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SUMMARY 

This work is focused on holm oak (Quercus ilex L. subsp. ballota [Desf.] Samp.) a dominant 

tree species in natural forest ecosystems over large areas of the Western Mediterranean Basin. 

Q. ilex forest maintenance and sustainability are facing important problems and challenges 

related to seed viability/conservation, and plant mortality in both adult trees and young one-

year-old plants after field transplantation resulting from adverse environmental conditions 

such as drought and the so-called decline syndrome. 

In the present Doctoral Thesis, the germination and seedling growth of Q. ilex was studied 

applying a multidisciplinary “omics” approach combined with classical biochemical approaches, 

according to the actual trends in biosciences research. Within this general aim, specific 

objectives pursued in this thesis were: 

1. Determine the expression profile of a selected group of protein coding genes involved 

in desiccation tolerance, regulation of ABA-signalling, metabolism and antioxidative 

defence. 

2. Identify differentially expressed genes between germinated seeds and seedlings of Q. 

ilex by using a suppression subtractive hybridization (SSH). 

3. Analyse changes in the proteomic profiles during germination and seedling growth 

through gel based and gel free approaches.  

4. Analyse the dynamic protein phosphorylation changes during seed germination and 

seedling development. 

The transcriptional analysis revealed that mature Q. ilex seeds show some of the 

intracellular physiological characteristics of orthodox seed that included (i) accumulation of 

non-reducing carbohydrates (sucrose) and protective proteins (DHN3) and (ii) accumulation of 

transcripts involved in the synthesis of certain osmoregulator of raffinose series 

oligosaccharides (GolS), the anti-oxidative defence (Sod1, Gst). But the holm oak mature acorns, 

like other recalcitrant seeds, have the ability to maintain a partially active metabolism. The 

transcriptional analysis results were verified and complemented with the determination of (i) 

plant hormones levels (ABA; the gibberellins GA3 y GA4; the auxin IAA and the cytokinins iP 

and iPR,) (ii) sugars accumulation (Suc, Glc, Fru) and (iii) proteins amounts determined by 

immunoblotting (DHN3, GAPDH, RBCL) and/or enzymatic activity (SOD) and good correlation 

was found whit transcript levels. 

The analysis of differentially expressed genes by SSH allowed the identification for the 

first time a large number of putative differentially expressed ESTs from the embryo axis in 

germinated seeds and from shoot seedlings of Q. ilex during the postgermination and seedling 

establishment. Thirty-one over-expressed genes were identified in germinated seeds at the 

germination stage. Proteins encoded by these genes are representative of eight functional 

categories: stress responses, transport, oxidation-reduction, cell wall modification, cell division 

cycle, protein metabolism, cellular component organization and translation. On the other hand, 

39 non-redundant transcripts over-represented in Q. ilex shoots seedlings were grouped in 

seven functional categories: photosynthesis, secondary metabolism, transport, signalling, stress 

response, gene expression and cellular component organization. These data constitute an 

important genomics resource that should clearly benefit further germination and other 

biological process research on Q. ilex. 



The gene expression analysis was complemented with proteomics analysis using 

different approaches. By a 2-DE approach, 103 variable spots for protein identification were 

selected and around 90 differentially proteins in all stages analysed were identified using 2-DE 

MALDI-TOF/TOF. The gel-based approach revealed important metabolic changes that occurred 

in the holm oak seed after the germination. Few proteins were differentially accumulated 

during the germination (from S0 to S3). A gel free approach was, hence, used to analyse the 

mature unimbibed and the germinated seed, trying to improve the coverage of proteome 

analysed. Through nLC- LTQ-Orbitrap- analysis of total extract, 153 differentially accumulated 

proteins were identified.  

At posttranslational levels, phosphoproteomics changes were analysed. A total of 55 

phosphoprotein differentially accumulated spots were detected, of which 20 putative 

phosphoproteins were identified by MALDI TOF-TOF analysis. They were representative of six 

functional categories: carbohydrate and amino acid metabolisms, protein folding, oxidation-

reduction processes and stress response, and the metabolism of RNA.  

As conclusion, the proteomics profile changes observed in Q. ilex seed germination and 

seedling establishment affected mainly the proteins related to carbohydrate metabolism (i.e. 

degradation sugars, activation of glycolysis), amino acid metabolism (i.e., use of methionine for 

the synthesis of secondary metabolites, including ethylene) and oxidative stress response, 

which also found at the transcriptional level. However, the few changes detected at 

translational levels (protein) during germination (from S0 to S3), suggested that the mature 

non-orthodox seeds of Q. ilex have the mechanisms necessary to ensuring the rapid resume of 

the metabolic activities required to start and finish the germination process and to de novo 

synthesise the biomolecules required for growth, this could be explain the precocious 

germinations that present this seeds during storage even without imbibition. In addition, the 

phosphoproteomics analysis revealed that changes in phosphorylation status of protein, 

activated pathways necessary to finish germination. However, we cover only a minimal fraction 

of the phosphoproteome, therefore a large scale analysis of phosphorylation protein could be 

necessary to disclose more metabolic pathway involved in germination.  

The results presented here increase the knowledge of the physiological and molecular 

changes that take place during Q. ilex seed germination and seedling establishment, and are the 

basis of knowledge that could contribute to long-term in management and storage of this 

recalcitrant seeds for the afforestation projects and restoration programmes under the 

impending climate change in Mediterranean regions. 



RESUMEN 

La presente Tesis Doctoral está centrada en el estudio de la encina (Quercus ilex L. subsp. 

ballota [Desf.] Samp.), una especie dominante en los sistemas silvopastorales mediterráneos. El 

mantenimiento y la sostenibilidad de los bosques de encina se enfrenta actualmente con 

problemas y retos mayormente relacionados con la conservación de semillas viables, ya que se 

trata de una semilla recalcitrante, y con la alta tasa de mortalidad de los individuos adultos y 

plantones luego de ser trasplantados a campo, resultado de las adversas condiciones 

ambientales. 

En el presente trabajo se llevó a cabo el estudio de la germinación de semillas de encina, 

así como de plántulas en estadio temprano mediante una aproximación multidisciplinar que 

combina las técnicas clásicas de biología molecular con las “ómicas”. Con este objetivo general 

fueron propuestos los siguientes objetivos específicos 

1. Realizar un análisis transcripcional de un grupo de genes candidatos implicados en 

tolerancia a la de desecación, regulación de la señalización de ABA, metabolismo y 

defensa contra el estrés oxidativo, a lo largo del proceso de germinación. 

2. Identificar genes de expresión diferencial en semilla germinada y de plántulas muy 

jóvenes de Q. ilex mediante el uso de hibridación sustractiva por supresión (SSH). 

3. Identificar proteínas cuya abundancia se ve alterada durante la germinación y 

desarrollo de plántulas en estadios tempranos, determinando los perfiles 

proteómicos mediante aproximaciones basadas y libres de gel. 

4. Identificar el phosphoproteoma y los cambios que ocurren durante la germinación 

de semillas 

Los resultados del análisis transcripcional del grupo de genes candidatos revelaron que 

las semillas maduras de Q. ilex presentan algunas características fisiológicas intracelulares 

propias de las semillas ortodoxas que incluyen (i) acumulación de azúcares (sacarosa) y 

proteínas protectoras (DHN3) y (ii) acumulación de transcriptos implicados en la síntesis de 

oligosacáridos osmorreguladores de rafinosa (GolS) y en la defensa contra el estrés oxidativo 

(Sod1, Gst). Sin embargo, las semillas maduras de Q. ilex, como otras semillas recalcitrantes se 

dispersan con un alto contenido de agua y mantienen el metabolismo parcialmente activo. Los 

resultados de este análisis transcripcional fueron verificados y complementados con la 

determinación de (i) niveles de fitohormonas (ABA, GA3, GA4, IAA, iP and iPR), (ii) acumulación 

de azúcares (Sac, Glc, Fru) y (iii) determinación de proteínas mediante inmunodetección (DHN3, 

GAPDH, RBCL) y actividad enzimática (SOD); estos resultados mostraron una buena correlación 

con los transcriptos analizados. 

El análisis de expresión diferencial de genes mediante SSH permitió identificar por 

primera vez en Q. ilex un grupo de ESTs correspondiente a genes diferencialmente expresados 

en semillas germinadas y plántulas en desarrollo temprano. En las semillas germinadas se 

identificaron 31 genes sobre-expresados, entre los que se incluyen genes que codifican para 

proteínas implicadas en la respuesta a estreses, transporte, defensa contra estrés oxidativo, 

modificación de la pared celular, ciclo celular, metabolismo de proteínas y transducción. Por 

otro lado, 39 transcriptos no redundantes se encontraron sobre-expresados en estadio 

temprano de plántulas. Las proteínas codificadas por estos transcritos fueron agrupadas en 

siete categorías funcionales que incluyen fotosíntesis, metabolismo secundario, transporte, 

señalización, respuesta a diversos estreses, expresión génica y organización de componentes 



celulares. Estos datos constituyen un importante recurso genómico, hasta la fecha inexistente 

para Q. ilex, que podría ser utilizado para ampliar el análisis molecular de la germinación y de 

otros procesos biológicos o fisiológicos en la investigación de Q. ilex y otras especies 

filogenéticamente relacionadas. 

Los análisis de expresión génica se complementaron con análisis proteómicos utilizando 

diferentes aproximaciones. Mediante análisis de geles 2-DE se determinaron 103 spots de 

proteínas cuya intensidad variable era estadísticamente significativa. De ellos,  mediante 

MALDI TOF/TOF, se identificaron 90 proteínas cuya expresión cambia en todos los estadios 

analizados. Esta aproximación desveló los importantes cambios metabólicos que ocurren en la 

semilla de encina después de la germinación, pero detectó solo un pequeño número de cambios 

en la abundancia de proteínas durante la germinación propiamente dicha (desde S0 hasta S3). 

Para aumentar la cobertura del proteoma, y detectar los cambios a nivel proteico que ocurren 

durante la germinación, se utilizó una aproximación “gel free -label free” para analizar la semilla 

madura y germinada. El análisis del extracto proteico total mediante nLC LTQ-Orbritrap 

permitió identificar cambios de abundancia de 153 proteínas. 

En el análisis proteómico, también fue incluido el estudio del fosfoproteoma y los 

cambios que ocurren a nivel de esta modificación postraduccional. En este análisis se detectó 

un total de 55 spots de fosfoproteínas cuyas intensidades mostraban diferencias 

estadísticamente significativas, de las cuales 20 fosfoproteínas fueron identificadas por MALDI-

TOF/TOF. Estas proteínas fueron representativas de las siguientes categorías funcionales: 

metabolismo de carbohidratos y de aminoácidos, plegamiento de proteínas,  defensa contra 

estrés oxidativo y estrés en general, y metabolismo de RNA. 

Como conclusión, los cambios en los perfiles proteómicos observados durante la 

germinación y el desarrollo de plántulas en estadio temprano en Q. ilex afectó mayormente a 

proteínas relacionados con el metabolismo de carbohidratos (i.e., degradación de azúcares de 

reserva, potenciación de la glucólisis), metabolismo de amino ácidos (i.e., utilización de 

metionina para la síntesis de metabolitos secundarios, incluyendo etileno) y respuesta a estrés, 

en completa concordancia con los resultados obtenidos a nivel transcripcional. Sin embargo, los 

pocos cambios a nivel transduccional que se detectaron durante la germinación (S0 a S3) 

sugieren que la semilla madura de Q. ilex tiene la maquinaria bioquímica necesaria para 

asegurar la rápida reactivación metabólica y poder empezar y terminar el proceso de 

germinación, así como las biomoléculas necesarias para la síntesis “de novo” requerida para el 

crecimiento en la post-germinación. Todo esto explicaría la facilidad de germinación de las 

semillas durante el almacenamiento, incluso en ausencia de imbibición. El análisis 

fosfoproteómico reveló cambios en la fosforilación de diversas proteinas implicadas en 

activación de rutas metabólicas necesarias para la germinación. Sin embargo, la metodología 

empleada permitió cubrir sólo una mínima parte del fosfoproteoma, así que para revelar 

completamente la regulación de las rutas metabólicas implicadas en la germinación se 

necesitaría análisis a mayor escala.  

Los resultados obtenidos en ente trabajo contribuyen sin duda al conocimiento de los 

cambios a nivel fisiológico y molecular que se producen durante la germinación y desarrollo 

temprano de la plántula de Quercus ilex, y son la base del conocimiento que a largo plazo 

podrían contribuir al manejo y mantenimiento de esta semilla recalcitrante para los proyectos 

de reforestación y programas de restauración en el marco del inminente cambio climático en 

las regiones mediterráneas. 
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General introduction 

Forests, including natural or artificial forests, cover approximately four billion 

hectares, about one-third of the total land area in the world. Forest trees constitute around 

82% of the continental biomass and harbor more than 50% of the terrestrial biodiversity, with 

all that it implies for gene pools, pharmaceuticals, and other unique and valuable goods and 

services. Natural forests have evolved and reproduced themselves naturally without suffering 

significant anthropogenic modifications; they include closed forests (of broad-leaved and 

coniferous species) and open forests (or savannahs, also known as thin forests). They are a 

source of raw material for many of the essential needs of humans, including building material, 

paper products, firewood for heat and cooking, energy and many tree-crop foods1.  

Forests contain large amounts of sequestered carbon, and their destruction or 

degradation (especially by burning) is estimated to contribute between10–30% of all CO2 

emissions into the atmosphere 2. Industrial and agricultural revolutions, urbanization, and 

other natural disasters, such as fire, pest and pathogens 3 have caused an important 

deforestation.  

Although, it is well recognized that study and research can have a decisive impact on 

sustainable and productive forest management, and despite of its economic and ecological 

relevance; biological, physiological and molecular studies on trees are almost insignificant if 

compared with model plant species, and especially with other living organisms such as 

Saccharomyces, mice or humans. Thus, an ‘‘ISI Web of Knowledge’’ search covering the period 

1990–2015 (February), using as a search string ‘‘forest trees’’ generated 113,300 hits (55,400 

for Pinus, 25,300 for Quercus, 18,700 for Populus), while the values for Arabidopsis thaliana and 

rice are 119,200 and more than 200,000, respectively.  

This Doctoral Thesis is focused on holm oak (Quercus ilex L. subsp. ballota [Desf.] 

Samp.) a dominant tree species in natural forest ecosystems over large areas of the Western 

Mediterranean Basin 4. Q. ilex forest maintenance and sustainability are facing important 

problems and challenges related to seed viability/conservation, and plant mortality in both 

adult trees and young one-year-old plants after field transplantation resulting from adverse 

environmental conditions like drought and the so-called decline syndrome 5. Nowadays, forest 

restoration and reforestation are high priority objectives and Q. ilex has become a priority tree 

species for reforestation programs 6. Thus, there is an increase in demand for holm oak 

seedlings and favouring their nursery production. In the present work transcriptomics, 

proteomics and metabolite analysis were combined to study at molecular level the germination 

and seedling growth of Q. ilex, to obtain a better understanding of molecular mechanisms 
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involved in these processes .This knowledge is essential for restoration and reforestation 

programs with this species. 

In this section, the biological system (Q. ilex, an orphan tree species), the biological 

process (germination and seedling growth) as well as the experimental approaches used 

(functional genomics: transcriptomic, proteomic and metabolites analysis) will be briefly 

introduced. 

1.1.  Research with forest trees: the case of Q. ilex  

The Fagaceae is a large angiosperm family with species spread throughout the 

northern hemisphere, from the tropical to the boreal regions. Oaks (Quercus), chestnuts 

(Castanea), and beeches (Fagus) are the only genera that are distributed in Asia, Europe, and 

North America, where they cover very large continuous forests and constitute important forest 

resources 7. The genus Quercus (oaks) is one of the most widespread in the northern 

hemisphere, being the main components of the tree stratum in many forests and woodlands 7. 

Holm oak (Q. ilex) is one of the main woody species in Mediterranean landscapes 4. This species 

covers in Andalusia (southern Spain) around 750,000 Ha 8 and, along with cork oak (Q. suber L.) 

constitute ‘‘dehesas’’ (Spanish) or ‘‘montados’’ (Portuguese), one of the most important 

European agroforest systems extending over almost four million hectares in the Iberian 

Peninsula 9.  

The “dehesa” ecosystem consists of oak woodland with an understory composed of a 

mosaic of croplands, grasslands and shrublands, where cattle, sheep, pigs and goats are 

extensively raised. Besides the great ecological importance, this species is of great economic 

interest because their seeds (acorns) are used for fattening pigs of the Iberian race, whose meat 

is the basis of a high-quality food industry 9-11. Most existing holm oak forests have originated 

through resprouting after disturbances such as fire, overgrazing, wood extraction or charcoal 

production 12. Besides all these factors, the survival of these oak species is threatened by, 

abandonment of agricultural practices, low natural regeneration and the oak decline and the 

current variable climatic conditions on Earth 13-14. 

Holm oak conservation and breeding programs are constrained by limited natural 

regeneration. Described as a recalcitrant species, maturation of holm oak acorns implies an 

incomplete desiccation process, which adapts the seed to a partial drought stress but does not 

completely inhibit the metabolism. Consequently, holm oak seeds suffer a rapid loss of viability 

on shedding 15. Hence, acorns have a limited ability to persist in the field and generate a 

seedling bank able to play a major role in natural regeneration of holm oak stands at short or 
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medium temporal scales. Seed orchards are usually unable to meet the demand of improved 

seeds for plantation, making vegetative propagation highly desirable 16. However, in oaks, the 

vegetative propagation by traditional techniques is impractical at the operational level. Somatic 

embryogenesis (SE) has been developed as a means of plant regeneration in several species of 

the Quercus genus 17. SE is currently one of the main biotechnologies used for mass propagation 

and cryopreservation of genetic resources, which enables the implementation of multivarietal 

forestry, therefore, it has a great potential in genetic improvement programs 10; 18. However, 

clonal regeneration by SE or organogenesis is still difficult for many woody species and is often 

limited to the use of juvenile explants 19. In a survey on forest biotechnology activities carried 

out by the FAO, 196 references, excluding genetic modifications, have been reported. Species 

surveyed belonged to 142 botanical genera, with 62% of the research carried out on less than 6 

genera, including Pinus (20%), Eucalyptus (11%), Picea (9%), Populus (9%), Quercus (7%), and 

Acacia (6%) 20. 

Tree breeding programs are designed to develop genetically improved varieties used 

for reforestation and afforestation, looking to increase the economic, environmental or social 

value of a forest, the latest being an integral component of most programs around the world. 

For such an objective, basic research and knowledge generated by the different physiological, 

biochemical and genetic disciplines, especially those related to molecular studies would be of 

great relevance 1; 21-22. 

The emergence of structural, functional, and comparative genomics has ushered in a 

new era in plant biology. Until the 1990’s, biological research was mainly focused on the in vitro 

studies of individual components in which genes and proteins were investigated one at a time. 

The development of high-throughput genomics technologies has made possible the ongoing 

and detailed characterization of the genetic foundations of life 23. This strategy later shifted to 

in vivo and molecular large-scale research. The advent of the genome era and the availability of 

a growing number of fully-sequenced genomes, from model species Arabidopsis 24, rice 25 to 

forest species as Populous trichocarpa 26 and Eucalyptus grandis 27, have changed the way in 

which research is performed, moving to the holistic, high-throughput analysis of the gene 

function by using the new “omics” technologies (transcriptomics, proteomics and 

metabolomics). In Quercus, a genera without a reference genome sequences, the expressed 

sequence tags (ESTs) generated by construction of suppression subtractive hybridization (SSH) 

libraries (i.e., Q. petraea 28) or using RNAseq (i.e,. Q. suber 29) are important genomic resources 

to study related species such Q. ilex in which molecular analysis are scarce. 
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1.2. Seeds, seed germination and seedling growth 

Plant seeds provide staple food for the world population. In addition, they are also 

important for the plant life cycle. Most plants generate their progenies through seeds, which 

can help them to avoid the adverse or even extreme environmental conditions. There are two 

types of seeds: orthodox seeds and recalcitrant. Orthodox seeds acquire desiccation tolerance 

during development, can dry to low water contents (generally less than 5%), and retain 

viability in the dry state for predictable periods. Recalcitrant seeds, on the other hand, are shed 

at high water contents, ranging from 0.4 to 4.0 g water per g dry matter (g/g) (≃40% of water 

content), are sensitive to desiccation, and are also metabolically active on shedding 30 (Fig. 1.1). 

 

Figure 1.1: Schematic representation of the water content during maturation, dispersion, and germination of 
orthodox and recalcitrant seeds. Dotted line represents the behavior of recalcitrant seeds (RS) from the end of 
their maturation to the beginning of germination, and continuous line that of orthodox seeds (OS). ED: embryo starts 
development; DRS: dispersion of recalcitrant seeds (open arrow); DOS: dispersion of orthodox seeds (blue arrow); 
DDT: development of desiccation tolerance; MD: beginning of maturation drying; GRS: germination of recalcitrant 
seeds; SOS: storage of orthodox seeds; GOS: germination of orthodox seeds. SOS can vary from days to millennia. 
Taken from Barbedo et al. 31 

Quercus ilex seeds are considered recalcitrant, as they do not undergo maturation 

drying, and they are shed at relatively high water content, compared to orthodox seeds (Fig. 

1.1). This makes them susceptible to desiccation injury, and to lose viability when stored for 

long periods, as reported in other Quercus spp. 15. Problems associated with the loss of viability 

during collection and processing, and the short storage life of these seeds can have serious 

impacts on the afforestation projects and restoration programmes. For these reasons, it is 

important to understand why Q. ilex seeds do not achieve dehydration and remain 

metabolically active. Different aspects of recalcitrant seed metabolism, linked to germination, 

have been extensively examined, the main being the acquisition of desiccation sensitivity. Since 

metabolism in recalcitrant seeds is active also after shedding, dehydration would lead to its 

imbalance, causing significant cell damage and death of the embryo/seed 32. However, to date, 
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the various deficiencies underlying desiccation sensitivity of recalcitrant seeds are generally 

conjectural as they are variably developed or expressed in the non-orthodox condition. A 

number of studies focused on germination, storage, desiccation sensitivity, and viability after 

storage of Q. ilex seeds have been conducted over the last few decades 15; 33-42. However the 

mechanisms involved in the recalcitrance of Q. ilex seeds remain elusive. 

In orthodox seeds, the acquisition of desiccation tolerance, the last period previous to 

seed maturity, is associated with multiple cellular processes, including synthesis of storage 

compounds and heat-shock proteins, osmoprotective proteins and carbohydrates (e.g. sucrose, 

raffinose, galactinol and trehalose), and activation of antioxidative defenses (Angelovici  et al. 

and Caccere et al.43-44 and refs. therein). Maturing seeds follow a metabolic switch that may 

indicate a mitochondrial transition between respiratory and anaerobe activity. The 

tricarboxylic acid cycle components and the respiratory rate decrease, whereas a strong 

accumulation of fumarate and succinate, linked to glyoxysomal fatty acid degradation by beta-

oxidation has been described 45. Genes coding for glycolysis, tricarboxylic acid cycle, cell wall 

metabolism, DNA synthesis and transport of amino acids and nucleotides are downregulated 

during seed desiccation. But many other genes related to the translation machinery, the 

proteosome machinery, the energy metabolism or the DNA repair, among others, are either 

upregulated during seed desiccation and/or highly abundant in the stored mRNA population of 

dry seeds. After all these changes, the orthodox seeds can tolerate desiccation and are storable 

in a dry state for a long period of time (after-ripening). During after-ripening, the seed 

maintains low level of metabolic activity and maintain the viability for long periods at the 

dormant stage 43.  

When dormancy is released, seeds can germinate under favorable conditions, specific 

to each species. The germination process, that begins with seed imbibition and finishes, proper 

sense, with the protrusion of the radicle, is divided into three distinct phases of water uptake 

(Fig. 1.2). Phase I starts with a fast water uptake and the activation of respiratory metabolism 

and transcriptional and translational activities. During this phase, known as ‘physical’ 

imbibition, a step-by-step activation of metabolic pathways results from the gradual increase in 

hydration, indicated with arrows in Fig. 1.2. When the level of hydration exceeds 60%, the rate 

of water acquisition slows (phase II) and new physiological mechanisms prepare cell expansion 

in the embryonic axes, culminating in the start of cell elongation. Osmotically active substances 

(solutes, such as sugars, amino acids, and potassium ions) are accumulated and acidification of 

the cell wall leads to a loosening of the bonds between cell-wall polymers. Later, in the phase III, 

water uptake resumes and testa rupture allows radicle protrusion. Here the sensu stricto, ends 

and starts the post-germination phase with high water uptake, mobilization of the major part of 
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reserves and first cell divisions, until the complete seedling development 46-48. Seeds imbibition 

causes changes in the level of different metabolites. Storage nutrients (lipids, proteins or 

starch) accumulated in the embryo’s cotyledon and/or endosperm start to be mobilized before 

completion of germination and are used in the post-germination steps to sustain the young 

plant in its early growth stages, before it becomes autotrophic. If the cell cycle resumes during 

germination, the first cell division (mitosis) occurs in the post-germinative phase 49. 

Figure 1.2: Phases of seed germination. (A). A rapid imbibition phase (phase I) launches the resumption of basic 
metabolism. When the level of hydration exceeds 60%, the rate of hydration slows (phase II) and new physiological 
mechanisms prepare cell expansion in the embryonic axes, culminating in the start of cell elongation. These events 
coincide with the activation of the H+ ATPase in the plasmalemma, which results in a further increase in water 
uptake (phase III) that may coincide with weakening of the surrounding tissues as the embryonic axes elongate and 
germination is completed. The arrows indicate the particular hydration levels that are known to correlate with 
individual metabolic events. (B). Morphology of seed germination and balance of ABA and GA necessary for 
germination. Adapted from Bove et al. 49 and  Rajjou et al.50. 

The phytohormone abscisic acid (ABA), a sesquiterpene compound resulting from the 

cleavage of carotenoids, controls storage reserve accumulation and desiccation tolerance of 
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orthodox seeds. During seed development, ABA inhibits precocious germination and induces 

primary dormancy 51. ABA regulates the expression of various sets of stress-responsive genes 

including those involved in the accumulation of compatible osmolytes and in the synthesis of 

LEA proteins, dehydrins and other stress-induced proteins. These protective proteins help in 

maintaining cellular water status and protect other proteins/enzymes and cellular organelles 

from collapsing under water stress (Sreenivasulu et al. 52 and refs. therein). At its basal level, 

ABA also regulates various physiological processes of plant development such as seed 

development, embryo morphogenesis and maturation, dormancy and synthesis of storage 

proteins and lipids. A rise in the ABA level is observed in the middle stage of seed development 

(early maturation). The majority of ABA accumulated during this stage is originated and 

transported from the mother plant (Kanno et al.53 and refs. therein) and triggers accumulation 

of many seed storage compounds. This “inherited” ABA is soon inactivated (catabolized 

through 8’-hydroxylation) and new ABA is synthesized in the zygotic tissues, giving rise to a 

second small peak of ABA accumulation in the late developmental stage of seed maturation, 

leading to acquisition of desiccation tolerance and seed dormancy (Kanno et al.53, Nambara et 

al.51 and refs. therein). 

Recent advances in Arabidopsis molecular genetics have revealed the core ABA 

signaling pathway. Central to ABA signaling in seeds are three core components: Pyrabactin 

Resistance/Pyrabactin-Like/Regulatory components of ABA receptors (PYR/PYL/RCAR), 

protein phosphatase 2Cs (PP2Cs) and sucrose non-fermenting 1 (SNF1)-related protein kinase 

2s (SnRK2s) 51 (Fig. 1.3). The binding of ABA to its receptor PYR/PYL/RCAR forms a complex, 

able to interact with and to inhibit the activity of PP2Cs, whih in turn negatively regulates ABA 

signaling through repression of SnRK2s, the positive regulators of downstream targets. 

Inhibition of PP2Cs leads to de-repression of SnRK2s, which phosphorylate and activate 

downstream transcription factors including the basic leucine zipper (bZIP)-type transcription 

factors ABRE (ABA-responsive element)-binding factors (ABFs) and ABSCISIC ACID 

INSENSITIVE5 (ABI5), the APETALLA 2 (AP2)-type transcription factor ABI4, and the B3-type 

protein ABI3. All these transcription factors are essential to regulate the expression of ABA 

responsive genes in seeds. In the absence of ABA, PP2Cs dephosphorylates and deactivates 

SnRK2s and the complete pathway is switched off. The ABA signaling pathway constituted by  

these molecular components appears to be conserved in the seeds of both dicot and monocot 

species 54. 
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Figure 1.3. Model for ABA signaling pathway in plants. Left, ABA absence: SnRK2 kinase is inactivated by protein 
phosphatase 2C (PP2C), and thus the downstream targets, including ABI5, are inactive. Right, ABA-binding alters the 
conformation of PYR/PYL/RCAR and inhibits the activity of PP2C. De-repressed SnRK2 kinase activates the 
downstream targets. PYR/PYL/RCAR, pyrabactin resistance/PYR-like/regulatory components of ABA receptors; 
PP2C, protein phosphatase 2C; SnRK2, SNF1-related protein kinase2; ABI5, ABA insensitive 5.  

Plant hormones function mostly in combination. Reduction in dormancy and increase 

in germination potential is accomplished by a decrease in sensitivity to germination-inhibiting 

signals (ABA) and a concomitant increase in the sensitivity of seeds to germination-stimulating 

signals, such as gibberellins (GA) (Fig 1.2B) 51. GAs negatively regulate those proteins that act as 

repressors of germination, and nowadays is accepted that the ABA/GA ratio is what regulates 

the metabolic transition required for germination 50 

Other hormones such as ethylene 55, brassinosteroids 56, salicylic acid 57, cytokinins, 

auxins 56; 58, jasmonic acid 59, and oxylipins 60 also influence germination. Germination related 

phytohormones form an interlocked signaling network where all interact with one another to 

finely control germination, particularly in response to environmental constraints. Though the 

interplay of ABA with other endogenous signals is less documented, it has been reported that 

ethylene collaborates with GA to counteract the germination-inhibiting effect of ABA, and that 

ABA inhibition by cytokinin is required before GA can be effective in lettuce. In addition, the 

content of jasmonic acid decreases while that of indole acetic acid increase have been reported 

as necessary during the early germination phase 42; 51; 59 . 

In contrast to the orthodox seeds, recalcitrant seeds contain embryos that do not 

tolerate desiccation. The reason(s) for the susceptibility to dehydration-induced damage in 

recalcitrant seeds remains unclear. It has been proposed that desiccation sensitivity and the 

precocious germination were caused by a low level of ABA in the embryo which would be 
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deprived of the ABA-driven accumulation of protective metabolites. Actually, the germination 

of some recalcitrant seeds (i.e,. Theobroma cacao L. and Avicennia marina) has been reported as 

similar to that of ABA anabolic mutations, which block ABA synthesis in the embryo axis, and of 

ABA-insensitive mutants displaying a lower sensitivity to the inhibiting effects of ABA 61. 

Moreover, it has been reported that the ABA content of Q. robur embryos decreased 

significantly (80%) at the end of maturation stage, what has been linked to the high precocious 

germination response of this plant 62. However, the levels of ABA were high (peaked at 44 ng 

g−1 DW) by the time of the medium-maturation phase 62 and hence the recalcitrance of Q. robur 

or other species like Araucaria angustifolia or Castanea sativa do not seem due to an inability to 

accumulate storage or dehydrin proteins (ABA-regulated) or soluble sugars (ABA-regulated) 

during the maturation process 36; 63. Some other reports indicate that recalcitrant embryos lack 

the ability for the metabolic switch-off that occur during the maturation of orthodox seeds, and 

this has also been proposed as one of the possible basic reasons for recalcitrant seeds being 

desiccation sensitive and lacking of quiescence period 32. 

The metabolism during the seed development of Inga vera, an important leguminous 

species whose seeds are among the most recalcitrant ones described up to date, where 

increased amounts of citric, glutamic, pyroglutamic, and aspartic acids are detected, 

corroborate the hypothesis of high metabolism in maturing seed, with a shift from fermentative 

to aerobic respiration at seed maturity 44. The elevated rate of aerobic respiration would be 

cause of a high level of reactive oxygen species (ROS) in mature recalcitrant seed. Accordingly, 

in the recalcitrant seeds of Q. robur, Acer saccharinum, Avicennia marina, Shorea robusta etc., 

has been reported an excessive production of ROS in concurrence with a lowering in 

antioxidant enzyme protection, which may lead to cellular damage and desiccation sensitivity 64 

and ref. herein. But in contrast, in A. angustifolia seed an increase in proteins related to energy 

metabolism has been reported during germination process 63, what suggests that the A. 

angustifolia non-germinating seed metabolism is not completely functional. 

Studies of the mechanisms of carbohydrate regulation in plants have shown that the 

sugars themselves are often the signal molecules. A crosstalk between sugars and hormones 

has been reported as a regulation process of seed germinations and seedling growth 65-66. In 

addition, among the sugars, raffinose-family oligosaccharides (RFO) have been traditionally 

associated with desiccation tolerance and seed longevity 67. RFO are suggested to protect 

cellular integrity during desiccation by stabilizing membranes during dehydration and provide 

substrates for energy generation during germination, and are also part of the scavenging 

machinery of hydroxyl radicals 43.  
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1.3. Functional genomics. “OMICS” approaches in plant biology research 

Large-scale genome projects have changed the biological experimentation paradigm 

study, as was exposed previously. The sequencing of the first plant genome by the end of 2000, 

that of Arabidopsis thaliana 24, ushered the research in plant biology into a new era. Genomics 

can be defined as the structural and functional analysis of the complete genome of an organism, 

including mapping, sequencing and gene expression profiling; it has often been referred to as a 

new field that has led to a paradigm shift in the way science is performed.  

During the late 1980s, structural genomics stated the generation and analysis of 

information about genes and genomes, thus long as that information could be produced 

systematically, by DNA sequencing projects. Currently the mass of genome data is being 

converted into gene-function data. The genome of Populus trichocarpa, the first tree species 

completely sequenced, is roughly 1/6 of the size of the human genome (≃3300 Mb) but this is 

an exception. The genome of most pines is more than 8-fold the human genome size 68 and 

contain about 30,000 genes as estimated from known plant genomes 21. In the Fagaceae family 

considering Quercus, Castanea and Fagus, the species of these three genera have the same 

number of chromosomes (2n = 24) 69, although their genome sizes vary almost two fold from 

544 Mb/1C in Fagus sylvatica to 941 Mb/1C and 980 Mb/1C in Castanea sativa and Q. ilex, 

respectively 70. Therefore, the size of genomes is one of the limitations in tree genomes 

sequencing, however, progress in technology has allowed the sequencing of many species that 

can be found in http://www.plantgdb.org/. During the middle 1990s, a new term, “functional 

genomics”, came to refer to generation and analysis of the information about what genes do. 

Since then, a number of other terms have been introduced: proteomics, transcriptomics, 

metabolomics. In fact, it was suggested that all such work be termed “omics” 71 (Fig. 1.4). 

 

Figure 1.4: The “omics” cascade. “Omics” data sets that describe virtually all biomolecules in the cell are starting to 
become available. From the top, DNA (studied by genomics) is first transcribed to mRNA (transcriptomics) and 
translated into protein (proteomics), which can catalyze reactions that act on and give rise to metabolites 
(metabolomics), glycoproteins and oligosaccharides, and various lipids. Adapted from Joyce and Palsson 72. 
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The large-scale experiments, which include structural genomics (DNA), 

transcriptomics (RNA), proteomics (protein), and metabolomics (metabolites), together 

constitute the methodological bases of the Modern Systems Biology 73, and have been recently 

incorporated to forest tree research 74-75. The most conclusive information about changes in 

gene expression levels can be gained from analysis of the varying qualitative and quantitative 

changes of messenger RNAs, proteins and metabolites. Classical biochemical assays, has been 

complemented with these new high throughput techniques. “Omics” researches should be 

viewed as synergistic with the more traditional studies of single molecules 76-77.  

Plant functional genomics has benefited largely from genomic research performed on 

model organisms such as Arabidopsis thaliana 24, the premier model system in plant science, 

Oryza sativa 25, and Populus trichocarpa 26. Model systems have provided excellent bases for the 

understanding of a wide range of biological processes. For Arabidopsis, large sets of genetic 

resources and analytical tools are now available to assist studies on the functions of plant genes, 

available in The Arabidopsis Information Resource (TAIR) (http://www.arabidopsis.org/). 

However, transferring information from Arabidopsis to other plant species still remains a 

considerable challenge 78. 

The following sections briefly introduce “omics” technologies that are used by 

researchers to investigate a biological process. 

1.3.1. Transcriptomics approaches 

The term ‘transcriptome’ encompasses all the genomic counterparts which are 

expressed as RNA transcripts, including coding (mRNA) and non-coding (e.g. tRNA or miRNA) 

RNAs at a given time in a cell or population of cells under a given set of environmental 

conditions 76. A transcriptome is a snapshot of the gene expression provided by capturing the 

total RNA, which proporcionate a view into the gene action within a cell or tissue at a particular 

moment in time, as it permit to quantify transcripts. This quantification revelates the 

expression of active genes but also the combination of all isoform sequences (produced through 

alternative splicing and variant alleles) within the cells. 79. The field of transcriptomics provides 

information about both the presence and the relative abundance of RNA transcripts, thereby 

indicating the active components within the cell 72. Transcriptomics has been used to study 

both the whole plant as well as comparative biology. This helps to comprehend the key genes 

responsible for general development or response to an external stimuli 80. 

Among the transcripts quantification techniques, northern blotting and quantitative 

RT-PCR (reverse transcription –RT, semi-quantitative polymerase chain reaction -PCR and 

qRT-PCR) 81 can be used for transcript analysis when a few genes are the interest. Over the 
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years, tremendous advancement has been made in techniques for transcriptome analysis (Fig. 

1.5). Many high-throughput analytical methods for gene expression profiling were developed, 

including microarray technology 82, differential display 83, serial analysis of gene expression 

(SAGE) 84, massively parallel signature sequencing (MPSS) 85, suppression subtractive 

hybridization (SSH) 86, expressed sequence tag (EST) sequencing 87 and most lately, the ultra-

high-throughput sequencing (UHTS) technologies, often referred to as next-generation 

sequencing (NGS) 88, that has revolutionized the way and pace in which the whole 

transcriptome is sequenced, which is called RNAseq. 

 

Figure 1.5. Progress in methods for expression analysis of genes from a few genes to multiple ones and 
whole transcriptome analysis. (A). Northern blotting is used for the detection of a single/few genes by 
hybridization of labeled probes to localized RNA samples run on an agarose gel and transferred to a membrane. (B). 
Semi-quantitative PCR is a visual estimation of the difference in expression level of one or few genes, by PCR, in the 
cDNA samples reverse transcribed from RNA. (C). Quantitative PCR is a real time estimation of the levels of 
transcript of one/few genes, often calculated as fold changes with respect to a control gene. D. Differential display 
RT-PCR has been used to determine the differentially expressed genes between a control and test samples. (E, F). 
Serial analysis of gene expression and massively parallel signature sequencing determine the transcript number of 
known and novel genes in the tissues tested in terms of short sequences called as tags. (G). In microarray, RNA 
hybridized to probes spotted on a chip gives a signal value, which can be used to detect the differentially expressed 
as well as specific known genes. (H). RNA sequencing is transcript sequencing by NGS and shows the transcript 
number of known as well as novel genes along with alternative splicing, Adapted from Agarwal et al. 80. 

The suppression subtractive hybridization (SSH) methods for the construction of 

cDNA libraries were developed for the detection of differentially expressed genes in two 
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distinct situations 86. SSH permits a massive identification of genes differentially expressed at 

the mRNA level, resulting in a gene candidate list that, as it happen in the case of microarrays, 

have to be further validated by more accurate technique, such as real-time RT-PCR. 

The methodology behind this technique is based on DNA hybridization. In contrast to 

other platforms for gene expression studies, SSH methods are non-target approaches, 

characterized by the independence of the previous knowledge of the gene sequences, becoming 

a key technology in the study of orphan species, such as Q. ilex. Furthermore, no specialized 

equipment is needed, since it makes used of traditional molecular biology methods. A critical 

issue in the application of SSH techniques is the difficulties to detect low abundance transcripts. 

To solve this problem, a protocol known as PCR-select cDNA subtraction is being nowadays 

routinely used in laboratories. It is based on the selective amplification of the differentially 

expressed sequences 86. This technique has been used to study a wide variety of processes in 

many plant species such as: identification of genes involved in fruit ripening in oil palm (Elaeis 

guineensis Jacq) 89, heat stress in leaves of Pinellia ternate 90, pathogens infection 91, seed 

development in Phaseolus vulgaris 92 oil metabolism in maturing seeds of Jatropha curcas 93 and 

seed germination 94. Also some SSH studies have centered in forest tree species such as pine 95 

and oak 28; 96. As discussed in chapter 5 of this Thesis, two SSH libraries were constructed to 

investigate genes related to Q. ilex seeds germination and seedling growth. 

Although it is not a “omics” methodology, real-time qRT-PCR is one of the best 

established technologies of the genomic era for detecting and quantifying mRNA in biological 

samples 97. The adoption of this technology in individual research laboratories has resulted in 

its extensive application to functional genomics studies. Real-time RT-PCR has the particularity 

of the use of fluorochromes that allow monitoring the amplification of the different reactions in 

the same experiment and in each RT-PCR cycle. Over the past 10 years, the popularity of this 

method has grown exponentially, with the publication of well over 25,000 papers from diverse 

fields of science, including agricultural, environmental, industrial, and medical research, 

making reference to qRT-PCR data 98. Several factors have contributed to the transformation of 

this technology into a mainstream research tool. In addition to its high sensitivity, its large 

dynamic range (>107-fold) allows straight forward comparison between RNAs that differ 

widely in their abundance. It does not require post-PCR processing, in contrast with most 

transcriptomic techniques, and it has the potential for high throughput. Many of the key 

proteins, such as the transcription factors, are found in low abundance that real-time RT-PCR 

quantification constitutes the only technique with enough sensitivity to measure reliably their 

expression “in vivo” 97; 99. 
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The qRT-PCR can be used to provide both relative and absolute (number of molecules) 

quantification of specific mRNA molecules. The relative qRT-PCR method estimates fold change 

of expression difference between mRNAs from target and reference genes relative to a control 

condition through 2-∆∆Ct calculation100. Relative quantification using RT-qPCR has been used in 

diverse plant species 101-103. However, the problem with this relative quantification is its 

foundation on the expression of housekeeping genes, i.e., genes that are expected to have a 

constant expression under the experimental conditions, for this reason a previous analysis to 

validate housekeeping gene in the experimental conditions are necessary 104-105. 

Absolute quantification of transcription allows the precise determination of copy 

number per cell, total RNA concentration, or unit mass of tissue. It requires the construction of 

an absolute standard curve, constructed by amplifying known amounts of the target under 

conditions identical to those of the sample 97; 106. This method has the advantage of giving 

information on the real biological relevance of a transcript abundance change, since a small 

relative variation in an abundant transcript may have more importance than a large relative 

change in rare or infrequent transcripts 107. Absolute quantification by real-time qRT-PCR has 

not been extensively applied in plants 108-109. All the characteristics of qRT-PCR make it a very 

suitable technique for the validation of the huge amount of results obtained with other 

transcriptomic platforms, such as microarray or SSH. In this work, the absolute quantification 

of mRNAs from specific groups of genes was used to analyze genes implicated in germination 

(Ch. 4) and to verificate the results obtained by SSH (Ch. 5). 

1.3.2. Proteomics approaches 

The term “proteome” was coined by M. Wilkins and first used during the Siena 

meeting in 1994 (2-D Electrophoresis-From Protein Maps to Genomes, Siena, Italy, September 

5-7, 1994) considered the year of birth for “proteomics”. In this meeting Prof. Wilkins 

presented, for the first time, to the audience the term “proteome”, in an attempt to circumvent 

the phrase “all proteins expressed by a genome, cell or tissue” while communicating his work 

110. The complexity of the proteome is much greater than that of the transcriptome due to the 

huge amount of possible post-translational modifications (PTMs) (phosphorylation, 

glycosylation, nitrosilation, etc), making the former highly dynamic. The main goal of 

proteomics is to study, know and understand “how”, “where”, “when”, and “what for” are the 

several hundred thousand of individual protein species/forms 111 produced in a living organism. 
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Different proteomics sub-areas can be defined according to the specific objectives:  

i) Descriptive Proteomics, including subcellular proteomics (cataloguing as many 

as possible proteins species or forms from the experimental system, and hence answering to 

the where and when questions). 

ii) Comparative Proteomics (as biological knowledge mainly comes from 

comparative studies, it is pretended to establish differences in the protein profile among 

genotypes, including transgenic and mutants, type of cells, tissues, and organs, developmental 

stages and external factors, and hence answering to the “what for”). 

iii) Posttranslational Modifications (modifications to the first translation product 

and protein degradation, type of modification, modified residue and biological consequences, 

answering to how). 

The workflow of a standard mass spectrometry (MS)-based proteomics experiment 

includes all or most of the following steps: experimental design, sampling, tissue/cell or 

organelle preparation, protein extraction/fractionation/purification, labelling/modification, 

separation, MS analysis, protein identification, statistical analysis of data, validation of 

identification, protein inference, quantification, and data analysis, management and storage. 

(Fig. 1.6).  

Two MS-based proteomics approaches exist, namely, bottom-up and top-down 

proteomics, each with its own advantages and disadvantages for the identification of proteins 

and protein interacting partners, protein quantification, and analysis of PTMs. Peptide centric 

proteomics (bottom-up) are based on protein digestion, peptide identification, and later 

protein inference. In contrast, top-down proteomics, an emerging technology that studies 

proteins preserving the entire protein structure including PTMs, instead of measuring peptides 

produced from them by proteolysis 112. This approach was initially limited to small proteins, 

however the use of new analytical procedures for protein ionization and dissociation has 

extended it use for proteins up to 200 kDa 113. The botton-up has been used for first time in 

plants for characterizing the chloroplast proteins 114 or domain-domain interaction 115. 

However the contribution of this technique in plant proteomics is very scarce.  

The different strategies for a proteomics experiment are the result of different 

protocol combinations in a specific sequence, and can be named and grouped into different 

categories. The following make reference to the evolution of the workflows and 

instrumentation in the most commonly employed bottom-up (peptide centric) approach. 
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Figure 1.6: Workflow of a proteomics experiment, from experimental design to data analysis and 
management. It includes alternative, complementary approaches or strategies, based on MS analysis of proteins 
(top-down) or tryptic peptides (bottom-up), either gel-based or gel-free and label-based (isotopic, isobaric) or label-
free. PTM: posttranslational modifications; LC: liquid chromatography; iCAT; isotope-coded affinity tags; ITRAQ: 
isobaric tag for relative and absolute quantitation; SILAC: stable isotope labeling by amino acids in cell culture; MS: 
mass spectrometry; PMF: peptide mass fingerprinting. Adapted from Jorrin-Novo et al116. 

As for other biological systems, i.e., bacteria, fungi or animals, the dawn of plant 

proteomics can be defined by the use of 2-DE electrophoresis and N-terminal sequencing for 

identifying protein spots. Two dimensional electrophoresis reproducibility was moderate and 
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the rates of protein identification were low, mostly because of the absence of plant sequences in 

public databases. Mid-late 2000’s brought the explosion of plant proteomics. During that dates 

the easiness and availability of high-throughput two dimensional electrophoresis systems (i.e., 

DodecaCell from Biorad, or Ettan systems from Amersham) exponentially grew and so the 

number of plant species that were studied. Bigger gels and narrower isoelectric point (pI) 

ranges allowed the resolution of thousands of spots per gel and the introduction of fluorescent 

labels and stain incremented the sensibility of this technique also given the opportunity for gel 

multiplexing.  

The development of sharper imaging systems and improved versions of proteomic 

software allowed faster and more accurate analyses 117. At the same time N-terminal 

identification of proteins was replaced by MALDI-TOF based peptide mass fingerprinting (PMF), 

despite this method was really useful only in fully sequenced species. New identification 

technologies, based on MALDI-TOF/TOF or LC-MS/MS, allowed an easy pipeline for de novo 

assembling. The algorithms for protein identification became tolerant to substitutions, making 

easier the cross-species protein identification 118-119. The appearance of these tools together 

with the release of new plant genomes and the improvement of available sequence data 

repositories 120 increased the number of identified spots in a wider set of plant species.  

The late 2000’s were also defined for the introduction of monodimensional gel free 

LC-MS systems on plant proteomics, which were initially based on the isotopic labeling of 

peptides. In general, labeling technologies have not been popular in plant proteomics despite it 

can be considered as second generation of proteomics. Differential Gel Electrophoresis, DiGE, 

has been reported for first time in 1997 121. However only a small number of plant proteomics 

work used this technology since 2006 (for a review see Jorrín et al. 2009). This methodology 

has two major disadvantages, in plant systems: it is difficult to get a reproducible labeling and it 

is pricey 122. Some methodologies that use labeling technologies are isotope-coded affinity tags 

(ICAT) 123, stable isotope labeling by amino acids in cell culture (SILAC) 124, isobaric tag for 

relative and absolute quantitation (ITRAQ) 125, these approaches were quickly outdated by label 

free MS-based proteomics. 

The development of gel-free label-free methodologies has provided a new 

environment for proteome research. The initial configurations for these studies were based on 

a nanoflow chromatography systems coupled to triple quadrupoles or ion traps, however the 

sensitivity, resolution, and speed limited the characterization and quantification of full 

proteomes. The introduction of a next generation mass spectrometers in proteomics, mainly 

the Orbitrap 126-127, allowed an unprecedented capability for a deep characterization of the 

peptides present in a sample with sub ppm accuracy 128. Nowadays this family of instruments 
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can be considered the gold standard in proteomics and metabolomics as they provide higher 

resolution, speed, and dynamic range compared to classic quadrupole based instruments. The 

first applications of Orbitrap in proteomics dated from late 2005-2006 129. In early 2008 this 

instrumentation was first applied in plants, specifically for the characterization of the 

chloroplast proteome 130. The increased efficiency of chromatographs, search algorithms such 

as Mascot, SEQUEST and the improvement of genome annotations allowed the characterization 

and quantification of near complete proteomes, in Saccharomyces for example 131. Current 

contributions in plant proteomics can describe thousands of proteins in model species. Close 

results have been reported in non-model species such as holm oak or pine when using custom 

databases that gathered all available information in public databases 132. 

One of the major drawbacks of the use of label-free mass spectrometry is the difficulty 

of obtaining precise quantitation, despite the recent advances in algorithms for processing peak 

intensities and area integrations. Though current precision can be considered good enough for 

relative abundance comparison in full proteomes, alternative procedures should be used for 

very accurate quantitation of targeted proteins 133. 

An important area in proteomics is PTMs, the final turning for the proteins. PTMs are 

gaining increasing recognition as regulators of cellular processes, as they are known to affect 

properties such as protein activity, stability and localization. They are also involved in signaling, 

where not only signal amplification (i.e., signal cascades) is important, but also the rapid 

removal of the signal as in the case for reversible phosphorylation and the kinase/phosphatase 

networks. To understand how PTMs affect biological processes, it is necessary to know which 

PTM sites change in a protein and how they change 134. PTMs, with the exception of partial 

proteolysis, involve the addition of different molecules or chemical groups are show in Fig. 1.7. 

Although hundreds of different PTMs have been reported, including phosphorylation, 

glycosylation, prenylation, redox proteome, ubiquitination 135, few of them have been studied. 

Recent and ongoing development of methodologies has made possible large-scale analysis of 

PTMs 136. Protein phosphorylation was one of the first to be studied as a major field within 

proteomic analysis because it is the common mechanism for altering the cellular activity of the 

protein. In plant science, phosphorylation is still the most prominently studied PTM (>75% of 

the available literature) followed by glycosylation and ubiquitination 137.  

Phosphorylation of proteins is a key regulator of intra-cellular biological processes 

and is a reversible modification affecting both the folding (conformation) and function of 

proteins and regulating enzyme activities, substrate specificities and protein localization, 

complex formation and degradation 138. The relevance of phosphorylation is highlighted by the 

number of genes involved in phosphorylation processes. Regulation of this modification is 
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tightly controlled by two enzymes, protein kinases (attaching of phosphate groups to amino 

acid residues) and phosphatases (removing of phosphate groups) 137. 

The variety of functions in which phosphorylated proteins are involved depends on 

the number (multiple residues within a protein can be phosphorylated by different kinases) 

and the sites of phosphorylation. Multiple sites of phosphorylation allow a protein to adapt 

several different functions, depending on which phosphorylation site is modified. This is 

highlighted by phosphorylation at one particular amino acid residue which may lead to 

conformational change that in turn allows for the phosphorylation of different amino acid 

residues within the same protein, or on the other hand, prevent the phosphorylation of nearby 

amino acids through steric hindrance 139. The four most common types of phosphorylation 

occurring on amino acids are: O-phosphates, N-phosphates, S-phosphates and acyl-phosphates. 

O-phosphates are the most common class and they are mostly commonly attached to serine 

(Ser)-, threonine (Thr)- and tyrosine (Tyr)-residues (Fig. 1.7). The occurrence of 

phosphorylation on Ser- and Thr-residues is more frequent than on Tyr-residues. N-, S- and 

acyl phosphorylations are far less common 137.  

There are several methods for detecting phosphoproteins. One of the most sensitive 

methods is the radiolabelling of the phosphate groups using 32P or 33P (either in vivo or in vitro) 

followed by radio-immunoblotting 140-141. The major advantage of this radiolabelling technique 

is the ability to detect all different types of phosphorylations and the signals can be quantitated, 

but 32P is toxic for many cells and will, over time, cause damage to the cell. In 1981, the first 

documented phospho-antibody was produced in rabbits immunized with benzonyl 

phosphonate conjugated to keyhole limpet hemocyanin (KLH) 142. This antibody broadly 

recognized proteins containing phosphotyrosine. After that, there has been a rapid 

development in production of the phospho-antibodies. Nowadays, a large amount of phospho 

specific antibodies targeted to different amino acids (Ser, Thr, Tyr) at distinct sites in proteins 

have been produced, and widely used in the basic and clinic research 143. 

Phosphoproteins can be separated according to their pI and molecular weight using 2-

DE gel electrophoresis (2-DE PAGE) and lately visualized on the gel by using phosphospecific 

stains. Commercially available phospho-stains are less sensitive but their use more convenient 

than techniques such as radiolabelling. Some phosphospecific stains such the fluorescent Pro-Q 

DPS or Pro-Q Diamond 144 bind directly to the phosphate moiety of phosphoproteins with high 

quantitative linearity The stain is compatible with other staining methods (i.e., SYPRO-Ruby for 

total protein staining) and subsequent MS analysis 137. Protein phosphorylation events are 

detected by increases in amino-acid residue mass of +80 Da, which indicates the addition of 
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HPO3. Sites of phosphorylation can be identified from mass shifts in fragment ions generated by 

gas-phase fragmentation (MS/MS) of phosphopeptides 135.  

 

Figure 1.7: Posttranslational modification. Diagram which shown the amino acid residues of protein as target of 
modification. Adapted from http://upload.wikimedia.org/wikipedia/commons//53/ GeneticCode 22. svg 

http://upload.wikimedia.org/wikipedia/
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Low sensitivity is a frequent obstacle when analyzing phosphopeptides or 

phosphoproteins by MS. Sub-stoichiometric phosphorylation often occurs, reducing 

phosphoanalyte abundances compared to corresponding unphosphorylated forms. In addition, 

phosphopeptides may show inefficient ionization or may be lost preferentially during handling 

by adsorption to metal or plastics. Thus, a large repertoire of techniques has been developed to 

enrich phosphoanalytes and improve detection sensitivity, particularly for highly complex 

samples. Many of these make use of reactive chemistries for covalent coupling or affinity 

purification, the last one are the most used. Strategies for noncovalent enrichment of 

phosphopeptides and proteins have used affinity purification based on charge properties and 

antibody recognition. Widespread methods use immobilized metal affinity chromatography 

(IMAC), which adsorbs phosphopeptides to chelated metal ions (Fe3+, Ga3+) through metal-

phosphate ion-pair interactions. Titanium dioxide (TiO2) and zirconium dioxide (ZrO2) are also 

used to adsorb phosphopeptides, through bidentate interactions. Ion exchange resins allow 

partial enrichment of phosphopeptides based on charge separation, and high selectivity has 

been reported with metal affinity resins in combination with ion exchange chromatography. In 

addition, highly specific antibodies to phosphotyrosine have enabled selective 

immunopurification of phosphotyrosine-containing phosphopeptides as well as 

phosphoproteins 135. 

All affinity capture methods suffer from phosphopeptide losses resulting from poor 

binding or recovery, and any method may yield biased results owing to chemical selectivity. 

Recovery of peptides by any method is difficult to estimate because total numbers of 

phosphopeptides are usually unknown. However, analyses of simple mixtures suggest that 30–

50% of peptide sequences are recovered by Fe3+-IMAC. Therefore, comparative 

phosphoproteomics analyses by using these methods are no reproducible.  

In recent years, large-scale studies on protein phosphorylation based on mass 

spectrometry have been conducted on different organisms. Some of them were carried out in 

plants 144-149.As a result, a number of phosphorylation databases emerged, most of which focus 

on mammalian and prokaryotic systems. Phospho.ELM 150 contains verified eukaryotic 

phosphorylation sites, but most are from mammals. PHOSIDA contains large-scale 

phosphorylation data in Homo sapiens, Bacillus subtilis and Escherichia coli 151. There is also 

phosphorylation databases concentrated on plants. PlantsP 152 that contains phosphorylation 

data on a few different plants, and are focused on the annotation of plant protein kinases and 

protein phosphatases. PhosphAt 153 provides a database of phosphorylation sites collected from 

current literature solely for the model organism Arabidopsis thaliana. P3DB database provides 

a resource of protein phosphorylation sites from various plant sources and contains multiple 
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embedded search capacities for querying the database. Most of the datasets in the database 

cames from large-scale experiments (MS/MS), although several smaller datasets were also 

deposited 154-155. 

1.3.3. Metabolomics approaches 

The term “metabolome”, suggested by Oliver et al. (1998), includes the entire set of 

small molecule metabolites, produced by any organism. Metabolomics, is hence, the 

comprehensive analysis of all metabolites in an organism under a given set of conditions 76. The 

metabolome represents the output that results from the cellular integration of the 

transcriptome and proteome, and therefore provides not only a list of metabolite components 

but also a functional readout of the cellular state 72. A brief introduction of metabolomics is 

presented here, though in this work, the metabolomics approach was not used. 

