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AAiimm  aanndd  ssccooppee  ooff  tthhee  tthheessiiss  

 The impairment of the immune system arisen during bovine viral diarrhea 

virus (BVDV) infections is one major paradigm of the immunology in the modern 

research of cattle diseases. In this sense, several efforts are being conducted to 

elucidate the complex mechanisms used by BVDV to evade the host immune 

response. Although BVDV is not a primary agent in the pathogenesis of bovine 

respiratory disease complex (BRDC), its suppressive effects on the host immune 

system can increase the risk of secondary infections, thus enhancing pulmonary 

colonization by other pathogens such as bovine herpesvirus type 1 (BHV-1).  

 

 Due to the important effects that viral pathogens can induce on the immune 

system, this work was firstly focused on a cell type of outstanding relevance for the 

immune system, the dendritic cell (DC). These cells are the most effective antigen-

presenting cells (APC), and modulate both innate and adaptive immune responses. 

The absence of a solid literature detailing DC marker candidates for cattle gave rise 

to the first objective (CCHHAAPPTTEERR  11), focused on finding potential DC markers for the 

bovine species, standardize their immunohistochemical protocol and describe 

their histological distribution, being considered this study as a tool to further 

investigate this important cell type in cattle diseases, including BRDC. 

 

 Secondly, an in vivo experimental model was established aimed at 

consistently reproducing the pathologic condition developed during the BRDC 

(CCHHAAPPTTEERR  22). The experimental design consisted of a primary BVDV respiratory 

infection followed by a challenge with BHV-1 in order to examine the specific 

mechanisms by which a primary BVDV infection favors the dissemination and 

worsening of BHV-1 infection. The thymus was the focus of attention since it is 

considered a target organ for BVDV and because it remains as an active organ also 

throughout the adult life, allowing lymphocyte supply to secondary lymphoid 

organs when required. CCHHAAPPTTEERR  22AA focuses on the characterization of the BVDV-

induced atrophy observed in this calves. On the other hand, CCHHAAPPTTEERR  22BB describes 
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from an immunopathologic point of view the thymus immune cells, including the 

main APCs (dendritic cells and macrophages) and lymphocyte subpopulations they 

can interact with. To do so, some of the DC markers described in CHAPTER 1 were 

used. These data contribute to the knowledge on the lesional and 

immunopathologic alterations of the thymus during BVDV infections, and its 

importance in the development of secondary infections. 

 Several papers with results from the animals in this experiment have been 

published by the author’s research group, mainly focused on systemic cytokines 

(Risalde et al., 2011), gross pathology, histopathology and viral antigen distribution 

(Risalde et al., 2013b), systemic cell-mediated immune response (Molina et al., 

2013), systemic cell-mediated immune response during the acute phase of BVDV-

infected calves (Molina et al., 2014), as well as vascular and immunopathologic 

changes occurring in the lung (Risalde et al., 2013a; Risalde et al., 2014). These 

papers, together with the findings observed in the thymus in this thesis, 

encompass the complete and extensive set of results obtained from this 

experimental study so far, to the benefit of a wider knowledge of these complex 

diseases.  

 

 These in vivo studies revealed not only the immunosuppressive features of 

BVDV but also a synergic action of the pathogenic mechanisms between both 

viruses. In an attempt of shedding light on these mechanisms, an in vitro 

experimental model was established, where peripheral blood mononuclear cells 

(PBMCs) from calves free of antibodies and antigen for both viruses were 

subjected to single or dual infections with BVDV and BHV-1. CCHHAAPPTTEERR  33 analyses by 

flow cytometry the effects of these viral infections and is part of an ongoing 

broader project.    
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II..  BBoovviinnee  VViirraall  DDiiaarrrrhheeaa  VViirruuss  ((BBVVDDVV))  

 

 BVDV is responsible for the most prevalent infectious disease of cattle. It 

causes financial losses from a variety of clinical manifestations and is the subject of 

a number of mitigation and eradication schemes around the world. Various species 

and biotypes of BVDV producing complex pathogenic mechanisms exist, with 

infection pre- and post-gestation leading to different outcomes. Infection of the 

dam during gestation can result in the birth of persistently infected (PI) calves that 

shed BVDV in their excretions and secretions throughout life and are the primary 

route of transmission of the virus. Acute infection with BVDV results in transient 

viremia prior to seroconversion and can lead to reproductive dysfunction and 

immunosuppression leading to an increased incidence of secondary disease. 

Understanding of the host defense mechanisms of innate and adaptive immunity is 

one of the most challenging fields of BVDV research.   

 The disease complex of Bovine Viral Diarrhea/Mucosal Disease looks back 

on a short (compared to some other viral diseases) but busy history. Olafson et al. 

of Cornell University described the disease in 1946 for the first time (Olafson et al., 

1946). Although with variable severity, the “new” disease was mainly 

characterized by diarrhea, depression, anorexia, and ulceration of oral mucosa, as 

well as respiratory signs, leukopenia, drop in milk production, and increased 

abortion rates. Since no bacteria could be isolated, Olafson suspected a viral 

etiology, and this reproducible disease, with its varying severity, became known as 

virus diarrhea (VD) of cattle. In the fifties, a special form of disease characterized 

principally by hemorrhages and intestinal erosions was reported for the first time 

in Iowa-USA in 1953 and it was named Mucosal Disease (MD) (Ramsey and Chivers, 

1953; 1957). After an intensive period of research and despite their unequal 

epidemiology, VD and MD were suspected to be etiologically related. At the end of 

the sixties, both pathologies were considered a single disease complex commonly 

called BVD-MD, and BVDV was classified into CP and NCP biotypes. After several 
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studies, a special form of disease was discovered, produced by an intrauterine 

infection with NCP BVD-MD virus, with calves affected being ppeerrssiisstteennttllyy  iinnffeecctteedd  

and displaying the astonishing immunological peculiarity of being unable to 

produce antibodies against the BVD-MD virus (Johnson and Muscoplat, 1973). This 

was the discovery of immunotolerance in persistently infected animals. It took 

almost twenty more years to resolve the observation that MD was not 

transmissible, when two different research groups reported the first eexxppeerriimmeennttaall  

ddeemmoonnssttrraattiioonn  ooff  MMDD by inoculation of a CP virus which was antigenetically 

homologous to the NCP virus causing the persistent infection (Brownlie et al., 1984; 

Bolin et al., 1985). During the late eighties and early nineties, cases of "Severe Acute 

BVD" and “BVD Hemorrhagic Syndrome” occurred (Corapi et al., 1990; Pellerin et 

al., 1994; Carman et al., 1998). The genetic dissimilarities between the initial BVDV 

isolates and the newly found viral isolates associated with severe acute disease, 

promoted the identification of BVDV genotype 2 (Ridpath et al., 1994). For more 

details on the history of BVD, see reviews by Goens (2002) and Deregt (2005). 

 

11..  EEttiioollooggyy   

 BVDV is classified as a member of the genus Pestivirus within the 

Flaviviridae family (Table 1). Members of the Flaviviridae family include West Nile 

virus, dengue virus, yellow fever virus, and hepatitis C virus and are classified as a 

single family based on common genetic and structural characteristics, including 

the following: a) a single-stranded, positive-sense RNA genome that encodes a 

single large polyprotein; b) the polyprotein is post-translationally processed by 

both cellular and viral proteases to yield the final, mature viral proteins; and c) an 

outer lipid membrane that carries viral glycoproteins, and is derived from budding 

through cellular membranes during assembly and maturation of the virus particle 

(Bowen, 2011). 

 Unlike the other two genera, the Pestivirus genus encodes two unique 

proteins, Npro and Erns (described below). Pestiviruses are currently divided into 

four species: Classical swine fever virus (CSFV, formerly hog cholera virus), Bovine 

viral diarrhea virus 1 and 2 (BVDV-1 and BVDV-2), and Border disease virus (BDV) 

of sheep (Simmonds et al., 2012). BVDV was formerly classified as a single species 

with two genotypes (genotype 1 and 2) (Pellerin et al., 1994; Ridpath et al., 1994), 
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but detailed analysis of the genomic RNA sequence, as well as antigenic 

characteristics demonstrated that these viruses constituted ttwwoo  ddiissttiinncctt  ssppeecciieess 

(Neill, 2013).  

Table 1. Taxonomy of Bovine Viral Diarrhea Virus 

Group Family Genus Species 
 

SSiinnggllee--SSttrraannddeedd  
PPoossiittiivvee--SSeennssee  
RRNNAA  VViirruusseess  
(Group IV) 

  

  

FFllaavviivviirriiddaaee  → 
  

PPeessttiivviirruuss  → 
Flavivirus 
  · West Nile virus  
  · Yellow fever virus 
  · Dengue virus … 
Hepacivirus 
  · Hepatitis C virus 
Pegivirus (new) 

 

· BBVVDDVV--11    
· BBVVDDVV--22    
· CSFV 
· BDV  
· Giraffe pv*  
· Pronghorn pv*  
· Bungowannah pv*   
· HoBi-like pestiviruses* 

 

*Putative (not recognized yet as species by ICTV [International Committee on the Taxonomy of 

Viruses]). For a direct link to http://viralzone.expasy.org/, press on each word on the table. 

[Etymology: Flavi (from Latin flavus, ”yellow”); Hepaci (from Greek hepar, hepatos, ”liver”); 

Pesti: from Latin pestis, ”plague” (Simmonds et al., 2012)] 

 

 In addition to the 4 recognized species, 4 aaddddiittiioonnaall  PPeessttiivviirruuss  ssppeecciieess have 

been proposed but remain officially unrecognized. These putative species include 

Giraffe pestivirus (Becher et al., 1997), Pronghorn pestivirus (Vilcek et al., 2005b),  

Bungowannah pestivirus in pigs (Finlaison et al., 2009), and a varied group of 

viruses referred to as HoBi-like viruses, named after their similarity to the first 

isolate called HoBi_D32/00 (Schirrmeier et al., 2004). The term “atypical 

pestiviruses” has also been used for HoBi-like viruses; however, this term could 

also be applied to any of the 3 other putative pestivirus species  (Bauermann et al., 

2013). Some authors also refer to these viruses as BVDV-3 due to the similarity of 

clinical presentation in cattle following infection with BVDV and HoBi-like viruses; 

in fact, the presence of PI and even MD in association with HoBi-like viruses has 

been recently described for the first time (Decaro et al., 2013; Decaro et al., 2014; 

Weber et al., 2014). However, there is resistance to declaring HoBi-like viruses a 

third species of BVDV (Bauermann et al., 2013).  

 BVDV virions are spherical, pleomorphic (40-60 nm in diameter), and 

consist of a tightly adherent lipid envelope displaying indistinct glycoprotein 

spikes (arranged in an icosahedral-like symmetry), surrounding a spherical-to-

icosahedral nucleocapsid which contains the viral genome (Figure 1A). The single-

stranded RNA molecule (approximately 12.3 kb in length) contains a single, large 

open reading frame (ORF) that encodes all viral proteins, flanked on the 5’ and 3’ 

http://viralzone.expasy.org/all_by_species/294.html
http://viralzone.expasy.org/all_by_species/294.html
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http://viralzone.expasy.org/cgi-bin/viralzone/search?query=West+Nile+virus+%28WNV%29&commit=search+virus
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=yellow+fever+virus&commit=search+virus
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=Dengue+virus+%28DENV%29&commit=search+virus
http://viralzone.expasy.org/all_by_protein/37.html
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=Hepatitis+C+virus+%28HCV%29&commit=search+virus
http://viralzone.expasy.org/all_by_species/4860.html
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=Bovine+viral+diarrhea+virus+1+%28BVDV-1%29&commit=search+virus
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=Bovine+viral+diarrhea+virus+2+%28BVDV-2%29&commit=search+virus
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=Classical+swine+fever+virus+%28CSFV%29&commit=search+virus
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=Border+disease+virus+%28BDV%29&commit=search+virus
http://www.ictvonline.org/
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ends by untranslated regions (UTR) (Figure 1B). The 5’ UTR extreme is the most 

conserved region in pestiviruses, and is widely used for detection and genotyping 

of BVDV (Letellier and Kerkhofs, 2003). The ORF of BVDV can be divided into 

distinct regions that encode the individual viral proteins (Nettleton and Entrican, 

1995). With the exception of Npro, the first coding region of the ORF encodes the 

structural proteins forming the capsid (core protein, C) and the envelope 

(glycoproteins Erns (gp48), E1 (gp33) and E2 (gp53)). The EErrnnss protein is attached 

weakly to the viral surface and has a unique characteristic in that possesses RNase 

activity, a feature of important implications at inducing tolerance of the innate 

immune response (Iqbal et al., 2004; Peterhans and Schweizer, 2013). The Erns 

protein possesses a mmiinnoorr neutralizing epitope, is highly conserved among BVDV 

strains, and is a very common target for antigen-based tests (Ridpath, 2010b; 

Dubovi, 2013). The other envelope glycoproteins, E1 and E2, are, in contrast, 

integral membrane proteins arranged as heterodimers (Ronecker et al., 2008). The 

EE22 glycoprotein possesses the mmaajjoorr neutralizing epitopes for inducing humoral 

response and its genomic sequence displays the greatest variability of all viral 

proteins, thus being widely used for classification of BVDV isolates (Deregt et al., 

1998; Vilcek et al., 2005a; Ridpath, 2010b). Due to the E2 antigenic variability, there 

is potential for a lack of cross-protection against wild-type BVDV viruses, even 

though cross-neutralization studies have shown reactivity to different genotypes 

(Loy et al., 2013). The first non-structural protein is an autoprotease called NNpprroo, 

unique to the pestivirus genus, and its sequence is frequently used in phylogenetic 

comparisons (Ridpath, 2010b). Npro cleaves itself from the polyprotein and is now 

recognize as having a role in blocking interferon (IFN) production (Peterhans and 

Schweizer, 2013). Different functions in the replication cycle of BVDV have been 

attributed to the rest of non-structural proteins (p7, NS2/3,  NS4a, NS4b, NS5a, 

NS5b) (see review by Neill (2013)).  
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Figure 1. Structure (A) and genome organization (B) of BVDV. [Source of figure (A): Swiss 
Institute of Bioinformatics (http://viralzone.expasy.org)]  
 

 NNSS22//33 protein (along with its cleaved forms) deserves a special mention 

since they play an outstanding role in the pathogenesis of this complex disease, 

determining the occurrence of cytopathic (CP) and noncytopathic (NCP) biotypes 

of BVDV (Brownlie, 1991). These features are based on the lytic activity on cultured 

epithelial cells, with CP biotypes inducing cytoplasmic vacuolization and death, and 

NCP biotypes replicating in these cells without causing morphological changes (not 

to be confused with pathogenicity in vivo) (Kummerer et al., 2000). The CP biotype 

invariably expresses high levels of NS3 as a free protein, either by proteolytic 

cleavage in the NS2/3 protein expressed by NCP biotypes, by genome duplication 

of the NS2/3 sequence encoding the NS3 protein or by genetic deletion of the NS2 

genomic sequence (Donis and Dubovi, 1987; Deregt and Loewen, 1995; Kummerer et 

al., 2000). It has been demonstrated that cleavage of NS2/3 is necessary for 

replication of NCP viruses very early in the infection, with cleaved NS2/3 dropping 

off drastically later in the infection process resulting in primarily NS2/3 being 

present in the infected cells (Lackner et al., 2004). NS2/3-NS3 proteins are highly 

conserved among all BVDV strains, are highly immunogenic (although generated 

antibodies are not neutralizing), and are also targeted for antigen-based tests 
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(Ridpath, 2010b; Dubovi, 2013; Ridpath, 2013). It must be pointed out that the CP or 

NCP nature of BVDV strains does not correlate with their virulence in vivo, as their 

name would suggest (Fulton et al., 2002; Ridpath, 2005). A third biotype 

(lymphocytopathic) inducing cell death in cultured lymphoid cells but not in 

cultured epithelial cells has also been proposed (Ridpath et al., 2006a), being 

correlated with high virulence in acute infections in vivo.  

 

 As it has been stated, BVDVs can be divided according to their genome 

(BVDV-1 and BVDV-2, still frequently called genotypes) and to their phenotype (CP 

and NCP), with any combination of them being observed. However, the most 

common biotype in nature is the NCP (>70%) (Fulton et al., 2000b; 2005b), which is 

responsible for the more severe clinical forms of acute BVDV infection and the 

establishment of persistent infection. BVDV-1 is considered the Pestivirus-type 

species and is reportedly the most prevalent genotype (Fulton et al., 2005b), being 

generally associated with milder symptoms than its counterpart BVDV-2. The 

analysis of the genomic RNA has led to the current genetic division of BVDV-1 into 

at least 17 subtypes (1a, 1b, 1c, 1d…), and BVDV-2 into three subtypes (2a-c), 

revealing the considerable increasing genetic diversity of BVDV (Strong et al., 2013; 

Giammarioli et al., 2014; Luzzago et al., 2014). This genetic diversity that occurs 

among BVDV isolates is a common feature among RNA viruses, that exist in nature 

as quasispecies (a swarm of viral mutants) (Bolin and Grooms, 2004). Due to the 

antigenic cross-reactivity observed among pestiviruses, it is not possible to 

differentiate them based on serology alone (Ridpath, 2003), with a single serotype 

being recognized for BVDV. 

 

22..  CClliinniiccaall  ffeeaattuurreess  aanndd  lleessiioonnss    

 BVDV has been associated with a complex of disease syndromes. Although 

the term diarrhea is prominent in the name, respiratory and reproductive disease 

associated with BVDV infection are more commonly reported (Ridpath, 2010b). 

BVDV has been described as affecting the reproductive, respiratory tract, 

gastrointestinal, circulatory, immunologic, lymphatic, musculoskeletal, 

integumentary, and the central nervous system. Therefore, this multi-purpose 
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pathogen has been described as having ‘‘many faces’’ (Brock, 2004). The wide 

variety of clinical forms is highly dependent on the interaction of several factors at 

the time of infection: genotype, biotype, and virulence of the vviirruuss; age, stage of 

gestation, and immune status of the aanniimmaall, and the interplay of ssttrreessssoorrss. All these 

factors lead to a complicate classification of clinical forms, which is not always 

equal. Three situations are considered here: postnatal infection in non-pregnant 

cattle (acute infections), infection in pregnant cows, and development of mucosal 

disease (Figure 2). Beside the clinical signs occurring after BVDV infection, some 

aspects of the pathogenesis will be discussed in parallel in this section.  

 
Figure 2. Schematic representation of the clinical manifestations after BVDV infection. 
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 2.1. Postnatal infection (acute infections)  

  

 Susceptible (seronegative), immunocompetent cattle of all ages may 

contract a primary, transient BVDV infection, termed acute infection. Seropositive 

cattle, dependent on the levels of antibody titers, are usually not susceptible. 

Depending on the clinical course, acute infections can develop as several clinical 

variants: asymptomatic acute infections, symptomatic acute infections, severe 

acute infections, and hemorrhagic syndrome.  

 

2.1.1. Subclinical infections 

 The majority of BVDV infections in immunocompetent seronegative cattle 

proceed as asymptomatic acute infections. However, close observation of 

infected animals usually reveals mild signs including hyperthermia, leukopenia, 

and decreased milk production. This decrease of white cells induces an state of 

immunosuppression that may favor the emergence of opportunistic infections 

(Potgieter, 1995), which are more easily detected.  

 

2.1.2. Acute BVD 

 Symptomatic acute infections (frequently termed as “acute BVD”), are 

most commonly observed in 6–24-month-old cattle following waning of maternal 

immunity, in colostrum-deprived calves, or in seropositive cattle as a result of 

infection with a heterologous BVDV strain (Evermann and Barrington, 2005). These 

clinical manifestations are normally moderate, including fever, anorexia, lethargy, 

leukopenia, ocular and nasal discharge, and mild diarrhea (Muller-Doblies et al., 

2004; Pedrera et al., 2009b; Molina et al., 2014). During infections with more 

virulent strains, the aforementioned signs may get worse and even be 

accompanied by epithelial erosions and ulcers in the muzzle, oral cavity or 

gastrointestinal track (Blowey and Weaver, 2011a); in dairy cows there may be a 

considerable decrease in milk yield. Acute symptomatic infections are also 

associated with immunosuppression (Chase et al., 2004), frequently resulting in 

increased incidence of opportunistic respiratory and intestinal infections. These 

processes have a high morbidity, and uncomplicated cases show very low or no 
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mortality. Any genotype and biotype can be isolated in acute BVD cases, but NCP 

BVDV-1 strains (and some BVDV-2 of low virulence) are the most frequent. 

 

2.1.3. Severe acute BVD and Hemorrhagic syndrome 

 In the early 1990s, an atypical and significantly more severe form of BVDV 

infection was recognized in the United States and Canada (now known as severe 

acute BVD) (Carman et al., 1998), which was frequently presented with profuse 

hemorrhages and thrombocytopenia (being denominated as hemorrhagic 

syndrome) (Corapi et al., 1990; Pellerin et al., 1994; Carman et al., 1998). Severe 

acute outbreaks were unusual and characterized by a peracute course with high 

rates of morbidity and mortality in all ages of cattle (in contrast to most previous 

descriptions of transient BVDV infections). The described clinical signs included 

high fever, severe diarrhea and leukopenia, respiratory disorders and erosions in 

the oral cavity (Carman et al., 1998). Postmortem findings included a dramatic 

lymphocytolysis and lymphoid depletion of Peyer’s patches, necrosis of intestinal 

crypt epithelium, and diffuse ulcerative lesions in the upper alimentary tract 

resembling those of mucosal disease. The viral isolates from all reports of severe 

acute BVD were determined to be caused by BVDV-2, which at that time was 

differentiated for the first time from BVDV-1 (Pellerin et al., 1994; Ridpath et al., 

1994). Hemorrhagic syndrome is a variant form of the severe acute BVD, which is 

accompanied by marked thrombocytopenia that contributes to the appearance of 

hemorrhagic signs as petechiation/ecchymoses of mucosal surfaces, epistaxis and 

bloody diarrhea (Corapi et al., 1990; Walz et al., 1999a; Stoffregen et al., 2000). 

 As stated before, severe acute forms and their hemorrhagic variants were 

originally described in North America and Canada and attributed to NCP BVDV-2 

strains of high virulence (Corapi et al., 1990; Pellerin et al., 1994; Ridpath et al., 

2006b); however, this situation has changed from that period to nowadays, as 

described below. BVDV-2 was subsequently detected in European countries albeit 

at a significantly lower percentage compared to North America (Lindberg et al., 

2006; Letellier et al., 2010; Ridpath, 2010b). A rising occurrence of severe outbreaks 

produced by BVDV-2 in Europe in recent years is being responsible for an 

increasing concern in the European countries, some of which had already 

eradicated BVDV-2 (Astiz-Blanco, 2013; Anonymous, 2014b; a; Polak et al., 2014). 
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Additionally, it must be reminded that not all BVDV-2 outbreaks are necessarily 

associated with severe disease (Marshall et al., 1996; Ridpath et al., 2000). 

Similarly, a severe outbreak of disease should not be assumed to have been caused 

by BVDV-2 (David et al., 1994; Liebler-Tenorio et al., 2006; Ridpath et al., 2007); in 

fact, recent cases of severe acute hemorrhagic diseases have been attributed to 

BVDV-1 strains (Colloff et al., 2012; Yesilbag et al., 2014).   

 

2.2. Reproductive disorders and congenital infection 

 
2.2.1. Reproductive disorders 

 BVDV-related reproductive disorders, together with the 

immunosuppressive effects, are responsible for the most economically important 

consequence of BVDV infections (Astiz-Blanco, 2014a; b). Aside from the impact of 

BVDV in the fetus (see below), acute BVDV infection can have a direct impact on 

reproductive performance (Brock et al., 2005; Garoussi and Mehrzad, 2011; Yavru et 

al., 2013), inducing chronic postnatal infections in ‘‘immunoprivileged’’ sites such 

as testicles and ovaries (Givens and Marley, 2013). As a result of acute infection, 

there can be prolonged testicular infection and shedding of virus in semen for as 

long as 2.75 years after infection, giving rise to reductions in male fertility and 

possible (not frequent) venereal infections (Paton et al., 1990; Voges et al., 1998; 

Givens et al., 2009). BVDV has been detected in ovarian and oviductal tissues during 

acute infections, inducing associated pathologies with important reproductive 

consequences (Fray et al., 1998; Grooms et al., 1998; Fray et al., 2000a; Brock et al., 

2005). 

