurrently for every vertex,

camera view and solution on the GPU. A GPU kernel func-

tion computes the vertex projections by means of a 3D grid

of threads. The first dimension is devoted to represent every

vertex of the skin, the second dimension handles the projec-

tion for each of the camera views, and the third dimension

represents each of the solutions of the population. Thereby,

the kernel handles Nv ·Nc ·Ns compute threads to project all

the vertices for all the cameras and all the solutions. Eventu-

ally, each vertex projection results in a (x,y) point which is

filled around with a small patch to obtain a closed silhouette

projection, as described in Section 3.2. This kernel is time-

consuming since it comprises a very high number of threads,

with multiple global memory loads and stores.

According to the CUDA programming guide [33], it

is essential to guarantee the coalescing of global mem-

ory accesses to achieve maximum performance. Global

memory loads and stores by threads are coalesced by the

device into as few transactions as possible. Therefore,

we guarantee that parallel threads running the same in-

struction access to consecutive locations in the global

memory, which is the most favorable access pattern. This

happens when loading the vertices from the reference

pose V , since consecutive threads compute consecutive

vertices projections. Moreover, it is also more efficient to

represent vertices in V using a structure of arrays rather

than using an array of structures, to improve the memory

access pattern. Consequently, the vertices are stored as

[x1, x2, ..., xn], [y1, y2, ..., yn], [z1, z2, ..., zn] rather than

[x1, y1, z1], [x2, y2, z2], ..., [xn, yn, zn].

5.3 Fitness evaluation

The fitness function measures the degree of overlap between

the projected model and the foreground images using the

pixelwise XOR operation (see Eqs. 6 and 7). The GPU can

be used to compute this process in parallel by means of a 2D

grid of threads whose dimension depends on the image size

(W×H) and the number of cameras Nc. Thereby, the kernel

handles W ·H ·Nc ·Ns compute threads. This kernel com-

putes a very simple XOR function among pixels but it com-

prises a massive number of threads. Furthermore, there are

SIMD instructions available in CUDA that allow us to pro-

cess multiple pixels at once. Specifically, the vabsdiff4()

function allows for evaluating the XOR on four pixels si-

multaneously, behaving similar to the SSE instructions.

Memory coalescing is achieved by consecutive threads

computing consecutive pixels of the images, both when

loading pixels from the foreground and projection images

and when storing the XOR result. Finally, the results of

the XOR function are summed in parallel, which is known

as a reduction operation, to determine the error in the

overlapping of the images.

5.4 Multi-GPU

Similarly to the multi-core CPU approach presented in Sec-

tion 4.2, we can take advantage of the presence of multiple

GPU devices. The population of solutions to be evaluated

can be divided into multiple chunks that are delegated to

several GPUs. Therefore, each GPU is responsible for the

evaluation of (Ns / NGPUs) solutions. Switching the com-

pute context associated to the GPU device is as simple as

using the instruction cudaSetDevice(deviceID).

Moreover, the process of computing the evaluation using

multiple GPUs is completely independent one from another.

Therefore, there is no interdependency and communications

between the GPUs during the evaluation process.

6 Results

The goal of our experimentation is two-fold. On the one

hand, we aim at analyzing the speedup obtained by each par-

allelization strategy. On the other hand, we examine differ-

ent parameter configurations to determine the one with the

most appropriate trade-off between accuracy and runtime.

The rest of this Section is structured as follows. First, the

experimental setup and settings of the experiments are pre-

sented. Then, the experiments conducted to determine the

speedup of the proposed parallelization strategies are pre-

sented. Finally, a trade-off evaluation of the method perfor-

mance is analyzed and discussed.

6.1 Experimental setup

The experiments were run on a machine equipped with an

Intel Core i7-3820 quad-core processor running at 3.6 GHz

and 32 GB of DDR3-1600 host memory. The video cards

used were two dual-GPU NVIDIA GTX 690 equipped each

one with 4 GB of GDDR5 video RAM and 3,072 CUDA

cores. The host operating system was GNU/Linux Ubuntu

12.10–64 bit along with CUDA 5.5, NVIDIA drivers

310.40, and GCC compiler 4.6.3.