Notwithstanding, some specific metabolites were measured to verify the hypothesis arising 

from functional genomic studies. 

An estimated 200,000 metabolites exist in plant, although only ~50,000 have been 

elucidated. Metabolic profiles provide a biochemical phenotypic assessment of the plants and 

hence are the most valuable in systems biology studies, so regarded as a cornerstone of systems 

biology 76; 156-159. 

The general workflow of a metabolomic analysis comprises of four main stages: 

preparation of the sample, data acquisition using analytical methods, data mining and 

compound identification plus quantification using the statistical and bioinformatics analyses. 

The final task is to draw meaningful biological interpretations from the analyzed data. Various 

analytical platforms may be used in metabolomics like, nuclear magnetic resonance (NMR), LC-

NMR; MS approach such as: gas chromatography-MS (GC-MS), capillary electrophoresis–MS 

(CE-MS), liquid chromatography–MS (LC-MS), LC–electrochemistry–MS (LC-EC-MS), direct 

infusion MS (DIMS), fourier transform ion cyclotron MS (FTMS); infrared spectroscopy (IR), 

thin layer chromatography (TLC), high-performance liquid chromatography (HPLC) equipped 

with different kinds of detectors: UV or photodiode array (PDA), fluorescent, electrochemical, 

etc., Fourier transform infrared (FT-IR)- and Raman spectroscopies. Amongst these, NMR and 

MS are the chiefly applied 76.  

  



 
31 Doctoral Thesis 

1.4. References 

1. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nature Reviews 
Genetics 12: 111-122 

2. FAO (2009) State of the World’s Forests 2009. Electronic publishing policy and support branch, 
communication Division. FAO, Rome. 

3. Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in 
plants. Plant Pathology 57: 792-808 

4. Pulido F , D  az M,  idalgo de Trucios S  (2001) Size structure and regeneration of Spanish holm oak 
Quercus ilex forests and dehesas: effects of agroforestry use on their long-term sustainability. Forest 
Ecology and Management 146: 1-13 

5. Gallego FJ, de Algaba AP, Fernandez-Escobar R (1999) Etiology of oak decline in Spain. European 
Journal of Forest Pathology 29: 17-27 

6. MAPA (2006) Forestación de tierras agrícolas. Ministerio de Agricultura y Pesca, Madrid, pp 1-373 

7. Kremer A, Abbott A, Carlson J, Manos P, Plomion C, Sisco P, Staton M, Ueno S, Vendramin G (2012) 
Genomics of Fagaceae. Tree Genetics & Genomes 8: 583-610 

8. Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural 
ecosystem mimic. Agroforestry Systems 45: 57-79 

9. Cañellas I, Roig S, Poblaciones MJ, Gea-Izquierdo G, Olea L (2007) An approach to acorn production in 
Iberian dehesas. Agroforestry Systems 70: 3-9 

10. Barra-Jiménez A, Blasco M, Ruiz-Galea M, Celestino C, Alegre J, Arrillaga I, Toribio M (2014) Cloning 
mature holm oak trees by somatic embryogenesis. Trees - Structure and Function 28: 657-667 

11. Vicente Á, Alés R (2006) Long Term Persistence of Dehesas. Evidences from History. Agroforestry 
Systems 67: 19-28 

12. Gracia M, Retana J, Picó FX (2001) Seedling bank dynamics in managed holm oak (Quercus ilex) 
forests. Annals of Forest Science 58: 843-852 

13. Corcobado T, Cubera E, Moreno G, Solla A (2013) Quercus ilex forests are influenced by annual 
variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. 
Agricultural and Forest Meteorology 169: 92-99 

14. Plieninger T, Pulido FJ, Schaich H (2004) Effects of land-use and landscape structure on holm 
oakrecruitment and regeneration at farm level in Quercus ilex L. dehesas. Journal of Arid 
Environments 57: 345-364 

15. Pasquini S, Mizzau M, Petrussa E, Braidot E, Patui S, Gorian F, Lambardi M, Vianello A (2012) Seed 
storage in polyethylene bags of a recalcitrant species (Quercus ilex ): analysis of some bio-energetic 
and oxidative parameters. Acta Physiologiae Plantarum: 1-12 

16. Savill P, Kanowski P (1993) Tree improvement programs for European oaks: goals and strategies. 
Annals of Forest Science 50: 368s-383s 

17. Vieitez A, Corredoira E, Martínez M, San-José M, Sánchez C, Valladares S, Vidal N, Ballester A (2012) 
Application of biotechnological tools to Quercus improvement. European Journal of Forest Research 
131: 519-539 

18. Lelu-Walter M-A, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques L (2013) Somatic 
embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future 
direction. Tree Genetics & Genomes 9: 883-899 

19. Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular 
of conifers. Plant Cell, Tissue and Organ Culture (PCTOC) 100: 241-254 

20. FAO (2004) Preliminary review of biotechnology in forestry, including genetic modification. forest 
genetic resources working paper FGR/59E. 

21. White TL, Adams WT, Neale DB (2007) Forest Genetics. CABI Publishing, Wallinford, UK 

22. Abril N, Gion J-M, Kerner R, Müller-Starck G, Cerrillo RMN, Plomion C, Renaut J, Valledor L, Jorrin-
Novo JV (2011) Proteomics research on forest trees, the most recalcitrant and orphan plant species. 
Phytochemistry 72: 1219-1242 

23. Wullschleger SD, Tuskan GA, DiFazio SP (2002) Genomics and the tree physiologist. Tree Physiology 
22: 1273-1276 



 
32 Chapter 1: General introduction 

24. TAG I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 
408: 796-815 

25. Sequencing Project International Rice G (2005) The map-based sequence of the rice genome. Nature 
436: 793-800 

26. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, 
Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, 
Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, 
Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, dePamphilis C, Detter 
J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, 
Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, 
Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, 
Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé J-C, Locascio P, Lou Y, 
Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, 
Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, 
Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, 
Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg 
G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & 
Gray). Science 313: 1596-1604 

27. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice 
H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, van 
der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni 
CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye C-Y, Li T, Sterck L, Vanneste K, Murat F, Soler M, 
Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, 
Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, 
Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Kulheim C, Foley W, Carocha V, Paiva J, Kudrna D, 
Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, 
Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, 
Salse J, Van de Peer Y, Rokhsar DS, Schmutz J (2014) The genome of Eucalyptus grandis. Nature 510: 
356-362 

28. Derory J, Léger P, Garcia V, Schaeffer J, Hauser M-T, Salin F, Luschnig C, Plomion C, Glössl J, Kremer A 
(2006) Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytologist 170: 
723-738 

29. Pereira-Leal J, Abreu I, Alabaca C, Almeida M, Almeida P, Almeida T, Amorim M, Araujo S, Azevedo H, 
Badia A, Batista D, Bohn A, Capote T, Carrasquinho I, Chaves I, Coelho A, Costa M, Costa R, Cravador 
A, Egas C, Faro C, Fortes A, Fortunato A, Gaspar M, Goncalves S, Graca J, Horta M, Inacio V, Leitao J, 
Lino-Neto T (2014) A comprehensive assessment of the transcriptome of cork oak (Quercus suber) 
through EST sequencing. BMC Genomics 15: 371 

30. Pammenter NW, Berjark P (2000) Aspects of recalcitrant seed physiology. R. Bras. Fisiol. Veg. 12 56-
69 

31. Barbedo CJ, Centeno DdC, Ribeiro RdCLF (2013) Do recalcitrant seeds really exist? Hoehnea 40: 583-
593 

32. Berjak P, Pammenter N (2013) Implications of the lack of desiccation tolerance in recalcitrant seeds. 
Frontiers Plant Sciences 4 

33. Bonner FTV, John A.  (1987) Seed Biology and Technology of Quercus. Gen. Tech. Rep. SO-66. New 
Orleans, LA: U.S. Dept of Agriculture, Forest Service, Southern Forest Experiment Station 

34. Caliskan S (2014) Germination and seedling growth of holm oak (Quercus ilex L.): effects of 
provenance, temperature, and radicle pruning. iForest - Biogeosciences and Forestry 7: 103-109 

35. Connor KF, Sowa S (2003) Effects of desiccation on the physiology and biochemistry of Quercus alba 
acorns. Tree Physiology 23: 1147-1152 

36. Finch-Savage WE, Blake PS (1994) Indeterminate development in desiccation-sensitive seeds of 
Quercus robur L. Seed Science Research 4: 127-133 

37. Finch-Savage WE, Blake PS, Clay HA (1996) Desiccation stress in recalcitrant Quercus robur L. seeds 
results in lipid peroxidation and increased synthesis of jasmonates and abscisic acid. Journalof 
Experimental Botany 47: 661-667 

38. Goodman RC, Jacobs DF, Karrfalt RF (2005) Evaluating desiccation sensitivity of Quercus rubra acorns 
using X-ray image analysis. Can. J. For. Res. 35: 2823–2831 



 
33 Doctoral Thesis 

39. Liu Y, Liu G, Li Q, Liu Y, Hou L, Li G (2012) Influence of pericarp, cotyledon and inhibitory substances 
on sharp tooth oak (Quercus aliena var. acuteserrata) germination. PLoS ONE 7: e47682 

40. Berjak P, Pammenter NW (2008) From Avicennia to Zizania: seed recalcitrance in perspective. Annals 
of Botany 101: 213-228 

41. Ntuli TM, Finch-Savage WE, Berjak P, Pammenter NW (2011) Increased drying rate lowers the critical 
water content for survival in eEmbryonic axes of english oak (Quercus robur L.) seeds. Journal of 
Integrative Plant Biology 53: 270-280 

42. Pieruzzi FP, Dias LLC, Balbuena TS, Santa-Catarina C, Santos ALWd, Floh EIS (2011) Polyamines, IAA 
and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and 
Ocotea odorifera (Angiosperm). Annals of Botany 108: 337-345 

43. Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and 
germination. Trends Plant Sci 15: 211-218 

44. Caccere R, Teixeira SP, Centeno DC, Figueiredo-Ribeiro RdCL, Braga MR (2013) Metabolic and 
structural changes during early maturation of Inga vera seeds are consistent with the lack of a 
desiccation phase. Journal of Plant Physiology 170: 791-800 

45. Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis 
seed development and germination is associated with temporally distinct metabolic switches. Plant 
Physiology 142: 839-854 

46. Bewley JD (1997) Seed Germination and Dormancy. The Plant Cell Online 9: 1055-1066 

47. Nonogaki H, Bassel GW, Bewley JD (2010) Germination—Still a mystery. Plant Science 179: 574-581 

48. Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. Journal 
of Experimental Botany 

49. Bove J, Jullien M, Grappin P (2001) Functional genomics in the study of seed germination. Genome 
Biology 3: reviews1002.1001 - reviews1002.1005 

50. Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed Germination and Vigor. 
Annual Review of Plant Biology 63: 507-533 

51. Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control 
of seed dormancy and germination. Seed Science Research 20: 55-67 

52. Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: Does 
it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506: 
265-273 

53. Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y, Seo M (2010) Comprehensive 
hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, 
ABA transport and hormone interactions. Plant and Cell Physiology 51: 1988-2001 

54. Kim H, Hwang H, Hong J-W, Lee Y-N, Ahn IP, Yoon IS, Yoo S-D, Lee S, Lee SC, Kim B-G (2012) A rice 
orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal 
transduction pathway in seed germination and early seedling growth. Journal of Experimental 
Botany 63: 1013-1024 

55. KeÇpczyński  , KeÇpczyńska E (1997) Ethylene in seed dormancy and germination. Physiologia 
Plantarum 101: 720-726 

56. Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy 
release and germination. Seed Science Research 15: 281-307 

57. Lee S, Kim S-G, Park C-M (2010) Salicylic acid promotes seed germination under high salinity by 
modulating antioxidant activity in Arabidopsis. New Phytologist 188: 626-637 

58. Belin C, Megies C, Hauserova E, Lopez-Molina L (2009) Abscisic acid represses growth of the 
Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell 21: 2253-
2268 

59. Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E (2009) 
Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis 
thaliana seeds: A comparative study on dormant and Non-dormant accessions. Plant and Cell 
Physiology 50: 1786-1800 

60. Dave A, Hernández ML, He Z, Andriotis VME, Vaistij FE, Larson TR, Graham IA (2011) 12-oxo-
phytodienoic acid accumulation during seed development represses seed germination in 
Arabidopsis. The Plant Cell Online 23: 583-599 



 
34 Chapter 1: General introduction 

61. Farrant JM, Moore JP (2011) Programming desiccation-tolerance: from plants to seeds to 
resurrection plants. Current Opinion in Plant Biology 14: 340-345 

62. Prewein C, Endemann M, Reinöhl V, Salaj J, Sunderlikova V, Wilhelm E (2006) Physiological and 
morphological characteristics during development of pedunculate oak (Quercus robur L.) zygotic 
embryos. Trees - Structure and Function 20: 53-60 

63. Balbuena TS, Jo L, Pieruzzi FP, Dias LLC, Silveira V, Santa-Catarina C, Junqueira M, Thelen JJ, 
Shevchenko A, Floh EIS (2011) Differential proteome analysis of mature and germinated embryos of 
Araucaria angustifolia. Phytochemistry 72: 302-311 

64. Parkhey S, Naithani SC, Keshavkant S (2014) Protein metabolism during natural ageing in desiccating 
recalcitrant seeds of Shorea robusta. Acta Physiologiae Plantarum 36: 1649-1659 

65. Ramon M, Rolland F, Sheen J (2008) Sugar Sensing and Signaling. The Arabidopsis Book: e0117 

66. Finkelstein RR, Lynch TJ (2000) Abscisic acid inhibition of radicle emergence but not seedling growth 
is suppressed by sugars. Plant Physiology 122: 1179-1186 

67. Bailly C, Audigier C, Ladonne F, Wagner MH, Coste F, Corbineau F, Côme D (2001) Changes in 
oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to 
acquisition of drying tolerance and seed quality. Journal of Experimental Botany 52: 701-708 

68. Neale D, Wegrzyn J, Stevens K, Zimin A, Puiu D, Crepeau M, Cardeno C, Koriabine M, Holtz-Morris A, 
Liechty J, Martinez-Garcia P, Vasquez-Gross H, Lin B, Zieve J, Dougherty W, Fuentes-Soriano S, Wu L-
S, Gilbert D, Marcais G, Roberts M, Holt C, Yandell M, Davis J, Smith K, Dean J, Lorenz W, Whetten R, 
Sederoff R, Wheeler N, McGuire P, Main D, Loopstra C, Mockaitis K, deJong P, Yorke J, Salzberg S, 
Langley C (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel 
assembly strategies. Genome Biology 15: R59 

69. Ribeiro T, Loureiro J, Santos C, Morais-Cecílio L (2011) Evolution of rDNA FISH patterns in the 
Fagaceae. Tree Genetics & Genomes 7: 1113-1122 

70. Alves S, Ribeiro T, Inácio V, Rocheta M, Morais-Cecílio L (2012) Genomic organization and dynamics 
of repetitive DNA sequences in representatives of three Fagaceae genera. Genome 55: 348-359 

71. Brent R (2000) Genomic Biology. Cell 100: 169-183 

72. Joyce AR, Palsson BO (2006) The model organism as a system: integrating 'omics' data sets. Nature 
Reviews Molecular Cell Biology 7: 198-210 

73. Weckwerth W (2011) Green systems biology — From single genomes, proteomes and metabolomes 
to ecosystems research and biotechnology. Journal of Proteomics 75: 284-305 

74. Myburg A, Bradfield J, Cowley E, Creux N, de Castro M, Hatherell TL, Mphahlele M, O'Neill M, Ranik M, 
Solomon L, Victor M, Zhou H, Galloway G, Horsley T, Jones N, Stanger T, Bayley A, Edwards N, Janse 
B (2008) Forest and fibre genomics: biotechnology tools for applied tree improvement. Southern 
Forests: a Journal of Forest Science 70: 59-68 

75. Pijut PM, Woeste KE, Vengadesan G, Michler CH, Lakshmanan P (2007) Technological advances in 
temperate hardwood tree improvement including breeding and molecular marker applications. In 
Vitro Cellular and Developmental Biology - Plant 43: 283-303 

76. Sheth B, Thaker V (2014) Plant systems biology: insights, advances and challenges. Planta 240: 33-54 

77. Valledor  ,  orr  n  sV,  odr  guez   ,  enz C, Meijo n Mn,  odr  guez  , Can al M s (2010) Combined 
proteomic and transcriptomic analysis identifies differentially expressed pathways associated to 
Pinus radiata needle maturation. Journal of Proteome Research 9: 3954-3979 

78. Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda T, Tomita M, Ishihama Y, Shirasu K 
(2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in 
plants. Plant Physiology 

79. Ward JA, Ponnala L, Weber CA (2012) Strategies for transcriptome analysis in nonmodel plants. 
American Journal of Botany 99: 267-276 

80. Agarwal P, Parida SK, Mahto A, Das S, Mathew IE, Malik N, Tyagi AK (2014) Expanding frontiers in 
plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnology Journal 
12: 1480-1492 

81. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Research 6: 
986-994 

82. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns 
with a complementary DNA microarray. Science 270: 467-470 



 
35 Doctoral Thesis 

83. Liang P, Pardee A (1992) Differential display of eukaryotic messenger RNA by means of the 
polymerase chain reaction. Science 257: 967-971 

84. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 
270: 484-487 

85. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, 
Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, 
DuBridge RB, Kirchner J, Fearon K, Mao J-i, Corcoran K (2000) Gene expression analysis by 
massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology 18: 630 
- 634 

86. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, 
Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for 
generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the 
National Academy of Sciences 93: 6025-6030 

87. Parchman T, Geist K, Grahnen J, Benkman C, Buerkle C (2010) Transcriptome sequencing in an 
ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11: 
180 

88. Simon SA, Zhai J, Nandety RS, McCormick KP, Zeng J, Mejia D, Meyers BC (2009) Short-read 
sequencing technologies for transcriptional analyses. Annual Review of Plant Biology 60: 305-333 

89. Al-Shanfari A, Abdullah S, Saud H, Omidvar V, Napis S (2012) Differential gene expression identified 
by suppression subtractive hybridization during late ripening of fruit in oil palm (Elaeis guineensis 
Jacq.). Plant Molecular Biology Reporter 30: 768-779 

90. Lu H, Xue T, Zhang A, Sheng W, Zhu Y, Chang L, Song Y, Xue J (2013) Construction of an SSH library of 
Pinellia ternata under heat stress, and expression analysis of four transcripts. Plant Molecular 
Biology Reporter 31: 185-194 

91. Xu L, Liu Z-Y, Zhang K, Lu Q, Liang J, Zhang X-Y (2013) Characterization of the Pinus massoniana. 
Transcriptional response to Bursaphelenchus xylophilus infection using suppression subtractive 
hybridization. International Journal of Molecular Sciences 14: 11356-11375 

92. Abid G, Sassi K, Muhovski Y, Jacquemin J-M, Mingeot D, Tarchoun N, Baudoin J-P (2012) Identification 
and analysis of differentially expressed genes during seed development using suppression 
subtractive hybridization (SSH) in Phaseolus vulgaris. Plant Molecular Biology Reporter 30: 719-730 

93. Chandran D, Sankararamasubramanian HM, Kumar MA, Parida A (2014) Differential expression 
analysis of transcripts related to oil metabolism in maturing seeds of Jatropha curcas L. Physiology 
and Molecular Biology of Plants 20: 181-190 

94. Gimeno-Gilles C, Lelièvre E, Viau L, Malik-Ghulam M, Ricoult C, Niebel A, Leduc N, Limami AM (2009) 
ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall 
biosynthetic and architecture: modifying enzymes and structural proteins in Medicago truncatula 
embryo axis. Molecular Plant 2: 108-119 

95. Canales J, Flores-Monterrosso A, Rueda-López M, Avila C, Cánovas F (2010) Identification of genes 
regulated by ammonium availability in the roots of maritime pine trees. Amino Acids 39: 991-1001 

96. Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M (2007) A genomic approach to sSuberin 
biosynthesis and cork differentiation. Plant Physiology 144: 419-431 

97. Bustin S (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase 
chain reaction assays. Journal of Molecular Endocrinology 25: 169-193 

98. Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR—
Publishing data that conform to the MIQE guidelines. Methods 50 

99. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR – a perspective. Journal 
of Molecular Endocrinology 34: 597-601 

100. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time 
quantitative PC  and the 2−ΔΔCT method. Methods 25: 402-408 

101. Marum L, Miguel A, Ricardo CP, Miguel C (2012) Reference gene selection for quantitative real-time 
PCR normalization in Quercus suber. PLoS One 7: e35113 

102. Xu M, Zhang B, Su X, Zhang S, Huang M (2011) Reference gene selection for quantitative real-time 
polymerase chain reaction in Populus. Analytical Biochemistry 408: 337-339 



 
36 Chapter 1: General introduction 

103. Soler M, Serra O, Molinas M, García-Berthou E, Caritat A, Figueras M (2008) Seasonal variation in 
transcript abundance in cork tissue analyzed by real time RT-PCR. Tree Physiology 28: 743-751 

104. Brunner A, Yakovlev I, Strauss S (2004) Validating internal controls for quantitative plant gene 
expression studies. BMC Plant Biology 4: 14 

105. Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre J, Louvet R, Rusterucci C, Moritz T, Guerineau F, 
Bellini C, Van Wuytswinkel O (2008) The lack of a systematic validation of reference genes: a serious 
pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. 
Plant Biotechnology Journal 

106. Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S (2007) A real-time RT-PCR assay for detection and 
absolute quantitation of Citrus tristeza virus in different plant tissues. Journal of Virological Methods 
145: 96-105 

107. Prieto-Álamo M-J, Abril N, Osuna-Jiménez I, Pueyo C (2009) Solea senegalensis genes responding to 
lipopolysaccharide and copper sulphate challenges: Large-scale identification by suppression 
subtractive hybridization and absolute quantification of transcriptional profiles by real-time RT-
PCR. Aquatic Toxicology 91: 312-319 

108. Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? Journal of 
Experimental Botany 55: 1445 - 1454 

109. Remans T, Keunen E, Bex GJ, Smeets K, Vangronsveld J, Cuypers A (2014) Reliable gene expression 
analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in 
data accuracy. The Plant Cell Online 26: 3829-3837 

110. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez J-C, Yan JX, Gooley AA, Hughes G, 
Humphery-Smith I, Williams KL, Hochstrasser DF (1996) From Proteins to Proteomes: Large scale 
protein identification by two-dimensional electrophoresis and arnino acid analysis. Nature 
Biotechnology 14: 61-65 

111. Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, 
Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): Second-generation 
proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE 
standards, increase plant proteome coverage and expand biological knowledge. Journal of 
Proteomics 72: 285-314 

112. Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. 
Nature Methods 4: 817-821 

113. Han X, Jin M, Breuker K, McLafferty FW (2006) Extending top-down mass spectrometry to proteins 
with masses greater than 200 kilodaltons. Science 314: 109-112 

114. Zabrouskov V, Giacomelli L, van Wijk KJ, McLafferty FW (2003) A new approach for plant 
proteomics: characterization of chloroplast proteins of Arabidopsis thaliana by top-down mass 
spectrometry. Molecular & Cellular Proteomics 2: 1253-1260 

115. Guda C, King BR, Pal LR, Guda P (2009) A top-down approach to infer and compare domain-domain 
interactions across eight model organisms. PLoS ONE 4: e5096 

116. Jorrín-Novo JV, Pascual J, Lucas RS, Romero-Rodriguez MC, Ortega MR, Lenz C, Valledor L (2015) 
Fourteen years of plant proteomics reflected in “Proteomics”: Moving from model species and 2-DE 
based approaches to orphan species and gel-free platforms. PROTEOMICS: n/a-n/a 

117. Tsakanikas P, Manolakos ES (2011) Protein spot detection and quantification in 2-DE gel images 
using machine-learning methods. PROTEOMICS 11: 2038-2050 

118. Grossmann J, Fischer B, Baerenfaller K, Owiti J, Buhmann JM, Gruissem W, Baginsky S (2007) A 
workflow to increase the detection rate of proteins from unsequenced organisms in high-
throughput proteomics experiments. PROTEOMICS 7: 4245-4254 

119. Vaudel M, Burkhart JM, Sickmann A, Martens L, Zahedi RP (2011) Peptide identification quality 
control. PROTEOMICS 11: 2105-2114 

120. Eisenacher M, Schnabel A, Stephan C (2011) Quality meets quantity – quality control, data standards 
and repositories. PROTEOMICS 11: 1031-1036 

121. Ünlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for 
detecting changes in protein extracts. Electrophoresis 18: 2071-2077 



 
37 Doctoral Thesis 

122. McNamara LE, Kantawong FA, Dalby MJ, Riehle MO, Burchmore R (2011) Preventing and 
troubleshooting artefacts in saturation labelled fluorescence 2-D difference gel electrophoresis 
(saturation DiGE). PROTEOMICS 11: 4610-4621 

123. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex 
protein mixtures using isotope-coded affinity tags. Nature Biotechnology 17: 994-999 

124. Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable 
isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to 
expression proteomics. Molecular & Cellular Proteomics 1: 376-386 

125. Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: A new tool for 
quantitative mass spectrometry in proteome research. PROTEOMICS 7: 340-350 

126. Makarov A (2000) Electrostatic axially harmonic orbital tTrapping:  a high-performance technique 
of mass analysis. Analytical Chemistry 72: 1156-1162 

127. Hardman M, Makarov AA (2003) Interfacing the orbitrap mass analyzer to an electrospray ion 
source. Analytical Chemistry 75: 1699-1705 

128. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, 
and applications. Annual Review of Biomedical Engineering 11: 49-79 

129. de Souza G, de Godoy L, Mann M (2006) Identification of 491 proteins in the tear fluid proteome 
reveals a large number of proteases and protease inhibitors. Genome Biology 7: R72 

130. Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting 
signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3: e1994 

131. Nagaraj N, Alexander Kulak N, Cox J, Neuhauser N, Mayr K, Hoerning O, Vorm O, Mann M (2012) 
System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-
shot uHPLC runs on a bench top orbitrap. Molecular & Cellular Proteomics 11 

132. Valledor L, Weckwerth W (2014) An improved detergent-compatible gel-fractionation LC-LTQ-
Orbitrap-MS workflow for plant and microbial proteomics. In: Jorrin-Novo JV, Komatsu S, 
Weckwerth W, Wienkoop S (eds) Plant Proteomics. Humana Press, pp 347-358 

133. Gallien S, Peterman S, Kiyonami R, Souady J, Duriez E, Schoen A, Domon B (2012) Highly multiplexed 
targeted proteomics using precise control of peptide retention time. PROTEOMICS 12: 1122-1133 

134. Ytterberg AJ, Jensen ON (2010) Modification-specific proteomics in plant biology. J Proteomics 73: 
2249-2266 

135. Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with 
mass spectrometry. Nature Methods 4: 798-806 

136. Nørregaard Jensen O (2004) Modification-specific proteomics: characterization of post-translational 
modifications by mass spectrometry. Current Opinion in Chemical Biology 8: 33-41 

137. Bond AE, Row PE, Dudley E (2011) Post-translation modification of proteins; methodologies and 
applications in plant sciences. Phytochemistry 72: 975-996 

138. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. 
PROTEOMICS 9: 1451-1468 

139. Paradela A, Albar JP (2008) Advances in the analysis of protein phosphorylation. Journal of 
Proteome Research 7: 1809-1818 

140. Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T (2003) Towards a 
phosphoproteome map of Corynebacterium glutamicum. PROTEOMICS 3: 1637-1646 

141. Immler D, Gremm D, Kirsch D, Spengler B, Presek P, Meyer HE (1998) Identification of 
phosphorylated proteins from thrombin-activated human platelets isolated by two-dimensional gel 
electrophoresis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and liquid 
chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). ELECTROPHORESIS 19: 
1015-1023 

142. Ross AH, Baltimore D, Eisen HN (1981) Phosphotyrosine-containing proteins isolated by affinity 
chromatography with antibodies to a synthetic hapten. Nature 294: 654-656 

143. Riedel J, Tischner R, Mack G (2001) The chloroplastic glutamine synthetase (GS-2) of tobacco is 
phosphorylated and associated with 14-3-3 proteins inside the chloroplast. Planta 213: 396-401 

144. Agrawal GK, Thelen JJ (2006) Large scale identification and quantitative profiling of 
phosphoproteins expressed during seed filling in oilseed rape. Molecular & Cellular Proteomics 5: 
2044-2059 



 
38 Chapter 1: General introduction 

145. Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y (2008) Large-scale 
phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Molecular 
Systems Biology 4 

146. Meyer LJ, Gao J, Xu D, Thelen JJ (2012) Phosphoproteomic Analysis of Seed Maturation in 
Arabidopsis, Rapeseed, and Soybean. Plant Physiology 159: 517-528 

147. Ino Y, Ishikawa A, Nomura A, Kajiwara H, Harada K, Hirano H (2014) Phosphoproteome analysis of 
Lotus japonicus seeds. PROTEOMICS 14: 116-120 

148. Wang Y, Wang Y, Zhao Y, Chen D, Han Z, Zhang X (2014) Protein phosphorylation differs 
significantly among ontogenetic phases in Malus seedlings. Proteome Science 12: 31 

149. Han C, Wang K, Yang P (2014) Gel-based comparative phosphoproteomic analysis on rice embryo 
during germination. Plant and Cell Physiology 

150. Diella F, Gould CM, Chica C, Via A, Gibson TJ (2008) Phospho.ELM: a database of phosphorylation 
sites—update 2008. Nucleic Acids Research 36: D240-D244 

151. Gnad F, Ren S, Cox J, Olsen J, Macek B, Oroshi M, Mann M (2007) PHOSIDA (phosphorylation site 
database): management, structural and evolutionary investigation, and prediction of phosphosites. 
Genome Biology 8: R250 

152. Tchieu JH, Fana F, Fink JL, Harper J, Nair TM, Niedner RH, Smith DW, Steube K, Tam TM, Veretnik S, 
Wang D, Gribskov M (2003) The PlantsP and PlantsT Functional Genomics Databases. Nucleic Acids 
Research 31: 342-344 

153. Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX (2010) 
PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids 
Research 38: D828-D834 

154. Gao J, Agrawal GK, Thelen JJ, Xu D (2009) P3DB: a plant protein phosphorylation database. Nucleic 
Acids Research 37: D960-D962 

155. Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, Gao J, Thelen JJ, Xu D (2014) P3DB 3.0: From plant 
phosphorylation sites to protein networks. Nucleic Acids Research 42: D1206-D1213 

156. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an 
evolutionary perspective. Trends in Plant Science 5: 439-445 

157. De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends in 
plant science 5: 168-173 

158. Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytologist 169: 
453-468 

159. Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and 
biotechnology. Annual Review of Plant Biology 61: 463-489 

 
 



 
 

 

 

 

 

 

 
 

 

CHAPTER 2: 

OBJECTIVES 

 

  



 



 
41 Doctoral Thesis 

Quercus ilex (Holm oak) is an important tree species of the Spanish Mediterranean 

forest, with great ecological value, as it represent, with Q. suber, the predominant tree species in 

the forestall ecosystems of the region.  The Holm oak has also an important economic value, 

being widely used in reforestation and conservation forestry systems and silvicultural practices. 

The research group in which this work was developed has studied different aspects of Q. ilex 

biology (natural variation, physiology, stress-response) using a multidisciplinary approach that 

includes techniques of classical biochemistry and molecular biology combined whit proteomics 

approaches. However, the knowledge at the molecular level in this species is still scarce. 

Q. ilex forest maintenance and sustainability are facing important problems and 

challenges related to seed viability/conservation, and plant mortality in both adult trees and 

young one-year-old plants after field transplantation due to adverse environmental conditions. 

Thus, there is an increase in demand for holm oak seedlings and favouring their nursery 

production.  

Therefore, the objectives of this PhD thesis were: 

General objective 

Study the germination and seedling growth of Q. ilex applying a multidisciplinary 

“omic” approach combined with classical biochemical approaches, according to the actual 

trends in biosciences research, named systems biology 

Specific objectives 

1. Determine the expression profile of twelve protein coding genes involved in 

desiccation tolerance, regulation of ABA-signalling, metabolism and antioxidative 

defence using a targeted transcriptional analysis of mature and germinating seeds 

through absolute quantification of transcripts based on qRT-PCR (Ch. 4). 

2. Identify differentially expressed genes between germinated seeds and seedlings of Q. 

ilex by using a Suppression Subtractive Hybridization (SSH) approach (Ch. 5). 

3. Analyse changes in the proteomic profiles during germination and seedling growth 

through gel based (SDS-PAGE, 2-DE) and gel free (LC-MS/MS) approaches (Ch. 6). 

4. Analyse the dynamic protein phosphorylation changes during seed germination and 

seedling development using multiplex-staining of high-resolution 2-DE gels for total 

protein (SYPRO Ruby) and phosphoproteins (Pro-Q Diamond) (Ch. 7). 
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Plant material and the study site 

This section describes the plant material used in this work, the characteristics of the 

site where it was collected, the storage methods and germination experiments performed to 

obtain the embryo axes to be used in the different procedures that conform this Docthoral 

Thesis. 

3.1. Plant material collection, study site and storage 

Mature acorns were harvested during October-November from healty holm oaks from 

Cerro Muriano-Córdoba (Córdoba, Spain 37º59’57.74”N, 4º46’57.93”W) in 2011 and 2012. The 

acorns provenance area measures approximately 80 km2 and is situated in the north of the 

Andalusian province of Córdoba, at SW Spain (Fig. 3.1) 

 

Figure 3.1. Location of the sampling area, Cerro Muriano, in the Cordoba Province (SW Spain; GPS coordinates 37º, 
59’, 57.74” N, 4º, 46’, 57.93”). 

The most typical landscape in the area is the so-called Spanish dehesa, a savannah-like 

woodland that represents one of the better preserved ecosystems in southern Europe and that 

has been declared a biosphere reserve by UNESCO. Large areas of the dehesas are covered by 

Holm oak (Q. ilex) and Cork oak (Q. suber), surrounded by meadows and Mediterranean scrub. 

This peculiar agroforestry system is conditioned by a Mediterranean climate, albeit somewhat 

influenced by the Atlantic Ocean. The presence of soils with low fertility and poorly developed 

and the hilly topography of Sierra Morena makes arable farming unprofitable. 

To reduce variability and growth differences due to seed size, only those acorns with a 

FW between 3.1 and 3.9 g, which represented the upper and lower quartiles of acorn FW, were 

used in the study. After collection and selection, the acorns were processed according to 

Bonner 1. Briefly, acorns were immersed in water in the laboratory and all of those still floating 

after 1 h were removed. Healthy acorns were swan in 2.5% (v/v) sodium hypochlorite solution 

for 10 min, and then washed with water. The acorns were air dried and stored at 4±1 °C in 

airtight polyethylene bag until use, as recommended by 2. Polyethylene bags reduce the acorns 
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metabolism and allow the accumulation of ethylene inside the storage atmosphere, inducing a 

dormant-like state and prolonging seed storage 2. 

3.2. Germination/seedling experiment and morphological aspect 

In the first week after harvesting, undamaged, mature acorns were sterilized by 

immersion in 2.5 % sodium hypochlorite for 10 minutes, washed abundantly with water and 

finally dried with filter paper. In order to get a homogeneous germination 3-4 and to avoid 

delayed and uneven germination, acorns were peeled off eliminating the pericarp and cutting 

off parts of the distal ends of the acorns and put in plastic boxes containing one sheert of 

whatman N°3 filter paper over wet perlite (Fig. 3.2), a double layer of tissue paper was used to 

cover the seeds to insure uniform hydratation. Previously, was described in other Quercus 

species, that the cotyledon reserves at the apex of acorns are more important than those at the 

base in supporting acorn viability and seedling establishment 5. 

 

Figure 3.2: Process in acorn germination. (A). Acorn with pericarp, (B). Acorn dehulling of, (C). Cut aconr in the 
distal end and (D). Boxes with filter paper and perlite with germinated acorn. 

Germination and seedling growth were carried out at 22 ±1 ºC for up to 216 h in 

darkness incubators. Radicle protrusion of 2 mm was used as the criterion of germination; this 

can be seen mainly at 24 hours post imbibition. Analyzed stages different sections are shown in 

Fig. 3.3. 

To obtain shoot seedling material used in Ch. 5 and 6, seed that were maintained in 

darkness for 216 h (when the protruding radicle achieved the length of the longest dimension 

of the seed) were placed individually in 400 mL pots containing perlite, which was 
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continuously watered. These pots were transferred to a greenhouse under a natural 

photoperiod of approximately 12/12 h light/dark cycle, temperature of 30 ± 5 °C and 60 ± 10 % 

relative humidity (RH).  

 

Figure 3.3: Morphological aspects of acorn and seed at diferent stages collected. In parenthesis are indicated 
approximate time in hour post imbibition to obtain the indicated stage. Approximate time for seedlings are shown in 
weeks. 

All the experiments were performed with the embryo axis, including the radicle in S4 to 

S7 stages (Fig. 3.4), but not in the seedlings (Fig. 3.3). Embryo axes were rapidly removed, 

weighted and individually frozen in liquid N. Individuals were grouped in three mini-pools (20-

30 individuals), that were considered as biological replicates. 

 

Figure 3.4. Material collected from the Quercus ilex seed for all experiments. Plant tissue collected 
from the seed and seedlings for all experiment are indicated with red line.  
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Abstract 

We have used a targeted strategy based on reverse transcription of total RNA and real 

time-PCR amplification for absolute quantitation of the transcript levels of a group of twelve 

genes in germinating acorns. The transcriptional analysis results have been verified and 

complemented with the determination of (i) plant hormones levels (ABA; the gibberellins GA3 y 

GA4; the auxin IAA and the cytokinins iP and iPR,) (ii) sugars accumulation (Suc, Glc, Fru) and 

(iii) proteins amounts determined by immunoblotting (DHN3, GAPDH, RBCL) and/or enzymatic 

activity (SOD). We found that mature Q. ilex seeds show some of the intracellular physical 

characteristics of orthodox seed that included (i) accumulation of non-reducing carbohydrates 

(sucrose) and insoluble proteins (DHN3) that contribute to the intracellular vitrified state in 

seeds; and (ii) accumulation of transcripts involved in the synthesis of certain osmoregulator 

raffinose series oligosaccharides (GolS), the anti-oxidative defence (Sod1, Gst) and the 

preparation for the development of an adult plant (RbcL). But the holm oak mature acorns 

share with other recalcitrant seeds the ability to maintain a partially active metabolism, with 

high level of glycolytic (GapdH) and mitochondrial respiratory enzymes (Ndh6) and the absence 

of ABA (Pp2c, Skp1, Sdir1, Ocp3). However, imbibition increased the respiratory rate, paralleling 

the soluble carbohydrate sugar increase, and indicating that mitochondria resulted affected 

during acorn maturation. Formate, generated as a byproduct of photorespiration, from cell wall 

degradation during the germination process and from the excess of glycolytic intermediates, 

drives the increase of FDH synthesis, helped by the increased levels of ABA in the post-

germination stage, to recover carbon. The results presented here will help to increase the 

knowledge of the physiological changes that take place during Q. ilex seed germination, 

illustrate the importance of considering the behaviour of seeds for the afforestation projects 

and restoration programmes under the impending climate change in Mediterranean regions. 
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4.1. Introduction 

A number of studies focused on germination, storage, desiccation sensitivity, and 

viability after storage of holm oak seeds have been conducted over the last few decades 1-8. 

However the mechanisms involved in the recalcitrance of holm oak seeds remain elusive. In 

this work was used a targeted strategy based on reverse transcription of total RNA and real 

time-PCR amplification for absolute quantitation of the transcript levels of a group of twelve 

genes in germinating acorns. 

The germination process begins with seed imbibition and finishes with radicle 

protrusion, as was detailed in general introduction. In the orthodox seeds the major metabolic 

changes observed during this period are the significant reductions in the levels of the majority 

of different metabolites accumulated during the period of seed desiccation. In this new 

condition, the levels of sugar decrease, which may signify the entrance of sugars into the 

glycolytic pathway. The levels of some tricarboxylic acid cycle intermediates dramatically 

increase shortly after the imbibition, which suggests the initiation of metabolic and respiratory 

functions of the mitochondria 9. Significant changes in the seed transcript content are also 

described for this period, which generally signified major increases in mRNA levels of genes 

associated with biosynthetic processes and reductions in mRNA levels of genes associated with 

the degradation of amino acids or the biosynthesis of trehalose 9.  

Abscisic acid (ABA) is considered an essential messenger in the adaptive response of 

plants against abiotic and biotic stresses. The accumulation of ABA in developing seeds 

contributes to seed maturation, acquisition of desiccation tolerance and seed dormancy. Hence, 

the decline of ABA shortly after imbibition but also the apparition other plant hormones 

(giberellins, cytokinin, indole acetic acid) are prerequisites for germination to be completed 

(Kanno et al.10 and ref. therein), the regulation of ABA signaling was detailed in general 

introduction.  

In short, to date, the various deficiencies underlying desiccation sensitivity of 

recalcitrant seeds are generally conjectural as they are variably developed or expressed in the 

non-orthodox condition. Our research group are interested in determining the mechanisms that 

are involved in seed development and germination of holm oak seeds, a vital tree for soil and 

water conservation in the Mediterranean area, with seeds that form part of the diet of many 

animals, and that may constitute an important element in reforestation programs. Knowledge 

of the underlying biochemistry and metabolic status before and after the germination process 

could be important for the development and optimization of strategies for large scale 

propagation and germplasm conservation in this species. To this end, in the current study was 
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conducted a targeted transcriptional analysis of mature and germinating seeds by using an 

absolute quantitation approach based on reverse transcription and real-time PCR amplification. 

The transcriptional profiles of twelve genes coding proteins involved in dessication tolerance 

(Dnh3, GolS), in the ABA-signaling regulatory proteins (Ocp3, Skp1, Pp2c, Sdir1), in the 

metabolism (Fdh, GapdH, RbcL, Ndh6) and in the antioxidative defence (superoxide dismutase 

Sod1, Gst), have been determinated. The transcriptional analysis results have been verified and 

complemented with the determination of (i) plant hormones levels (ABA; the gibberellins GA3 y 

GA4; the auxin IAA and the cytokinins iP and iPR,) (ii) sugars accumulation (Suc, Glc, Fru) and 

(iii) proteins amounts determined by immunoblotting (DHN3, GAPDH, RBCL) and/or enzymatic 

activity (SOD). The results that we present here will help to increase the knowledge of the 

physiological changes that take place during Q. ilex seed germination. 

4.2 Materials & Methods 

4.2.1. Plant material  

Samples collected at 0 (dry), 6h, 12h, 24h, 48h, 72h, 144 h and 216 h after imbibition 

start as described in Ch.3 were used (Fig. 3.3, p. 47). Three independent germination 

experiments were conducted. Individual embryonic axes from the different technical replicates 

collected at each sampling time were pooled and each of the three pools was considered as a 

biological replicate in subsequent experiments. 

4.2.2. Relative water content (RWC) in Q. ilex seeds 

Measurements of RWC were performed on 10-15 individual embryonic axes collected 

at each of the indicated sampling times along the three replicated germination experiments. 

Seeds/seedlings were weighed by using an analytical scale, with precision of 0.0001 g. The 

fresh weight (FW) obtained from each sample was between 3.1 and 3.9 g, which represented 

the upper and lower quartiles of acorn FW. Samples were placed in a pre-heated oven at 70 ºC 

for 48 h, in order to obtain the dry weight (DW). The relative water content (RWC) in 

germinating seeds was expressed as percentage of lost weight [(FW - DW) x 100] relative to 

FW.  

4.2.3. Desiccation resistance assay of germinating Q. ilex seeds 

This assay was conducted as described by An and Lin 11 with minor modifications. The 

seed/seedling of each given stage (Fig. 3.3, p. 47) were harvested and dried at room 

temperature (25±2°C) in plastic boxes with dry perlite for two weeks. The dehydrated 
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seeds/seedlings were re-germinated at the same condition as described in the germination 

experiment (plastic boxes with waterlogged filter paper on perlite at 22 ºC in darkness). The 

desiccation resistance of the seeds/seedlings at each stage was determined as percentage of 

survival, defined as the percentage of seeds/seedling that elongated the radicle at least 2 mm 

within four or seven days of rehydration. Three independent replications were conducted for 

each time point. Sample size for each desiccation resistance assay ranged from 14 to 46 seeds.  

4.2.4. Sugar extraction and GC-MS/MS separation-detection 

Extraction procedure. The extraction of sugar was performed as described in 12 with 

minor modification. Samples were prepared by mixing 20-50 embryonic axes collected of 

imbibed acorns at each studied stage and lyophilized (-40°C, 1 mBar, in a SubliMate® Bench 

Top Laboratory Freeze Dryers FDL-2S8) 100 mg of pooled lyophilized sample was placed in a 

test tube with 6.5 mL of extractant (2:1 dichloro- methane/methanol). The tube was immersed 

into a water bath at room temperature for a 10 min preset time under ultrasonic irradiation. 

The extracts were subsequently centrifuged at 10000g for 2 min and concentrated to dryness 

under vacuum at 30ºC. The dried extracts were reconstituted in 1 mL of deionized water (18 

MΩ3cm, Milli-Q Millipore, Bedford, MA) water and filtered through 0.45 μm Millipore nylon 

membrane. Sugar extracted (contained in dry 20 μL) were separated and identified by GC-MS of 

their per-O-trimethylsilylated methyl oxymes 13. Calibration curves from standards D-(+)-

glucose, D-(-) fructose and D-(+)-Sucrose (5, 10, 20, 30, 40, and 50 μg) were prepared for 

comparison. In any case, 10 μg of xylitol were added as reference to the samples and freeze-

dried. All standards and reference were purchased from Sigma-Aldrich. For derivatisation, 30 

μL of a solution of MEOX (methoxyl-amine hydrochloride) in pyridine (20 mg/mL) were added 

and kept at 40 °C for 1 h; then, 80 μL of BSTFA (N,O-bis(trimethylsilyl)-trifluoroacetamide) 

were added for 1 h at 40 °C. All preparation was performed in triplicate. 

GC-MS/MS Separation-Detection. Gas–liquid chromatography coupled with mass 

spectrometry (GC-MS) was performed on an Agilent Technologies GC system 7890A coupled to 

a mass spectrometer 5975C fitted with a column HP-5MS (30 m × 0.25 mm, Agilent). The 

temperature program was isothermal at 150 °C for 3 min, followed by a 5 °C/min gradient up to 

210 °C, a 15 °C/min gradient up to 310 °C, and isothermal for 2 min. The ionization potential 

was 70 eV, and spectra were recorded in low-resolution mode. All measure was performed per 

duplicated. 
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4.2.5. Phytohormone determinations by using LC-MS/MS  

Extraction procedure. Phytohormones were extracted from 150 mg of lyophilized 

tissue prepared from pooled embryos axis (20-50) of 0 (dry), 24 and 216 hours post imbibition 

(Fig. 3.4, p. 47). Samples were extracted with 1500 µL of 2:1:0.002 2-

propanol/water/Hydrochloric acid, in this phase internal standards had been added (2 ng 2H6-

ABA, 2H5-AIA, 2H3-CS, 2H3DHJA, 2H3-DHZ, 2H2-GA3, 2H2-GA9, Olchemin Ltd., Czeck 

Republic). Each sample was placed in an orbital shaker for 30 min at 4°C, and then 1000 μL of 

dichloromethane were added and stirred for 30 min more at 4 °C. The organic phase was 

carefully removed and the residual liquid was re-extracted with 1000 μL of dichloromethane. 

Following a further 30 min of shaking at 4°C, the organic phase was pooled; this re-extraction 

step was repeated one time. Organic phase of three extractions were reunified into one fraction 

and reduced to approximately to half of the initial volume by a mild nitrogen flow. All stages 

were processed in triplicate. 

LC-MS/MS Separation-Detection. Samples were re-suspended in 200 μL of 100% 

methanol and filtered through a 0.2 μm regenerated cellulose filter (Agilent Technologies). All 

the compounds were separated and quantified by an ultra-high performance liquid 

chromatography (UHPLC) in a 6460 Triple Quad LC/MS (Agilent Technologies) using the 

protocol described by Novak et al (2008) 14 and performed for the plant phytohormones 

analyzed. A chromatographic separation was performed using a reverse phase column (Zorbax 

SB-C18 2.1 x 50 mm column). The column was held at 40 °C and the mobile phase used in the 

chromatography consisted of (A) 99.9% methanol, 0.1% formic acid and (B) ammonium 

formate (15 mM, pH 4). A linear gradient of methanol from 10% to 50% and then reaching 

100% in 7 and 2 minutes, respectively was used to analytes elution. Phytohormones were 

quantified by dynamic multireaction monitoring (MRM) of their [M+H]+ and the appropriate 

product ions, using optimized cone voltages and collision energies for diagnosis of each PGRs 

analyzed. Acquisition and quantification were made using Mass Hunter software (Agilent 

MassHunter Workstation, California, USA) and the obtained amounts of the different 

phytohormones based on the plant dry mass were used to be statistically analysed. All measure 

was performed per duplicated. 

4.2.6. RNA isolation and cDNA synthesis 

For RNA isolation, 20-50 germinating seeds/seedlings per sampling time were 

carefully selected based on the relative time point and morphology defined for each studied 

stage, to reduce the heterogeneity of embryo axis tissues. The embryo axis, including the radicle 
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in the seedlings (Fig. 3.4, p. 47), were rapidly removed, weighted and individually frozen in 

liquid nitrogen. Individuals were grouped in three mini-pools which were considered as 

biological replicates. Frozen plant material was hand grounded using a mortar and pestle in 

liquid nitrogen and stored at -80 ºC till use. Total RNA was extracted from 20 mg per sample by 

using the InviTrap® Spin Plant RNA Mini Kit (Invitek), following the manufacturer indications 

with modifications 15. Contaminating genomic DNA was removed by DNase I (Ambion) 

treatment. Total RNA quantitation was performed with the Qubit® RNA Assay Kit in the 

Qubit® 2.0 Fluorometer (Invitrogen) and the RNA quality was checked electrophoretically 

(Agilent 2100 Bioanalyzer). Only high-quality RNAs with RIN values > 8 and A260:A280 ratios 

of approximately 2.0 were used for subsequent experiments 16-17. Lack of any remaining DNA 

contamination was confirmed by PCR amplification of the RNA samples without the previous 

step of cDNA synthesis.  

The cDNA was generated from 1 μg of total RNA using the iScript cDNA synthesis kit 

(BioRad) according to the manufacturer’s instructions. Reverse transcriptions were set up from 

RNA samples of identical concentrations in order to add the same volume to the RT reaction 17. 

A “normalizer” RNA with a known amount of transcripts of the A170 gene was introduced in 

each experiment (i) to guarantee the quality of the retro-transcription and (ii) to set the 

threshold in the different qRT-PCR experiments.  

4.2.7. Sequence analysis and primer design 

Candidate genes involved in germination were identified by searching the literature. 

The sequences of Dhn3, GapdH, Sod1 and RbcL was obtained from the GenBank database 

(http://www.ncbi.nlm.nih.gov). To obtain the Q. ilex genic sequences of GolS, Ocp3, Skp1, Pp2c, 

Sdir1, Fdh, Ndh6 and Gst, the orthologous sequences from different phylogenetically related 

species (preferentially Quercus > Fagaceas > Fagales > other plants) were obtained from the 

GenBank database (http://www.ncbi.nlm.nih.gov), and aligned for each gene, using the 

ClustalW software (Megalign, DNASTAR Lasergene, v.6). From each alignment, the conserved 

sequences among species were defined, and the primer pair was designed over these conserved 

sequence zones. Possible primer pairs were obtained using the Primer-BLAST tool of NCBI 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/NCBI/). As an example, Fig. 4.1 shows the 

alignment of Fdh sequences from different species related to Q. ilex, as well as the position of 

the primers used for amplification and sequencing of the corresponding Q. ilex Fdh fragment 

sequence.  

file:///F:/10-Arch%202014/TABLAS%20Y%20FIGURAS%20EN%20CONSTRUCCIÓN/Supplementary%20Figure%20S1.pptx
http://www.ncbi.nlm.nih.gov/nuccore/
http://www.ncbi.nlm.nih.gov/nuccore/
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Figure 4.1: Location of the primers used to amplify and sequencing of a fragment of Fdh coding sequence. 
Orthologous sequences were aligned and the primers designed over the close sequence. Primers were located in 
highly conserved sites of the 5’ CDS. 

Then, the proposed primer pairs were analysed with the OLIGO Primer Analysis 

Software v 7.58 (Molecular Biology Insights, Inc) and one pair for each gene, with high Tm and 

free of hairpins and duplex structures, was chosen. Orthologous primers (Table 4.1) were used 

to amplify synthesized cDNA from pooled Q. ilex RNAs.  
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Table 4.1. Primers used in this work for the determination of Q. ilex sequences. Primers based on orthologous 
sequences were designed to obtain partial coding sequences of Q. ilex genes. 

Targeta 
Genebank Acc. 

number 
 Sequence 5´-3´b  

Lengthc 

(bp) 
 

      

Fdh AJ577266 F: TCACTAGGCATCTTCATGCTTCTCCTGG   545   
R: CCCAGCACCAACAGTTCCAACTGTC   

   

Gst DQ673318 

F: GCGGGCAAGGTGGTTCTGTTGGATTT   
584   

R: GCCACAGCCTCCTTCTGCATGCAC     

GolS XM_002515187 F: GATTACATTAAAGGCGTTGTTGGGTTGG 
  

729   
R: CTCCATATTCTCTTCTTTGCCAGTATATCTCC     

Ndh6 FJ669574 F: TGATGGTTGCACGTGCTAAAAATCC 
  

360   
R: TCCAACTTCGTACCTTTCCGGCATAAA     

Ppc2 AJ277743 F: CCTTTACATTGCCAACCTTGGTGATTC 
  

705   
R: CTGCCAACTTCCATCTGCGTAGTATAA     

Ocp3 XM_002324251 F: CCACTCTTTTCCGAGGCAGGTTTGTGAC 
  

261   
R: CTCTTTTCCGAGGCAGGTTTGTGAC     

Sdir1 NM_115410 F: AAGACATGAGCTTTGTTTTCCGGGGAAG 
  

530   
R: AGGATCCAACACCTTGTACTTGTGAACTGG     

Skp1 XM_002510530 F: ACTAGCAGGAAAATCACTTTGAAGAGTTCTGAC 
  

461   
R: AAGGCCCACTGATTTTCTCTCCGAAC     

aGene symbols are according to the NCBI Gene database. 
bSequence of forward (F) and reverse (R) primers specific for Q. ilex gene sequences 
cPCR product size in base pair (bp). 

PCR amplification was attained by mixing 50 ng of Q. ilex cDNA with 0.75U of 

Platinum® Taq DNA Polymerase (Life Technologies), 0.3 µM each primer, 0.3 mM dNTPs, 1mM 

MgSO4 and following the manufacturer’s recommendations. The amplification was carried out 

on T100™ Thermal Cycler PCR System (BioRad). Cycling conditions consisted in one step at 

95 °C for 3 min, and 40 two-step amplification cycles at 95 °C for 30 s for the Platinum® Taq 

activation and, depending on the amplified gene, at 58 to 70 °C for 30 s for annealing/ 

extension. PCR products were electrophoretically separated and visualized on agarose gels 

(2%) containing GelRedTM (Biotium). DNA bands of the predicted size were excised from the gel, 

purified (Wizard® SV Gel and PCR Clean-Up System kit, Promega) and sequenced on an ABI 

PRISMTM 3130 XL sequencer (Applied Biosystems). Sequences were edited to remove primers 

and terminal ambiguities by using the software Chromas and ChromasPro v.1.5 (Technelysium). 

The identity of the trimmed sequences was confirmed using tBLASTx algorithm on the BLAST 

server at the NCBI databank and the Q. ilex sequences were deposited in the GenBank database 

(accession numbers in Table 4.2). These sequences were used to design primers that exactly 

complemented the Q. ilex genes for the absolute quantification of transcript levels by real-time 

RT-PCR (qRT-PCR). To obtain high specificity and a better performance, primers free of hairpin 

and duplex structures, were required to have high Tm (≥70°C), and optimal 3'-∆G (≤ -3 

kcal/mol) value to be used in two-step 94°C -70°C PCR reactions. All primer pairs produced 

amplicons of the predicted size (Table 4.2). All PCR products were further verified by 

nucleotide sequencing.  

http://www.ncbi.nlm.nih.gov/nucleotide/110430495?report=genbank&log$=nucltop&blast_rank=1&RID=0P96NMEY013
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Table 4.2. Specific primers used for absolute quantification by real-time PCR of Q. ilex transcripts. 

Targeta Genebank Acc. number 
  

Sequence 5´-3´b 
Lengthc 

(bp) 

Amplification 
eficiencyd 

(correlation 
coeficiente)   

Dessication protective proteins     

Dhn3 FN548081 F: CAACCCCAGGTTACTACGAGGGCCAACA 107 1.0273 
R: AGTTGAAGTTGTGTGACCTTGCCCAACACC (99.85) 

GolS KC595272 F: TAATCTATCCACATACCATGATCTCCTTG 116 0.9968 
R: GGGAGATTGGCTTGTAAATATCATTGAAG (99.99) 

ABA signaling pathway     

Ocp3 KC150868 F: ACCTGCACCAACCTTATCATTATCGGTGCC 118 1.0187 
R: CATGAACAGGTGCTTGCAGCTTGGTCCC (99.88) 

Sdir1 KC150870 
F: GTCCTCTTGTTGCAAAAGCTATTGATGGTGGC 

123 
0.999 

R: ATGCAACTTGTCAACAACTTCAAGCTCAGG (99.44) 

Skp1 KC150871 F: AGATCGAAGAGTGTGGCCTGGTCAACCCTG 103 0.9989 
R: AGCACGTTGAGTCCACCAGTGCCGATGAG (99.83) 

Pp2c KC150869 F: GCAAGTGTGTAATGAGGCAGGTTTATTCCACC 132 0.9981 
R: CCATTTCCACGATGACATTACAGTGATTGTTG (99.83) 

Metabolism     

Ndh6 KC150873 F: GAAGAGCATTTCCCACCAAAAGATCAGTCC 95 0.9934 
R: TCCATATTCAAATAGCGGAGATTCACGAAG (99.72) 

GapdH HM629510 F: GGGCCGTGGAGCTGCACAAAACATCA 116 0.9938 
R: TGGGACACGGAAGGCCATTCCAGTA (99.35) 

Fdh KC150872 F: CGTGACCTCTGCGACTGTTAATCCAG 118 0.9915 
R: GGCTGAAAGGATCCAAAAGGCCAAG (99.99) 

RbcL AB125020 F: CGCATAAATGGTTGGGAATTAACGTTCT 105 0.9929 
R: GGGATTATCCGCTAAGAATTACGGTAGA (99.71) 

Redox homeostasis/detoxification     

Sod1 KM262658 F: CGCAGATCCAGATGATCTTGGCGAGGG 137 0.9941 
R: AGCACACAACAGAGTAGGGATTAGAAGACG (99.68) 

Gst KC150875 F: TAATCTTGGGGCACTCCGCCTCTCTG 126 0.9954 
R: ACAAGCCTTACTTTGGGGGTGAAACATTTG (99.97) 

Calibrator genee     

A170 U57413 
F: GGAAGAGAAGCCGCCTGACACCCACT 

113 
1.0001 
(99.9%) R: CCCGTCAGGTTTGCTGACTTCCGAAG 

aGene symbols are according to the NCBI Gene database. 
bSequence of forward (F) and reverse (R) primers specific for Q. ilex gene sequences 
cPCR product size in base pair (bp). 
dThe real-time PCR efficiencies (E) were calculated from each starndard curve according to the equation E = 10(-1/slope)-1. E is in the 
range from 0 (minimum value) to 1 (maximum and optimum), i.e., E = 1 is equal to 100% efficiency. 
ePrimers based on M. musculus sequences were designed for absolute quantification by real-time RT-PCR of A170 gene in liver mice 
tissue, used to guarantee the quality of the retro-transcription  and to stablish the threshold position. 