 

2.2.2. Infection of pregnant cattle 

 Infection of immunocompetent pregnant cattle can result in clinical 

manifestations in the dam similar to those described above (i.e., subclinical to 

severe, acute disease, or hemorrhagic syndrome). However, additional clinical 

outcomes in pregnant cattle are related to the potential transplacental transfer of 

either biotype or genotype to the fetus (Fray et al., 2000b; Swasdipan et al., 2002), 

being the NCP biotype the most frequently observed inducing maternal viremia 

and transplacental infection (Harding et al., 2002). The gestational age of the fetus 
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is considered the primary determinant of the fetal infection outcome. During the 

first 18 days of pregnancy, BVDV does not penetrate the zona pellucida of the 

unattached embryo (Moennig and Liess, 1995). Infection between 30 days (when 

implantation takes place) and ≈45 days can result in embryonic death and 

reduced pregnancy rates (Grahn et al., 1984; Carlsson et al., 1989; McGowan et al., 

1993; Tsuboi et al., 2013). Abortions can occur at any gestational age, but are most 

common during the first trimester, frequently resulting in fetal resorption or 

mummification (Fray et al., 2000b; Grooms, 2004). Fetal death later in gestation 

generally ends up with expulsion of the fetus (Murray, 1991; Blanchard et al., 

2010). Infection of the dam with NCP strains between the 2nd and the 5th month of 

gestation (i.e. prior to the full development of the fetus immune system) frequently 

result in the development of persistent infections (see below). Fetal infections 

during midgestation (4th-6th month) may severely affect the process of 

organogenesis, resulting in congenital defects such as CNS abnormalities 

(cerebellar hypoplasia, porencephaly…), ocular defects (microphthalmia, retinal 

atrophy), thymic hipoplasia, retarded growth, pulmonary hypoplasia, 

hypotrichosis or skeletal abnormalities (Mickelsen and Evermann, 1994; Baker, 

1995; Blanchard et al., 2010; Webb et al., 2013). When infection is acquired after the 

5th month of gestation, the fetus usually survive, whether manifesting tissue injury 

or not, since is able to mount an effective immune response, thus developing 

neutralizing antibodies and clearing the virus (Hansen et al., 2010). 

 

2.2.3. Persistent infection (PI) 

 Although transplacental infection can be produced by any genotype and 

biotype, only NCP strains can induce the development of persistently infected 

(PI) calves, since CP strains always trigger a strong innate immune response 

(Brock, 2003; Peterhans et al., 2010). The window for the creation of PI calves 

varies but is generally accepted to be between 30 and 125 days, when viral 

antigens are recognized as self antigens as a result of the uncompleted 

development of the fetus immune system (Brock, 2003). A gestational age of 75 

days is commonly used under experimental conditions for inducing persistent 

infections in up to 100% of the fetuses (Brock and Cortese, 2001; Charleston et al., 

2001a; Webb et al., 2012; Smirnova et al., 2014). Due to the absence of an antibody 
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response (Coria and McClurkin, 1978), PI animals will shed large amounts of virus 

in all excretions and secretions (Brock et al., 1998; Brock, 2003). Calves with 

persistent infection are frequently stunted, weak and characterized as "poor-

doers”, with some other clinical signs being associated (Bachofen et al., 2010; Webb 

et al., 2012); however, other PI animals may also appear clinically healthy (Baker, 

1995; Voges et al., 2006). PI calves are regularly reported to be susceptible to 

secondary infections (Voges et al., 2006), as a result of their poor immune function. 

This, combined with susceptibility to mucosal disease, leads to low survivability of 

most PI animals, most of them dying during the first year of life (Houe, 1993; 

Muñoz-Zanzi et al., 2003; Voges et al., 2006), although recent data suggest that as 

many as 28% of PIs in a population may be over 2 years of age (Booth and 

Brownlie, 2012). Some PI females reaching sexual maturity can even become 

pregnant and give birth new PI animals. In endemic regions, the frequency of PI 

animals is very low (less than 2% of animals), although their presence have an 

enormous epidemiological impact (Houe, 1999; Fulton et al., 2005a; 2009). 

 

2.3. Mucosal disease (MD) 

 Mucosal disease is a fatal and sporadic disease that only develops in PI 

cattle after infection with a genetically and antigenically homologous CP virus 

strain, which can arise either from superinfection (Brownlie et al., 1984; Bolin, 

1995), or mutation of NCP BVDV already circulating in the PI animal (Tautz et al., 

1998; Darweesh et al., 2014). In general terms, the higher is the homology the 

earlier and more acutely the symptoms develop. MD also occurs when PI cattle are 

exposed with a CP BVDV that is antigenically heterologous with the resident 

noncytopathic BVDV. In those situations, it may be a race between the cytopathic 

virus and the immune system (Bolin, 1995).  

 The name of the disease was given for the first time after the observation of 

the typical severe erosions, ulcers, and hemorrhages of the mucosal surfaces of 

muzzle and digestive tract (Ramsey and Chivers, 1953). Additionally, animals 

undergoing MD may also show fever, anorexia, skin lesions in the hoof interdigital 

space, and profuse watery diarrhea (often with fibrinous casts, blood or foul odor). 

On histological examination, there is a clear demonstration of destruction of the 

lymphoid tissues, especially within the GALT and regional lymph nodes 
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(Wilhelmsen et al., 1991; Liebler et al., 1995). A small proportion of cattle with 

symptoms of acute MD do not die in the expected time frame, but rather develop 

signs of a more chronic form of the disease (Evermann and Barrington, 2005; 

Grooms et al., 2009). 

 Under experimental conditions, eeaarrllyy onset and llaattee onset MD can be 

distinguished, with MD occurring within 2-3 weeks and months-years, 

respectively, after exposure to the CP strain (Fritzemeier et al., 1997; Liebler-

Tenorio et al., 2000). In early onset MD, CP BVDV reisolated from moribund 

animals is identical to the persisting NCP. After late onset MD, conversely, 

reisolated CP BVDV is a recombination of the persisting NCP and the CP BVDV used 

for inoculation (Fritzemeier et al., 1997). Clinical signs in the end (acute) phase of 

early and late onset MD are indistinguishable, with only subtle differences in tissue 

lesions being observed (Liebler-Tenorio et al., 2000).  

 

33..  PPaatthhooggeenneessiiss  

 The pathogenesis of any disease reveals the complex interaction between 

the infecting pathogen and the infected host.  This process begins with the entry of 

the pathogen into the host, followed by the subsequent replication and 

dissemination, having the nature of the pathogen and the immune response of the 

host a determinant role in the outcome of the infection. Some aspects of the 

complex pathogenesis of BVDV infection have been described in the previous 

section. The following sections will focus principally in the distribution of target 

cells, the immune response and the role of BVDV in the pathogenesis of BRDC, with 

special emphasis on acute postnatal infections. 

 

3.1. Entry and dissemination to target organs  

 The main way of entry of BVDV during acute infections (irrespective of the 

clinical course) is the oronasal route. After initial attachment to cellular co-

receptors such as CD46 (Maurer et al., 2004), viral particles penetrate susceptible 

cells and undergo primary non-lytic replication in the nasal mucosa and tonsils 

(Bruschke et al., 1998b). For more details on the replication cycle of BVDV se 

reviews by Hietala and Crossley (2005) and Ridpath (2005). Through blood and 
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lymphatic dissemination, the virus spreads to regional lymph nodes (Figure 3), and 

subsequently to the rest of the organism in a free form or associated with 

leukocytes, principally lymphocytes and monocytes (Brownlie, 1990; Sopp et al., 

1994; Bruschke et al., 1998b; Archambault et al., 2000). Though BVDV can infect a 

wide variety of tissues, there is an evident predilection for lymphoid and intestinal 

tissues (Sopp et al., 1994; Spagnuolo-Weaver et al., 1997; Liebler-Tenorio et al., 

2003a; Pedrera et al., 2012a). Some differences between NCP and CP biotypes have 

been described after experimental infections with homologous strains, with a 

wider spread in the host in the case of the NCP biotype (Spagnuolo-Weaver et al., 

1997). However, the most important factor affecting the outcome of acute BVDV 

infection in susceptible animals is the virulence of the individual BVDV strain, thus 

determining the wider or more restricted dissemination of the virus and its 

pathogenic effect (Liebler-Tenorio, 2005).  

 

Figure 3. Spread of BVDV of low and high virulence in acute BVDV infections (Adapted 
from Liebler-Tenorio, 2005). 
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 In experimental infections with llooww  vviirruulleennccee  ((LLVV)) strains, animals 

developed mild signs of disease (Wilhelmsen et al., 1990; Bolin and Ridpath, 1992; 

Marshall et al., 1996; Bruschke et al., 1998b; Liebler-Tenorio et al., 2003a; Molina et 

al., 2014). These studies revealed the presence of viral antigen in the majority of 

lymphoid organs (tonsils, lymph nodes, GALT, thymus, BALT and spleen), with the 

exception of bone marrow (Liebler-Tenorio et al., 2003a; Pedrera et al., 2009b; Raya 

et al., 2012). Less frequently, the presence of viral antigen has been described in 

other locations such as liver (Risalde et al., 2011a), and intestinal mucosa (Liebler-

Tenorio et al., 2003a; Pedrera et al., 2009b). Cells predominantly expressing BVDV 

included different types of mononuclear leukocytes, stromal cells and some 

epithelial cells. In general, the presence of BVDV antigen was not directly 

associated with the presence of tissue lesions, as observed with other pathogens 

such as BHV-1 (Moeller et al., 2013).   

 Following experimental infections with hhiigghh  vviirruulleennccee  ((HHVV)) strains, clinical 

signs are severe but are often nonspecific, consisting of high fever, depression, and 

frequently diarrhea (Bolin and Ridpath, 1992; Ellis et al., 1998; Archambault et al., 

2000; Liebler-Tenorio et al., 2002). The initial spread of HV strains is similar to that 

of LV strains, with initial infections of lymphoid tissues (Liebler-Tenorio et al., 

2002; 2003b). However, the amount of viral antigen in tissues rapidly exceeds that 

caused by LV strains, extending to T-cell–dependent areas or even bone marrow, 

frequently observed in cases developing thrombocytopenia (Spagnuolo et al., 1997; 

Walz et al., 1999a). In contrast to BVDV of LV, which is cleared from infected 

tissues, HV strains keep spreading beyond lymphoid tissues, reaching other 

regions such as the mucosa of the upper and lower digestive tract, the respiratory 

tract, endocrine tissues, or even the heart and skin. Additional cell types become 

infected with HV strains, including endothelial cells, neutrophils, smooth muscle 

cells, megakaryocytes and platelets (Walz et al., 1999b; Liebler-Tenorio et al., 2002). 

As in infections with LV strains, the association between presence of viral antigen 

and lesions is rare, particularly in the initial phase of disease (Liebler-Tenorio et al., 

2002). 

 PI animals are characterized by a generalized distribution of BVDV in all 

their organ systems, with a wide variety of cell types becoming infected. Several 

lesions can be observed in different tissues, although they are not directly 
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associated with the detection of viral antigen (Fredriksen et al., 1999; Shin and 

Acland, 2001; Liebler-Tenorio et al., 2004; Hilbe et al., 2007; Montgomery, 2007; 

Bachofen et al., 2010). By using specific monoclonal antibodies for selectively 

detecting NCP and CP BVDV antigens, it has been demonstrated that the NCP BVDV 

antigen, present in PI animals in a wide distribution, is still found in cases of 

mucosal disease (Liebler et al., 1991). However, CP BVDV is predominantly 

detected in sites where tissue destruction is observed (Liebler et al., 1991; 1997), 

consistently found in lymphoid and intestinal tissues, and mucosa of the upper 

digestive tract (Liebler et al., 1995; Hilbe et al., 2013). These studies revealed that 

the spreading pattern for the CP BVDV in MD is similar to the one described for 

acute BVDV infections either with CP or NCP BVDV (Liebler-Tenorio, 2005).     

  

 As stated before, BVDV can establish prolonged infection by means of 

persistent infections of the fetus during pregnancy, being these PI animals unable 

to mount an effective immune response to the infecting BVDV. However, there is a 

second form of maintaining prolonged replication, which may occur in some 

animals following acute infections, specifically in immunoprivileged sites that can 

support chronic infections such as ovarian tissues, testicular tissues, CNS tissues 

and circulating white blood cells (Givens and Marley, 2013). Unlike classical 

persistent infections, animals undergoing these chronic infections do mount a 

significant immune response (Givens and Marley, 2013).  

 

3.2. BVDV and Immunity 

 Viruses have a low capacity for survival outside their hosts, and they use 

two different strategies to remain associated with their hosts, consisting on “hit-

and-run” or “infect-and-persist”. Along with other pestiviruses, the success of 

BVDV survival in its host population is based on a combination of the afore-

mentioned strategies (Peterhans and Schweizer, 2010). Thus, BVDV has the ability 

to infect its hosts transiently, resulting in a short duration of infection in the 

individual host and rapid transfer to the next host (hit-and-run). The second 

strategy consists in infecting persistently individual hosts by evading their immune 

response (infect-and-persist), doing so through mechanisms that differ radically 

from all other viruses causing persistent infections (Peterhans and Schweizer, 
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2010). The interaction of BVDV with the immune system is complex and 

multifaceted. This section summarizes the evidences indicating that BVDV 

interferes with the function of the innate and adaptive immune system which may 

explain the immunosuppressive effects observed in transiently and persistently 

infected animals.  

 

3.2.1 Innate immune response to BVDV 

 The innate/natural (non–antigen-specific) immune response, either with its 

cellular or non-cellular components, can influence the outcome of BVDV infection.  

BVDV can infect cells of the innate immune system affecting the function of 

neutrophils, monocytes, macrophages and dendritic cells (Potgieter, 1995; Lambot 

et al., 1998a; Glew et al., 2003; Peterhans et al., 2003). Infection with BVDV may 

result in impairment of microbicidal, chemotactic and antibody-dependent cell-

mediated citotoxicity of nneeuuttrroopphhiillss (Potgieter, 1995). Many reports have 

described the different effects of in vitro infection with BVDV on mmaaccrroopphhaaggeess 

(reviewed by Peterhans (2003) and Chase (2004)), revealing that certain functions 

are similarly altered by CP and NCP viruses (e.g. impaired TNFα response, 

decreased chemotactic activity, inhibited action of IL-1 activity…), while others are 

influenced in a biotype-specific fashion (e.g. low type I IFN response to NCP 

strains). It has been suggested that nnaattuurraall  kkiilllleerr  ((NNKK))  cceellllss can become infected 

with BVDV (Darweesh et al., 2013), although there are no reports on the role of 

these cells in BVDV pathogenesis and immune response. (More details on 

monocytes-macrophages and DCs will be discussed below as APCs). 

 Among the non-cellular components of innate responses, cytokines 

develop an important role, being the IFN family of cytokines one of the most 

relevant antiviral defense systems of the host (Samuel, 2001). Only NCP BVDVs 

establish fetal infections and persist in host animals, and in this process, the 

modulation of the IIFFNN  ssyysstteemm by BVDV has an exceptional role (Peterhans and 

Schweizer, 2013). Experiments carried out in vivo showed that NCP BVDVs do not 

induce IFN in the developing fetus when injected during the period when PI is 

established (Charleston et al., 2001a), whereas during acute postnatal infections it 

stimulates a vigorous and prolonged type-I (α/β) IFN response (Charleston et al., 

2002; Brackenbury et al., 2005; Smirnova et al., 2008; Palomares et al., 2013). These 
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results indicate that the immunosuppression caused by BVDV may not be 

associated with low IFN responses, being the lack of IFN production in the fetus an 

important factor in the establishment of PI. Unlike NCP strains, CP BVDVs induce a 

strong IFN response in vitro (Adler et al., 1997; Glew et al., 2003) and in the fetus 

(Charleston et al., 2001a), whereas during intranasal infections, CP BVDV may be 

confined to the route of entry as a result of a rapid and potent induction of IFN 

(Lambot et al., 1998b; Brackenbury et al., 2003). A wide variety of subsequent 

studies have revealed that, NCP BVDV not only establishes “self-tolerance” to the 

infecting strain by avoiding induction of IFN, but also by being resistant to the 

action of IFN once the infection is established in utero, not interfering with IFN 

action against unrelated viruses (“non-self”) replicating in the same host cells 

(Schweizer et al., 2006; Schweizer and Peterhans, 2014; Smirnova et al., 2014). This 

novel finding of discrimination between “self” and “non-self” may contribute to the 

good health status seen in many PI cattle (Peterhans and Schweizer, 2010). Strong 

evidences exist supporting the involvement of both viral proteins Npro and Erns in 

the evasion of the host’s IFN system (Meyers et al., 2007; Peterhans and Schweizer, 

2010).    

 Other cytokines have been considered of great importance in the innate 

immune response against BVDV infections, such as the proinflammatory cytokines 

interleukin 1 (IILL--11) and tumor necrosis factor-α (TTNNFF--αα), among others. Results in 

this regard are inconsistent and strongly dependent on the experimental model (in 

vivo or in vitro), the organ studied or the viral strain (Adler et al., 1996; Pedrera et 

al., 2009a; Risalde et al., 2011b; Raya et al., 2012; Palomares et al., 2014a).  

 During acute infections, changes in the synthesis of certain plasma proteins 

denominated acute phase proteins (APP) can be observed (Petersen et al., 2004). 

Elevated levels of APP such as Haptoglobin (Hp) and serum amyloid A (SAA) have 

been described during acute infections with BVDV (Ganheim et al., 2003; Muller-

Doblies et al., 2004; Risalde et al., 2011b; Molina et al., 2014). 

 

 The last, but not least important, elements of the innate immune system are 

antigen presenting cells (APC), which are in fact considered as pivotal interfaces 

linking both innate and adaptive responses (Figure 4). “Professional” APC 

(dendritic cells, macrophages/monocytes and B cells) recognize pathogens (or 



DOCTORAL THESIS - F. R. P.  LITERATURE REVIEW 

47 

more precisely, “pathogen-associated molecular patterns” - PAMP) as BVDV 

through pattern recognition receptors (PRR), phagocytose them, and accompanied 

by co-stimulatory signals, present peptides through the MHC-II molecule to T 

helper cells, which are responsible for subsequent pathogen-specific immune 

responses (Werling and Jungi, 2003; Coffey and Werling, 2011; Romero-Palomo et 

al., 2011). Therefore, detrimental effects of BVDV infections on APCs will hamper 

adaptive immune responses. Studies by Glew et. al. (2003) have shown that 

monocytes and monocyte-derived DCs (moDC) are both susceptible to infection 

with NCP BVDV and CP BVDV in vitro, although striking differences in the response 

of the two cell types to infection with CP virus were seen. DCs were not susceptible 

to the cytopathic effect caused by CP BVDV, whereas monocytes were killed. In 

addition, monocytes infected with NCP BVDV were compromised in their ability to 

stimulate allogeneic and memory CD4+T cell responses, but DCs were not affected 

(Glew et al., 2003).  

 

3.2.2. Adaptive immune response to BVDV 

 Adaptive immunity is an antigen-specific response with immunologic 

memory regulated by T and B lymphocytes, and the soluble factors produced by 

them - cytokines and Abs, respectively -, occurring as a result of a previous 

interaction with APCs (Murphy et al., 2012). 

 

 T cell-mediated immune response 

 T-lymphocytes are an important part of the cell-mediated response. T-

lymphocytes are divided into three groups: helper (CD4+), cytotoxic (CD8+) and 

gamma/delta (γδ). The effect of BVDV infection on the number of circulating T-

lymphocytes is strain dependent and varies from a mild lymphopenia (10-20%) 

(Ellis et al., 1988; Brodersen and Kelling, 1999) to 40-50% (Ridpath et al., 2007) or 

even severe lymphopenia (50-70% decrease) with high virulent strains 

(Archambault et al., 2000; Ridpath et al., 2007).  

 BVDV infections have a major impact on lymphoid organs, consistently 

resulting in lymphoid depletion due to apoptosis, whose severity depends on the 

virulence of the strain or the clinical form, thus causing detrimental effects on T 

cell populations abundantly found in interfollicular areas of lymph nodes and 
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tonsils, and in the thymus cortex (Marshall et al., 1996; Brodersen and Kelling, 1999; 

Liebler-Tenorio et al., 2003b; 2004; Raya et al., 2012).  

 

 

Figure 4. Interaction between innate and adaptive immune responses (adapted from 
Chase et al. 2013).  PAMP=pathogen-associated molecular pattern, PRR=pattern 
recognition receptor, APC=antigen-presenting cell, Th=T helper lymphocytes (CD4+), 
CTLs=cytotoxic T lymphocytes (CD8+), Abs=antibodies  

 

· T helper lymphocytes (Th/CD4+): 

 In vivo studies on the role of T-lymphocyte subsets in the response to 

intranasal NCP BVDV-1 infection revealed that a previous depletion of CD4+ cells 

with specific mAbs resulted in an extension of the duration of viremia and an 

increase in the titre of virus in blood, with no effect on nasopharyngeal shedding 

being noted (Howard et al., 1992). Production of IFN-γ has also been attributed to 
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CD4 lymphocyte subpopulations after BVDV infection (Liang et al., 2008). These 

studies demonstrated that CD4+ cells play a pivotal role in coordinating a cell 

mediated response early in infection (Howard et al., 1992; Liang et al., 2008).  

 The Th1/Th2 paradigm postulated by Mosmann et. al. (1986) from studies 

on cytokines produced by murine Th lymphocytes seems to be related with the 

biotype of BVDV producing infection, being proposed that CP strains tend to shift 

the immune response towards a pronounced cell-mediated immunity (CMI, or 

Th1), while NCP strains induce a predominant Th2 immune response (Lambot et 

al., 1997). Thus, the proliferative T cell response occurring with CCPP BVDV infections 

is faster and more prolonged than with NCP BVDV (Lambot et al., 1997; Collen and 

Morrison, 2000; Brackenbury et al., 2003). Another factor that is seen with Th1 

response is up regulation of IL-2 receptor (IL-2R or CD25) in response to increased 

levels of IL-2, and intense production of IFNγ, as observed after CP BVDV infection 

(Adler et al., 1997; Hou et al., 1998), with no production of IL-4 or B-cell stimulatory 

activity. Conversely, infections with NNCCPP BVDV induce limited cell-mediated 

immunity, but high levels of antibodies, B cell growth factor and IL-4 activity, with 

low levels of IL-2/IL-2R and IFN-γ, features more typically observed in Th2 

immune responses (Lambot et al., 1997; Hou et al., 1998; Rhodes et al., 1999; 

Burciaga-Robles et al., 2010). The down regulation of IFN-γ observed during acute 

infections with NCP BVDV also inhibited the cell-mediated response against 

Mycobacterium bovis and BHV-1, which could result in reduced host´s ability to 

contain these pathogens and also in the failure of diagnosis tests to identify cattle 

with tuberculosis (Charleston et al., 2001b). This Th1/Th2 paradigm attributed to 

BVDV biotype is not devoid of controversies, since for example, studies with acute 

ncp BVDV infections show clear tendencies towards a type 1 cytokine response 

(Charleston et al., 2002; Molina et al., 2014). Differences in the virulence and 

genotype of BVDV strains have been suggested to be also responsible for 

differential cytokine expression (Palomares et al., 2014). 

 

· Cytotoxic T lymphocytes (CTL/CD8+): 

 In vivo depletion of cytotoxic T lymphocytes (CTLs/CD8+), unlike CD4+ 

depletion, had no demonstrable effect on controlling viremia after BVDV infection, 

although CD8+ depletion with antibodies did not result as efficient as for CD4+ 
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cells (Howard et al., 1992), therefore, an active role for CD8+ T cells in clearing 

BVDV should not be ruled out. A specific CD8+ proliferating response against BVDV 

has been described in vitro, appearing to be a Th1-like memory response, with 

increased IL-2 and IFN-γ but no IL-4 or B cell stimulatory activity (Rhodes et al., 

1999). Since CTL cells are MHC-I restricted T-cells (MacHugh and Sopp, 1991), 

alterations on the surface expression of MHC-I of infected cells will directly affect 

the CTL response. However, studies on the effect of BVDV infection in this regard 

do not provide consistent results (Archambault et al., 2000; Glew et al., 2003; Lee et 

al., 2009). 