The experimental study has been carried out using the

HumanEva-I dataset [41], which has been actively used in

the community in the last years [36,42,48]. It contains 7 cal-

ibrated video streams recorded at 60 FPS of 4 subjects per-

forming different common actions (e.g. walking, jogging,

gesturing, etc.). During the recordings, the subjects wore re-

flective markers placed at key positions of the anatomy that
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were captured by a motion capture system. We have selected

the walking and gesturing sequences of subjects S1, S2 and

S3 for our evaluation.

A three-dimensional model of each subject has been cre-

ated using the makehuman software [2]. For each video se-

quence, the model has been manually initialized to fit the

subject in the first frame. Given the model in its initial po-

sition, we added points to the skin model corresponding to

the locations of the reflective markers. Therefore, the error

in subsequent frames can be obtained as the distance from

these points to their ground-truth positions. As proposed by

the creators of HumanEva, the error metric employed is the

averaged absolute distance between the real positions of the

n markers being tracked X , and their estimated positions X̂ :

d(X, X̂) =
1

n

n
∑

i=1

||xi − x̂i||. (8)

Eq. 8 provides an error measure in a single frame of the

sequence. It is employed to calculate the tracking error of a

complete sequence as the average of all its frames.

Finally, we have employed the CMAES algorithm,

which has recently been reported to obtain the best

results [44] for the MMOCAP problem.

6.2 Speedup analysis

The purpose of this experimentation is to analyze the perfor-

mance, accuracy and scalability of the parallelization strate-

gies. In addition, we analyze the performance of each strat-

egy in regard to the body mesh resolution. The higher the

number of model vertices, the more accurate its projection

is, but also, the more computing time is required. So, we are

interested in determining the number of vertices to achieve

an appropriate trade-off between accuracy and performance.

For that purpose, each parallelization strategy has been

tested in each one of the selected HumanEva sequences 10

times, using 500, 1500, 3000 and 5000 fitness evaluations,

and body meshes with 27393, 20544 and 13695 vertices.

The CMAES algorithm has been run using the parameters

indicated in [44].

Table 1 shows the average runtime (in milliseconds) of

each strategy in evaluating a video frame, i.e., the time em-

ployed in evaluating all the solutions plus the time employed

by the CMAES algorithm. Additionally, the Table shows the

average runtime employed exclusively in evaluating the so-

lutions, and the speedups achieved as compared with the

CPU naive approach. Each column represents a computa-

tion strategy whereas each row represents a configuration of

the evolutionary algorithm regarding the number of evalua-

tions to compute. Results are grouped by each of the three

mesh resolution sizes.

The first column shows the times of the CPU naive ap-

proach, which demanded a minimum of 1.7 seconds for the

simplest scenario: 500 evaluations and 13695 vertices. On

the other hand, the most complex scenario (5000 evalua-

tions and the highest number of vertices) demanded more

than 20 seconds to process a single frame. It is shown that

most of the frame evaluation time is devoted to the evalu-

ation of the solutions. The second column shows the CPU

times using the SSE instruction set to compute in parallel

the vertex projection and the XOR function of the projected

and captured images. The SSE instruction set enabled to ap-

proximately double the performance of the CPU naive code

in all scenarios. The third column shows the CPU times us-

ing the multi-threading strategy and the population paral-

lel approach. The multi-core CPU we used in the experi-

mentation is comprised by four cores. Thereby, the perfor-

mance obtained is nearly 4 times the CPU naive sequential

approach (small overhead is introduced due to thread cre-

ation/join procedure). The fourth column shows the perfor-

mance of both CPU parallel approaches combined, resulting

in significantly better performance. The frame evaluation

time is reduced to 210 ms and 3.1 seconds respectively to

the previous configuration scenarios. It is important to high-

light that CMAES runtime are negligible when using CPU

approaches, since the solutions evaluation times are much

higher in magnitude.

The remaining columns evaluate the performance of the

GPU-based approach using one, two, and four GPU devices.

The single GPU performance significantly reduces the com-

putation time in all scenarios, and performs faster than the

best CPU-based approach. The performance when using two

and four GPU devices is increased and allows for reducing

even further the evaluation time. At this point, it is essential

to differentiate between the frame and solutions evaluation

times. After parallelization, the solutions evaluation times

have been significantly reduced, but CMAES represents now

a high percentage of the total runtime. Therefore, we focus

specifically on the solutions evaluation times. It is shown

that the 500 evaluations scenarios are reduced to 80, 45, and

26 ms when using 1, 2 and 4 GPUs respectively. These re-

sults define multiple speedups as we relate CPU and GPU

times. For instance, the single GPU performance as com-

pared with the CPU parallel + SSE is as low as 3.3× faster

and as high as 4.0×. On the other hand, the 4-GPUs perfor-

mance as compared with the naive CPU is as low as 78×
faster and as high as 110×.