4.2.8. qRT-PCR 

Real-time PCR reactions were performed in quadruplicate with 50 ng/well of cDNA in 

an iCycler iQ thermocycler (BioRad) and the iQ SYBR Green SuperMix (BioRad), according to 

the manufacturer’s indications. The amplification program consisted in one cycle at 95 °C for 3 

min, and 40 two-step amplification cycles at 95 °C for 15 s and 68 °C for 30 s, respectively. After 

1 min at 95ºC, a melting curve was obtained by following the fluorescence intensity during a 

gradual cooling from 95 to 65 °C.  
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To carry out absolute qRT-PCR, a calibration curve was constructed with an in vitro 

synthesized RNA (Fig. 4.2A), as detailed previously 18-19. The absolute calibration curve, 

obtained by plotting the log of the starting RNA molecules versus the threshold cycle (Ct), was 

linear (r = 0.998) over 7 orders of magnitude (Fig. 4.2.A). The slope of the calibration curve 

indicates that the calibrator is amplified with 100% efficiency (E = 10[-1/slope] - 1). This 

calibration curve (Ct x 50000 pg = -3.326 x logN+ 39.655) was used to calculate the number of 

copies of each mRNA species in each total RNA sample, as described previously 20. The 

reliability of an absolute quantification depends on identical amplification efficiencies for both 

the target and the calibrator. Our primers were designed to amplify all amplicons with optimal 

(∼100%) efficiencies and high linearity (r > 0.99) in the range of 20 to 2×105 pg of total RNA 

input as shown in Table 4.2 and exemplified for Pp2c (Fig. 4.2.B). Data from transcriptional 

measurements were analysed by t-test with the software InStat v2.05/00 (GraphPad). 

 

Figure 4.2. (A). Absolute standard curve used to calculate the number of copies of each experimental transcript per 
pg of total RNA and (B). the efficiency curve for the amplification of Pp2c transcripts. 

4.2.9. Protein extraction and immunoblotting 

Pooled embryonic protein extracts were obtained by crushing from cryohomogenates 

samples (200 mg, each sample in triplicate) by using trichloroacetic acid (TCA)–acetone–phenol 

protocols as described 21. The final pellet was suspended for protein solubilization in 9 M urea, 

4% CHAPS, 0.5% TritonX-100, and 100 mM DTT. Once the pellet was solubilized and the 
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insoluble material eliminated by centrifugation, the protein content was quantified by Bradford 

method 22, using bovine albumin as standard. Protein samples (25 µg) and markers were 

loaded in 12% polyacrylamide stain-free gels (Mini-PROTEAN® TGX Stain-Free™ Precast Gels, 

BioRad) and SDS-PAGE was performed 23 by using the Mini Protean tetra-Cell (Bio-Rad). After 

electrophoresis, image of total protein were digitalized by ChemiDoc™ MP Imaging System 

(BioRad) and then protein were transferred onto polyvinylidene difluoride (PVDF) membranes 

by using the Trans-Blot® Turbo™ Transfer System (Bio-Rad). After transfer, the PVDF 

membranes were rinsed briefly in distilled water and the image of transfer protein were 

digitalized by ChemiDoc™ MP Imaging System (BioRad) to assess the quality of the 

transference. These images indicating the total amount of protein per lane were used to 

normalise the intensity of the lumniscence observed after incubating the membrane with the 

corresponding primary and secondary antibodies 24. PVDF membranes were blocked with 2% 

nonfat milk powder. Blots were incubated with rabitt antibodies raised against GAPDH 

(dilution:1:500), dehydrin (dilution:1:100) or RBCL (dilution:1:100), washed, and incubated 

with the secondary goat anti-rabbit IgG antibody (Sigma: A-9169, 1:2000), conjugated to 

horseradish peroxidase, for an additional 1 h. Blots were developed using the Clarity™ Western 

ECL Detection System (BioRad). Image captures and densitometric analyses were performed 

with the ChemiDoc MP Imaging system and ImageLab 4.1 software (BioRad), respectively. 

4.2.10. SOD isoform identification and activity staining  

Protein extracts were obtained from cryohomogenates samples, mixing 500 mg of 

each sample (in triplicate) with 1mL of 10 mM de Tris-HCl buffer (pH 7.4), 5 mM DTT, 2 mM 

EDTA; 0.5% (v/v) TritonX-100, 5 mM ascorbic acid, 100 mM PMSF and 10% (w/v) PVPP. The 

homogenates were then vortexed and sonicated 4 x 10 s (6 W). Supernatants were collected by 

centrifugation at 10000g for 10min at 4ºC and used for enzyme assay. The protein content was 

quantified by Bradford method 22, using bovine albumin as standard. To preserve the enzymatic 

activity, 30% (w/v) sacarose were added. Total extract thus was stored at -80 ºC till use. 

Twenty micrograms of protein was loaded in each well for activity staining assays using the 

native gels. SOD isoforms were separated on a 10% non-denaturing polyacrylamide (PA) gels at 

4ºC using a mini protean electrophoresis unit (Bio-Rad, USA). After electrophoresis, the gels 

were stained for SOD activity as described in 25. Gels were soaked in 50 mM potassium 

phosphate buffer, pH 7.8, containing 1.25 mM nitro blue tetrazolium (NBT)-2HCl for 30 min in 

the dark at 25ºC, followed by immersing in 50 mM potassium phosphate buffer, pH 7.8, 28 mM 

de TEMED and 30 μM riboflavin, which were then exposed under light source at room 

temperature. Isoforms of SOD were differentiated by activity staining of gels previously 
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incubated for 30 min at 25°C in 50 mM potassium phosphate buffer, pH 7.8, containing either 3 

mM KCN (inhibitor of Cu/Zn SOD) or 5 mM H2O2 (inhibitor of Cu/Zn SOD and FeSOD)26. SOD 

activities were quantified by converting the stained area and intensity into a relative unit by 

scanning the gel using the ChemiDoc MP Imaging system with the ImageLab 4.1 software 

(BioRad).  

4.3. Results and discussion 

4.3.1. Plant material 

Mature acorns were harvested from healthy holm oaks from Cerro Muriano (Fig. 3.1, 

p. 45). Three independent germination experiments were conducted (Fig. 3.2, p. 46). After 

imbibition, embryo axes were collected at 0 (dry), 6 h, 12 h, 24 h, 48 h, and whole seedling 

collected at 72 h, 144 h and 216 h, as described in Ch. 3 (Fig. 3.3, p. 47).  

4.3.2. Morphology, water uptake and dessication sensitivity during Q. ilex seed 

germination progress  

Seed germination is a complex process comprising events from seed imbibition to 

growth. Morphologically, initiation of growth corresponds to radicle emergence; subsequent 

growth is generally defined as seedling growth. To clearly define the distinct physiological 

germination stages of Q. ilex seeds, we carried out a germination experiment with healthy, 

regular sized acorns imbibed in water. We got an accelerated, homogeneous, synchronized 

germination for the 100 % of seeds by dehulling acorns prior imbibition. Morphology, water 

up-take and loss of seed desiccation resistance were examined over the course of seed 

germination, and seven developmental stages representing distinct physiology of Q. ilex over 

the course of seed germination were selected and referred as S0 to S7 stages. Figure 4.3 shows 

the morphology of germinating acorns at each developmental stage and the averaged time 

typically taken for acorns to reach the given stage. Though seed hydratation already was 

evident in the S1 stage (6 h after imbibition, Fig. 4.3.A, B, C), changes in the acorns morphology 

were observed during the germination process only after reaching the S2 stage, about 12 h 

after imbibition, when the rupture of the testa was appreciable. Radicle emergence started to 

be visible 24 h (S3) after imbibition, reaching lengths of 5, 10, 20 and 55 mm at 50, 72, 144 and 

216 h, respectively. Epycotil emergence from the embryonic axis and growth started to be 

visible 72 h (S5) after imbibition, and plumule emergence from cotyledonary petioles was 

observed 144 h (S6) after imbibition. After 216 h, the shoot emerged. These changes permitted 

to state that the holm oak acorn early germination period covers the first 12 h after imbibition, 
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ending with the testa rupture (stage S2) (Fig. 4.3.D). The late germination period covers the 

following 12 h, ending with the radicle emergence (stage S3) and characterized by a diminished 

rate of water uptake. At this point, the post-germination period (from S4 to S7 in our 

experiment) started (Fig. 4.3.D). 

 

Figure 4.3. Morphology and physiology of germinating holm oak seeds at different developmental stages. (A) 
Morphology of germinating acorns and young seedlings at each developmental stage; the relative time taken for low 
hydrated seeds to reach each stage is also shown; germinating dehulled seeds shows important morphological 
changes after imbibition at S2: testa rupture at 12 hours of germination. S3: Radicle emergence at 24 h; S5: epycotil 
emergence from the embryonic axis; and S7: plumule emergence from differentiated cotyledonary petioles. (B) Seed 
sections showing the embryonic axes and the progressively differentiated parts of the embryo: hr: hypocotile 
radicule; e: epycotil; pl: plumule; c: cotyledon; cp: cotyledonary petiole; r: radicule; (C) TZ staining (1% solution of 2, 
3, 5- triphenyl tetrazolium, 15 min, 35 ºC, in darkness) were used to facilitate the visualization of the morphological 
changes produced in the embryonic axes during germination. (D) Correspondence among the seven developmental 
stages and the three phases of Q. ilex seeds germination: early (S0-S2), late (S2-S5) and post-germination (S5 and 
ahead) phases. (E) Percentage of relative water content (RWC %) of complete germinating holm oak seeds or their 
cotyledons at the different developmental stages. The fresh (FM) and dried (DM) weights (70 ºC for 48 h) of 10-15 
germinating acorns or seedlings were plotted per stage, with vertical bars representing ± SE of the mean. All mass 
measurements were made using an analytical scale, with precision of 0.0001 g. The relative water content (RWC) in 
germinating seeds was expressed as percentage of lost weight [(FM - DM) * 100] relative to fresh weight (FW). All 
weighting was done to the nearest mg. (F) Desiccation resistance of germinating Q. ilex seeds at each developmental 
stage. The seeds were collected at each developmental stage, dehydrated and then re-germinated for days. The 
percentage of the dehydrated germinating acorns that could revive to their growth at 4th and 7th days was defined 
as survival rate. Data are means ± SD of three independent replicates. Sample size for each desiccation resistance 
assay ranged from 14 to 46 seeds.  
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The percentages of relative water content (RWC %), expressed as percentage of lost 

weight relative to FW of germinating holm oak seeds or their cotyledons at the different 

developmental stages are shown in Fig. 4.3.E. The relative water content in the mature non-

germinating holm oak seeds was 38 %, according to previous reports for recalcitrant seeds (i.e., 

Tilki et al. and í-Zomeño et al. 27-28). This relative water content increased rapidly at a rate of 

2.34 % per hour during the first 12 h; then, a 36 h plateau was observed, with a rate of only 

0.02 % per hour. Afterward, the water uptake increased at a rate of 0.20 % per hour until the 

end of the experiment (216 h), when seeds reached a RWC of 98.56 % (Fig. 4.3.E). The triphasic 

uptake of water by Q. ilex seed, with a rapid initial uptake (phase I, i.e. imbibition; S0-S2) 

followed by a plateau phase (phase II, S2-S5), and a further increase (phase III S5 and forward) 

as the embryo axis elongates and breaks through the covering layers to complete germination, 

is in agreement with previous reports in other Quercus spp. seeds 29. 

4.3.3. Quantification of sugars in embryo axis of Q. ilex seed and seedlings 

GC-MS/MS method was applied to analyse and quantify the soluble carbohydrates 

sucrose, fructose and glucose contents in embryo axes and seedlings of Q. ilex at the pre-

germination S0 stage and at the S3 and S7 post germination stages, in an effort to determine the 

contribution of these sugars to the metabolism of mature and germinated recalcitrant seeds. 

Soluble carbohydrates analysis in Q. ilex and other recalcitrant seeds are scarce. In orthodox 

seeds, maturation and acquisition of desiccation tolerance is reported to correlate well with the 

accumulation of sucrose and raffinose family oligosacharides (RFOs: galactinol, raffinose, and 

stachyose) 30. Accumulation of these non-reducing sugars offers protection by stabilization of 

membranes and proteins during the desiccation occurred in the last stage of orthodox seed 

maturation. Some authors 31 have proposed that sucrose must be present in relatively high 

quantities (10–20% of DW, such as in Glycine max or Zea mays) 32 to be effective as a 

cryoprotectants in mature seeds. In these conditions, the biosynthesis of raffinose and 

stachyose occurs via sequential transfers of galactosyl units to sucrose by raffinose synthase 

enzyme (Fig. 4.4.A). The galactosyl donor is galactinol, synthetized by the enzyme galactinol 

synthetase (GOLS) 33. However, even in the orthodox seeds the amount of sucrose have been 

reported to differ from 33% in the African oil bean seeds, to only 0.3% to 3% in the seeds of 

some crops such as chick pea or black gram 34. The level of sucrose (83 ± 0.4 µg g-1, <1% of DW, 

Fig. 4.4.B) accumulated in the embryonic axis of Q. ilex seeds (S0 stage) was in the lower range, 

as expected from a just partial desiccation process described for recalcitrant seeds 35. The 

amount of reducing sugars like glucose or fructose make up only a very small amount (3.0 ± 0.7 

and 6.7 ± 0.7 µg g-1 DW, respectively) of Q. ilex seed in this S0 stage, as described for the 
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orthodox seed 34. The levels of both monosaccharides increased dramatically (10-20 folds) 

during the late germination stage (S7) accompanying to the decrease in the amount of sucrose 

observed at this stage. The germination and post germination processes are characterized by a 

high metabolic activity 36. The decrease of sucrose and the increase of monosaccharides 

observed in stages S3 to S7 might be associated with the increased hydrolysis of nutrients 

necessary for the development of seedling, because soluble sugars are usually utilized early in 

germination as an immediate energy source 37.  

Data reported here suggest that during the maturation of Q. ilex seed a partial 

adaptation to dryness occurred, that implied (i) a medium-level accumulation of sucrose, the 

precursor of RFOs, what offers drought protection by stabilization of membranes and protein; 

and (ii) a reduction in the metabolic activity, by maintaining low levels of glucose and fructose, 

and that would avoid a precocious germination process. 

 

Figure 4.4. Sugar content in germinating Q. ilex seeds. (A) Biosynthetic pathway of raffinose family 
oligosacharides (RFOs: galactinol, raffinose, and stachyose) (adapted from 33; and sucrose initial catabolism during 
active metabolism (GolS: galactinol  synthase. Rfs: raffinose synthase, Inv: invertase). (B) Sucrose, glucose and 
fructose content in the embryo axis at the S0 (0h), S3 (24h) and S7 (216h) stages were determined by GC-MS. Data 
correspond to the mean ± SE of measurements made on 20-50 seeds per sampling time, grouped in three pools. 
Changes between the S3 and S7 stages were statistically significantly different at the p<0.001 value (ANOVA). 

4.3.4. Phytohormone profiles in Q. ilex embryo axis and seedlings 

Plant hormones are biochemical substances controlling many physiological and 

biochemical processes in the plant, including seed dormancy and germination 38. The 

complexity of any plant matrix and their small concentrations make phytohormone analyses 

particularly difficult. By applying the selectivity of reversed-phase chromatography coupled to 

tandem mass spectrometry, we have assessed the quantity of abscisic acid (ABA), gibberellins 

(GA3, GA4), indole-3-acetic acid (IAA), cytokinins (CKs: dihydrozeatin riboside, DHZR; 
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dihydrozeatin, DHZ; isopentenyladenine, iP; isopentenyladenine riboside, iPR); trans-zeatin, 

(tZ; trans-zeatin riboside, tZR) and the brassinolide castasterone (CS) in embryo axis and 

seedling in different germination and post germination stage of Q. ilex seeds. The results are 

summarized in Fig. 4.5.A. 

Among the internals growth regulators of seed germination, abscisic acid (ABA) and 

gibberellin (GA) are the two phytohormones that have most pronounced effects, (reviewed by 

Locascio et al. 39). ABA establishes and maintains the seeds dormancy, whereas GA has the 

opposite effect of breaking the dormancy and inducing seed germination. In the mature non-

germinating orthodox seed there are high levels of ABA and low levels of GA. Only when the 

situation changes, the increased levels of GA can counteract the germination-inhibiting effect of 

ABA.  

 

Figure 4.5. Changes in the endogenous concentrations of phythormones in Q. ilex embryo axis and seedling 
during germination and post germination stages and cross-talk among them. (A) The levels of abscisic acid 
(ABA), gibberellins (GA3, GA4), auxin (IAA) and cytokinins (iP, iPR,) were determined by using GC-MS/MS. Data 
correspond to the mean ± SE of measurements made on 20-50 seeds per sampling time, grouped in three pools. 
Statistical significances were determined in a one-way ANOVA Tukey test. The P values are given as * = significant at 
P< 0.05 level and *** = significant at P< 0.001 level. (B). Phytohormone interaction during germination and seedling 
development. 

The ABA content in mature Q. ilex embryo axis (6.4 ± 1.0 ng g-1 DW) reported here is 

similar to those found for the embryo axis of Q. robur 40 and other recalcitrant seeds 41. 

However, this value is considerably lower than those reported for orthodox seeds of 

Arabidopsis thaliana (140 ng g−1 DW) 42 or Solanum lycopersicum (50 ng g−1 DW) 43. The 
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desiccation sensitivity and absence of dormancy in Q. ilex seeds are probably related to their 

low ABA levels, emphasizing the role of this phytohormone in preventing premature 

germination and desiccation tolerance acquisition. No differences were observed during the 

germination process (S0 to S3) in the Q. ilex embryo axis but the ABA amount increased 

considerably (>20-folds) in the post-germination stage (from S3 to S7). A similar increased has 

been described for the recalcitrant species Araucaria angustifolia embryo, 41. The high levels of 

ABA in the S7 stage might be related to the development of radicle. Some previous reports 

indicated a positive role for ABA in promoting root meristem maintenance and root growth in 

Arabidopsis, though the involved molecular mechanisms remain unknown 44-45. 

Gibberellins (GA) are required to generate sufficient embryo growth potential to 

rupture the endosperm and testa in the final stages of germination 46. Active GAs, GA3 and GA4 

are present at very low levels in young orthodox embryonic axes and their levels increase to 

overcome seed dormancy (i.e., Chen et al., Ogawa et al., Farrant et al. and Weitbrecht et al.47-50). 

Time-course changes in endogenous contents of GA3 and GA4 has been determined in the Q. 

ilex embryo axis using GC-MS (Fig. 5.6.A) that revealed levels of 10.6 ±2.9 and 174.8± 37.1 ng/g 

DW, respectively. The GA3 levels are usually undetectable in orthodox non-germinating seed 

but its accumulation is a prerequisite for dormancy breaking. In the case of Phellodendron 

amurense, germination is accompanied by an increase of up to ~ 60 ng/g DW 47. In Q. ilex 

embryos the levels of GA3 increased from 10.6 ±2.9 to 37.0 ± 18.1 ng/g DW (>3-fold increase) 

during the post germination stage (S3-S7). In other recalcitrant species such as Aviccenia 

marina the GA3 levels were higher at the S0 stage (~ 35 ng/g DW) reaching levels of ~ 55 ng/g 

DW (<1.5-fold increase) at the radicle protrusion stage (Farrant, Berjak et al. 1993). GA4 has 

been proposed as the major endogenous active GA in germinating seeds and shoots 48. In 

Arabidopsis or Phellodendron amurense GA4 is present at about 3 ng/g DW in the mature, non-

germinating seed and its levels increased 2- to 7-folds, respectively, at the S3 stage 41. The GA4 

concentration in Q. ilex embryos was considerably higher than that found in germinated 

orthodox seeds, what might explain its stability along the course of the experiment. 

Other hormones are involved in seed developmental processes, and hormone 

interactions in relation to seed dormancy and germination have been discussed 38; 51 (Fig. 

4.5.B). The auxin indole-3-acetic acid (IAA) has been implicated in plant growth 52 and roots 

development 53. The physiological role of IAA during seed maturation is not clear. Cross-talk 

between IAA and ABA during seed germination has been reported, as IAA enhances ABA-

mediated inhibition of seed germination 54. In the present study, we found that the IAA levels in 

Q ilex embryo axis and seedling were 23.9 ± 1.4 and 28.9 ± 2.8 ng g−1 DW, at in S0 and S3 

respectively, and these levels increased to 61.4 ± 3.8 ng g−1 DW at S7 stage (Fig. 4.5.A). The 
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levels of IAA in mature seeds was lower than reporter to Avicenia marina (500 ng g−1 DW) 55, 

but IAA increases during post-germination similar to that reported here have been described 

for several recalcitrant seeds 41; 55. The time-course change in Q. ilex seeds of endogenous IAA 

contents is matched by the changes in the levels of ABA , supporting the idea that of a crosstalk 

between IAA and ABA responses 54 and that both hormones are not involved in the proccesses 

ocurring during Q. ilex seed germination. 

We also analyzed the levels of some cytokinins and the brassinolide castasterone (CS) 

in embryo axis and seedling in different germination and post germination stage of Q. ilex seeds. 

Naturally occurring CKs (cytokinins) are modified forms of the nucleic acid base adenine with 

plant growth regulating activity. CKs play a role in many aspects of plant growth and 

development, including cell division, cell enlargement, senescence and differentiation and have 

also been implicated in favouring the germination and early post-germination events56. The CKs 

iP, Z and DZ are predominant in higher plants. The free bases and their ribosides (iPR, ZR, DZR) 

are thought to be the biologically active compounds 57. Among the CKs we measured here (tZ, 

iP, DZ, iPR, tZR and DZR) only iP and iPR showed statistically significant increases along the 

studied stages (Fig. 4.5.A). The levels of tZ, tZR, DZ and DZR (data not showed) were about two 

orders of magnitude lower than described for other recalcitrant seeds 55 and their increases did 

not duplicate the basal S0 levels. The iP content in Q. ilex seeds/seedlings increased from 

8.5±0.5 to 12.6 ±0.6 ng g−1 DW during germination (S0 to S3), and then decreased at S7 stage 

(Fig. 4.5.A) reaching levels lower that in the S0 stage. Again, the Q. ilex seed content of this CK 

was lower than described in other recalcitrant species, but showed a similar time-course 

profile 55; 58. In contrast to iP, iPR showed a continuous increase during germination and post 

germination stages (from 4.2 ± 1.3 ng g−1 DW in S0 to 17.7 ± 2.9 ng g−1 DW in S7). To the best 

of our knowledge, this is the first study to report of the time-course increase of iPR in this type 

of seeds and demonstrates that in the recalcitrant Q. ilex seeds the increase of anti-dormancy 

hormones accompanies the germination process. 

Plant brassinosteroid (BR) hormones play a role similar to GA in promoting 

germination in that it helps to break ABA-induced dormancy and stimulate germination 59-61. 

We measured here the amount castasterone (CS), a precursor of brassinolide (BL), the active 

component of BR, in the Q. ilex seed germination and post germination events. In Q. ilex seeds 

CS during germination and post germination showed constant values between 49.7 ± 19.1 ng 

g−1 DW and 53.5 ± 9.8 ng/g DW (data not shown). These findings indicate that de novo CS 

synthesis is not operating in the germinating Q. ilex seed, a result clearly opposite to the data 

reported for Arabidopsis, pea, and tomato 60. However, when the levels of CS in Q. ilex seeds at 

the S0, S3 and S7 stages (about 50 ng/g DW) are compared with the 0.5-2 ng/g DW reported in 
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Arabidopsis 62 or pea seeds 60 it can be assumed that the levels of CS in Q. ilex seeds are high 

enough to finish the germination process.  

Though several reports addressed the effects of phytohormones on growth and 

development, the studies on changes in the endogenous levels of phytohormones during seed 

germination in recalcitrant seeds, or centered in their crosstalk, are less documented. We 

report here data of the levels of some of these phytohormones in a recalcitrant seed. As a 

whole, the phythormone data reported here support the idea of a non-totally incomplete level 

of maturation of Q. ilex seeds, where the low ABA levels are unable to prevent premature 

germination but where, also, the biosynthesis of GA, auxin and CK are needed for germination 

completion.  

4.3.5. Isolation of Q. ilex gene fragment sequences for transcriptional analysis 

We studied here a set of twelve genes involved in germination (Table 4.3). These 

genes were chosen after an extensive literature search reflecting multiple sources of 

experimental evidence (genetic, biochemical or high-throughput expression data) that 

definitely established their participation in regulating the plant response mechanisms to 

situations in which water availability is limited as is the case of a mature orthodox seed. The 

selection included members of the two major groups of drought-stress regulated genes 63, 

encoding for both regulatory or functional proteins. DHN3 and GOLS are ABA-regulated, 

drought-responsive proteins that protect plant proteins and membranes from the loss of water 

and help to maintain the cellular integrity during seed desiccation. Skp1, Pp2c, Sdir1 and Ocp3 

genes code for regulatory elements involved in the ABA signalling pathway, the key responsible 

for the main defence responses to drought and salt stresses and the maintaining of seed 

dormancy (Cutler et al. 64 and ref. herein). Four genes coding for metabolic enzymes (FDH, 

GAPDH, RBLC and NDH6) were also included, since metabolism is expected to be widely 

affected during germination. The phase II metabolizing enzyme GST is considered a negative 

component of the ABA-mediated signal transduction pathway 65 in addition to its intrinsic 

defensive role against stresses during dormancy. Finally, superoxide dismutase (SOD) protect 

seed against ROS produced during seed desiccation, germination, and ageing, which may lead 

to cellular damage and seed deterioration. 

One major limitation of transcripts quantification approaches in non-model organisms 

like Quercus ilex is the almost absolute lack of information regarding genic sequences in 

publicly available databases. Hence, as part of designing the qRT-PCR assay, we sequenced 

coding region segments of the selected gene loci from Q. ilex. When the sequence of the Q. ilex 

gene was not available in a public database, cross-species amplification experiments were 
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performed with gene-specific primer pairs designed over published orthologous sequences 

(Table 4.1). Partial coding sequences corresponding to eight Q. ilex genes (Fdh, Gst, GolS, Ndh6, 

Ppc2, Ocp3, Sdir1 and Skp1) were isolated. After being trimmed and verified, the identity of each 

transcript was assigned on the basis of sequence similarity to proteins with known functions in 

GenBank using the NCBI-tBLASTx tool, with an e-value ≤ 10−20 and the CDS were deposited at 

the GenBank database (Table 4.2). To exactly complement the desired template location, 

primers for the absolute quantification of selected genes transcript levels by real-time RT-PCR 

(qRT-PCR) were designed (Table 4.2). 

 



 

Table 4.3. Genes studied in this work and the functions of the proteins that they encode. 

Functional category 
 

 
  Gene namea Gene annotation (synonims) Protein Function References 

Dessication protective proteins       

Dhn3 Dehydrin LEA isoform 3 
Intrinsically disordered protein, potent chaperone, protects plant 
proteins and membranes from the loss of water; ABA-regulated. 

Sunderlikova et al.66 

GolS 
Galactinol synthase  (Galacturonosyl 
transferase-Like 4; GATL) 

Key enzyme in the biosynthesis of raffinose, an osmolyte that protects 
the cellular integrity during desiccation; ABA-regulated. 

Li et al.67 

ABA signaling pathway       

Ocp3 Overexpressor of cationic peroxidase 3 Negative regulator of ABA signaling transduction.  Ramírez et al.88 

Sdir1 Salt-And Drought-Induced Ring Finger 1 
RING-type E3 ubiquitin ligase; modulates the ABA signaling during 
drought stress.  

Li et al. 68 

Skp1 S-Phase Kinase-Associated Protein  Involved in ABA signalling by SCF-mediated protein degradation. Li et al.69 

Pp2c Protein Phosphatase Type 2C 
Negative regulator of ABA signaling by blocking downstream protein 
kinase SnRK2.          

Sun et al. 70 

Metabolism       

Ndh6 NADH dehydrogenase subunit 6 
Involved in dissipating energy and maintaining ATP supply under 
conditions of low CO2 in response to stress.  

Abdeen et al. 71 

GapdH 
Glyceraldehyde 3-Phosphate Dehydrogenase 
(GAPA; GAPA 1) 

Catalyzes  the oxidative phosphorylation of glyceraldehyde-3-phosphate. Aranjuelo et al.72 

Fdh Formate dehydrogenase Catalyzes the oxidation of formate into CO2 in the presence of NAD+. Alekseeva et al.73  

RbcL 
Ribulose-1,5-bisphosphate 
carboxylase/oxygenase (RuBisCo) 

Enzyme fixing CO2 during photosynthesis.  Demirevska et al.74 

Redox homeostasis/detoxification       

Sod1 Superoxide dismutase 1 
Catalyzes the dismutation of superoxide (O2·−) into oxygen and hydrogen 
peroxide 

Roach et al. 96 

Gst Glutathione S-Transferase isoform 2 
Phase II metabolizing enzyme; negative component of stress-mediated 
signal transduction pathways (including ABA signaling) in adaptive 
responses to drought and salt stresses.  

Chen et al.65  

aGene symbols are according to the NCBI Gene database. 
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4.3.6. Transcriptional profiles changes during Q. ilex seed germination and early 

seedling growth 

Studies in orthodox seeds demonstrate that developmental phases during subsequent 

germination and early seedling are characterized by temporal patterns of gene expression. We 

determined by qRT-PCR the absolute transcript number for each gene in our panel at four 

different developmental stages of the Q. ilex seeds: S0 (mature acorn); S2 (early germination 

stage); S3 (late germination stage) and S7 (post-germination, early seedling period). We also 

quantified the transcript copy numbers of these 12 genes in mature fully expanded leaves of 

one-year old holm oak plants in order to clarify the metabolic state and drought adaptation of 

mature non-imbibed acorns (Fig. 4.6). 

 

Figure 4.6. Absolute quantitation of transcript molecules in embryo axis tissue isolated from non-imbibed 
acorns (S0) and in mature, fully expanded leaves of one-year old Q. ilex plants. (A) Transcript data are the 
means ± SD of transcript molecules/pg of total RNA from three biological replicates made in quadruplicate. Each 
biological replicate was a pool generated by mixing equal amounts of homogenized tissue from 10-30 embryo 
axis/leaves. (B). The same comparison, but including the RbcL and Dhn3 transcript amounts measured in leaf tissues 
from water-stressed plants. One-year-old holm oak plants were water withheld for 28-days, which caused 70% 
decreases in soil moisture levels, an statistically significant (P< 0.001) reduction in the xylem water potential, which 
dropped from -0.72 ± 0.06 MPa to –2.2± 0.10 MPa after 28 days, in the stomatal conductance (66.2 ± 2.4 vs. 129.2 ± 
4.8 mmol min-1 s-1) and diminished the photosynthetic efficiency by 88% at the end of the experiment. Statistical 
significances were determined with Student’s t-test. Differences between acorns and well-watered leaves (a) and 
between well-watered and water-stressed leaves  (b) transcript counts were all statistically significant at least at the 
P<0.05 level. 

With the exception of Gst and RbcL, all the studied genes displayed higher amounts of 

transcripts in the holm oak acorns than in the leaves of the one-year-old plants. Transcript 

accumulation has been described for low-hydrated mature seeds (the orthodox seeds), 

especially of mRNA species associated with proteins involved in the acquisition of desiccation 

tolerance (i.e. dehydrins) 75 and other biological processes (i.e. ribosomal proteins and 

translation initiation factors; proteases and/or peptidases; proteins associated with energy 

metabolism, DNA repair and lipid degradation) 76. Transcript accumulation protects the seed 

during desiccation, providing the mRNAs needed during the early stages of germination, where 
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no transcription is possible 75. Such mRNA accumulation would not be expected in a recalcitrant 

seed where the moisture grade is over 38 % in the mature stage and where there is not a 

complete cessation of metabolism 77. We show here, however, that the recalcitrant holm oak 

acorns also seemed to be adapted to cope with desiccation and to initiate the germination 

process by accumulating high levels of mRNAs. In these line, and despite of the high level of 

RbcL transcript counts in Q. ilex seeds, data in Fig. 4.6.B indicate that much more higher levels 

are needed for a tissue being functional in CO2 fixation such a mature leaf. Data in Fig. 4.6.B also 

suggest a relative desiccation adaptation in the acorn, since a reduction in the RbcL and an 

increase in Dhn3 mRNA molecules accompanied the water-stress response in the plant. These 

results corroborated previous findings regarding the accumulation of dehydrins 78 in Quercus 

spp., and expanded the list of processes involved in the recalcitrant Q. ilex mature seed 

protection at the transcripts level.  

Changes in the transcriptional profiles of genes coding for desiccation protective 

proteins 

Figure 4.7 summarizes the transcripts level of Dhn3 and GolS mRNA species 

corresponding to each studied developmental stage, and it shows different expression patterns 

along the experimental period. DHN3 and GOLS are ABA-regulated, drought-responsive 

proteins that protect plant proteins and membranes from the loss of water and help to 

maintain the cellular integrity during seed desiccation. The dehydrin DHN3 is a Group II Late 

Embryogenesis Abundant (LEA) family member, whose transcripts and proteins accumulate in 

vegetative tissues upon various stress factors that cause cell dehydration 79. These proteins 

show an intrinsic structural disorder that makes them resistant to crystallization and 

denaturalization, and that has been proposed to be the cause of dehydrins acting as potent 

chaperones under the conditions of dehydration stress 66. Dhn3 transcripts and protein 

abundance dropped dramatically and constantly (>120 fold) from the S0 stage till the end of the 

experiment (S6), moving in parallel but opposite directions to the relative water content (RWC) 

in germinating seeds (Fig. 4.7.A, B). 
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Figure 4.7. (A) Absolute quantitation of Dhn3 transcript molecules in embryo axis tissue isolated from non-
imbibed seed (S0) or after 10 h (S2), 24h (S3) and 216h (S7) of germination, compared with the relative water 
content (RWC) in germinating seeds. Transcript data are the means ± SD of transcript molecules/pg of total RNA 
from three biological replicates made in quadruplicate. Each biological replicate was a pool generated by mixing 
equal amounts of homogenized tissue from 10-30 embryo axis of the same sampling time. Statistical significances 
were determined by a one-way ANOVA. Differences between S0 samples and each other were all statistically 
significant (***: P < 0.001). RWC data, expressed as percentage of lost weight relative to fresh weight, correspond 
to those in Fig. 4.4 and are included for correlation with Dhn3 transcript amount. (B). Western blotting of DHN3 
protein in Q. ilex seeds samples. Proteins were extracted from the same pools used in the transcriptional analysis. 
Numbers indicate the arbitrary Western blotting signal intensities normalized to the total protein contents, using 
Stain-free technology for total protein quantification. (C). Absolute quantitation of GolS transcript amounts in the 
same samples S0, S2, S3 and S7 and conditions describes in (A), compared with the sucrose content in 
germinating seeds. Sucrose data correspond to those in Fig. 4.5 and included for correlation with GolS transcript 
amount. 

A similar profile was obtained for GolS mRNA (Fig. 4.7.C). During orthodox seeds 

germination, and coinciding with the loss of tissue desiccation tolerance, RFOs (raffinose family 

oligosaccharides, galactinol, raffinose, and stachyose) are quickly degraded and their synthesis 

stopped in the embryonic axis by directing accumulated sucrose to supply metabolic pathways. 

The disappearance of RFOs has been reported to be caused by the decrease in GOLS activity 

(cited in Lahuta et al. 80), the key unique enzyme in the RFOs synthesis. We show here that the 

GolS transcripts, accumulated at high levels (>40 transcript/pg total RNA) in the mature Q. ilex 

embryo axis (S0), dramatically dropped (>14-fold decrease) when imbibition started (S2 and 

ahead), moving in parallel with the relative sucrose content in germinating seeds (Fig. 4.7.C). 

Data suggest that GolS transcript accumulation in mature holm oak seeds was probably related 

to sucrose accumulation and both seems to indicate that in the Q. ilex recalcitrant seed there is 

also an, at least partial, adaptation to desiccation.  
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Changes in the transcriptional profiles of genes coding proteins regulating the 

ABA signaling response 

Plants utilize hormones to integrate endogenous and exogenous signals. Pp2c, Skp1, 

Sdir1 and Ocp3 genes code for regulatory elements involved in the ABA signaling pathway, the 

key responsible for the main defence responses to drought and salt stresses and the 

maintaining of seed dormancy (Cutler et al. 64 and ref. herein). Perception of ABA is mediated 

by a suite of receptors named pyrabactin resistance 1(PYR1)/PYR1-like (PYL)/Regulatory 

component of ABA receptor (RCAR) 81. The binding of ABA to PYR/PYL/RCAR forms a complex 

that inhibits the activity of protein phosphatase PP2C, a negative regulator of ABA signaling 

through repression of SnRK2s, the positive regulators of downstream targets. The ABA 

activated protein-kinases SnRKs (Fig. 4.8.B) are then able to phosphorylate and activate down-

stream transcription factors including the bZIP-type transcription factors ABFs, ABI5 and ABI3 

that are key to regulate the expression of ABA responsive genes in seeds 82.  

The PP2C family is the largest P-protein phosphatase family in Arabidopsis 83. Pp2c is a 

relatively abundant transcript (~ 8 molecules/pg total RNA) in the embryonic axes of 

unimbibed seeds, whereas the level of expression in leaves was almost undetectable (Fig. 4.6). 

The Pp2c mRNA was found to maintain constant counts in the S0-S3 stages, and significantly 

decreased after radicle emergence (S7 stage) (Fig. 4.8.A), when the ABA level start to raise (Fig. 

4.5). As a negative inhibitor of ABA, downregulation of Pp2c gene and the likely subsequent 

diminished level of PP2C protein would facilitate the role of ABA at early stages of seedling 

development.  

The ubiquitin–proteasome pathway has been implicated in ABA signaling as 

mutations in subunits of the 26S proteasome were shown to result in changes in hormone 

sensitivity. S-phase kinase-associated protein 1 (SKP1) is a component of a Skp1-Cullin1-F-box 

(SCF) complex E3 ligase and negatively regulates ABA signaling through promoting 

degradation of specific kinases that phosphorylate and activate ABI5 protein 69. Mutants skp1-

like of Arabidopsis exhibit reduced ABA sensitivity 69, and overexpression of the SKP1 in 

tobacco has been reported to cause delayed seed germination 84. We quantitated a high amount 

of Skp1 transcript molecules (> 140 molecules/pg total RNA, Fig. 4.6.A) in the acorns of Q. ilex, 

which diminished when the seed enter in the germination process (from S0 to S3 stages) and 

started to rise (Fig. 4.8.A) with the rise in the phythormone levels (from S3 to S7, Fig. 4.5). 

These data suggest that SKP1 is required to maintain low levels of ABI5 to ensure seedling 

establishment, as has been reported for other SCF-E3 ligases 69; 85. The results for absolute 

transcripts counts displayed in Fig. 4.8 are in agreement with previous reports showing that 

Skp1 and Pp2c genes are down-regulated in the absence of ABA.  



 
76 Chapter 4: Transcriptional, hormonal and sugar content changes 

 

Figure 4.8. (A) Absolute quantitation of Pp2c, Skp1, Sdir1 and Ocp3 transcript molecules in embryo axis tissue 
isolated from non-imbibed seed (S0) or after 10 h (S2), 24h (S3) and 216h (S7) of germination, Transcript data are 
the means ± SD of transcript molecules/pg of total RNA from three biological replicates made in quadruplicate. Each 
biological replicate was a pool generated by mixing equal amounts of homogenized tissue from 10-30 embryo axis of 
the same sampling time. Statistical significances were determined by a one-way ANOVA. Differences between S0 
samples and each other were statistically significant at the level P < 0.05 (*); P < 0.01 (**); P < 0.001 (***). (B). A 
simplified working model of the ABA signalling pathway controlling the germination process indicating the 
participation of the Pp2c, Skp1, Sdir1 and Ocp3 gene products. 

In addition to SKP1, many other E3 ligases have been found to be involved in ABA 

responses. The RING type E3s Salt and Drought Induced RING Finger 1 (SDIR1) acts as an active 

RING-type E3 ubiquitin ligase, upstream of ABA-responsive transcription factors, in a feedback 

mechanism to enhance the ABA-signal 86. Sdir1 has been reported to be expressed in all tissues 

of Arabidopsis and is upregulated by drought and salt stress, but not by ABA 87. Data in Fig. 4.6 

shown that the Sdir1 transcripts are >8-fold more abundant in the acorn than in the leaves of Q. 

ilex. Acorn Sdir1 transcript numbers decreased ~2-fold during the imbibition period (from 3.5 

at S0 vs 1.8 at S3 molecules/pg total RNA, Fig. 4.8.A, increasing later in parallel to the ABA level 

increase (Fig. 4.5.A).  

OCP3 is a member of the homeobox transcription factor family, and is considered a 

negative regulator of the early response of the plant to drought stress 88, as the Ocp3 loss of 

function yields a hyper-susceptibility to the ABA hormone in Arabidopsis 88. The number of 

Ocp3 mRNAs diminished 2-fold during the imbibition period (from 5.2 at S0 vs 2.3 at S3 

molecules/pg total RNA, Fig. 4.8.A), and increased thereafter. 
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Changes in the transcriptional profiles of genes coding metabolic enzymes 

In the orthodox seed, germination represents a switch from a period of quiescence to 

an energetically demanding state that necessitates ATP and hence, a rapid increase in 

respiration rate accompanies the early stages of germination after imbibition (Logan et al. 89 

and ref. herein). By contrast, metabolism in recalcitrant seeds is active also after shedding, 

though their relative dehydration, the presence of the pericarp and testa, acting as barriers to 

gas exchange and the absence of fully functional plastids lead to a certain metabolic imbalance 

8. Four genes (GapdH, Ndh6, RbcL and Fdh) coding for metabolic enzymes were also included in 

this study to analyse putative changes in metabolism during germination of Q. ilex acorns. 

Figure 4.9 shows the variation of the transcripts amounts for these four genes along the 

germination and early post-germination stages. 

GAPDH is a key enzyme for energy metabolism and the production of ATP and 

pyruvate through anaerobic glycolysis in the cytoplasm. Recent studies have shown that 

GAPDH has multiple functions independent of its role in energy metabolism and increased 

GAPDH gene expression and enzymatic function is associated with cell proliferation, 

transcriptional and posttranscriptional gene regulation, vesicular transport, receptor mediated 

cell signaling chromatin structure and the maintenance of DNA integrity 90-91. GapdH transcripts 

and protein remained almost constant during germination and early post-germination stages of 

Q. ilex seeds (Fig. 4.9.A, E). The levels of GapdH mRNA found in fully expanded leaves (Fig. 4.6) 

were lower than in the seed, which suggested a special necessity of GAPDH for the surviving 

and germination of Q. ilex seeds. 

Upon imbibition, the embryo releases of a variety of hydrolytic enzymes for the 

degradation of storage compounds, what will supply energy and carbon sources to the 

developing embryo for seedling establishment 92. We observed a decrease of sucrose amounts 

in stages S3 to S7 of Q. ilex seeds germination, associated to the increase of soluble sugars Glc 

and Fru (Fig. 4.4.B) that can be utilized early in germination as an immediate energy source 37 

in respiration. The mitochondrial gene that codifies subunit 6 of NADH (Ndh6 or NdhF) 

provides instructions for making a protein, NADH dehydrogenase 6, which is part of Complex I 

in the respiratory chain. Data in Fig. 4.9.C shows that the Ndh6 transcript numbers peaked early 

during acorns germination, coinciding with the rupture of the testa, and dropped later to the 

levels found in the non-germinated seed as it reached the stage when both the coleoptile and 

radicle had clearly elongated. Similar ordered increase in the abundance of Ndh6 and other 

transcripts encoding mitochondrial proteins has been reported for Arabidopsis during the 

maturation of the mitochondria that occurs after imbibition 93.  
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Figure 4.9. (A, B, C, D)Absolute quantitation of GapdH, Ndh6, RbcL and Fdh transcript molecules in embryo axis 
tissue isolated from non-imbibed seed (S0) or after 10 h (S2), 24h (S3) and 9d (S7) of germination. Transcript data 
are the means ± SD of transcript molecules/pg of total RNA from three biological replicates made in quadruplicate. 
Each biological replicate was a pool generated by mixing equal amounts of homogenized tissue from 10-30 embryo 
axis of the same sampling time. Statistical significances were determined by a one-way ANOVA. Differences between 
S0 samples and each other were statistically significant at the level P < 0.05 (*); P < 0.01 (**); P < 0.001 (***). (E, F) 
Western blotting of GAPDH and RBCL proteins in Q. ilex seeds samples. Proteins were extracted from the same pools 
used in the transcriptional analysis. Numbers indicate the arbitrary Western blotting signal intensities normalized to 
the total protein contents, using Stain-free technology for total protein quantification. (G) A simplified working 
model of some metabolic pathways indicating the participation of the GapdH, Ndh6, RbcL and Fdh gene products. 

Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a key enzyme in 

photosynthesis and the most abundant leaf protein. It catalyses two competing reactions, CO2 

fixation in photosynthesis (Calvin cycle) and the production of 2-phosphoglycolate in the 

photorespiratory pathway. In higher plants, RuBisCO is composed of eight small subunits, 

encoded by a nuclear multigene family (RbcS) and eight large subunits, encoded by a single 

gene (RbcL) in the chloroplast genome. Transcription of RbcL has been shown to be repressed 

by soluble sugars 94, what may explain the decrease in the RbcL transcript and protein amount 

during the Q. ilex germination (Fig. 4.9.C, F). In Q. ilex seeds RbcL is a transcript highly abundant 

(~ 400 molecules/ng total RNA). However, the RbcL transcript levels are ~ 20-fold higher in 

leaf (> 7000 molecules/ng total RNA), suggesting the presence of a non-fully functional 

photosynthetic machinery in the acorn (Fig. 4.6). 

Plants contain small, metabolically active pools of formate. Formate is generally 

considered to come from the photorespiratory pathway through a nonenzymatic, H2O2-

dependent decarboxylation of glyoxylate. Formate may also arise in formate-producing 

fermentation pathways and from cell wall degradation (Fig. 4.9.G). Formate enters folate-

mediated 1-C metabolism leading to serine synthesis via a reduction initiated by 10-formyl-
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tetrahydrofolate synthetase or may be oxidized to CO2, a reaction catalyzed by formate 

dehydrogenase (FDH) 95. Li et al. 95 reported that formate can be toxic to Arabidopsis seedlings, 

as it causes inhibition in the water oxidation reaction as well as in electron transfer in 

photosystem II. Although it is still not very clear how and why formate is formed in plants, it 

can be inferred that excess formate has to be broken down and maintained at a level below that 

at which it becomes toxic. FDH is a soluble mitochondrial enzyme capable of oxidizing formate 

into CO2 in the presence of NAD+. The Fdh mRNA levels (Fig. 4.9.D) showed a constant increase 

along the different developmental stages studied here, becoming an abundant transcript, with 

more than 150 molecules/pg total RNA, at the end of the experiment. However, in the mature 

leaf the amount of Fdh transcrits was 8-fold lower (Fig. 4.6), suggesting that formate over-

production is caused by an stress situation in the early seedling stage. FDH is one of the 

enzymes whose gene is expressed under the action of ABA 73. The increase of endogenous 

concentrations of this phythormone in Q. ilex seedling during post germination stages (Fig. 4.5) 

might explain this dramatic increase in Fdh mRNA. 

Changes in the transcriptional profiles of genes coding antioxidative enzymes 

Reactivation of metabolism in germinating seeds provides an important source of 

reactive oxygen species (ROS). Excessive production of ROS causes oxidative damage to cell 

macromolecules. However, ROS play also normal physiological roles in cells, acting as signaling 

molecules in many processes, including seed germination. In orthodox seeds, elevated rates of 

ROS production upon seed imbibition have been suggested to be involved in cell wall loosening 

and in defending the emerging seedling against pathogens (Reviewed in Roach et al. 96). 

Recalcitrant seeds are desiccation-sensitive and maintain relative high water contents and 

metabolic rates from seed maturation until germination. Desiccation disrupts their metabolism, 

leading to the accumulation of potentially harmful reactive oxygen species (ROS) 8. We 

investigated the contribution of two antioxidative enzymes, superoxide dismutase 1 (SOD1) 

and glutathione S-transferase (GST), to the protection of Q. ilex seeds and analysed the changes 

in their transcriptional profiles along the germination process (Fig. 4.10). 
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Figure 4. 10. (A, C). Absolute quantitation of Sod1 and Gst transcript molecules in embryo axis tissue isolated from 
non-imbibed seed (S0) or after 10h (S2), 24h (S3) and 216h (S7) of germination. Transcript data are the means ± SD 
of transcript molecules/pg of total RNA from three biological replicates made in quadruplicate. Each biological 
replicate was a pool generated by mixing equal amounts of homogenized tissue from 10-30 embryo axis of the same 
sampling time. Statistical significances were determined by a one-way ANOVA (***: P < 0.001). (B) SOD activity gel 
assay showing the SOD protein profiles on native PAGE of different Q. ilex seeds germination stages. Proteins were 
extracted from the same pools used in the transcriptional analysis. A 20 µg aliquots of crude soluble proteins were 
loaded onto a 10% acrylamide gel. Numbers indicate the arbitrary signal intensities normalized to the total protein 
contents, using Stain-free technology for total protein quantification. 

SODs are a family of metallo-enzymes whose presence has been demonstrated in both 

the cytosol and different cell organelles. Three types of SODs have been classified on the basis 

of the metal present at the catalytic site: Cu/Zn-SOD (SOD1, located in the cytosol and 

chloroplasts), Mn-SOD (in the mitochondrial matrix and peroxisomes), and Fe-SOD (in 

chloroplasts) 97. By using the classical gel method for assaying SOD activity in gel 25 and the 

SOD-inhibitors H2O2 and KCN, we identified three MnSOD polypeptides (resistant to H2O2 and 

KCN), a single Cu/ZnSOD polypeptide (sensitive to H2O2 and KCN) and a single FeSOD 

polypeptide (resistant to KCN and sensitive to H2O2) in Q. ilex seeds (Fig. 4.10.B). Bands of the 

five isoforms were present, though with different intensity, in all the studies stage. The SOD 

enzyme profiles of all the five isoforms increased slightly during imbibition to decrease later in 

the post-germination stage. The Cu/ZnSOD activity represented at least the 50% of total SOD 

activity in each sample, whereas the FeSOD was barely detectable. In agreement with the drop 

in SOD activity observed, the Sod1 transcriptional profile in Fig. 4.10.A shows a significant 

decrease in the amount of Sod1 mRNA molecules along the germination process. The decrease 

in the number of Sod1 transcripts initiates at S2 stage and might be the cause of the drop in the 

SOD activity detected later (S7). These results suggest that antioxidative defense mechanisms 

have been activated during this recalcitrant seed maturation, leading to the accumulation of 

SOD to adapt the acorn to support a certain grade of dessication. Indeed, the amounts of Sod1 
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mRNA molecules present in the un-stressed leaf was >6-fold lower than in the un-imbibed Q. 

ilex seeds (Fig. 4.6).  

The plant glutathione S-transferases (GSTs) are a super-family of proteins of divergent 

sequence but conserved structure, which catalyze the conjugation of electrophilic xenobiotic 

substrates with the tripeptide glutathione (GSH) and which are selectively stress-inducible. 

Some GSTs can also act as glutathione peroxidases, protecting cells from oxygen toxicity 98. Our 

results revealed that the abundance of Gst transcripts decreases during germination in Q. ilex 

acorn (Fig. 4.10.C). Seed germination has been described to improve after over-expression of 

Gst in tobacco and it has been suggested that the higher amount of oxidized glutathione (GSSG) 

in dry embryos compared to germinating seeds could contribute to prevent the germination 

process, since in dormant wheat embryos GSSG (or the lack of GSH) seemed to blocks protein 

synthesis 99.  

4.4. Concluding remarks 

The aim of this study was to investigate the underlying biochemistry and metabolic 

status before and after the germination process in the Quercus ilex acorn. We found that mature 

Q. ilex seeds showed some of the intracellular physical characteristics that become modified 

with the acquisition of desiccation tolerance in orthodox seed that included (i) accumulation of 

non-reducing carbohydrates (sucrose) and insoluble proteins (DHN3) that contribute to the 

intracellular vitrified state in seeds; and (ii) accumulation of transcripts involved in the 

synthesis of certain osmoregulator raffinose series oligosaccharides (GolS), the anti-oxidative 

defence (Sod1, Gst) and the preparation for the development of an adult plant (RbcL). But the 

holm oak mature acorns share with other recalcitrant seeds the ability to maintain a partially 

active metabolism, with high level of glycolytic (GapdH) and mitochondrial respiratory 

enzymes (Ndh6) and the absence of ABA (Pp2c, Skp1, Sdir1, Ocp3). However, imbibition 

increased the respiratory rate, paralleling the soluble carbohydrate sugar increase, and 

indicating that mitochondria resulted affected during acorn maturation. As a byproduct of 

photorespiration, of cell wall degradation during the germination process and of the excess of 

glycolytic intermediates, formate is generated and FDH synthesis increased, regulated by 

increased levels of ABA, to detoxify formate into CO2.  
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Abstract 

Suppression subtractive hybridization (SSH) is an efficient technique for generating 

cDNAs enriched for differentially expressed genes. We used this SSH methodology to identify 

differentially expressed genes between Q. ilex germinated seeds (stage S3) and seedling shoots 

of only 4 cm length (SS-4). Two libraries were designed to obtain clones of genes with 

increased or decreased mRNA levels in tissues from germinated seeds (reverse library) and 

seedling (forward library). A total of 664 clones with insert (375 in the reverse library and 289 

clones in the forward library, respectively) were randomly selected and analyzed by PCR using 

vector-based primers. Only PCR products with a size above 300 pb were selected for 

sequencing. After elimination of the sequences with poor quality, 173 qualified trimmed ESTs, 

with a size ranging from 87 to 627 bp, were obtained. Ninety-two ESTs corresponded to 

transcripts enriched in germinated seeds and 80 ESTs to transcripts enriched in shoot seedling 

of holm oak. A total of 71 unique sequences were found in the two subtractive libraries. Thirty 

nine transcripts were more abundant in young development seedling and 31 transcripts in 

germinated seeds. Only one gene, coding for the sugar transport ERD6, was identified in the 

two libraries, thereby indicating that subtraction by hybridization was quite effective and that 

the abundance of a particular cDNA in one library was a consequence of the differential 

expression of the gene in the ‘tester’ sample used. Thirty-one over-expressed genes were 

identified in germinated seeds. Proteins encoded by these genes are representative of eight 

functional categories: stress responses, transport, oxidation-reduction, cell wall modification, 

cell division cycle, protein metabolism, cellular component organization and translation. In the 

other hand, 39 non-redundant transcripts over-represented in Q. ilex shoots seedlings were 

grouped in seven functional categories: photosynthesis, secondary metabolism, transport, 

signaling, stress response, gene expression and cellular component organization. Here we have 

identified for the first time a large number of putative differentially expressed ESTs from the 

embryo axis in germinated seeds and from shoot seedlings of Q. ilex during the post-

germination and seedling establishment. Our data constitute an important genomics resource 

that should clearly benefit further germination and other biological process research on Q. ilex, 

given that this economically important forest tree species remains largely unexplored at the 

genomic level  
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5.1. Introduction 

We are interested in determining the mechanisms that are involved in seed 

development and germination of holm oak seeds. Knowledge of the underlying biochemistry 

and metabolic status before and after the germination process could be important for the 

development and optimization of strategies for large-scale propagation and germplasm 

conservation in this species. In Ch. 4 we evaluated the role of a group of selected genes of 

interest in the Q. ilex germination process by using a hypothesis-driven approach for candidate 

genes. This approach relied on first sequencing the gene of interest by using orthologue 

sequences. Although targeted gene sequencing approaches are straightforward and 

inexpensive, they are time consuming, biased and have low throughput. Furthermore, owing to 

the complex nature of germination, these candidate-based strategies fail to reveal the complete 

landscape of all the genomic changes that occur in in this process. The development of genome-

wide experimental approaches, encompassed with new and potent bioinformatics tools, allows 

biologists to take on the study of adaptive genetic diversity and its association with phenotypic 

trait variation in non-model organisms such as forest trees. In the last 30 years, genomics has 

become an integral part of forest tree research, and forest trees, rarely viewed before as model 

systems in plant biology, have gained much attention for population, evolutionary and 

ecological genomic studies 1. 