 

 · Gamma-delta (γδ) T lymphocytes: 

 As with CD8+ lymphocytes, antibody-mediated depletion of γδ T cells had 

no demonstrable effect on controlling viremia after BVDV infection (Howard et al., 

1992). The role of γδ T cells in BVDV infections has been scarcely investigated, but 

evidences exist reporting that they may have an important role in preventing MD 

by controlling CP BVDV infection in PI animals (Bruschke et al., 1998a).  

 Ruminants have higher levels of γδ T cells than other species. In neonates, 

up to 60% of lymphocytes can be γδ T cells and levels drop to 30% by a year of age 

and 5-10% in adults in the peripheral blood and with similar levels in the intestinal 

epithelium and lamina propria (Hein and Mackay, 1991). The γδ T cells recognize 

self-determinants on virus infected cells, without the requirement for antigen 

processing and APCs (Jutila et al., 2008). The function of γδ T cells has been for long 

a matter of debate (Guzman et al., 2012). These cells have been considered to be 

more related to natural killer cells in innate immunity rather than adaptive 

immunity (Bruschke et al., 1998a; Jutila et al., 2008). However, more recent studies 

consider this cell type the major regulatory T cell subset in cattle (Hoek et al., 2009; 

Guzman et al., 2014).  

 

 B lymphocyte and humoral response 

 The effect of BVDV infection on the number of circulating B lymphocytes 

varies by study from a decrease (Ellis et al., 1988) to no effect (Archambault et al., 

2000) to a transient increase (Brodersen and Kelling, 1999). The major impact on 
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lymphoid organs occurring after BVDV infection is particularly evident in 

follicular B lymphocytes, as observed in the depleted lymphoid follicles of lymph 

nodes, tonsils, and above all of Peyer’s patches (Jubb and Kennedy, 2007a), with 

variations in the severity of the lymphoid depletion depending primarily on the 

viral strain. Different pathways and mechanisms of apoptosis have been proposed 

for B cell death (Stoffregen et al., 2000; Liebler-Tenorio et al., 2003b; Pedrera et al., 

2009a; 2009b; 2012b; Brodersen, 2014).  

 After first stimulation, naïve B lymphocytes process and present antigens 

through surface MHC-II molecules to helper T lymphocytes. Due to this interaction, 

Th cells further activate B cells to undergo subsequent clonal proliferation and 

differentiation to memory B lymphocytes and plasma cells, thus producing large 

amounts of antigen-specific circulating immunoglobulins that, along with maternal 

passive immunity, constitute the humoral immunity (Mescher, 2013).  

 Intracellular pathogens such as viruses are most effectively eliminated by 

cell-mediated immune responses. However, extracellular pathogens, like viruses at 

the portal of entry into the host, are eliminated mostly by neutralizing antibodies 

(Srikumaran et al., 2007). Therefore, the disappearance of BVDV in acute infections 

cannot be attributed to the presence of specific antibodies, which have a moderate 

and delayed response, not being detected until 2-3 weeks post-infection (for 

diagnostic purposes, paired sera should be taken 3-4 weeks apart) (Archambault et 

al., 2000; Muller-Doblies et al., 2004; Lanyon et al., 2014). 

 Maternal BVDV neutralizing Abs provide efficient protection against severe 

infections. However, high titres of maternal Abs should be take into account during 

vaccination programs, since although they may generate BVDV specific memory T 

and B cells, maternal Abs prevent the development of vaccine Ab responses (Ellis 

et al., 2001; Endsley et al., 2003; Ridpath et al., 2003).  

 

 Adaptive immunity and PI animals  

 It has been observed that the leukocyte profile of PI animals can be either 

altered (Piccinini et al., 2006) or remain unaltered (Brewoo et al., 2007).  APCs in 

these animals have been reported to be not compromised in their ability to present 

viral antigen (Glew and Howard, 2001). The non-responsive character of PI animals 

has been proved to be very dependent on CD4+ cells and specific to the strain 
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causing the persistent infection, with single amino acid differences being sufficient 

for CD4+ T-cell recognition of a heterologous virus (Collen et al., 2000). Due to the 

mechanisms of immune tolerance occurring in PI animals, exceptionally high viral 

loads exist in the absence of a humoral response against the persisting viral strain. 

Thus, the presence of antibodies against BVDV should not be used to rule out 

persistent infections, since these antibodies can be transmitted via colostrum or be 

originated in response to heterologous BVDV strains.  

 

3.3. Role of BVDV in the Bovine Respiratory Disease Complex (BRDC) 

 

 Interstitial pneumonia has been seen in a limited number of field cases of 

respiratory disease that occurred as a result of acute BVD and in a few cattle with 

experimentally induced acute BVD (Potgieter et al., 1984b; Baszler et al., 1995; 

Baule et al., 2001; Risalde et al., 2014). Conclusive experimental evidence that 

uncomplicated infection with BVDV causes severe respiratory disease in cattle is 

lacking, with BVDV eliciting in most cases only mild respiratory tract disease in 

susceptible cattle. Difficulties in reproduction of severe respiratory disease with 

BVDV under experimental conditions may reflect choice of viral strain, age of 

experimental animal, method of viral exposure, or absence of environmental 

stressors present under field conditions (Potgieter et al., 1985; Potgieter, 1997; 

Bolin, 2002). 

 Despite the controversies and inconsistent results considering BVDV as a 

pathogen inducing lung pathology on its own, BVDV is frequently isolated in 

outbreaks of bovine respiratory disease complex (BRDC) (Fulton et al., 2000a; 

Fulton et al., 2005b), giving this virus an outstanding role in the pathogenesis of 

this disease (Loneragan et al., 2005; Hessman et al., 2009). BRDC, sometimes called 

shipping fever pneumonia of beef calves or enzootic pneumonia  of dairy calves 

(Caswell, 2014),  is the leading cause of morbidity and mortality in feedlot cattle 

(Fulton, 2009), and is considered as a multifactorial disorder characterized by a 

primary active viral infection with bovine respiratory viruses as BVDV, BHV-1, 

bovine respiratory syncytial virus (BRSV) and parainfluenza-3 virus (PI-3V), that 

favors secondary bacterial infections produced principally by Mannheimia 

haemolytica, Pasteurella multocida, Histophilus somni (formerly Haemophilus 
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somnus), Mycoplasma bovis, and Trueperella (formerly Arcanobacterium) pyogenes 

(Confer, 2009; Ellis, 2009; Woolums et al., 2009; Caswell, 2014). The greatest impact 

of BVDV to the development of bovine respiratory disease lies on the 

immunosuppression that accompanies acute BVDV infections and predisposes 

animals to secondary infections, along with the synergy resulting in increased 

virulence occurring in coinfections of BVDV with other pathogens (Ridpath, 

2010a). In this regard,  there is evidence that combined infections with BVDV have 

a potentiating effect on several pathogens, increasing the respiratory disease in a 

more severe form compared to calves infected only with BHV-1 (Potgieter et al., 

1984a; Risalde et al., 2013), BRSV (Elvander et al., 1998; Brodersen and Kelling, 

1999), or Mannheimia haemolytica (Potgieter et al., 1984b; Burciaga-Robles et al., 

2010).  

 Beside the generalized immune alterations described in section 3.2., BVDV 

may also contribute to BRDC by different local mechanism, including inhibited 

ciliary activity of tracheal epithelial cells (Rossi and Kiesel, 1977), immune 

impairment of the airway epithelium and bronchoalveolar defenses (Silflow et al., 

2005; Al-Haddawi et al., 2007), or alterations in the inflammatory response of 

pulmonary macrophages (Welsh et al., 1995; Liu et al., 1999), among others.  

 Taken together, field and experimental data indicate that BVDV contribute 

to BRDC primarily by altering or impairing systemic and local defense 

mechanisms, rather than acting as a pneumopathogenic virus. By doing this, BVDV 

allows other pathogens to propagate to higher numbers and to persist for an 

extended period, leading to severe disease (Bolin, 2002). 

 

44..  EEppiiddeemmiioollooggyy,,  ddiiaaggnnoossiiss  aanndd  ccoonnttrrooll..  

 Infections with BVDV are not limited to cattle, but may be detected in 

various species in the mammalian order Artiodactyla (even-toed ungulates). 

Despite epidemiological evidence of BVDV infections in species other than 

cattle, current knowledge regarding the impact of BVDV on heterologous species is 

incomplete. In heterologous hosts, BVDV infections with clinical signs analogous to 

those in cattle have been described and include disease of multiple organ systems, 

most notably the reproductive tract and immune system. Clinical infections may 
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negatively impact the health and well-being of heterologous species, including 

camelids and captive and free-ranging wildlife. Of additional importance are BVDV 

infections in small ruminants and swine where difficulties arise in laboratory 

testing for BDV and CSFV, respectively. Pestiviruses are antigenically closely 

related and their cross-reactivity requires additional efforts in virological testing. 

As in cattle populations, persistent infections have also been detected in 

heterologous species, which could facilitate reservoirs for BVDV that may be of 

great importance when control programs are in progress (Ames, 2005; Vilcek and 

Nettleton, 2006; Passler and Walz, 2010; Ridpath, 2010b; Henningson et al., 2013; 

Passler et al., 2014).  

 Cattle persistently infected with BVDV shed large amounts of virus their 

entire life and are the major source of BVDV transmission both within and among 

herds. Acutely infected cattle are also an important source of BVDV transmission, 

but the level of virus shed is considerably lower and the length of shedding is 

limited. Oronasal route is the most common route of infection, and the most 

efficient mode of transmission is direct contact with body fluids, although indirect 

transmission can occur through mechanical vectors. Vertical transmission has an 

indispensable role in the development of PI animals (Lindberg and Houe, 2005; 

Thurmond, 2005).  

 

 Extended reviews on the techniques and considerations for diagnosis of 

BVDV infections can be found in the literature, standing out the following: Saliki 

and Dubovi  (2004), Goyal (2005), OIE (2008), Dubovi (2013), Lanyon et al. (2014).  

 

 The wide range of diagnostic tools available has allowed successful BVDV 

control and eradication schemes to become a reality (Brownlie and Booth, 2014). 

Successful control and eventual eradication of BVDV requires a multidimensional 

approach, involving vvaacccciinnaattiioonn (reviewed by Fulton (2005) and Ridpath (2013)), 

biosecurity (Smith and Grotelueschen, 2004), and continuous surveillance for rapid 

detection of reinfection and PI animals. With the understanding that PI individuals 

are the primary transmission source, these animals naturally become the target for 

eradication (Lindberg and Houe, 2005). Test and cull schemes have successfully 

been applied in many countries, including all or regions of Austria, Scotland, The 
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Netherlands, Norway, Denmark, Sweden, Switzerland, Italy, Slovenia, Germany, 

France, Ireland and Finland (Astiz-Blanco, 2013; Lanyon et al., 2014). These 

schemes have been thoroughly reported, with common features identified and 

reviewed (Lindberg and Alenius, 1999; Sandvik, 2004; Houe et al., 2006; Barrett, 

2012; Stahl and Alenius, 2012; Loken and Nyberg, 2013). The Scandinavian 

countries, considered the pioneers in control programs (Stahl and Alenius, 2012), 

along with the dairy industry in Switzerland, are now largely regarded as BVDV-

free, due to the implementation of successful systematic eradication programs 

(Lanyon et al., 2014). In Spain the virus is endemic, with herd prevalences varying 

among regions from 50 to 100% (Arnaiz et al., 2012). In this country, control 

programmes exist in some regions, with the aim of reducing economic losses due 

to BVDV outbreaks (Dieguez et al., 2009). Some of the key points that might success 

for controlling and eradicating BVDV according to the current status in Spain are 

proposed by Arnaiz et al. (2012).  
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IIII..  BBoovviinnee  HHeerrppeessvviirruuss  ttyyppee  11  ((BBHHVV--11))  

 

 Bovine herpesvirus 1 (BHV-1), isolated for the first time in the USA in 1956 

(Madin et al., 1956), is one of the major pathogens affecting cattle, being 

responsible for important economic losses worldwide (Sanchez-murillo, 1996; 

Deregt, 1998; Bowland and Shewen, 2000). BHV-1 is the causative agent of a variety 

of clinical syndromes, including infectious bovine rhinotracheitis (IBR), infectious 

pustular vulvovaginitis (IPV) and infectious pustular balanoposthitis (IPB), and it 

is also involved in the multi-factorial bovine respiratory disease complex (BRDC) 

(Jones and Chowdhury, 2010).  

 

11..  EEttiioollooggyy 

 BHV-1 is a member of the genus Varicellovirus in the subfamily 

Alphaherpesvirinae, which belongs to the Herpesviridae family, order Herpesvirales  

(Pellett et al., 2012) (Table 1). Herpesviruses are enveloped, spherical to 

pleomorphic, of 120-200 nm diameter, composed of an icosahedral nucleocapsid of 

162 capsomers surrounded by a proteinaceous tegument and an outer envelope 

(Figure 1A). The viral genome consists of linear double-stranded DNA (125-290 

kbp) that encodes for about 70 structural and non-structural proteins. The viral 

genomic sequence can be divided into a unique long (UL) segment and a unique 

short (US) segment flanked by two repeated and inverted sequences (internal 

repeat, IR; terminal repeat, TR) (Figure 1B). This genome encloses 10 genes 

encoding glycoproteins (GP), six of them located in the UL segment and the other 

four in the US segment. gB, gC, and gD are considered ‘major’ or more abundant 

GPs, and others (e.g. gE and gH) as ‘minor’ GPs. A segment located in the IR 

inverted sequence is actively transcribed during latency giving rise to the Latency 

Related Transcripts (LRT). Information on the proteins encoded by BHV-1 genome 

can be found extensively detailed by Levings and Roth (2013a) and Biswas et al.  

(2013). DNA replication and encapsidation occur in the nucleus and immature 

virions acquire their envelope by budding through the inner layer of the nuclear 

membrane (Knowles, 2011). BHV-1 virus can be grown in a wide variety of cells 
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from different species, where it produces a characteristic cytopathic effect (Wilkes, 

2013).   

Table 1. Taxonomy of Bovine herpesvirus type 1 

Group Family Subfamily Genus Species 
 

DDoouubbllee--SSttrraannddeedd  
DDNNAA  VViirruusseess 

(Group I) 
Order 

Herpesvirales 

  

HHeerrppeessvviirriiddaaee  → 
  

AAllpphhaahheerrppeessvviirriinnaaee  → 
Betaherpesvirinae 
Gammaherpesvirinae 

  

VVaarriicceelllloovviirruuss  → 
Iltovirus 
Simplexvirus 
Mardivirus 
 
 

 

· BBooHHVV--11, 5 
· SuHV-1 
· CaHV-1 
· EHV-1, 3, 4, 8, 9 
· FeHV-1 
  … 

 

For a direct link to http://viralzone.expasy.org/, press on each word on the table. [Etymology: Herpes (from Greek 
herpes, “creeping”); Ilto (from “infectious laryngotracheitis”); Mardi (from “Marek’s disease”); Simplex (from Latin 
simplex, “simple”); Varicello (derived from Latin varius, “spotted”, and its diminutive variola, “smallpox”)(Pellett et 
al., 2012)] 

 

 

 
Figure 1. Structure (A) and genome organization (B) of BHV-1 (Adapted from Swiss 
Institute of Bioinformatics (http://viralzone.expasy.org) and Muylkens et al., 2007)  

 

 Only a single serotype of BHV-1 is recognized; however, based on the 

genomic analysis and viral peptide patterns, BHV-1 can be divided into several 

subtypes: BHV-1.11, BHV-1.22aa and BHV-1.22bb (Miller et al., 1991). BHV-1.1 mostly is 

related to the rreessppiirraattoorryy  ssyynnddrroommee while BHV-1.2 subtypes are related to ggeenniittaall  

iinnffeeccttiioonnss, being considered BHV-1.2 subtypes of less virulence than subtype 1.1 

(Edwards et al., 1990). The former BHV-1.3, previously considered responsible for 

a neurologic form of BHV-1 infection, has been reclassified as BHV-5 (bovine 

encephalitis virus) (Roizmann et al., 1992; Del Medico Zajac et al., 2010). 

  

http://viralzone.expasy.org/all_by_species/236.html
http://viralzone.expasy.org/all_by_species/236.html
http://viralzone.expasy.org/all_by_species/176.html
http://viralzone.expasy.org/all_by_species/15.html
http://viralzone.expasy.org/all_by_species/16.html
http://viralzone.expasy.org/all_by_species/18.html
http://viralzone.expasy.org/all_by_protein/179.html
http://viralzone.expasy.org/all_by_species/523.html
http://viralzone.expasy.org/all_by_species/178.html
http://viralzone.expasy.org/all_by_species/522.html
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=bovine+herpesvirus&commit=search+virus
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=suid+herpesvirus&commit=search+virus
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=canid+herpesvirus&commit=search+virus
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=equid+herpesvirus&commit=search+virus
http://viralzone.expasy.org/cgi-bin/viralzone/search?query=felid+herpesvirus&commit=search+virus
http://viralzone.expasy.org/
http://viralzone.expasy.org/
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22..  CClliinniiccaall  ffoorrmmss  aanndd  lleessiioonnss    

 The clinical signs may vary widely and have been grouped as respiratory-

conjunctival forms and genital forms. Mortality is low and severity of disease 

depends on the immune status of the animal and the possible appearance of 

secondary bacterial infections. Induction of abortion has also been frequently 

associated to BHV-1 infection, described for the first time 50 years ago (Kennedy 

and Richards, 1964; Graham, 2013; O'Toole et al., 2014), as well as the appearance 

of fatal multisystemic infection in neonates (Mechor et al., 1987; Moeller et al., 

2013). The incubation period for the respiratory and genital forms of BHV-1 is 2–6 

days (Yates, 1982). Uncomplicated cases of respiratory or genital disease caused by 

BHV-1 last about 5-10 days and the animals recover rapidly, although they remain 

as latent carriers. 

 Although most BHV-1.1 strains have been isolated from respiratory tract 

diseases or abortion cases and BHV-1.2 strains from genital organ lesions, the only 

reliable distinctive criterion is the viral DNA analysis. Indeed, calves infected 

experimentally by the nasal route with BHV-1.2 strains showed respiratory clinical 

signs and were able to transmit the respiratory infection to control calves. 

Likewise, reproductive tract lesions in heifers were observed after intrauterine 

inoculation with BHV-1.1 (Muylkens et al., 2007). 

 

2.1. Respiratory form (IBR) 

 IBR occurs as a subclinical, mild or severe disease. In mild cases, clinical 

signs may be limited to a serous nasal discharge and conjunctivitis with profuse 

lacrimation, with the hair beneath the eye becoming heavily soiled. Classical IBR is 

characterized by pyrexia (40.5-42ºC), inappetence, increased respiratory rate, 

dyspnea, persistent harsh cough and depression (Blowey and Weaver, 2011b). Loss 

of body weight and severe drop in milk production in milking cows can also be 

observed. There is bilateral nasal discharge that is initially serous and later muco-

purulent. The nasal mucosa is hyperemic and lesions can progress to pustular 

necrosis or large hemorrhagic and ulcerated areas covered by a cream colored 

diphtheritic membrane. Mouth breathing, salivation and a deep bronchial cough 

are common. The lesions extend to trachea and sinuses if complicated with 
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secondary bacterial infections; pneumonia is a complication and not part of the 

primary disease. Abortion is a consequence of a respiratory BHV-1 infection of a 

seronegative cow, consistently being observed several foci of coagulative necrosis 

in fetal organs, particularly common in the liver (Borel et al., 2014; O'Toole et al., 

2014). Associated with BHV-1 infections, intranuclear inclusion bodies may be 

present in necrotic epithelial cells or in the periphery of necrotic foci, although 

these are an inconsistent finding (Jubb and Kennedy, 2007b). Secondary bacterial or 

viral agents may contribute to severe respiratory disease in the context of the 

bovine respiratory disease complex (BRDC) (Fulton, 2009).  

 

2.2. Genital form (IPV/IPB) 

 The BHV-1 genital form is usually transmitted at mating. The names given 

to the diseases affecting the cow (infectious pustular vulvovaginitis, IPV) and the 

bull (infectious pustular balanoposthitis, IPB) describe clearly the clinical pictures 

observed following the primary infection. Frequent urination and tail swishing are 

characteristic signs noticed initially. Affected animals develop fever, depression 

and anorexia; they seek to avoid contact of the tail with the vulva. It is also 

common to observe swollen vulva or small papules followed by erosions and 

ulcers on the mucosal surface (Miller and van der Maaten, 1984). Lesions similar to 

those of IPV develop on the mucosa of the penis and prepuce (Vogel et al., 2004). 

IPV/IPB are commonly mild or subclinical, being restricted to the genital organs, 

although more severe infections affecting more organs have been reported. 

Secondary bacterial infection is common in both genital forms. 

 

33..  PPaatthhooggeenneessiiss  

3.1. Entry and dissemination 

 The natural infection occurs through mucous membranes of the upper 

respiratory tract or genital tract (Steukers et al., 2011), where BHV-1 undergoes 

massive lytic replication in epithelial cells, excreting high titres of virus in the nasal 

exudates and genital secretions. The new progeny also spreads into the infected 

animal through different routes: (1) by local dissemination (in the extracellular 

matrix or directly to neighboring uninfected cells); (2) by systemic spread/viremia 
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(Fuchs et al., 1999), causing other manifestations as abortions or fatal systemic 

infection in young calves; or (3) by the neuroinvasive route. This latter route is 

responsible for the establishment of latent infections when BHV-1 reaches by 

neuronal axonal transport the trigeminal or sacral ganglia (Homan and Easterday, 

1980; Ackermann and Wyler, 1984), being established a life-long infection. During 

latent infections, gene expression is restricted to the so-called latency-related 

transcripts (LRT), which inhibit programmed cell death in latently infected cells 

(Ciacci-Zanella et al., 1999; Sinani et al., 2014). Stress situations can induce 

reactivation of the latent infection (detailed below in section Epidemiology). 

Consequently, the virus may switch between latent and lytic infection and may be 

shed intermittently into the environment and spread to contact animals. Although 

establishment of latency in ganglionic neurons is the main site of latency for BHV-1 

and other α-herpesvirinae subfamily members, latent or persistent infections also 

occur in non-neural sites like tonsils, lymph nodes or peripheral blood cells (Jones 

et al., 2011). 

 

3.2. BHV-1 and immunity 

 Although BHV-1 can cause transient immunosuppression in cattle 

(described below), a potent immune response eventually occurs during acute 

infection, which defeats disease. The host immune response to BHV-1 infection 

includes innate and adaptive immune responses.  

 IInnnnaattee immune responses are the first line of defense against BHV-1 

infection. Some of these non-specific mechanisms include the activation of the 

complement pathway and the antiviral action of IFN (Campos et al., 1989). The 

production of early cytokines leads to the recruitment and activation of different 

cells such as macrophages, neutrophils and natural killer (NK) cells. In addition, 

NK-like cytotoxicity is also associated with a population of γδ T-cells (Amadori et 

al., 1995). These effectors enhance the first antiviral wave by secreting cytokines in 

the infected epithelium and killing virus infected cells. The non-specific activated 

immune cells are also essential in initiating and regulating the specific immune 

response to BHV-1. For more details on innate immunity during BHV-1 infections, 

see review by Levings and Roth (2013a). 
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 Cell-mediated immune (CMI) responses play an important role in killing 

virus-infected cells that express viral antigens on the cell surface. The ssppeecciiffiicc  

cceelllluullaarr immunity is detected from the 5th day post infection (dpi) and reaches a 

peak at 7–10 dpi. It generally coincides with the recovery of clinical manifestations 

(Babiuk et al., 1996). Specific T helper lymphocytes (Th/CD4+) mediate the lysis of 

BHV-1 infected cells by activating macrophage and NK cells through IFN-γ and IL-2 

secretion, and by recruiting and promoting the proliferation of specific cytotoxic T 

lymphocytes (CTL/CD8+) (Janssen et al., 2003), of huge importance against BHV-1 

cell-to-cell spread occurring in upper respiratory epithelium before hematogenous 

dissemination (van Drunen Littel-van den Hurk, 2007).  