As for the GPU kernels computing time, the application

was profiled using the NVIDIA Visual Profiler software. It

reported that 3% of the duration was devoted to the com-

putation of the χj
c matrices, 77% to the vertex projection,

12% to the fitness evaluation, 6% to memory initialization

and 2% to the memory transfers between host and devices

memories.
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Number

evaluations

Evaluation

scope

Configuration setup

CPU
naive

CPU
SSE

CPU
threads

CPU
threads SSE 1 GPU 2 GPUs 4 GPUs

27393 vertices

500 Frame 2061 1080 ( 1.9 ×) 638 ( 3.2 ×) 332 ( 6.2 ×) 90 ( 22.9 ×) 56 ( 36.8 ×) 37 ( 55.7 ×)

Solutions 2046 1065 ( 1.9 ×) 623 ( 3.3 ×) 318 ( 6.4 ×) 80 ( 25.6 ×) 45 ( 45.5 ×) 26 ( 78.7 ×)

1500 Frame 6195 3228 ( 1.9 ×) 1840 ( 3.4 ×) 941 ( 6.6 ×) 258 ( 24.0 ×) 148 ( 41.9 ×) 92 ( 67.3 ×)

Solutions 6141 3173 ( 1.9 ×) 1787 ( 3.4 ×) 887 ( 6.9 ×) 235 ( 26.1 ×) 125 ( 49.1 ×) 69 ( 89.0 ×)

3000 Frame 12188 6293 ( 1.9 ×) 3667 ( 3.3 ×) 1869 ( 6.5 ×) 514 ( 23.7 ×) 293 ( 41.6 ×) 179 ( 68.1 ×)

Solutions 12076 6184 ( 2.0 ×) 3556 ( 3.4 ×) 1767 ( 6.8 ×) 470 ( 25.7 ×) 249 ( 48.5 ×) 135 ( 89.5 ×)

5000 Frame 20569 10491 ( 2.0 ×) 6174 ( 3.3 ×) 3119 ( 6.6 ×) 852 ( 24.1 ×) 484 ( 42.5 ×) 294 ( 70.0 ×)

Solutions 20387 10292 ( 2.0 ×) 5979 ( 3.4 ×) 2941 ( 6.9 ×) 782 ( 26.1 ×) 414 ( 49.2 ×) 224 ( 91.0 ×)

20544 vertices

500 Frame 2011 1011 ( 2.0 ×) 562 ( 3.6 ×) 283 ( 7.1 ×) 81 ( 24.8 ×) 49 ( 41.0 ×) 33 ( 60.9 ×)

Solutions 1996 996 ( 2.0 ×) 547 ( 3.6 ×) 268 ( 7.4 ×) 70 ( 28.5 ×) 38 ( 52.5 ×) 22 ( 90.7 ×)

1500 Frame 5995 2982 ( 2.0 ×) 1702 ( 3.5 ×) 858 ( 7.0 ×) 235 ( 25.5 ×) 134 ( 44.7 ×) 84 ( 71.4 ×)

Solutions 5943 2930 ( 2.0 ×) 1649 ( 3.6 ×) 801 ( 7.4 ×) 212 ( 28.0 ×) 111 ( 53.5 ×) 61 ( 97.4 ×)

3000 Frame 11984 5909 ( 2.0 ×) 3391 ( 3.5 ×) 1690 ( 7.1 ×) 452 ( 26.5 ×) 254 ( 47.2 ×) 158 ( 75.8 ×)

Solutions 11883 5795 ( 2.1 ×) 3272 ( 3.6 ×) 1586 ( 7.5 ×) 408 ( 29.1 ×) 210 ( 56.6 ×) 114 ( 104.2 ×)

5000 Frame 20051 9870 ( 2.0 ×) 5647 ( 3.6 ×) 2799 ( 7.2 ×) 747 ( 26.8 ×) 419 ( 47.9 ×) 259 ( 77.4 ×)

Solutions 19857 9687 ( 2.0 ×) 5450 ( 3.6 ×) 2614 ( 7.6 ×) 678 ( 29.3 ×) 350 ( 56.7 ×) 190 ( 104.5 ×)