DNA-based microarrays represent a powerful high-throughput analytic technology for 

examining multigene expression patterns. The use of microarrays manufactured from 

transcripts of one species to probe gene expression in another, related, species, eliminates the 

need to fabricate a new microarray platform for every new species of interest 2-3. These 

procedures are less applicable to experiments with non-model organisms, which frequently 

comprise non-sequenced genomes as is the case of Q. ilex, underrepresented in public sequence 

databases. Suppression subtractive hybridization (SSH) is an efficient technique for generating 

cDNAs enriched for differentially expressed genes 4. Because Q. ilex is underrepresented in 

public sequence databases, we performed the SSH methodology aimed to identify differentially 

expressed genes between Q. ilex seeds at S3 stage (24h after imbibition, Ch. 4) and seedling 

shoots of 4 cm length (SS-4). The S3 stage coincides with the emergence of the radicle, which is 

considered the completion of germination sensu stricto. At this stage, the embryo cells 

experiment many metabolic changes needed for seedling formation. Understanding how the 

cell cycle genes work at this particular phase of plant development might help to clarify the 

cellular and structural events that bring a quiescent embryo to a metabolically active plant. To 

identify changes in the expression of genes involved in all this process we chose a very young 

seedling shoots where leaves primordia are visible (SS-4) for comparing with the S3 acorns. 
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Sixty-five differentially expressed genes were detected, and most of them were 

identified as genes involved in a variety of biological functions. In the reverse library, 

representing to genes over-expressed in germinated seeds at the S3 stage, mechanisms 

involved particularly in seed protection against water shortage and reserves mobilization were 

observed. Genes in the forward library, over-expressed in seedlings, were mainly implicated in 

the transition switch from the heterotrophic to photoautotrophic metabolism and the 

biosynthesis of secondary metabolites. To verify the SSH results and assess inter-individual 

variability eight transcripts (Eno, Lea-5, Sod1, NdhF (Ndh6), PetE, RbcS, RbcL and Pp2c) were 

selected for absolute quantification by real-time qRT-PCR. The qRT-PCR data revealed 

substantial differences in the absolute amounts of the eight transcripts and confirmed their up- 

or down-regulation observed in the SSH assay. Additionally, a good correlation between 

transcript variation along seed germination and protein/activity abundance was found for 

some of the studied genes. This data indicate that in our experimental system, transcript 

quantification provides good predictive value with respect to the extent of protein changes in 

abundance. Overall, this work provides novel insights into the molecular pathways that could 

mediate seed germination and seedling establishment in holm oak. An EST collection from Q. 

ilex after SSH was generated, which constitutes an important genomics resource to investigate 

germination and other biological process in this interesting forest tree.  

5.2. Material & Methods 

5.2.1. Plant material 

We used mature acorns harvested from healthy holm oaks from Cerro Muriano 

(Córdoba, SW Spain) (Fig. 3.1, p. 45) described in Ch.3, including inmature acorns collected in 

August, September and October (five, six and seven month after polinization (MAP), 

respectively) for RBCL western blots experiments. Germination and growth experiment was 

performed as described in Ch.3 (Fig. 3.2, p. 46).  

Embryo axes from holm oak seeds were excised 24 h after imbibition (stage S3, Fig. 

5.1.A). The leaf primordia, including the proximal tail, were excised from seedling when they 

reached a length of approximately 4 cm (Fig. 5.1.B). Also were collected embryo axis tissue at 

S0, S2, S3, S5 and S7 stage to perform the transcripts profile analysis seedlings (Fig. 3.3, p 47) 

and embryo axis at 5, 6 and 7 MAP stages (Fig. 5.1.C). Individual samples were immediately 

frozen in liquid N2 and stored at -80ºC. Three independent pools (biological replicates) were 

prepared for each sampling time (we referred to them as mini-pools). Each mini-pool was 

derived from 20-30 individuals.  
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Figure 5.1: Tissues used for the construction of SSH libraries. (A). Embryo axes from holm oak seeds were 
excised 24 h after imbibition (stage S3). This point coincides with the rupture of the testa and the extrusion of the 
radicle, and mark the end of the germination sensu stricto. (B). Leaf primordia, including the proximal tail, excised 
from seedling shoots with a length of approximately 4 cm (stage SS-4). (C). Inmature acorns collected in August, 
September and October corresponding to 5, 6 and 7 month after polinization (MAP). 

5.2.2. Construction of suppression subtractive hybridization (SSH) libraries 

Forward (F) and reverse (R) libraries were designed to obtain clones of genes with 

increased or decreased mRNA levels in tissues from holm oak acorns collected at two different 

stages (S3 and SS-4). Total RNA was extracted from each mini-pool prepared per sampling time 

using the InviTrap® Spin Plant RNA Mini Kit (Invitek) with slight modifications as previously 

described 5. Genomic contamination with DNA was eliminated by DNase I (Ambion) treatment. 

The RNA quantitation was performed with the Qubit® RNA Assay Kit in the Qubit® 2.0 

Fluorometer (Invitrogen). The RNA quality was checked by using an Agilent 2100 Bioanalyzer 

(Agilent Tech.). Only RNAs with an integrity number (RIN) >8 and a ratio A260/A280 of ~2 

were used. Equal amounts of each RNA sample with good quality were pooled to for poly-A 

mRNA purification; one pool was prepared for each sampling stage (S3 and SS-4). The mRNA 

were isolated from total RNA with Dynabeads® Oligo (dT)25 (Dynabeads® mRNA Purification 

Kit, Life Technologies) according to the manufacture´s protocol. Absence of rRNA was checked 

by using the Agilent 2100 Bioanalyzer (Agilent Tech.). The SSH libraries were produced using 

the PCR-Select™ cDNA subtraction kit (Clontech) following the manufacturer's protocol, as 

previously described 6. The cDNA of SS-4 tissue was used as a ‘tester’ and the cDNA of S3 seeds 

was used as a ‘driver’ to construct the forward subtracted library. The reverse subtraction was 

performed by using the cDNA from S3 seeds as a ‘tester’ and the cDNA from SS-4 tissue as a 

‘driver’.  
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A workflow followed in SSH construction is shown in Fig. 5.2. Briefly, double stranded 

cDNA was digested with RsaI and two tester populations were generated with adapters 1 and 

2R. No adapter was ligated to the driver sample. A first hybridation was performed by mixing 

an excess of driver to each tester population (adapter 1 or 2R). In this first hybridization, the 

concentration of high- and low-abundance sequences is equalized among the type a molecules 

because re-annealing is faster for the more abundant molecules due to the second-order 

kinetics of hybridization. At the same time, type a molecules are significantly enriched for 

differentially expressed sequences while cDNAs that are not differentially expressed form type 

c molecules with the driver. The two primary hybridization samples are mixed together 

without denaturing (second hybridization) in order to generate PCR templates from 

differentially expressed sequences. Only the remaining equalized and subtracted ss tester 

cDNAs (molecules a) can reassociate and form new type e hybrids. These new hybrids are ds 

tester molecules with different ends, which correspond to the sequences of Adaptors 1 and 2R. 

Fresh denatured driver cDNA is added (again, without denaturing the subtraction mix) to 

further enrich fraction e for differentially expressed sequences. After filling in the ends by DNA 

polymerase, only the type e molecules (the differentially expressed tester sequences) have 

different annealing sites for the nested primers on their 5' and 3' ends. In consequence, only 

tipe e molecules are exponentially amplified (type b molecules contain long inverted repeats at 

the end and form stable “panhandle-like” structure and type a and type c molecules have a 

linear amplification). A secondary PCR amplification is performed using nested primers to 

further reduce any background PCR products and enrich for differentially expressed sequences. 

An analysis of results in each phase was performed following the manufacturer indications. 
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Figure. 5.2: Construction of the forward library showing the SSH methodology workflow (adapted from 
Diatchenko et al, 1996). Type e molecules are formed only if the sequence is upregulated in the tester cDNA. Lines 
represent the Rsa I-digested tester or driver cDNA. Boxes represent the Adaptor 1 (blue) and 2R (green).  
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PCR products were ligated into the T&A Cloning Vector (Eastern Biotech Co. Ltd) and 

introduced in E. coli DH5α (ECOS 101, Yeastern Biotech Co, Ltd) competent cells. Transformed 

bacteria were grown overnight at 37°C in Luria-Bertani medium supplemented with ampicillin 

(100 mg/mL), isopropyl-beta-D-thiogalactopyranoside (100mM) and 5-bromo-4-chloro-3-

indolyl-beta-D-galacto-pyranoside (40 mg/ml). Transformant colonies containing plasmids 

with foreign DNA inserted into the plasmid LacZ gene were selected by blue-white screening 7. 

5.2.3. Clones sequencing and sequence analysis 

Clones were randomly selected and analyzed by PCR, using vector-based primers 

(M13 universal primers). PCR products were loaded onto 1% of agarose gel to verify the 

presence of one unique band and then purified by the NucleoSpin Gel and PCR Clean-up 

(Macherey-Nagel). PCR products were sequenced on ABI PRISMTM 3130 XL sequencer (Applied 

Biosystems) using standard M13 primers. Sequencing output was edited to remove vector 

sequences, PCR primers, and terminal ambiguities by using the software Chromas and 

ChromasPro v.1.5 (Technelysium). Trimmed sequences were aligned using the SeqMan module 

of the DNASTAR Lasergene software, to assemble the ESTs into contigs. The assembly 

conditions were 80% minimum homology and 25 base minimum overlap.  

The BLAST server at NCBI (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) was used to 

search homologous nucleotide and protein sequences. BLAST searches were performed using 

the tBLASTx and BLASTn algorithm with default search conditions against the GenBank non 

redundant (nr) nucleotide collection, expressed sequence tags (EST_NCBI), whole-genome 

shotgun contigs (WGS_NCBI) and Quercus_DB (custome database)8. Classification of the 

annotated sequences was performed based on BLAST results and Gene Ontology annotation 

(http://www.geneontology.org). Sequences were deposited in the expressed sequence tag 

database (dbEST) of GenBank under the accession numbers from JZ794738 to JZ794825. 

5.2.4. Primers design and qRT-PCR  

Primers used to quantify the transcript molecules of RbcL, Sod1, Pp2c and NdhF genes 

were described in Ch. 4. Primers directed against other four selected genes (RbcS, PetE, Lea-5 

and Eno) were designed with OLIGO Primer Analysis Software v 7.58 (Molecular Biology 

Insights, Inc) as previously described (Pueyo et al.9 and Ch.4). Briefly, primers were required to 

have high Tm (≥70ºC), optimal 3’- ΔG (≥ -3 kcal/mol) values, and to be free of hairpins and 

duplex structures. All primer pairs produced specific PCR products of the predicted size and all 

PCR products were further verified by nucleotide sequencing.  
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Table 5.1: Primers used for absolute quantification by qRT-PCR of a selected group of differentially 
expressed transcripts in S3 and SS-4 stages seeds of Q. ilex. The primers used for cDNA calibration are included. 

Targeta 
  

Genebank 
Acc. number 

  
  

Sequence 5´-3´b 
Lengthc 

(bp) 

Amplification 
eficiencyd 

(r%) 

PetE  JZ794781 
F: AGTAACTTTTCCCACCATCCCAGCTCCCT 

101 
1.0004 

 
R: ATGCTCCAGGAGAGACATACGCTGTGACC (99.9%) 

Pp2c  KC150869 
F: GCAAGTGTGTAATGAGGCAGGTTTATTCCACC 

132 
0.9981 

 
R: CCATTTCCACGATGACATTACAGTGATTGTTG (99.8%) 

NdhF  KC150873 
F: GAAGAGCATTTCCCACCAAAAGATCAGTCC 

95 
0.9934 

 
R: TCCATATTCAAATAGCGGAGATTCACGAAG (99.7%) 

RbcL  AB125020 
F: CGCATAAATGGTTGGGAATTAACGTTCT 

105 
0.9929 

 
R: GGGATTATCCGCTAAGAATTACGGTAGA (99.7%) 

Sod1  KM262658 
F: CGCAGATCCAGATGATCTTGGCGAGGG 

137 
0.9941 

 
R: AGCACACAACAGAGTAGGGATTAGAAGACG (99.7%) 

RbcS  JZ794783 
F: ACTGGGTGATGTGGAAGCTTCCCATGTT 

140 
0.9921 

 
R: GCACTGCACTTGACGCTTGTTGTCGAATCC (99.9%) 

Eno   JZ794741 
F: CCCTTGTGCAACTCCCCCGTAAACAAC 

113 
0.9980 

 
R: GCTTGGCTCAGAAGCAGTCTATGCTGG (99.6%) 

Lea-5  JZ794754 
F: AAATGGTTCCACAATAAGTCCAAAGGGCAG 

147 
0.9966 

 
R: GCAGCGGAAATTGATGCAGTCGAGC (99.6%) 

       Calibrator genee 
  

A170  U57413 
F: GGAAGAGAAGCCGCCTGACACCCACT 

113 
1.0001 
(99.9%) 

 
R: CCCGTCAGGTTTGCTGACTTCCGAAG 

aGene symbols are according to the NCBI Gene database 
bSequence of forward (F) and reverse (R) primers specific for Q. ilex gene sequence 
cPCR product size in base pair (bp) 
dThe real-time PCR efficiencies (E) were calculated from each standard curve according to the equation E=10(-1/slope)-1. 
E is the range from (minimum value) to 1(maximum and optimum), i.e., E=1 is equal to 100% efficiency. 
ePrimer based on M. musculus sequences were designed for absolute quantification by real-time PCR of A170 gene in 
liver mice tissue, used to guarantee the quality of retro-transcription and to strablish the threshold position. 

Real-time qRT-PCR was performed as previously described 10. cDNA was generated 

from 2 µg of total RNA, and PCR was performed in quadruplicate using 50 ng/well of cDNA. The 

absolute quantification relates the PCR signal (Ct value in real-time PCR) to input copy number 

using a calibration curve, as described in Ch. 4 (p. 60). No primer dimers were detected. All 

primers designed for absolute real-time qRT-PCR amplified with the same optimal PCR 

efficiency (~100%) in the range of 20 to 2x105 pg of total RNA input with high linearity (r > 

0.99) (Table 5.1). An absolute calibration curve was constructed with an external standard in 

the range of 102 to 109 RNA molecules, and the number of transcript molecules was calculated 

from the linear regression of the standard curve as previously described 10.  

5.2.5. Protein extraction and immunoblotting 

Proteins were extracted from embryo axis of collected at 5, 6 and 7 month after 

pollinization (MAP), from the S0, S3, S5 and leaf primordia, including the proximal tail from SS-

4. All process implicated in protein extraction and inmunobloting were performed as described 

in Ch.4 (p. 60). Blocked PVDF membranes were incubated with rabitt antibodies raised against 

or RBCL (dilution:1:500), washed, and incubated with the secondary (1:2000) goat anti-rabbit 

IgG (Sigma: A-9169) antibody conjugated to horseradish peroxidase, for an additional 1 h. Blots 
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were developed using the Clarity™ Western ECL Detection System (BioRad). Image captures 

and densitometric analyses were performed with the ChemiDoc™ MP Imaging System (BioRad) 

and ImageLab 4.1 software (BioRad). 

5.2.6. Superoxide dismutase activity 

Protein extracts from S0, S2, S3, S5, S7 and SS-4 were obtained as described in Ch. 4 (p. 

61). The different isoenzymes of SOD were identified by staining parallel gels previously 

incubated at 25 ºC for 20 min in either 50 mM potassium phosphate buffer pH 7.8 or in buffer 

containing 2 mM KCN or 5 mM H2O2 as detailed in Ch. 4. Gels were stained with Coomassie 

brilliant blue R-250 (BioRad). Image captures and densitometric analyses were performed with 

the ChemiDoc™ MP Imaging System (BioRad) and ImageLab 4.1 software (BioRad), respectively. 

Relative bands volumens of SOD are normalized by the protein amount in the line and 

expressed in arbitrary units. 

5.3. Results and discussion 

Transcriptomics, like other “omics” methodologies, is a formidable tool to investigate 

complex metabolic processes. This work focused on assessing the potential utility of transcript 

expression profiling for unrevealing the metabolic changes involved in seeds germination and 

seedling establishment of the recalcitrant species Q. ilex. Here, we used a SSH strategy to 

overcome the limited genomic sequence information available for this orphan species.  

5.3.1. Plant material 

We selected seeds at S3 and SS-4 stages for the construction of the SSH libraries. As 

described in Ch. 4, Q. ilex seeds needs 24h after imbibition to end the germination process sensu 

stricto in our experimental condition. Is in this S3 stage that the testa is broken and the radicle 

emergence occurs. In a previous work described in Ch.4 we observed that in this stage: (i) there 

is an important reduction in the level of transcripts accumulated during the seed maturation; 

(ii) the osmoprotective proteins (DHN3) and carbohydrates (sucrose, rafinose/GOLS) 

decreased; (iii) the amount of monosaccharides (Glc, Fru) are still low for a fully active 

energetic metabolism; and (iv) there is low levels of phythormones (ABA, GA, IAA, iP, iPR,). In 

the SS-4 stage shoots, a group of primordial green leaves can already be observed, indicating 

that metabolism must be in this stage adapted to photosynthesis. Hence, the comparison of 

seeds at S3 and SS-4 stages, can let to identify the set of genes and metabolic pathways involved 

in holm oak seedlings establishment. 
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5.3.2. Subtractive libraries 

SSH is a powerful strategy to identify differentially expressed transcripts without a 

previous knowledge of their sequences. Previous studies using a SSH approach have been 

centred in other Quercus species mainly aiming to discover genes involved in the response to 

stressing environmental conditions or the biosynthesis of economically interesting products 

(i.e, cork, Kremer et al.11 and refs. herein). Derory et al. 12 used this SSH methodology to identify 

differentially expressed genes among early bud development stages in sessile oak Quercus 

petrea. They identified genes involved in the cell rescue/defense-, metabolism-, protein 

synthesis-, cell cycle-, and transcription-related functional categories. Here, the SSH method 

was applied for the first time to identify genes that showed differential mRNA expression in 

association with the postgermination and early seedling establishment of Q. ilex seeds. To 

improve seed conservation and avoid abiotic stress damage in the context of global climate 

change, an improved understanding of the metabolic and signaling pathway for seed 

germination and sprouts survival is crucial for biomass production and forest management. By 

using SSH instead of a heterologous microarrays approach, we also obtained the sequences of 

the gene fragments isolated. This is an additional advantage of SSH methodology that permits 

to enrich the number of Q. ilex cDNA sequences accumulated in public databases. We used this 

sequences to design primers for verification by qRT-PCR of a selected group of the SSH 

identified genes in our studied samples. We also analysed by qRT-PCR the changes in their 

transcriptional profiles during six stages covering the germination, post-germination and early 

seedling stages.  

mRNA quality 

The quality of total RNA and mRNA is an important factor to consider in SSH library 

construction. We only used total RNA with A260/280 ratios ≥ 2 and RIN numbers > 8 as 

determined by using the Agilent 2100 Bioanalyzer (Fig. 5.3.A). In the case of mRNA, we also 

used this approach to assess the absence of rRNA. Figure 5.3.B shows the electropherogram of 

the S3 mRNA sample and indicates that the sample is enriched in mRNA and only contains a 

minor amount of contaminating ribosomal RNA. 
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Figure. 5.3: Analysis of total RNA and mRNA quality. Total and mRNA preparations were analyzed with the Agilent 
2100 bioanalyzer. As an example, the electropherograms of the S3 total (A) and mRNA (B) samples are shown 
alongside the gel-like images. 

Controls in the process of construction of the SSH libraries 

Two SSH libraries were constructed. For the reverse (R) library construction, selective 

amplification and enrichment of abundant cDNAs in germinated seeds (S3) samples (tester) 

was achieved by incubating and hybridizing S3 cDNA with an excess of seedling shoots (SS-4) 

cDNA (driver). The forward (F) subtraction, which identify transcripts more abundant in SS-4 

than in S3, was performed by using the cDNA from SS-4 as a ‘tester’ and the cDNA from S3 as a 

‘driver’.  

The processes of subtraction were analysed at different levels along the experiment 

(Fig. 5.4). Quality of the RsaI digestion of cDNA was analysed by comparing undigested and 

digested cDNAs on 1% agarose gel. Figure 5.4.A shows that cDNA size distribution increased 

considerably in the digested samples, indicating a successful digestion.  

The ligation efficiency of each tester population was analysed by PCR amplification 

(Fig. 5.4.B). A primer pair (named Pp2c-SSH) was designed to specifically amplify a fragment 

corresponding to the Pp2c gene. The Pp2c-SSH primer 5’ was compatible with the PCR Primer 1 

and the PCR Primer 2R, both included in the SSH kit. Tester 1-1 and tester 1-2R populations 

(corresponding to the reverse library, where S3 cDNA was ligated to one or another adapter) 

were amplified by using one gene specific primer (Pp2c primer 5’) and the PCR Primer 1 or PCR 

Primer 2R, respectively, both included in the SSH kit. The intensity of the obtained bands (300 

pb) was compared with that obtained by using the two Pp2c primers 5’ and 3’ (200 pb). A 

similar procedure was used to analyse the ligation efficieny during the forward library 

contruction. In all cases the intensities differed by less than 75%, which is recommended to 

ensure efficient subtraction, accordingly to the manufacturer's guidelines.  
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Figure 5.4: Analysis of results in the most important phase in SSH construction. (A) Analysis of double-strand 
cDNA digestion with RsaI. Electrophoresis on a 1% agarose of 2.5 μl of undigested, ds cDNA and 5 μl of Rsa I-digested 
cDNA of embryo axis (lanes 1, 4), early seedling (lanes 2, 5) and Control Kit (lane 3, 6 ) samples, respectively.  The 
average cDNA size is reduced after Rsa I digestion. M: Molecular weight marker X  (0.07 to 1 5.2 Kbp DNA) Molecular 
weight marker X  (0.07 to 1 5.2 Kbp DNA). (B) Analysis of the adaptors ligation efficiency in the R-library 
construction. After the ligation of adaptors 1 and 2R to the tester cDNA (S3 in this example), a 40 cycles PCR 
amplification was performed. Line 1: PCR products using Tester 1-1 (Adaptor 1-ligated) as the template, and the 
Pp2c 5’ and PCR Primer 1 primers. Lane 2: PCR products using Tester 1-1 (Adaptor 1-ligated) as the template and the 
Pp2c primers 5’ and 3’. Lane 3: PCR products using Tester 1-2R (Adaptor 2R-ligated) as template, and the Pp2c 
primers 5’ and PCR Primer R2. Lane 4: PCR products using Tester 1-2 (Adaptor 2R-ligated) as the template, and the 
Pp2c primers 5’ and 3’. Amplicons were loaded on 2% agarose/1x Gel Red. M: 100 bp DNA ladder molecular weight 
marker. Pp2c primers F: CGAAACGTTCTTCGTCGTTTC and R: GTGTAATGAGGCAGGTTTATTC (C) Control of 
subraction experiments at the secondary  PCR step. PCR band patterns for the unsubstracted (Line 1, 3) and 
substracted (Lines 2, 4) cDNAs ligated to the adaptors, used to construct the forward and the reverse libraries. PCR 
products were loaded on 2% agarose/1x Gel Red. M: Molecular weight marker X  (0.07 to 1 5.2 Kbp DNA). 

We realized the analysis of subtraction efficiency by comparing the banding patterns 

obtained after PCR amplification after the secondary PCR (Fig. 5.4.C). Unsubtracted and 

subtracted cDNAs used for the construction of the forward and reverse libraries, were 

amplified by using adapter nested primers included in the SSH-kit. The banding patterns of 

unsubtracted cDNAs ligated with both adaptors were different from the banding patterns the 

experimental subtracted cDNAs samples, indicating a successful subtraction, accordingly to the 

manufacturer's guidelines.  

Clone selection, sequencing and identification of genes enriched in the F and R 

libraries 

A total of 664 clones with insert (375 and 289 clones from the R and F libraries, 

respectively) were randomly selected and analyzed by PCR using vector-based primers. Only 

PCR products with a size above 300 pb (Fig 5.5) were selected for sequencing. After elimination 

of the sequences with poor quality, 173 qualified trimmed ESTs, with a size ranging from 87 to 

627 bp were obtained. Ninety-two ESTs corresponded to transcripts enriched in germinated 

seeds (R library) and 80 ESTs to transcripts enriched in shoot seedling (F library) of holm oak 

acorns (Table 5.3 and 5.4, see appendixes). Only 10% of ESTs represented redundant 
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sequences or various fragments of the same cDNA. There were two highly redundant 

transcripts. One, identified as Lea-5, accounted for 43 out of the 92 ESTs from the R library, 

what is in agreement with previous works reporting LEA-5 as an abundant protein in oak seeds 

13-14. The other is RbcS, that accounted for 17 out of 80 ESTs from the F library, something 

expected as the F library was constructed from a green tissue and RbcS forming part of the 

photosynthetic machinery. Redundant sequences were assembled into contigs with the SeqMan 

software (DNASTAR, Lasergene). Except for one Lea-5 fragment, all redundant sequences for 

each gene formed just one contig.  

 

Figure 5.5: Analysis of transformant by PCR.  Representative gels showing the size of the inserts included in the 
vector DNA in 10-12 clones from the R and the F libraries. Bacterial cells were lysed and the plasmids amplified by 
PCR using the vector M13 primers. Bands were separated on 2% agarose gels. M: Molecular weight marker X  (0.1 to 
3 Kbp DNA). 

As discussed ahead, RuBisCo is composed by an equal amount of its small (RBCS) and 

large (RBCL) subunits. However, we isolated 17 clones with RbcS inserts vs. only one clone that 

matched with RbcL. This paradox can be explained if considering that RBCL is coded by a 

chloroplastidic gene, that chloroplast transcripts generally lack poly-A tails, and that the 

methodology used to purify mRNA was based on poly-A hybridization whit oligo (dT) 

inmobilized on beads.  

A total of 71 unique sequences were found in the two subtractive libraries. Thirty nine 

transcripts were more abundant in young development seedling (F library) and 31 transcripts 

in germinated seeds (R library). Only one gene, coding for the sugar transport ERD6, was 

identified in the F and R libraries, thereby indicating that subtraction by hybridization was 

quite effective and that the abundance of a particular cDNA in one library was a consequence of 
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the differential expression of the gene in the ‘tester’ sample used. Around 80% of ESTs 

sequences showed high homology with plant genes of known and unknown functions 

registered in databases using tBLASTn or tBLASTx algorithms in the NCBI_nr database. 

Interestingly, all but one of the identified sequences were found or are of public access for the 

first time in Q. ilex. The remained 20% ESTs sequences (12 from R- and 19 from F-libraries) had 

no significant homology with any plant gene. The relatively high proportion of non-identified 

sequences is not surprising given that the only three tree genomes sequenced to date are from 

species distantly related (Populus, Eucalyptus and Citrus) to Q. ilex. These 31 novel identified 

sequences were blasted against EST_NCBI and WGS_NCBI databases. The nucleotide sequence 

hits with a percentage of identity higher than 80% was used to perform tBLASTx annotation by 

using the NCBI nr (with taxonomy restrictions to Viridiplantae) and Quercus_DB 8 databases. By 

means of these approaches, a total of 10 ESTs for both libraries have been annotated (Table 

5.5). As discussed elsewhere, the unidentified sequences may represent poorly conserved 3’-

untranslated regions or unspliced introns 4; 6.  

Verification of SSH results and analysis of selected genes during germination and 

seedling establishment by real time qRT-PCR  

Real-time RT-PCR was conducted to confirm that the presence of ESTs in the 

subtractive libraries truly represented their differential mRNA expression. Eight genes were 

chosen for this analysis. Selected genes were related to stress response (Eno, Lea-5), cell redox 

homeostasis (Sod1, NdhF), photosynthesis (PetE, RbcS, RbcL) and response to stimulus (Pp2c). 

All selected transcripts were quantified in an absolute manner to prevent the inaccuracy of 

most internal standards as quantitative references, and to express the transcript level changes 

in terms of molecule copy numbers, the only way to fully understand the biological significance 

of the observed transcriptional changes as discussed in Ch.1 and 4.  

Quantifications were first made on the same pooled S3 and SS-4 samples used for the 

construction of R and F libraries. The results are shown in Table 5.2, where genes are listed 

according to their mRNA steady-state levels in embryo axes (Lea-5, NdhF, Eno, Sod1) or shoots 

(RbcS, RbcL, PetE, Pp2c). The qRT-PCR quantifications confirmed the expression patterns 

predicted by SSH, i.e. the up-regulation of genes involved in photosynthesis, CO2 assimilation 

and cell signaling processes in the seedlings, and the downregultion in germinated seeds of 

genes involved in the protection of mature unimbibed acorns against the water loss.  
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Table 5.2: Comparison of the number of clones isolated in the R and F libraries with data of the absolute 
quantification by qRT-PCR of a selected group of differentially expressed transcripts in S3 and SS-4 stages seeds of Q. 
ilex. 

Gene Symbol 

Reverse library Forward library 

No. of clones 
mRNA molec/  pg 
total RNA 

No. of 
clones 

mRNA molec/  pg 
total RNA 

Lea-5 43 4884 ± 245   8 ± 1.4 
NdhF 2 558 ± 41   102 ± 8 
Eno 1 310 ± 23   94 ± 10 
Sod1 1 87 ± 4   43 ± 1.8 
RbcS   1 ± 0.2 17 1173 ± 25 
RbcL   377 ± 32 1 2394 ± 87 
PetE   0.3 ± 0.8 1 171 ± 30 
Pp2c   6 ± 0.2 1 15 ± 0.5 

As expected, substantial differences in abundance were found depending on the 

transcript and tissue examined. Thus, highly abundant (>500 molecules/pg of total RNA) and 

rare (≤1 molecules/pg) mRNA species were quantified in embryo axes and seedlings. Lea-5 was 

the most abundant of all quantified transcripts and decreased more than 600-fold (4884 vs 8 

mRNA molec/pg total RNA in S3 and SS-4 samples, respectively) during the post-germination. 

RbcS and RbcL were the most abundant transcripts in seedlings. However, the numbers for 

RbcS increased a thousand-fold during postgermination, whereas RbcL mRNA only showed a 6-

fold increase, perhaps because it already had high transcript levels in seed. These data most 

likely explain the aforementioned redundancy of Lea-5 and RbcS transcripts in the R and F 

libraries, respectively. Moreover, data in Table 5.2 highlight the relevance of the absolute 

measurements when comparing the increments in transcript molecules with the conventional 

fold variations. For instance, although a relative 6-fold increase in RbcL transcript levels might 

look modest compared to the 1000-fold increment in RbcS mRNA, the actual scenario is that 

RbcL (highly abundant mRNA in germinated acorns) exhibited a higher increase (from 377 to 

2394) in copy number than RbcS (low abundant mRNA, that change from 1 to 1173 molecules).  

Pooling of samples reduces biological variation by minimizing individual variation and 

increase statistical performance constituting an advantage in omic approaches that are arduous 

and time-consuming. The use of pooled samples to characterize populations can also yield more 

precise and less biased parameter estimations, compared to the use of individual samples 15. A 

potential risk of using pooled samples is that a single aberrant sample can negatively impact 

the quality of a particular pool and hence confound the results and their interpretations. 

Another pivotal point is that biological replicates are crucial when estimating natural variability 

and thereby when defining the “biological noise” beyond which differential expression can be 

definitively established. To accurately validate the up- or down-regulation of the selected 

transcripts, quantifications were performed using biological replicates, each formed by mixing 

equal amounts of total RNA from 20-30 individuals. We also included in the study samples 

corresponding to the S0, S2, S5 and S7 stages, in order to analyze the variation of these 
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transcripts during germination (S0 to S3), postgermination (S3 to S7) and early seedling (S7 to 

SS-4) (Fig. 5.6).  

 

Figure 5.6: Verification of SSH results. (A) Developmental stage associated differences in transcript levels of 
selected genes. Absolute quantification of transcripts were performed by qRT-PCR. Data are means ± SEM (n=3 
biological replicates per condition) of mRNA molecules/pg of total RNA. Statistical significance vs. S3 embryo axes 
tissue is expressed as: ***P < 0.001, **P < 0.01, and *P < 0.05. (B) Western blotting of RBCL protein in Q. ilex seeds 
samples. Proteins were extracted from the same pools used in the transcriptional analysis. Numbers indicate the 
arbitrary Western blotting signal intensities normalized to the total protein contents, using Stain-free technology for 
total protein quantification. M is referred to MAP. (C) SOD activity gel assay showing the SOD protein profiles on 
native PAGE of differentt Q. ilex seeds germination stages. Proteins were extracted from the same pools used in the 
transcriptional analysis. A 20 µg of crude soluble proteins were loaded onto a 10% acrylamide gel. SOD activity was 
visualised by the NBT staining method. Numbers indicate the arbitrary signal intensities normalized to the total 
protein contents, using Stain-free technology for total protein quantification. 

The variation inter-pools was low and similar in all the groups. Accordingly, we were 

able to verify at an individual level a substantial part of the changes in transcript copy number 

previously quantified on pooled samples. These results suggest that the quantifications in Table 

5.2 should not be particularly open to misinterpretation due to inter-individual differences in 

transcript levels. Three patterns of variation were observed for the eight transcripts analized 

(Fig. 5.6.A). Lea-5 and Sod1 showed high levels of mRNA molecules in the mature acorn that 

decreased gradually as the development of the seed progressed. Eno and NdhF are abundant 

transcripts in mature un-imbibed seeds, but their levels increased during imbibition, picking at 
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the S3 stage and decreasing later during post germination and early seedling stages. Pp2c and 

RbcL showed a medium or high level of abundance along all the studied period and increased 

about one magnitude order at the SS-4 stage. Finally, the amounts of Rbcs and PetE, barely 

detectable during the germination and post-germination periods, picked dramatically in the 

seedling. 

Verification of SSH results by immunoblotting and in-gel SOD activity staining 

Studies at the mRNA levels are largely based on the supposition that RNA profiling 

might provide indirect support for protein expression levels in relation to gene functions and 

phenotypes. To assess the correlation between the differential expression of specific mRNAs 

and corresponding proteins in this study we performed Western blot experiments for RBCL 

protein. We included in the analysis embryo axes isolated from immature holm oak seeds 

collected at the fifth, sixth and seventh month after pollination. The immunoblotting results 

(Fig. 5.6.B) validate our SSH data, though the magnitude of the changes was higher at the mRNA 

level. There might be methodological and biological reasons for such discrepancies, including 

differences in the protein and mRNA degradation rates, protein translation efficiencies, and/or 

the steady-state mRNA and protein abundances 16. Figure 5.6.B shows that the RBCL protein is 

accumulated during the seed maturation process, picking at the S0 stage. After imbibition, the 

amount of protein decreased, in agreement with the transcript profile, to pick up again in the 

seedling. The in-gel SOD activity staining in Fig. 5.6.C indicated a diminution in the levels of this 

antioxidant enzyme running in parallel with the decrease in the Sod1 transcript amounts 

quantified along the seed development. Many authors have stated that correlation between 

mRNA and protein abundances in the cell is notoriously poor. Clearly, transcription and 

translation are far from having a linear and simple relationship and the transcript/protein 

discordance represents a critical layer of regulatory processes at the post-transcriptional level 

that is often neglected 17-18. However, data presented here (Fig. 5.6) sustain that transcript 

levels, at least for SOD and RBCL, in our experimental system, provide good predictive value 

with respect to the extent of protein changes in abundance.  

5.3.3. Biological functions of proteins encoded by differential expressed genes 

identified by SSH methodology 

Functional classification of genes expressed in germinated seeds (reverse library) 

Thirty-one over-expressed genes were identified in germinated seeds at the S3 stage. 

Proteins encoded by these genes are representative of eight functional categories: stress 

responses (3 genes, 50 clones), transport (4 genes, 7 clones), oxidation-reduction (3 genes, 4 
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clones), cell wall modification (2 genes, 3 clones) cell division cycle (1 gen, 1 clon), protein 

metabolism (2 genes, 2 clones), cellular component organization (1 gen, 1 clon), translation (2 

genes, 5 clones). Another five genes were placed into a miscellanea category (Table 5.3).  

The stress response group holds the Lea-5 gene, the highest represented in the SSH 

reverse library, with 43 clones (Table 5.3). Lea-5 (Late embryogenesis abundant) is an 

osmoprotective protein described to accumulate during seed maturation as part of the 

mechanism of seeds dessication tolerance 19. The DHN3 protein discussed in Ch.4 is also 

included in this family. In view of the amount of Lea-5 transcripts accumulated in S3 (Fig. 5.6.A), 

it can be assumed that holm oak acorns are not fully recalcitrant seeds, but share part of the 

orthodox seeds characteristics, in agreement with the data obtained and discussed in Ch.4 and 

6 of this Thesis. Enolase (ENO) is a ubiquitous enzyme that catalyzes the conversion of 2-

phosphoglycerate to phosphoenolpyruvate, occurring at the end of glycolysis. Enolases are 

needed in the first stages of embryogenesis and seed formation and has been described as one 

of the most abundant proteins in many matured stages. As a glycolytic enzyme, is not easy to 

explain neither its abundance in quiescent seeds, nor its diminution in the stage SS-4, where the 

metabolism is fully active to supply the energy needed for the shoot growth. Several authors 

have reported that enolases lost a central sequence parts essential for enolase activity at the 

end of the seed maturation, becoming and behaving as storage proteins. These ‘‘small enolases’ 

are highly abundant in storage tissues like zygotic embryos and endosperm, but are missing in 

the germinating embryos 20. In the stress response group was also included the gene ChiI1, 

coding for chitinase. Chitinases are hydrolytic enzymes found in different organisms. These 

enzymes are present in various plant tissues and specific chitinases accumulate in seeds of 

many species as part of their normal developmental programme. Several authors suggest that 

chitinases are responsible for the protection of seeds against pathogens during the germination 

period, especially at the time that the rupture of the testa occurs and the radicle emerges 21. 

The proteins CCH and ERD6 are included, among other, in the transport category. The 

sugar transporter ERD6 is implicated in the high fluxes of sucrose that occur in seeds when 

storage products are accumulated or remobilized during development and germination, 

respectively 22. As described for other plants, ERD6 could be implicated in the transport of 

sucrose from cotyledon to embryo axis in germinated embryo axis of Q. ilex. In plants, copper 

(Cu) is a cofactor for plastocyanin, Cu/Zn SOD, cytochrome-c oxidase, and the ethylene 

receptors for several apoplastic oxidases. Copper (Cu) chaperones constitute a family of small 

Cu+-binding proteins required for Cu trafficking and the prevention of cytoplasmic exposure to 

copper ions in transit 23. One of the copper network components in Arabidopsis thaliana is the 

copper chaperone CCH. CCH has been associated with the maintaining of protein conformation 
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during the very active period of plant development that is seed dormancy breaking and 

germination 24.  

The oxidation-reduction category includes the Sod1 and the NdhF genes. Accumulation 

of Sod1 transcripts (Fig. 5.6.A) in mature seeds can be seen also as a desiccation protective 

mechanism, as it produces high levels of oxygen reactives species (ROS)25. The decrease in Sod1 

transcripts and activity (Fig.5.6.B) observed along the developmental process can be explained 

because ROS have important roles in endosperm weakening, mobilization of seed reserves, and 

many other processes during seed germination and vigorous seedling 26-28. Some Cu chaperones 

inserts copper into Cu/Zn-SOD. Interestingly, the transcripts of Cch and Sod1 gene, coding for 

the Q. ilex Cu/Zn-SOD enzyme, were highly abundant in mature or germinating seeds, but 

scarce in seedlings (Table 5.3; Fig. 5.6.A). The NdhF transcript numbers peaked early during 

acorns germination, coinciding with the rupture of the testa and pericarp, and dropped later to 

the levels found in the ungerminated seed as it reached the stage when both the coleoptile and 

radicle had clearly elongated. The ordered increase in the abundance of NdhF and other 

mitochondrial proteins during germination and the posterior decrease in the early seedling, has 

been reported for Arabidopsis during the maturation of the mitochondria that occurs after 

imbibition 29. 

Among the genes in the cell wall modification category, beta-glucosidase 29-like and 

endoglucanase 6-like are involved in the degradation of cellobiose, essential for cell elongation 

and radicle extension in the seed during germination 30-32. Two genes, carboxypeptidase-like 

(Ser-CPs) and proteasome subunit beta type 6 are linked to protein metabolism, implicated in 

the breakdown of the storage protein 33.  

In addition, we identify in germinating seeds genes related to cell division cycle 

(histone), and to traslation and synthesis of proteins (ribosomal protein S12, S21 and 

arabinogalactan peptide 20-like). Some of the ribosomal protein coding genes mRNAs could in 

mature seeds of Q. ilex as it has been reported in the literature for other species 34. 

Functional classification of genes expressed in shoot seedlings 

The 39 non-redundant transcripts over-represented in Q. ilex shoots seedlings were 

grouped in seven functional categories: photosynthesis (10 genes, 30 clones), secondary 

metabolism (4 genes, 7 clones), transport (2 genes, 2 clones), signaling (4 genes, 7 clones), 

stress response (2 genes, 2 clones), gene expression (1 gen, 3 clones) and cellular component 

organization (1 gen, 1 clon). An additional category included genes with proteins of unknown 

function (Table 5.4).  
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Ten genes related with light energy conversion to chemical energy were over-

represented in the forward library that correspond to shoots seedlings. Among these were 

included genes coding for several components of the photosynthetic apparatus (chlorophyll a-b 

binding proteins-CPBs, plastocyanins-Pet, plastoquinone oxidoreductase-Ndhk) and CO2 

assimilation (large and small subunits of RuBisCo-RbcL, RbcS). Successful seedling 

establishment after germination requires efficient utilization of endogenous storage reserves 

but also resources from the environment, adapting both the developmental and the metabolic 

programs 35. Up-regulation of this group of genes clearly showed the normal transition from the 

heterotrophic metabolism present in germination and post-germination stages to 

photoautotrophic growth in young seedling. The transcriptional profiles of RbcL, RbcS and PetE, 

are shown in Fig.5.6. For the three genes, a dramatic increase was observed in the transition 

from S7, when the plumule emerges from cotyledonary petioles, to SS-4, when a group of 

primordial green leaves is already clearly observed. Transcripts of genes associated with 

photoautotrophic growth, including RuBisCO subunits are expected to be present only at a very 

low level dry seeds, and be induced in postgermination. That is the case for RbcS and PetE (Fig. 

5.6.A). However, RbcL protein is accumulated as the acorn maturated, becoming abundant at 

both the level of transcripts and proteins in mature acorns (Fig. 5.6.A, B). The RbcL levels 

diminished after imbibition, to increase later to numbers that justify RBCL being the most 

abundant protein in mature fully expanded leaves. In higher plants, RuBisCo is composed of 

eight small subunits, encoded by a nuclear multigene family (RbcS) and eight large subunits, 

encoded by a single gene (RbcL) in the chloroplast genome. For synthesis of the Rubisco 

holoenzyme, both genes need to be expressed coordinately. However, it has been considered 

that expression of RbcL is modulated at the level of its translation for the coordinated 

expression between RbcL and RbcS 36.  

In the group of secondary metabolism was CybR5, the gene coding the NADH-

cytochrome B5 reductase, the major electron-transfer enzyme involved in desaturation of fatty 

acids and sterol precursors 37. The enzyme ACO (1-aminocyclopropane-1-caboxylic acid 

oxidase) catalyzes the final step of ethylene biosynthesis 38. As discussed elsewhere, ethylene is 

a phytohormone implicated in a wide range of plant responses and developmental steps, 

promotion of seedling shoot growth, as reported for barley, oats and rice (Locke et al. 39 and 

refs. therein). The Xth gene codes for xyloglucan endotransglycosylase, an enzyme involved in 

the biosynthesis of the primary cell walls of dicotyledonous plants 40. Several studies have 

described the expression of Xth genes during cell growth, differentiation and cell expansion 41-42.  

A third category with interesting genes is signaling, where the Pp2c gene is included. 

As shown in Fig. 5.6. Pp2c mRNAs maintained constant counts during germination, and 
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significantly decreased after radicle emergence (S7 stage). In the previous Ch.4, we found that 

the ABA level start to raise from this stage on, to collaborate in growth progression. As a 

negative inhibitor of ABA, but under the regulation of ABA 43, downregulation of Pp2c gene at 

S7 would facilitate the role of ABA at early stages of seedling development, what in change 

promote the Pp2c overexpression from the SS-4 stage. 

Finally, genes involved in sugar transport (Mst2), stress (MT1, Gst) biosynthesis of the 

nuclear envelope (Mlp1), the regulation of gene expression (Lug), the organization of cellular 

components (AdF) were up-regulated during seedling growth. 

As the sequences of all the genes described here are from now available at public 

databases, further studies could be implemented to uncover the role of these genes in the Q. ilex 

seedling establishment. 

5.4. Concluding remarks 

The objective of the present study were to identify and quantify the expression of 

genes of Q. ilex related to germination and seedling development by using suppression 

subtractive hybridization (SSH) and to analyze the transcriptional profile of some selected 

genes during this process by qRT-PCR. SSH is an efficient technique for generating cDNAs 

enriched for differentially expressed genes when the studied species is underrepresented in 

sequence databases.  

Here we have identified for the first time a large number of putative differentially 

expressed ESTs from the embryo axis in germinated seeds and from shoot seedlings of Quercus 

ilex during the postgermination and seedling establishment. Additionally, we have provided the 

first absolute (molecule number) quantitative analysis by real-time RT-PCR of transcription 

profiles displayed by eight of the genes revealed by SSH. Our data constitute an important 

genomics resource that should clearly benefit further germination and other biological process 

research on Q. ilex, given that this economically important forest tree species remains largely 

unexplored at the genomic level. 



 
 

5.5. Appendixes 

Table 5.3: Classification based in Biological Process of Gene Ontology (Reverse library) 

Gene Symbol Putative Identity GeneBank Size (bp) E-value Frame Closest species Accesion No.  
No. of 
clones 

Stress responses               

Eno 2-phospho-D-glycerate hydrolase  JZ794741 236 1.00E-07 +2/+3 Prunus armeniaca  AY958170 1 

ChiI1 Chitinase  JZ794739 228 6.00E-09 +3/+3 Castanea sativa CSU48687 5 

Lea-5 
Group 5 late embryogenesis abundant 
protein  

JZ794754 228 2.00E-04 +3/+2 Citrus unshiu  DQ424891 43 

Lea-5 
Group 5 late embryogenesis abundant 
protein  

JZ794761 179 8.00E-06 +2/+2 
Fragaria vesca subsp. 
Vesca 

XP_004296856 1 

Transport                 

Sec61G 
Protein transport Sec61 subunit 
gamma-like (LOC100827752) 

JZ794747 208 6.00E-28 Plus/Plus 
Brachypodium 
distachyon 

XM_003563327 2 

ArF 
ADP-ribosylation factor, transcript 
variant 3, 3´UTR  

JZ794760 186 5.00E-04 Plus/Plus Glycine max XM_003553886 1 

Cch Copper chaperone, 5´UTR JZ794748 411 2.00E-40 +1/+2 
Populus alba x 
Populus tremula var. 
glandulosa  

AY603358 1 

ERD6 
Sugar transporter ERD6-like 16-like 
(LOC100816850) 

JZ794749 410 3.00E-09 +2/+3 Cicer arietinum XM_004508267 2 

 
Sugar transporter ERD6-like 16-like  JZ794750 346 3.00E-09 Plus/Plus Cicer arietinum XM_004508267 1 

Oxidation-reduction                

Sod1 
Partial Sod1 mRNA for superoxide 
dismutase, Cu/Zn 

KM262658 225 3.00E-22 +2/+1 Fagus sylvatica  AJ586519 1 

NdhF NADH dehydrogenase subunit F  JZ794738 312 8.00E-44 +2/+2 Castanea seguinii  AY586354 2 

RCOM_0593170 
NADH dehydrogenase FAD NAD 
binding oxidoreductases, putative, 
mRNA 

JZ794759 104 3.00E-06 +3/+2 Ricinus communis XM_002526853 1 

Cell wall modification               

Bglu Beta-glucosidase 29-like  JZ794742 301 8.00E-03 +3/+3 
Fragaria vesca subsp. 
vesca 

XM_004305875 1 

Cel8 endoglucanase 6-like, 3´UTR JZ794740 263 8.00E-53 Plus/Plus Vitis vinifera XM_002270844 2 

Cell division cycle                 



 

Gene Symbol Putative Identity GeneBank Size (bp) E-value Frame Closest species Accesion No.  
No. of 
clones 

Hta909 Histone 2  JZ794743 223 9.00E-40 +2/+3 Populus trichocarpa  XM_002328499 1 

Protein metabolism 

ScpL 
Serine carboxypeptidase-like 18-like 
(LOC101310608) 

JZ794744 272 3.00E-12 +3/+2 
Fragaria vesca subsp. 
Vesca 

XM_004299733 1 

PsmB Proteasome subunit beta type 6 JZ794745 257 4.00E-19 +1/+1 Malus x domestica  XM_002527949 1 

Cellular component organization               

Pme Pectinesterase-like JZ794746 222 7.00E-21 +2/+2 
Nicotiana 
tomentosiformis 

XM_009627181 1 

Translation                  

RpS12 Ribosomal protein S12, 3´UTR JZ794751 259 1.00E-127 Plus/Plus Quercus nigra HQ664601 3 

RpS21 
40S ribosomal protein S21-2-like, 
transcript variant 2  

JZ794752 227 1.00E-10 +2/+2 Cucumis sativus  XM_004171568 2 

Miscellaneous                 

AgP20 Arabinogalactan peptide 20-like JZ794753 288 4.00E-09 +2/+1 
Fragaria vesca subsp. 
Vesca 

XM_004287458 1 

Fgfr1OP 
FGFR1 oncogene 
partner(RCOM_1071630) 

JZ794762 95 1.00E-09 +3/+2 Ricinus communis XM_002523887 2 

RCOM_0710110 21 kDa protein precursor JZ794763 159 2.00E-05 +1/+1 Malus x domestica XM_008393501 1 

Sp1L1 
Protein SPIRAL1-like 1-like, transcript 
variant 2  

JZ794764 183 9.00E-12 +1/+1 
Fragaria vesca subsp. 
vesca  

XM_004297177 1 

Ag13 mRNA for Ag 13 protein JZ794765 196 3.00E-19 Plus/Plus Alnus  glutinosa Y08435 1 

Unknown function                 

 
Hypothetical protein JZ794755 336 1.00E-10 +1/+1 Populus trichocarpa XM_002309824 1 

 

Hypothetical protein 
(PRUPE_ppa012024mg) mRNA, 
complete cds 

JZ794766 199 4.00E-07 Plus/Plus Prunus persica XM_007209589 1 

 

Hypothetical protein 
(PRUPE_ppa011596mg) mRNA, 
complete cds 

JZ794756 242 7.00E-09 Plus/Plus Prunus persica  XM_007202528 1 

No sequence hits nr NCBI database               

 
EST expresed in germinated acorn of 
Quercus ilex (Clone R2_74) 

JZ794757 224 
    

1 

 
EST expresed in germinated acorn of JZ794758 219 

    
1 

http://www.ncbi.nlm.nih.gov/nucleotide/697142741?report=genbank&log$=nuclalign&blast_rank=1&RID=5MZFNA22013
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006412


 
 

Gene Symbol Putative Identity GeneBank Size (bp) E-value Frame Closest species Accesion No.  
No. of 
clones 

Quercus ilex (Clone R2_211) 

 
EST expresed in germinated acorn of 
Quercus ilex (Clone R2_10) 

JZ794767 162 
    

1 

 
EST expresed in germinated acorn of 
Quercus ilex (Clone R2_399) 

JZ794768 157 
    

1 

 
EST expresed in germinated acorn of 
Quercus ilex (Clone R2_403) 

JZ794769 163 
    

1 

 
EST expresed in germinated acorn of 
Quercus ilex (Clone R1T76) 

JZ794770 105 
    

1 

 
EST expresed in germinated acorn of 
Quercus ilex (Clone R1T31) 

JZ794771 132 
    

1 

 
EST expresed in germinated acorn of 
Quercus ilex (Clone R1T37) 

JZ794772 94 
    

1 

 
EST expresed in germinated acorn of 
Quercus ilex (Clone R2_32) 

JZ794773 122 
    

1 

  
EST expresed in germinated acorn of 
Quercus ilex (Clone R2_374) 

JZ794774 176         1 

  



 

Table 5.4: Classification based in Biological Process of Gene Ontology (Forward library) 

Gene Symbol Putative Identity GeneBank Size (bp) E-value Frame Close species Accesion No.  
No. of 
clones 

Photosynthesis                 

ABC Chlorophyll a/b binding protein JZ794776 454 6E-772 +1/+1 
Carya 
cathayensis 

DQ471302 1 

Cpb Chlorophyll a-b binding protein JZ794777 260 2E-52 0.5 Citrus sinensis XM_006467448 3 

Cpb26  Chlorophyll a-b binding protein CP26 JZ794778 294 2E-50 +2/+2 Glycine max XM_003536141 2 

Cpb 
Chlorophyll a-b binding protein 151, 
chloroplastic-like (LOC101212963) 

JZ794779 360 2E-41 +2/+1 Cucumis sativus XM_004144495 1 

PsA 
Photosystem I reaction center subunit II, 
chloroplastic-like 

JZ794780 259 4E-35 +3/+3 Vitis vinifera XM_003631941 1 

PetE Plastocyanin a JZ794781 257 1E-20 +2/+2 Populus nigra Z50185 1 

PetA Quercus rubra plastid JZ794812 165 7E-78 Plus/Plus Quercus rubra JX970937 1 

NdhK NADH-plastoquinone oxidoreductase sub. K  JZ794775 210 1E-40 +1/+1 Quercus nigra GQ998672 2 

RbcS 
Ribulose-1,5-bisphosphate 
carboxylase/oxygenase small subunit 

JZ794783 220 2E-33 +3/+2 
Eucalyptus 
globulus 

AB537499 17 

RbcL Rubisco large subunit pseudogene JZ794813 156 0.005 +2/+3 
Orobanche 
cumana 

AF090350 1 

Secondary metabolism 

Cyb5R NADH-cytochrome B5 reductase JZ794782 266 6E-06 Plus/Plus 
Populus 

trichocarpa 
XM_002328054 1 

Aco1 1-aminocyclopropane-1-carboxylic acid oxidase JZ794786 298 2E-15 +2/+1 
Betula 

luminifera 
HM357150 3 

Cpx Coproporphyrinogen-III oxidase JZ794787 322 1E-27 +1/+3 Brassica rapa  XM_009121288 1 

Xth 
Xyloglucan endotransglycosylase/hydrolase 

precursor 
JZ794784 223 7E-35 +2/+1 

Populus tremula 
x Populus 

tremuloides 
EF194050 2 

Transport         

Mst2 Monosaccharide transporter  JZ794789 332 4E-07 Plus/plus 
Theobroma 

cacao 
XM_007025749 1 

ERD6 Sugar transporter ERD6-like JZ794790 308 5E-10 Plus/plus Citrus sinensis XM_006471810 1 



 
 

Gene Symbol Putative Identity GeneBank Size (bp) E-value Frame Close species Accesion No.  
No. of 
clones 

Signaling                 

Lrr-rlKs 
Probable inactive leucine-rich repeat receptor-like 
protein kinase At3g03770-like  

JZ794791 340 1E-29 +2/+2 Cicer arietinum  XM_004493152 1 

Pp2c Protein phosphatase-2c, 3´UTR JZ794816 131 5E-19 Plus/Plus 
Populus 
trichocarpa 

XM_006389316 1 

Pp7L 
Serine/threonine-protein phosphatase 7 long 
form homolog mRNA, complete cds 

JZ794792 358 7E-15 +1/+2 Glycine max  XM_006598404 1 

AcpL1 Acid phosphatase 1-like (LOC100853464), mRNA JZ794817 145 4E-12 +2/+1 
Eucalyptus 
grandis  

XM_010035523 4 

Stress response        

- Wound-responsive protein 15.46 mRNA, 3'-UTR JZ794788 278 3E-98 Plus/Plus Castanea sativa  AY055745 1 

Mt1 Partial mRNA for metallothionein-like protein  JZ794815 191 1E-29 +2/+2 Quercus robur AJ577263 1 

Gene expression        

Lug Transcriptional corepressor LEUNIG-like JZ794785 367 7E-32 +2/+3 Prunus mume XM_008221647 3 

Cellular component organization        

AdF Actin-depolymerizing factor 1-like, 3' UTR JZ794814 183 5E-09 Plus/plus Vitis vinifera XM_002273922 1 

Unknown function 

 
Contig VV78X026477.7, whole genome shotgun 
sequence   

JZ794793 213 4E-10 Plus/Plus Vitis vinifera AM431847 1 

 Clone QsuP5.2 sequence JZ794818 120 8.00E-23 Plus/Plus Quercus suber AF281042 1 

 
Contig VV78X240868.24, whole genome shotgun 
sequence/Vitis vinifera contig VV78X240868.24 

JZ794794 204 6E-34 Plus/Plus Vitis vinifera AM480217 1 

 
Contig VV78X122321.6, whole genome shotgun 
sequence,  3´UTR 

JZ794795 250 4E-99 Plus/Plus Vitis vinifera  AM460086 1 

LOC101210359 Uncharacterized LOC101210359  JZ794796 322 5E-45 +3/+1 Cucumis sativus XM_004142551 1 

 
Whole genome shotgun sequence, contig 
VV78X269505.8, clone ENTAV 115 

JZ794797 627 2E-43 +1/-1 Vitis vinifera AM486441 1 

 Clone SS0ACG1YJ14 JZ794819 184 9E-12 Plus/plus Vitis vinifera FQ381038 1 



 

Gene Symbol Putative Identity GeneBank Size (bp) E-value Frame Close species Accesion No.  
No. of 
clones 

 
Hypothetical protein (PRUPE_ppa007296mg) 
mRNA 

JZ794799 255 4E-12 Plus/plus Prunus persica  XM_007223248 1 

No sequence hits nr NCBI database               

  EST expresed Q. ilex shoot (Clone F2_240) JZ794798 340         1 

  EST expresed Q. ilex shoot (Clone F2_59_129) JZ794800 231         2 

  EST expresed Q. ilex shoot (Clone F2_105) JZ794801 202         1 

  EST expresed Q. ilex shoot (Clone F2_259) JZ794802 264         1 

  EST expresed Q. ilex shoot (Clone F2_4) JZ794820 168         1 

  EST expresed Q. ilex shoot (Clone F2_38) JZ794803 364   
    

  1 

  EST expresed Q. ilex shoot (Clone F2_40) JZ794804 309         1 

  EST expresed Q. ilex shoot (Clone F2_46) JZ794805 209         1 

  EST expresed Q. ilex shoot (Clone F2_52) JZ794821 173         1 

  EST expresed Q. ilex shoot (Clone F2_57) JZ794806 461         1 

  EST expresed Q. ilex shoot (Clone F2_74) JZ794807 248         1 

  EST expresed Q. ilex shoot (Clone F2_84) JZ794808 237         1 

  EST expresed Q. ilex shoot (Clone F2_102) JZ794822 124         1 

  EST expresed Q. ilex shoot (Clone F2_108) JZ794823 146         1 

  EST expresed Q. ilex shoot (Clone F2_110) JZ794824 139         1 

  EST expresed Q. ilex shoot (Clone F2_122) JZ794809 272         1 

  EST expresed Q. ilex shoot (Clone F2_148) JZ794810 260         1 

  EST expresed Q. ilex shoot (Clone F1T49) JZ794825 124         1 

  EST expresed Q. ilex shoot (Clone F2_13) JZ794811 238         1 

  



 
 

Table 5.5: Sequences without hits in the NCBI-nt database 

GeneBank OBS 
BLAStn BLAStx Annotation 

Database E-value % Identity Accession No.  Closest species Putative identity E-value Closest species Accession No.  