 While cell-mediated immunity is involved in recovery from infection, the 

ssppeecciiffiicc  hhuummoorraall immune response is thought to be critical in preventing 

productive secondary infection and limiting the consequences of reactivation 

(Babiuk et al., 1996), as well as in protecting the neonate against systemic and 

lethal disease through passive colostral immunity (Mechor et al., 1987). Envelope 

glycoproteins gB, gC, gD and gH are the most potent inducers of virus neutralizing 

antibodies (Marshall et al., 1988). In addition, non-neutralizing antibody may 

mediate the destruction of enveloped virus or cells expressing viral proteins on the 

cell membranes, and this process is referred to as antibody-dependent cell-

mediated cytotoxicity (ADCC). After the acute infection, specific antibodies to BHV-

1 can be detected after 7-14 days. BHV-1 usually persists life-long in a latent state 

in the trigeminal or sacral ganglia and can be subsequently reactivated resulting in 

virus shedding (re-excretion) without exhibition of clinical disease. Therefore, 

antibody-positive animals have to be classified as infected with BHV-1 (with two 

exceptions: serological responses induced by vaccination with an inactivated 

vaccine or by colostral antibodies) (OIE, 2010). However, this antibody response 

may fall below the detection limit of some tests after a number of years. So, the 

serological test must be highly sensitive to detect the low level of antibodies in the 

serum of latently infected animals (Nandi et al., 2009). Maternal antibodies have a 

biological half-life of about 3 weeks, but may be detected occasionally in animals 

up to 9 months old, and rarely in animals over this age. For more details on 

adaptive immunity during BHV-1 infections, see review by Levings and Roth 

(2013b). 
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 BHV-1 can transiently ssuupppprreessss  tthhee  iimmmmuunnee  ssyysstteemm of infected cattle. There 

is impairment of function of macrophages, PMNs and lymphocytes, decreased 

expression of interleukin-2 (IL-2) receptor, decreased mitogenic stimulation of 

peripheral blood mononuclear cells (PBMCs) and a reduced number of circulating 

T cells (Hutchings et al., 1990; Tikoo et al., 1995; Winkler et al., 1999). There is an 

impairment of phagocytosis, ADCC and T cell stimulation due to infection of 

monocytes and macrophages, as well as inhibition of IFN-β-dependent 

transcription (Babiuk et al., 1996; Henderson et al., 2005). The virus infects CD4+ T 

cells (but not CD8), inducing a loss of CD4 expression followed by apoptosis of 

these cells (Babiuk et al., 1996; Winkler et al., 1999). BHV-1 is known to down-

regulate the expression of MHC-I molecules on the surface of infected cells 

(Nataraj et al., 1997), doing so by different mechanism (Koppers-Lalic et al., 2001; 

2005; Wei et al., 2011). This MHC-I downregulation compromises the development 

of a robust CTL response against not only BHV-1 (Denis et al., 1993), but also the 

other viral pathogens of BRDC. 

 

3.3. Role of BHV-1 in the BRDC  

 It has been described above that in addition to the clinical symptoms, BHV-1 

infection can suppress the immune system of infected cattle, although in a 

transient manner, since potent immune response eventually occurs during acute 

infection. With respect to BRDC, this implies that immunosuppression initiated by 

BHV-1 is short-lived. In addition to the transient immunosuppression described, 

some other factor associated to BHV-1 infection may contribute to bacterial 

secondary infections and appearance of BRDC: BHV-1 can induce loss of cilia and 

goblet cells in the upper respiratory tract, leading to epithelial erosions which 

could progress to necrosis of epithelium and adjacent lymphoid tissue (Schuh et al., 

1992), reducing the mucosal clearance. After this direct CPE, BHV-1 may also 

reduce the repair of the airway epithelium by inhibiting the migration of new 

epithelial cells to injured areas (Spurzem et al., 1995). BHV-1 infection of bronchial 

epithelial cells triggers cytokine overexpression that may contribute to inducing 

lung injury (Rivera-Rivas et al., 2009). This sequence of events favors the migration 

and colonization of the lower respiratory tract by bacterial respiratory pathogens 

(Yates, 1982; Confer, 2009; Jones and Chowdhury, 2010). 
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44..  EEppiiddeemmiioollooggyy,,  ddiiaaggnnoossiiss  aanndd  ccoonnttrrooll..  

 BHV-1, unlike some other alphaherpesviruses such as suid herpesvirus 1 

(Aujeszky’s disease virus), does not commonly or stably cross species barriers and 

has restricted cattle and buffalo host range (Brake and Studdert, 1985; Knowles, 

2011). Direct nose to nose contact is the preferential way of transmission of BHV-

1. However, airborne transmissions by the aerosol route were demonstrated on 

short distances (Mars et al., 2000). Genital infection requires direct contact at 

mating. Genital transmission also occurs through virus contaminated semen 

(Kupferschmied et al., 1986). The latency reactivation cycle has a deep 

epidemiological impact since it is responsible for the maintenance of BHV-1 in a 

cattle population. Reactivation may be triggered by stress associated with 

parturition, transport, animal movement and mixing, inclement weather, 

concomitant infections, poor husbandry or diet, overcrowding or following 

treatment with corticosteroids (Raaperi et al., 2014). 

 

 BHV-1 infection may be suspected on the basis of clinical, pathological and 

epidemiological findings. However, to make a definite diagnosis, laboratory 

examinations (serology and/or virus detection) are required. Extended reviews 

that include different techniques and considerations for diagnosis of BHV-1 

infections can be found in the literature (OIE, 2010; Fulton and Confer, 2012; Biswas 

et al., 2013; Mahajan et al., 2013). 

 

 BHV-1 is endemic in cattle populations worldwide, although there are 

significant differences in prevalence and incidence. By implementing control 

measures, the virus has been eradicated in several European countries (Austria, 

Denmark, Finland, Sweden, Switzerland and Norway), as well as in the Federal 

State of Bavaria in Germany and the Province of Bolzano in Italy (Arnaiz et al., 

2012; Thiry and Casademunt, 2012; Raaperi et al., 2014). Several ruminant 

alphaherpesviruses have been shown to form a cluster of viruses closely related to 

BHV-1, sharing common antigenic properties. Therefore, the serological 

relationships between them can be considered as a threat to BHV-1 eradication 

programmes (Thiry et al., 2006). A number of reasons speak in favor of IBR 



DOCTORAL THESIS - F. R. P.  LITERATURE REVIEW 

64 

eradication. However, the price of such an achievement is unfortunately very high 

and the costs of such campaigns have to be weighed against the benefits 

(Zimmerman et al., 2007).  

 Most vvaacccciinneess are very efficacious at preventing the clinical signs after the 

challenge with highly virulent strains (for more details on BHV-1 vaccines, see 

reviews by van Drunen Littel-van den Hurk (2006), Ruiz-Saenz et al. (2009), and 

Levings and Roth (2013b)). However, no one is able to fully prevent the infection by 

that challenge strain, which establishes a latent infection, and might be reexcreted 

under reactivation stimulus. For this reason, culling of seropositive animals 

without vaccination has been the most successful method for eradicating BHV-1 in 

those regions where the seroprevalence is relatively low (Ackermann and Engels, 

2006).  

 In Spain the virus is endemic, with herd seroprevalences of 60% (Yus et al., 

2014) (70.4% in Andalusia (Gonzalez-Garcia et al., 2009). In this country, voluntary 

regional BHV-1 control programmes in specified herds are ongoing (Dieguez-

Casalta, 2012; Yus et al., 2014). The reasons for including BHV-1 in control and 

eradication programmes in Spain, unlike BVDV, are principally promoted for the 

trade restrictions in the EU rather than the direct economic losses due to the 

disease itself (Arnaiz et al., 2012).  
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IIIIII..  TThhyymmuuss  

  

 The thymus is a primary lymphoid organ in which bone marrow-derived T 

cell precursors undergo differentiation, ultimately leading to migration of 

positively selected thymocytes to the T cell-dependent areas of peripheral 

lymphoid tissues.  

 

11..  DDeevveellooppmmeenntt  aanndd  aannaattoommyy  

 The mammalian thymus is located in the cranial mediastinum with variable 

extension into the cervical region. Embryologically, it develops as a network 

(thymic epithelial reticulum) from the endoderm 

of the third pharyngeal pouch, which is invaded 

by blood vessels from the surrounding 

mesenchyme and infiltrated by large numbers of 

lymphocyte precursors from the bone marrow. 

In the calf, the thymus is particularly large and 

extends from the larynx to the pericardium 

(König and Liebich, 2009). It is distinctively 

divided into a paired cervical and an unpaired 

thoracic part, which are connected by a narrow 

isthmus ventral to the trachea (Figure 1). The 

cervical part consists of a body that divides into 

two tapering horns along the trachea. The thoracic part is located in the left half of 

the dorsal part of the cranial mediastinum.  

 The thymus is most prominent in young animals and after sexual maturity, a 

progressive normal involution of the organ takes place. Thymic involution is 

characterized by a gradual depletion of lymphocytes (especially from the cortex), 

enlargement of the epithelial reticular cells, and invasion of the parenchyma by 

adipocytes originating from the interlobular connective tissue. Despite this 

progressive physiological involution, the thymus retains even in the adult 

(although at lesser extent) its ability to form T lymphocytes (Douek and Koup, 

2000). In calves, the thymic weight increases up to 12 months of age, and then 

Figure 1. Topography of the 
thymus of the calf, schematic. 
(König and Liebich, 2009) 
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begins to decline by the age of 14 months, although no abrupt diminution in 

thymus weight has been detected at puberty (Blanco et al., 2000).  

 

22..  HHiissttoollooggyy  

 An heterogeneous population of epithelial reticular cells instead of 

connective tissue form the framework of this organ which is seeded with 

developing lymphocytes from the bone marrow. The organ is comprised of lobes 

covered by a connective tissue capsule. The capsule extends into the lobes as septa 

that further divide the parenchyma into lobules (Gartner and Hiatt, 2013). The 

thymus possesses no lymphoid follicles; instead, each lobule is clearly divided into 

a dark staining cortex and a lighter medulla, attributable to the much higher 

density of T-cells in the cortex (Figure 2). Although these thymic lobules are well 

demarcated by connective tissue, they are actually all interconnected, since the 

lobulation is not complete, as it is in some other lobulated organs.  

 

2.1. Thymic cortex  

 The thymic cortex consists mainly of an epithelial reticulum and 

lymphocytes. Stellate epithelial reticular cells (ERC) form a framework in the 

cortex, and are characterized by having large, pale, ovoid nuclei and long, 

branching cytoplasmic processes that contain numerous intermediate filaments; 

their cellular organelles are inconspicuous. Adjacent epithelial reticular cells are 

connected to each other by desmosomes, thus forming a cellular stromal network 

which is almost impossible to demonstrate in H&E preparations, being obscured 

by the lymphocytes that sit on them. At the periphery of the lobules and around the 

perivascular spaces, a single layer of long, flattened ERC forms a continuous 

lining. ERC cells produce thymosin, thymulin, thymic humoral factor and 

thymopoietin, which are proteins that influence thymocyte differentiation.  Some 

of the ERC cells in the outer cortex, called thymic nurse cells (TNC), have long 

membrane extensions that surround various numbers of thymocytes, forming 

large lymphoepithelial complexes (Savino and Dardenne, 2000). Thymocytes 

(maturing T lymphocytes) occupy the space between the epithelial reticular cells. 

Blast thymocytes migrate from the bone marrow via the blood and locate in the 



DOCTORAL THESIS - F. R. P.  LITERATURE REVIEW 

67 

periphery of the cortex where the cells undergo mitotic division. As the thymocytes 

continue to mature, they move from the outer thymic cortex toward the medulla, 

being subjected to a rigorous process of lymphocyte selection (Figure 3). Some 

macrophages can be observed in the cortex, with the role of phagocytose and 

eliminate dead thymocytes. Due to this process of phagocytosis, macrophages are 

frequently observed in the cortex containing remnants of apoptotic cells in their 

cytoplasm, giving rise at this phase to the so-called tingible body macrophages.  

 

Figure 2.  Cellular organization of the thymus (Murphy et al., 2012) 

 

2.2. Thymic medulla  

 The cellular scaffolding of the medulla is mainly composed by medullary 

ERC, which are somewhat larger than their cortical counterparts (and thus more 

obvious). These larger cells contain more mitochondria, an extensive rough 

endoplasmic reticulum, well-developed Golgi complex, and granules when 

compared to cortical epithelial reticular cells. Some medullary ERC form thymic 

corpuscles, also called Hassall’s corpuscles, whose function remains unclear. 

Hassall’s corpuscles consist of one to several calcified or degenerated large central 

cells, which are surrounded by layers of flat keratinized cells in a concentric 

arrangement. Corpuscle cells are connected by desmosomes and contain bundles 

of intermediate filaments (Pierscinski, 1979). Interdigitating dendritic cells, 

similar to those present in the T-cell areas of secondary lymphatic organs, are also 

present in the medulla (Romero-Palomo et al., 2011). The medulla is lighter 
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staining than the cortex, as fewer small lymphocytes and macrophages 

predominantly fill the space of the framework.  

 

2.3. Thymic vascularization  

 The thymic arteries penetrate the organ through the capsule, follow the 

course of the interlobular connective tissue septa and enter the parenchyma at the 

corticomedullary junction. The corticomedullary arterioles ramify into capillaries 

that extend into the cortex and medulla (Kato, 1997). These vessels branch into the 

cortex as capillaries rarely fenestrated, which are surrounded by sheaths of 

epithelial reticular cells processes,  and perivascular connective tissue, forming all 

these structures the so-called blood-thymus barrier (Raviola and Karnovsky, 

1972).  The barrier prevents antigens from passing out of the blood and interfering 

nearby positive selection of maturing lymphocytes within the cortex. Cortical 

capillaries then empty into postcapillary venules at the corticomedullary junction. 

By contrast, medullary capillaries are fenestrated and freely permeable, allowing 

circulating antigens to contribute to the negative lymphocyte selection processes.  

After looping through the medulla and cortex, the capillaries terminate in the 

postcapillary venules, located either at the corticomedullary junction or in the 

medulla; the postcapillary venules join veins in the connective tissue septa. The 

wall of the postcapillary venules is also highly permeable and allows lymphocytes 

from the thymus to enter blood circulation at this point. Lymphatics in the thymus 

are primarily located in the connective tissue septa surrounding lobules, draining 

into adjacent lymph nodes. No afferent lymphatics are observed in the thymus 

(Pearse, 2006).  

 

33..  FFuunnccttiioonn 

 The process of T cell differentiation begins when T cell precursors from the 

bone marrow enter the thymus in the cortico-medullary region and migrate to the 

cortex (Figure 3), where proliferate extensively. These immature thymocytes begin 

the process of differentiation in the subcapsular cortical region of the thymic 

lobules, and are known as double-negative (DN, CD4-CD8-) cells, since they do not 

express CD4 or CD8 accessory molecules (nor the CD3/TCR complex), 
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representing about 5% of total thymocytes. As they progress in differentiation, 

they begin to acquire CD4 and CD8 markers, becoming double-positive (DP, 

CD4+CD8+) thymocytes, which occupy most of the cortical region and account for 

about 80% of the whole population. At this stage, TCR genes are completely 

rearranged, yielding the membrane expression of TCRs (complexed with CD3) at 

low densities (TCRlow). These cells are then submitted to the process of positive 

selection, where only those thymocytes bearing TCRs that recognize antigen in 

combination with self-MHC molecules of thymic microenvironmental cells will 

continue to mature (Benoist and Mathis, 1989), whereas thymocytes that do not 

express TCRs die by apoptosis. Positive selection also coordinates the choice of co-

receptor expression: CD4 becomes expressed by T cells harboring MHC class II 

restricted receptors, and CD8 by cells harboring MHC class I restricted receptors. 

The small percentages of positively selected cells progress in their differentiation, 

moving towards the medulla and becoming mature single-positive cells (SP, 

CD4+CD8- or CD4-CD8+), both expressing high densities of CD3/TCR complex, and 

accounting for nearly 15% of total thymocytes (Savino and Dardenne, 2000). 

Besides positive selection, an additional process of negative selection takes place 

within the thymus, promoting apoptosis-mediated deletion of self-reactive cells 

from the lymphocyte repertoire, rendering it tolerant to the antigens of the body 

(Nossal, 1994). Although this mechanism of deletion controls most autoimmune 

disorders, the process is not perfect and T lymphocytes reactive to self-antigens do 

escape the thymus. In this regard, along with differentiation into CD4+ SP cells, 

some elements do not acquire the functional feature of typical helper cells (that is, 

cells able to trigger and/or enhance an immune response in the periphery), but 

rather differentiate into “regulatory” T cells (most of them bearing the phenotype 

CD4+CD25+Foxp3+), which actually block a given immune response (Maggi et al., 

2005). As we can see in Figure 3, positive selection events begin earlier in DP cells, 

whereas negative selection takes place in both DP and SP thymocytes. In parallel 

with this migration and differentiation, thymocytes interact with various 

components of the thymic microenvironment, a tridimensional network formed of 

epithelial cells, macrophages, DCs, fibroblasts, and extracellular matrix (ECM) 

components (Anderson et al., 1996). According to this interaction, it has been 

demonstrated that the process of positive selection appears to be essentially 



DOCTORAL THESIS - F. R. P.  LITERATURE REVIEW 

70 

conveyed by cortical thymic epithelial cells (cTEC) (Anderson and Takahama, 

2012), whereas professional APCs such as DCs seem to be critical for negative 

selection of high-affinity developing T cells in the medulla (Brocker et al., 1997; 

Derbinski and Kyewski, 2010). After this highly stringent process of differentiation, 

only about 1-3% of total thymocytes exit the thymus (also by blood vessels) as 

mature naïve T cells, migrating to the peripheral lymphoid organs.  

 In the thymus, besides  functional CD4+ and CD8+ T lymphocytes, dense 

accumulations of γδ T lymphocytes can be observed in the medulla, and much 

more scarcely in the cortex (Hein and Mackay, 1991), conversely to what happens 

with CD4 and CD8 molecules, which are present in the vast majority of the cortical 

thymocytes. γδ T cells in the thymus are frequently observed surrounding Hassal’s 

corpuscles, and some theories claiming for an important role of medullary 

epithelial cells in the process of γδ T cells differentiation have been proposed (Hein 

and Mackay, 1991). Additionally, some B lymphocytes can also be observed in the 

thymus, although these cells arrive fully mature from other locations and do not 

undergo any type of selection.   

 

 

Figure 3. T cell differentiation. Schematic representation of T cell traffic 
within the thymus and location of the major steps during T cell selection 
(Nunes-Alves et al., 2013). 
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44..  TThhyymmuuss  aanndd  iinnffeeccttiioonn  

 T cell differentiation depends on the thymic microenvironment and the 

cytokine milieu surrounding the differentiating cells (Starr et al., 2003). This raises 

the possibility that during infection, changes in soluble factors or antigens present 

within the thymus alter T cell differentiation. Indeed, certain bacteria, virus, fungi, 

and parasites can directly invade the thymus, leading to detrimental effects on 

thymic structure and function (Savino, 2006; Nunes-Alves et al., 2013). Infection-

induced alterations include thymic atrophy, modifications in the thymic structure, 

and alterations in T cells exported to the periphery (Figure 4).  

 Two scenarios are possible when considering the origin of thymic infection 

during hematogenous spread of infection. First, circulating pathogens can enter the 

thymus and infect cells in a targeted manner, as represented by thymotropic 

variants of HIV (Calabro et al., 1995). Alternately, there is the “Trojan Horse” 

model. The trafficking of several cell types between the periphery and the thymus 

makes this possible. T cells circulate from the periphery to the thymus (Hale and 

Fink, 2009), and if infected, could seed the thymus with pathogens that target T 

cells. Similarly, certain DC subsets migrate from the periphery to the thymus and 

modulate T cell tolerance (Proietto et al., 2009), raising the possibility that infected 

DCs spread the infection.  

 

Figure 4. The effects of infection on the thymus (Nunes-Alves et al., 2013) 
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 The ggeenneerraall  oobbjjeeccttiivvee of this PhD Thesis was to contribute to the 

knowledge of the immunopathogenic strategies by which BVDV infections 

predispose to secondary infections, as those produced by BHV-1. Therefore, the 

following ssppeecciiffiicc  oobbjjeeccttiivveess were proposed: 

1. To standardize the immunohistochemical method for the detection of 

different potential dendritic cell (DC) markers in bovine tissues as well as to 

elucidate the histological distribution of these markers, thus helping to 

investigate in vivo the roles of DCs in cattle diseases: CHAPTER 1. 

 

2. To characterize the lesional alterations associated with BVDV-induced 

thymic atrophy occurring in calves preinfected with BVDV and challenged 

later with BHV-1: CHAPTER 2a. 

 

3. To investigate in the thymus of the aforementioned animals, the 

immunopathologic changes ensuing after the viral infections, evaluating the 

main antigen-presenting cells (DCs and macrophages), lymphocyte 

subpopulations and the proliferative activity of these cells: CHAPTER 2b. 

 

4. To examine by flow cytometry the effect of dual and single infections in vitro 

with BVDV and BHV-1 on peripheral blood mononuclear cells (PBMCs): 

CHAPTER 3. 
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MMaatteerriiaallss  aanndd  MMeetthhooddss  

AA..  IINN  VVIIVVOO  SSTTUUDDIIEESS  

11..  EExxppeerriimmeennttaall  ddeessiiggnnss  

1.1. Experimental design CHAPTER 1  

 Six Friesian healthy male calves, aged 8 to 9 months, were obtained from 

farms free of tuberculosis, brucellosis, bovine leukosis virus, bovine viral diarrhea, 

and infectious bovine rhinotracheitis and were housed in the Animal Experimental 

Center of Cordoba University (Spain). Only those animals clinically healthy and 

with blood parameters within the normal range were included in the study. 

Parasitic coprological analyses were negative in all animals. Animals were sedated 

with xylazine (Rompun 2% solution; Bayer Healthcare, Kiel, Germany) and 

euthanized by overdose with thiopental-sodium (Thiovet; Vet Limited, Leyland, 

Lancashire, UK). This work was carried out in accordance with the code of Practice 

for Housing and Care of Animals used in Scientific Procedures, approved by the 

European Economic Community Union in 1986 (86/609/EEC) amended by the 

directive 2003/65/EC.  

 No significant macroscopic pathological lesions were observed at necropsy. 

Samples from liver, intestine and lung were subjected to microbiological routine 

cultures by using standard procedures, and no bacteria were isolated beyond the 

normal intestinal microflora.  

  

1.2. Experimental design CHAPTER 2  

 The experimental design (Fig. 1) has been previously described by Risalde 

et al. (2013).  Briefly, 24 Friesian calves (8-9 months old) were obtained from a 

herd that was free of tuberculosis, brucellosis, and bovine leucosis virus. The 

animals were tested via ELISA to confirm their BVDV and BHV-1 antigens and 

antibodies free status. The calves were housed in the Animal Experimental Center 

of Cordoba University and had an adaptation period of one week before starting 

the study. The entire experimental procedure was carried out in accordance with 

the Code of Practice for Housing and Care of Animals used in Scientific Procedures, 

approved by the European Economic Community in 1986 (86/609/EEC amended  
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Figure 1. SScchheemmaattiicc  ssuummmmaarryy  ooff  eexxppeerriimmeennttaall  ddeessiiggnn  ((CCHHAAPPTTEERR  22)) 

 

by the directive 2003/65/EC). The calves were separated in infection groups and 

inoculated as follows: 

 BVDV/BHV1 group: Twelve calves were inoculated with 10 ml (5 ml per 

nostril) of a suspension of non-cytopathic BVDV-1a strain 7443 (Ridpath et al., 

2010),  containing 105 tissue culture infective dose 50% (TCID50)/ml (courtesy of 

the Institut für Virologie, TiHo, Hannover, Germany). Twelve days later, when the 

calves had no clinical signs or evidence of BVDV-related viremia, 10 of them were 

challenged with 2 ml (1 ml per nostril) suspension of BHV-1 subtype 1 (BHV-1) 

strain Iowa (Lemaire et al., 2000),  containing 107 TCID50/ml (courtesy of the Hipra 

Laboratories, Girona, Spain). At 1, 2, 4, 7, or 14 days post-inoculation (dpi) with 

BHV-1, calves were sedated with xylazine (Rompun® 2% solution; Bayer 

Healthcare, Kiel, Germany) and euthanized in batches of two by overdosing with 

1

BHV1 group (12 animals)

Euthanized at the 

end of the study

Euthanized in batches of 2 at 

1, 2, 4, 7 and 14 dpi BHV-1

Negative Controls (2 animals)

BVDV/BHV1 group (12 animals)

ncp

BVDV-1
BHV-1.1

(12 days) Euthanized in batches of 2 at 

1, 2, 4, 7 and 14 dpi BHV-1

BVDV-infected controls:

2 calves BHV-1-free 

euthanized at 0 dpi BHV-1 

BHV-1.1

24 male Friesian calves (8-9 months old)

Strain Iowa

Strain Iowa

Strain 7443

Tissue culture fluid 

free of virus
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thiopental-sodium (Thiovet®; Vet Limited, Leyland, Lancashire, UK). The 2 calves 

that were not inoculated with BHV-1 were similarly sedated and euthanized on the 

day that the other calves were inoculated with BHV-1 and were used as BVDV-

infected, BHV-1-free controls. 