13695 vertices

500 Frame 1706 825 ( 2.1 ×) 475 ( 3.6 ×) 226 ( 7.5 ×) 71 ( 24.0 ×) 42 ( 40.6 ×) 29 ( 58.8 ×)

Solutions 1692 810 ( 2.1 ×) 461 ( 3.7 ×) 210 ( 8.1 ×) 60 ( 28.2 ×) 31 ( 54.6 ×) 18 ( 94.0 ×)

1500 Frame 5128 2441 ( 2.1 ×) 1419 ( 3.6 ×) 672 ( 7.6 ×) 210 ( 24.4 ×) 118 ( 43.5 ×) 75 ( 68.4 ×)

Solutions 5072 2386 ( 2.1 ×) 1366 ( 3.7 ×) 621 ( 8.2 ×) 187 ( 27.1 ×) 95 ( 53.4 ×) 53 ( 95.7 ×)

3000 Frame 10150 4826 ( 2.1 ×) 2832 ( 3.6 ×) 1341 ( 7.6 ×) 413 ( 24.6 ×) 230 ( 44.1 ×) 145 ( 70.0 ×)

Solutions 10032 4711 ( 2.1 ×) 2721 ( 3.7 ×) 1224 ( 8.2 ×) 369 ( 27.2 ×) 186 ( 53.9 ×) 101 ( 99.3 ×)

5000 Frame 17002 8029 ( 2.1 ×) 4713 ( 3.6 ×) 2203 ( 7.7 ×) 637 ( 26.7 ×) 351 ( 48.4 ×) 222 ( 76.6 ×)

Solutions 16810 7834 ( 2.1 ×) 4536 ( 3.7 ×) 2006 ( 8.4 ×) 561 ( 30.0 ×) 280 ( 60.0 ×) 152 ( 110.6 ×)

Table 1: Computing times (in ms) employed by each strategy in evaluating a frame, the fraction of that time employed in

evaluating the solutions, and the speedup as compared with the CPU naive approach.

As can be seen, the efficiency increases as the number of

evaluations increase, which means the better performance

of the GPU-based solutions on high demanding and com-

plex configurations. However, we should also note the lim-

itations of the GPUs configuration. The scalability to mul-

tiple GPUs is appropriate when splitting computation from

one to two GPUs, but efficiency is reduced after using four

GPUs. This decrease in the efficiency is due to the over-

head and synchronization times among the multiple GPUs.

Similar behavior is shown in computer games when using

multiple GPUs.

Performance on video rendering and analysis is usually

measured as the number of frames per second (FPS) that

the system is capable of processing. Therefore, we should

also report results in such terms. FPS values are obtained

by means of the inverse of the total frame evaluation time.

Fig. 3 shows the FPS for the different number of evaluations

using a mesh size with 27393 vertices. Parallelization using

500 1500 3000 5000

Number of evaluations
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Fig. 3: FPS performance for different number of evaluations.
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GPUs are shown to perform as fast as 27.3 FPS, which is

significantly faster than the naive CPU performance at 0.5

FPS, or the multi-threading CPU with SSE at 3.0 FPS for the

same scenario when using 500 evaluations. Thereby, GPUs

state a major step on increasing computation efficiency of

the frame evaluation.

However, computation power of GPUs is still not

enough to achieve real time performance. Video sequences

were originally recorded at 60 FPS, and therefore we

should expect a compute system capable of processing

at such high speeds. Nevertheless, advances on hardware

manufacturing industry make us believe that the goal of

real time performance may be achieved within few years.

Moreover, real time performance may be also achieved by

using more GPU devices and by distributing computation.

However, this would impact in the economic costs of the

system as it would require to buy additional hardware

devices. Therefore, we provide readers an idea on the

best option to choose according to their computing time

requirements and available budget.

6.2.1 Comparison with OpenGL

OpenGL is a widely used general purpose rendering en-

gine that has been employed in the MMOCAP problem for

rendering the models [28,39,40]. Thus, it is important to

compare the performance of the proposed method with an

OpenGL implementation for the same task.

In an initial step, the proposed OpenGL approach up-

loads the foreground images as textures to the GPU and

creates vertex buffer objects for the vertices constituting the

model. This reduces to minimum the CPU-GPU intercom-

munication. For each model to be evaluated, we first ren-

der the body model (as triangle meshes) in a texture buffer.