Reverse Library 

JZ794757   EST_NCBI 1.00E-70 89 FN700828 Quercus robur 
Sugar transporter ERD6-like 

16 
2.00E-20 Prunus mume XP_008223080 

JZ794758   EST_NCBI 1.00E-90 95 FN699270 Quercus robur 
Sugar transporter ERD6-like 

16 
2.00E-20 Prunus mume XP_008223080 

JZ794767   EST_NCBI 7E-39 91 FN748440 Quercus petraea No hits 

JZ794768   No hits No hits 

JZ794769   WGS_NCBI 1E-72 98 GAOS01046715 
Notholithocarpu

s densiflorus 
Gibberellin-regulated protein 6  4.00E-49 Vitis vinifera  XP_002284937 

JZ794770 3´UTR WGS_NCBI 9.00E-40 97 GAOS01005093 
Notholithocarpu

s densiflorus 
Proteasome subunit alpha 

type-1-A-like  
1.00E-164 Malus domestica XP_008388039 

JZ794771   WGS_NCBI 5.00E-26 99 GAOS01014527 
Notholithocarpu

s densiflorus 
Basic blue copper family 

protein  
1.00E-65 

Populus 
trichocarpa 

XP_002298184 

JZ794772   WGS_NCBI 3.00E-38 100 GAOS01004068 
Notholithocarpu

s densiflorus 
40S ribosomal protein S4-like  2.00E-118 Vitis vinifera XP_002276986 

JZ794773   WGS_NCBI 5.00E-25 86 JRKL01012822 
Castanea 

mollissima 
No hits 

JZ794774   WGS_NCBI 7.00E-70 94 GAOS01034165 
Notholithocarpu

s densiflorus 
Monoglyceride lipase-like  0 

Fragaria vesca 
subsp. Vesca 

XP_004291688 

Forward Library 

JZ794798   WGS_NCBI 6.00E-49 84 JRKL01181633| 
Castanea 

mollissima 
No hits 

JZ794800   No hits No hits 

JZ794801   EST_NCBI 2E-28 80 FP025185 Quercus robur No hits 

JZ794802   EST_NCBI 3E-34 79 FP025185 Quercus robur No hits 

JZ794820   WGS_NCBI 1.00E-72 98 JRKL01000436 
Castanea 

mollissima  
 Hypothetical protein 

PRUPE_ppa001266mg 
1E-85 Prunus persica XP_007207147 



 

GeneBank OBS 
BLAStn BLAStx Annotation 

Database E-value % Identity Accession No.  Closest species Putative identity E-value Closest species Accession No.  

JZ794803   EST_NCBI 2E-100 96 EC993414 Vitis vinifera No hits 

JZ794804   EST_NCBI 53-95 86 FP055967 Quercus robur No hits 

JZ794805   WGS_NCBI 2E-97 99 GAOS01023571 
Notholithocarpu

s densiflorus 
Signal recognition particle 

protein  
4E-63 

Medicago 
truncatula 

KEH18962 

JZ794821   WGS_NCBI 3E-80 99 GAOS01002366 
Notholithocarpu

s densiflorus 
Uncharacterized protein 
LOC103336026, partial  

0 Prunus mume XP_008237287 

JZ794806   EST_NCBI 0 96 FN760742  Quercus petraea No hits 

JZ794807 3´UTR WGS_NCBI 4E-113 97 GAOS01023741 
Notholithocarpu

s densiflorus 
Protein MLP1  0 Prunus mume XP_008238878 

JZ794808   EST_NCBI 3E-64 82 FR663529 Quercus suber No hits 

JZ794822 3´UTR EST_NCBI 4E-53 99 FP047535 Quercus petraea 
Ubiquitin conjugating enzyme, 

partial  
4.00E-45 

Nicotiana 
tomentosiformis 

XP_009604386 

JZ794823 3´UTR WGS_NCBI 2E-64 99 GAOS01007206 
Notholithocarpu

s densiflorus 
5'-nucleotidase surE 3E-153  Morus notabilis EXB41281.1 

JZ794824   No hits No hits 

JZ794809   No hits No hits 

JZ794810 5´UTR WGS_NCBI 1E-113 96 GAOS01002875 
Notholithocarpu

s densiflorus 
Glutathione S-transferase-like  6E-110 Prunus mume  XP_008235033.1 

JZ794825   No hits No hits 

JZ794811   No hits No hits 
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Abstract 

The changes that occur in the protein profiles during the germination and 

establishment of Q. ilex seedlings were investigated by means of a proteomic analysis of embryo 

axis, radicle and shoots tissues, excised at different stages along the growth process. PCA 

analysis of the normalised bands intensities obtained by SDS-PAGE clearly separated 

germination, postgermination and early seedling tissue proteomes. However, the band pattern 

was not greatly different between unimbibed and germinating seeds. This initial 1-DE 

proteomic approach was used for the selection of the samples (S0, S3, SS-1 and SS-4) to be 

analysed through a more resolutive technique, as it is 2-DE. A total of 732 spots were resolved 

with 2-DE, of which 103 variable spots were selected for protein identification. Some 90 

differentially accumulated proteins were identified using 2-DE MALDI-TOF/TOF. The gel-based 

approach disclosed important metabolics changes that occurred in the holm oak seed after the 

germination (from S3 onward). Again, few proteins resulted altered in their abundance during 

the germination period (from S0 to S3). A gel free approach was, hence, used to analyse the 

mature unimbibed (S0) and the germinated seed (S3), trying to improve the coverage of 

proteome analysed. Through nLC Orbitrap LTQ analysis of total extract, 153 differentially 

accumulated proteins were identified. These two complementary approaches increased more 

than 2-fold the coverage the amount of analyzed proteome. Data suggested that the maturate 

non-orthodox seeds of Q. ilex have the mechanisms necessary to ensuring the rapid resume of 

the metabolic activities requires to start the germination process and to de novo synthesise the 

biomolecules required for growth. Proteins related to energy metabolism and photosynthesis 

were up-accumulated during seedling establishment. Our results also indicated that the use of 

genus specific database combined with public database improve the quality and quantity of 

protein identification in orphan species. The diverse proteomic approaches we used gave 

similar clues about the metabolic state of the mature Q. ilex seed before the germination starts, 

and the metabolic switched experimented by the imbibed accord till the seedling is established. 

Data are in fully agreement with those obtained at the transcriptional level (Ch. 4 and Ch. 5), 

thereby strengthening each other.   
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6.1 Introduction 

Germination is an important process in which a seed embryo develops into a seedling. 

It involves the activation of the metabolic pathways from physiologically quiescent status, and 

so leads to the initiation of growth by the emergence of the radicle and plumule or shoot. At the 

molecular level, germination implies a series of complex signal transduction pathways which 

cause changes in the gene expression profile 1. Regulation of seed germination is one of the 

critical adaptive traits in plants in the long history of evolution. Optimal seed germination is a 

prerequisite for successful seedling establishment and plant vigour. The emergence of the 

radicle marks the end of the germination phase and beginning of the seedling establishment, 

the next phase in plant growth that end when the seedling has exhausted the food reserves 

stored in the seed 2. Further details of seed, germination and seedling establishment biology 

and physiology were presented in the general introduction of this Doctoral Thesis. 

Proteomics is a global protein analysis strategy that provides information on a 

multitude of events in complex processes such as germination 3. Proteomic analyses have been 

conducted on germinating seeds of a number of species including the model species Arabidopsis 

thaliana 3-5 and Medicago truncatula 6, as well as on agronomically important species such as 

Hordeum vulgare 7-8, Solanum lycopersicum 9, Oryza sativa 10-11, Zea mays 12, Triticum aestivum 13, 

or Glycine max 14. Most of the plant species studied produce orthodox seeds. However the study 

of recalcitrant seeds is very limited, even in species of great interest such as forest trees. 

Attempts to understand the changes which occur in the proteome during the germination of 

woody plants have been carried out in Havea brasieliensis 15, Fagus sylvatica 16, Prunus 

campanulata 17, Jatropha curcas 18, Acer platanoides 19, Phoenix dactylifera 20 and Araucaria 

angustifolia 21. These studies on the recalcitrant seeds germination demostrated alterations in 

the abundance of specific functional classes of proteins associated to after-ripening, dormancy 

and germination. These include storage proteins, carbohydrate catabolism and biosynthesis, 

and stress-related proteins 22. 

Our group has focused for years on the study of the genetic and physiological 

variability of plants, acorns and pollen 23-25 of Quercus ilex, a species with recalcitrant seeds, and 

its responses to various biotic and abiotic stresses 26-30 by using proteomic approaches. In the 

previous Ch. 4 and Chp. 5 we addressed the holm oak acorns germination and seedling 

establishment by transcriptional analisys (SSH and qRT-PCR). Given that proteins are direct 

executors of life processes and protein levels are major biomonitoring end points, we next 

investigated whether the changes in mRNA expression were reflected at the protein level. To 

this end, we initiated a new proteomhic approach to unravel the mechanisms involved in seed 

development and germination of holm oak seeds to better understand the molecular and 



 
127 Doctoral thesis 

physiological basis of embryo differentiation, development and germination. Proteomics can 

result of great utility in analyzing the dynamic of this complex biological process.  

Proteomic studies utilizing intact seeds face the problem of the presence in the seed of 

highly abundant storage proteins (i.e., legumin) that represent the primary limiting factor in the 

detection of other interesting but low-abundance proteins in proteomics analyses 31-33.  The use 

of embryos dissected from germinating seeds facilitates the identification of many of these low-

abundance key proteins involved in germination 34. In the present work, we used tissue 

samples excised from mature and  germinating seeds (embryo axes), from acorns in the post-

germinated stage (radicle) and from established seedlings (shoot, leaf primordia including the 

proximal tail tissues) to determine the changes originated by imbibition in the proteomic 

profiles by SDS-PAGE, 2-DE and LC-MS/MS. This approach has provided novel information 

about germination and seedling establishment of Q. ilex acorns. About 90 differentially 

accumulated proteins were identified using 2-DE MALDI-TOF/TOF and 153 proteins using nLC 

Orbitrap LTQ. These results provide a reference to analyze the regulation of seed germination 

and seedling establishment of Q. ilex in further studies. 

6.2 Materials & Methods 

6.2.1 Experimental design and plant material 

Mature acorns were collected from a Quercus ilex population, Cerro Muriano-Cordoba 

(Fig. 3.1, p. 45). Germination and growth experiments were performed as described in the Ch. 3 

(Fig 3.2, p. 46). The embryonic axis was removed from seeds at S0 to S3 stages and the whole 

seedling at S5 to S7 stages; seedling shoots of 1 (SS-1) and 4 cm length (SS-4) were also 

included (Fig. 3.3, p. 47). Samples from each time, washed, blot dried and frozen in liquid 

nitrogen, were pooled in three lots (1-2 g fresh weight) of embryo axes, radicles or seedling 

shoots per pool, and the three pools used as biological replicates. Samples were frozen in liquid 

nitrogen and stored at -80 ºC until protein extraction. 

6.2.2 Protein extraction 

Samples were grounded to a fine powder using a mortar and a pestle. Three 

independent protein extractions were performed per experimental condition (one per 

biological replicate) by trichloroacetic acid (TCA)/acetone and phenol methods using 200 mg of 

the tissue powder as previously described 25; 35-37. Briefly, the powder was suspended in 2 mL of 

10% (w/v) TCA /acetone solution and the mixture mixed by vortexing and sonicated 4 x 10 s (6 

W). After centrifugation (14000g for 10 min) the pellet was recovered, washed with 2 mL of 
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cold (-20 º C) 80% (v/v) methanol containing 0.1 M ammonium acetate and mixed by vortexing. 

Centrifugation (14000g for 10 min) and washing were repeated with 2 mL of 80% (v/v) 

acetone. The pellet was air-dried and re-suspended in 0.6 mL of phenol (Tris-buffered, pH 8.0; 

Sigma St. Louis, MO, USA) and 0.6 mL of SDS buffer (30% [w/v] sacarose, 2% [w/v] SDS, 0.1 M 

Tris-HCl, pH 8.0, 5% [w/v] 2-mercaptoethanol). The mixture was vortexed thoroughly for 30 s, 

incubated on ice for 5 min and the phenol phase separated by centrifugation at 14000g for 10 

min. The upper phenol phase was transferred to fresh 1.5 mL tubes. At least 5 volumes of cold 

100% methanol containing 0.1 M ammonium acetate were added to the phenol phase and the 

mixture was stored at -20 ºC overnight. Precipitated proteins were recovered at 10000g for 5 

min, and then washed with cold methanol and later with cold 80% (v/v) acetone. The final 

pellet was suspended in 7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 0.5% (w/v) Triton X-100 and 

100 mM DTT. Insoluble material was removed by centrifugation at 14000g for 15 min. The 

protein concentration in the extract was determined by using the Bradford method 38-39 with 

bovine serum albumin (BSA) as standard. Samples were frozen in liquid nitrogen and stored at 

−80 ºC until analysis. 

6.2.3 Gel electrophoresis, staining, image capture and analysis 

For 1-DE analysis, 80 μg of protein BSA equivalent of the three biological replicates 

from each nine S0, S1, S2, S3, S5, S6, S7, SS-1 and SS-4 samples were separated by SDS-PAGE 

electrophoresis 40 on 12% polyacrylamide gels by using a Protean XL-II (20 x 20 cm) system 

(Bio-Rad). Gels were run at 80 V until the dye reached the bottom of the gel.  

In the 2-DE experiment, the three biological replicates from stages S0, S3, SS-1 and SS-

4 were analyzed. Previous work performed in the laboratory 24 was considered to select the 

working pH range to be used. Immobilised pH gradients (IPG) strips were employed (17 cm, 5-

8 pH gradient; Bio-Rad). IPG strips were passively rehydrated for 16 h with 400 μg protein BSA 

equivalent in 400 μL of IEF solubilization buffer (7 M urea, 2 M thiourea, 4% [w/v] CHAPS, 

0.2% [v/v] IPG buffer 5-8, 100 mM DTT and 0.01% [w/v] bromphenol blue). The strips were 

loaded onto a Bio-Rad Protean IEF Cell system and proteins were initially electrofocussed at 

20ºC first using a gradually increasing voltage (250 V-10000 V) and then reaching 55000 Vh. 

Strips were immediately equilibrated according to 41. Second dimension SDS-PAGE was 

performed on 12% polyacrylamide gels using Protean Dodeca Cell systems (Bio-Rad). Gels 

were run at 80 V until the dye reached the bottom of the gel. 

Gels were stained with colloidal Coomassie Brillant blue (CBB) as previously 

described 42. Briefly, the gels were rinsed in deionised water (2 x 1 min) and stained for 24 h in 

a solution containing 10% (w/v) ammonium sulfate, 2% (v/v) phosphoric acid, 0.1% (w/v) 
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CBB G250 (Bio-Rad) and 20% (v/v) methanol. After staining, the gels were washed 3 min in 0.1 

M Tris-phosphoric acid (pH 6.5), followed by a 1 min wash in 25% (v/v) methanol and finally a 

24 h wash in 20% (w/v) ammonium sulfate. CBB images, 1-DE and 2-DE, were acquired with a 

GS-800 Calibrated Densitometer (Bio-Rad). 

Image analysis in 1-DE experiments was performed with the QuantityOne software 

(Bio-Rad). Bands were detected automatically and then confirmed by visual validation. 2-DE 

images analysis (three gels, one per biological replicate, was run for each stage) was performed 

with PDQuest v.8.01 software (Bio-Rad), using tenfold over background as a minimum criterion 

for presence/absence for the guided protein spot detection method. Visual validation of 

automated analysis was done thereafter to increase the reliability of the matching 43-44. 

6.2.4 Mass sprectrometry analysis 

For the MALDI-TOF/TOF analysis, spots with statistically significant differences were 

automatically excised from the gel employing Investigator ProPic robotic workstation (Genomic 

Solutions), transferred to multiwell 96 plates and digested with modified porcine trypsin 

(sequencing grade; Promega) by using a ProGest (Genomics Solution) digestion station 35; 45. 

Briefly, gels pieces were destained by two washes at 37 ºC for 30 min with 200 mM ammonium 

bicarbonate in 40% (v/v) acetonitrile (ACN). Slices were then washed twice, first with 25 mM 

ammonium bicarbonate for 5 min and later with 25 mM ammonium bicarbonate in 50 % (v/v) 

ACN for 15 min. respectively, dehydrated with 100 % ACN and finally dried at room 

temperature for 10 min. Trypsin (20 µL) solution was added to the dry gel pieces at a final 

concentration of 12.5 ng/µL in 25 mM ammonium bicarbonate, and the digestion proceeded at 

37 ºC overnight (approximately 16 h). Digestion was stopped by adding 10 μL of 0.5% 

trifluoroacetic acid (TFA) in water; peptides were desalted by using a resin C18 micro column 

(ZipTip, Millipore). Peptides were eluted directly with a matrix solution (α-

cyanohydroxycinnamic acid at a concentration of 5 mg/mL in 70% ACN/0.1% TFA) onto 

MALDI plate using the dry droplet method. The MS analyzed in a 4700 Proteomics Analyzer 

MALDI-TOF/TOF Mass Spectrometer (Applied Biosystems), in the m/z range from 800 to 4000, 

with an accelerating voltage of 20 kV in reflectron mode and with a delayed extraction set to 

“on” and an elapsed time 120 ns. Spectra were internally calibrated using peptides from trypsin 

autolysis (M+H+=842.509, M+H+=2211.104) with an m/z precision of ± 20 ppm. Most 

abundant peptide ions were subjected to MS/MS analysis, providing information that can be 

used to define the peptide sequence 35. A combined search (MS plus MS/MS) was performed 

against UniProtKB/TrEMBL, UniProtKB/SwissProt, NCBI non redundant (nr) protein database 

and Quercus_db (custom database of Quercus genera, detailed in appendix 10.1) using Mascot 
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searching engine (Matrix Science Ltd., London; http://www.matrixscience.com) with the 

following parameters: taxonomy restrictions to Viridiplantae for public database, one missed 

cleavage, 100 ppm mass tolerance in MS and 0.5 Da for collision-induced dissociation (CID) 

data, cysteine carbamidomethylation as a fixed modification and methionine oxidation as a 

variable modification. The confidence in the peptide mass fingerprinting matches (p < 0.05) 

was based on the MOWSE score (higher than 70), further confirmed by the accurate 

overlapping of the matched peptides with the major peaks of the mass spectrum. Proteins with 

unknown proteins hits were subjected to BLASTp search against NCBI nr protein database, 

considering hits with e-value < 10-10 and identity ≥ 75%. 

The nLC LTQ Orbitrap analysis was performed as previously described 46. A first 

standard SDS-PAGE step was introduced for protein pre-fractionation and washing (removal of 

detergents and other contaminants). Briefly, 100 µg of Laemmli-dissociated proteins per 

sample were subjected to SDS-PAGE electrophoresis in 12.5 % acrylamide gel (maximum 

thickness 1 mm) overlayed with a stacking gel of similar lenght, by using mini Protean (7 x 7 

cm) system (Bio-Rad). The gel was run at 80 V until the bromophenol blue reached the 

resolving gel. The gel was then stained with CBB and the unique resulting bands per line 

excised using a clean scalpel and transferred to individual 1.5 mL tubes. The digestion was 

performed as described above, but the peptides elution step from C18 resin was performed by 

adding 200 µL of solution containing 70% (v/v) ACN and 0.1% of TFA, which was later 

completely evaporated in speed-vac. The peptides were resuspended in 50 µL of 4 % (v/v) ACN 

plus 0.25% (v/v) formic acid. This resuspention volume is equivalent to half the quantity of 

micrograms of protein loaded in a gel. The peptides were transferred into a microvial for 

autosampler injection. The LC settings were as follows: ≃ 2 µg of digested peptides in 5 µL were 

loaded per injection onto a one-dimensional (1D) nano-flow LC-MS/MS system (Thermo 

Scientific). Peptides were eluted using a monolithic C18 column Acclaim PepMap (Thermo 

Scientific) of 15 cm length and 0.075 mm internal diameter during a 180 min gradient from 5 to 

35% B with a controlled flow rate of 400 nL per minute (mobile phase A: 0.1% formic acid; 

mobile phase B: 90% ACN and 0.1% formic acid). LC was coupled to MS using an ESI source. MS 

analysis was performed on an LTQ Orbitrap XL mass spectrometer (Thermo Scientific). Specific 

tune settings for the MS were set as follows: spray voltage of 1.3 kV using a 10 µm inner 

diameter needle (PicoTip Emitter; NewObjective, USA) and temperature of the heated transfer 

capillary was set to 180 °C. Fourier Transform Mass Spectrometer (FTMS) was operated as 

follows: full scan mode, centroid, resolution of 30,000, covering the range 400–1,500 m/z. Each 

full MS scan was followed by ten dependent MS/ MS scans, in which the ten most abundant 

peptide molecular ions were dynamically selected during 150s. Ions with unassigned charge, 

charge+1 and higher than +3 were excluded for fragmentation. 

http://www.matrixscience.com/
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For protein identification, raw-files were processed with the Proteome Discoverer 

software v.1.4 (Thermo Scientific) using the Quercus_DB protein database 47 combined with 

UniProtKB/TrEMBL, UniProtKB/SwissPrto and NCBI nr databases, with taxonomy restrictions 

to Viridiplantae, using the SEQUEST algorithm (implemented in Proteome Discoverer v.1.4, 

Thermo Scientific). Precursor mass tolerance was set to 10 ppm and fragment ion mass 

tolerance fixed to 0.8 Da. Only charge states +2 or greater were used. Identification confidence 

was set to a 5% FDR and acetylation of N terminus, oxidation of methionine and 

carbamidomethyl cysteine formation were set as variable modifications. No fixed modifications 

were set. Trypsin was set as proteolytic enzyme and a maximum of two miss cleavages were set 

for all searches. The threshold for protein identification was one unique peptide (peptide that 

only appears once in the entire database) with a X-Correlation value 0.25 greater than the 

charge state (i.e., 2.25 for peptides with charge +2) 48. Proteins with unknown proteins hits 

were subjected to BLASTp search against NCBI nr protein database, with and e-value cutoff of 

10-10 and identity ≥ 75%. 

6.2.5 Functional classification of proteins 

Identified proteins by nLC LTQ Orbitrap analysis were subjected to gene ontology 

(GO) annotation using Blas2GO 49 based on BLASTp results against NCBI nr protein database (e-

value < 10-3). Differentially accumulated protein identified by MALDI-TOF/TOF and nLC LTQ 

Orbitrap analysis were extracted and classified based on their putative function according to 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, also using Blas2GO 49 or according 

to the annotation in UniProtKB protein database. 

6.2.6 Statistical analysis 

The band and spot abundances obtained in gel image analysis were normalised as 

previously described 50-51. Briefly, the normalised spot abundance (NSA) from spot k of gel i was 

obtained after the division of the spot abundance (SA) by the sum of SA of all N spots present in 

gel i. 

(   )k 
(  )k

∑ (  ) 
   

 

In 1-DE analysis the normalisation of individual bands was performed by division of 

the band abundance (BA) by the sum of BA of all N bands present in the lane i. 

Only consistent bands and spots that were present in the three biological replicates 

were considered for statistical calculations of protein expression levels 29; 50. Experimental pI 
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was determined using a 5-8 linear scale over the total length of the IPG strip. Mr values were 

calculated by mobility comparisons with protein standards markers (SDS Molecular weight 

standards, Broad range, Bio-Rad) run in the same gel in 1-DE and in a separate lane in the gel in 

2-DE. 

For statistical and cluster analysis of protein bands or SA values in gel based approach, 

the web-based software NIA array analysis tool was utilised 52 available online at 

http://lgsun.grc.nia.nih.gov/anova/index.html, as reported in 29. Through this software, 

statistically valid protein spots were selects based on analysis of variance (ANOVA). After 

uploading the data table containing normalized and transformed consistent spots data and 

indication of biological replications, the data were statistically analyzed using the following 

settings: error model max (average, actual), 0.01 proportions of the highest variance values to 

be removed before variance averaging, 10 degrees of freedom for the Bayesian error model, 

0.05 FDR thresholds, and zero permutations. The entire data set was analyzed by principal 

component analysis (PCA) according to the following settings: covariance matrix type, four 

principal components, 2-fold change threshold for clusters, and 0.7 correlation threshold for 

clusters. PCA results were represented as a biplot, with consistent proteins in those 

experimental situations located in the same area of the graph. 

Identified proteins by nLC LTQ Orbitrap were quantified by a peptide count 

measurement using NSAF (Normalized spectral abundance factor) approach, as previously 

described 46; 53. For each protein k identified, we calculated a spectral abundance factor 

normalized against the whole protein complex (NSAF) as follows: 

(    )k 
(     )k

∑ (     )    
 

in which the total number of tandem MS spectra matching peptides from protein k 

(Spc) was first divided by the protein length (L), then divided by the sum of SpC/L for all N 

proteins in each stages analyzed. This measurement is limited to peptides that have been 

assigned to proteins, but not to those absent in the database or those with posttranslational 

modifications (PTMs) not defined in the SEQUEST search step 46. To determinate quantitative 

difference, a ratio between stage S3 and S0 (S3/S0) ≥ 2 was considered germination enriched 

(S3), and aratio ≤ 0.5 were considered mature seed enriched (S0). In addition, only proteins 

with 3 or more peptide assigned were considered as differentially accumulated. 

6.3 Results and discussion 

To study holm oak seed germination and seedling establishment, two complementary 

proteomic approaches, gel based and gel free (shotgun), were used in order to obtain the 
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largest possible proteome coverage and hence, the maximal information about the changes in 

protein accumulation along these complex processes. 

Proteins were extracted from cryo-homogenated embryo axes (stages S0-S3), whole 

seedling (S4 to S7) and shoots (SS-1 and SS-4) by using the TCA/acetone and phenol 

precipitation method. Statistically significant variations were observed in protein yield, and 

depending on the stage, ranged from 1.92 ± 0.38 mg/g FW (S7) to 15.21 ± 1.64 mg/g FW (S0) 

(Table 6.1), decreasing as the water content in the tissue increased. This decrease in protein 

content observed during germination and seedling establishment has been previously reported 

in other similar studies 9; 20 and is mainly related to storage mobilisation. 

Table 6.1: Protein yield in embryo axes from different stages of germination and seedling establishment. 

 
1Means of protein yield with the same letter are not significantly different acording to Tukey’s HSD test (α 0.05) 

The values shown in Table 6.1 were in the range of those reported for seeds, radicle 

and shoots in different genera of Fagaceae, including Quercus spp. and other species 24; 54-56. The 

percentage of protein recovery with the used methodology was approximately 30% in seeds 

considering protein contents estimated by NIRS reported for Q. ilex seeds by 23. No data are 

available for the protein content in other holm oak tissues, but our results agree with those 

found in other species 57-58. 

6.3.1 One-dimensional SDS-PAGE protein profile 

One-dimensional SDS-PAGE is a very useful tool to separate protein molecules by size, 

less expensive and time consuming that other proteomics approaches. We used this 

methodology to obtain a first vision of the proteomic changes occuring in Q. ilex seed at 

different times after imbibition that let us to choose only informative stages for posterior 2-DE 

and nLC LTQ Orbitrap approaches.  

For each assayed time/stage, >100 individuals were distributed in three groups and 

the individuals in each group pooled; the three pools per stage, were used as biological 

replicates. Pooling of samples in omics experiments is a valid and potentially valuable 

procedure when many individuals are analysed. Usually the protein expression in a pool 
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matches the mean expression of the individuals making up the pool for the majority of proteins 

and the biological variance between pools is reduced compared with that between individuals 

59. As we pooled individuals of each stage in three different pools, we still could asses the 

biological variability. The importance of biological over technical replication has been 

emphasised both in omics work, because treatment effects should be tested against biological 

rather than technical error 59. 

Protein extracts (80 µg) from embryo axes at the nine development stages (three 

biological replicates per stage) were loaded per line, separated by SDS-PAGE stained and 

images analysed with the QuantityOne software (Bio-Rad) (Fig. 6.1). Data were subjected to 

multivariate statistical analysis and clustering in order to establish different groups. A total of 

60 bands were resolved in the 5–221 kDa Mr range, most of them located in the 31–116 kDa Mr 

range (Fig. 6.1). Mean of normalized and transformed relative values for each band, as well as 

standard deviation (SD), are provided in Table 6.2. ANOVA (with FDR < 0.05) detected 43 bands 

with statistically significant qualitative (i.e., absence or presence) or quantitative differences 

(i.e., different intensities). Only 18 of these 43 bands, including quantitative and qualitative 

difference, contributed to distinguish the different stages (Fig. 6.2).  

 

Figure. 6.1: 1-DE analysis of changes in the protein profile during germination (S0 to S3), post germination 
(S5 to S7) and seedling establishment (SS-1 and SS-3) of Q. ilex seeds. Protein extracts (80 µg) from embryo axes 
at the nine development stages (three biological replicates per stage) were loaded per line, separated by SDS-PAGE 
stained and images analysed with the QuantityOne software (Bio-Rad). Each line correspond to one sampling time 
and biological replicate (three biological replicates per sampling time). On the right is shown a diagram representing 
the 60 resolved bands; only consistent bands were considered. Asterisks and crosses indicate the bands with 
quantitative and qualitative differences, respectively. Data were subjected to multivariate statistical analysis and 
clustering in order to establish different groups (Table 6.2 and Fig. 6.2).  
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Table 6.2: Normalised and transformed relative volumes of the 1-DE resolved bands. Normalised band 
abundance by dividing the band abundance (BA) by the sum of BA of all bands in each line as detailed in M&M. 

Band 
Number 

Mr (Kda) S0 
(0h) 

S1 
(4h) 

S2 
(10h) 

S3 
(24h) 

S5 
(72h) 

S6 
(144h) 

S7 
(216h) 

SS-1         
(Seedling  

1 cm) 

SS-4 
(Seedling  

4 cm) 

Statistical 
analysis 

FDR 

1  221.47  0.03 ± 0.01 0.07 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 0.76 ± 0.60 1.10 ± 1.01 0.69 ± 0.27 1.14 ± 0.17 0.01 ± 0.00 0.00000 

2  195.83  0.07 ± 0.10 0.14 ± 0.08 0.03 ± 0.01 0.13 ± 0.11 0.13 ± 0.39 1.11 ± 0.86 0.53 ± 0.22 0.67 ± 0.10 0.05 ± 0.01 0.00000 

3  165.06  0.04 ± 0.02 0.05 ± 0.00 0.08 ± 0.04 0.19 ± 0.05 0.19 ± 0.20 0.71 ± 0.95 0.08 ± 0.01 0.15 ± 0.02 0.05 ± 0.03 0.00007 

4  153.04  0.44 ± 0.26 0.37 ± 0.26 0.18 ± 0.11 0.71 ± 0.03 0.71 ± 0.22 1.13 ± 0.79 0.65 ± 0.07 0.40 ± 0.13 0.16 ± 0.08 0.00081 

5  131.86  0.18 ± 0.07 0.22 ± 0.12 0.12 ± 0.10 0.40 ± 0.08 0.40 ± 0.06 0.85 ± 0.50 0.30 ± 0.08 0.18 ± 0.11 0.11 ± 0.05 0.00460 

6  123.78  0.95 ± 0.10 0.74 ± 0.05 0.79 ± 0.33 0.98 ± 0.06 0.98 ± 0.06 1.11 ± 0.59 0.53 ± 0.08 0.17 ± 0.05 0.08 ± 0.01 0.00000 

7  111.56  3.70 ± 0.85 3.84 ± 0.66 3.45 ± 0.92 3.85 ± 0.19 3.85 ± 0.03 4.29 ± 0.67 3.90 ± 0.21 2.35 ± 0.10 1.68 ± 0.17 0.01000 

8  101.19  1.90 ± 0.33 1.80 ± 0.12 1.97 ± 0.24 1.65 ± 0.22 1.65 ± 0.11 1.07 ± 0.04 0.94 ± 0.19 0.82 ± 0.12 0.67 ± 0.12 0.00002 

9  97.11  4.33 ± 0.75 3.86 ± 0.47 4.04 ± 0.34 4.79 ± 0.19 4.79 ± 0.55 3.79 ± 0.73 4.12 ± 0.11 2.76 ± 0.13 3.88 ± 0.21 0.62913 

10  90.43  nd. nd. nd. nd. nd. nd. nd. 0.58 ± 0.09 nd. 0.00000 

11  89.17  1.41 ± 0.33 1.83 ± 0.78 1.27 ± 0.09 1.64 ± 0.08 1.64 ± 0.24 1.86 ± 0.37 2.00 ± 0.15 3.04 ± 0.29 3.04 ± 0.48 0.00228 

12  84.19  2.11 ± 0.21 1.86 ± 0.15 1.99 ± 0.20 2.23 ± 0.17 2.23 ± 0.33 3.95 ± 0.40 4.52 ± 0.10 2.79 ± 0.41 4.03 ± 0.02 0.00067 

13  80.21  0.48 ± 0.25 0.88 ± 0.80 0.35 ± 0.03 0.62 ± 0.11 0.62 ± 0.16 0.57 ± 0.02 0.70 ± 0.04 0.83 ± 0.19 1.20 ± 0.13 0.00981 

14  76.34  1.22 ± 0.16 1.94 ± 0.57 1.80 ± 0.10 1.62 ± 0.13 1.62 ± 0.47 2.06 ± 0.24 1.73 ± 0.13 1.98 ± 0.24 1.57 ± 0.31 0.69021 

15  72.01  4.88 ± 0.55 4.31 ± 0.71 4.35 ± 0.13 4.33 ± 0.26 4.33 ± 0.58 4.94 ± 0.82 4.79 ± 0.19 5.23 ± 0.48 4.56 ± 0.25 0.99801 

16  67.94  2.18 ± 0.11 2.60 ± 0.57 2.68 ± 0.05 2.23 ± 0.09 2.23 ± 0.28 1.99 ± 0.15 1.86 ± 0.18 1.09 ± 0.15 0.91 ± 0.13 0.00007 

17  65.26  2.26 ± 0.14 2.50 ± 0.27 2.44 ± 0.30 2.24 ± 0.19 2.24 ± 0.35 1.70 ± 0.25 1.27 ± 0.04 0.99 ± 0.21 1.51 ± 0.21 0.00324 

18  61.12  2.73 ± 0.29 2.62 ± 0.40 2.45 ± 0.16 2.70 ± 0.14 2.70 ± 0.21 1.38 ± 0.08 1.52 ± 0.16 1.84 ± 0.15 2.66 ± 0.18 0.05471 

19  59.00  1.15 ± 0.10 1.18 ± 0.42 1.04 ± 0.03 0.97 ± 0.10 0.97 ± 0.13 1.34 ± 0.24 1.32 ± 0.13 1.57 ± 0.16 1.88 ± 0.47 0.33700 

20  58.52  2.30 ± 0.39 1.96 ± 0.26 1.46 ± 0.06 1.91 ± 0.21 1.91 ± 0.22 2.33 ± 0.27 3.00 ± 0.39 2.64 ± 0.27 2.81 ± 0.43 0.21817 

21  55.95  5.27 ± 1.56 4.44 ± 0.49 4.28 ± 0.30 4.39 ± 0.08 4.39 ± 0.29 2.81 ± 0.37 2.19 ± 0.30 2.82 ± 0.11 nd. 0.00000 

22  54.58  6.17 ± 4.83 8.93 ± 1.76 9.71 ± 0.77 9.55 ± 0.43 9.55 ± 0.58 11.79 ± 
0.56 

10.72 ± 
0.64 

7.09 ± 1.44 7.11 ± 0.72 0.22854 

23  50.58  nd. nd. nd. nd. nd. nd. nd. 3.33 ± 0.55 7.64 ± 0.15 0.00000 

24  49.77  4.98 ± 0.53 5.55 ± 1.10 4.87 ± 0.47 5.05 ± 0.61 5.05 ± 0.65 5.93 ± 0.89 5.04 ± 0.17 5.65 ± 0.71 5.08 ± 1.08 0.99801 

25  48.82  5.09 ± 1.27 5.16 ± 0.71 5.42 ± 0.46 3.40 ± 0.57 3.40 ± 0.47 1.73 ± 0.39 1.21 ± 0.02 3.00 ± 0.03 3.51 ± 0.16 0.00000 

26  46.67  0.52 ± 0.11 0.99 ± 0.57 1.20 ± 0.05 0.53 ± 0.14 0.53 ± 0.18 0.68 ± 0.16 0.58 ± 0.54 2.53 ± 0.33 nd. 0.00000 

27  44.54  2.51 ± 0.50 2.62 ± 0.64 2.93 ± 0.42 1.94 ± 0.28 1.94 ± 0.62 5.01 ± 0.75 4.88 ± 0.54 5.62 ± 0.50 8.38 ± 0.52 0.00000 

28  43.83  nd. 1.62 ± 0.49 1.59 ± 0.17 1.30 ± 0.19 1.30 ± 0.15 1.86 ± 0.24 1.89 ± 0.27 1.59 ± 0.10 2.18 ± 0.46 0.00000 

29  42.81  2.49 ± 0.09 2.10 ± 0.41 2.40 ± 0.04 2.47 ± 0.12 2.47 ± 0.32 1.79 ± 0.04 1.76 ± 0.28 1.67 ± 0.12 2.13 ± 0.49 0.76743 

30  41.10  nd. nd. nd. nd. nd. nd. nd. 1.87 ± 0.27 2.53 ± 0.18 0.00000 

31  41.80  1.84 ± 0.19 2.36 ± 0.13 2.92 ± 0.46 2.68 ± 0.19 2.68 ± 0.43 4.41 ± 0.17 4.10 ± 0.68 3.10 ± 0.20 2.87 ± 0.15 0.04442 

32  39.62  4.22 ± 0.40 3.42 ± 0.35 3.26 ± 0.47 3.57 ± 0.48 3.57 ± 0.67 4.14 ± 0.45 4.05 ± 0.65 2.60 ± 0.46 2.08 ± 0.21 0.09404 

33  39.24  4.20 ± 0.43 2.91 ± 0.09 3.28 ± 0.28 3.89 ± 0.24 3.89 ± 0.69 3.81 ± 0.69 4.04 ± 0.24 3.34 ± 0.34 3.24 ± 0.33 0.91919 

34  37.90  1.19 ± 0.15 1.14 ± 0.30 1.32 ± 0.33 1.41 ± 0.30 1.41 ± 0.10 1.03 ± 0.10 1.23 ± 0.22 0.92 ± 0.20 0.91 ± 0.36 0.76448 

35  37.68  0.58 ± 0.21 0.74 ± 0.39 0.37 ± 0.25 0.00 ± 0.00 0.00 ± 0.04 1.18 ± 0.12 2.05 ± 0.23 2.58 ± 0.09 1.57 ± 0.21 0.00000 

36  36.17  1.23 ± 0.03 0.96 ± 0.28 0.77 ± 0.20 0.55 ± 0.26 0.55 ± 0.13 0.81 ± 0.16 1.28 ± 0.15 1.11 ± 0.18 1.23 ± 0.05 0.00939 

37  35.66  1.01 ± 0.18 0.95 ± 0.30 1.07 ± 0.31 1.34 ± 0.35 1.34 ± 0.52 0.75 ± 0.30 1.11 ± 0.21 0.62 ± 0.10 0.56 ± 0.02 0.02218 

38  34.12  1.24 ± 0.28 1.21 ± 0.51 0.81 ± 0.11 1.62 ± 0.21 1.62 ± 0.43 0.68 ± 0.29 0.82 ± 0.04 0.89 ± 0.10 0.65 ± 0.11 0.00927 

39  33.70  nd. 0.48 ± 0.08 0.44 ± 0.12 0.67 ± 0.31 0.67 ± 0.14 0.77 ± 0.30 1.18 ± 0.06 0.44 ± 0.77 nd. 0.00000 

40  32.72  2.56 ± 0.19 3.01 ± 0.11 2.90 ± 0.48 3.17 ± 0.15 3.17 ± 0.32 3.03 ± 0.21 3.52 ± 0.30 4.25 ± 0.21 3.23 ± 0.16 0.82597 

41  31.35  2.00 ± 0.37 1.17 ± 0.30 1.24 ± 0.21 1.66 ± 0.19 1.66 ± 0.22 0.84 ± 0.44 1.47 ± 0.45 0.72 ± 0.36 0.61 ± 0.12 0.00000 

42  29.83  nd. 0.40 ± 0.21 0.32 ± 0.05 0.40 ± 0.04 0.40 ± 0.03 0.23 ± 0.17 0.33 ± 0.15 0.35 ± 0.20 0.06 ± 0.05 0.00000 

43  29.13  3.82 ± 0.35 2.39 ± 0.30 1.92 ± 0.09 3.26 ± 0.93 3.26 ± 0.19 1.58 ± 0.84 2.64 ± 0.44 2.18 ± 0.52 2.48 ± 0.23 0.02656 

44  28.62  0.35 ± 0.09 0.30 ± 0.26 0.42 ± 0.15 0.00 ± 0.00 0.00 ± 0.31 0.06 ± 0.11 nd. nd. nd. 0.00000 

45  27.94  1.27 ± 0.45 0.48 ± 0.25 0.58 ± 0.15 1.00 ± 0.21 1.00 ± 0.20 0.65 ± 0.53 1.19 ± 0.38 0.98 ± 0.27 0.95 ± 0.20 0.01452 

46  27.67  0.88 ± 0.15 0.36 ± 0.06 0.33 ± 0.07 0.89 ± 0.21 0.89 ± 0.32 0.61 ± 0.36 0.60 ± 0.12 0.39 ± 0.24 0.40 ± 0.15 0.00003 

47  27.25  0.33 ± 0.09 0.14 ± 0.04 0.18 ± 0.05 0.31 ± 0.05 0.31 ± 0.17 nd. nd. nd. 0.16 ± 0.03 0.00000 

48  26.69  0.43 ± 0.04 0.44 ± 0.14 0.51 ± 0.03 0.57 ± 0.11 0.57 ± 0.05 0.36 ± 0.18 0.33 ± 0.13 0.26 ± 0.05 0.12 ± 0.03 0.00000 

49  24.98  0.21 ± 0.03 0.27 ± 0.01 0.26 ± 0.03 0.20 ± 0.03 0.20 ± 0.03 0.15 ± 0.02 0.15 ± 0.03 0.24 ± 0.02 0.13 ± 0.05 0.05704 

50  24.17  0.16 ± 0.02 0.18 ± 0.00 0.20 ± 0.03 0.19 ± 0.01 0.19 ± 0.03 0.20 ± 0.06 0.23 ± 0.02 0.26 ± 0.03 0.20 ± 0.05 0.82330 

51  22.57  0.16 ± 0.03 0.23 ± 0.04 0.31 ± 0.02 0.16 ± 0.01 0.16 ± 0.05 0.14 ± 0.02 0.13 ± 0.00 0.06 ± 0.01 0.14 ± 0.02 0.00000 

52  19.97  4.05 ± 0.82 3.62 ± 0.82 3.84 ± 0.30 3.31 ± 0.13 3.31 ± 0.61 0.89 ± 0.72 1.25 ± 0.30 0.53 ± 0.07 0.70 ± 0.21 0.00000 

53  18.79  1.93 ± 0.48 1.91 ± 1.01 2.32 ± 0.28 1.84 ± 0.49 1.84 ± 0.43 1.44 ± 1.22 2.16 ± 0.39 1.67 ± 0.14 2.38 ± 0.27 0.09115 

54  16.95  1.17 ± 0.33 2.13 ± 0.69 1.72 ± 0.18 1.09 ± 0.16 1.09 ± 0.00 nd. nd. nd. 1.68 ± 0.20 0.00000 

55  16.19  2.42 ± 0.84 2.71 ± 1.14 3.10 ± 0.07 2.15 ± 0.30 2.15 ± 0.18 2.02 ± 1.35 2.41 ± 0.27 4.76 ± 0.48 3.06 ± 0.37 0.00907 

56  14.63  1.75 ± 0.87 1.37 ± 0.97 1.85 ± 0.28 1.52 ± 0.15 1.52 ± 0.27 0.53 ± 0.33 0.47 ± 0.13 0.54 ± 0.05 0.40 ± 0.05 0.00000 

57  12.83  0.30 ± 0.05 0.19 ± 0.09 0.28 ± 0.04 0.23 ± 0.03 0.23 ± 0.08 0.16 ± 0.08 0.12 ± 0.05 0.22 ± 0.01 0.34 ± 0.10 0.00033 

58  8.94  0.10 ± 0.04 0.05 ± 0.02 0.05 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.08 ± 0.03 0.05 ± 0.02 0.15 ± 0.00 0.08 ± 0.06 0.01870 

59  8.30  0.33 ± 0.06 0.27 ± 0.03 0.34 ± 0.02 0.27 ± 0.02 0.27 ± 0.13 0.39 ± 0.04 0.30 ± 0.01 0.26 ± 0.03 0.20 ± 0.07 0.19294 

60  5.78  0.24 ± 0.21 0.10 ± 0.03 0.12 ± 0.03 0.14 ± 0.04 0.14 ± 0.17 0.19 ± 0.05 0.10 ± 0.02 0.17 ± 0.01 0.15 ± 0.04 0.00037 

Data are mean ± SD of three biological replicates. nd.: not detected spots; they were considered qualitative differences 
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A hierarchical clustering of the analysed biological replicates indicated that 1-DE band 

patterns were quite similar between S1 and S2 stages and among S5, S6 and S7 (Fig. 6.2A). PCA 

of developmental stages (Fig. 6.2B) and protein band intensities (Fig. 6.2C) were also 

conducted. PC1 and PC2 accounted for 39.22% and 32.11% of the total variability, respectively. 

PCA analysis separate two groups in the developmental stages, one corresponding to S0, S1, S2 

and S3 and other to the seedling development stages from S5 to S7. SS-1 and SS-4 were 

excluded of both groups. This result indicated that PC1 separated tissue types: embryo axis and 

seedling on the one hand and shoots by another. It also indicate that there are at least four 

differential protein band groups in these tissues analyzed. However, the band pattern was not 

greatly different between unimbibed and germinating seeds. This preliminary experiment was 

used for the selection of the samples (S0, S3, SS-1 and SS-4) to be analysed through a more 

resolutive technique, as it is 2-DE.  

 

Figure. 6.2: Clustering of biological replicates and samples based on main principal components found after 
PCA of data (Table 6.2) obtained after 1-DE analysis of changes in the protein profile during germination (S0 
to S3), post germination (S5 to S7) and seedling establishment (SS-1 and SS-4) of Q. ilex seeds. (A). 
Hierarchical clustering of the three biological replicates of samples analysed. Two-dimensional biplots show 
associations between experimental samples (B). and protein band (C). generated by PCA. Samples and protein bands 
were plotted in the first and second component spaces. 
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6.3.2 Two-dimensional gel electrophoresis and differential abundance spots 

identification by using MALDI-TOF/TOF 

Two-dimensional polyacrylamide gel electrophoresis (2-DE) is considered a powerful 

tool used for separation and fractionation of complex protein mixtures as it allows separation 

of thousands of proteins in one gel. Although 2-DE gels contain less proteins than 1-DE, their 

resolution is much higher as the use of two dimensions decreases the possibility of co-

migration of proteins 24; 26; 60. Additionally, 2-DE provides direct visual confirmation of changes 

in protein abundance and in the abundance of post-translational modifications (PTMs), 

something that cannot be predicted from the genomic sequence. From data in 1-DE experiment, 

four stages were chosen to perform 2-DE analysis. Stages S0 (mature unimbibed seed) and S3 

(24 h after imbibition, when the rupture of the testa and radicle protrusion occurs, indicating 

the end of the germination phase) were included to identify germination specific proteins. The 

inclusion of SS-1 (shoots seedling of 1cm) and SS-4 (shoots seedling of 4cm) helped to identify 

proteins involved in the early holm oak seedling establishment. 

Previous 2-DE experiments performed in our laboratory with small 3-10 IPG range 

strip 24 showed that most of the proteins in the Q. ilex acorn were concentrated in the 5-8 pH 

range 25-26; 28-29; 35; 44; 61. Considering these results and in order to increase spot resolution, 2-DE 

was performed in the 5-8 pH range using 17 cm IPG strips. Three biological replicate per stage 

were analysed, being each replicate one pool of 30-50 individuals not included in any other 

pools. A virtual master gel representing all consistent protein spots in all analyzed samples is 

shown in Fig. 6.3, where protein spots with statistically significative differences in intensity in 

the various studied samples compared to the S3 stage, are remarked. 
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Figure 6.3: 2-DE analysis of changes in the protein profiles during germination (S0 to S3), post germination 
(S5 to S7) and seedling establishment (SS-1 and SS-3) of Q. ilex seeds. (A). Master gel combining spots images of 
S0, S3, SS1 and SS4. The relative Mr is given on the left and the pI is given at the top of the figure. Protein spots with a 
significant change in abundance between each studied stage and S3 are indicated with circles. Dark arrows indicate 
the spots that could not be identified, while red arrows point to spots that represent an identified protein. (B). 
Representative spots showing changes in protein abundance along the germination process. The spot number is 
indicated on the left of the image and the protein name on the right. Uncharacterized proteins were indicated as 
“unk”. 

After normalization of protein spot images using PD-Quest software and posterior 

manual verification to increase reliability 50, 540 to 675 resolved spots were detected, which 

were distributed in the range of a mass weight between 16 and 131 KDa. The main cluster of 

protein spots was observed at the molecular mass of 30 to 70 kDa from pH range 6–7.5 (Fig. 

6.3). SS-4 had the lowest number of protein spots detected (540 ± 1) and embryo axis of 24 h 

post imbibition (S3) had the highest number of protein spots detected (675 ± 4.58) (Table 6.3). 

The number of resolved spot in Q. ilex samples was similar to that described for other species 17-

18; 20; 62. The proteome coverage dependes on several factors, starting from protein extraction 

methods, fractionated stragies and finally the protein identification. The percentage of Q. ilex 

proteome that was analysed in these experimental conditions was estimated in about 2%. This 

estimations were based on an average number of 35,000 putative protein-coding genes63-65, 

without having in consideration that each gene can encode more than one protein and that not 

all genes are expressed in a tissue and in a given condition. We also did not consider possible 

post-translational modifications and assumed that each spot in gels is composed by a unique 

protein (which in reality is not the case, as one spot may contain more than one protein).  
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Table 6.3: Number of total protein spots resolved in 2-DE gels for each studied stage and number of spots showing 
qualitative or quantitative differences in abundance referred to S3 stage, based on ANOVA test (p< 0.5). 

Stage 

Number of resolved spots in 2-DE 

Total 
 Up-accumulated  Down-accumulated 

 Qualitative Quantitative  Qualitative Quantitative 

S0 646  1 4  0 0 
S3 653  - -  - - 

SS-1 528  9 23  16 17 
SS-4 519  10 33  16 25 

*Differentially expressed protein spots were selected after ANOVA analysis, with FDR <0.05 and fold change ≥2. To ensure 
identifications only spot with  intensity higher than 500 in PD-Quest sofware analysis was selected. 

A total of 732 consistent spots were analyzed by PCA (Fig. 6.4). The first four PCs 

accounted for 99.99% of the biological variability. PC1 and PC2 explained 81.79% and 15.10% 

of total variability, respectively. PC1 separated the two tissues (embryo axis and shoot 

seedling) and PC2 separated shoot seedling of 1 from 4 cm. However, these two first PCs could 

not separate the mature seeds at S0 and S3 stages. Data were further analyzed by ANOVA to 

generate a list of protein spots that differentiated between S3 group and any other, and 481 out 

of the 732 resolved consistent spots, with FDR < 0.05, where selected. From these, a new list of 

103 differentially abundant proteins was generated with an arbitrary fold change cutoff of ≥2-

fold (Table 6.4). Of this total, 38 protein spots showed qualitative variation (presence/absence) 

and other 65 spots showed significant quantitative variations relative to the S3 stage, used as 

reference. These 103 variable protein spots were subjected to in-gel tryptic digestion followed 

by MALDI-TOF/TOF analysis for their identification. 

 

Figure 6.4. Principal components analysis of consistent spots in 2-DE protein profile during germination (S0 
and S3) and seedling establishment (SS-1 and 4). Two-dimensional biplots showing associations between 
experimental samples (A) and protein band (B) generated by principal component analysis (PCA). Samples and 

protein spots were plotted in the first and the second component spaces.  
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Table 6.4: Normalised and transformed relative volumes of the 2-DE resolved protein spots.  Differentially 
expressed protein spots were selected after ANOVA analysis, with FDR <0.05 and fold change ≥2.  