 BHV1 group: At the time that the calves in the BVDV/BHV1 group were 

inoculated with BHV-1, another 10 calves were inoculated only with BHV-1 at the 

same infectious dose. At 1, 2, 4, 7, or 14 dpi with BHV-1, these calves were sedated 

and euthanized in batches of two, as described. At the time of inoculation with 

BHV-1, 2 additional separately housed calves were inoculated with 2 ml (1 ml per 

nostril) of virus-free tissue culture fluid and euthanized as described at the end of 

the study period (i.e., 14 days after calves in the other 2 groups were inoculated 

with BHV-1). These 2 calves were used as un-inoculated (UI) controls for the BHV1 

group.  

  

22..  MMeetthhooddss  aanndd  tteecchhnniiqquueess  

2.1. Tissue sample collection 

 At postmortem examination, tissue samples (0.5-1 cm thick) from a wide 

range of organs (CHAPTER 1-Table 1), and samples from the cervical thymus 

(CHAPTER 2) were immersed in three different fixatives: 10% neutral buffered 

formalin for 24 hours, Bouin’s solution for 8 hours and zinc salts fixative for 24 

hours. Tissue samples were routinely processed and embedded in paraffin wax for 

histopathological and immunohistochemical studies.   

 Thymus samples were also frozen at -80ºC for the viral genome isolation as 

well as fixed in 2.5% glutaraldehyde for the ultrastructural analysis (CHAPTER 2).   

 

2.2. Immunohistochemical study 

 The avidin-biotin-peroxidase complex (ABC) method was used (Ramos-Vara 

and Miller, 2014). Briefly, tissue sections (3 μm) were placed in silane-coated slides 

[3-(triethoxysilyl)-propylamine], dewaxed, and rehydrated using graded ethanol 

series (Table 1). Endogenous peroxidase activity was exhausted by incubation of 

the sections with H2O2 3% in methanol for 45 minutes at room temperature. Tissue 

sections were subjected to different retrieval pretreatments (Table 2). After 
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pretreatment, sections were given three 5 minute rinses in PBS. Tissue sections 

were covered with normal serum (horse, rabbit or goat normal serum, see Table 3) 

for 30 minutes at room temperature and incubated with the primary antibodies 

(mouse, rat or rabbit primary antibodies, see Table 3) at 4ºC overnight. Details of 

the commercial primary antibodies used in this study are summarized in Table 2. 

After primary incubation, slides were washed in PBS (3 times for 5 minutes each) 

and then incubated for 30 minutes at room temperature with the secondary 

antibodies (horse anti-mouse, rabbit anti-rat, or goat anti-rabbit biotinylated 

antibodies, see Table 3). After 3 further 5-minute washes in PBS, samples were 

incubated with the avidin-biotin-peroxidase complex (Vectastain® Elite ABC Kit, 

Vector Laboratories) for 1 hour at room temperature in the dark. All tissue 

sections were finally rinsed in TBS, incubated with a chromogen solution 

(NovaRED® Substrate Kit, Vector Laboratories), and counterstained with Harris’ 

hematoxylin. Mouse, rat or rabbit non-immune sera were used in place of specific 

primary antibodies as additional negative controls.  

 NNoottee  oonn  aannttiibbooddiieess  ssppeecciiffiicciittyy  ffoorr  tthhee  bboovviinnee  ssppeecciieess  ((CCHHAAPPTTEERR  11)): Two 

monoclonal antibodies (CD1b and CD205) directed against bovine antigens were 

used in this study. Anti-S100 antibody has been raised against S100 protein 

isolated from cow brain, and CNA.42 monoclonal antibody cross-reacts with FDCs 

in different species, including cattle (Raymond et al., 1997). Studies by Ababou et al 

(1993) and Grüneberg et al (1997) have demonstrated that the clone TAL.1B5 

(anti-human HLA-DR α chain) also binds to an intracellular epitope of the BoLA-DR 

α chain. Given the close phylogenetic relationship between cattle and sheep, an 

anti-mouse CD208 antibody that cross-reacts with sheep (Salaun et al., 2004) was 

used in this study (Table 2). 

 NNoottee  oonn  iinnffeeccttiioonn  ttiissssuuee  ccoonnttrroollss  ffoorr  BBVVDDVV  aanndd  BBHHVV--11  ((CCHHAAPPTTEERR  22)): Tissues 

from calves persistently infected with BVDV and tissues from aborted fetuses that 

were positive for BHV-1 (Fig. S2, p209) were analyzed as positive controls for the 

immunohistochemical detection of Erns and gC, respectively. Tissues from specific 

pathogen–free calves that were not exposed to either BVDV or BHV-1 were 

analyzed as negative controls. 
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Table 1. Immunohistochemical ABC protocol for paraffin-embedded tissue sections 

 

Stage 1 
Pre-immunologic 

procedures 

1. DDeeppaarraaffffiinniizzee: xylene (x3, 10min each) 

2. RReehhyyddrraattee: 100° ethanol (x2, 5min each) 

3. IInnhhiibbiittiioonn  ooff  eennddooggeennoouuss  ppeerrooxxiiddaassee:  
incubation with H2O2 3% in methanol (45min at RT) 

4. RReehhyyddrraattee: 96° ethanol, 70° ethanol, deionized water (5min each) 

5. Rinse in PBS (10min) 

6. PPrreettrreeaattmmeenntt--aannttiiggeenn  rreettrriieevvaall (heat/enzymatic/detergent-
induced epitope retrieval) 

7. Rinse in PBS (x3, 5min each) 

8. BBaacckkggrroouunndd  bblloocckkiinngg::  incubation with  normal serum (30min, RT)* 

9. Remove excess of blocking solution (do not rinse) 

 

Stage 2 
Immunologic and 

histochemical 
procedures 

10. Incubate with pprriimmaarryy  aannttiibbooddyy (overnight (≈18h), 4°C)*  

11. Pre-warm slides for 1 hour at RT 

12. Rinse in PBS (x3, 5min each) 

13. Incubate with biotinylated sseeccoonnddaarryy  aannttiibbooddyy (30min at RT)*  

14. Rinse in PBS (x3, 5min each) 

15. Incubate with AABBCC  ccoommpplleexx (1 hour at RT)* 

16. Rinse in TBS (x3, 5min each) 

  

Stage 3 
Antigen-Antibody 

Reaction 
Visualization 

17. Incubation with cchhrroommooggeenn  ssoolluuttiioonn: 
NovaRED Substrate Kit, containing H2O2 for peroxidase 

18. Rinse in tap water 

19. CCoouunntteerrssttaaiinn with Harris’ hematoxylin 

20. Rinse in tap water 

21. DDeehhyyddrraattee in ethanol: 70° (2 sec), 96° (2 sec), 100° (x2, 1min) 

22. Wash in xylene (x2, 1min each) 

23. MMoouunntt with permanent medium (Eukitt®) and coversilp 

 

*Incubations in opaque humid chamber. ABC: avidin-biotin-peroxidase complex, RT: 
room temperature 
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Table 3. Secondary antibodies and normal serum used according to the animal 

source of primary antibodies 

Animal source of primary Ab: MOUSE RAT RABBIT 

   Dilution of primary Ab: depends depends depends 

   Dilution medium of primary Ab: 1% NHS in TBS 1% NRS in TBS 10% NGS in PBS 

Background blocking medium: 1% NHS in TBS 1% NRS in TBS 20% NGS in PBS 

Secondary (biotinylated) Ab: Horse anti-MOUSE Rabbit anti-RAT Goat anti-RABBIT 

   Dilution: 1/200 1/100 1/200 

   Dilution medium:  1% NHS in TBS 1% NRS in TBS 2% NGS in PBS 

Primary antibodies: 

MHCII, CD1b, 
CD205, CNA.42, 

15c5, F2, 
MAC387, Ki67, 

CD8, WC1, TGF-β 

CD208 
FoxP3 

 

S100 
Caspase 3 
Factor VIII 

 

Ab: Antibody; PBS: phosphate buffered saline; TBS: tris-buffered saline 

NHS: Normal horse serum (Thermo-Pierce, Rockford-IL, USA) 

NRS: Normal rabbit serum (Thermo-Pierce) 

NGS: Normal goat serum (MP Biomedicals, Santa Ana-CA, USA) 

Biotinylated horse anti–mouse IgG secondary antibody (Thermo-Pierce) 

Biotinylated rabbit anti–rat Igs secondary antibody (Dako, Glostrup, Denmark) 

Biotinylated goat anti–rabbit IgG secondary antibody (Vector Laboratories, Burlingame-CA, USA) 

 

2.3. Cell counting 

 CHAPTER 1: A semiquantitative assessment of the immunolabeled cells was 

performed by 2 experienced observers in 25 fields of 0.2 mm2 randomly chosen. 

Results were expressed as number of immunolabeled cells per area of 0.2 mm2: - 

(none), + (0-5), ++ (0-20), +++ (20-60), ++++ (>60). Intensity and quantity of cells 

stained with CNA.42 and anti-S100 antibodies were assessed only within lymphoid 

follicles as + (slight) or ++ (high) (CHAPER 1-Table 2).  

 CHAPTER 2: To evaluate the number of immunostained cells and to correlate 

the results obtained with the different antibodies, paraffin-wax blocks from the 

thymus of each animal were selected. Positively labeled cells of cortex or medulla 

were counted in 25 fields of 0.2 mm2 randomly chosen. Cellular identification was 

based on morphological features, location, and cell size. The results were given as 

the mean of the number of positive cells per 0.2 mm2 ± SEM. In the case of collagen 

and factor VIII evaluation, results were expressed as the percentage of stained 
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surface based on 10 low-magnification pictures from each paraffin block, 

comprising both cortex and medulla structures.  

  

2.4. Cortex:medulla ratio  assessment (CHAPTER 2A) 

 The cortex:medulla ratio evaluation was based on the methodology 

described by Vascellari et al. (2012), with some modifications. Briefly, low 

magnification pictures (4x) from the slides stained with hematoxylin and eosin 

were taken to evaluate cortex and medulla thickness. For each slide, 10 functional 

lobules composed of an outer cortex and inner medulla were randomly selected 

and the extension of the cortex and medulla were measured by drawing a 

graduated line, starting and ending at the interlobular connective tissue (Figure 2); 

a second parallel line was drawn to measure medulla thickness. Measurements 

were performed using ImageJ software version 1.46f. The cortex thickness was 

obtained by subtracting the second value from the first one and the cortex:medulla 

ratio was calculated.  

 
Figure 2. EExxaammppllee  ooff  tthhee  mmeeaassuurreemmeennttss  ppeerrffoorrmmeedd  iinn  tthhee  tthhyymmuuss  lloobbuulleess  ffoorr  tthhee  

eevvaalluuaattiioonn  ooff  tthhee  ccoorrtteexx::mmeedduullllaa  rraattiioo.. Extension of the cortex was measured against a 

graduated line, starting and ending at the interlobular connective tissue; a second 

parallel line was drawn to measure medulla thickness. (CHAPTER 2A) 
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2.5. In situ identification of nuclear DNA fragmentation (CHAPTER 2A) 

 Presence of apoptosis in formalin-fixed samples was investigated via DNA 

fragmentation by the TUNEL method (terminal deoxynucleotidyl transferase dUTP 

nick end labeling; In Situ Cell Death Detection kit, POD, Roche Diagnostics, 

Mannheim, Germany) according to the manufacturer’s instructions.  

 

2.6. Collagen and Factor VIII quantification (CHAPTER 2A) 

 The thymus sections were subjected to Masson’s trichrome stain, which 

provides an excellent blue color contrast for collagen that differentiates it from 

other structures. Ten pictures at low magnification comprising both medulla and 

cortex areas were randomly taken from each slide and analyzed using ImageJ 

software; by thresholding for blue color, collagen was selected and measured for 

each picture (Fig. 4a and 4b), and results were expressed as mean percentage of 

collagen. Factor VIII staining for endothelial cells was similarly assessed, but by 

thresholding for the red-brown chromogen color. 

 

2.7. DNA extraction and PCR analysis for BHV-1 (CHAPTER 2A) 

 Bovine herpesvirus-1 DNA was extracted from thymus samples with a DNA 

extraction kit (NucleoSpin® Tissue, Macherey-Nagel, Düren, Germany), in 

accordance with the manufacturer’s instructions. A conventional PCR targeting a 

fragment of the thymidine kinase region of BHV-1 was performed as previously 

described (Alegre et al., 2001), with minor modifications. Briefly, primers TK1 

(Forward: 5’- AGACCCCAGTTGTGATGAATGC-3’) and TK2 (Reverse: 5’- 

ACACGTCCAGCACGAACACC-3’) were used, yielding a 183 bp product. The PCR 

products were run on a 1.5% agarose gel and visualized by ethidium bromide 

staining. BHV-1 strain Iowa (104.76 TCID50/ml) was used as positive control, as well 

as tissue samples from tonsils positive for BHV-1 immunohistochemical detection 

(Fig. S2, p209).   

 

2.8. Ultrastructural study (CHAPTER 2A)  

 Glutaraldehyde-fixed samples were post-fixed in 2% osmium tetroxide, 

dehydrated in acetone, and embedded in Epon resin. Ultrathin sections (80 nm) 

placed in copper grids were contrasted with uranyl acetate and lead citrate and 
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examined with a JEOL JEM-1400 transmission electron microscope  equipped with 

a Gatan ORIUS SC1000 camera.  

 

2.9. Statistical analysis (CHAPTER 2) 

 Statistically significant differences between the means were assessed by the 

Mann–Whitney U non-parametric test (P < 0.05) between inoculated groups at the 

same time point (*), and between inoculated calves in each infected group (BHV1 

and BVDV/BHV1 groups) and their control group at each time point (a,b 

respectively). The statistical evaluation was made using GraphPad Prism version 5 

software. 

  

BB..  IINN  VVIITTRROO  SSTTUUDDYY  ((CCHHAAPPTTEERR  33))  

11..  AAnniimmaallss  aanndd  VViirruuss    

 For this study, 4 Holstein-Friesian heifers (8-10 months old) were selected 

from a dairy herd free of BVDV and bovine herpesvirus type 1 (BHV-1) and 

confirmed to be BVDV and BHV-1 antigen and antibody free. The immune status of 

each animal was confirmed by assaying sera for BVDV antibodies by a commercial 

competitive ELISA (Ingezim BVD Compac, Ingenasa, Madrid, Spain) and by serum 

neutralization (SN) test, and for BHV-1 antibodies by SN test. SN test is explained 

in detail below. BVDV antigen free status was confirmed in duplicates by a 

commercial double antibody Sandwich ELISA for the detection of BVDV p80/p125 

protein (Ingezim BVD DAS, Ingenasa) and by PCR based on that described by 

Letellier et al. (1999) 

 Two viral strains were used for in vitro infection and serological tests: ncp 

BVDV-1a strain 7443, (courtesy of the Institute für Virologie, TIHO, Hannover, 

Germany) and BHV-1 subtype 1 strain Iowa (courtesy of the Hipra Laboratories, 

Girona, Spain). An additional cp BVDV-1a strain NADL (ATCC® VR-534TM; 

Department of Veterinary Science and Public Health, University of Milan, Italy) was 

used for serological tests.  
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22..  VViirruuss  nneeuuttrraalliizzaattiioonn  tteesstt  ((VVNNTT))  

 In order to confirm the absence of specific neutralizing antibodies against 

BVDV and BHV-1, sera from the animals used in this experiment were tested by 

virus neutralization (VN) tests (also called serum neutralization (SN) tests) (OIE, 

2008; 2010). Firstly, sera were heat-inactivated at 56°C for 30 minutes to destroy 

complement components interfering with serum neutralization. From a starting 

dilution of 1/2 for BHV-1 or 1/4 for BVDV, serial twofold dilutions of the test sera 

were made in duplicate in a cell-culture flat-bottomed 96-well microtitre plate, 

using Minimal Essential Medium with Earle's Salts (MEM)1 as diluent, with a final 

volume of 50 μl. An equal volume (50 μl) of cytopathic BVDV (NADL strain) or 

BHV-1 (Iowa strain) containing 100 TCID50 was added to each well and the plates 

were incubated for 1 hour at 37°C to let the possible antibodies neutralize the 

virus. For this test and for other virological methods, a continuous line of bovine 

kidney epithelial cells (Madin Darby Bovine Kidney, MDBK) (ATCC® CCL-22TM) 

were used (Fig. 3a,b). After the incubation period, a culture flask of MDBK cells was 

trypsinized and the cell concentration was adjusted to 1.5 × 105/ml in CCM [MEM 

supplemented with 10% of heat-inactivated fetal calf serum (FCS)1, L-glutamine 

2mM1, antibiotics and antifungal agents (100U/ml of penicillin, 100μg/ml of 

streptomycin, 2.5 μg/ml of fungizone)1] with 30% of FCS, and 50 μl of this 

suspension was added to each well of the microtitre plate, obtaining a final 

concentration of 10% FCS. A back titration of virus stock was also done in some 

spare wells to check the potency of the virus (controls for the virus without sera), 

as well as controls for the cells (cells without sera nor virus). The plate was 

incubated at 37°C for 3 and 4 days, for BHV-1 and BVDV, respectively. The wells 

were examined microscopically for cytopathic effect (CPE) (Fig. 4). The VN titre for 

each serum is the dilution at which the virus is neutralized in 50% of the wells. An 

animal is considered seronegative when no neutralization (i.e. CPE) is observed at 

the lowest dilution (1/2 for BHV-1 or 1/4 for BVDV). 

 

 

 

                                                        
1
 Euroclone (Milan, Italy) 
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Figure 3. MMDDBBKK  cceellllss  aatt  ddiiffffeerreenntt  ggrroowwtthh  ssttaaggeess:: 24 (a)  and 48 (b) hours of culture. IImmmmuunnooppeerrooxxiiddaassee  

mmoonnoollaayyeerr  aassssaayy  ((IIPPMMAA))  ffoorr  BBVVDDVV (7443 strain):  (c) Example of a negative well, showing cells uninfected 

with BVDV; (d) Example of a positive well, with BVDV-infected cells. Insets represent higher magnifications 

of the fields framed in black.  

  

33..  VViirraall  rreepplliiccaattiioonn    

 For obtaining the viral stocks of each viral strain, viruses were cultured in 

MDBK cells with CCM (both MDBK cells and FCS were certified free of BVDV, as 

well as anti–BVDV antibody free for FCS). Firstly, viruses diluted in MEM were 

added to 75-cm2 culture flasks containing sub-confluent MDBK cell cultures 

previously devoid of CCM. After incubation for 2 hours at 37ºC with 5% CO2, CCM 

was added and flasks were incubated at different periods depending on the 

biotypes used for the infection. Flasks infected with ncp BVDV are incubated for 4 

days while flasks infected with BHV-1 present cytopathic effect in 70-80% of the 

cell monolayer at 30 hpi. Following the incubation periods, infected flasks were 

frozen at -80 ºC in order to lyse the cells and get the virus free in the culture 
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medium. After thawing the flasks and centrifuge at 1200 g for 10 min, 

supernatants are aliquoted in vials of 1 ml and frozen again at -80ºC. 

 

44..  VViirraall  TTiittrraattiioonn::  

 The obtained viral stocks were titrated by microtitre assay in 96-well plates 

with MDBK cells. Briefly, serial tenfold dilutions (twofold for BHV-1) of the tested 

sample were made in MEM. 50μl of each dilution are added to each well in 

quadruplicate and 100 μl of a MDBK cell suspension containing 1.5x104 cells were 

seeded in each well.  150 μl of cell suspension containing 1.5x104 cells were seeded 

in the control wells. The plate was incubated at 37ºC in 5% CO2 for 3 and 4 days, 

for BHV-1 and BVDV, respectively. For BHV-1, the microtitre assay was performed 

by evaluating the cytopathic effect (Fig. 4a,b), and for ncp BVDV-1 by 

immunoperoxidase monolayer assay (IPMA) (Fig. 3c,d). IPMA is explained in detail 

in the following section. Viral titration was calculated either for BHV-1 or for BVDV 

by means of the Reed–Muench method, and expressed as Tissue Culture Infectious 

Dose 50% (TCID50). 

 

55..  IImmmmuunnooppeerrooxxiiddaassee  mmoonnoollaayyeerr  aassssaayy  ((IIPPMMAA))  

 This technique was performed in order to evidence the presence of the ncp 

BVDV strain (Lucchini et al., 2012). After a 4 days incubation period of MDBK cells 

with the virus dilutions, the medium was removed from each well and cells were 

washed with PBS diluted 1/3 in distilled water (1/3PBS) and fixated at 80ºC for 2 

hours. Cells were rehydrated with dilution buffer (DB, PBS with 0.05% of Tween 

20) for 5 minutes. After removing DB, each well was incubated for 1 hour at room 

temperature (RT) with 50μl of a 1:250 dilution of the broad cross-reactivity 

monoclonal antibody 20.10.06 (Courtesy of Dr. E. Dubovi, Cornell University) 

directed against the NS2/3 protein of BVDV (Corapi et al., 1990; Pogranichniy et al., 

2008). After primary incubation, cells were washed 3 times with washing buffer 

(WB, DB diluted 1/3 in distilled water); these washing steps were repeated after 

each incubation period. Wells were then incubated for 1 hour at RT with 50μl of a 

1:200 dilution of a biotinylated anti-mouse IgG secondary antibody (Amersham 

Biosciences). After washing, cells were incubated for 1 hour at 37ºC with 50 μl of a 
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1:100 dilution of the streptavidin-biotinylated horseradish peroxidase complex 

(Amersham Biosciences).  

 In the meantime, a solution containing the substrate for the peroxidase was 

prepared, diluting 20mg of AEC (3-Amino-9-ethylcarbazole tablets, Sigma-Aldrich) 

in 3 ml of N,N-Dimethylformamide (Sigma-Aldrich); this solution was subsequently 

diluted at 1:16 in acetate buffer (0.05M, pH 5) and with 0.05% of H2O2 30% 

immediately prior to use. Cells were then incubated with 50 μl of this solution for 

approximately 15 minutes in the dark.  

 The positivity of the reaction (i.e. the presence of the viral antigen) was 

determined by the presence of a reddish color assessed under a light microscope 

(Fig. 3d). 

 

 

Figure 4. CCyyttooppaatthhiicc  eeffffeecctt  ((CCPPEE))  ooff  BBHHVV--11 (strain Iowa) at different dilutions after 24 hours of infection (a, 

b); Notice the characteristic formation of grape-like clusters of rounded cells gathered around a hole in the 

monolayer. CCPPEE  pprroodduucceedd  bbyy  BBVVDDVV (cp strain NADL) (c, d). Note the shrinking of cells preceding to 

detachment. (d) represents a higher magnification of the field framed in black in (c). 
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66..  CCeellll  sseeppaarraattiioonn,,  ccuullttuurree  aanndd  iinnffeeccttiioonn  ooff  PPBBMMCCss  

 

 Prior to begin the experiment, 5 ml of peripheral blood in CPDA-1 were 

separated from each animal and the leukocyte profile was obtained with a 

hematology analyzer Sysmex XT-2000iV with specific settings for bovine blood 

(Sysmex Corporation, Kobe, Japan).  

