
Journal of Machine Learning Research 01 (2014) 1-4 Submitted 11/11; Revised 07/14; Published 10/14

A Classification Module for Genetic Programming
Algorithms in JCLEC

Alberto Cano acano@uco.es

José Maŕıa Luna jmluna@uco.es

Amelia Zafra azafra@uco.es

Sebastián Ventura sventura@uco.es

Department of Computer Science and Numerical Analysis

University of Córdoba, Spain

Editor: Editor name

Abstract

JCLEC-Classification is a usable and extensible open source library for genetic program-
ming classification algorithms. It houses implementations of rule-based methods for clas-
sification based on genetic programming, supporting multiple model representations and
providing to users the tools to implement any classifier easily. The software is written in
Java and it is available from http://jclec.sourceforge.net/classification under the
GPL license.

Keywords: Classification, Evolutionary Algorithms, Genetic Programming, JCLEC

1. Introduction

In the last decade, the increasing interest in storing information has led to its automatic
processing, discovering knowledge that is potentially useful. Data mining involves the use
of data analysis tools to discover this knowledge previously unknown, valid patterns, and
close relationships in databases. One of the most used data mining tasks is classification,
which learns from a set of training examples to produce predictions about future examples.

The classification models are being applied to enormous databases in areas such as
bioinformatics, marketing, banks or web mining. Existing classification libraries provide
algorithms following many different methodologies. However, it is difficult to find a library
that contains GP (genetic programming) algorithms, an important evolutionary computa-
tion paradigm. The conceptual difficulty of GP makes it difficult to implement algorithms
following this paradigm despite its algorithms perform well as it is proved by many re-
searchers (Espejo et al., 2010).

GP is an efficient and flexible heuristic technique that uses complex representations
such as trees. This technique provides comprehensible models, which are useful in different
application domains. For instance, it is applied to supervised learning tasks like regression,
classification and unsupervised learning tasks like clustering and association. In classifica-
tion tasks, the application of GP is an important issue since it may offer results that are
comprehensible to humans. Additionally, it offers interesting advantages such as flexibility,
and the possiblity of using different kinds of representations, e.g., decision trees, rule-based
systems, discriminant functions, etc. An extension of GP is grammar-guided genetic pro-

c©2014 Alberto Cano and José Maŕıa Luna and Amelia Zafra and Sebastián Ventura.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Córdoba

https://core.ac.uk/display/60901499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cano et al.

gramming (G3P), which makes the knowledge extracted more expressive and flexible by
means of a context-free grammar (McKay et al., 2010).

This paper presents an open source software for researchers and end-users to develop
classification algorithms based on GP and G3P models. It is an intuitive and usable tool
which extends the JCLEC evolutionary computation library (Ventura et al., 2007). The
software presented includes some GP and G3P proposals described in literature, and pro-
vides the necessary classes and methods to develop any kind of evolutionary algorithms for
solving classification problems easily.

This paper is organized as follows. Firstly, Section 2 provides a description of the
module, its structure and the way to use it. Finally, the documentation and the requirements
of this module are outlined in Section 3.

2. Description of the module

The classification module is presented in this section, describing the library structure and
its main characteristics.

2.1 Structure of the module

The net.sf.jclec.problem.classification.base package roots the hierarchical structure of the
classification module, and provides the abstract classes with the properties and methods
that any classification algorithm must contain, e.g., ClassificationAlgorithm, Classification-
Reporter, Rule and RuleBase. A new algorithm included in the module should inherit from
these classes regardless the classification model. In this context, we focus on rule-based
classifiers which comprise one or more classification rules, each of them being a knowledge
representation model consisting of an antecedent and a consequent. The antecedent of each
classification rule is made up of a series of conditions to be met by an instance to consider
that it belongs to the class specified by the consequent.

Based on whether an algorithm uses a GP or G3P encoding, JCLEC-Classification
makes a differentiation between expression-tree and syntax-tree respectively. In such a way,
each GP classification individual is represented by means of the ExprTreeRuleIndividual
class, which represents an individual, comprising all the features required to do it: the
genotype, the phenotype and the fitness function value. The nodes and functions in GP
trees are defined by the ExprTreeSpecies class. Similarly to GP individuals, the Syntax-
TreeRuleIndividual class specifies all the features required to represent a G3P individual,
while the SyntaxTreeSpecies allows us to define the terminal and nonterminal symbols of the
grammar used to generate individuals. Furthermore, the module allows to encode multiple
syntax and expression trees for Pittsburgh style encodings or multi expression programming
by means of the MultiExprTree and MultiSyntaxTree classes.

In order to represent the phenotype of a rule-base individual, crisp and fuzzy rules are
generated by using the CrispRule and FuzzyRule classes, respectively. These classes provide
the antecedent of the rule in an expression-tree shape and the consequent assigned to this
antecedent. In addition, methods to classify a whole dataset or a particular instance are
provided in these classes. These methods compute whether the antecedent of a rule satisfies
an instance, returning the consequent of the rule, otherwise the instance is not covered by
the antecedent and therefore no predictions can be made. Besides those packages that repre-

2

A Classification Module for JCLEC

sent the main characteristics of any individual, the net.sf.jclec.problem.classification.listener
package to make reports for the train and test classification processes is provided. This
package contains the RuleBaseReporter class with methods to make reports specifying the
classifier features such as the rule base, the number of rules, the average number of condi-
tions, the percentage of correct predictions, the percentage of correct predictions per class,
the geometric mean, the kappa rate and the confusion matrix.