Spot 
Number 

Mr 
(kDa) 

pI           S0       S3 SS-1 SS-4       FDR 

20 19.16 5.51 0.12 ± 0.04 0.02 ± 0.02 nd. nd 0.00000 
104 37.34 5.19 0.35 ± 0.05 0.27 ± 0.08 0.67 ± 0.08 1.11 ± 0.63 0.00001 
107 37.62 5.34 0.34 ± 0.04 0.33 ± 0.06 nd. nd 0.00000 
205 50.90 5.35 0.10 ± 0.02 0.13 ± 0.04 0.25 ± 0.04 0.38 ± 0.06 0.00003 
306 51.43 5.51 nd. nd. 0.33 ± 0.06 0.70 ± 0.19 0.00000 
307 51.56 5.14 nd. nd. nd. 0.38 ± 0.15 0.00000 
514 71.20 5.47 0.59 ± 0.15 1.03 ± 0.04 2.02 ± 0.67 2.63 ± 0.31 0.00000 
614 82.42 5.40 2.73 ± 0.42 3.75 ± 0.31 3.59 ± 1.00 1.02 ± 0.41 0.00001 

1001 27.46 5.60 0.20 ± 0.03 0.17 ± 0.01 0.34 ± 0.12 0.93 ± 0.25 0.00000 
1006 31.02 5.89 2.29 ± 0.49 3.08 ± 0.32 0.85 ± 0.29 0.59 ± 0.03 0.00000 
1012 17.26 5.96 0.50 ± 0.07 0.39 ± 0.16 nd. nd 0.00000 
1205 44.10 5.73 0.13 ± 0.02 0.13 ± 0.00 0.22 ± 0.04 0.42 ± 0.06 0.00031 
1207 48.33 5.75 1.06 ± 0.41 1.25 ± 0.42 3.18 ± 0.80 5.26 ± 0.41 0.00000 
1217 51.28 5.64 nd. nd. 0.14 ± 0.05 0.35 ± 0.25 0.00000 
1302 52.93 5.61 0.36 ± 0.06 0.29 ± 0.02 0.06 ± 0.04 0.08 ± 0.01 0.00000 
1415 65.48 5.80 nd. nd. 0.20 ± 0.03 0.45 ± 0.04 0.00000 
1505 72.31 5.68 0.37 ± 0.13 0.28 ± 0.05 nd. nd 0.00000 
1508 71.06 5.77 1.54 ± 0.66 1.97 ± 0.46 0.38 ± 0.06 0.48 ± 0.18 0.00000 
1620 78.74 5.66 0.11 ± 0.02 0.07 ± 0.01 0.17 ± 0.05 0.33 ± 0.03 0.00000 
2004 26.08 6.17 0.50 ± 0.13 0.17 ± 0.09 nd. nd 0.00000 
2006 21.84 6.24 nd. nd. 3.81 ± 0.36 0.85 ± 0.28 0.00000 
2103 34.77 6.13 1.02 ± 0.17 0.85 ± 0.04 nd. nd 0.00000 
2204 47.74 6.03 0.23 ± 0.04 0.21 ± 0.02 0.59 ± 0.09 0.72 ± 0.35 0.00001 
2216 50.38 6.25 0.59 ± 0.26 0.70 ± 0.20 6.77 ± 1.66 10.19 ± 0.90 0.00000 
2219 48.03 5.99 nd. nd. 0.29 ± 0.02 0.54 ± 0.30 0.00000 
2221 50.42 6.14 0.27 ± 0.05 0.29 ± 0.06 0.45 ± 0.06 0.79 ± 0.25 0.00085 
2318 53.66 6.25 0.43 ± 0.06 0.31 ± 0.02 nd. nd 0.00000 
2320 51.78 6.12 nd. nd. 0.61 ± 0.10 0.54 ± 0.31 0.00000 
2407 63.66 6.09 2.03 ± 0.31 1.73 ± 0.73 nd. nd 0.00000 
2413 61.80 6.16 1.07 ± 0.25 1.18 ± 0.19 0.52 ± 0.02 0.48 ± 0.08 0.00188 
2415 63.30 6.18 3.69 ± 0.48 4.09 ± 0.95 nd. nd 0.00000 
2417 60.18 6.25 6.02 ± 1.26 6.68 ± 0.44 1.19 ± 0.39 0.98 ± 0.41 0.00000 
2421 62.02 6.02 0.15 ± 0.06 0.13 ± 0.06 0.48 ± 0.16 1.51 ± 0.34 0.00000 
2425 65.20 5.93 nd. nd. 0.30 ± 0.02 0.44 ± 0.07 0.00000 
2512 74.04 6.15 1.81 ± 0.04 1.89 ± 0.42 0.37 ± 0.02 0.37 ± 0.10 0.00000 
2722 99.32 6.06 0.19 ± 0.16 0.22 ± 0.11 0.42 ± 0.09 0.80 ± 0.36 0.00579 
3005 26.25 6.36 0.38 ± 0.08 0.33 ± 0.04 0.21 ± 0.03 0.16 ± 0.03 0.02180 
3006 25.01 6.37 0.57 ± 0.01 0.36 ± 0.08 nd. nd 0.00000 
3102 38.74 6.32 0.34 ± 0.05 0.28 ± 0.02 0.09 ± 0.02 0.04 ± 0.03 0.00000 
3103 42.90 6.34 1.72 ± 0.34 2.01 ± 0.46 6.88 ± 0.11 8.30 ± 0.98 0.00000 
3116 43.08 6.42 0.23 ± 0.05 0.18 ± 0.03 0.98 ± 0.34 0.59 ± 0.23 0.00000 
3210 46.10 6.43 0.23 ± 0.06 0.17 ± 0.05 0.51 ± 0.06 0.62 ± 0.18 0.00001 
3403 64.47 6.27 0.70 ± 0.14 0.80 ± 0.25 0.26 ± 0.01 0.39 ± 0.05 0.00041 
3404 63.75 6.30 1.41 ± 0.11 1.75 ± 0.16 nd. nd 0.00000 
3509 74.93 6.33 0.52 ± 0.12 0.41 ± 0.21 nd. 0.04 ± 0.01 0.00000 
3516 74.36 6.44 0.38 ± 0.10 0.50 ± 0.12 0.03 ± 0.00 0.05 ± 0.01 0.00000 
3618 88.48 6.43 0.31 ± 0.05 0.23 ± 0.05 0.51 ± 0.12 0.80 ± 0.25 0.00019 
4006 19.40 6.61 0.79 ± 0.16 0.62 ± 0.23 nd. nd 0.00000 
4009 25.35 6.65 0.29 ± 0.11 0.12 ± 0.07 nd. nd 0.00000 
4108 36.60 6.65 0.23 ± 0.11 0.09 ± 0.03 0.11 ± 0.03 0.12 ± 0.03 0.01794 
4403 63.06 6.50 0.20 ± 0.10 0.14 ± 0.01 0.53 ± 0.06 0.38 ± 0.07 0.00001 
4405 66.61 6.52 1.76 ± 0.89 1.69 ± 0.75 1.07 ± 0.33 0.74 ± 0.14 0.03840 
4411 60.39 6.64 1.98 ± 1.14 1.32 ± 0.89 0.67 ± 0.22 0.48 ± 0.10 0.00745 
4420 60.78 6.52 nd. nd. 0.52 ± 0.28 0.35 ± 0.18 0.00000 
4503 71.02 6.50 0.55 ± 0.27 0.63 ± 0.16 0.11 ± 0.03 0.11 ± 0.01 0.00000 
4516 69.04 6.69 0.35 ± 0.06 0.25 ± 0.04 0.44 ± 0.17 0.72 ± 0.43 0.01925 
4605 87.74 6.51 1.02 ± 0.54 1.28 ± 0.42 2.88 ± 0.58 3.22 ± 0.40 0.00005 
5001 25.38 6.79 0.27 ± 0.06 0.29 ± 0.08 0.19 ± 0.05 0.14 ± 0.03 0.06144 
5004 19.74 6.84 0.84 ± 0.17 0.62 ± 0.10 nd. nd 0.00000 
5007 27.71 6.87 0.10 ± 0.04 0.09 ± 0.02 0.33 ± 0.08 0.36 ± 0.05 0.00000 
5114 43.19 6.90 nd. nd. 0.57 ± 0.10 0.45 ± 0.01 0.00000 
5203 44.50 6.83 8.34 ± 2.24 7.64 ± 2.53 3.03 ± 0.57 2.78 ± 0.53 0.00005 
5211 49.04 6.96 0.51 ± 0.22 0.57 ± 0.37 0.60 ± 0.08 1.24 ± 0.31 0.07915 
5215 47.38 6.99 8.59 ± 3.38 8.88 ± 2.21 0.47 ± 0.03 0.22 ± 0.05 0.00000 
5310 55.32 6.87 0.19 ± 0.02 0.14 ± 0.03 0.27 ± 0.05 0.36 ± 0.03 0.01332 
5319 53.64 6.96 0.36 ± 0.10 0.65 ± 0.09 1.76 ± 0.57 3.83 ± 0.94 0.00000 
5411 64.07 6.95 1.36 ± 0.71 1.47 ± 0.43 0.59 ± 0.03 0.36 ± 0.04 0.00000 
5413 60.15 6.95 1.30 ± 0.73 1.39 ± 0.45 7.66 ± 1.67 20.59 ± 

18.59 
0.00000 

5514 69.95 6.91 0.15 ± 0.02 0.16 ± 0.05 0.37 ± 0.12 0.45 ± 0.09 0.00013 
5706 101.95 6.85 6.53 ± 1.75 7.06 ± 3.19 3.14 ± 0.56 2.78 ± 1.71 0.02285 
6007 22.26 7.08 0.69 ± 0.27 0.62 ± 0.13 0.43 ± 0.08 0.30 ± 0.13 0.02140 
6010 24.10 7.14 0.52 ± 0.05 0.32 ± 0.07 nd. nd 0.00000 

6202 43.82 7.03 0.30 ± 0.05 0.45 ± 0.13 nd. nd 0.00000 
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Spot 
Number 

Mr 
(kDa) 

pI           S0       S3 SS-1 SS-4       FDR 

       Cont. 
6203 45.04 7.04 0.48 ± 0.06 0.58 ± 0.12 0.25 ± 0.07 0.16 ± 0.04 0.00003 
6207 48.03 7.13 0.23 ± 0.07 0.27 ± 0.08 0.50 ± 0.06 0.83 ± 0.20 0.00003 
6212 49.41 7.20 0.09 ± 0.02 0.07 ± 0.03 1.99 ± 0.22 2.07 ± 0.28 0.00000 
6214 46.76 7.22 0.10 ± 0.03 0.11 ± 0.05 0.53 ± 0.07 0.54 ± 0.01 0.00000 
6221 48.94 7.02 nd. nd. 0.76 ± 0.04 0.68 ± 0.09 0.00000 
6312 54.17 7.27 0.42 ± 0.21 0.28 ± 0.10 0.20 ± 0.05 nd 0.00000 
6401 61.45 7.00 10.32 ± 2.74 10.00 ± 2.95 1.56 ± 0.28 1.59 ± 0.66 0.00000 
6418 60.22 7.08 0.30 ± 0.07 0.25 ± 0.07 0.48 ± 0.02 1.20 ± 0.25 0.00000 
6502 67.34 7.01 0.48 ± 0.18 0.72 ± 0.30 1.52 ± 0.14 2.43 ± 0.32 0.00000 
6604 91.88 7.04 0.32 ± 0.02 0.37 ± 0.19 1.92 ± 0.70 2.82 ± 0.60 0.00000 
6611 92.81 7.15 0.20 ± 0.05 0.26 ± 0.01 0.43 ± 0.18 0.76 ± 0.47 0.00310 
6617 92.57 7.26 0.40 ± 0.28 0.75 ± 0.21 2.37 ± 0.61 3.54 ± 1.00 0.00000 
6716 97.03 7.20 0.11 ± 0.04 0.13 ± 0.03 0.65 ± 0.16 1.23 ± 0.27 0.00000 
7114 34.95 7.55 0.54 ± 0.13 0.42 ± 0.12 1.26 ± 0.58 3.09 ± 0.48 0.00000 
7116 38.14 7.33 nd. nd. nd. 0.84 ± 0.53 0.00000 
7209 43.37 7.40 0.11 ± 0.02 0.13 ± 0.06 0.48 ± 0.07 0.57 ± 0.08 0.00000 
7226 43.45 7.35 nd. nd. 0.66 ± 0.03 0.53 ± 0.02 0.00000 
7313 54.26 7.49 6.46 ± 1.85 3.59 ± 0.46 nd. nd 0.00000 
7317 52.56 7.57 1.33 ± 0.45 0.45 ± 0.18 0.12 ± 0.02 0.19 ± 0.04 0.00000 
7616 82.41 7.58 0.50 ± 0.11 0.29 ± 0.08 0.49 ± 0.08 0.82 ± 0.43 0.01500 
8005 22.76 7.84 0.70 ± 0.19 0.70 ± 0.17 nd. nd 0.00000 
8018 22.54 7.97 9.54 ± 5.83 8.20 ± 1.57 1.30 ± 0.57 1.41 ± 0.67 0.00000 
8025 20.86 7.61 nd. nd. 0.45 ± 0.07 0.86 ± 0.23 0.00000 
8103 38.81 7.61 0.27 ± 0.06 0.19 ± 0.08 0.32 ± 0.14 0.37 ± 0.10 0.18859 
8201 49.42 7.62 0.86 ± 0.56 0.75 ± 0.29 0.66 ± 0.12 0.24 ± 0.03 0.00059 
8202 47.20 7.62 0.30 ± 0.20 0.50 ± 0.13 nd. nd 0.00000 
8301 53.85 7.59 13.65 ± 3.60 9.03 ± 0.60 nd. nd 0.00000 
8306 53.54 7.71 0.53 ± 0.01 0.40 ± 0.10 nd. nd 0.00000 
8411 60.87 7.84 0.27 ± 0.06 0.28 ± 0.04 0.61 ± 0.19 3.81 ± 1.74 0.00000 
9406 60.86 7.98 nd. 0.40 ± 0.05 0.81 ± 0.07 2.16 ± 1.65 0.00000 

Data are mean ± SD of three biological replicates. nd.: not detected spots; they were considered qualitative 
differences. Numbers in bold correspond to spots which changed in intensity between not imbibed (S0) and S3 
stages 

Seed germination is a complex physiological period in which many biochemical 

processes are initiated or resumed 66. Nevertheless, in this study only few changes were 

detected during germination sensu stricto (S0 vs. S3) by 2-DE approach compared with 

previous reports. Only five protein spots changed in intensity between S0 (not imbibed) and S3 

stages in Q. ilex seeds (in bold in Table 6.4 and indicated with a “g” in Table 6.5). Changes in the 

abundance (up- and down-regulation) of higher number of proteins has been described during 

germination sensu stricto in Arabidopsis 3 and other orthodox seeds 10; 67. However, our results 

are similar to that obtained in Hevea brasiliensis germination, also a recalcitrant seeds, in which 

only eight differential proteins were identified 15. In previous Ch. 4 and Ch. 5 we demonstrated 

at the transcriptional level that the mature holm oak seed maintains a relatively high level of 

metabolic activity, as described for other recalcitrant seeds. In consequence, minor differences 

between not imbibed (S0) and germinated embryo axis (S3) should be expected.  

Qualitative as well as quantitative variable spots were observed when 2-DE protein 

profiles of the shoot seedling tissue (SS-1, SS-4 stages) and germinated seeds (S3) were 

compared. A total of 87 spots were differentially accumulated, being the differences qualitative 

(mainly absence in seedling samples) for 26 of them, and showing >2-fold changes for other 61 

protein spots (quantitative changes, mainly up-accumulation in seedling samples) (Table 6.3). 

Differentially accumulated protein spots in mature, germinated embryo and shoot seedlings 

were identified combining results of a stringent sequence similarity search against the 
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Quercus_DB protein database 47 combined with UniProtKB/TrEMBL, UniProtKB/SwissProt and 

NCBI nr databases. Ninety out of 103 analyzed spots were identified and showed MOWSE 

scores greater than 70. For most of them (89 spots), only one significant protein match was 

found. Only in one spot (spot 514) two different proteins were identified. Sixteen identified 

proteins were found in more than one spot, which resulted in a total of 72 non-redundant 

proteins (Table 6.5). 

Identified proteins listed in Table 6.5 were classified in categories based on their 

putative function according to Kyoto Encyclopedia of Genes and Genomes (KEGG) (Fig. 6.5). 

The principal categories: carbohydrate metabolism (29 proteins), amino acids metabolism (14 

proteins), energy metabolism (12 proteins), protein metabolism (7 proteins), biosynthesis of 

secondary metabolites (5 proteins) and oxidation-reduction process (5 proteins) 

 

Figure. 6.5: Distribution of identified proteins in functional categories and the percentage of proteins within 
each functional category as a function of identified proteins. Values represent the mean contribution of each 
category expressed as percentage of total spots volume of the identified proteins respect to the total spot volume in 
gel per analysed stages. Identified proteins in S0, S3, SS1 and SS4 represented 27.6%, 31.0%, 28.2 and 31.4% of total 
spot volumes respectively. 

In mature (S0) and germinated seeds (S3) the most represented category 

corresponded to carbohydrate metabolism with 29 identified proteins, though little differences 

in identified spots abundance were found between the two stages (Fig. 6.5). The importance of 

this category diminished in seedling growth (Fig. 6.5). Most proteins included in this category 

was involved in glycolysis and implicated in storage mobilization (Table 6.5). Their 

accumulation in mature and germinated seeds (e.g. spot 6401: enolase, Fig. 6.3) indicates an 

active glycolysis that provides the energy necessary to complete the germination process and to 
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initiate seedling development 10. Some enzymes in this category (i.e., spot 6313: citrate 

synthase; spot 6716: sucrose synthase, Fig. 6.3) up-accumulated in S0 and S3, are also 

implicated in the mobilization of fatty acids an other in sucrose and starch mobilization and 

degradation of polysaccharide resources to provide substrate to the glycolytic pathway during 

germination 68 23; 69. These processes are no necessary in photosynthetically active seedlings 

and this fact may explain, at least partially, the apparent decrease in the proteins related to 

carbohydrate metabolism in seedling.  

The seven proteins corresponding to the protein metabolism functional category 

exhibited a reduction in expression as growth progressed. In this category are included 

proteins as heat shock protein (HSP60, spot 1508) and elongation factor (EF, spot 5706), 

described as developmentally regulated, being abundant in dry mature seeds, and disappearing 

during germination in both Arabidopsis 3 and the recalcitrant A. angustifolia 21 seeds, which is 

agreement with our data (Fig. 6.3 and Table 6.5). We did not found any indication of differential 

abundance in any of the studied developmental stages of proteins involved in proteolysis in 

germinated holm oak seeds. This was unexpected, given that proteases participate in all aspects 

of the plant life cycle, including the mobilisation of storage proteins during seed germination 70-

71. This may be caused by the breaking down during germination of small amounts of storage 

proteins mediated by stored proteases 72, which are not differentially accumulated during 

germination. However, it can not be excluded that proteases, which generally have acid 

isoelectric point, are lost during the isoelectric focusing step 73-74. 

Four proteins related to oxidation-reduction processes, DHAR (spot 6007), SOD (spot 

5004), and two GSTs (spots 2004 and 4006), were highly abundant in mature and germinated 

seeds (Fig. 6.3 and Table 6.5) and scarce or absent in seedlings. Our results suggest that 

antioxidative defense mechanisms have been activated during holm oak seed maturation, 

leading to the accumulation of antioxidative enzymes to adapt the acorn to support a certain 

grade of dessication (Ch.4). Rehydration of seeds has been  associated with high levels of ROS 

production leading high ROS production during germination 75. The decrease in antioxidative 

defences observed along the developmental process can be, however, explained as ROS have 

important roles in endosperm weakening, mobilization of seed reserves, and many other 

process during seed germination and vigorous seedling 76-77. In addition, this data corroborated 

the hypothesis that GST accumulated in mature, ungerminated seed, contributes to prevent the 

germination process as the protein synthesis results blocked because of GSH deficiency 78-79. In 

germinating seeds, down-regulation of GST would restore the GSH levels. Data of SOD and GST 

protein abundance agree with those referred in previous Ch. 4 at the enzymatic activity (SOD) 

and the transcriptional (SOD and GST) levels. Transcription and translation are far from having 
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a linear and simple relationship and many reports indicated that the correlation between 

mRNA and protein abundances in the cell is notoriously poor. However, our data sustain that 

transcript levels, at lest for SOD, GST and RBCL (see below) and in our experimental system, 

provide good predictive value with respect to the extent of protein changes in abundance.  

Proteins included in all other functional categories were less abundant in mature and 

germinated seeds and increased their expression during seedling growth (Fig. 6.3; Table 6.5). 

The category of proteins related to energy metabolism included ATPase (spot 2425); OEE1 

(spot 1001), a protein related to photosystem II; and RBCL (spot 6418). The increase in the 

abundance of these proteins along the germination process is in accordance with the transition 

of a heterotrophic phase to a photosynthetic and autotrophic phase. The results suggest that 

the plastid translational apparatus is established early during plant development, presumably 

to allow the development of the photosynthetic system of which several components are 

encoded by plastid genes, as was previously described in Arabidopsis 3.  

The amino acids produced from the breakdown of storage proteins by proteases are 

transported to growing seedling and for this purpose, where participate in the de novo 

biosynthesis of amino acids and proteins and the synthesis of many other metabolites.  In the 

category of amino-acid metabolism, nine diferent proteins, corresponding to 14 spots, were 

included. Six of these differentially accumulated protein spots identified enzymes involved 

directly or indirectly in the metabolism of methionine (Met). Met is a fundamental metabolite 

because it functions not only as a building block for protein synthesis but also as the precursor 

of S-adenosylmethionine (SAM), the universal methyl-group donor, and as the precursor of 

polyamines, the plant-ripening hormone ethylene, and the vitamin biotin. The de novo 

biosynthesis of Met is catalized by 5-methyltetrahydropteroyltriglutamate-homocysteine S-

methyltransferase (MET6), the cobalamin-independent MS activity present in plants. Three 

different protein spots (6617, 6604 and 6611) corresponding to MET6 were identified as 

differentially expressed in seedling (Table 6.5). This protein was present at low level in dry 

mature seeds, and its level was increased strongly after imbibition, as described for Arabidopsis 

seeds 80. SAM synthase (spots 9406 and 8411) catalyses the conversion of Met in SAM, the 

precursor of the ethylene and the spermidine/spermine biosynthesis pathways. SAM 

synthetase is considered a key regulator of metabolism in the transition from a quiescent to a 

highly active state during Arabidopsis seed germination 19. Its accumulation was observed at 

the radicle emergence step (S3) and continued during seedling (Fig. 6.3.B; Table 6.5).   

Three protein spots with high intensity in seedlings were identified as phospho-2-

dehydro-3-deoxyheptonate aldolase (DHAPS, spots 9406 and 8411) and shikimate 

dehydrogenase (SD, spot 6502), involved in the shikimate pathway. This biosynthetic sequence 
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is employed by plants to synthesize aromatic amino acids and many secondary compounds 

including hormones (IAA) and pigments (anthocyanins). This pathway is important in the 

production of constituents for active cellular metabolism in germinating tissues. Data in Fig. 3.B 

and Table 6.5 agree with previous reports showing the increase in DAHP synthase specific 

activity during seed germination and seedling development in several plant species 81.  

Finally, five spot identified three different proteins related to the biosynthesis of 

secondary metabolites, which showed higher abundance in the seedling growth phase (Fig. 6.5). 

Flavanone 3-hydroxylase (spot 3116) and chalcone synthase (spots 6221, 6207 and 6212) are 

implicated in the synthesis of flavonoids. The synthesis of these compounds has been observed 

to increase (at the transcriptional level) at the early stage of seed development in Arabidopsis 

82.  

In summary, by using a 2-DE proteomic approach, we separated the complex Q. Ilex 

protein mixtures isolated from embryo axes and early seedling, and identified the metabolic 

switches that experiment this recalcitrant seed after imbibition. Seventy two unique proteins 

changed in abundance during the postgerminacion period. Proteins involved in the metabolism 

of carbohydrate and proteins and in the oxidation/reduction processess were highly 

accumulated in germinated and mature seeds and decreased during postgermination. Data 

indicate that holm oak acorns are protected against oxidative stress caused by the partial 

dessication they experimented during maturation, which only partially affects the seed 

metabolism. These results agreed with the transcriptional data presented in Ch.4 and Ch.5.  

The end of the germination period defines the metabolic changes that permit seedling 

stablisment and growth. An increase in the abundance of proteins included in the energy 

metabolism category determines the transition of a heterotrophic phase to a photosynthetic 

and autotrophic phase. An important increase in the biosynthesis of amino acids and several 

derived metabolits (ethylene, spermidine/spermine, hormones, pigments, flavonoids) helps the 

development and establishmentof the seedling.  

6.3.3 Identification and quantification of differentially accumulated proteins 

through nLC -MS Orbitrap LTQ analysis 

The gel-based approach described in the previous section disclosed important 

metabolics changes that occurred in the holm oak seed after the germination (from S3 onward). 

However, few changes were detected during the germination (S0 vs. S3), affecting only to 

protein of the Met metabolism (SAMS, NLP3), the shikimate pathway (DHAPS) and the 

antioxidative defence. A gel free approach was hence used to analyse the mature unimbibed 

(S0) and the germinated seed (S3), trying to improve the coverage of proteome. 

http://en.wikipedia.org/wiki/Flavonoid_biosynthesis
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Protein identification was performed with combined database searches including 

Quercus_DB 47, UniprotKB/TrEMBL, UniprotKB/SwissProt, and NCBI nr protein databases, with 

taxonomy restrictions to Viridiplantae and using the SEQUEST algorithm implemented in the 

Proteome Discoverer v.1.4 software. This approach allowed the identification of 1650 protein 

species, 1155 in embryo axes at S0 stage, and 1198 in the S3 stage. With the same 

considerations made in the previous section, the percentage of Q. ilex proteome that was 

analysed with the gel-free approach was estimated in about 5%, more than twice the 

percentage of proteome covered with the gel based approach. Proteins were subjected to GO 

annotation using Blas2GO 49, and about 1250 were grouped into 18 categories (other 400 

proteins species -25%. were not annotated). The categories more represented were those 

related to protein metabolism (15%), response to abiotic stimulus (10%), carbohydrate 

metabolic procesess (10%), and metabolism of aromatic and nitrogen compounds  (10% each) 

(Fig. 6.6). 

 

 

Figure 6.6: Functional categorisation of proteins identified in Q. ilex unimbibed (S0 stage) and germinated 
(S3 stage) seeds by nLC-MS Orbitrap LTQ analysis. Data was searched against the the Quercus_DB protein 
database combined with UniProtKB/TrEMBL, UniProtKB/SwissPrto and the NCBI nr databases, with taxonomy 
restrictions to Viridiplantae, using the SEQUEST algorithm. A total of 1250 proteins were annotated using gene 
ontology (Blas2GO) and categorized according to biological process domain. 

Identified proteins were quantified by a standard peptide count measurement using a 

NSAF (Normalized spectral abundance factor) approach 46; 53. A new list with 153 proteins with 

differential accumulation was generated, which included proteins enriched in non-imbibed 

seeds (80 proteins, being 64 specific of S0 seeds) and proteins enriched in germinated embryos 
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(73 proteins, of wich 65 were specific of S3 seeds). Both group were classified according to the 

KEGG pathway or the UniProt protein database (Fig. 6.7 and Table 6.6). As Q. ilex genome has 

not been sequenced, only ≈ 40% spots were successfully identified. 

 

Figure 6.7: Categorization of differentially identified proteins in Q. ilex unimbibed (S0 stage) and germinated 
(S3 stage) seeds by nLC-MS Orbitrap LTQ analysis. A total of 80 proteins enriched in S0 seeds and 73 proteins 
enriched in S3 seeds were annotated using gene ontology (Blas2GO) and categorized according to biological process 
domain. 

Protein metabolism and amino acids metabolism were the two predominant categories 

with a 24% of the 64 annotated proteins enriched in non-imbibed seeds. Most of proteins 

included in the first category were related to protein folding. The HSP60 and other heat shock 

proteins were also identified by 2-DE as abundant in Q. ilex seed before becaming a young 

seedling, but no differences were detected between S0 and S3 seeds. Other important groups of 

proteins included in this category were related to protein degradation, something that it was 

not found by the 2-DE proteomic approach. The casein lytic proteinase B (CLPB) proteins are 

chaperones that act to remodel/disassemble protein complexes and/or aggregates. These 

enzymes have been associated to protein degradation or processing during early germination 

and plastid proteolysis and to degradation of precursor proteins in plant mitochondria. Leucine 

aminopeptidase (LAP) is an exopeptidase that play important role in the mobilization of 

storage proteins at the cotyledon during seed germination. It has been reported that proteinase 

inhibitors accumulate as storage proteins during the development of seeds and tubers. High 

activities of all these proteins in the imbibed seeds with subsequent decline during germination 

of holm oak seeds (Table 6.6) resemble the sequence of events in other plant genera 83 84. 

Decarboxylation, deamination and transamination reactions of amino acids by the proteins 

included in the amino acids metabolism category, are catabolic reactions that drive the 

formation of ketoacids, which are important for fueling the respiration pathways during 
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germination. Several of these proteins accumulated only in embryo axes has been proposed to 

function in the signaling pathway that leads to radicle protrusion, growth, or preparation for 

biotic interactions 85.  

Of note in the identification of dehydrin as a stress protein accumulated in S0 acorns 

that decline during germination, as these results are in agreement with transcriptional data 

presented in Ch.4, supporting the idea that changes in mRNA expression are reflected at the 

protein level. 

In germinated S3 seeds, the protein metabolism category were also the most 

represented, with 12% of total annotated accumulated proteins (Fig. 6.7 and Table 6.6).  

However, in contrast to S0, the proteins included in this category at the S3 stages are involved 

in the resumption of protein synthesis (i.e., several eukaryitic initiation factors 4A) and folding 

(i.e., chaperonin CPN60) needed to sustain postgerminative growth.  

Some proteins include in the carbohydrate metabolism group were also identified in 

the 2-DE analysis, but without differences between S0 and S3 seeds. Proteins related to the 

metabolism of starch and sucrose, glycolysis and the TCA cycle were accumulated in 

germinated seed, providing substrates for the obtention of energy and the biosynthetic 

pathways needed for seedling establishment. 

A third category is important in S3 seeds, with a 7% of total proteins. Proteins related 

to stress response and oxidation-reduction processes were accumulated in germinated seeds. 

Annexins are a multigene family in most plant species and are suggested to play a role in a wide 

variety of essential cellular processes, including germination and involved in ABA and abiotic 

stress responses. Our results indicate that annexin is present in germinating seeds and that 

their abundance increase at S3 acorns, coinciding with data reported for other plant species. 

Annexins may be implicated in cell expansion due to their involvement in the Golgi-mediated 

secretion of the components of the plasma membrane and cell wall, leading to growth 

restoration after germination 86. Germination is accompanied by extensive change in the redox 

state of seed proteins. Proteins present in oxidized form in dry seeds are converted to the 

reduced state following imbibition, becoming functional. The increase in abundance of 

thioredoxin (Trx) appears to play a role in this transition 85. The continuous increase of these 

defence proteins during early germination strongly implies that they play a role in protecting 

the germinating seeds from possible stresses, including ROS generated after seed imbibition. 

This feature has also been found in orthodox seeds such as Arabidopsis and tomato 9; 87. The 

differentially expressed proteins related to oxidation-reduction process between S0 and S3 

were not found using the 2-DE MALDI-TOF/TOF approach.  
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The results obtained by nLC-MS Orbitrap LTQ analysis were complementary to those 

obtained in the 2-DE experiment, as both techniques cover slightly different parts of the 

proteome. Compared to the gel based approach, the shotgun analysis using label-free peptides 

has several advantages such as greater coverage of the proteome, less sample manipulation, 

and a dye- or tag-binding independent quantification 31. 

The contribution of this experimental approach in an orphan species such as Q. ilex is 

important. However, several authors uphold that it is difficult to draw clear conclusions about 

gel free/label free proteomic quantitative data and the results need to be verified 88. 

Nevertheless, the diverse transcriptional and proteomic approaches reported in this Thesis 

give similar clues about the metabolic state of the mature Q. ilex seed before the germination 

starts, and the metabolic switched experimented by the imbibed accord till the seedling is 

established.  

6.3.4 Combined database search improves protein identification 

The construction of a customised database for a particular species of genera improves 

the protein identification in two aspects: the number of protein identified and the confidence of 

their identification (see apPendix 10.1, p. 225) 47. 

In the MALDI-TOF/TOF analysis, the combination of a database specific to Quercus, the 

Quercus_DB protein database 47, with UniProtKB/TrEMBL, UniProtKB/SwissProt and NCBI nr 

databases in Mascot search engine improved the coverage of annotated proteome. Most of the 

proteins were commonly identified with two or three different databases. In addition, six 

proteins were identified with Uniprot_KB and six with Quercus_DB, as shown in the Venn 

diagram (Fig. 6.8.A). The density plots of the scores of the identified proteins by 2-DE followed 

MALDI-TOF/TOF analysis (Fig. 6.8.C) showed that Uniprot-SwissProt, a manually curated 

protein database, had the highest score in a small number of proteins species. Coverage of the 

proteome was improved in the gel free approach by the use of the SEQUEST algorithm in 

combined database search. A number of proteins were identified in only one database, which 

illustrates the importance of using of the combined database search in protein identification 

(Fig. 6.8.B).  

The Quercus_DB showed the lowest density in the peak of protein scores between 2.25 

and 10 being the curve shifted to the right, a pattern which is more evident in nLC LTQ Orbitrap. 

It is clear that the scores obtained when employing these databases are, in general, higher than 

those obtained employing NCBI_Viridiplantae, UniProtKB/TrEMBL (Viridiplantae) and 

UniProtKB/SwissProt (Viridiplantae) (Fig. 6.8.D). These results show the importance of the 

database used in proteomic analysis. 
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Figure 6.8: Differentially abundant identified proteins by MALDI-TOF/TOF and nLC LTQ Orbitrap using 
Mascot SEQUEST algorithms respectively, by using combined protein databases search including a custom 
genus specific database. Venn diagrams representing the number of identified proteins by MALDI-TOF/TOF (A) 
and nLC-LTQ Orbitrap (B); diagrams were plot using Venny (http://bioinfogp.cnb.csic.es/tools/venny/). Density 
plots of the scores of the proteins identified when MALDI-TOF/TOF and Mascot were employed (C). Density plots of 
the scores when nLC LTQ Orbitrap and the SEQUEST algorithm were used (D). The four indicated databases were 
used in each case. Blue lines indicate the developed databases, corresponding to Quercus_DB. Areas under each 
curve are equal and normalised to arbitrary value 1. 

6.4 Concluding remarks 

The metabolic process implicated in germination and seedling establishment of non-

orthodox seed of Q. ilex was similar to that described for orthodox seeds. The proteomic 

changes observed in Q. ilex seeds afected mainly to proteins related to carbohydrate 

metabolism, amino acid metabolism and oxidative stress reponse. The up-accumulation of 

proteins related to glycolysis in mature and germinated seeds suggested that this procces is 

essential for the energy supply and to provide molecules that serve as intermediaries in other 

metabolic pathways in Q. ilex seeds. Therefore, it can be hypothesized that the mature non-

orthodox seeds of Q. ilex have the machinery necessary to resume rapidly metabolic activities 

and start the germination process. This is in contrast with the situation described for orthodox 

seeds, in which all metabolic activity ceases in mature dry seeds. Proteins related to energy 

metabolism and photosynthesis were up-accumulated during seedling establishment, thus 

ensuring the machinery necessary to synthesise de novo the biomolecules required for growth. 
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The results also indicated that the use of genus specific database combined with public 

database improve the quality and quantity of protein identification in orphan species. 

The contribution of this experimental approach in an orphan species such as Q. ilex is 

important. The diverse proteomic approaches gave similar clues about the metabolic state of 

the mature Q. ilex seed before the germination starts, and the metabolic switched experimented 

by the imbibed accord until the seedling is established. Data are in fully agreement with those 

obtained at the transcriptional level (Ch. 4 and Ch. 5), thereby strengthening each other. 

Further studies should investigate post-translational modifications that occur during 

germination, such as phosphorylation, which are important in the regulation of germination 

and other processes of plant life cycle. 

          



 

6.5 Appendixes 

Table 6.5: List of proteins differentially abundant and identified by MALDI-TOF/TOF MS in Q. ilex seeds. Only protein spots that changed in abundance at least 2-fold in 
all three replicates for a given development stage are included. The positions of the spots are shown in Fig. 3. Spot normalized intensity values (mean of three biological 
replicates and standar deviation) are shown. These values were subjected to ANOVA statical test (FDR<0.05). Functional classification was based on Kyoto Encyclopedia of 
Genes and Genomes (KEGG) or biological process described in UniProt. 

Spots 
Numbersa 

Protein name Accession 
numbersb 

Mr (pI) MOWSE 
scoree 

Peptides 
match 

Sequence 
coverage (%) 

Fragmented Ion 
(Ion Socre) 

Normalized spots 
volume intensitiesf Theor.c Exp.d 

Energy metabolism         

6418 Ribulose-1,5-bisphosphate 
carboxylase/oxygenase large subunit 
(RBCL), Quercus multinervis 

Q597K9 51.4 
(6.13) 

60.2 
(7.1) 

668 35 51 LTYYTPDYQTK (55) 
DTDILAAFR (76) 
ALRLEDLR (32) 
TFQGPPHGIQVER (102) 
YGRPLLGCTIKPK (34) 
GGLDFTKDDENVNSQPFMR (26)  
DNGLLLHIHR (86) 
 

 

1001 Oxygen evolving enhancer protein 1 
(OEE1), Bruguiera gymnorhiza 

Q9LRC4 35.3 
(6.48) 

27.5 
(5.6) 

190 15 32 NAPPEFQNTK (29) 
LTYTLDEIEGPFEVSPDGTVK (38) 
DGIDYAAVTVQLPGGER (19) 
GGSTGYBNAVALPAGGR (23) 

 

 

8025 Oxygen-evolving enhancer protein 2, 
chloroplast precursor_AT1G06680.1, 
Quercus spp. 

FN729552_4 12.5 
(6.51) 

20.9 
(7.6) 

108 5 50 SITDYGSPEEFLSK (20) 
TNTDFLPYNGEGFK (49) 
YEDNFDSNSNVSVIINSTDKK (18) 

 

1217 Ribulose bisphosphate 
carboxylase/oxygenase activase, 
chloroplastic,Malus domestica 

Q40281 48.2 (8.2) 53.1 
(5.6) 

244 18 27 GLAFDTSDDQQDITR (65) 
SFQCELVFAK (45) 
YREAADIIR (29) 
LVDTFPGQSIDFFGALR (35) 

 

306 Ribulose bisphosphate 
carboxylase/oxygenase activase, 
chloroplastic, Malus domestica 

Q40281 48.2 (8.2) 51.4 
(5.5) 

389 20 28 GLAFDTSDDQQDITR (64) 
SFQCELVFAK (47) 
VPIIVTGNDFSTLYAPLIR (86) 
IGVCIGIFR (38) 
LVDTFPGQSIDFFGALR (65) 
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Normalized spots 
volume intensitiesf Theor.c Exp.d 

307 Putative uncharacterized protein (Ribulose 
bisphosphate carboxylase/oxygenase 
activase 1_B9T427)g, Vitis vinifera 

D7THJ7 52.3 (5.7) 51.6 
(5.1) 

226 23 37 GLAFDESDDQQDITR (48) 
SFQCELVFAK (8) 
MCCLFINDLDAGAGR (8) 
VPIIVTGNDFSTLYAPLIR (3) 
IGVCTGIFR (24) 
LVDTFPGQSIDFFGALR (28) 

 

1205 Phosphoribulokinase, Populus trichocarpa B9GZT5 45.3 (5.9) 44.1 
(5.7) 

171 12 26 ANNFDLMYEQVK (47) 
KPDFDAYIDPQK (56) 
FYGEVTQQMLK (24) 

 

7616 10-formyltetrahydrofolate 
synthetase_AT1G50480.1, Quercus spp. 

TC24939_32 43.4 (6.3) 82.4 
(7.6) 

98 8 45 GAPTGFTLPIR (24) 
GAPTGFTLPIRDVR (16) 
YSGLTPQCAVIVATIR (8) 
NAALAAGAYDAVICTHHAHGGK (31) 

 

3005 Transcription factor APFI family 
proteinn(Uncharacterized 
protein_U5GRZ5, Gamma carbonic 
anhydrase 1)g, Populus trichocarpa 

A9PFJ3 29.5 (6.2) 26.2 
(6.4) 

169 9 35 LQGNYYFQEQLSR (95) 
GSSIWYGCVLR (29) 

 

1415 ATP synthase subunit alpha, chloroplastic, 
Castanea mollissima 

E3W0R3 55.4 (5.4) 65.5 
(5.8) 

660 27 38 VVNTGTVLQVGDGIAR (93) 
IAQIPVSEAYLGR (93) 
VINALAKPIDGR (39) 
LIESPAPGIISR (79) 
EAYPGDVFYLHSR (106) 
TNKPQFQEIISSTK (86) 

 

2425 ATP synthase subunit alpha (ATPase), 
chloroplastic, Anredera baselloides 

H2BBA4 55.3 (5.2) 62.5 
(5.9) 

601 22 32 VVNTGTVLQVGDGIAR (102) 
IAQIPVSEAYLGR (83) 
LIESPAPGIISR (59) 
HTLIIYDDLSK (83) 
EAYPGDVFYLHSR (112) 
TNKPQFQEIISSTK (67) 
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2421 ATP synthase subunit beta, chloroplastic, 
Castanea sativa 

Q6QBP2 53.9 (5.4) 62.0 
(6.0) 

916 40 59 IAQIIGPVLDVTFPPR (99) 
DTAGQQINVTCEVQQLLGNNR (97) 
GMEVIDTGAPLSVPVGGATLGR (107) 
IFNVLGEPVDNLGPVDTR (103) 
AHGGVSVFGGVGER (122) 
VALVYGQMNEPPGAR (24) 
FVQAGSEVSALLGR (81) 
GIYPAVDPLDSTSTMLQPR (30)  

 
 

 

Amino acid metabolism         

6502 Shikimate dehydrogenase, Ricinus 
communis 

B9REY0 57.6 (6.1) 67.3 
(7.0) 

383 16 25 IATTALDITDCAR (89) 
FGGYLTYGALEAGAISAPGQPTAK (69) 
DLLDLYNFR (83) 
SPLLFNAAFK (69) 
ESGAVIVYGTEMLIR (13) 

 

6214 Glutamate dehydrogenase, Vitis vinifera Q1HDV6 44.8 (6.4) 46.8 
(7.2) 

211 21 39 SLLIPFR (21) 
SLLIPFREIK (22) 
DDGTLASFVGFR (26) 
FHGYSPAVVTGKPTDLGGSLGR (17) 
MGAFTLGVNR (14) 

 

4108g Omega-amidase (NLP3)_Q8RUF8, Quercus 
spp. 

TC22204_23 36.6 (6.8) 36.6 
(6.7) 

237 8 28 GDLYQLVDVK (13) 
FQELAMIYAAR (10) 
NLNITIVGGSIPER (58) 
AVDNQLYVATCSPAR (71) 
IFNTCCVFGTDGNLK (36) 
TLTAGETPTIVDTEVGR (55) 

 

3403 Glutamate decarboxylase_AT2G02010.1, 
Quercus spp. 

TC19169_41 58.0 
(5.9) 

64.5 
(6.3) 

208 12 45 VVIREDFSR (30) 
ETPEEIATYWR (53) 
GSSQIIAQYYQFVR (69) 
NYVDMDEYPVTTELQNR (46) 

 

2219 Glutamine synthetase, Avicennia marina A5A7P7 48.0 (6.4) 48.0 
(6.0) 

175 6 8 TIPKPVEHPSELPK (44) 
AILNLSLR (31) 
HKEHISAYGEGNER (92) 
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3103 Glutamine synthetase (Fragment), Glycine 
max 

Q43759 17.5 (8.8) 42.9 
(6.3) 

230 8 40 HKEHIAAYGEGNER (127) 
HETADMNTFVWGVANR (52) 

 

9406g Phospho-2-dehydro-3-deoxyheptonate 
aldolase 1 (DHAPS), Solanum tuberosum 

P21357 60.0 (8.9) 60.9 
(7.8) 

279 15 28 TIDEFPPIVFAGEAR (76) 
AYCQSAATLNLLR (69) 
QLDGAHVEFLR (78) 

 

8411 Phospho-2-dehydro-3-deoxyheptonate 
aldolase 1 (DHAPS), Solanum tuberosum 

P21357 60.0 (8.9) 60.9 
(7.8) 

444 21 33 TIDEFPPIVFAGEAR (99) 
AYCQSAATLNLLR (82) 
AFATGGYAAMQR (86) 
AFATGGYAAMQR (19) 
QLDGAHVEFLR (84) 

 

6617 5-methyltetrahydropteroyltriglutamate--
homocysteine methyltransferase, putative,  
Ricinus communis 

B9SI90 84.9 (6.1) 92.6 
(7.3) 

593 25 25 GKYLFAGVVDGR (105) 
YLFAGVVDGR (74) 
AGINVIQIDEAALR (72) 
EGVKYGAGIGPGVYDIHSPR (88) 
YGAGIGPGVYDIHSPR (121) 

 

6604 5-methyltetrahydropteroyltriglutamate--
homocysteine methyltransferase,Ricinus 
communis 

B9SI90 84.9 (6.1) 91.2 
(7.0) 

633 27 31 GKYLFAGVVDGR (80) 
YLFAGVVDGR (86) 
AGINVIQIDEAALR (88) 
EGVKYGAGIGPGVYDIHSPR (77) 
YGAGIGPGVYDIHSPR (149) 

 

6611 5-methyltetrahydropteroyltriglutamate--
homocysteine methyltransferase, Ricinus 
communis 

B9SI90 84.9 (6.1) 92.8 
(7.1) 

400 15 12 GKYLFAGVVDGR (74) 
YLFAGVVDGR (95) 
AGINVIQIDEAALR (59) 
YGAGIGPGVYDIHSPR (129) 
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5319g S-adenosylmethionine synthase (SAMS), 
Glycine max 

I1JPQ2 
 

43.2 
(6.2) 

53.6 
(7.0) 

695 22 42 TCPWLRPDGK (39) 
YLDDKTIFHLNPSGR (111) 
TIFHLNPSGR (83) 
FVIGGPHGDAGLTGR (134) 
FVIGGPHGDAGLTGRK (79) 
TAAYGHFGR (74) 
TAAYGHFGREDPDFTWETVK (53) 

 

2216 S-adenosylmethionine synthase 2 , 
Elaeagnus umbellate 

Q9AT55 43.6 (5.5) 50.4 
(6.2) 

650 22 44 TIGFVSDDVGLDADNCK (83) 
VLVNIEQQSPDIAQGVHGHFTK (97) 
TQVTVEYYNDKGAMVPVR (17) 
TIFHLNPSGR (61) 
FVIGGPHGDAGLTGR (110) 
FVIGGPHGDAGLTGRK (89) 
TAAYGHFGR (79) 

 

3210 Fumarylacetoacetase, 
putative_AT1G12050.1 , Quercus spp 

TC23862_21 30.7 (5.5) 46.1 
(6.4) 

131 4 20 GQGHPAGNSPPYFGPSLK (78) 
KFLEDGDEVIFSGYSK (50) 

 

Carbohydrate metabolic process         

4420 UDP-glucose 6-dehydrogenase,  Vitis 
vinífera 

A5AVX9 53.5 (6.4) 60.8 
(6.5) 

274 16 30 AADLTYWESAAR (60) 
LAANAFLAQR (53) 
LSIYDPQVTEDQIQR (67) 
IYDNMQKPAFVFDGR (19) 

 

5215 Alcohol dehydrogenase, Alnus glutinosa Q4A1D2 41.7 
(6.28) 

47.4 
(7.0) 

463 21 35 AAVAWEAGKPLVIEEVEVAPPQANEVR (108) 
GQTPLFPR (45) 
FGVTEFVNPK (65) 
TLKGTFFGNYKPR (62) 
GTFFGNYKPR (81) 

 

6202 Alcohol-dehydrogenase family protein, 
Populus trichocarpa 

B9HEP6 41.8 (6.1) 43.8 
(7.0) 

369 24 44 GQTPLFPR (45) 
KGSSVAIFGLGAVGLAAAEGAR (43) 
FGVTEFVNPK (62) 
TLKGTFFGNYKPR (15) 
GTFFGNYKPR (61) 
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5411 Mitochondrial lipoamide dehydrogenase 1_ 
AT1G48030.2, Quercus spp 

TC26056_36 58.1 
(8.31) 

64.1 
(6.9) 

156 12 38 IVSSTGALALTEIPK (28) 
GALGGTCLNVGCIPSK (48) 
FSSVEIDLPAMMAQK (13) 
ALLHSSHMYHEAQHSFANHGVK (25) 

 

2512 2,3-biphosphoglycerate-independent 
phosphoglycerate mutase_AT1G09780.1,  
Quercus petraea 

QP1063_77 61.0 (6.0) 74.0 
(6.1) 

476 10 25 DAILSGKFDQVR (46) 
FGHVTFFWNGNR (77) 
AFEYEDFDKFDR (67) 
LPSHYLVSPPEIDR (78) 
GTLHLIGLLSDGGVHSR (98) 
IQILTSHTCQPVPIAIGGPGLAPGCR (88) 
AHGSAVGLPTEDDMGNSEVGHNALGAGR (31) 

 

2417 Enolase 1, Hevea brasiliensis Q9LEJ0 48.0  (5.6) 60.2 
(6.2) 

622 27 41 AAVPSGASTGIYEALELR (128) 
LAMQEFMILPVGASSFK (41) 
VQIVGDDLLVTNPK (87) 
VNQIGSVTESIEAVK (74) 
IEEELGSEAVYAGANFR (147) 

 

6401 Enolase (ENO), Annona cherimola C0L7E2 48.1 (5.7) 61.4 
(7.0) 

757 29 50 KIPLYQHIANLAGNK (94) 
IPLYQHIANLAGNK (90) 
TLVLPVPAFNVINGGSHAGNK (113) 
VNQIGSVTESIEAVK (85) 
HAGWGVMASHR  (35) 
SGETEDTFIADLSVGLATGQIK (106) 
FRAPVQPY (48) 

 

5203 Phosphoglycerate kinase_AT1G79550.1, 
Quercus petraea 

QP6550_24 42.5 
(6.15) 

44.5 
(6.8) 

321 11 43 YSLKPIVPR (37) 
VILSTHLGRPK (48) 
ELDYLVGAVSNPK (90) 
FLKPAVAGFLMQK (54) 
VDLNVPLDDNFNITDDTR (82) 

 

6203 Phosphoglycerate kinase_AT1G79550.1, 
Quercus rubra 

QRU405_58 43.5 (6.7) 45.0 
(7.0) 

231 11 51 YSLKPIVPR (31) 
VILSTHLGRPK (30) 
FLKPAVAGFLMQK (21) 
LVAEIPEGGVLLLENVR (26) 
LASLADLYVNDAFGTAHR (49) 

 

6312 Citrate synthase, Populus trichocarpa B9N6I9 53.8 (7.7) 54.2 
(7.3) 

196 11 17 VVPGFGHGVLR (89) 
HLPDDPLFQLVSK (70) 
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1006 Putative uncharacterized protein 
(Lactoylglutathione lyase_D2D330)a, Vitis 
vinifera 

F6H7L5) 46.9 (5.7) 31.0 
(5.9) 

241 20 26 FLHVVYR (34) 
GPTPEPLCQVMLR (25) 
GPTPEPLCQVMLR (6) 
SAEVVNLVTKELGGK (35) 
ITSFLDPDGWK (72) 

 

6716 Sucrose synthase (SUS), Citrus unshiu Q9SLS2 92.7 (5.9) 97.0 
(7.2) 

220 20 18 KHLTEGAFGEVLR (7) 
SIGNGVEFLNR (51) 
FQEIGLER (27) 
LLPDAVGTTCGQR (56) 

 

104 Fructokinase-2-like_AT1G06020.1, Quercus 
spp. 

TC24048_19 37.5 (5.4) 37.3 
(5.2) 

421 8 28 TALAFVTLR (51) 
NFHGEVEAFR (54) 
APGGAPANVAIAVSR (106) 
IVDDQSILEDEPR (56) 
LGDDEFGHMLAGILR (15) 
ENGVVDEGINFDKGAR (107) 
IVDDQSILEDEPRLR (34) 

 
 

5514 Pyrophosphate-dependent 
phosphofructokinase beta subunit, Citrus 
sinensis x Citrus trifoliate 

A9YVC9 62.0 (6.3) 69.9 
(6.9) 

283 17 22 DKIETPEQFK (59) 
STGKYYHFVR (45) 
YYHFVR (37) 
GQSHFFGYEGR (83) 

 

3404 Beta glucosidase 17_AT2G44480.1, Quercus 
spp. 

QRO15180_40 47.8 (5.2) 63.8 
(6.3) 

119 10 48 GAYDFIGVNYYTSR (103) 

 

2415 Beta glucosidase 17_AT2G44480.1, Quercus 
spp. 

FN703157_40 27.8 (4.8) 63.3 
(6.2) 

86 5 38 GAYDFIGVNYYTSR (72) 

 

2407 Beta glucosidase 17_AT2G44480.1, Quercus 
spp. 

FN703157_40 27.8 (4.8) 63.7 
(6.1) 

100 4 35 GAYDFIGVNYYTSR (95) 
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8201 Cytosolic NADP+-dependent isocitrate 
dehydrogenase_AT1G65930.1, Quercus 
rubra 

QRU821_31 48.3 
(7) 

49.4 
(7.6) 

153 11 33 HAFGDQYR (39) 
YFDLGLPYR (47) 
SEGGYVWACK (49) 
LVPGWTKPICIGR (18) 

 

3509 Pyruvate decarboxylase, Prunus armeniaca B0ZS79 66.2 (5.7) 74.9 
(6.3) 

235 12 23 ILHHTIGLPDFSQELR (124) 
EPVPFSLSPR (69) 

 

3516 Pyruvate decarboxylase, Ricinus communis B9SWY1 66.6 (5.7) 74.4 
(6.4) 

243 14 19 ILHHTIGLPDFSQELR (126) 
EPVPFSLSPR (56) 
NWNYTGLVDAIHNGEGK (9) 
VSAANSRPPNPQ (11) 

 

4503 Pyruvate decarboxylase family protein, 
Populus trichocarpa 

B9I1N8 64.6 (5.8) 71.0 
(6.5) 

172 10 16 ILHHTIGLPDFSQELR (141) 

 

4411 UDP-glucose pyrophosphorylase, Annona 
cherimola 

C0L7E5 51.5 (5.8) 60.4 
(6.6) 

246 13 30 DGWYPPGHGDVFPSLR (96) 
VQLLEIAQVPDEHVNEFK (94) 

 

2318 Glucose-1-phosphate adenylyltransferase, 
Vitis vinifera 

D7TDB6 56.2 (6.5) 53.7 
(6.2) 

350 26 38 VDTTILGLDDER (59) 
KPVPDFSFYDR (71) 
SSPIYTQPR (41) 
IINSDNVQEAAR (40) 

 

7226 Putative uncharacterized protein (UDP-
glucuronic acid decarboxylase 
1_W9R8F1)g, Vitis vinifera 

A5AXR4 39.1 (8.3) 43.5 
(7.3) 

389 28 45 FFQSNMR (11) 
VAETLMFDYHR (21) 
IFNTYGPR (53) 
VVSNFIAQALR (69) 
GEPLTVQAPGTQTR (46) 
SFCYVSDMVDGLIR (20) 
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2221 Putative uncharacterized protein(UDP-D-
apiose/UPD-D-xylose 
synthetase_D2D333)g, Medicago truncatula 

B7FI57 44.2 (5.7) 50.4 
(6.1) 

257 12 24 LIHFSTCEVYGK (37) 
MDFIPGIDGPSEGVPR (49) 
VLACFSNNLLR (53) 
ANGHIFNVGNPNNEVTVR (80) 

 

4605 Transketolase, putative, Ricinus communis B9RDA1 81.6 (6.5) 87.7 
(6.5) 

403 24 26 NPYWFNR (59) 
NPYWFNRDR (38) 
NGNTGYDEIR (61) 
ALPTYTPESPADATR (105) 
MFGDFQKDTPEER (39) 

 

3618 Putative uncharacterized protein 
(transketolase family protein_B9GPE7)g, 
Populus trichocarpa 

A9PHE2 81.1 (5.9) 88.5 
(6.4) 

319 22 19 NPYWFNR (39) 
NGNTGYDEIR (52) 
ALPTYTPESPADATR (96) 
VLPGLLGGSADLASSNMTLLK (21) 
MFGDFQKDTPEER (25) 
RPSILALSR (30) 

 

7116 Fructose-bisphosphate 
aldolase_AT4G38970.1, Quercus spp 

TC20955_14 32.4 (5.9) 38.1 
(7.3) 

162 7 31 AAQEALLIR (44) 
IVDVLVEQK (43) 
TAAYYQQGAR (25) 
NTPQQIADYTLK (24) 
TVVSIPNGPTELAVK (28) 

 

5211 GDP-D-mannose-3',5'-epimerase, 
Malpighia glabra 

A0EJL8 42.9 (5.8) 49.0 
(7.0) 

429 20 48 ISITGAGGFIASHIAR (50) 
SFTFIDECVEGVLR (94) 
KLPIHHIPGPEGVR (75) 
VVGTQAPVQLGSLR (99) 

 

Protein metabolic process         

4405 Mitochondrial processing peptidase beta 
subunit, Cucumis melo 

Q9AXQ2 58.9 (6.6) 66.6 
(6.5) 

495 21 25 ALDILADILQNSK (44) 
TITKDHLQSYIQTHYTAPR (148) 
SSLLLHIDGTSPVAEDIGR (109) 
RIPFAELFAR (50) 
IPFAELFAR (43) 
TYWNRY (23) 

 

0

1

2

0

2

4

0

1

2

0

1

2

0

1

2

0

1,5

3



 

Spots 
Numbersa 

Protein name Accession 
numbersb 

Mr (pI) MOWSE 
scoree 

Peptides 
match 

Sequence 
coverage (%) 

Fragmented Ion 
(Ion Socre) 

Normalized spots 
volume intensitiesf Theor.c Exp.d 

2413 Leucyl aminopeptidase 1 _  AT2G24200.1, 
Quercus alba 

QA490_35 50.5 (5.8) 61.8 
(6.2) 

330 10 40 GLTFDSGGYNIK (68) 
AGQSTVLRLPGLGSK (48) 
VGLIGLGQSASTPAAFR (83) 
RVGLIGLGQSASTPAAFR (68) 
LNSATAIASGTVLGLYEDNRYK (62) 

 

1505 Chaperonin-60kD, ch60, putative, Ricinus 
communis 

B9RWQ2 61.6 (5.8) 72.3 
(5.7) 

98 15 23 GYISPYFITNQK (34) 

 

1508 Heat shock protein 60 
(HSP60)_AT3G23990.1, Quercus spp 

TC33448_39 63.9 (5.6) 71.1 
(5.8) 

436 11 23 AGIIDPVKVIR (51) 
IGVQIIQNALK (91) 
NVVIEQSWGAPK (82) 
GYISPYFITNQK (73) 
SDEIAQVGTISANGER (72) 
AAVEEGIVPGGGVALLYASK (75) 

 

205 30S ribosomal protein S1, chloroplastic, 
Spinacia oleracea 

P29344 45.0 (5.4) 50.9 
(5.3) 

116 12 20 GFVPFSQISSK (44) 
EIPLKFVEVDEEQSR (21) 
VSDIATVLQPGDTLK (14) 

 

614 Uncharacterized protein (heat shock 
cognate 70 kDa protein 4-like isoform 
1_B9SR13)g, Oryza brachyantha 

J3M7V9 71.0 (5.1) 82.0 
(5.4) 

579 40 39 TTPSYVAFTDTER (90) 
NAVVTVPAYFNDSQR (88) 
IINEPTAAAIAYGLDKK (91) 
STAGDTHLGGEDFDNR (9) 
ARFEELNMDLFR (3) 
VQQLLQDFFNGK (49) 
EQVFSTYSDNQPGVLIQVYEGER (64) 

 

5706 Elongation factor (EF), Ziziphus jujuba G9JJS4 94.9 (5.9) 101.0 
(6.9) 

520 26 20 LWGENFFDPATKK (67) 
GFVQFCYEPIK (66) 
YRVENLYEGPLDDAYANAIR (85) 
VENLYEGPLDDAYANAIR (118) 
VIYASQLTAKPR (57) 
GHVFEEMQRPGTPLYNIK (33) 
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Biosynthesis of secondary metabolites         

3116 Flavanone 3-hydroxylase (Fragment), Acer 
palmatum 

I7DG89 34.7 (5.5) 43.1 
(6.4) 

92 13 26 HTDPGTITLLLQDQVGGLQATR (6) 
LSIATFQNPAPEATVYPLK (14) 
SVLEEPITFAEMYR (13) 
SVLEEPITFAEMYRR (4) 

 

6221 Chalcone synthase 1, Camellia sinensis P48386 42.9 (5.9) 48.9 
(7.0) 

168 16 37 AEGPATVMAIGTATPPNCVDQSTYPDYYFR (7) 
VLVVCSEITAVTFR (73) 

 

6207 Chalcone synthase (Fragment),Cardamine 
monteluccii 

Q1G6T3 42.6 (6.1) 48.0 
(7.1) 

165 18 32 LLGLRPSVK (36) 
LLGLRPSVKR (15) 
LMMYQQGCFAGGTVLR (16) 

 

6212 Chalcone synthase, Gossypium hirsutum G3G7Y8 42.9 (6.0) 40.9 
(7,2) 

202 24 50 LMMYQQGCFAGGTVLR (5) 
VLVVCSEITAVTFR (15) 
EVGLTFHLLKDVPGLISK (19) 

 

7209 Cinnamyl alcohol 
dehydrogenase_AT4G39330.1, Quercus 
spp. 

TC22105_49 40.1 (6.9) 43.4 
(7.4) 

91 9 43 DSSGLLSPFHFSR (30) 
HLGVAGLGGLGHVAVK (8) 
ILYCGVCHSDLHNVK (12) 
TYGGYSDIVVVDEHYVLR (17) 

 

Oxidation-reduction process         

2004g Glutathione S-transferase omega 
(GSTO)_D6BR66, Quercus spp 

TC18312_19 28.2 (6.6) 26.0 
(6.0) 

75 8 36 LYISLSCPYAQR (24) 
EAGPAFDHLENALSK (14) 
WIEEVNKIDAYKPTK (11) 
YIDSNFEGPSLLPNDHAK (24) 
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4006 Putative uncharacterized protein 
(Glutathione-s-transferase 
theta_B9T0U8)g,Vitis vinifera 

D7TP00 24.9 (6.2) 19.4 
(6.6) 

107 6 22 NPFGQIPVLEDGDLTLFESR (38) 
AWWEDISSRPAFK (46) 

 

6007 Dehydroascorbate reductase 
(DHAR)_AT1G75270.1, Quercus spp 

TC18689_13 24.2 (6.6) 22.3 
(7.1) 

268 8 44 AHGPYIAGEK (58) 
YKELLFSR (35) 
EHVIAGWEPK (60) 
LYHLDVALGHFKK (60) 
ALDEHLKAHGPYIAGEK (34) 
HPEPSLTPPPEFASVGSK (12) 

 

4516 Methylenetetrahydrofolate reductase 2_ 
AT2G44160.1, Quercus robur 

QRO9558_22 38.8 (7.2) 69.0 
(6.7) 

121 7 38 RPTNVFR (24) 
AYVEFFCSR (63) 
TIGWDQYPHGR (32) 

 

5004 Manganese superoxide dismutase (SOD) 
1_AT3G10920.1, Quercus spp 

TC29211_11 19.3 (7.9) 19.7 
(6.8) 

126 5 55 HHQAYITNYNK (73) 
FNGGGHINHSIFWK (42) 
KLVVDTTANQDPLVTK (2) 

 

Stress response         

8005 Pathogenesis-related thaumatin 
superfamily protein _AT2G28790.1, 
Quercus petraea 

QP7437_20 13.3 (7.1) 22.8 
(7.8) 

183 7 84 GQCPVVGCR (14) 
ASTFSEFFK (46) 
SPPGHGPVVACK (40) 
ANLLATCPDKLQLR (30) 
SGCEAFGTDELCCR (44) 

 

8018 Pathogenesis-related thaumatin 
superfamily protein_AT2G28790.1, 
Quercus spp 

TC25355_10 28.5 (7.9) 22.5 
(8.0) 

312 10 32 ASTFSEFFK (46) 
ANLLATCPDKLQLR (80) 
SGCEAFGTDELCCR (83) 
GGFALHTLTHHSFPAPTQHWSGR (45) 
HACPATFTYAHDSPSLMHECSSPR (62) 
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Miscellaneous         

2722 ATP-dependent clp protease, Cucumis melo 
subsp. melo 

E5GBL8 103.4 
(6.8) 

99.3 
(6.1) 

390 40 31 GSGFVAVEIPFTPR (44) 
TKNNPCLIGEPGVGK (39) 
YRGEFEER (22) 
GELQCIGATTLDEYRK (45) 
NPNRPIASFIFSGPTGVGK (13) 
LIGSPPGYVGYTEGGQLTEAVR (27) 

 

 

5310 Predicted protein 
(Sulfoquinovosyldiacylglycerol_AT4G3303
0.1 )g, Populus trichocarpa 

B9HDL9 54.3 (8.2) 55.3 
(6.9) 

123 12 22 ATDLNQGVVYGVR (58) 
FCVQAAVGHPLTVYGK (10) 

 

3102 Glutelin type-B 5_W9SME0, Quercus spp TC21080_27 39.3 (8.6) 38.7 
(6.3) 

112 10 44 AGNLFIVPR (39) 
LALDKNGFALPR (62) 

 

1012 Putative uncharacterized protein_D7SY44, 
Quercus spp 

TC33675_14 21.3 (5.9) 17.3 
(6.0) 

207 6 55 RFPDLR (20) 
AAGIGAIQAVSR (61) 
SLLDELSSFEK (65) 
GGFFDLGHPLLNR (52) 

 

1302 DEAD box RNA helicase, Pisum sativum Q8H1A5 47.1 (5.4) 52.9 
(5.6) 

258 24 46 GIYAYGFEKPSAIQQR (60) 
ILSSGVHVVVGTPGR (28) 
VFDMLRR (16) 
MFVLDEADEMLSR (11) 
VLITTDLLAR (21) 

 

1620 Cell division protein ftsH, putative, Ricinus 
communis 

B9S304 75.5 (6.4) 78.7 
(5.7) 

224 21 26 FLEYLDKDR (48) 
VRVQLPGLSQELLQK (3) 
SSGGMGGPGGPGFPLAFGQSK (53) 
ADILDSALLRPGR (17) 

 

4403 Anthranilate N-benzoyltransferase protein, 
putative,Ricinus communis 

B9RIV2 50.4 (5.4) 63.1 
(6.5) 

184 8 10 ELKPEDYTVFTVFADCR (79) 
DAGVNCVAVGSSPR (84) 
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7114 AT4G39230.1_ NmrA-like negative 
transcriptional regulator family protein 
(encodes a protein whose sequence is 
similar to phenylcoumaran benzylic ether 
reductase (PCBER)Phenylcoumaran 
benzylic ether reductase)g, Quercus robur 

QRO2324_17 36.5 (6.8) 35.0 
(7.5) 

367 11 35 AGHPTFALVR (67) 
VLIIGGTGYIGK (68) 
FYPSEFGNDVDR (67) 
AIFNKEDDIGTYTIK (17) 
NLGVTLVHGDLYDHGSLVK (103) 
FYPSEFGNDVDRVHAVDPAK (17) 
GDHTNFEIEPSFGVEASQLYPDVK (33) 

 
 

1207 Actin, Brassica napus Q9ZSD7 41.9 (5.3) 43.8 
(5.8) 

601 26 58 AVFPSIVGRPR (81) 
VAPEEHPVLLTEAPLNPK (107) 
GYMFTTTAER (11) 
SSSSVEKNYELPDGQVITIGAER (60) 
NYELPDGQVITIGAER (83) 
GEYDESGPSIVHR (86) 

 

 

107 Alpha/beta-Hydrolases superfamily 
protein_  AT4G02340.1, Quercus alba 

QA3147_23 35.4 (5.2) 37.6 
(5.3) 

88 9 27 FALQVPYR (24) 
KFPGIEDYIR (42) 

 

5001 Aluminium induced protein with YGL and 
LRDR motifs_AT3G22850.1, Quercus spp. 

TC18137_21 27.8 (7.0) 25.4 
(6.8) 

136 6 33 GCFFTSSGGLR (39) 
FAFILYDSSSK (25) 
DRGPYPADQVVR (16) 
SYEHPLNEVKPVPR (44) 
SPEALQSPQSGSVSTLK (15) 

 

3006 Aluminium induced protein with YGL and 
LRDR motifs_AT3G22850.1, Quercus spp. 

TC18137_21 27.8 (7.0) 25.0 
(6.4) 

141 5 27 GCFFTSSGGLR (31) 
FAFILYDSSSK (49) 
SYEHPLNEVKPVPR (58) 
SPEALQSPQSGSVSTLK (4) 

 

Unknown          

514 Putative uncharacterized protein, Vitis 
vinifera 

D7SLM9 64.9 (5.8) 71.2 
(5.5) 

419 20 30 VVAAGANPVLITR (61) 
GYISPYFVTDSEK (74) 
DLINVLEDAIR  (76) 
AAVEEGIVVGGGCTLLR (126) 

 

 
 RuBisCO large subunit-binding protein 

subunit beta, chloroplastic , Pisum sativum 
Alternative name: 60 kDa chaperonin 
subunit beta 

P08927 63.3 (5.8) 71.2 
(5.5) 

414 21 34 VVAAGANPVLITR (61) 
SAENSLYVVEGMQFDR (54) 
GYISPYFVTDSEK (74) 
AAVEEGIVVGGGCTLLR (126) 
 

 

 

0

2

4

0

3

6

0

0,5

1

0

0,5

1

0

0,5

1

0

2

4



 

Spots 
Numbersa 

Protein name Accession 
numbersb 

Mr (pI) MOWSE 
scoree 

Peptides 
match 

Sequence 
coverage (%) 

Fragmented Ion 
(Ion Socre) 

Normalized spots 
volume intensitiesf Theor.c Exp.d 

4009g Uncharacterized protein, Oryza 
brachyantha 

J3MD07 101.7 
(5.1) 

25.0 
(6.6) 

81 19 26 - 

 

2103 Putative cyclase family protein, Arachis 
hypogaea 

C0L2U1 31.5 
(5.04) 

38.4 
(6.1) 

79 8 28 IFDISHR (36) 

 

a Spot number as given on the 2-DE gel images in Fig. 3. 
b Uniprot and Quercus_DB accessions numbers. The accession whose first letters were FN, TC, QP, QRU, QRO and QA correspond to Quercus_DB accessions, the rest correspond to Uniprot_KB. 
c Molecular weight (KDa) and isoelectric point of protein calculated for each database. 
d Molecular weight (kDa) and isoelectric point of protein calculated by using molecular weight standards and the PD-Quest Advance (8.01) software. 
e Mascot score (S −10×log (P)):where P is the probability that the observed match is a random event, peptide matched in MS analysis, percentage of sequence coverage (into the brackets), and ions 
sequence matched (ion score into the brackets) from MS/MS analysis. 
f The figures represent the normalized spots volume intensities vs analyzed stages. 
g Proteins differentially accumulated between S0 and S3. 
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Table 6.6: List of identified proteins from non-imbibed seeds (S0) and germinated (S3) Q. ilex embryos by using nLC MS Orbitrap LTQ. 