 Blood was collected into sterile bags containing CPDA-1 by jugular 

venepuncture. The blood was centrifuged at 1200 g for 30 min and the buffy coat 

was separated and resuspended 1:2 in PBS. The diluted buffy coat was overlaid 2:1 

on Histopaque-1077 (Sigma-Aldrich) and centrifuged at 1200 g for 30 min at RT. 

After density gradient centrifugation, peripheral blood mononuclear cells (PBMCs) 

were carefully collected from the interface and washed in PBS. Live cells were 

counted by means of trypan blue dye exclusion and resuspended in RPMI-1640 

medium1 at 1 x 106 cells/ml. Cells from each animal were separated into 4 groups 

of infection: Uninfected control group (CON), group infected with ncp BVDV 

(BVDV), group infected with BHV-1 (BHV) and group infected with both BVDV and 

BHV-1 (BVDV/BHV). After infection at a multiplicity of infection (m.o.i.) of 1 TCID50 

per cell, cell suspensions were placed in 25-cm2 culture flasks for 2 hours at 37ºC. 

After incubation, the inoculum was removed by washing the cells with RPMI-1640 

medium in order to eliminate the extracellular virus. Then, the cells were 

resuspended in leukocyte culture medium (LCM) [RPMI-1640 medium containing 

1% L-glutamine, 25 mM Hepes1 and 10% FCS], placed in 25-cm2 culture flasks and 

incubated at 37ºC in 5% CO2 for 18, 24, 48, and 72 hours.    

 

77..  FFllooww  ccyyttoommeettrryy    

 To determine the effect of virus infection, PBMCs from the different 

infection groups were harvested at 18, 24, 48, and 72 hours p.i. Adherent cells 

(monocyte-macrophages mainly) were removed after 10 minutes of incubation 

with pre-warmed cell-dissociation solution (Sigma-Aldrich) and washed twice in 

PBS. PBMCs from each group of infection and time point were divided at 2x105 

cells/100μl and incubated with optimally diluted mouse monoclonal antibodies 

(MAb) (Table 4), including isotype-matched control MAb. All primary and 

                                                        
1
 Euroclone (Milan, Italy) 
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secondary antibodies were optimally diluted and incubated for 30 min at RT. For 

indirect labeling of B cells, cells were incubated with a FITC-conjugated goat anti-

mouse secondary antibody. After two washes, cells were fixed with 1% 

formaldehyde (CellFix 10x; BD) in PBS and kept at 4ºC in the dark until the 

analysis by flow cytometry. Cells (1x104 events) were analyzed on a FACS Calibur 

cytometry system (Becton Dickinson, Mountain View, CA, USA) and 

immunofluorescent staining was analyzed using Flowing Software (version 2.5.0). 

The following parameters were collected: forward light scatter (FSC), side light 

scatter (SSC), FITC fluorescence (FL1), RPE fluorescence (FL2), and AlexaFluor647 

fluorescence (FL4). Debris were excluded from the analysis by the conventional 

FSC/SSC gating method and the percentage or mean fluorescence intensity (MFI, 

geometric mean channel number) of surface molecule staining on the gated cells 

were expressed (Figure 5). Three, two or single-colour staining of PBMCs for 

leukocyte differentiation antigens were performed as follows: CD14/CD11b/CD80, 

CD4/CD8/CD25, MHC-I/MHC-II, CD28 and B-B2.  

 

 

Figure 5. EExxaammppllee  ooff  tthhee  ffllooww  ccyyttoommeettrryy  aannaallyyssiiss..  PBMCs from animal 2, 24 hpi with BHV-1 (A) 

and unstained control (B). FL4 (AlexaFluor647-CD8), FL2 (RPE-CD25). FL3 (No stain)  
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Table 4. List of antibodies used in the flow cytometry analysis. 

*Clone-Fluorochrome Specificity  Isotype Source 

TÜK4-AlexaFluor 647 anti-human CD14 IgG2a Serotec 
CC126-FITC anti-bovine CD11b IgG2b Serotec 
ILA159-RPE anti-bovine CD80 IgG1 Serotec 
CC8-FITC anti-bovine CD4 IgG2a Serotec 
CC63-AlexaFluor 647 anti-bovine CD8 IgG2a Serotec 
ILA111-RPE anti-bovine CD25 IgG1 Serotec 
ILA88-FITC anti-bovine MHC-I IgG2a Serotec 
CC108-RPE anti-bovine MHC-II IgG1 Serotec 
CC219-FITC anti-bovine CD28 IgG1 Serotec 
BAQ44A (unconjugated) anti-bovine B cells (B-B2) IgM VMRD 
Secondary Ab-FITC goat anti-mouse IgM (Secondary Ab) Sigma-Aldrich 

 *All primary antibodies are monoclonal mouse antibodies.   

 

88..  SSttaattiissttiiccaall  aannaallyyssiiss  

 Statistical analyses and graphs were generated using GraphPad Prism 

version 5.01. Statistically significant differences between the means of different 

groups of infection at the same time point were assessed by the Mann–Whitney U 

non-parametric test (P<0.05) (represented with (*)). Statistically significant 

differences within a group of infection at different time points were assessed by 

the Kruskal-Wallis non-parametric test (P<0.05)(represented with letters). 
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CCHHAAPPTTEERR  11  

Immunohistochemical detection of 

dendritic cell markers in cattle 
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IImmmmuunnoohhiissttoocchheemmiiccaall  ddeetteeccttiioonn  ooff  ddeennddrriittiicc  cceellll  mmaarrkkeerrss  

iinn  ccaattttllee  

 

Veterinary Pathology 2013, 50(6): 1099-108 

 

 

AAbbssttrraacctt  

 Dendritic cells (DCs) are “professional” antigen-presenting cells with a 

critical role in the regulation of innate and adaptive immune responses and thus 

have been considered of great interest in the study of a variety of infectious 

diseases. The objective of this investigation was to characterize the in vivo 

distribution of DCs in bovine tissues by using potential DC markers in order to 

establish a basis for the study of DCs in diseased tissues. Markers evaluated 

included MHCII, CD208, CD1b, CD205, CNA.42 and S100 protein, the latter 2 being 

expressed by follicular dendritic cells whose origin and role are different to the 

rest of hematopoietic DCs. Paraffin wax-embedded tissues from 6 healthy Friesian 

calves were subjected to the avidin-biotin-peroxidase method and the most 

appropriate fixatives, dilutions, and antigen retrieval pretreatments were studied 

for each of the primary antibodies. The most significant results included the 

localization of CD208-positive cells not only in the T zone of lymphoid organs but 

also within lymphoid follicles; CD1b-positive cells were mainly found in thymus 

and interfollicular areas of some lymph nodes; cells stained with anti-CD205 

antibody were scarce, and their location was mainly in non lymphoid tissues; and 

CNA.42 and S100-protein positive cells localized in primary lymphoid follicles and 

light zones of germinal centers, although showing differences in the staining 

pattern. Furthermore, MHCII was established as one of the most sensitive markers 

for any DC of hematopoietic origin. These results increase our understanding of DC 

immunolabeling and will help in future DC studies of both healthy and diseased 

tissues.      

Keywords: bovine, CD208, CD205, CD1b, dendritic cells, follicular dendritic cells, 

immunohistochemistry, MHCII. 

http://vet.sagepub.com/content/50/6/1099.long
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IInnttrroodduuccttiioonn  

 Dendritic cells (DCs) are “professional” antigen-presenting cells (APCs) and 

are well known for their unique ability to present processed antigens to naive T 

lymphocytes (Knight and Stagg, 1993). In addition to their critical role in the 

regulation of the adaptive immune response, DCs serve as sentinels, recognizing 

the presence of invading pathogens and secreting proinflammatory cytokines 

involved in host defense and thereby linking both the innate and adaptive 

immunity(Reis e Sousa, 2004). These cells have a hematopoietic origin and express 

the major histocompatibility complex class II (MHCII) molecule.  This is contrasted 

with the so-called follicular dendritic cells (FDCs) present in lymphoid follicles, 

which have a stromal origin, do not express MHCII, and present intact antigens to B 

cells in the form of surface immune complexes, being related to B-cell homeostasis 

(Tew et al., 1997; van Nierop and de Groot, 2002). 

 Different authors have studied the role of DCs in various cattle diseases by 

means of in vitro infections of different subtypes of DCs, including monocyte-

derived DCs (Glew et al., 2003; Lei and Hostetter, 2007; Robinson et al., 2011) and 

afferent lymph DCs (veiled cells or ALDCs) (Howard and Hope, 2000; Hope et al., 

2012). To our knowledge, this report is the first that describes in vivo distribution 

of DCs in bovine tissues on the basis of their differential expression of potential 

dendritic cell markers such as MHCII, CD208, CD1b, CD205, CNA.42 and S100 

protein.  

 The MHCII molecule is expressed by professional APCs, which includes all 

subtypes of DC as well as macrophages and B lymphocytes. APCs are responsible 

for T helper cell activation by means of a synapse established between the antigen-

loaded MHCII molecule and the T-cell receptor. CD208, also known as DC-LAMP 

(dendritic cell-lysosome-associated membrane protein) was found to be 

specifically expressed in mature DCs located in T zones of lymphoid tissues, known 

as interdigitant dendritic cells (de Saint-Vis et al., 1998) This molecule is not 

present in any other cell type, with the exception of type II pneumocytes (Salaun et 

al., 2004), demonstrating the potential usefulness of this marker in diagnostics of 

DC related pathology. CD1 molecules are a family of cell surface-associated 

glycoproteins now recognized as having a role in presentation of lipid antigens to 
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certain subpopulations of T cells, as MHC molecules do with protein antigens 

(Porcelli and Modlin, 1999). This family comprises several members, but not all are 

present in cattle. CD1b has been described as the most important CD molecule in 

this species (Rhind, 2001; Van Rhijn et al., 2006). The majority of CD1 molecules are 

strongly expressed in cortical thymocytes as well as in certain other cell types, to 

include DCs (Howard et al., 1993). CD205, also known as DEC-205, is a C-type lectin 

that belongs to the same family of the macrophage mannose receptor and is 

primarily expressed on certain DCs and epithelial cells, acting as an endocytic 

receptor, and is involved in the capture of antigens from extracellular spaces and 

transferral to a specialized-antigen processing compartment (Jiang et al., 1995; 

Figdor et al., 2002). In addition, bovine CD205 has been previously described as the 

WC6 antigen, showing a strong expression on ALDCs (Gliddon et al., 2004). In this 

study, we used a monoclonal antibody (clone CNA.42) for the labeling of FDCs 

(Raymond et al., 1997), and a polyclonal antibody for the detection of S100 protein, 

which is expressed in a wide variety of cell types, including FDCs (Ilg et al., 1996; 

Maeda et al., 2002). 

 Because of the complicated interactions between the distinct cells 

associated with both normal and pathological mechanisms of action of the immune 

system, it is of critical interest to examine DCs not only in cell culture but also in 

vivo. This study aims both to standardize the immunohistochemical method for the 

detection of different potential DC markers but also to elucidate the histological 

distribution of these markers, some of which are commonly used in many in vitro 

studies, thus helping to expand the understanding of the various roles of DCs in 

different cattle diseases. 

 

 

RReessuullttss  

 Tissues used in this study were assessed by a board veterinary pathologist 

who certified the absence of histopathological lesions. Signs of inflammation 

indicative of infectious or toxic agents were not observed in any of the animals 

included in the study. 
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Optimization of the Immunohistochemical Method.  

 Despite using other fixatives such as Bouin’s solution or zinc salts fixative, 

the best results were obtained with buffered formalin. Tissue expression of the 

MHCII molecule was observed with each of the different antibody concentrations 

as well as with the different unmasking pretreatments, although the higher 

dilution (1:100) and the unmasking method with citrate at pH 3.2 during 6 

minutes at subboiling temperature were considered the most effective (Table 1). 

Immunolabeling against CD208 was possible with the higher dilution (1:100), 

although only when using the HIER methods at pH 6 during 20 minutes at 

subboiling temperature. This technique appeared to be the most appropriate, since 

staining using pH 3.2 was too weak, and pH 9 gave rise to intense background 

staining. The most suitable antigen retrieval method for the CD1b molecule was 

enzymatic digestion with protease but required the highest concentration of anti-

CD1b antibody (1:10) to obtain the best results. In the case of anti-CD205 antibody, 

the only dilution that yielded positive results was the most concentrated (1:10), 

with the HIER methods being ineffective and the detergent permeabilization with 

Tween 20 being considered the most appropriate. For the detection of FDCs with 

CNA.42 monoclonal antibody, use of the HIER methodology was necessary, with 

the best results obtained at pH 9 during 30 minutes at subboiling temperature and 

with a 1:50 antibody dilution. S100 protein expression was observed with all of the 

unmasking methods except for enzymatic digestion, although the best results were 

obtained with citrate at pH 3.2 during 6 minutes at subboiling temperature and 

with a 1:400 antibody dilution.  

  

Quantification and Location of Immunolabeled Cells.  

 Immunolabeled cells were counted for each animal, with minor differences 

among animals being observed and included within the stated intervals (Table 2). 

 MHCII followed by CD208 appeared as the primary molecules expressed in 

the different tissues, both in intensity of labeling and quantity of labeled cells. All 

lymphoid organs displayed a high amount of MHCII-positive cells. These variably 

sized cells were typically stellate or polygonal and had homogeneous cytoplasmic 

staining. Immunopositive cells in palatine tonsil and lymph nodes could be clearly 

differentiated from one another in the interfollicular areas (Fig. 1). A general faint  
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Table 1. Immunoreactivity produced by various primary antibodies on calf 

tissues fixed in formalin solution and subjected to various antigen-retrieval 

pretreatments. 
 

Antibody 

dilutions 

Pretreatments 

   Citrate microwave 

None Tween20 Protease pH 3.2 pH 6 pH 9 

MHCII 1:10 ++ ++ ++ ++ ++ ++ 
 1:50 ++ ++ ++ ++ ++ ++ 
 1:100 ++ ++ ++  +++a ++ ++ 

CD208 1:10 - - - Bs Bs Bs 
 1:50 - - - Bs Bs Bs 
 1:100 - - - +  ++a Bs 

CD1b 1:10 - +  +++a - - - 
 1:50 - - + - - - 
 1:100 - - + - - - 

CD205 1:10 Bs  ++a + - - - 
 1:50 - - - - - - 
 1:100 - - - - - - 

CNA.42 1:10 - - - + + ++ 
 1:50 - - - - +   +++a 
 1:100 - - - - - - 

S100 1:10 Bs Bs - Bs ++ - 
 1:50 ++ ++ - ++ ++ ++ 
 1:400 ++ ++ -   +++ a ++ + 
 

-, none; + slight positivity and light background; ++, positive reaction and light 

background; +++, positive reaction without background; Bs, positive reaction but 

intense background staining. MHCII, major histocompatibility complex class II 

molecule.  
a Elected dilution and pretreatment for each antibody. 

 
 
staining was observed in the majority of lymphoid follicles, and in some of these 

lymphoid follicles, more strongly immunostained cells were noted and mainly 

located in the lymphoid follicle light zones (Figs. 1, 12a). Immunolabeled cells were 

also observed in the medulla of lymph nodes, although to a lesser degree in 

comparison with the cortex.  The cells identified within the medullary regions had 

a very characteristic dendritic morphology (Fig. 2). Immunostaining observed in 

the spleen was evident in red splenic pulp and periarteriolar lymphoid sheaths, 

displaying many immunopositive dendritic-shaped cells (Fig. 3), in contrast to 

lymphoid follicle staining being weaker if more diffuse. In the thymus, 

immunolabeling against MHCII was restricted to the medulla, where strong 

immunoreactivity was observed, including many cells with a dendritic morphology 

(Fig. 4). Rare immunopositive cells were observed in the pulmonary alveolar septa 

and periportal areas of the liver.  Positive cells were also noted within the tonsillar  
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Table 2. Distribution of cells immunolabeled with dendritic cell markers in different organs. 

 Cell markers 

 MHCII CD208 CD1b CD205 CNA42a S100a 

 

LYMPHOID TISSUES 
      

     Palatine tonsil       
          LF ++++ +++ - - + + 
          IFA +++ ++ - +   
          Epithelium ++ - - -   
     Thymus       
          Cortex - - ++++ -   
          Medulla ++++ ++ ++ -   
     Spleen       
          LF ++ +++ - + ++ ++ 
          RSP +++ - - -   
     Lymph nodesb       
          LF ++ +++ - - ++ ++ 
          IFA +++ ++  ++c -   
          Medulla ++ - - +   
RESPIRATORY TRACT        
     Lung       
          Alveolar septa ++ +++ - ++   
          BALT ++ ++ - + + + 
     Trachea       
          Epithelium - - - -   
          Lamina propria ++ - - +   
DIGESTIVE AND TEGUMENTARY  
SYSTEM 

      

     Liver + - - ++   
     Distal ileum       
          Lamina propria +++ - - -   
          PP follicles - +++ - - + + 
          PP dome regions ++ ++ - - ++ + 
     Ileocecal valve       
          Lamina propria +++ - - -   
          LF ++ +++ - - + + 
          IFA +++ ++ - -   
     Haired skin       
          Epidermis + - - -   
          Dermis + - + -   
 

Results expressed as number of immunolabeled cells per area of 0.2 mm2: - (none), + (0-

5), ++ (0-20), +++ (20-60), ++++ (>60). BALT: bronchus-associated lymphoid tissue, IFA: 

interfollicular areas, LF: lymphoid follicles, MHCII: major histocompatibility complex class 

II molecule, PP: Peyer’s patches, RSP: red splenic pulp.  
aCNA.42 and anti-S100 antibodies were used for the detection of follicular dendritic cells, 

andthus only cells stained within lymphoid follicles were assessed in this table. Intensity 

and quantity of cells stained with these antibodies were assessed as + (slight) or ++ (high).  
bLymph nodes included in this study were retropharyngeal, submandibular, mediastinal, 

ileocecal and superficial inguinal lymph nodes. 
cPositivity to CD1b antibody was mainly observed in superficial inguinal lymph nodes and 

submandibular lymph nodes.  
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epithelium and to a lesser degree in the epidermis and dermis of the skin, 

frequently showing dendritic morphology (mainly in tonsillar crypts epithelium) 

(Fig. 5). MHCII-positive cells in the distal ileum were located in the lamina propria 

as well as within the dome region of the Peyer’s patches but not within Peyer’s 

patches follicles (Fig. 6a), in contrast to the immunopositivity observed in the 

ileocecal valve lymphoid follicles.  

 Staining against CD208 (DC-LAMP) was cytoplasmic and had a dark 

granular appearance. Positive cells were mainly stellate or polygonal and were 

widely distributed in lymphoid tissues. A slight generalized staining was observed 

as tiny dark dots that could be appreciated on the cell surfaces (Fig. 7, inset). This 

was more evident as the pH of the HIER method was increased. Immunopositive 

cells were located in the interfollicular areas and, to a greater extent, within the 

lymphoid follicles (Fig. 7, 12b), where the cells were homogeneously distributed, 

with no differences observed between the dark and light zones of the germinal 

center, unlike the differences noted with anti-MHCII and anti-FDC antibodies. In 

general, not all the lymphoid follicles of the same lymph node presented the same 

quantity of immunopositive cells, and the medulla of lymph nodes was observed to 

be free of CD208-positive cells. Immunostained cells against CD208 had a round 

morphology and were located on the alveolar surfaces in the lung (Fig. 8). A 

moderate amount of immunolabeled cells that were predominantly stellate were 

identified in the periarteriolar lymphoid sheaths of the spleen and within the 

thymic medulla. In addition, numerous large round immunopositive cells were 

detected within the ileum Peyer’s patches and the lymphoid follicles of the 

ileocecal valve (Fig. 6b).  

 Very few organs were noted to have CD1b-immunopositive cells. Cortical 

thymocytes were uniformly immunopositive along with some cells with a dendritic 

morphology located in the thymic medulla (Fig. 9). Most lymph nodes were 

immunonegative for anti-CD1b antibody, with the exception of the submandibular 

and superficial inguinal lymph nodes and, to a lesser extent, the mediastinal lymph 

nodes, where numerous dendritic-shaped immunolabeled cells were identified in 

the interfollicular areas. Some scattered immunopositive cells were also 

demonstrated in the dermis of the skin.  
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Figure 1. Lymph node; cattle No. 3. Immunostaining against major histocompatibility complex class II 

(MMHHCCIIII) demonstrated strong labeling intensity in interfollicular areas and also stained cells within 

lymphoid follicles. Figure 2. Lymph node; cattle No. 2. MMHHCCIIII immunostaining of medulla, where many 

positive cells with dendritic morphology can be appreciated. Figure 3. Spleen; cattle No. 1. Cells with 

dendritic morphology and that stained against MMHHCCIIII can be observed in both the red splenic pulp 

(arrowhead) and the periarteriolar lymphoid sheaths (arrows). Figure 4. Thymus; cattle No. 4. There is 

strong labeling against MMHHCCIIII molecule in the thymic medulla, which includes a population of dendritic-

shaped cells. Figure 5. Palatine tonsil; cattle No. 2. The presence of MMHHCCIIII-positive cells with dendritic 
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morphology in the stratified epithelium, compatible with Langerhans cells is demonstrated. Figure 6. Serial 

sections of distal ileum; cattle No. 1. (a) Cells staining against the MMHHCCIIII molecule are restricted to Peyer’s 

patches domes and the lamina propria. (b) CD208 positive cells are widely distributed in Peyer’s patches 

domes and follicles. Figure 7. Lymph node; cattle No. 1. Cells immunopositive for CCDD220088, having a dendritic 

cell morphology compatible with interdigitant dendritic cells, are demonstrated (inset). Positive cells are 

also observed within the lymphoid follicles, having the appearance of tingible body macrophages 

(arrowhead). Figure 8. Lung; cattle No. 6. CCDD220088 immunolabeled cells are found amongst the surface cells of 

the alveoli, compatible with type II pneumocytes (arrows). IHC (ABC method) counterstained with 

hematoxylin. 

 
 
 Immunolabeling against CD205 demonstrated a granular appearance, 

located in the cytoplasm of cells with either round or spindle morphology. In 

general, few immunolabeled cells were observed by using this antibody, and these 

were located in uncommon regions such as in tissue adjacent to tonsil mucous 

glands or to large blood vessels (data not shown), in trabeculae of lymphoid 

organs, or in the connective tissue of hepatic portal spaces, central veins and 

Glisson's capsule.  It was difficult to find any immunopositive cells within the 

interfollicular areas or the lymphoid follicles (Fig.10). A greater number of 

immunolabeled cells were identified in the lung, located in the alveolar septa, the 

pulmonary pleura, or surrounding bronchioles and arteries (Fig.11).   

 Use of the CNA.42 antibody yielded a staining pattern in the form of a 

network distributed among lymphocytes of the primary lymphoid follicles, as well 

as the light zones and mantle zones of germinal centers (Fig. 12c).  Curiously, the 

lymphoid follicles of palatine tonsil, Peyer’s patches and ileocecal valve 

demonstrated only a scarce staining intensity, unlike the stronger labeling 

intensity noted in the lymphoid follicles of the examined lymph nodes and the 

spleen. Expression of S100 also observed in the primary lymphoid follicles and the 

light zones of the germinal centers, showed organic differences similar to those 

observed with CNA.42, although staining against S100 was located in both the cell 

cytoplasm and the nucleus (Fig. 12d). Both antibodies (CNA.42 and anti-S100) 

yielded immunostaining of cell types other than cells located within the lymphoid 

follicles, which are not included in the aims of this study.  
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Figure 9. Thymus; cattle No. 3. Anti-CCDD11bb immunolabeling of cortex thymocytes and some dendritic-shaped 

cells of the medulla are demonstrated (inset). Figure 10. Lymph node; cattle No. 1. CCDD220055-positive cells in 

the medulla, located inside trabeculae, surround a blood vessel and rarely are noted in lymphatic sinuses. 