Then, the texture buffer and the foreground texture are both

applied to a quad covering the whole image. When applying

the texture, a fragment shader computing the XOR function

is employed. The fragment shader uses an atomic counter

(option added in OpenGL 4.2) to count the number of pixels

in both images that are different. Finally, the only value to be

passed from GPU to CPU is the atomic counter (4 bytes). In

order to take advantage of the parallelization capabilities of

the GPU, our GPU implementation renders multiple mod-

els simultaneously. The code employed is publicly available

from http://www.uco.es/grupos/kdis/wiki/MMOCAP

Table 2 shows the computing times required to project

and compute the XOR function once (in one view) for all the

methods (including the CPU-GPU memory transfer times).

In particular, for the OpenGL approach, the total time is

divided into 75% for rendering the texture and the rest for

computing the XOR. As can be seen, the OpenGL approach

is, in general, less competitive than the other approaches.

Method Proj. (ms) XOR (ms) Total (ms) Speedup

CPU 0.27533 0.27129 0.54662 –

CPUSSE 0.23171 0.02872 0.26043 2.10×

OpenGL 0.17992 0.05925 0.23917 2.29×

CPUthrds 0.07024 0.07010 0.14034 3.90×

CPUthrds+SSE 0.06487 0.00820 0.07307 7.48×

1 GPU 0.01796 0.00269 0.02065 26.47×

2 GPUs 0.00908 0.00136 0.01044 52.38×

4 GPUs 0.00458 0.00068 0.00526 103.91×

Table 2: Computing times employed for rendering a model

and computing the XOR once.

Moreover, it is also interesting to highlight the performance

of the SSE instructions when applied to the XOR.

An alternative OpenGL implementation employing

points instead of triangles (using the same number of points

than triangle vertices) has been also tested. The result is

that the point-based implementation is significantly slower

than the triangle based one. A possible explanation is

that the point primitive is less optimized than the triangle

primitive in modern graphic cards. With regards to quality

of the generated silhouettes with both methods, it is worth

mention that tests were run using the maximum resolution,

which implies small triangles and consequently a very

close vertex points. So, the quality of the corresponding

point-based silhouette is not really affected. An example

of the silhouettes obtained with our method can be seen in

Fig. 2(c). The code available online let the user to test both

implementations.

Finally, it must be mentioned that it is possible to use

multiple GPUs via SLI. However, this option was tested ob-

taining worse performance when enabled. Also, while some

cards allows specific vendor extensions for OpenGL paral-

lelization, this feature is limited to specific high end cards

(e.g. the NVIDIA Quadro cards), whereas our GPUs are reg-

ular ones.

6.3 Error analysis

Accuracy and runtime of frame evaluation is a conflicting

problem. In order to obtain more accurate models, the com-

plexity and resolution of the 3D body model, and the num-

ber of evaluations of the algorithm are increased. However,

this involves a higher number of calculations that conduct to

longer runtime. Therefore, it is necessary to achieve a trade-

off between the accuracy and the frame evaluation time.

Table 3 shows the error rate obtained on the six se-

quences of the HumanEva-I dataset. Errors are measured

as indicated in Eq. 8 as the averaged absolute distance (in

meters) between the real positions of the markers being
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Video 27393 vertices 20544 vertices 13695 vertices

Sequence 500 1500 3000 5000 500 1500 3000 5000 500 1500 3000 5000

s1 gestures 0.0323 0.0317 0.0318 0.0310 0.0377 0.0390 0.0371 0.0381 0.0387 0.0386 0.0392 0.0394

s1 walking 0.0830 0.0486 0.0447 0.0428 0.0742 0.0541 0.0428 0.0467 0.0642 0.0550 0.0437 0.0442

s2 gestures 0.0784 0.0571 0.0498 0.0500 0.0833 0.0750 0.0669 0.0673 0.0828 0.0714 0.0730 0.0599

s2 walking 0.0696 0.0508 0.0376 0.0372 0.0716 0.0437 0.0383 0.0354 0.0640 0.0479 0.0504 0.0378

s3 gestures 0.0468 0.0379 0.0373 0.0372 0.0609 0.0393 0.0412 0.0393 0.0613 0.0400 0.0400 0.0397

s3 walking 0.1118 0.0730 0.0682 0.0665 0.1179 0.0799 0.0690 0.0675 0.1125 0.0981 0.0811 0.0787

Avg. Error 0.0703 0.0499 0.0449 0.0441 0.0743 0.0552 0.0492 0.0490 0.0706 0.0585 0.0546 0.0500

Ranks 9.50 4.83 2.83 1.50 10.67 7.33 4.83 4.50 10.50 8.00 7.50 6.00

Table 3: Error rate (in meters) for multiple configurations: number of evaluations and number of vertices.

tracked and their estimated positions. All experiments were

repeated 10 times with different seeds and the mean error

is provided. Each column belongs to a given configuration

regarding to the mesh size and the number of evaluations.