Protein description (close species) 
Accession 

Specific function Mr(pI) Scores 
Cov 
(%) 

Peptides 
Machet 

Ratio S3/S0 UniprotKB/ 
SwissProt 

UniprotKB
/TrEml 

NCBI Quercus_DB 

Up-accumulated in S0 (Qualitative differences)           

Amino acids metabolism           

AT4G33010.1_ glycine decarboxylase P-protein 1 _HC, Quercus 
petraea    

QP8418_19 
Glycine, serine and 
threonine metabolism 

38.1  
(7.61) 

10.2 16.6 3 S0 specific 

Mitochondrial glycine decarboxylase complex P-protein, 
Populus tremuloides    

TC19232_29 
Glycine, serine and 
threonine metabolism 

50.7  
(6.25) 

9.8 10.7 3 S0 specific 

2-oxoglutarate dehydrogenase, E1 component isoform 3; 
Theobroma cacao   

590563613 
 

Tryptophan 
metabolism 

80.1  
(7.34) 

29.9 16.9 8 S0 specific 

Uncharacterized protein(Methylmalonate-semialdehyde 

dehydrogenase [acylating], mitochondrial)a, Musa acuminata 
subsp. malaccensis 

 
M0SR49 

  
Valine, leucine and 
isoleucine degradation 

57.7  
(7.66) 

7.9 6.3 3 S0 specific 

Protein metabolic process 
          

Casein lytic proteinase B4, Theobroma cacao 
  

590571986 
 

Protein folding 
108.7  
(7.01) 

27.8 8.9 7 S0 specific 

AT5G15450.1_ casein lytic proteinase B3 _HC,  Quercus robur 
   

QRO23829_16 Protein folding 
24.3  

(7.34) 
22.1 28.2 5 S0 specific 

AT3G11830.1_ TCP-1/cpn60 chaperonin family protein _HC, 
Quercus petraea    

QP1036_36 Protein folding 
64.0  

(7.88) 
41.3 20.9 9 S0 specific 

AT3G18190.1_ TCP-1/cpn60 chaperonin family protein _LC, 
Quercus petraea    

QP4157_33 Protein folding 
59.7  

(7.94) 
32.3 17.8 8 S0 specific 

Uncharacterized protein (T-complex protein 1 subunit epsilon-
like)a, Solanum lycopersicum  

K4BYC0 460386958 
 

Protein folding 
59.1  

(5.82) 
14.8 14.6 5 S0 specific 

AT5G57870.1_ MIF4G domain-containing protein / MA3 
domain-containing protein _HC, Quercus rubra    

QRU1014_115 Protein biosynthesis 
79.6 

(7.53) 
14.7 8.0 5 S0 specific 

Leucine aminopeptidase family protein; Populus trichocarpa 
 

B9IMD7 566215336 
  

60.9 
(6.93) 

22.5 12.0 5 S0 specific 

Trypsin inhibitor A,Glycine max P01070 P01070 125020 
  

24.0 
(5.11) 

8.8 14.4 3 S0 specific 

Gene expression 
          

Short-chain dehydrogenase/reductase, Cucumis melo subsp. 
melo  

E5GBL0 307135996 
  

108.4 
(6.89) 

22.6 6.2 6 S0 specific 

AT2G27040.1_ Argonaute family protein (Overexpressor of 
cationic peroxidase 11_HC, Quercus rubra    

QRU2927_19 
 

25.7 
(9.64) 

10.7 16.0 4 S0 specific 

Protein transport 
          



 

Protein description (close species) 
Accession 

Specific function Mr(pI) Scores 
Cov 
(%) 

Peptides 
Machet 

Ratio S3/S0 UniprotKB/ 
SwissProt 

UniprotKB
/TrEml 

NCBI Quercus_DB 

AT5G60790.1_ ABC transporter family protein_HC,  Quercus 
alba    

QA725_59 Protein transport 
50.0 

(7.78) 
12.6 13.3 4 S0 specific 

ADP,ATP carrier protein 3, Morus notabilis 
 

W9QNM9 587854593 
 

Protein transport 
40.4 

(9.69) 
7.5 9.7 3 S0 specific 

Lipid metabolism 
          

Uncharacterized protein(3-ketoacyl-CoA thiolase 1)a, Brassica 
rapa subsp. pekinensis  

M4EP66 
  

Fatty acid degradation  
and elongation; alpha-
Linolenic acid 
metabolism, 

47.3 
(8.53) 

11.1 13.3 3 S0 specific 

Stress response 
          

Dehydrin,  Quercus spp. 
   

TC23570_14 Water stress 
27.8 

(6.16) 
8.6 12.9 3 S0 specific 

Miscellaneous 
          

Annexin-like protein RJ4, Quercus spp. 
   

TC18250_18 
 

36.1 
(6.76) 

25.3 25.7 7 S0 specific 

AT5G54500.2_ flavodoxin-like quinone reductase 1_LC, 
Quercus alba    

QA4445_25 
 

15.4 
(5.82) 

8.8 34.7 3 S0 specific 

AT3G17810.1_ Dihydropyrimidine dehydrogenase activity,_HC, 
Quercus robur    

QRO2393_29 
 

46.6 
(6.34) 

17.2 14.8 5 S0 specific 

Dynamin-2A, putative, Ricinus communis 
 

B9SBU7 223537294 
  

90.1 
(8.87) 

12.4 4.6 3 S0 specific 

Unknown 
          

Predicted protein, Quercus petraea 
   

QP8315_20 
 

54.1 
(5.34) 

8.2 6.7 3 S0 specific 

AT3G08030.1_ Protein of unknown function, DUF642 _LC, 
Quercus petraea    

QP8179_17 
 

28.2 
(8.18) 

13.0 21.6 4 S0 specific 

Predicted protein, Quercus robur 
   

QRO12610_7 
 

15.3 
(10.45) 

11.5 34.1 3 S0 specific 

Predicted protein, Quercus rubra 
   

QRU49717_11 
 

8.6 
(5.10) 

16.6 44.4 3 S0 specific 

Hypothetical protein EUGRSUZ_F01462, Eucalyptus grandis 
  

629102255 
  

92.5 
(6.11) 

74.8 25.0 15 S0 specific 

Hypothetical protein EUGRSUZ_F04463, Eucalyptus grandis 
  

629105924 
  

36.0 
(5.29) 

48.6 27.3 8 S0 specific 

Putative uncharacterized protein, Arabidopsis lyrata subsp. 
lyrata  

D7MD24 297312917 
  

39.6 
(8.13) 

15.6 10.9 3 S0 specific 

Putative uncharacterized protein, Glycine max 
 

C6TB24 574584672 
  

23.0 
(9.92) 

10.3 19.2 3 S0 specific 

Putative uncharacterized protein, Medicago truncatula 
 

B7FM02 217074850 
  

62.0 
(5.20) 

39.2 20.8 9 S0 specific 



 
 

Protein description (close species) 
Accession 

Specific function Mr(pI) Scores 
Cov 
(%) 

Peptides 
Machet 

Ratio S3/S0 UniprotKB/ 
SwissProt 

UniprotKB
/TrEml 

NCBI Quercus_DB 

Putative uncharacterized protein, Selaginella moellendorffii 
 

D8RV35 300157077 
  

70.6 
(5.27) 

15.9 7.3 4 S0 specific 

Predicted protein, Quercus spp. 
   

TC33465_22 
 

32.4 
(5.15) 

9.0 15.2 3 S0 specific 

Predicted protein, Quercus spp. 
   

TC20900_15 
 

21.8 
(10.11) 

16.4 40.0 5 S0 specific 

Predicted protein, Quercus spp. 
   

TC20465_44 
 

68.4 
(5.24) 

11.6 8.3 4 S0 specific 

Hypothetical protein ZEAMMB73_184776, Zea mays 
  

414590819 
  

43.7 
(6.13) 

15.1 13.5 4 S0 specific 

Uncharacterized protein (Fragment), Amborella trichopoda 
 

W1NSR4 586661534 
  

93.3 
(5.97) 

18.3 6.1 5 S0 specific 

Uncharacterized protein (Fragment),Populus trichocarpa 
 

U7DX74 566255443 
  

42.2 
(5.36) 

8.6 10.6 3 S0 specific 

Uncharacterized protein, Amborella trichopoda 
 

U5D3T2 586766811 
  

77.2 
(6.81) 

19.5 6.7 4 S0 specific 

Uncharacterized protein, Amborella trichopoda 
 

U5DB51 586774182 
  

110.2 
(6.74) 

23.0 6.8 6 S0 specific 

Uncharacterized protein, Capsella rubella 
 

R0G3M7 565479068 
  

71.1 
(5.07) 

90.8 17.3 9 S0 specific 

Uncharacterized protein, Capsella rubella 
 

R0F0U4 565438714 
  

77.0 
(5.31) 

13.2 6.7 4 S0 specific 

Uncharacterized protein, Citrus clementina 
 

V4UFF9 567919092 
  

56.7 
(8.29) 

12.3 10.3 4 S0 specific 

Uncharacterized protein, Citrus clementina 
 

V4SJT5 567870081 
  

71.1 
(5.59) 

104.1 18.2 10 S0 specific 

Uncharacterized protein, Citrus clementina 
 

V4UFD6 567864300 
  

71.0 
(5.21) 

173.9 31.2 16 S0 specific 

Uncharacterized protein, Genlisea aurea 
 

S8E2N1 527198343 
  

60.6 
(6.28) 

11.2 5.2 3 S0 specific 

Uncharacterized protein, Lotus japonicus 
 

I3SR66 388509384 
  

10.8 
(9.64) 

12.5 37.0 3 S0 specific 

Uncharacterized protein, Medicago truncatula 
 

B7FL88 388501384 
  

71.0 
(5.19) 

85.7 14.6 7 S0 specific 

Uncharacterized protein, Musa acuminata subsp. malaccensis 
 

M0RFS3 
   

121.8 
(5.29) 

16.7 5.3 4 S0 specific 

Uncharacterized protein, Musa acuminata subsp. malaccensis 
 

M0SWY3 
   

60.7 
(6.42) 

7.5 6.3 3 S0 specific 

Uncharacterized protein, Phaseolus vulgaris 
 

V7D0J0 593731242 
  

17.8 
(5.99) 

7.5 18.7 3 S0 specific 

Uncharacterized protein, Populus trichocarpa 
 

B9GLH4 566147195 
  

66.6 
(7.87) 

16.0 8.7 4 S0 specific 

Uncharacterized protein, Prunus persica 
 

M5WQL1 595852973 
  

107.3 
(9.17) 

25.2 7.9 6 S0 specific 



 

Protein description (close species) 
Accession 

Specific function Mr(pI) Scores 
Cov 
(%) 

Peptides 
Machet 

Ratio S3/S0 UniprotKB/ 
SwissProt 

UniprotKB
/TrEml 

NCBI Quercus_DB 

Uncharacterized protein, Prunus persica 
 

M5WY92 595962605 
  

71.7 
(5.38) 

87.0 17.1 9 S0 specific 

Uncharacterized protein, Prunus persica 
 

M5VND4 595796780 
  

71.3 
(8.25) 

17.9 12.1 5 S0 specific 

Uncharacterized protein, Prunus persica 
 

M5WR30 595857560 
  

59.0 
(7.14) 

9.7 7.2 3 S0 specific 

Uncharacterized protein, Prunus persica 
 

M5XSL7 596299993 
  

55.2 
(7.46) 

13.9 8.3 3 S0 specific 

Uncharacterized protein, Prunus persica 
 

M5WB08 595824521 
  

47.5 
(5.11) 

18.4 18.9 6 S0 specific 

Uncharacterized protein, Prunus persica 
 

M5XQ59 596141602 
  

37.0 
(7.52) 

171.6 40.4 9 S0 specific 

Uncharacterized protein, Prunus persica 
 

M5W463 595836837 
  

37.2 
(8.72) 

11.4 8.3 3 S0 specific 

Uncharacterized protein, Prunus persica 
 

M5XKJ3 596054717 
  

23.0 
(6.68) 

10.7 19.9 3 S0 specific 

Uncharacterized protein, Thellungiella salsuginea 
 

V4M1R7 567200069 
  

71.2 
(5.29) 

116.3 19.7 10 S0 specific 

Uncharacterized protein, Zea mays 
 

B8A0W7 219886883 
  

48.1 
(5.26) 

64.8 21.5 9 S0 specific 

Uncharacterized protein, Zea mays 
 

C4IZQ5 238006740 
  

54.6 
(7.14) 

11.9 10.3 3 S0 specific 

Up-accumulated in S0 (Quantitative differences) 
          

Protein metabolic process 
          

AT5G50920.1_ Chaperone protein ClpC1 _HC, Quercus petraa 
   

QP1770_109 Protein folding 
83.3 

(6.60) 
45.1 23.1 11 0.47 

Ubiquitin-activating enzyme E1, putative, Ricinus communis 
 

B9SKU8 0 
  

123.4 
(5.45) 

14.2 5.9 5 0.47 

Uncharacterized protein(Ubiquitin-activating enzyme E1 2-

like)a, Glycine max  
K7KA83 571441365 

  
120.5 
(5.25) 

13.7 5.4 4 0.47 

AT3G02530.1_ TCP-1/cpn60 chaperonin family protein _HC, 
Quercua robur    

QRO3715_43 Protein folfing 
60.8 

(6.02) 
26.0 18.8 8 0.43 

Elongation factor 1-alpha, Nicotiana paniculata 
 

Q9ZWH9 257327235 
 

Protein biosynthesis 
49.3 

(9.13) 
50.9 20.9 6 0.22 

Chaperone protein ClpB4, mitochondrial, Arabidopsis thaliana Q8VYJ7 Q8VYJ7 75161490 
 

Protein folding 
108.6 
(6.98) 

17.2 6.1 5 0.35 

Carbohydrate metabolism 
          

Xylose isomerase, Quercus spp. 
   

TC18422_30 
Fructose and mannosa 
metabolism 

54.2 
(6.05) 

14.1 11.9 5 0.47 

AT4G35830.1_ aconitase 1 _HC, Quercus rubra 
   

QRU1997_91 TCA cycle 
57.4 

(7.49) 
14.2 8.9 4 0.40 

Energy metabolism 
          



 
 

Protein description (close species) 
Accession 

Specific function Mr(pI) Scores 
Cov 
(%) 

Peptides 
Machet 

Ratio S3/S0 UniprotKB/ 
SwissProt 

UniprotKB
/TrEml 

NCBI Quercus_DB 

NADH-ubiquinone oxidoreductase, putative, Ricinus communis 
 

B9T118 223528410 
 

Oxidative 
phosphorylation 

80.7 
(6.95) 

13.9 6.9 4 0.47 

AT4G11150.1_ vacuolar ATP synthase subunit E1_HC, Quercus 
spp.    

TC18506_12 
 

20.6 
(8.53) 

9.0 14.2 3 0.51 

Amino acids metabolism           

AT4G14880.1_ O-acetylserine (thiol) lyase (OAS-TL) isoform 
A1 _HC, Quercus petraea    

QP1332_18 
Cysteine and 
methionine 
metabolism 

25.8 
(7.39) 

13.6 19.1 4 0.44 

RNA binding 
          

AT3G15010.1_ RNA-binding (RRM/RBD/RNP motifs) family 
protein _HC, Quercus robur    

QRO3293_21 
 

45.9 
(8.40) 

16.9 13.2 4 0.40 

Unknown 
          

Predicted protein, Quercus spp. 
   

TC22919_31 
 

53.4 
(7.02) 

30.8 16.5 6 0.27 

Predicted protein (TUDOR-SN protein 1 isoform 3)a, Quercus 
spp.    

TC31886_28 
 

47.9 
(8.28) 

18.9 15.2 6 0.31 

Uncharacterized protein, Oryza brachyantha 
 

J3LDA2 573919270 
  

94.0 
(6.16) 

37.6 12.2 9 0.45 

Uncharacterized protein, Oryza glaberrima 
 

I1NT64 
   

70.9 
(5.21) 

69.0 20.4 8 0.47 

Up-accumulated in S3 (Qualitative differences)           

Protein metabolic process           
Putative TCP-1/cpn60 chaperonin family protein isoform 1, 
Zea mays  

C0P530 413953492 
 

Protein folding 
61.7 

(5.49) 
38.6 16.6 7 S3 specific 

Chaperonin CPN60-like protein,Medicago truncatula 
 

G7LHF7 355521119 
 

Protein folding 
61.6 

(7.39) 
19.2 9.0 4 S3 specific 

Eukaryotic initiation factor 4A-8-like, Cucumis sativus 
  

449476633 
 

Protein biosynthesis 
46.8 

(5.57) 
34.0 26.2 7 S3 specific 

Translational initiation factor 4A-1, Arabidopsis thaliana 
 

A8MRZ7 145332383 
 

Protein biosynthesis 
45.7 

(6.28) 
43.3 38.6 10 S3 specific 

Eukaryotic initiation factor 4A-1, Oryza sativa subsp. japonica P35683 P35683 97536398 
 

Protein biosynthesis 
47.1 

(5.57) 
54.0 37.7 11 S3 specific 

Eukaryotic initiation factor 4A-3, Arabidopsis thaliana Q9CAI7 Q9CAI7 75333652 
 

Protein biosynthesis 
46.7 

(5.33) 
47.8 33.1 10 S3 specific 

AT1G54270.1_ Eukaryotic initiation factor 4A-2_HC, Quercus 
alba    

QA214_22 Protein biosynthesis 
44.5 

(6.15) 
42.7 37.3 10 S3 specific 

AT1G54270.1_ Eukaryotic initiation factor 4A-2_HC, Quercus 
petraea    

QP1475_18 Protein biosynthesis 
36.7 

(7.09) 
30.7 31.2 7 S3 specific 

Low molecular weight heat-shock protein, Quercus spp. 
   

TC20725_11 Protein biosynthesis 
18.2 

(6.60) 
7.8 28.5 3 S3 specific 

Carbohydrate metabolism 
          



 

Protein description (close species) 
Accession 

Specific function Mr(pI) Scores 
Cov 
(%) 

Peptides 
Machet 

Ratio S3/S0 UniprotKB/ 
SwissProt 

UniprotKB
/TrEml 

NCBI Quercus_DB 

Alcohol dehydrogenase class-3, Quercus spp. 
   

TC21890_16 
Glycolysis / 
Gluconeogenesis 

31.1 
(6.90) 

23.0 12.0 3 S3 specific 

Cinnamyl alcohol dehydrogenase, Quercus spp. 
   

TC18401_20 
Glycolysis / 
Gluconeogenesis 

36.3 
(8.35) 

13.8 11.9 3 S3 specific 

2-phospho-D-glycerate hydrolase, Poncirus trifoliata 
 

D7NHW9 568856679 
 

Glycolysis / 
Gluconeogenesis 

47.8 
(5.78) 

147.9 27.8 8 S3 specific 

Succinyl-CoA ligase [GDP-forming] beta-chain, mitochondrial 
precursor, Oryza sativa subsp. japonica    

TC17986_22 TCA cycle 
21.8 

(5.01) 
15.8 32.2 4 S3 specific 

Alpha-1,4 glucan phosphorylase L isozyme, 
chloroplastic/amyloplastic-like, Cucumis sativus   

449438839 
 

Starch and sucrose 
metabolism 

108.9 
(5.77) 

18.3 6.3 5 S3 specific 

AT4G27270.1_Quinone reductase family protein_HC, Quercus 
suber    

QS1415_39 
 

22.1 
(6.55) 

17.6 31.7 4 S3 specific 

Amino acids metabolism           

Aspartate aminotransferase P2, mitochondrial (Fragment), 
Lupinus angustifolius 

P26563 P26563 112979 
 

Cysteine, methionine, 
phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

49.9 
(7.85) 

8.4 7.3 3 S3 specific 

Stress response 
          

AT5G12380.1_ annexin 8 _HC, Quercus robur 
   

QRO1593_18 
 

36.1 
(6.57) 

12.0 13.0 4 S3 specific 

AT2G22170.1_ Lipase/lipooxygenase, PLAT/LH2 family 
protein _HC, Quercus rubra    

QRU637_29 
 

20.2 
(4.98) 

8.6 17.0 3 S3 specific 

Acyl-coenzyme A oxidase,  Gossypium hirsutum 
 

E9L0E1 321438027 
 

Fatty acid 
degradation, 
biosynthesis of 
unsaturated fatty 
acids 

74.8 
(7.42) 

11.7 5.9 3 S3 specific 

Protein transport 
          

AT1G09630.1_ RAB GTPase 11C _HC, Quercus petraea 
   

QP9969_18 Protein transport 
24.4 

(7.84) 
9.9 20.0 4 S3 specific 

Predicted protein(ATP-dependent transporter, putative)a, 
Quercus spp.    

TC24103_33 
 

58.4 
(5.74) 

10.4 8.7 3 S3 specific 

Miscellaneous 
          

Putative uncharacterized protein(Transcription factor BTF3)a, 
Vitis vinifera  

D7TXR6 296088008 
  

17.2 
(8.35) 

17.2 25.6 3 S3 specific 

Predicted protein (Esterase d, s-formylglutathione hydrolase)a, 
Quercus spp.    

TC21959_22 Methane metabolism 
33.9 

(7.14) 
9.1 14.6 3 S3 specific 

Predicted protein(Endo-1,3;1,4-beta-D-glucanase-like)a, 
Quercus spp.    

TC29292_21 Glycosidase 
27.0 

(7.15) 
17.3 22.3 4 S3 specific 

Unknown 
          



 
 

Protein description (close species) 
Accession 

Specific function Mr(pI) Scores 
Cov 
(%) 

Peptides 
Machet 

Ratio S3/S0 UniprotKB/ 
SwissProt 

UniprotKB
/TrEml 

NCBI Quercus_DB 

Endoplasmin homolog, Cucumis sativus 
  

449444490 
  

89.5 
(5.66) 

18.0 11.6 6 S3 specific 

Predicted protein, Quercus alba 
   

QA63945_8 
 

9.3 
(4.53) 

10.1 43.9 3 S3 specific 

Predicted protein, Quercus alba 
   

QA11472_4 
 

9.5 
(5.06) 

12.3 69.5 4 S3 specific 

Predicted protein, Physcomitrella patens subsp. patens 
 

A9TLR9 162669047 
  

51.8 
(5.78) 

9.9 8.9 3 S3 specific 

Predicted protein, Physcomitrella patens subsp. Patens 
 

A9RKQ8 162694344 
  

17.6 
(10.98) 

13.3 27.0 3 S3 specific 

Predicted protein, Physcomitrella patens subsp. patens 
 

A9S0A3 162689004 
  

71.0 
(5.33) 

32.0 9.4 5 S3 specific 

Predicted protein, Physcomitrella patens subsp. patens 
 

A9TWR9 162665432 
  

71.0 
(5.25) 

43.9 12.6 6 S3 specific 

Predicted protein, Physcomitrella patens subsp. patens 
 

A9U4N3 162662524 
  

70.8 
(5.21) 

34.1 8.0 4 S3 specific 

Predicted protein, Physcomitrella patens subsp. patens 
 

A9TRK2 162667294 
  

71.0 
(5.36) 

31.4 7.3 4 S3 specific 

Putative uncharacterized protein, Picea sitchensis 
 

C0PQU1 224286262 
  

49.6 
(5.10) 

9.5 11.1 3 S3 specific 

Putative uncharacterized protein, Populus trichocarpa x 
Populus deltoides  

A9PIL8 566198751 
  

21.9 
(6.95) 

10.5 23.4 3 S3 specific 

Putative uncharacterized protein, Selaginella moellendorffii 
 

D8R691 300165670 
  

47.0 
(5.81) 

37.3 24.6 8 S3 specific 

Putative uncharacterized protein, Selaginella moellendorffii 
 

D8RBE2 300164169 
  

71.5 
(5.29) 

66.7 16.2 8 S3 specific 

Putative uncharacterized protein, Selaginella moellendorffii 
 

D8RYR3 300155849 
  

71.4 
(5.33) 

17.6 8.9 4 S3 specific 

Putative uncharacterized protein Sb08g009580, Sorghum 
bicolor  

C5YU58 241942772 
  

74.4 
(5.26) 

17.2 9.1 5 S3 specific 

Predicted protein, Quercus spp. 
   

TC22417_25 
 

41.7 
(8.28) 

12.0 13.0 4 S3 specific 

Predicted protein, Quercus spp. 
   

TC25340_15 
 

27.4 
(5.14) 

18.1 24.6 4 S3 specific 

Predicted protein, Quercus spp. 
   

TC31608_14 
 

20.0 
(8.56) 

9.3 24.1 3 S3 specific 

Uncharacterized protein, Amborella trichopoda 
 

W1P6P5 586685400 
  

61.3 
(5.87) 

47.3 16.4 7 S3 specific 

Uncharacterized protein, Amborella trichopoda 
 

W1PYC8 586750760 
  

48.0 
(5.92) 

170.0 33.5 11 S3 specific 

Uncharacterized protein, Capsella rubella 
 

R0HL55 565467720 
  

20.5 
(9.91) 

15.9 24.2 3 S3 specific 

Uncharacterized protein, Citrus clementina 
 

V4TAP7 568836083 
  

72.8 
(5.35) 

40.6 11.3 6 S3 specific 



 

Protein description (close species) 
Accession 

Specific function Mr(pI) Scores 
Cov 
(%) 

Peptides 
Machet 

Ratio S3/S0 UniprotKB/ 
SwissProt 

UniprotKB
/TrEml 

NCBI Quercus_DB 

Uncharacterized protein, Citrus clementina 
 

V4RFD2 567852369 
  

51.0 
(6.43) 

8.8 7.7 3 S3 specific 

Uncharacterized protein, Citrus clementina 
 

V4WJB1 567923216 
  

60.8 
(7.31) 

29.3 15.6 7 S3 specific 

Uncharacterized protein, Citrus clementina 
 

V4SV61 568855345 
  

61.0 
(6.01) 

27.9 9.0 4 S3 specific 

Uncharacterized protein, Citrus clementina 
 

V4S4J1 568854377 
  

41.7 
(5.49) 

34.9 29.0 7 S3 specific 

Uncharacterized protein, Citrus clementina 
 

V4W3Z0 568830945 
  

28.2 
(10.86) 

13.5 13.5 3 S3 specific 

Uncharacterized protein, Citrus clementina 
 

V4SA43 568866546 
  

39.2 
(8.29) 

11.6 17.6 4 S3 specific 

Uncharacterized protein, Citrus clementina 
 

V4TQM7 567892811 
  

118.3 
(5.36) 

8.0 3.4 3 S3 specific 

Uncharacterized protein, Citrus clementina 
 

V4TCG4 567886976 
  

70.9 
(5.21) 

153.5 36.7 17 S3 specific 

Uncharacterized protein, Citrus clementina 
 

V4SNC1 567887042 
  

11.7 
(10.13) 

9.3 30.1 3 S3 specific 

Uncharacterized protein, Lotus japonicus 
 

I3SYP8 388514657 
  

61.9 
(5.53) 

34.7 17.4 8 S3 specific 

Uncharacterized protein, Lotus japonicus 
 

I3T2V1 388517563 
  

36.4 
(6.79) 

10.5 13.8 3 S3 specific 

Uncharacterized protein, Phaseolus vulgaris 
 

V7CZ55 593799232 
  

71.3 
(5.22) 

93.3 22.7 10 S3 specific 

Uncharacterized protein, Phaseolus vulgaris 
 

V7CGW4 593788678 
  

17.6 
(9.80) 

16.1 27.1 4 S3 specific 

Uncharacterized protein, Phaseolus vulgaris 
 

V7B3U0 593331412 
  

80.9 
(7.12) 

17.1 10.4 6 S3 specific 

Uncharacterized protein, Phaseolus vulgaris 
 

V7B0A5 593331628 
  

71.1 
(5.25) 

99.2 23.7 12 S3 specific 

Uncharacterized protein, Prunus persica 
 

M5W737 595841933 
  

64.4 
(5.97) 

66.3 29.3 12 S3 specific 

Uncharacterized protein, Prunus persica 
 

M5WXC0 595967112 
  

59.6 
(6.15) 

18.6 12.4 6 S3 specific 

Uncharacterized protein, Prunus persica 
 

M5XEK3 596147928 
  

46.6 
(5.80) 

50.6 36.8 11 S3 specific 

Uncharacterized protein, Prunus persica 
 

M5VPZ0 595804508 
  

46.7 
(5.58) 

56.3 36.0 11 S3 specific 

Up-accumulated in S3 (Quantitative differences) 
          

Oxidative stress 
          

AT1G65980.1_ thioredoxin-dependent peroxidase 1 _HC, 
Quercus rubra    

QRU798_35 Oxidoreductase 
16.6 

(7.97) 
34.6 33.3 4 2.34 



 
 

Protein description (close species) 
Accession 

Specific function Mr(pI) Scores 
Cov 
(%) 

Peptides 
Machet 

Ratio S3/S0 UniprotKB/ 
SwissProt 

UniprotKB
/TrEml 

NCBI Quercus_DB 

Miscellaneous           

AT1G09620.1_ ATP binding;leucine-tRNA ligases;aminoacyl-
tRNA ligases, Quercus robur 

   QRO6584_49 Translation 
75.1 

(6.19) 
14.5 21.4 5 2.26 

AT3G14290.1_ 20S proteasome alpha subunit E2 _HC, Quercus 
petraea    

QP547_45 Proteolysis 
28.2 

(4.88) 
18.0 22.9 4 2.50 

AT3G55440.1_ triosephosphate isomerase _HC, Quercus rubra 
   

QRU489_20 
Carbohidrate 
metabolism 

27.3 
(6.55) 

39.1 32.6 6 2.81 

AT1G11860.1_ Glycine cleavage T-protein family _HC, Quercus 
petraea    

QP518_18 
Amino acid 
metabolism 

25.3 
(9.11) 

18.4 18.8 4 2.08 

Unknown 
          

Uncharacterized protein,Thellungiella salsuginea 
 

V4M1C4 567199488 
  

46.7 
(5.80) 

27.7 25.0 6 4.21 

Uncharacterized protein LOC101299909 isoform 2, Fragaria 
vesca subsp. Vesca   

470106648 
  

15.5 
(9.20) 

27.6 21.7 3 2.03 

Putative uncharacterized protein, Medicago truncatula 
 

B7FHH0 217071678 
  

17.7 
(6.20) 

17.7 25.0 3 2.18 

a Blastp result homology of 75% and 10-10 evalue 
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Abstract 

The changes in the phosphoproteome profile during the germination and development of Q. ilex 

seedlings were analyzed by multiplex-staining of high-resolution 2-DE gels. SYPRO-Ruby 

staining was used to reveal total protein spots and Pro-Q DPS for identifying phosphoprotein 

spots. By this double staining of gels it is possible the quantification of changes in 

phosphoprotein abundance and the detection of changes in phosphorylation status that are 

independent of total protein abundance. A total of 222 consistent proteins and phosphorylated 

in gel resolved spots were subjected to quantitative analysis. Among them, 55 phosphoprotein 

spots were differentially accumulated and 20 putative phosphoproteins were identified by 

MALDI TOF-TOF analysis. They were representative of five functional categories: carbohydrate 

and amino acid metabolism, defense, protein folding and oxidation-reduction processes. Among 

20 putative phosphoproteins identified, seven showed changes in phosphorylation status. The 

most important proteins in this group were proteins related to glycolysis and biosynthesis of 

secondary metabolites from metionine. Phosphoproteome analysis detected an increase in 

these pathways from mature seeds to germinated seeds and seedling. In contrast, the total 

proteome analysis did not detect changes in abundance of these proteins between mature 

seeds to germinated seeds.  
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4.1. Introduction 

Protein phosphorylation is one of the first and best-studied post-translational 

modifications (PTMs). These modifications increase the functional diversity of the proteome by 

the covalent addition of functional groups or proteins (phosphorylation, glycosylation, 

ubiquitination, nitrosylation, methylation, acetylation, lipidation), proteolytic cleavage of 

regulatory subunits or degradation of entire proteins and influence almost all aspects of normal 

cell biology and pathogenesis 1. In the Ch. 1 (General Introduction), the biological relevance and 

methodology used to study phosphoproteins were briefly described. 

Phosphorylation is a ubiquitous and reversible PTM, and it is an essential key 

regulator of intra-cellular biological processes that influence both the folding (conformation) 

and function of proteins 2-4. Phosphorylation events modulate a wide range of biological 

pathways in plants and other organisms 5. In eukaryotes, protein phosphorylation occurs 

predominantly on serine (Ser) and threonine (Thr) residues, whereas phosphorylation on 

tyrosine (Tyr) residues is less abundant 6. The characterisation of the phosphoproteome 

includes the detection and identification of phosphoproteins and phosphopeptides, localisation 

of the exact phosphorylation sites and the quantitation of phosphorylation status, which can be 

performed by gel based and gel free approaches. There are several strategies for detecting 

phosphoproteins (p. 27-30). Radioactive labelling of proteins with 32P isotope, the first method 

developed, immunochemical techniques by using phosphospecific antibodies to 

phosphotyrosine (P-Tyr), phosphothreonine (P-Thr) and phosphoserine (P-Ser) 7-8, and 

staining protocols to reveal phosphoproteins such as Pro-Q Diamond phosphoprotein gel 

staining (Pro-Q DPS) 9, are all well known strategies for the detection of phosphoproteins.  

Mass spectrometry (MS) can be then used for the identification of phosphoprotein 

(top-down) or phosphopeptides (botton-up). However, phosphopeptides are notoriously 

difficult to analyse by MS, especially in the presence of the non-phosphorylated counterpart. 

The main challenges in analysing protein phosphorylation by MS, compared with proteomic 

analysis, is the low stoichiometry of phosphorylated proteins arising from the fact that only a 

small fraction of the protein will exist in a particular phosphorylated form, the lability of P-Ser 

and P-Thr residues when subjected to collision-induced dissociation (CID) and the 

phosphorylation being a reversible modification 10-11. MS can hence become biased toward high 

abundant sample components, if a previous enrichment of phosphopeptides is not incorporated 

to the methodology 11-12.  

Lower ionisation efficiency of phosphopeptides resulting in lower signal intensities in 

the presence of non-phosphorylated peptide ions is also another obstacle difficulting the 

detection of phosphorylation sites 13. Although phosphopeptides can be identified by LC-MS/MS 
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analysis, the identified phosphorylation site is sometimes ambiguous. This constitutes a 

problem for phosphopeptide identification by MS because the O-phosphate bond in Ser- and 

Thr-phosphorylated peptides is labile during ionization, resulting in a neutral loss of 

phosphoric acid from the precursor ion. In brief, while some methods are more efficient for 

phosphopeptide identification, other are superior for localisation of phosphorylation sites 14. It 

is important to mention that “in vitro” analysis is greatly contributing to the study of protein 

phosphorylation and phosphorylation sites. This approach permits to identify consensus 

sequences containing phosphorylation sites for a specific protein kinase 15, as those listed in 16 

Phosphorylation is involved in the regulation seed germination and seedling 

development 17. Several reports indicate that the effect of ABA in seed germination and other 

process is mediated by a signaling cascade transduction pathway in which phosphorylation of 

proteins has a principal role (Fig. 1.3 p. 16) 18-20. Quantitative and qualitative profiling of 

phosphoproteins expressed during seed germination and seedling development have been 

performed using different proteomic approaches (gel based and gel-free) in different plant 

species such as Arabidopsis thaliana 21-23, Medicago truncatula 23-24, Phaseolus vulgaris 25, Zea 

mays 26and Oryza sativa 17; 27. It is important to highlight that to the best of our knowledge, all 

previously investigated species produced orthodox seed and no report on phosphoproteomic 

analysis of non-orthodox or recalcitrant seeds has been published. 

The Q. ilex seed germination and seedling development have been analysed by 

transcriptomics (Ch. 4 and 5) and proteomics (Ch. 6); in addition the sugars and 

phytohormones contents were measured (Ch. 4). In an attempt to complement these results, 

the dynamic protein phosphorylation changes during seed germination and seedling 

development were analysed using multiplex-staining of high-resolution 2-DE gels for total 

protein (SYPRO-Ruby) and phosphoproteins (Pro-Q DPS), which allow to quantify changes in 

overall abundant protein phosphorylation status in analysed processes. Herein, a 

phosphoproteome map of embryo axes of Q. ilex during germination was established and 

putative phosphorylated proteins associated to the regulation of germination and seedling 

development were identified. 

4.2. Materials & Methods 

4.2.1 General considerations 

Embryo axis and seedlings were analysed at the following stages: S0, S3 and S7 (Fig. 

3.3, p. 47). The plant material, sampling, total protein extraction, protein quantification, 

fractionation by 2-DE electrophoresis and protein identification by using MALDI TOF/TOF 
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were performed as described in materials and methods of Ch. 6 (p. 127). Specific 

methodologies for this chapter are given below. 

4.2.2. Detection of phosphoproteins and total proteins and image analysis of 2-

DE gels 

All staining and washing steps were performed with continuous and gentle agitation 

at room temperature on an orbital shaker at 50 rpm. The workflow is showed in Fig. 7.1. For 

phosphoprotein detection, 2-DE gels were stained as reported by 28. Gels were fixed with a 

solution containing 50% methanol and 10% acetic acid (2 x 30 min), and were then washed 

twice for 10 minutes with deionised water. Gels were subsequently stained in the dark with 

Pro-Q DPS solution (Molecular Probes, Invitrogen) for 2 hours and then destained with a 

solution containing 50mM sodium acetate (pH=4) and 20% acetonitrile (4 x 30 min) to remove 

gel-bound nonspecific staining. Images were acquired with Molecular Imager FX (Bio-Rad 

Laboratories, Inc.) at excitation/emission wavelengths of 532/555 nm. Gels were then washed 

with deionised water (2 x 10 min) and stained with SYPRO-Ruby (Molecular Probes, 

Invitrogen) as described 29. The gels were destained with a solution containing 10% methanol, 

7% acetic acid (2 x 30min) and were finally washed with deionised water prior to image 

capture with the Molecular Imager FX (Bio-Rad Laboratories) at excitation/emission 

wavelengths of 478/640 nm. 

Gel image (Pro-Q DPS and SYPRO-Ruby) analysis was performed with PDQuest 8.0.1 

software (Bio-Rad) as described in Ch. 6 (p. 128). To eliminate false positive phosphoprotein 

spots, a normalisation of detected spot in Pro-Q DPS contrasted against positive and negative 

phosphoprotein markers was performed as described 30(Fig 7.1). A molecular weight standards 

marker (Bio-Rad) containing one phosphorylated protein (ovalbumin, 45.0 kDa) and nine 

unphosphorylated proteins was used as a positive (PM) and nine negative phosphoprotein 

markers (NM), respectively. A comparison was performed between the ratio of consistent spot 

volumes detected by Pro-Q DPS and SYPRO-Ruby in the same gels with the ratio of positive and 

negative phosphoprotein markers. 

(NMPQ/NMSR)i<(SvPQx/SvSRx)i ≥ (PMPQ/PMSR)i 

In this equation, SvPQx, NMPQ and PMPQ are the normalised spot x volume, and the 

volumes of negative and positive phosphoprotein markers, detected in gel i by Pro-Q DPS 

staining respectively; and SvSRx, NMSR, and PMSR are the normalised spot x volume, and the 

volumes of negative and positive phosphoprotein markers detected in gel i by SYPRO-Ruby 

staining, respectively. Only spots with a ratio SvPQ/SvSR similar or higher than the ratio of 
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PMPQ/PMSR and higher than NMPQ/NMSR were considered as phosphoprotein spots in the 

statistical analysis. 

Phosphoprotein and total protein normalised spot volumes (individual spot 

intensity/normalisation factor, detailed in Ch. 6 (p. 131), calculated for each gel based on total 

quantity in valid spots, were determined and used for statistical analysis of protein expression 

levels. The web-based software NIA array analysis tool was utilized 31, to analyse 

phosphoprotein and total protein abundance values 32. The software was available online at 

http://lgsun.grc.nia.nih.gov/anova/index.html. 

4.2.3. MALDI-TOF/TOF analysis 

The phosphoprotein spots which showed statistically significant intensity differences 

were included in the analysis performed in Ch. 6 (p. 129). The MS results obtained in that 

chapter were used to perform a homology based search using the Mascot algorithm, including 

the phosphorylation of Ser, Thr and Tyr residues as dynamic modification. 

4.2.4. BLAST alignment of putative phosphorylated proteins 

Identified phosphoprotein sequences downloaded from UniprotKB, NCBI nr or 

available in Quercus_DB 33 were subjected to BLAST analysis by using the phosphoprotein 

BLAST tool in the Plant Protein Phosphorylation DataBase (P3DB) 34 available at 

http://www.p3db.org/, to find orthologous proteins whose phosphorylation sites were 

described previously in other species. 

4.2.5. Functional classification of proteins 

Proteins identified by MALDI TOF/TOF analysis were extracted and classified based 

on their putative function according to Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway, using Blas2GO 35 based on BLASTp results against NCBI nr protein database (e-

value<10-3), or according to annotations in UniProtKB protein database. 
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Figure 7.1: Phosphoproteome analysis workflow by multiplex-staining of high-resolution 2-DE gels. Pro-Q 

DPS was used to reveal phosphoproteins and SYPRO-Ruby for total proteins. 
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4.3. Results and discussion 

The phosphoproteome changes which occur during holm oak seeds germination and 

seedling growth were analysed in embryo axes of mature (S0, unimbibed seeds) and 

germinated seeds (S3, radicle emergence) and in the whole seedling (S7). Similar analyses have 

been described in some model species including Arabidopsis, rice, soybean, rapeseed and maize 

17; 26; 36. By using the workflow described in (Fig. 7.1), the phosphoproteins were revealed in 2-

DE gels by using Pro-Q DPS. Total proteins were detected in the same gel by using SYPRO-Ruby 

staining. The 2-DE gel images were analysed with PDQuest 8.0 software. Only consistent spots 

were considered for further statistical analysis.  

 

Figure. 7.2: A virtual 2-DE gel showing the protein profile of Q. ilex mature seed embryo axis (S0 stage) 

obtained by successive Pro-Q DPS and SYPRO-Ruby staining. Proteins stained with SYPRO-Ruby appear in green, 

while Pro-Q DPS stained proteins appear in red. The statistically significant differential phosphoprotein spots were 

indicated with circles for quantitave differences and with triangles for qualitative (absence/presence) differences. 

Numbers in red indicate the protein spots that were identified by MALDI TOF/TOF.  

Protein and phosphoprotein spots detected in protein extracts of dry mature seeds 

(S0), germinated seeds (S3) and seedlings (S7) are shown in Table 7.1. A total of 482 protein 
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spots were resolved by SYPRO-Ruby staining, with a distribution along the different stages 

similar to that described in Ch. 6. As the phosphorylation staining is unspecific, possible false 

positives were eliminated by normalizing the phosphoprotein spot volumes against the positive 

phosphoprotein marker (PM) (Fig. 7.1). The normalisation approach allowed the detection of 

222 phosphoprotein spots by Pro-Q DPS. The phosphorylated protein spots were distributed 

evenly within the isoelectric point (pI) range 5–8 and Mr range 6–116 kDa. The percentage of 

phosphorylated proteins resolved in our experimental conditions was 46%, similar to that 

reported in other species. In example, around 500 spots were detected in germinating rice 

seeds 17 and around 300 spots in three-week-old chickpea seedlings 37. 

Table 7.1: Electrophoretic analysis of changes in the protein and phosphoprotein profile during germination 
and seedling growth. Number of spots detected by SYPRO-Ruby and Pro-Q DPS in different analyzed stages and 
number of differential spots in total protein and phosphoprotein are shown. 

Stages 

Spots 
detected by 

SYPRO-Ruby 
stain 

Spots 
detected 
by Pro-Q 

DPS 

Total number spot 
analyzed 

Spots with 
change in total 
protein profile 
(SYPRO-Ruby) 

Spots with change in phosphoprotein profile 

With changes 
phosphorylation 

status* 

Without changes in 
phosphorylation 

status* 

SYPRO 
Ruby 

Pro-Q 
DPS 

Up Down Up Down Up Down 

S0 402 205 

482 222 

6 5 4 5 6 1 

S3 412 211 - - - - - - 

S7 329 174 45 26 4 12 15 20 
Up and down accumulated proteins were calculated respect to the S3 stage 
*Phosphorylation status was considered changed when no difference was observed in SYPRO-Ruby staining but was statistically 
different in Pro-Q DPS. In contrast, it was considered unchanged when a difference was observed in both staining methods. 

Consistent phosphoprotein spots were subjected to quantitative analysis, and 55 

protein spots with statistically significant differences in Pro-Q staining intensity during 

germination and seedling development were selected (Table 7.2).  
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Table 7.2: Normalised relative volumes of phosphoproteins (Pro-Q DPS) and total protein (SYPRO-Ruby) spots 
differentially expressed in 2-DE gels. Mean ± SD of three biological replicates. nd.: not detected spot (qualitative 
differences). 

Spot 
Number 

Pro-Q DPS  SYPRO-Ruby 

S0 S3 S7 FDR  S0 S3 S7 FDR 

Phosphoproteins with changes in phosphorylation status 
Quantitative differences 

2606 1.09 ± 0.24 1.13 ± 0.16 0.34 ± 0.04 0.010  0.63 ± 0.19 0.62 ± 0.23 0.35 ± 0.05 0.144 
7502 0.10 ± 0.06 0.24 ± 0.02 0.35 ± 0.14 0.010  0.17 ± 0.04 0.19 ± 0.02 0.30 ± 0.09 0.254 
7815 0.08 ± 0.04 0.18 ± 0.13 0.36 ± 0.10 0.024  0.11 ± 0.00 0.17 ± 0.24 0.37 ± 0.10 0.271 
4107 0.75 ± 0.14 0.63 ± 0.16 0.25 ± 0.10 0.027  0.32 ± 0.03 0.30 ± 0.09 0.18 ± 0.01 0.288 
1604 nd. 0.13 ± 0.05 0.02 ± 0.03 0.028  0.07 ± 0.03 0.12 ± 0.05 0.05 ± 0.01 0.085 
2503 0.10 ± 0.03 0.12 ± 0.09 0.05 ± 0.01 0.028  0.06 ± 0.03 0.09 ± 0.04 0.06 ± 0.01 0.525 
6714 0.09 ± 0.03 0.08 ± 0.06 0.27 ± 0.04 0.028  0.06 ± 0.06 0.07 ± 0.04 0.11 ± 0.03 0.524 
8101 0.21 ± 0.08 0.15 ± 0.01 0.46 ± 0.02 0.028  0.24 ± 0.07 0.13 ± 0.07 0.18 ± 0.10 0.358 

Qualitative differences 
   

 
    

5311 0.09 ± 0.02 nd. nd. -  nd. nd. nd. - 
6309 0.12 ± 0.06 nd. nd. -  0.07 ± 0.01 0.04 ± 0.02 nd. - 
3612 0.39 ± 0.13 nd. 0.16 ± 0.05 -  0.35 ± 0.06 0.37 ± 0.22 0.23 ± 0.11 - 
7318 0.29 ± 0.07 nd. 0.54 ± 0.10 -  0.21 ± 0.06 0.34 ± 0.26 nd. - 
1711 0.14 ± 0.12 0.28 ± 0.20 nd. -  0.21 ± 0.01 0.26 ± 0.06 0.15 ± 0.01 - 
4201 0.20 ± 0.06 0.14 ± 0.09 nd. -  0.10 ± 0.00 0.15 ± 0.13 0.16 ± 0.07 - 
4304 0.27 ± 0.03 0.40 ± 0.18 nd. -  0.20 ± 0.06 0.27 ± 0.04 nd. - 
4714 0.15 ± 0.05 0.20 ± 0.06 nd. -  0.14 ± 0.05 0.13 ± 0.02 0.16 ± 0.06 - 
5012 0.31 ± 0.06 0.22 ± 0.05 nd. -  0.23 ± 0.08 0.24 ± 0.07 0.16 ± 0.04 - 
6117 0.11 ± 0.06 0.09 ± 0.03 nd. -  0.13 ± 0.03 0.12 ± 0.04 0.08 ± 0.02 - 
7713 0.08 ± 0.04 0.11 ± 0.03 nd. -  0.09 ± 0.01 0.09 ± 0.01 0.04 ± 0.01 - 
7717 0.09 ± 0.08 0.07 ± 0.05 nd. -  0.13 ± 0.04 0.05 ± 0.03 0.02 ± 0.02 - 

 Phosphoproteins without changes in phosphorilation status 

Quantitative differences 

3102 1.55 ± 0.55 0.76 ± 0.09 0.13 ± 0.04 0.000  0.22 ± 0.03 0.28 ± 0.10 0.07 ± 0.02 0.000 
3205 0.06 ± 0.01 0.00 ± 0.00 0.21 ± 0.08 0.000  0.03 ± 0.00 0.05 ± 0.02 0.12 ± 0.03 0.003 
7702 0.17 ± 0.05 0.23 ± 0.03 0.86 ± 0.10 0.000  0.20 ± 0.04 0.18 ± 0.03 0.85 ± 0.12 0.000 
4610 0.41 ± 0.10 0.49 ± 0.14 0.12 ± 0.08 0.000  0.36 ± 0.08 0.31 ± 0.05 0.07 ± 0.01 0.000 
4301 0.14 ± 0.05 0.20 ± 0.02 0.66 ± 0.17 0.001  0.15 ± 0.01 0.18 ± 0.02 0.56 ± 0.09 0.000 
8106 0.43 ± 0.02 0.37 ± 0.06 1.57 ± 0.18 0.001  0.32 ± 0.01 0.26 ± 0.06 1.00 ± 0.19 0.000 
4108 1.24 ± 0.12 0.50 ± 0.11 0.38 ± 0.29 0.010  0.38 ± 0.04 0.25 ± 0.05 0.13 ± 0.05 0.004 
5203 0.22 ± 0.11 0.21 ± 0.03 0.71 ± 0.38 0.010  0.19 ± 0.03 0.20 ± 0.05 0.54 ± 0.04 0.000 
4303 0.44 ± 0.01 0.51 ± 0.17 1.38 ± 0.23 0.024  0.32 ± 0.07 0.32 ± 0.01 1.05 ± 0.05 0.000 
7810 0.21 ± 0.08 0.00 ± 0.00 0.53 ± 0.11 0.024  0.22 ± 0.04 0.22 ± 0.04 0.49 ± 0.18 0.036 
3609 0.73 ± 0.28 0.77 ± 0.16 0.27 ± 0.05 0.028  0.59 ± 0.16 0.59 ± 0.06 0.26 ± 0.07 0.011 
5604 0.34 ± 0.04 0.51 ± 0.20 0.16 ± 0.03 0.028  0.34 ± 0.06 0.29 ± 0.06 0.11 ± 0.02 0.001 
7401 0.45 ± 0.15 0.42 ± 0.10 1.20 ± 0.26 0.028  0.22 ± 0.03 0.26 ± 0.07 0.52 ± 0.07 0.025 

Qualitative differences 
   

 
    

3206 nd. nd. 0.52 ± 0.03 -  nd. 0.03 ± 0.06 0.35 ± 0.08 - 
5206 nd. nd. 0.49 ± 0.06 -  0.08 ± 0.07 0.10 ± 0.03 0.49 ± 0.09 0.000 
5313 nd. nd. 0.25 ± 0.08 -  0.03 ± 0.05 0.01 ± 0.02 0.22 ± 0.08 0.000 
6120 nd. nd. 0.35 ± 0.17 -  nd. 0.04 ± 0.05 0.18 ± 0.03 0.015 
7305 nd. nd. 0.70 ± 0.12 -  0.23 ± 0.05 0.22 ± 0.05 0.53 ± 0.06 0.007 
1303 0.58 ± 0.24 0.63 ± 0.05 nd. -  0.13 ± 0.06 0.17 ± 0.03 0.07 ± 0.01 0.040 
3103 0.62 ± 0.07 0.44 ± 0.30 nd. -  0.57 ± 0.04 0.40 ± 0.27 0.01 ± 0.02 0.000 
3507 0.42 ± 0.13 0.65 ± 0.28 nd. -  0.58 ± 0.06 0.55 ± 0.10 0.17 ± 0.03 0.000 
4103 0.76 ± 0.04 0.38 ± 0.10 nd. -  0.47 ± 0.04 0.31 ± 0.08 0.03 ± 0.03 0.000 
4405 0.18 ± 0.08 0.12 ± 0.08 nd. -  0.18 ± 0.03 0.16 ± 0.03 0.05 ± 0.03 0.000 
5003 0.87 ± 0.65 0.58 ± 0.22 nd. -  0.73 ± 0.15 0.59 ± 0.13 0.14 ± 0.03 0.000 
6003 0.47 ± 0.18 0.35 ± 0.02 nd. -  0.42 ± 0.23 0.48 ± 0.09 0.02 ± 0.02 0.000 
8204 0.36 ± 0.12 0.33 ± 0.19 nd. -  0.11 ± 0.02 0.20 ± 0.05 0.00 ± 0.00 0.021 
6215 nd. nd. 0.45 ± 0.08 -  nd. nd. 0.38 ± 0.11 - 
4207 0.31 ± 0.04 0.18 ± 0.35 nd. -  0.18 ± 0.02 0.06 ± 0.07 nd. - 
2612 0.12 ± 0.03 0.20 ± 0.17 nd. -  0.07 ± 0.01 0.10 ± 0.04 nd. - 
2708 0.20 ± 0.09 0.42 ± 0.49 nd. -  0.16 ± 0.04 0.15 ± 0.04 nd. - 
3301 0.67 ± 0.24 0.43 ± 0.11 nd. -  0.17 ± 0.06 0.17 ± 0.08 nd. - 
7015 0.33 ± 0.19 0.10 ± 0.07 nd. -  0.15 ± 0.06 0.10 ± 0.03 nd. - 
7319 0.27 ± 0.08 0.21 ± 0.08 nd. -  0.17 ± 0.04 0.16 ± 0.05 nd. - 
8108 0.15 ± 0.11 0.14 ± 0.04 nd. -  0.18 ± 0.02 0.13 ± 0.04 nd. - 
8128 0.07 ± 0.05 0.08 ± 0.03 nd. -  0.09 ± 0.02 0.10 ± 0.04 nd. - 

                    

Two-dimensional biplots indicating associations between experimental samples and 

protein spots were generated (Fig. 7.3) by principal component analysis (PCA) in NIA array 

analysis tools. PCA results showed that the first (PC1) and the second (PC2) components 

explained 88.57% and 11.42% of the total variability, respectively. Samples from different 
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stages (Fig. 7.3A) and phosphoprotein spots (Fig. 7.3B) were plotted in PC1 and PC2 spaces. 