Finally, it is noteworthy that several utility classes, which make it easy to load data from
KEEL 1 and ARFF 2 formatted files, are provided by a dataset package. Three different
attribute types may be represented by this package, integer, continuous and categorical,
and a number of characteristics from the dataset are given, comprising type of attributes,
number of classes, number of instances, etc.

The module houses three G3P classification algorithms (De Falco et al., 2001; Bojarczuk
et al., 2004; Tan et al., 2002), which can guide developers to write new algorithms.

2.2 Usage of the module

Including new classification algorithms in this module is very simple. We focus on the al-
gorithm described by Bojarczuk et al. (Bojarczuk et al., 2004). This algorithm, which is
provided in the module (see the net.sf.jclec.problem.classification.algorithm.bojarczuk pack-
age), is constructed with only three additional classes. One of them, the BojarczukAlgorithm
class is inherited from the ClassificationAlgorithm class and provides the own features of
this algorithm.

Another class required to be implemented is the evaluator, which computes the fitness of
the individuals. This class, named BojarczukEvaluator in this algorithm, inherits from the
JCLEC core AbstractParallelEvaluator class or from the AbstractEvaluator class, depending
on whether the individuals are evaluated in a sequential or parallel way.

Finally, a class to define the grammar to be followed in the individual generation stage
is implemented. This class, named BojarczukSyntaxTreeSpecies in this example, inherits
from the class SyntaxTreeSpecies since G3P individuals are defined in this algorithm.

Only defining these three classes, the complete classification algorithm is represented.
Due to the core of this module is JCLEC, before an algorithm is ready to run, it is necessary
to carry out a set-up process by using a configuration file as shown in Figure 1. This
configuration file and the steps required to execute the algorithm are described in the
JCLEC website. In this file we specify those parameters required such as the algorithm
to be run, the parent selector, the genetic operators, the evaluator, etc. All the required
parameters are provided by JCLEC, existing a numerous variety of them as it is described
in the JCLEC specification (Ventura et al., 2007).

3. Documentation and requirements

The JCLEC-Classification online documentation 3 describes the software packages, presents
a user oriented usage example, as well as developer information to include new algorithms,
API reference and running tests. JCLEC requires Java 1.7, Apache commons logging 1.1,

1. http://www.keel.es
2. http://www.cs.waikato.ac.nz/ml/weka/arff.html
3. http://jclec.sourceforge.net/data/JCLEC-classification.pdf

3

Cano et al.

<experiment>
<proce s s algorithm−type=”net . s f . j c l e c . problem . c l a s s i f i c a t i o n . a lgor i thm . bojarczuk . BojarczukAlgorithm”>

<rand−gen−f a c t o ry seed=”123456789” type=”net . s f . j c l e c . u t i l . random . RanecuFactory”/>
<populat ion−s i z e>100</ populat ion−s i z e>
<max−of−gene ra t i on s>100</max−of−gene ra t i on s>
<max−der iv−s i z e>20</max−der iv−s i z e>
<datase t type=”net . s f . j c l e c . problem . u t i l . datase t . Arf fDataSet ”>

<t ra in−data>data/ i r i s / i r i s −10−1t ra . a r f f</ tra in−data>
<t e s t−data>data/ i r i s / i r i s −10−1 t s t . a r f f</ te s t−data>

<a t t r ibu te−c l a s s−name>Class</ a t t r ibu te−c l a s s−name>
</ datase t>
<recombination−prob>0 .8</ recombination−prob>
<copy−prob>0 .01</copy−prob>
< l i s t e n e r type=”net . s f . j c l e c . problem . c l a s s i f i c a t i o n . l i s t e n e r . RuleBaseReporter ”>

<report−dir−name>r epo r t s / r epo r tF r e i t a s</ report−dir−name>
<g loba l−report−name>summaryFreitas</ g loba l−report−name>
<report−f requency>10</ report−f requency>

</ l i s t e n e r>
</ proce s s>

</ experiment>

Figure 1: Sample configuration file

Apache commons collections 3.2, Apache commons configuration 1.5, Apache commons lang
2.4, and JUnit 3.8 (for running tests).

Acknowledgments

This research was supported by the Spanish Ministry of Science and Technology project
TIN-2011-22408, the Ministry of Education FPU grants AP2010-0041 and AP2010-0042,
and FEDER funds.

References

C. C. Bojarczuk, H. S. Lopes, A. A. Freitas, and E. L. Michalkiewicz. A constrained-syntax
genetic programming system for discovering classification rules: application to medical
data sets. Artificial Intelligence in Medicine, 30(1):27–48, 2004.

I. De Falco, A. Della Cioppa, and E. Tarantino. Discovering interesting classification rules
with genetic programming. Applied Soft Computing, 1(4):257–269, 2001.

P. G. Espejo, S. Ventura, and F. Herrera. A Survey on the Application of Genetic Pro-
gramming to Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part
C, 40(2):121–144, 2010.

R. McKay, N. Hoai, P. Whigham, Y. Shan, and M. O’Neill. Grammar-based Genetic
Programming: a Survey. Genetic Programming and Evolvable Machines, 11:365–396,
2010.

K. C. Tan, A. Tay, T. H. Lee, and C. M. Heng. Mining multiple comprehensible classification
rules using genetic programming. In Proceedings of the Evolutionary Computation on
2002. CEC ’02, volume 2, pages 1302–1307, 2002.

S. Ventura, C. Romero, A. Zafra, J.A. Delgado, and C. Hervás. JCLEC: a Java Framework
for Evolutionary Computation. Soft Computing, 12:381–392, 2007.

4