These results correspond to the evaluation times shown in

Table 1. Results clearly indicate that increasing the number

of evaluations reduces the error, whereas decreasing the

resolution of the mesh increases the error rate. The bottom

rows show the average error for the six sequences and the

ranks for each configuration. Rank values are obtained

according to the Friedman’s statistical test [12,18], which

allow to perform a direct comparison of performance.

The lower the rank value, the better performance of the

configuration. The best ranked solution, which also obtains

the lowest average error is the 5000 evaluations solution

with the highest mesh size. However, this configuration is

also the slowest according to Table 1 since it involves a

very high number of evaluations. Therefore, we should find

other configurations that provide a better trade-off.

The conflicting problem of obtaining the best accuracy

at the lower computational cost can be addressed as a

multi-objective problem. Multi-objective optimization is

concerned with the simultaneous optimization of more than

one objective function [11]. Therefore, there is no single

best solution to the problem, but a set of non-dominated

solutions known as Pareto optimal front. Given a set of

objective functions F = {f1, f2, f3, ..., fn}, a solution s

belongs to the front if there is no other solution s′ that

dominates it. A solution s′ dominates s if and only if fi(s
′)

is equal or better than fi(s)∀f ∈ F and fi(s
′) is strictly

better than fi(s) for at least one objective.

Fig. 4 shows the multiple configurations evaluated,

located according to their ranking in regard to the runtime

and the error rate. Solutions belonging to the Pareto front

are linked together. All solutions belonging to the Pareto

front are said to be equally good. However, it is known

that extreme solutions are (fast and inaccurate) or (slow

and very accurate). Eventually, a single configuration with
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Fig. 4: Time vs error plot of configurations. Solutions from

to the optimal Pareto front are linked together.

Fig. 5: Tracking results obtained in the walking sequence S1.

good trade-off should be provided by default. Thus, we

would recommend the one having 1500 evaluations and

27393 vertices because it provides both accurate results and

relatively fast runtime. This configuration agrees with the

proposed in [44] as the best performance solution.
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A visual example of the results obtained by the algo-

rithm is presented in Fig. 5. It shows the tracking results ob-

tained for two frames of the walking sequence of the subject

S1 when employing the recommended configuration with

1500 evaluations. The body joints are linked with a white

line and the vertices of the mesh are shown colored.

7 Conclusions

This paper presented an efficient and parallelizable approach

to evaluate the solutions in the MMOCAP problem. Our ap-

proach consists in approximating the triangle body meshes

by rectangular patches that are easily drawn and computed.

In addition, strategies to parallelize the computation both in

CPUs and GPUs were proposed. First, we proposed a strat-

egy based on the CPU’s Streaming SIMD Extensions (SSE)

instruction set, which demonstrated to double performance.

Second, we proposed an strategy using multi-threading on

multi-core CPUs, which showed to speed up model eval-

uation up to 4 times. Third, we presented a GPU strategy

scalable to multiple devices. A total of 4 GPUs were used

to collaborate, providing a speedup of up to 110× faster

than the naive CPU code. The parallelization approaches

proposed also demonstrated better performance than an effi-

cient OpenGL implementation.

Moreover, we experimented multiple algorithm’s con-

figuration and body mesh resolution sizes, which allowed

for analyzing the performance impact of varying the num-

ber of evaluations and the number of body model vertices.

Accuracy and runtime were two conflicting objectives for

the MMOCAP problem, and we established a Pareto front

of solutions offering different levels of trade-off. Eventu-

ally, the user is allowed for selecting the configuration setup

which best matches his needs in terms of obtaining accu-

rate but slow solutions, or fast and less accurate solutions. A

trade-off solution producing both accurate and fast results is

proposed as recommended configuration.

As for the future work, it would be interesting to com-

pare the performance of the proposal with FPGA-based im-

plementations that allow for efficient single-bit operations.
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