The consistent phosphorylated spots were sufficiently different to establish groups among the 

analysed tissues and even between mature and germinated seeds. The three analyzed stages 

were separated among them; the first component separated stages S0 and S3 from S7, and the 

second component separated the three stages. After this rigorous statistical analysis to 

eliminate false positives, the 55 phosphoprotein spots were selected for MALDI-TOF/TOF 

analysis.  

 

Figure. 7.3. Principal component analysis plots. (A) Representation of the samples based on the main principal 
components found after PCA. (B) Plot component PC1 vs PC2 of differentially expressed spots among three analysed 
stages. 

To avoid considering as differentially phosphorylated those protein spots with 

differential accumulation of total protein, an ANOVA analysis was performed on the normalised 

volume of consistent spots detected with SYPRO-Ruby staining gels and the results were 

compared with differential spots obtained by Pro-Q DPS. Based on this ANOVA results 

comparison, we identify 20 out of 55 putative differentially phosphorylated proteins with no 

differences in total protein profile (Fig. 7.4, Table 7.2). Data indicated that these 20 protein 

spots have quantitative (8 spots) or qualitative (12 spots) alterations in phosphorylation levels 

during germination. In contrast, the other 35 spots, whether showing quantitative and 

qualitative differences, differed in both Pro-Q DPS and SYPRO-Ruby staining intensities and 

were denoted as phosphoproteins without changes in phosphorylation status (Table 7.2).  
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Figure 7.4. Representative 2-DE phosphoproteome profiles of Q. ilex embryos during germination and 

seedling. The gels were successively stained with Pro-Q DPS and SYPRO-Ruby as indicated in the figure and the 

images captured and analysed. Arrows indicate the identified proteins and the colors indicate the changes in 

phosphorylation status (green) or in protein levels (red). 

4.3.1 Phosphoprotein identification 

After MALDI-TOF/TOF analysis, a total of 20 proteins were identified, corresponding 

seven protein spots to proteins with changes in their phosphorylation status. The other 13 

spots were considered as phosphoproteins with changes in abundance but not in their 

phosphorylation status. These identified proteins are listed in Tables 7.3 and 7.4 (Appendixes 

of this chapter), where appeared grouped in the following functional categories, based in the 

KEGG pathways database.  

To investigate whether these 20 phosphoproteins had been previously identified in 

other species or biological process, as a way to ensure that they are phosphorylated proteins, 

we used the BLAST tool in the Plant Protein Phosphorylation DataBase (P3DB; 

http://www.p3db.org/)23. With the single exception of the phosphoprotein spot number 3103, 

a putative cyclase family protein, the other Q. ilex proteins had at least one orthologous 

phosphoprotein in A. thaliana, M. truncatula, Nicotiana. tabacum and Glycine max. Table 7.5 

(Appendixes of this chapter) list the orthologous proteins and their host species 5; 21-22; 38-42.  

We try to identify by MALDI TOF/TOF analysis the phosphorylation sites in the 

peptides used to identify the phosphorylated proteins. The phosphorylation sites were 

identified in two phosphopetides sequences based on Mascot probability score of 95%. One of 
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the phosphorylation sites was found in Ser379 present in the full length sequence of the protein 

pyruvate decarboxylase assigned to the spot 5604. This phosphorylation site corresponded to 

Thr380 pyruvate decarboxylase of Arabidopsis. The other phosphorylation site identified was 

Ser378 in the full length amino acidic sequence of 5-methyl-tetrahydropteroyl-triglutamate-

homocysteine methyltransferase like, identified in the spots 7702. Two phosphorylation sites 

(Tyr698 and Ser702) has been described for this protein in Arabidopsis.  

The identification of only these two phosphopetides in the current study may be 

attributed to the methods used in MS analysis. The fragmentation of P-Ser- and P-Thr- 

phosphopeptides by CID in a MS frequently results in the loss of phosphoric acid from the full-

length peptide, which complicates the confident assignment of the phosphorylation site to a 

particular residue in the peptide 6; 14. As Ser is one of the preferred phosphorylation sites in 

identified phosphopeptides in plants 5; 21; 26, probably we identified these two phosphosites 

because of their abundance. 

4.3.2. Functional relevance of differentially phosphorylated proteins 

Most of the proteins with altered phosphorylation status along the germination 

process (Table 7.3) were included in the carbohydrate metabolism category, and they showed 

their lowest phosphorylation state in unimbibed seeds. Similar results were reported in 

phosphoproteome analysis of rice germination 17. In contrast, phosphoproteins related to 

amino acids metabolism and protein folding showed their highest values in the seedling 

samples. 



 
 

Table 7.3.  List of identified phosphoprotein spots in 2-DE with changes in phosphoprotein status. 

Spot 
numbera 

Protein name 
Accession 
numbersb 

Mr (pI) MOWSE 
scoree 

Peptide 
matches 

Seq 
 cov (%) 

Fragmented ion  (Ion Score) 
Normalised spot 

volume intensitiesf 
Theor.c Exp.d 

Carbohydrate metabolism 

7502 
Pyrophosphate-dependent 
phosphofructokinase beta subunit. Citrus 
sinensis x Citrus trifoliata 

A9YVC9 
62.0 
(6.3) 

53.8 
(6.8) 

283 17 22 
DKIETPEQFK (59) 
STGKYYHFVR (45) 
YYHFVR (37) 
GQSHFFGYEGR (83)  

7318 
Phosphoglycerate kinase_AT1G79550.1, 
Quercus rubra 

QRU405_58 
43.5 
(6.7) 

40.0 
(7.1) 

231 11 51 

YSLKPIVPR (31) 
VILSTHLGRPK(30) 
FLKPAVAGFLMQK(21) 
LVAEIPEGGVLLLENVR(26) 
LASLADLYVNDAFGTAHR (49)  

4304 
Glucose-1-phosphate 
adenylyltransferase, Vitis vinífera 

D7TDB6 
56.2 
(6.5) 

37.4 
(6.1) 

350 26 38 
VDTTILGLDDER (59) 
KPVPDFSFYDR (71) 
SSPIYTQPR (41) 
IINSDNVQEAAR (40) 

 
Amino acid metabolism 

3612 
Glutamate decarboxylase_AT2G02010.1, 
Quercus spp. 

TC19169_4
1 

58.0 
(5.9) 

50.2 
(6.1) 

208 12 45 
VVIREDFSR (30) 
ETPEEIATYWR (53) 
GSSQIIAQYYQFVR (69) 
NYVDMDEYPVTTELQNR (46)  

Protein folding 

2606 
Heat shock protein 60_AT3G23990.1. 
Quercus spp 

TC33448_3
9 

63.9 
(5.6) 

68.1 
(5.8) 

436 11 23 

AGIIDPVKVIR (51) 
IGVQIIQNALK (91) 
NVVIEQSWGAPK (82) 
GYISPYFITNQK (73) 
SDEIAQVGTISANGER (72) 
AAVEEGIVPGGGVALLYASK (75)  

UnKnown 

4107 Unknown protein A9PFJ3 
29.5 
(6.2) 

20.2 
(6.3) 

169 9 35 
LQGNYYFQEQLSR (95) 
GSSIWYGCVLR (29) 

 

1711 
Cell division protein ftsH, putative, 
Ricinus communis 

B9S304 
75.5 
(6.4) 

78.7 
(5.7) 

224 21 26 
FLEYLDKDR (48) 
VRVQLPGLSQELLQK (3) 
SSGGMGGPGGPGFPLAFGQSK (53) 
ADILDSALLRPGR (17) 

 
a Spot number as given on the 2-D gel images in Fig. 7.2 
b Uniprot and Quercus_DB accessions numbers. The accession whose first letters were TC and QRU correspond to Quercus_DB 
c Molecular weight (KDa) and isoelectric point of each database 
d Molecular weight (kDa) and isoelectric point calculated by using molecular weight standards and the PD-Quest Advance (8.01) software. 
e Mascot score (S=−10×log (P)):where P is the probability that the observed match is a random event, peptide matched in MS analysis, percentage of sequence coverage and ions sequence matched from MS/MS analysis. 
f The bar charts represent the normalised spot volume intensities vs analysed stages. 
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Phosphorylation and dephosphorylation of metabolic enzyme may regulate 

carbohydrates metabolism and mobilization during seed germination, and constitute an 

important pathway to provide energy during early seedling development. The proteins with 

changes in their phosphorylation status were mainly involved in glycolysis: pyrophosphate-

dependent phosphofructokinase (PPi-PFK, spot 7502), phosphoglycerate kinase (PGK, spot 

7318) and glucose-1-phosphate adenylyltransferase (AGP, spot 4304) (Tabla 7.3 and Fig. 7.5).  

PPi-PFK is an exclusively cytosolic enzyme that catalyzes the phosphorylation of 

fructose-6-phosphate to fructose-1,6-bisphosphate in the glycolytic direction, using inorganic 

pyrophosphate as the phosphoryl donor. This process makes fructose flows into glycolysis to 

provide energy. PGK catalyzes the conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate, 

the first substrate-level phosphorylation reaction in the glycolytic pathway for production of 

ATP. AGP catalyses the synthesis of ADP-glucose, which is the active glucoside for starch 

synthesis (Fig. 7.5).  

 

Figure 7.5: Carbohydrate metabolic pathway showing proteins with a change in phosphorylation (indicated 
by green circle). The bar charts represent the normalised spot volume intensities vs analysed stages of each protein. 

Overall, the phosphorylation states of these three enzymes increased along the 

germination process. Phosphorylation modification of many glycolytic enzymes has been to 

cause a significant increase in enzyme activity 43, increasing the glycolysis rate and the 

generation of energy to afford the needs of the developing seedlings. These results are in 

agreement with previous studies on rice germination and seedling 5; 17; 27. In addition, they are 

supported by data of sugars content measurements of Ch.4. 
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Other glycolysis enzyme, pyruvate decarboxylase (Table 7.4), showed decreased 

abundance as germination and seedling establishment progressed, but no changes in their 

phosphorylation status were detected in this work. Pyruvate decarboxylase (PDC) catalyzes the 

decarboxylation of pyruvate to yield CO2 and acetaldehyde, which is then reduced to ethanol by 

alcohol dehydrogenase. Phosphorylation of PDC increases its activity and redirect pyruvate to 

alcoholic fermentation. We not detected changes in its phosphorylation levels, in contrast with 

previous reports on rice germination, where the phosphorylation status of the two enzymes 

increased 17. However, the results presented here would better explain the use of pyruvate in 

glycolysis, not in fermentation, something that probably should be avoid in a developmental 

organisms like a germinating seed. 

Glutamate decarboxylase (GDC) (Table 7.3) is an enzyme that catalyzes the 

decarboxylation of glutamate to GABA and CO2. GABA, as a non-protein amino acid, is involved 

in various stress tolerances in plants and has been described to accumulate in germinating 

seeds of rice and tomato 44-45. Some isoforms of this enzyme result inhibited by phosphorylation. 

If applicable to GDC, the reduction in its phosphorylation status observed here might imply an 

increase in the activity of this enzyme, to eliminate the excess of glutamate and glutamine 

originated by the high rates of stored proteins degradation occurring during germination.  

Proteins like 5-methyltetrahydropteroyltriglutamate homocysteine methyltransferase 

like and S-adenosylmethionine synthase 2, increased their abundance and their 

phosphorylation status along the germination process (Table 7.4). These enzymes are involved 

in the utilization of amino acids produced from the breakdown of storage proteins by proteases 

for the de novo biosynthesis of amino acids and proteins and the synthesis of many other 

metabolites. The de novo biosynthesis of Met is catalysed by 5-

methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase. Met is a fundamental 

metabolite because it functions not only as a building block for protein synthesis but also as the 

precursor of S-adenosylmethionine (SAM), the universal methyl-group donor. SAM synthase 

catalyses the conversion of Met in SAM, the precursor of the ethylene and the 

spermidine/spermine biosynthesis pathways. SAM synthetase is considered a key regulator of 

metabolism in the transition from a quiescent to a highly active state during Arabidopsis seed 

germination 46.  

The phosphorylation status of heat shock proteins (HSPs), involved in protein folding, 

has been described to decrease during rice germination 17. In agreement with that, HSP60 

showed high levels of phosphorylation in non-imbibed (S0) and germinated seeds (S3), and 

then decreased levels in seedling development (S7).  

http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Glutamate
http://en.wikipedia.org/wiki/GABA
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Germination is a rehydration process in which the levels of oxidative stress increase 

and result in the production and accumulation of reactive oxygen species (ROS) 47. In rice, 

oxidation-reduction enzyme glutathione S-transferase (GST) was found to be phosphorylated 

during seedling development, and retaining high enzyme activity even though its protein 

abundance was significantly decreased 17. We found here the decrease in GST transcripts and 

proteins abundance described in previous chapters of this work is accompanied by a parallel 

diminution in the level of its phosphorylation.  

4.4. Concluding remarks 

We have used here a combination of Pro-Q DPS/SYPRO-Ruby differential staining 

methodology to obtain from the same 2-DE gel the phosphoproteins and total proteins profiles 

of Q. ilex germinating seeds. 

Over 200 putative phosphoproteins spots were detected by this method. Among them, 

20 proteins exhibited significant changes in their phosphorylation status, of which seven were 

identified. A further 35 phosphoproteins exhibited statistically significant changes in the total 

protein levels, of which 13 were identified. The identified 20 phosphoproteins could be 

classified into the following five functional categories: carbohydrate and amino acid 

metabolism, defence, protein folding and reduction-oxidation. Alterations in phosphorylation 

status of proteins related to glycolysis and secondary metabolites biosynthesis from Met, 

indicated that these pathways increased from mature seeds to germinated seeds and seedling. 

Although only a small part of the phosphoproteome was covered and analysed, integration of 

data obtained from total proteome analysis and phosphoproteomics analysis suggested that 

metabolic machinery present in the recalcitrant seeds receives an activation signal to activate 

and resume the most important metabolic pathways (the glycolysis) in Q. ilex to start the 

germination and the establishment of the seedlings.  



 
 

4.5. Appendixes 

Table 7.4.  List of identified phosphoprotein spots in 2-DE without changes in phosphorylations status  

Numbersa Protein name 
Accession 
numbers 

Mr (pI) 
MOWSE 
score e 

Peptide 
matches 

Seq  
cov (%) 

Fragmented ion (Ion Score) 
Normalized spot 

 volumen intensitiesf Theor.c Exp.d 

Carbohydrate metabolism 

4610 
Pyruvate 
decarboxylase. Prunus 
armeniaca 

B0ZS79 66.2 (5.7) 
61.9 
(6.2) 

235 12 23 ILHHTIGLPDFSQELR(124) 
EPVPFSLSPR(69) 

 

3609 
Phosphoglycerate 
mutase_AT1G09780.1.  
Quercus petraea 

QP1063_77 61.0 (6.0) 
60.5 
(6.0) 

476 10 25 

DAILSGKFDQVR (46) 
FGHVTFFWNGNR (77) 
AFEYEDFDKFDR (67) 
LPSHYLVSPPEIDR (78) 
GTLHLIGLLSDGGVHSR (98) 
IQILTSHTCQPVPIAIGGPGLAPGCR (88) 
AHGSAVGLPTEDDMGNSEVGHNALGAGR (31)  

5604 

Pyruvate 
decarboxylase. 
putative. Ricinus 
communis 

255563082 64.2 (5.9) 
61.1 
(6.3) 

112 2 4 
ILHHTIGLPDFSQELR (97) 
IFVPSGVPLK (22) 
Phosphorilated S379 g 

 

3507 

Beta glucosidase 
17_AT2G44480.1, 
Quercus spp. 
 

QRO15180_40 47.8 (5.2) 
60.3 
(6.2) 

119 10 48 GAYDFIGVNYYTSR (103) 

 

Amino acid metabolism         

7702 

5-
methyltetrahydropter
oyltriglutamate--
homocysteine 
methyltransferase-like. 
Solanum lycopersicum 

460407874 85.0 (6.0) 
82.5 
(7.0) 

304 4 6 

YLFAGVVDGR(76) 
ALSGAKDEAFFSANAAAQASR(41) 
Phosphorilated S378g 
EGVKYGAGIGPGVYDIHSPR (64) 
YGAGIGPGVYDIHSPR(122) 

 

4303 

S-adenosylmethionine 
synthase 2 , Elaeagnus 
umbellata  
 

Q9AT55 43.6 (5.5) 
47.0 
(6.2) 

650 22 44 

TIGFVSDDVGLDADNCK (83) 
VLVNIEQQSPDIAQGVHGHFTK(97) 
TQVTVEYYNDKGAMVPVR(17) 
TIFHLNPSGR(61) 
FVIGGPHGDAGLTGR(110) 
FVIGGPHGDAGLTGRK (89) 
TAAYGHFGR (79)  



 

Numbersa Protein name 
Accession 
numbers 

Mr (pI) 
MOWSE 
score e 

Peptide 
matches 

Seq  
cov (%) 

Fragmented ion (Ion Score) 
Normalized spot 

 volumen intensitiesf Theor.c Exp.d 

3103 
Putative cyclase family 

protein, Arachis 
hypogaea 

C0L2U1 
31.5 

(5.04) 
30.7 
(6.5) 

79 8 28 IFDISHR (36) 

 

Oxidation-reduction process 

4103 

Glutathione S-
transferase 
omega_D6BR66, 
Quercus spp 

TC18312_19 28.2 (6.6) 
26.0 
(6.0) 

75 8 36 
LYISLSCPYAQR (24) 
EAGPAFDHLENALSK (14) 
WIEEVNKIDAYKPTK (11) 
YIDSNFEGPSLLPNDHAK (24) 

 

5003 

Putative 
uncharacterized 
protein (Glutathione-s-
transferase 
theta_B9T0U8),Vitis 
vinífera 

D7TP00 24.9 (6.2) 15.3(6.6) 107 6 22 NPFGQIPVLEDGDLTLFESR (38) 
AWWEDISSRPAFK (46)   

 

6003 

Manganese superoxide 
dismutase 
1_AT3G10920.1, 
Quercus spp 

TC29211_11 19.3 (7.9) 
15.4 
(6.8) 

126 5 55 
HHQAYITNYNK (73) 
FNGGGHINHSIFWK (42) 
KLVVDTTANQDPLVTK(2) 

 

RNA metabolism 

1303 
DEAD box RNA 
helicase, Pisum 
sativum  

Q8H1A5 47.1 (5.4) 
49.6 
(5.6) 

258 24 46 

GIYAYGFEKPSAIQQR (60) 
ILSSGVHVVVGTPGR (28) 
VFDMLRR (16) 
MFVLDEADEMLSR (11) 
VLITTDLLAR (21) 

 

Stress response 

4108 

Aluminium induced 
protein with YGL and 
LRDR 
motifs_AT3G22850.1. 
Quercus spp. 

TC18137_21 27.8 (7.0) 
20.7 
(6.3) 

141 5 27 
GCFFTSSGGLR(31) 
FAFILYDSSSK (49) 
SYEHPLNEVKPVPR (58) 
SPEALQSPQSGSVSTLK (4) 

 

Unknown 

http://en.wikipedia.org/wiki/RNA


 
 

Numbersa Protein name 
Accession 
numbers 

Mr (pI) 
MOWSE 
score e 

Peptide 
matches 

Seq  
cov (%) 

Fragmented ion (Ion Score) 
Normalized spot 

 volumen intensitiesf Theor.c Exp.d 

8106 

AT4G39230.1_ NmrA-
like negative 
transcriptional 
regulator family 
protein).Quercus robur 

QRO2324_17 36.5 (6.8) 
26.2 
(7.6) 

367 11 35 

AGHPTFALVR(67) 
VLIIGGTGYIGK(68) 
FYPSEFGNDVDR(67) 
AIFNKEDDIGTYTIK(17) 
NLGVTLVHGDLYDHGSLVK(103 
FYPSEFGNDVDRVHAVDPAK(17) 
GDHTNFEIEPSFGVEASQLYPDVK(33)  

a Spot number as given on the 2-DE gel images in Fig 7.2. 
b Uniprot, NCBI nr and Quercus_DB accessions numbers. The accession whose first letters were TC, QRU, QRO and QP correspond to Quercus_DB. The accession numbers without letters 
correspond to NCBI nr 
c Molecular weight (KDa) and isoelectric point of each database 
d Molecular weight (kDa) and isoelectric point calculated by using molecular weight standards and the PD-Quest Advance (8.01) software. 
e Mascot score (S=−10×log(P)):where P is the probability that the observed match is a random event, peptide matched in MS analysis, percentage of sequence coverage, and ions 
sequence matched from MS-MS analysis. 
f The  bar charts represent the normalized spot volume intensities vs analysed stages. 
gThe phosphorylation sites is referred to the position of amino acids in the proteins 

  



 

Table 7 5. Phosphorylation sites and close species in which the phosphoprotein identified in Q. ilex germinated seeds and seedling development were identified. 

Spot 
Number 

Protein name Protein ID Close species 
Phosphorylati

on sites 
Process in which were 

described 
References 

2606 
Heat shock protein 60 
AT3G23990.1, Quercus spp 

TC33448_39 Arabidopsis thaliana 474 S 

Phosphoproteome 
characterization of 

Arabidopsis seedlings  
shoots and rosette leaves 

using IMAC and TiO2 
phosphopeptide 

enrichment strategies 

Reiland et al. 2009 

7318 

Phosphoglycerate 
kinase_AT1G79550.1, Quercus 
rubra 
 

QRU405_58 Arabidopsis thaliana 81S 86T 87S Reiland et al.  2009 

1711 
Cell division protein ftsH, 
putative, Ricinus communis 
 

B9S304 Arabidopsis thaliana 86T Reiland et al.  2009 

1303 
DEAD box RNA helicase, Pisum 
sativum 

Q8H1A5 Arabidopsis thaliana 
76S 86S 85Y 
105S 716S 

723S 
Reiland et al.  2009 

4107 Unknown protein A9PFJ3 Oryza sativa 235S 261S 

Large-scale analysis of 
rice phosphorylation sites 

from non-stimulated 
suspension-cultured rice 

cells 

Nakagami, et al. 2010 

3612 

Glutamate 
decarboxylase_AT2G02010.1, 
Quercus spp. 
 

TC19169_41 Arabidopsis thaliana 8S 10S 13S Nakagami, et al. 2010 

4304 
Glucose-1-phosphate 
adenylyltransferase, Vitis 
vinifera 

D7TDB6 Arabidopsis thaliana 77S Nakagami, et al. 2010 

3609 

Phosphoglycerate 
mutase_AT1G09780.1,  
Quercus petraea 
 

QP1063_77 Arabidopsis thaliana 82 S 

Phosphoproteome role in 
tobacco pollen activated 
in vitro and large-scale 

phosphoproteomics  

Nakagami, et al. 2010 and 41  

3507 
Beta glucosidase 
17_AT2G44480.1, Quercus spp. 

QRO15180_40 Medicago truncatula 82 T 
Large-scale 

phosphoproteomics 
analysis in roots 

Grimsrud et al 2010 

4610 Pyruvate decarboxylase. B0ZS79 Nicotiana tabacum 380T Phosphoproteome role in Fila et al. 2012 



 
 

Spot 
Number 

Protein name Protein ID Close species 
Phosphorylati

on sites 
Process in which were 

described 
References 

Prunus armeniaca 
 

tobacco pollen activated 
in vitro 

5604 
Pyruvate decarboxylase, 
Putative, Ricinus communis 
 

gi55563082 Nicotiana tabacum 380 T 

8106 

AT4G39230.1_ NmrA-like 
negative transcriptional 
regulator family protein, 
Quercus robur 
 

QRO2324_17 Medicago truncatula 171 T 
Integrated large-scale 

approach to investigate 
changes in the 

phosphoproteome, 
proteome, and 

transcriptome that occur 
one hour after Nod factors 

treatment in Medicago 
truncatula 

Rose et al. 2012 

4303 

S-adenosylmethionine 
synthase 2 , Elaeagnus 
umbellate 
 

Q9AT55 Medicago truncatula 131 S 266 S 

4103 
Glutathione S-transferase 
omega_D6BR66, Quercus spp 

TC18312_19 Medicago truncatula 10 T 

4108 

Aluminium induced protein 
with YGL and LRDR 
motifs_AT3G22850.1, Quercus 
spp. 

TC18137_21 Arabidopsis thaliana 
215S 216S 

240S 

Whole cell suspension 
line, seedlings and seed 
maturation of rapessed, 

Arabidopsis and soybean 
phosphoproteome 

Sugiyama et al 2008, Meyer et 
al. 2012 

6003 
Manganese superoxide 
dismutase 1_AT3G10920.1, 
Quercus spp 

TC29211_11 Glycine max 173S 

Analysis of seed 
maturation in 

arabidopsis, rapeseed, 
and Soybean 

Meyer et al. 2012 

7502 

Pyrophosphate-dependent 
phosphofructokinase beta 
subunit. Citrus sinensis x Citrus 
trifoliata 
 

A9YVC9 Arabidopsis thaliana 12T 16S 
Nuclear 

phosphoproteinsanalysis  
of Arabidopsis. 

Jones et al. 2009, Reiland et al.  
2009 

5003 

Putative uncharacterized 
protein (Glutathione-s-
transferase 
theta_B9T0U8),Vitis vinífera 

D7TP00 Arabidopsis thaliana 12 S 

Large-scale 
phosphoproteome 

analysis of Arabidopsis 
cell suspension line, 

Sugiyama et al. 2008 



 

Spot 
Number 

Protein name Protein ID Close species 
Phosphorylati

on sites 
Process in which were 

described 
References 

 

7702 

5-
methyltetrahydropteroyltriglu
tamate homocysteine 
methyltransferase-like, 
Solanum lycopersicum 
 

460407874 Arabidopsis thaliana 698 Y 702 S- 

3103 
Putative cyclase family 
protein, Arachis hypogaea 

C0L2U1 No hits 
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This Doctoral Thesis is focused on Holm oak (Quercus ilex L. subsp. ballota [Desf.] 

Samp.) a dominant tree species in natural forest ecosystems over large areas of the 

Western Mediterranean Basin 1. Q. ilex forest maintenance and sustainability are facing 

important problems and challenges related to seed viability/conservation, and plant 

mortality in both adult trees and young one-year-old plants after field transplantation 

resulting from adverse environmental conditions like drought and the so-called decline 

syndrome 2.  

It is now evident that a cellular function is determined by many gene products and 

constitutes a complex network. These networks are regulated at transcriptional and post-

transcriptional level, being necessary a multidisciplinary approach integrating 

transcriptomics, proteomics, metabolomics, bioinformatics and statistical analysis. Thus, 

“omics” techniques are useful for study complex biological processes, hardly achieved with 

classical molecular biology. However, the classical techniques are not displaced by “omics” 

approaches, they are generally used to validate data generated by holistic methods.  

In the present work a multidisciplinary “omics” and metabolite analysis were 

combined to study at molecular level the germination and seedling growth of Q. ilex, to 

obtain a better understanding of molecular mechanisms involved in these processes. This 

knowledge is essential for restoration and reforestation programs with this orphan, 

recalcitrant forest tree species of great ecological importance and great economic interest. 

This Discussion attempts to integrate the changes observed at the transcriptional, 

translational and posttranslational levels, with the determinations of some metabolites 

(sugars, plant hormones) that arise or disappear in the cell as a consequence of those 

changes, to provide novel insights into the molecular pathways that could mediate seed 

germination and seedling establishment in Holm oak. Along the discussion, data will aid to 

compare the recalcitrant seeds biology whit that of orthodox seeds, much more studied at 

molecular level. 

A targeted strategy allowed to analyse a group of twelve protein coding genes 

involved in (i) desiccation tolerance (Dhn3, GolS), (ii) regulation of ABA-signalling (Ocp3, 

Skp1, Pp2c, Sdir1), (iii) metabolism (Fdh, GapdH, RbcL, Ndh6) and (iv) antioxidative defence 

(Sod1, Gst) during germination and post germination of Q. ilex seeds. In holm oak mature 

acorns it was found that, like other recalcitrant seeds, maintain a partially active 

metabolism, with high level of glycolytic (Gapdh) and mitochondrial respiratory enzymes 

(Ndh6). In contrast, mature Q. ilex seeds show some of the intracellular physiological 

characteristics of orthodox seed that included accumulation of sucrose, DHN3 and 
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transcripts involved in the synthesis of certain osmoregulator raffinose series 

oligosaccharides (GolS) and in the anti-oxidative defence (Sod1, Gst). 

Despite the high metabolic activity in mature seeds, during imbibition (at the S2), 

the transcript levels of Ndh6 and Fdh (Fig. 8.1) start to increase. This coincides with phase 

II of seed germination, which is the most critical stage in orthodox seeds 3, during which all 

necessary metabolic pathways and physiological processes are reactivated, and hence 

decision is made to initiate the germination or not. The transcriptional analysis results 

were complemented with the determination of sugars levels and plant hormones. In the 

sugar analysis, a decrease of sucrose and increase of reducing sugars like glucose or 

fructose during imbibition and germination were found. This might be associated with the 

mobilization of storage polysaccharides (starch) and increased catabolism of the glucose 

in order to satisfy the energetic and carbon request to support early seedling growth 4-6. 

The plant hormones analysis revealed a low level of ABA and high level of GA4, 

comparing with mature and dry orthodox seed 7-10, however the content of ABA and GA 

was similar to described in other recalcitrant species including Q. robur and Aviccenia 

marina 11-12. Seed germination is antagonistically controlled by the phytohormones GA and 

ABA, GA promotes seed germination and ABA blocks this process. A dynamic balance 

between synthesis and catabolism of these hormones controls the equilibrium between 

dormancy and germination 13. GAs are able to induce a range of genes which are necessary 

for modifying proteins of cell wall including α-amylase, proteases and β-glucanases, to 

promote the radicle protrusion 14-17. On the other hand cytokinins such as iP and iPR, play 

a role in many aspects of plant growth and development, (including cell division, cell 

enlargement, senescence and differentiation): and have also been implicated in favouring 

the germination and early post-germination events 18. The time-course analysis of iPR in 

the recalcitrant Q. ilex seeds showed an increase of this anti-dormancy hormones 

duringthe germination process. 

The transcriptional analyses were extended with a prospecting of differentially 

expressed genes between Q. ilex germinated seeds and seedlings. It was found that in 

germinating embryo axis the most abundant genes were related to stress response, 

transport and oxidation-reduction process. These were in good agreement and validated 

the results obtained in targeted strategy focused in some genes. High transcript level of 

Lea5 was found, which together with the Dhn3, are protective molecules 19-20. The up-

accumulation of an endoglucanase in germinated seeds could be related to the high levels 

of GA4. In previous study was described that GAs induce genes related to cell wall 
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modification 21. Genes over-expressed in seedlings, were mainly implicated in the 

transition switch from the heterotrophic to photoautotrophic metabolism and the 

biosynthesis of secondary metabolites. In the seedlings an increase of RbcL(Fig. 8.1)the 

transcript and protein levels were found by RT-qPCR and immunoblotting analysis was 

found, along with the up-accumulation of transcripts of chlorophyll a/b binding protein, 

photosystem I reaction centre and coproporphyrinogen-III oxidase, all of them  implicated 

in carbon fixation or photosynthesis 22. 

Given that proteins are direct executors of the genetic information and they are 

major biomonitoring end points, it was investigated whether the changes in mRNA 

expression were reflected at the protein level. The comparative proteome profile analysis 

performed between mature and germinated seeds and seedlings revealed that enzymes of 

the carbohydrate and protein metabolic pathways, as well as those involved in redox 

homeostasis were up-accumulated in germinated and mature seeds; then decreasing along 

the germination and early seedling growth. The accumulation of proteins related to 

carbohydrate metabolism in mature acorns suggested that this pathway is essential for 

energy supply during Q. ilex seed germination as described in other species23. Similarly, 

the accumulation of oxidative stress related enzymes was interpreted as a defence 

strategy against the accumulation of ROS under low water potential at the maturation 

stage. An increase in the abundance photosynthesis related proteins was also observed 

during seedling growth. These results agreed with that observed at the transcript level.  

However, the few changes detected between mature and germinated seeds such as 

proteins related to Met metabolism (SAMS, NLP3), the shikimate pathway (DHAPS) and 

the antioxidative defence (Fig. 8.1) were revealed only by proteomics approach. These 

results were in agreement with other analysed recalcitrant seeds 24-25. 

At posttranslational level, changes in phosphoproteins were analysed for the first 

time in a recalcitrant species. Here the identified proteins in germination and seedling 

were related to carbohydrate metabolism function, amino acid metabolism, oxidation-

reduction process, protein folding, RNA metabolism and stress response. Almost all 

proteins were previously described as phosphorylated proteins 26. Among them, protein 

involved in glycolytic pathway showed changes in phosphorylation status, similar to that 

reported in rice germination 27. This suggested that the 

phosphorylation/dephosphorylation could be the signal to activate and resume the most 

important metabolic pathway during germination, but large scale analysis is needed to 

have a global vision of the phosphoproteomics changes. 
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During the germination process, changes in expression profile at transcript, 

proteomics and metabolite levels occur. These changes are more significant in orthodox 

seeds, in contrast to Q. ilex seeds, in our experimental conditions, where the changes were 

minimal. Transcription and translation are far from having a linear and simple 

relationship and many reports indicated that the correlation between mRNA and protein 

abundances in the cell is notoriously poor 28. However, the data obtained in this study 

indicate that transcript level, at least in this experimental system, provide a good 

predictive value of protein abundance (Fig. 8.1).  

The classical biochemical techniques combined with “omics” approaches 

(proteomics and transcriptomics) allowed deepen the understanding of key aspects of 

seed germination and seedling growth of Q. ilex, an orphan species which little is known at 

molecular levels. This new knowledge could be used in biotechnological project in this 

species. 

 

 



 
 

 

Figure 8.1. Changes in metabolic pathways during germination and seedling growth. The metabolic pathways were constructed based on the proteomic and 
gene expression data. The metabolic network was reconstructed based on the KEGG. Red indicated that protein  or transcript decrease from S0 to S7 and SS-4; and 
green indicate an increase in the same direction. Box with two color indicated both transcript and proteins levels and box with one color indicate  differences at 
protein or transcript level. 
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A multiple-level analysis transcriptional, translational and postranslational 

combined with metabolites analysis to study germination and seedling growth in Q. ilex 

revealed some pathway that play an important factor in seed germination and seedling 

growth of this recalcitrant seeds. 

The characterization of Q. ilex seeds revealed a triphasic uptake of water during 

germination, with a rapid initial uptake (phase I) followed by a plateau phase (phase II) and 

a further increase (phase III) as the embryo axis elongates and breaks the covering layers to 

complete germination. 

The integrated transcriptomics, proteomics and metabolites analysis of Q. ilex 

seeds showed some of the intracellular physiological characteristics that are observed in 

orthodox seed which included accumulation of non-reducing carbohydrates (sucrose) and 

proteins that contribute to the intracellular vitrified state in seeds (transcripts and proteins 

of DHN3, and transcript of Lea-5); the anti-oxidative defence (SOD, Gst) and the preparation 

for the development of an adult plant (RbcL). But the Holm oak mature acorns showed an 

opposite profile found in mature orthodox seeds, low ABA content and high levels of GA in 

mature acorns. This could be one of the explanations of the precocious germination of Q. ilex 

seeds. 

Holm oak mature acorns have the ability to maintain a partially active metabolism, 

with high level of glycolytic and mitochondrial respiratory enzymes, displayed at 

transcriptional, translational and posttranslational levels that could explain the 

recalcitrance of seeds. However, imbibition increased the respiratory rate, leading to an 

increase of the soluble carbohydrates. The proteomic changes observed in Q. ilex seed 

germination and seedling establishment affected mainly the proteins related to 

carbohydrate metabolism, amino acid metabolism and oxidative stress response, which also 

found at the transcriptional level. In addition, the phosphoproteomics analysis revealed that 

the glycolytic pathway was activated in germinated seeds comparing with mature seeds. 

The up-accumulation of proteins related to glycolysis in mature and the activation of this 

pathway in germinated seeds suggested that this process is essential for the energy supply 

and to provide molecules that serve as intermediate in other metabolic pathways during Q. 

ilex germination and seedling growth. 

The results we presented here will help to increase the knowledge of the 

physiological changes that take place during Q. ilex seed germination, illustrate the 

importance of considering the behaviour of seeds for the afforestation projects and 

restoration programmes under the impending climate change in Mediterranean regions. 
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Improving the quality of protein identification in
non-model species. Characterization of Quercus ilex
seed and Pinus radiata needle proteomes by using
SEQUEST and custom databases☆
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A R T I C L E I N F O A B S T R A C T

Available online 4 February 2014 Nowadays the most used pipeline for protein identification consists in the comparison of
the MS/MS spectra to reference databases. Search algorithms compare obtained spectra to
an in silico digestion of a sequence database to find exact matches. In this context, the
database has a paramount importance and will determine in a great deal the number of
identifications and its quality, being this especially relevant for non-model plant species.
Using a single Viridiplantae database (NCBI, UniProt) and TAIR is not the best choice for
non-model species since they are underrepresented in databases resulting in poor
identification rates. We demonstrate how it is possible to improve the rate and quality of
identifications in two orphan species, Quercus ilex and Pinus radiata, by using SEQUEST and a
combination of public (Viridiplantae NCBI, UniProt) and a custom-built specific database
which contained 593,294 and 455,096 peptide sequences (Quercus and Pinus, respectively).
These databases were built after gathering and processing (trimming, contiging, 6-frame
translation) publicly available RNA sequences, mostly ESTs and NGS reads. A total of 149
and 1533 proteins were identified from Quercus seeds and Pinus needles, representing a 3.1-
or 1.5-fold increase in the number of protein identifications and scores compared to the use
of a single database. Since this approach greatly improves the identification rate, and is not
significantly more complicated or time consuming than other approaches, we recommend
its routine use when working with non-model species.
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Biological significance
In this work we demonstrate how the construction of a custom database (DB) gathering all
available RNA sequences and its use in combination with Viridiplantae public DBs (NCBI,
UniProt) significantly improve protein identification when working with non-model
species. Protein identification rate and quality is higher to those obtained in routine
procedures based on using only one database (commonly Viridiplantae from NCBI), as we
demonstrated analyzing Quercus seeds and Pine needles. The proposed approach based on
the building of a custom database is not difficult or time consuming, so we recommend its
routine use when working with non-model species.
This article is part of a Special Issue entitled: Proteomics of non-model organisms.

© 2014 Elsevier B.V. All rights reserved.

Protein identification from tandem mass spectrometry (MS/
MS) data is a central task in proteomics. The software tools
that have been developed for peptide identification can be
broadly divided into two categories: de novo sequencing
(PEAKS [1], PepNovo [2], NovoHMM [3]) and database (DB)
search by homology (the most popular being Mascot [4] and
SEQUEST [5]).

Conceptually, and as it was coined and conceived, protein
identification through a MS-based approach requires a
sequenced and annotated genome of the species under
investigation. In the case of plants, this is the exception better
than the rule. Thus, the number of plant genomes sequenced
and functionally annotated is of approximately 37 [6]; while
the total number of cultivated plants amounts to 35,000
species, i.e. about 14% of higher plants [7]. Although not a
crop, Arabidopsis (Arabidopsis thaliana) is the most popular
model organism in classical genetics because it is small,
shows a great natural variation, and has a short life cycle. The
availability of its genome sequence [8] made Arabidopsis the
plant paradigm for molecular biology and various “omics”
approaches, including proteomics [9]. In ISIWeb of Knowledge
searching with the key words “proteom” and “Arabidopsis
thaliana” returned 153 articles over the period 2000–2013,
while 10 and 52 were obtained, respectively, with “proteome*”
and “Quercus*” or “Pinus*”.

Cross-species identification is the only option for protein
identification whenever a genome is poorly characterized.
Search by homology, using a non-species-specific DB will tell
us just which is the closest homologous gene product, and
from that hypothesize or more commonly, speculate the
protein function. Proteomic analyses of fully annotated
species, for example Arabidopsis or rice, can achieve a high
number of confident identifications with a standard homol-
ogy search algorithm [6]. In contrast, using the same approach
and databases for non-model species results in a lower
number and confidence of identified proteins. This can be
explained by the fact that either some species-specific
proteins will not be present in DBs or homologous proteins
will show small evolutionary differences in its sequences. In
consequence the main target for homologous protein identi-
fication is the active site of the protein, which usually is highly
conserved but not exact. In this scenario the use of tight
algorithms like SEQUEST, in which the homology should be of
100%, is not the best approach; algorithms that tolerate amino
acid substitution, such as Paragon [10], were developed to

allow non-perfect matched by evaluating punctual amino
acid substitutions. This strategy increased the number of
identified proteins in species like Quercus [11,12] and Pine
[13,14]; however, this kind of identification is less confident
than using a tight algorithm like SEQUEST, having strong
implications for peptide to protein assignment and label-free
quantitative purposes [15].

Immediately a question rises: How to proceed in the case
of non-model plants? Nowadays the best choice would be an
initial transcriptome analysis by using deep sequencing to
generate our species-specific database to compare the pro-
teins to. However this approach is complex, expensive, and
requires skilled personnel, making it unreachable for most of
the laboratories working on non-model species. A good
alternative is to take advantage of the specific protein and
RNA sequences, most of them in the form of ESTs that are
available in public repositories [15]. This strategy has only
been reported in a very limited number of cases [16,17].
Champagne and Boutry [6] make a revision of the recent
literature in the plant field (January 2010 to August 2012) to
assess which DBs were most commonly used for protein DB
searches. They found that 94% of the research articles
surveyed used the NCBI protein DB, either alone or combined
with their DB, and only 15% used specific EST DB translated in
silico.

We have previously published a number of papers
[13,14,18,19], in which the proteome of Q. ilex and P. radiata
was analyzed by gel-based (1- and 2-DE in combination with
MALDI-TOF/TOF) and gel-free (nLC-LTQ Orbitrap MS) ap-
proaches. The identification of proteins from MS/MS spectra
has been performed using different algorithms (Mascot,
Paragon) against plant protein sequence DB: UniProtKB and/
or NCBI_Viridiplantae. For Q. ilex seeds, using gel based
proteomics and Paragon algorithm only 60% of the 23 bands
were identified and 28% of the 2-DE spots were identified [18].
The identification of leaf proteins under abiotic or biotic
stresses resulted in a higher number of identifications, 57%
[20] and 45% [21] respectively. On the other hand, the same
approach resulted in the identification of the 67% of the
excised spots when studying P. radiata needles [13]. The low
percentage of identification can be related to different issues
related to databases: the number of full-length proteins
available in database is very limited (97 and 2568 in the case
of Q. ilex and P. radiata, September 2013); full length cDNAs
also follow the same trend; non-model species are sometimes
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excluded from non-redundant databases; deep sequencing
reads and ESTs are not processed to enrich protein/peptide
databases.

The objective of this work was to evaluate the impact of
using a custom genus-specific DB for protein identification. In
this manuscript we demonstrate how it is possible and quality
in two proteomic studies by the construction of an in-house
protein DB from publicly available ESTs, and using a combined
DB search.

In a first step two specific DBs were engineered, Quercus
and Conifers DB. We included 669,011 ESTs from five Quercus
species (Q. alba, Q. petraea, Q. robur, Q. rubra, and Q. suber)
obtained from NCBI and the sequences available in the Oak
Gene Index DB, composed of ESTs of several Quercus species
and integrated research data from international Quercus EST
sequencing; and 1099 protein sequences from all Quercus
species available in Dendrome Project. Conifers DB was
constructed using a total of 624,835 EST sequences from
NCBI of three Pinus species (P. radiata, P. pinaster, and P. taeda)
and EST collection fromDendrome Project and the Gene Index
for Pinus and Picea and 85,747 protein sequences from NCBI for
Pinus and Picea genera (Table 1).

DBs were constructed as reported in [17], with minor
modification. The workflow for building the custom libraries
is provided in Fig. 1. Briefly: i) Trimming: sequences were
matched against the UniVec DB (ftp://ftp.ncbi.nih.gov/pub/
UniVec) and regions contaminated with vectors or with a high
number of indeterminations were removed. ii) Contig se-
quences were then independently assembled using SeqMan

[22]. All contigs and singletons obtained were compared
sequentially using local BLASTx (NCBI) [23] to the following
protein DBs: TAIR10_pep [A. thaliana, ftp://ftp.arabidopsis.org/
home/tair/Proteins/TAIR10_protein_lists/, Release 10 (August
23, 2011)], UniProtKB/Swiss-Prot reviewed (ftp://ftp.uniprot.
org/pub/databases/), Egrandis_201_protein [Eucalyptus grandis,
ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0, Release
201 (December 12, 2012)], Ptrichocarpa_210_protein [Populus
trichocarpa, ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0,
Release 201 (December 12, 2012)] and all plant protein
sequences in NCBI_nr. We considered a good homology those
matches that showed e-values lower than 10−50. Sequence
annotation was performed based on hits obtained in all protein
DBs in following priority order: TAIR10_pep > UniProtKB/
Swiss-Prot > Egrandis_201_protein > Ptrichocarpa_210_protein >
NCBI_nr annotations. The Gene Index data for two species were
not subjected to assembly and BLASTx step because they were
previously assembled and annotated by Computational Biology
and Functional Genomics Laboratory. iii) Since almost all of the
contigs were derived from transcriptomic analyses we assumed
that they are translated in its full length.We used EMBOSS [24] to
perform a six-frame translation and extract the longest in silico
translation products of both strands. In this step the Gene Index
data were included. iv) Then these translation products were
BLASTp searched against the mentioned protein DBs, with the
same parameters used in BLASTx. v) The BLASTp and BLASTx
results obtained with each DB were compared, and translated
product with the same result in BLASTx and BLASTpwas used to
annotate the sequence. vi) All possible polypeptide sequences

Table 1 – Sequences employed in this work. Number of ESTs and protein sequences, contigs, singletons, and in silico
translation products. Database compiler and download source are also indicated.

Species ESTs Contigs Singletons Contig and
singleton
sequences

In silico
translation
products

Proteins Compiler Download URL

Q. suber 6660 1485 1058 2543 5086 NCBI (National Center for
Biotechnology Information)

ftp://ncbi.nlm.nih.
gov/blast/db/estQ. petraea 58,230 8981 11,380 20,361 40,722

Q. robur 81,617 11,046 16,209 27,255 54,510
Q. alba 203,206 20,748 68,622 89,370 178,740 Fagaceae Genomics Web, The

National Science Foundation
http://www.
fagaceae.org/Q. rubra 277,154 27,781 87,193 114,974 229,948

Quercus
spp.

42,144 19,674 22,470 42,144 84,288 1099 Computacional Biology and
Functional Laboratory “The Gene
Index Project”

http://compbio.dfci.
harvard.edu/tgi/
plant.html

Dendrome Project http://dendrome.
ucdavis.edu/

Total 669,011 89,715 206,932 296,647 593,294 1099
P. radiata 13,431 1964 7009 8973 17,946 Dendrome Project http://dendrome.

ucdavis.edu/
P.
pinaster

48,839 7399 18,586 25,985 51,970 Dendrome Project http://dendrome.
ucdavis.edu/

P. taeda 405,830 46,468 43,617 90,085 180,170 Dendrome Project http://dendrome.
ucdavis.edu/

Pinus
spp.

77,326 44,858 32,468 77,326 99,026 60,321 Computacional Biology and
Functional Laboratory “The Gene
Index Project” (ESTs) and NCBI
(Proteins)

http://compbio.dfci.
harvard.edu/tgi/,
ftp://ncbi.nlm.nih.
gov/blast/db/est

Picea
spp.

79,409 44,517 34,892 79,409 105,984 25,426 Computacional Biology and
Functional Laboratory “The Gene
Index Project” (ESTs) and NCBI
(Proteins)

http://compbio.dfci.
harvard.edu/tgi/,
ftp://ncbi.nlm.nih.
gov/blast/db/est

Total 624,835 145,206 136,572 281,778 455,096 85,747
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obtained in the previous step, unannotated and annotated, were
compiled in FASTA files, keeping each species separately for
Quercus, considered as module; Quercus (1099) protein from
Dendrome Project was included such as other modules; in
Conifers DB all polypeptide sequences obtained were compiled
in one FASTA file, including Pinus (60,321) and Picea (25,426) genus
proteins from NCBI DB.

In the Quercus EST assembly 89,715 contigs and 206,932
singletons were obtained that were in silico translated into
593,294 peptides. In Conifers, a total of 145,206 contigs and
136,572 singletons were obtained which were in silico translated
into 455,096 peptides (Table 1). Full length Quercus and Pine
proteins were added to corresponding specific DB.

Custom DBs were tested against the most common DBs
used in proteomic analysis of plant UniProtKB/Swiss-Prot,
UniProtKB/TrEMBL and NCBI with Viridiplantae taxonomic
restriction (downloaded in September 2013) by using SEQUEST
algorithm and nLC-Orbitrap runs from Q. ilex seeds and
P. radiata needles available in our laboratory. Proteins of Q. ilex

seed were extracted and processed as described by Romero-
Rodríguez et al. [25] and that of P. radiataneedles as described by
Valledor and Weckwerth [26]. The LC–MS analysis of both
protein extracts were performed according to Valledor and
Weckwerth [26].

Spectra were processed using the SEQUEST algorithm
available in Proteome Discoverer© 1.4 (Thermo-Scientific,
USA) and the four described DBs (Quercus/Conifers and other
three public DBs). The following settings were used: precursor
mass tolerance was set to 10 ppm and fragment ion mass
tolerance to 0.8 Da. Only charge states +2 or greater were
used. Identification confidence was set to a 5% FDR and the
variable modifications were set to: oxidation of methionine
and to fixed modifications was set to carbamidomethyl
cysteine formation. A maximum of two missed cleavages
were set for all searches. The threshold used for considering
confident protein identification was having at least one
unique peptide of an X-correlation value greater than the
charge state +0.25 [15].

Fig. 1 – Flowchart of Quercus and Conifers DB construction. All the downloaded ESTs were trimmed using as reference UniVec
vector DB to remove possible vector contaminations and using the software Geneious (Biomatters Inc.). After that, they were
assembled into contigs using the software SeqMan, part of the DNAStar package (Lasergene). Contigs and singletons were
annotated by BLASTx against TAIR10_pep, UniProtKB/Swiss-Prot, Egrandis_201_protein, Ptrichocarpa_210_protein, and
NCBI_nr databases. At the same time, they were 6-frame translated using the EMBOSS tools (EBI) and the longest products
(sense and antisense strands) were annotated employing the DBs described before. The better hits, based on e-values, were
kept for naming the accessions of the DB. All protein sequences available in the Dendrome project and NCBI were merged to
corresponding database.
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The result files were merged and aligned into a single file,
one per species, by using Proteome Discoverer© to perform a
direct comparison between DBs. This analysis showed that
most of the proteins were identified in all databases (Fig. 2A
and B); however, each DB provided a unique set of identified
proteins. The aim of this study was to demonstrate the
importance of genus-specific DB to improve protein identifi-
cation confidence, in achieving better results in orphan
species researches. In Q. ilex seeds and P. radiata needles, we
obtained a total of 149 and 1533 proteins, respectively, using a
combined search against the four DBs; of which 63% and 47%
of Q. ilex and P. radiata proteins, respectively, were identified
in the genus-specific DB. Using only one Viridiplantae protein
DB, for example UniProtKB/Swiss-Prot, the number of protein
identified would be just 19% in Quercus and 14% for Pinus,
which proves the usefulness of our approach in the

maximization of identification rates, since an important
percentage of protein would not be identified if we have
used only one of the DB instead of the combined approach
using the four of them. On the other hand, in Q. ilex seeds we
identified 95 proteins with Quercus DB (Fig. 2A), of which 92
were identified only with this genus-specific DB. In P. radiata
needles, 724 proteins were identified using Conifers DB
(Fig. 2B), of which 80 were specific for this DB.

Despite the fact that one of the main objectives of this
work was to increase the number of identified proteins, we
further investigated how the DB improved the quality of
protein identification, in terms of SEQUEST score. Fig. 2C and
D shows a density plot of the protein identification scores of
each DB. The distribution of protein scores employing
genus-specific and Swiss-Prot DB showed a lower density in
the peaks of low scores, and curves are displaced toward

Fig. 2 – Venn diagrams representing the number of identified proteins in Q. ilex seeds (A) and P. radiata needles (B); diagrams
were plot using Venny (http://bioinfogp.cnb.csic.es/tools/venny/). Density plots of the scores of the identified proteins in
Quercus ilex seed (C), and Pinus radiata needles (D) by using SEQUEST algorithm and the four indicated databases. Blue lines
indicate the developed databases, corresponding to Quercus or Conifers databases. These DBs showed a lower density in the
peak of protein scores between 2.25 and 4, being the curve shifted to the right, indicating that the scores obtained employing
these databases are, in general, higher than those obtained employing NCBI_Viridiplantae, UniProtKB/TrEMBL (Viridiplantae)
and UniProtKB/Swiss-Prot (Viridiplantae). Areas under each curve are equal and normalized to arbitrary value 1.
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higher scores; in contrast to NCBI and TrEMBL, which show a
high density at low score, both for Q. ilex seeds and P. radiata
needles.

Despite increasing the number of identified proteins in both
species and tissues, the result was different between Q. ilex and
P. radiata datasets. Needles, a green photosynthetic organ,
showed a great overlap of protein identification between DBs.
This can be explained by the fact that photosynthetic proteins
are mostly conserved, and in consequence Viridiplantae DB
would perform adequately. However we cannot forget that the
use of our strategy increased by 80 the number of identified
proteins compared to Viridiplantae (NCBI, Swiss-Prot and
TrEMBL). On the other hand, homologous proteins in different
species are rarely identical; in Q. ilex transcriptomic and
proteomic analyses of seed development are scarce, so the
presence of related sequences in DB is not abundant, and also
the phylogenetic distance between species increases signifi-
cantly the number of sequence variations of storage proteins
[27,28]. All these contribute to a minimal overlap between
Quercus DB and other Viridiplantae DBs.

One of the main purposes of every mass-spectrometry
proteomic analysis is to identify as many proteins as possible.
However, the quality of the identifications is also an impor-
tant factor, to ideally obtain as much high-quality identifica-
tion as possible. In this way, we showed that with a
genus-specific DB we maximized both factors. As we have
already mentioned, by combining our selected DB, we
identified more proteins and at the same time a higher
number of high-quality identifications, as it can be seen in
the density plot of score (Fig. 2C and D), where the density
curves to Quercus and Conifers DB show a lower density in the
peak of the score between 2.25 and 4, to NCBI and TrEMB DB
show a higher density in the peak of the low score, attributing
to these databases poor quality in protein identification.

These results reinforce one of the protein identification
basics that is usually forgotten: protein identification based
on homology requires a perfect match between spectra and
database to be successful, depending on the score on the
length and composition of their amino acid composition. The
employ of custom databases increased the confidence of
identified proteins by “rescuing” more MS/MS spectra than
would not have counterpart in nonspecific DBs, thus reducing
the undermining of protein identification when using stan-
dard protein identification pipelines [29].

Our results showed the importance of specific DB in
proteomic analysis by homology search in orphan species.
Due to the lack of annotated reference genome in Q. ilex and
P. radiata, a combination of customized and public DBs greatly
improves the protein identification rate in terms of quantity
and quality.
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