Figure 11. Lung; cattle No. 3. Cells immunostained against CCDD220055 with round morphology are located inside 

the alveolar septae. Figure 12. Lymph node; cattle No. 4. Serial sections showing the staining pattern within 

lymphoid follicles with different antibodies; insets represent a higher magnification of the field framed in 

black. (a) Anti-major histocompatibility complex class II (MMHHCCIIII) immunolabeling of the lymphoid follicle 
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light zone. (b) Anti-CCDD220088 immunolabeling of cells compatible with tingible body macrophages all over the 

lymphoid follicles. (c) CCNNAA..4422  antibody staining forming a cytoplasmic pattern restricted to light zone. (d) 

Anti-SS110000 staining of cells located in the light zone of germinal centers showing the dual cytoplasmic and 

nuclear staining pattern. IHC (ABC method) counterstained with hematoxylin. 

  
  

DDiissccuussssiioonn  

 It is well known that DCs are a heterogeneous cell population categorized 

according to their location, functionality, and cell marker expression. The present 

study has focused on the comparison and characterization of the location of 

dendritic cells of Friesian calves based on their expression for different cellular 

markers.  This was accomplished by using fixed and paraffin wax-embedded 

tissues, which preserve an optimal cell morphology, in comparison with frozen 

tissues, in which there can be a significant loss of morphology, making the 

identification of a precise location of the antigen-expressing cells within the tissue 

much more difficult (Carrasco et al., 2004; Ramos-Vara, 2005; Akesson et al., 2008). 

Furthermore, frozen tissue handling may involve a higher degree of difficulty to 

produce cryostat sections of consistent quality.  

 The detection of the MHCII molecule is frequently conducted in tissue 

sections, although the vast majority of these studies are based on frozen tissue 

sections and typically for purposes other than detecting DCs (Manesse et al., 1998; 

Matsuda et al., 2010). The novel information presented by this study employed the 

MHCII molecule to describe the type of immunolabeled cells within a wide variety 

of organs, thereby providing a standardization of the immunohistochemical 

methodology, as well as taking advantage of the fact that DCs are strong expressors 

of this molecule and that fixed paraffin-embedded tissues preserve the 

characteristic morphology of these cells, allowing for a mapping of their 

localization within select organs. To our knowledge, this is the first report of the 

use of this list of antibodies in the detection of DCs in bovine paraffin-embedded 

tissues. 

 This study revealed that of the antibodies examined, the MHCII antibody 

yielded the greatest quantity of labeled cells in the different tissues analyzed. This 

is due to the expression of the molecule not only in DCs but also in macrophages 

and certain populations of B cells, as well as being inducible in endothelial cells. 
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Despite this variety of positive cells, use of this antibody also permits the detection 

of all DC populations, unlike other markers that detect only certain 

subpopulations. A striking finding in the results obtained with anti-MHCII antibody 

was the marked staining polarization in most of the germinal centers of secondary 

lymphoid organs, which coincided to a great extent with the immunolabeling 

observed with the use of CNA.42 and anti-S100 antibodies, which was restricted 

solely to the light zone (and adjacent mantle zone in the case of CNA.42) of the 

germinal centers. This observation was possible by using serial sections of the 

tissue immunostained with the antibodies of interest (Fig. 12a,c,d). It is known that 

FDCs do not internalize nor present processed protein antigens in the context of 

MHCII molecules (van Nierop and de Groot, 2002), a fact that would establish as 

incompatible the coincidence in location of FDCs in light zones with the strong 

expression of MHCII. However, it has been shown that this cell type can acquire 

MHCII molecules not expressed by FDCs themselves (Denzer et al., 2000), which 

may explain why a strong immunostaining against MHCII in light zones can be 

observed, where FDCs are located.  Human studies have demonstrated the CNA.42 

antibody as an immunomarker for FDCs for each level of maturation, ranging from 

FDC precursors to activated FDCs (Kasajima-Akatsuka and Maeda, 2006). 

Furthermore, the S100 protein is a molecule expressed by activated FDCs, which 

may explain why CNA.42 yielded a network staining pattern that was widely 

distributed and anti-S100 gave rise to the staining of individual cells. 

 The present study describes for the first time in bovine tissue samples the 

expression of CD208 (DC-LAMP), known as an exclusive marker for mature DCs in 

T regions (interdigitant DCs) and type II pneumocytes (de Saint-Vis et al., 1998; 

Salaun et al., 2004). CD208 expression in alveolar surfaces coincides with the 

previously described expression of this molecule in type II pneumocytes. However, 

we unexpectedly found CD208-positive cells not only in interfollicular areas but 

also within lymphoid follicles; given the known exclusive expression of CD208 to 

DCs in lymphoid organs, these immunopositive cells found within lymphoid 

follicles might be considered as the previously described germinal center DCs 

(GCDC) (Grouard et al., 1996; Goval et al., 2006). However, this consideration would 

be mistaken since GCDC, whose origin is hematopoietic, should express MHCII, a 

fact that was ruled out by using serial sections immunostained with both 
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antibodies (Figs 6, 12a,b); CD208-positive cells were located both in MHCII-

positive light zones and MHCII-negative dark zones. The typical follicular location, 

round morphology, and large size suggest that these CD208-positive cells are in 

fact tingible body macrophages.      

   Numerous MHCII-positive cells were detected in the thymic medulla, most 

of them having a stellate shape compatible with that of DCs, which have significant 

importance in both positive and negative selection during T-cell development 

(Ardavin, 1997). In this same location, we also observed dendritic-shaped cells 

immunolabeled against CD208, albeit to a lesser extent. This observation may be 

explained by the fact that during maturation, DCs acquire a higher capacity to form 

and accumulate MHCII-peptide complexes, a process that requires a generalized 

activation of the lysosomal function (Trombetta et al., 2003); the CD208 molecule is 

included in the lysosomal-associated membrane protein family, which is why these 

CD208-positive cells in thymic medulla may represent a population of mature DCs, 

which corresponds to similar descriptions in humans (Bendriss-Vermare et al., 

2001). 

 Langerhans cells (LC) were originally described as immature DCs present in 

the epidermis, although currently this term has been generalized to include DCs 

present in all surface stratified-epithelium (Merad et al., 2008). This may support 

the hypothesis which considers MHCII-positive cells observed in tonsillar 

epithelium as LC (Fig. 5), as these demonstrated stronger immunopositivity and 

were more numerous in comparison to those of the epidermis, further highlighting 

the importance of DCs in the tonsil due to its strategic location in the entrance of 

numerous airborne pathogens.   

 It is well established that DCs are present within the dome regions of the 

intestinal lymphoid tissue (Niedergang and Kweon, 2005), coinciding with the 

presence of stellated MHCII-positive cells that we found in those intestinal sections 

examined. However, Peyer’s patches follicles barely stained against the MHCII 

molecule. In ruminants, ileal Peyer’s patches are considered to be primary 

lymphoid organs (Liebler-Tenorio and Pabst, 2006), in which there is no germinal 

center reaction as observed in jejunal Peyer’s patches (Yasuda et al., 2004), which 

may explain the lack of MHCII expression at this level, similar to that which occurs 

in the cortex of thymus, another primary lymphoid organ. However, these MHCII-



DOCTORAL THESIS - F. R. P.   CHAPTER 1 

112 

negative Peyer’s patches follicles demonstrated a great quantity of widely 

distributed CD208-immunopositive cells, supporting the hypothesis that considers 

these cells to be tingible body macrophages. 

 Previous studies have determined the phenotypic characteristics of both 

intestinal and respiratory tract DCs in sheep (McNeilly et al., 2006; Akesson et al., 

2008) by using antibodies against CD205 and CD1b molecules. ALDC are strong 

expressors of CD205 (Gliddon et al., 2004), and other tissues have been shown to 

express this molecule as well (Parsons et al., 1993; Gliddon et al., 2004). Contrary to 

results obtained by Akesson and collaborators in sheep (Akesson et al., 2008), we 

did not find cells expressing CD205 in the ileum in this study of Friesian cattle. 

However, a considerable amount of CD205-immunolabeled cells were detected in 

the parenchyma and pleura of the lung, which is consistent with other ovine 

studies (McNeilly et al., 2006). In comparison with other DC markers, very few cells 

demonstrated immunolabeling against CD1b in the intestine and the lung of sheep 

(McNeilly et al., 2006; Akesson et al., 2008). Likewise, our results demonstrated that 

both organs were negative to the expression of CD205 and CD1b. Antibodies for 

detecting CD205 and CD1b used in this study and in ovine studies from Akesson 

and McNeilly are bovine specific. Despite this fact, the absence of expression in this 

study of CD1b in the intestine and the respiratory track and of CD205 in the 

intestine suggests that the observed species differences between sheep and cattle 

are due to differences in the technique sensitivity employed; ovine studies were 

carried out in frozen tissues, whereas this study used tissue samples that had been 

fixed and embedded in paraffin wax. The latter technique permits an optimal 

preservation of the cellular morphology and tissue architecture, although it may 

mask or alter the three-dimensional structure of antigens, which is why antigen 

retrieval methods are required (Ramos-Vara, 2005).  

 IInn  ssuummmmaarryy, despite the existence of other molecules displayed by DCs, the 

recognition of MHCII expression appears to be one of the most sensitive methods 

for the detection of any DC of hematopoietic origin in tissue sections. The staining 

pattern observed with the monoclonal antibody detecting CD208 suggests that the 

expression of this molecule in bovine lymphoid tissues is restricted not only to 

interdigitant DCs but also to tingible body macrophages, a finding which has not 

been previously described. Although further studies will be needed to confirm this 
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novel finding, this study has demonstrated that CD208 detection allows for the 

differentiation of mature DCs from all other DCs, a fact of significant interest in the 

diagnostics and study of infectious diseases. This study further supports the tissue 

expression of CD1b in dendritic-shaped cells, even though these cells comprised a 

reduced population out of the total number of the existing DCs and were located in 

specific sites such as the thymus. Therefore, although global utility is limited, CD1b 

will provide valuable information on the role of thymic DCs, which is of 

significance due to the organ’s importance in the central immunotolerance. Both 

CNA.42 and anti-S100 antibodies stained FDCs, but only the latter allowed for the 

identification of FDCs as isolated cells. Taken together, these results provide a 

useful general view of the different staining patterns of potential DC markers and 

will help in future DC studies with pathological tissues.  
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CChhaarraacctteerriizzaattiioonn  ooff  tthhyymmuuss  aattrroopphhyy  iinn  ccaallvveess  wwiitthh  

ssuubbcclliinniiccaall  BBVVDD  cchhaalllleennggeedd  wwiitthh  BBHHVV--11  

 

Veterinary Microbiology. Under review  

 

AAbbssttrraacctt  

 Since the thymus is a target organ for the bovine viral diarrhea virus 

(BVDV), our experiment aimed to understand its relationship with the 

immunosuppressive effect by studying the consequences of a previous infection 

with BVDV on the thymus of calves challenged with bovine herpesvirus 1.1 (BHV-

1). For this purpose, 12 animals were inoculated intranasally with non-cytopathic 

BVDV-1; 12 days later, 10 of them were coinfected intranasally with BHV-1. These 

animals were euthanized in batches of two between 0 and 14 dpi with BHV-1. 

Another 10 calves were inoculated solely with BHV-1 and euthanized in batches of 

two between 0 and 14 dpi with BHV-1. Thymus samples from these animals were 

processed for viral detection and histopathological, immunohistochemical, and 

ultrastructural studies focused on BVDV/BHV-1 antigens, cortex:medulla ratio, 

apoptosis (TUNEL and caspase-3), collagen deposition, and Factor VIII endothelial 

detection. Our study revealed the immunohistochemical presence of BVDV antigen 

in all animals in the BVDV-infected group, unlike BHV-1 detection, which was 

observed in animals in both infection groups only by molecular techniques. BVDV-

preinfected animals showed severe atrophic changes associated with reduced 

cortex:medulla ratio, higher presence of  cortical apoptosis, and increased collagen 

deposition and vascularization. However, calves solely infected with BHV-1 did not 

show atrophic changes. These findings could affect not only the numbers of 

circulating and local mature T cells but also the T cell-mediated immunity, which 

seems to be impaired during infections with this virus, thus favoring pathogenic 

effects during secondary infections. 

Key words: bovine viral diarrhea virus (BVDV); bovine herpesvirus type 1 (BHV-

1); thymus atrophy; apoptosis; immunohistochemistry. 
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IInnttrroodduuccttiioonn  

 Bovine viral diarrhea virus (BVDV), a pestivirus in the family Flaviviridae 

along with classical swine fever virus and Border disease virus, is a major 

pathogen of cattle, which causes significant economic losses worldwide (Houe, 

1999). The clinical manifestations of BVDV infection range from unapparent or 

mild to the inevitable fatal syndrome of mucosal disease (Brownlie, 1991). Two 

antigenically distinct genotypes of BVDV exist, types 1 and 2, and according to their 

in vitro effect on bovine epithelial cells, both genotypes can be segregated into 

noncytopathic and cytopathic biotypes (Fulton et al., 2000). However, it is the type 

1 virus of the noncytopathic biotype that usually circulates in cattle populations.  

 Due to the BVDV predilection for cells of the immune system (Potgieter, 

1995), an acute infection with BVDV can lead to immunosuppression that enhances 

the severity of the disease during mixed infections with other enteric or 

respiratory pathogens such as Bovine herpesvirus-1.1 (BHV-1) (Bolin, 2002). Due 

to this immunosuppression, many studies of the pathogenesis of BVD are focused 

on lymphoid organs. The thymus is a primary lymphoid organ and it has long been 

considered useless once the immune system is fully developed. However, many 

studies have demonstrated that the thymus has an important role throughout 

adult life (Cunningham et al., 2001), with the thymopoiesis being an essential 

process for the development and maintenance of a robust and healthy immune 

system. Thereby, due to this role in the adult immune system and to the fact that 

the thymus is known for being one of the main target organs for BVDV, it is of great 

interest to characterize the pathological changes that the thymus undergoes, in 

order to understand the nature of BVDV-associated immunosuppression. Thymic 

atrophy is one common pathology in a variety of infectious diseases (Savino, 2006), 

many of which have important immunosuppressive features such as infections 

with human immunodeficiency virus (Su et al., 1995), porcine reproductive and 

respiratory syndrome virus (He et al., 2012), classical swine fever virus (Sanchez-

Cordon et al., 2002), feline immunodeficiency virus (Woo et al., 1997), or BVDV 

(Liebler-Tenorio et al., 2003b). The mechanisms driving such changes may vary 

depending on the pathogen or its virulence, and thus deserve detailed 
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investigation. Therefore, the objective of this study was to characterize the lesional 

alterations associated with BVDV-induced thymic atrophy occurring in calves 

preinfected with BVDV and challenged later with BHV-1, thus contributing to a 

better understanding of the disease.   

 

RReessuullttss  

 At postmortem examination, no remarkable gross lesions were detected in 

any of the thymus samples, with no differences being observed between both 

infection groups.  

 

Immunohistochemical and genomic viral detection  

 Results of the BHV-1 immunohistochemical detection were negative for the 

thymus samples from all the animals. The BVDV antigen was found in thymus 

samples from all the animals in the group previously infected with such virus, with 

a progressive decrease and an occasional increase at 4 dpi being observed during 

the study period (Fig. 1a). Immunolabeling with the 15c5 monoclonal antibody 

was observed multifocally located in the cortex and mainly in the surrounding 

connective tissue, with the medulla being practically negative and thus not 

quantified (Fig. 1c). Positive staining was observed in cells with a marked 

pleomorphism, including macrophages, occasional lymphocytes, and many spindle 

or stellate-shaped cells compatible with reticular epithelial cells and fibroblasts 

(Fig. 1c inset).  

 Since the BHV-1 antigen was not detected by immunohistochemistry in any 

of the thymus samples, further molecular studies were carried out to clarify the 

presence or absence of this virus. BHV-1 was detected in the thymus via PCR assay 

from 1 to 14 dpi in the coinfected group and between 2 and 14 dpi in the BHV1 

group (Table 1). 

Table 1. Results of BHV-1 genomic detection by conventional PCR 
 

 dpi with BHV-1: 0 1 2 4 7 14 

BVDV/BHV1 group 
Animal 1 - - + + + - 

Animal 2 - + + + + + 

BHV1 group 
Animal 1 - - + + + + 

Animal 2 - - + - + + 
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Figure 1. IImmmmuunnoohhiissttoocchheemmiiccaall  ddeetteeccttiioonn  ooff  BBVVDDVV  aanndd  mmoorrpphhoommeettrriicc  aasssseessssmmeenntt  ooff  tthhee  tthhyymmiicc  

ccoommppaarrttmmeennttss.. (a) Counts of BVDV infected cells (mean ± standard error) immunolabeled with the 

monoclonal antibody 15c5. (b) Quantitative assessment (mean ± standard error) of the cortex:medulla ratio. 

(UI, BHV-1 un-infected: negative controls for the BHV1 group and BVDV infection controls for the 

BVDV/BHV1 group. *Significant differences (p<0.05) between inoculated groups at the same time point, 
a,bSignificant differences (p<0.05) in the same group at various time points). (c) Immunohistochemical 

detection of BBVVDDVV in the thymus of a calf inoculated with BVDV, challenged with BHV-1 12 days later, and 

euthanized at 1 dpi with BHV-1. Inset: detail of different cell types immunolabeled against BVDV. Notice the 

immunolabeling located in the cortex and mainly in the surrounding connective tissue, with the medulla 
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being practically negative. (d) Low magnification of thymus sections from calves euthanized at 4 dpi with 

BHV-1, belonging to the BHV1 group (on the left) and the BVDV/BHV1 group (on the right). Hematoxylin-

eosin (HE). (e,f) Higher magnifications of the fields framed in black in (d). Notice the lower cortex:medulla 

ratio and the frequent presence of tingible body macrophages in the animal preinfected with BVDV (on the 

right). 

 
 
Morphometric and histopathological findings in the thymus  

 In general terms, a loss of cortical lymphoid tissue was observed in the 

animals previously inoculated with BVDV, evidenced by a slimming of the cortex 

and the frequent presence of large macrophages containing phagocytosed 

apoptotic bodies (tingible body macrophages), indicative of apoptosis (Figs. 1d and 

1f). In addition, a proliferation of an acidophilic fibrous material filling the 

interlobular spaces and some degree of hyperemia were also observed in this 

coinfected group in comparison with the BHV1 group. These findings were further 

investigated by using complementary techniques, as described below.    

 A generalized reduction in the cortex:medulla ratio was observed in the 

coinfected group, that reached similar values to the BHV1 group solely at 14 dpi 

(Figs. 1b, 1d, 1e and 1f). This reduction in the BVDV/BHV1 group was due to both 

an increase in medulla thickness and a slimming of the cortex, with the exception 

of the second dpi, whose reduced cortex:medulla ratio was produced only due to a 

medullar thickening (data not shown). Despite the different changes noticed in this 

study, no corticomedullary boundary blurring was observed in any of the animals.  

 To further investigate the different rate of apoptosis observed in the cortex, 

the presence of DNA fragmentation and the expression of an executioner caspase 

(caspase-3) were studied. TUNEL staining identified apoptotic cells scattered in 

the thymic medulla and more densely distributed throughout the cortex (Figs. 3a 

and 3b). The apoptotic signal was localized mainly in apoptotic bodies within 

macrophages, but a signal was also seen in free apoptotic bodies. The number of 

TUNEL-positive cells of the cortex was higher in the BVDV/BHV1 group 

throughout the study, except for the end of the study (14 dpi) (Fig. 2a).   Caspase-3 

detection was mainly observed in the nucleus of cortical lymphocyte-like cells 

(Figs. 3c and 3d). Tingible body macrophages were not considered during the cell 

counts, because labeling of apoptotic bodies was not constantly detected in these 

elements. Cortical cell counts remained consistently low in the BVDV-preinfected 
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Figure 2. QQuuaannttiittaattiivvee  aasssseessssmmeenntt  ((mmeeaann  ±±  ssttaannddaarrdd  eerrrroorr))  ooff  aappooppttoossiiss,,  ccoollllaaggeenn  aanndd  FFaaccttoorr  VVIIIIII. (a) 

TUNEL-positive cell counts, (b) caspase 3-immunolabeled cell counts, (c) percentage area of collagen 

(Masson’s trichrome staining), (d) percentage area of Factor VIII-immunolabeled vascular structures. (UI, 

BHV-1 un-infected: negative controls for the BHV1 group and BVDV infection controls for the BVDV/BHV1 

group. *Significant differences (p<0.05) between inoculated groups at the same time point, a,bSignificant 

differences (p<0.05) in the same group at various time points).  

 
 
group with respect to the BHV1 group (Fig. 2b), although at 14 dpi the BHV1 group 

decreased to levels similar to those of the BVDV/BHV1 group.  

 The transmission electron microscopy (Figs. 3e and 3f) showed changes 

consistent with lymphocyte apoptosis more frequently observed in the coinfected 

group. Apoptotic cells showed condensation and margination of chromatin, as well 

as fragmentation of lymphocyte nuclei and cytoplasm. Cells with increased size 

and presence of engulfed apoptotic bodies compatible with tingible body 

macrophages were also observed. These features were more widely spread in the 

BVDV/BHV1 group than in the BHV1 group. 

 Masson’s trichrome special stain evidenced the collagen, mainly located 

surrounding thymic lobules and to a lesser extent infiltrating medullary regions  
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Figure 3. RReepprreesseennttaattiivvee  pphhoottooggrraapphhss  ooff  tthhee  aappooppttoossiiss  aasssseessssmmeenntt.. (a,b) TTUUNNEELL staining in animals 
sacrificed at 2 dpi from the BHV1 group (a) and the BVD/BHV1 group (b). Note the numerous TUNEL-
positive cells in BVDV-preinfected calf. (c,d) Immunohistochemical detection of CCaassppaassee  33-expressing cells 
in animals euthanized at 1 dpi from the BHV1 group (a) and the BVD/BHV1 group (b). Note the lower 
amount of immunolabeled cells in the BVD/BHV1 group, possibly due to a more advanced phase of apoptosis 
where caspase-3 is not expressed anymore. (e) Transmission electron microscopy (TEM) photograph of 
thymocytes from a calf of the BHV1 group euthanized at 4 dpi with BHV-1. Notice the lack of subcellular 
changes. (f) TTEEMM photograph of the thymus from a calf of the BVDV/BHV1 group euthanized at 2 dpi with 
BHV-1. Notice the presence of nuclear fragmentation resulting in apoptotic bodies (arrows). Insets represent 
higher magnifications of the fields framed in black.  
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(Figs. 4a and 4b). The collagen quantification (Fig. 2c) revealed a surprisingly 

higher amount of this substance prior to BHV-1 inoculation in the animals 

preinfected with BVDV, demonstrating an evident thickening of the interlobular 

septa. A decrease to values similar to those of the BHV1 group was observed at the 

end of the study.  

 The transmission electron microscopy supported the high amount of 

collagen observed with Masson’s trichrome stain (Figs. 4e and 4f). Collagen was 

identified as nearly 100 nm width fibrils with a characteristic banding pattern 

repeated every 65 nm and organized into bundles of fibrils (collagen fibers) closely 

packed of more than 2 μm width. These thick collagen fibers were identified as 

type I collagen (unlike the thinner fibers of type III collagen, so-called reticular 

fibers) (Montes, 1996), and were found in different locations intermingled with 

lymphocytes and other cell types. 

   Anti-factor VIII labeling of vascular structures showed similar dynamics to 

those of collagen (Fig. 2d), with a significantly higher vascular proliferation in the 

coinfected group throughout the study except at 14 dpi, when an increase in the 

BHV1 group that reached the other group was observed. The vast majority of the 

blood vessels were observed within the medulla and in the connective tissue 

surrounding the thymic lobules (Figs. 4c and 4d).   

 A scarce adipocyte infiltration was observed in this study, with only a very 

slight increase in some of the BVDV-preinfected animals (data not shown).  

  

DDiissccuussssiioonn  

 In this study, thymus lesional changes were evaluated in healthy calves and 

calves with subclinical BVD both experimentally inoculated with BHV-1, in order to 

characterize the thymus atrophy associated with BVDV infection. The results show 

that thymuses of the BVDV-preinfected calves displayed severe atrophic changes 

that were not observed in the non-BVDV-infected control group. 

 Several findings highlight the importance of the thymus as a target organ for 

BVDV. The thymus was elected as the best organ for the purification of a protein 

that afterwards would be determined as CD46, a cellular receptor for BVDV 

(Maurer et al., 2004). In the bovine species, the ileal Peyer’s patch is a primary  
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Figure 4. RReepprreesseennttaattiivvee  pphhoottooggrraapphhss  ooff  tthhee  ccoollllaaggeenn  aanndd  ffaaccttoorr  VVIIIIII  aasssseessssmmeenntt.. (a,b) MMaassssoonn’’ss  ttrriicchhrroommee 

special stain in animals sacrificed at 2 dpi from the BHV1 group (a) and 7 dpi from the BVD/BHV1 group (b). 

The black and white images on the right represent the images on the left after thresholding for the blue color 

of collagen. Note the higher presence of collagen in the animal of the BVD/BHV1 group. (c,d) Anti-FFaaccttoorr  VVIIIIII 

immunostaining of vascular structures in animals sacrificed at 4 dpi from the BHV1 group (c) and the 

BVD/BHV1 group (d). Notice the greater vascularization in the BVDV-preinfected animal. (e) TTEEMM 

photograph of a calf sacrificed at 4 dpi from the BVD/BHV1 group depicting the intense proliferation of type 

I collagen. (f) Detail of the collagen fiber framed in black in (e), composed of fibrils closely packed with a 

characteristic banding pattern. 
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lymphoid organ (Yasuda et al., 2006). Together with the thymus, they constitute 

the locations where the highest amounts of virus can be found, which may indicate 

that the main BVDV strategy is to cause immunosuppression by injuring the 

primary lymphoid organs.   

 A reduced cortex:medulla ratio was observed in this study in the BVDV-

preinfected calves. Thickness measurements of the cortex and medulla revealed 

that this alteration was due to both a slimming of the cortex and a thickening of the 

medulla, which may be explained by the generalized cortical depletion due to 

apoptosis phenomena and a compensatory medullar hyperplasia. Exceptionally, 

the reduced cortex:medulla ratio observed at 2 dpi was produced solely by the 

expansion of the medulla, without marked cortical atrophy, which coincides with 

an important decrease in the counts of BVDV-infected cells. A previous study by 

Falkenberg and coworkers compared infections of 2-3 week old colostrum-

deprived calves with high (HV) and typical virulence (TV) strains of BVDV-2 

(Falkenberg et al., 2014). These authors described an apparent cortical atrophy of 

the thymus in both HV and TV calves, with the greatest degree of atrophy 

occurring in HV calves compared to TV calves.  

 In a variety of acute infections accompanied by severe atrophy of the 

thymus, an intense cortical thymocyte apoptosis has been described (Savino, 

2006), especially during infections causing an impairment of the immune system 

(Sanchez-Cordon et al., 2002; He et al., 2012) and for this reason, our study aimed to 

study apoptosis. The in situ identification of nuclear DNA fragmentation (TUNEL 

assay) revealed greater levels of cortical apoptosis in the BVDV/BHV1 group, 

coinciding with the morphological changes indicative of apoptosis observed in HE 

sections and in the ultrastructural study. Curiously, the proportion of BVDV-

infected lymphocytes was very low through the experiment. These results agree 

with previous reports that detected thymic depletion but very low BVDV-infection 

of lymphocytes by immunohistochemistry (Raya et al., 2012), suggesting indirect 

mechanisms for the thymocyte apoptosis. The capacity to induce apoptosis has 

also been reported for BHV-1 (Hanon et al., 1998; Winkler et al., 1999), which may 

explain the final increase observed in the BHV1 group at the end of the study. 

However, despite being also infected with BHV-1, the coinfected group did not 

show this final increase, probably due to the severe loss of cortical tissue.  
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 The caspase-3 detection showed different kinetics, with higher levels in the 

BHV1 group than in the previously BVDV-infected group. Caspase-3 is a marker for 

early apoptosis, when DNA fragmentation has not yet taken place. This suggests a 

hypothesis supporting that caspase-3 levels observed in the BHV1 group 

correspond to physiological apoptosis that is normally produced in the thymus, 

with the level of caspase-3 in the BVDV/BHV1 group being lower due to an 

advanced phase of apoptosis (with DNA fragmentation) where caspase-3 is not 

expressed anymore, probably due to a degradation of apoptotic bodies by lytic 

enzymes, as previously suggested (Dukers et al., 2002). An increase in caspase-3 

expression induced by BVDV has been observed in other target organs such as 

ileum (Pedrera et al., 2009), but in this case the period of study corresponded to 

the first 14 days of infection (acute phase), unlike the later period of our 

experiment (from 12 dpi with BVDV onwards), when the acute phase of infection 

had already finished. In fact, at the beginning of our study (0 dpi with HVB-1, 12dpi 

with BVDV), the coinfected group showed higher counts of cells expressing 

caspase-3 than those observed subsequently, which could be indicative of the high 

levels of caspase-3 expression that might have been reached during the first 12 dpi 

with BVDV.  Moreover, previous studies focused on porcine circovirus type 2 have 

also reported a scarcer immunolabeling of caspase-3 expressing cells associated 

with intense thymus atrophy (Resendes et al., 2004).  

 Some controversy regarding the thymic localization of BVDV-infected cells 

can be found in the literature; previous studies include both the thymic medulla 

and cortex as sites of BVDV infection (Ellis et al., 1998; Raya et al., 2012). However, 

in this study, only the cortex and surrounding connective tissue was observed to 

be susceptible to infection, in agreement with other authors (Marshall et al., 1996; 

Liebler-Tenorio et al., 2003a). These differences seem to be dependent on the age of 

the animals, the BVDV strains, and the time of infection, with young animals, high 

virulent strains, and early periods of infection being the main predisposing factors 

to thymic medulla infection findings.  

 In this experiment, no BHV-1-infected cells were observed in the thymus by 

means of immunohistochemistry (IHC). However, the PCR assay revealed the 

presence of the virus in this location. It has been previously reported that the IHC 

detection of BHV-1 is normally restricted to foci of necrosis associated with BHV-1 
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(Moeller et al., 2013; Risalde et al., 2013), which were not observed in this study. In 

addition, previous studies have demonstrated that with thymus sections the rate of 

BHV-1 detection was higher by in situ hybridization than by IHC (Ayers et al., 1989) 

making evident the sensitivity differences between molecular and IHC techniques 

for the detection of BHV-1. Collectively, these data suggest that although BHV-1 can 

arrive to the thymus, no lesions associated with viral replication sites can be 

observed in this organ, which is not a target organ for BHV-1, thus making difficult 

its detection by IHC methods. An absence of lesions attributed to BHV-1 was 

observed in the thymus of these animals. However, further studies may help to 

elucidate if the thymus functionality remains unaltered or if on the contrary is 

disrupted.    

 This study reveals how local BVDV-infection can exacerbate thymic atrophy, 

through remodeling extracellular matrix (ECM) with collagen deposition. The 

intrathymic production of ECM components has been previously described in 

other infectious diseases such as rabies, syphilis, measles and Chagas diseases 

(Savino, 2006) but this is the first description of increased collagen deposition 

induced by BVDV infection. The presence of this component coincides to a great 

extent with the frequent location of BVDV-infected cells in the interlobular 

connective tissue. A previous study of Tripanosoma cruzy infections (Cotta-de-

Almeida et al., 1997) reported an enhancement of ECM production by the thymic 

nurse cells (TNC) in response to the release of lymphocytes due to the infection. 

The TNC, located in the outer cortex, are thymic epithelial cells (TEC) that form 

multicellular structures together with thymocytes. These results, together with the 

fact that TEC are targets for the BVDV (Raya et al., 2014), lead us to hypothesize 

that the TEC might be directly related to the production of ECM when they become 

infected with BVDV. As we can observe, the lack of lymphocytes due to cortex 

depletion is substituted not only by a medullary hyperplasia but also by an 

increased deposition of collagen. Ultrastructural studies identified the bulk of the 

deposited collagen as type I collagen, normally found in several localizations such 

as the dermis of the skin, tendons, ligaments and scar tissue (van Zuijlen et al., 

2003; Eroschenko, 2008). Hence, this type I collagen deposition may be considered 

a type of scarring consequent to viral-induced injury, in the context of a healing 

response.  
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 The higher vascularization observed after Factor VIII endothelial detection 

in the BVDV/BHV1 group could be considered a viral strategy to facilitate the 

spreading of infected cells into different organic locations.  Given the important 

role of vascular buds in granulation tissue (McGavin and Zachary, 2007), these 

vascular changes could also be explained as part of the aforementioned process of 

healing, which accounts for the apparent recovery observed at the end of the study.  

 These signs of regeneration at the end of the experiment coincided with 

previous works where thymic depletion was transient with low virulent strains 

and followed by recovery (Liebler-Tenorio et al., 2003b). Curiously, these final signs 

of recovery concurred with the lowest values of BVDV infected cells, highlighting 

the important contribution of BVDV in producing these changes. However, this 

signs of morphologic recovery do not necessarily mean a restoration of thymus 

functionality, which might alter ensuing immune responses.  In this respect, 

further studies focused on the thymic immune cells and their mediators will be 

required to further investigate thymus functionality.   

 

CCoonncclluussiioonn  

 Collectively, the results obtained in the present study provide a deep 

characterization of the lesional alterations underlying the BVDV-induced thymic 

atrophy and shed light on the possible mechanisms that give the thymus an 

important role in the compromised immune status that favors secondary 

infections.    
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CCHHAAPPTTEERR  22BB  

Immunopathologic changes in the 

thymus of calves preinfected with BVDV 

and challenged with BHV-1 
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IImmmmuunnooppaatthhoollooggiicc  cchhaannggeess  iinn  tthhee  tthhyymmuuss  ooff  ccaallvveess  

pprreeiinnffeecctteedd  wwiitthh  BBVVDDVV  aanndd  cchhaalllleennggeedd  wwiitthh  BBHHVV--11  

 

 

 

AAbbssttrraacctt  

 The aim of this work was to investigate the effect of preinfection with 

bovine viral diarrhea virus (BVDV) on thymus immune cells from calves challenged 

with bovine herpesvirus 1 (BHV-1), being the thymus in the limelight of our 

studies due to the elevated tropism of BVDV for this organ. Twelve Friesian calves, 

aged 8 to 9 months, were inoculated with noncytopathic BVDV-1. Ten of them 

were subsequently challenged with BHV-1 and euthanized in batches of two at 1, 2, 

4, 7, or 14 dpi with BHV-1. The other 2 calves were euthanized prior to the second 

inoculation and were used as BVDV-infected controls. Another 10 calves were 

inoculated solely with BHV-1 and euthanized at the same time points. Two calves 

were not inoculated with any agent and were used as negative controls. 

Quantitative changes in immune cells were evaluated with immunohistochemical 

methods to compare coinfected calves and calves challenged only with BHV-1. 

Results from this study pointed out BVDV as responsible for the thymic lesions 

observed in the experiment as well as for the majority of immunopathologic 

changes, including a downregulation of Foxp3 lymphocytes and TGF-β that 

reverted as BVDV was cleared, and an overexpression of medullary CD8+ T cells. 

However, despite not inducing evident lesions in the thymus, BHV-1 did seem to 

prompt also some immune alterations. Collectively, these data contribute to the 

knowledge on the immunopathologic alterations of the thymus during BVDV 

infections, and its importance in the development of secondary infections. 

Key words: BVDV, BHV-1, thymus, immune response; lymphocytes, antigen-

presenting cells, immunohistochemistry. 
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IInnttrroodduuccttiioonn  

 Bovine viral diarrhea virus (BVDV) is an endemic ruminant Pestivirus in 

populations worldwide (Ridpath, 2010). BVDV has different genotypes and 

biotypes, but is the ncp genotype 1 the most widely distributed, and is considered 

a major predisposing factor in the appearance of bovine respiratory disease 

complex (BRDC) (Fulton et al., 2002; Srikumaran et al., 2007). BVDV shows a 

preference for lymphoid tissues, reaching its highest concentrations in the tonsils, 

ileum and thymus (Bruschke et al., 1998). The thymus is a central immune organ 

essential for development of mature functional T lymphocytes, with an 

outstanding role not only in young individuals but also after complete 

development of the immune system (Cunningham et al., 2001). With the aim of 

recreate the underlying pathologic conditions that exist during the BRDC, we 

arranged coinfections of calves with two of its major pathogens, BVDV and BHV-1. 

In the previous chapter (Chapter 2a) it has been reported and characterized the 

thymus atrophy observed in calves preinfected with BVDV. Focusing on the same 

animals aforementioned, but from an immunopathologic point of view, the 

purpose of this study was to investigate the effect of preinfection with BVDV on 

thymus immune cells from calves challenged with BHV-1. Among these immune 

cells, we studied the main antigen-presenting cells (dendritic cells and 

macrophages), lymphocyte subpopulations (CD8, γδ T cells, FoxP3+ T cells) as well 

as the proliferative activity of these cells and the expression of TGF-β, a potent 

immunoregulatory cytokine. These results are deemed as a step in understanding 

the impact of BVDV infection on immunosuppression beyond the course of acute 

disease.   

 

RReessuullttss  

 Results of the immunohistochemical detection of BHV-1 and BVDV have 

been described in Chapter 2a. Briefly, no immunolabeled cells were observed 

against BHV-1 in none of the thymus samples from the experiment. The BVDV 

antigen was found in the thymus from all the animals in the group previously 

infected with such virus, with a progressive decrease being observed during the 

study period. Immunolabeling with the 15c5 monoclonal antibody was observed  
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Figure 1. SSeerriiaall  sseeccttiioonnss  ooff  tthhyymmuuss  iimmmmuunnoossttaaiinneedd  wwiitthh  1155cc55  ((aa,,  cc))  aanndd  MMAACC338877  ((bb,,  dd))  aannttiibbooddiieess. Positivity 

to BVDV could be attributed to macrophages only partially, since many other cells with stellate or spindle 

shape were observed to be positive for BVDV and negative for the macrophage marker. Figures (c) and (d) 

represent a higher magnification of the fields framed in black in figures (a) and (b).  Original magnifications: 

10x (a, b), 40x (c, d)  

 
 
multifocally located in the cortex and mainly in the surrounding connective tissue 

(Fig. 1a, Chapter 2a), with the medulla being practically negative (Fig. 1a,c). Since 

the BHV-1 antigen was not detected by immunohistochemistry in any of the 

thymus samples, further molecular studies were carried out (described in Chapter 

2a) in order to clarify the presence or absence of this virus. Briefly, BHV-1 was 

detected in the thymus via PCR assay from 1 to 14 dpi in the coinfected group and 

between 2 and 14 dpi in the BHV1 group (Table 1, Chapter 2a (p119)). 

 The number of medullar macrophages in the coinfected group was lower 

than the other group, remaining constant throughout the study period (Fig. 1b and  

5a). However, in the cortex and mainly in the surrounding connective tissue (Fig. 
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1b,d and 5b), the coinfected group showed prior to BHV-1 infection higher cell 

counts than the single infected group that was reached subsequently due to a rise 

in the BHV1 group from 1 dpi onwards.   

 Ki67 immunostaining revealed a high number of lymphoid cells showing 

nuclear staining of heterogeneous intensity (Fig. 2a,b). Cell counting of ki67+ cells 

showed in the medulla a greater proliferative activity in the coinfected group (Fig. 

5c), descending progressively until reaching proliferative levels close to those of 

the BHV1 group from 7 dpi onwards.  In the cortex (Fig. 5d), ki67+ cell counts 

began with lower values in the coinfected group that rose progressively 

throughout the study with a peak at 4 dpi, and decreasing again from that moment 

onwards. The BHV group showed constant values in general, that plummeted at 

the end of the study.   

 CD1b immunolabeling was restricted to the vast majority of cortical 

thymocytes along with a fewer amount of cells with dendritic morphology located 

in the medulla (Fig. 2c). The quantification of these CD1b-positive medullar cells 

(Fig. 6a) revealed highly dynamic kinetics in both groups. Animals in the BHV1 

group displayed increasing cell counts during the study period, particularly 

between 2 and 7 dpi. Likewise, the preinfected group exhibited also an increasing 

tendency, although much more moderate, and even with a fall at 7 dpi that reached 

BHV1-preinoculation values.  

 The expression of CD208, known as a marker for mature dendritic cells 

(DCs), was mainly restricted to cells in the medulla with a marked pleomorphism, 

and a granular cytoplasmic pattern of immunostaining (Fig. 2d). Immunopositive 

cells soared progressively in both groups (Fig. 6b), showing similar values during 

the study period, except for the slightly superior cell counts observed in the 

coinfected group at 2 and 7 dpi.    

 The nearly complete staining of the cortex with the anti-CD8 antibody 

hampered the quantification of CD8+ cortical lymphocytes (Fig. 3a,b). 

Immunolabeling in the medulla revealed significant increased numbers in the 

group preinfected with BVDV (Fig. 7a) which decreased to lower values similar to 

those of the BHV1 group solely by the end of the study (14 dpi), when the presence 

of BVDV was most reduced. 
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Figure 2. IImmmmuunnoollaabbeelliinngg  ffoorr  KKii6677  aannttiiggeenn  ((aa,,  bb)),,  aanndd  ddeennddrriittiicc  cceellll  ((DDCC))  mmaarrkkeerrss  ((cc,,  dd)). Figure (b) 

represents a higher magnification of the field framed in black in figure (a), depicting the nuclear stain 

pattern of proliferating ki67+ cells,, highly abundant in the cortex, and sparser in the medulla. CD1b 

immunolabeling (c) was restricted to the vast majority of cortical thymocytes (right top) along with a fewer 

amount of cells with dendritic morphology located in the medulla.  The expression of mature DC marker 

CD208 (d) was restricted to cells in the medulla with a marked pleomorphism, and a granular cytoplasmic 

pattern of immunostaining. Insets represent higher magnifications of the fields framed in black. Original 

magnifications: 10x (a), 40x (b), 20x (c, d).  

 
 
 Immunolabeling of WC1+ cells yielded a strong staining pattern restricted 

to the cytoplasmic membrane, displaying scattered positive cells in the cortex and 

higher numbers in the medulla (Fig. 3c,d), where these cells could be frequently 

observed in association with Hassall’s corpuscles (Fig. 3c inset). WC1+ γδ T 

lymphocytes showed similar kinetics in single and dual infections in the medulla 

(Fig. 7b), with a progressive decrease being observed in the number of this cell 

type in both groups after BHV1 inoculation. Although cell counts seemed to be 

higher in the BVDV/BHV1 group, a nadir was observed in these calves at 1 dpi, and  
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Figure 3. IImmmmuunnoohhiissttoocchheemmiiccaall  ddeetteeccttiioonn  ooff  llyymmpphhooccyyttee  ssuubbppooppuullaattiioonnss.. Immunolabeling of CD8+ cells (a, 

b) displayed a nearly complete staining of cortical thymocytes, and scattered cells in the medulla. 

Immunolabeling of WC1+ cells yielded a strong staining pattern restricted to the cytoplasmic membrane, 

displaying higher numbers of positive cells in the medulla (c), more scattered in the cortex (d). Notice the 

frequent association of WC1+ cells in association with Hassall’s corpuscles ((c) inset). Immunolabeling with 

the anti-Foxp3 antibody showed an intense nuclear stain of lymphocytes, especially abundant in the medulla 

(e) and rarer in the cortex (f). Original magnifications: 10x (a), 40x (b), 20x (c-f) 
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Figure 4. IImmmmuunnoohhiissttoocchheemmiiccaall  ddeetteeccttiioonn  ooff  TTGGFF--ββ. Immunolabeled cells display a cytoplasmic granular 

staining.  Positive cells in the cortex (b) are referred to cells located in connective tissue surrounding the 

thymic lobules, were the immunostaining was only observed. Original magnifications: 20x (a, b) 

 
 

 
Figure 5. QQuuaannttiittaattiivvee  aasssseessssmmeenntt  ((mmeeaann  ±±  ssttaannddaarrdd  eerrrroorr))  ooff  mmaaccrroopphhaaggeess  ppoossiittiivvee  ffoorr  MMAACC338877  aanndd  cceellllss  

iimmmmuunnoollaabbeelleedd  wwiitthh  tthhee  pprroolliiffeerraattiioonn  mmaarrkkeerr  kkii6677 (UI, BHV-1 uninfected: negative controls for the BHV1 

group and BVDV infection controls for the BVDV/BHV1 group. *Significant differences (p<0.05) between 

inoculated groups at the same time point, a,bSignificant differences (p<0.05) in the same group at various 

time points). 
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the differences between groups were significant only at 4 and 7 dpi. In the cortex, 

prior to BHV1 infection, animals of the coinfected group showed lower levels of 

WC1+ lymphocytes (Fig. 7c), but at 4 dpi both groups displayed an important nadir 

followed by a recovery that was greater in magnitude in the pre-infected group. 

 

Figure 6. QQuuaannttiittaattiivvee  aasssseessssmmeenntt  ((mmeeaann  ±±  ssttaannddaarrdd  eerrrroorr))  ooff  iimmmmuunnooppoossiittiivvee  cceellllss  ffoorr  

ddeennddrriittiicc  cceellll  ((DDCC))  mmaarrkkeerrss  CCDD11bb  aanndd  CCDD220088  (UI, BHV-1 uninfected: negative controls for 

the BHV1 group and BVDV infection controls for the BVDV/BHV1 group. *Significant 

differences (p<0.05) between inoculated groups at the same time point, a,bSignificant 

differences (p<0.05) in the same group at various time points). 

 

Immunolabeling with the anti-Foxp3 antibody showed an intense nuclear stain 

of lymphocyte subpopulations, especially abundant in the medulla and much more 

scarce in the cortex (Fig. 3e,f).  In general terms, calves infected with BVDV were 

observed to have a decreased number of FoxP3+ lymphocytes both in the medulla 

and the cortex (Fig. 7d,e). At 7 and 14 dpi, scattered cortical areas with greater 

amount of FoxP3-positive lymphocytes were found in the co-infected group, which 

raised the mean numbers of positive cells, although these differences were not 

statistically different between both groups. 
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Figure 7. QQuuaannttiittaattiivvee  aasssseessssmmeenntt  ((mmeeaann  ±±  ssttaannddaarrdd  eerrrroorr))  ooff  llyymmpphhooccyyttee  ssuubbppooppuullaattiioonnss  (UI, BHV-1 

uninfected: negative controls for the BHV1 group and BVDV infection controls for the BVDV/BHV1 group. 

*Significant differences (p<0.05) between inoculated groups at the same time point, a,bSignificant differences 

(p<0.05) in the same group at various time points). 
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were the immunostaining was only observed (Fig. 4b); the number of TGF-β-

positive cells of the preinfected animals remained lower than the other group until 

2 dpi (Fig. 8b), and from that moment onwards cell counts of the BHV1 group were 

outnumbered by the BVDV/BHV1 group. 

 

 

Figure 8. QQuuaannttiittaattiivvee  aasssseessssmmeenntt  ((mmeeaann  ±±  ssttaannddaarrdd  eerrrroorr))  ooff  cceellllss  eexxpprreessssiinngg  TTGGFF--ββ  (UI, BHV-1 uninfected: 

negative controls for the BHV1 group and BVDV infection controls for the BVDV/BHV1 group. *Significant 

differences (p<0.05) between inoculated groups at the same time point, a,bSignificant differences (p<0.05) in 

the same group at various time points). 

 

DDiissccuussssiioonn  

 The impairment of the immune system arisen during BVDV infection is one 

major paradigm of the immunology in the modern research of cattle diseases. In 

this sense, several efforts are being conducted to elucidate the complex 

mechanisms used by BVDV to evade the host immune response. 
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other aspects of ongoing immune responses such as antibody generation 
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diminished immunocompetence of the elderly, and hence their increased 
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immunosuppressive effects associated with BVDV. As has been aforementioned, 

the thymus is responsible for supplying lymphocytes to secondary lymphoid 

organs. These cells that emerge from the thymus are naïve in normal conditions, ie, 

they have not yet encountered their specific antigen within an immune response. 

However, since BVDV infects the thymus, lymphocytes facing the virus may fail in 

recognizing it as a foreign antigen, thus exiting this organ as BVDV-tolerant cells 

unable to defeat the infection at the periphery.  

 This experimental design aimed to recreate the underlying pathologic 

conditions that exist during the BRDC (Srikumaran et al., 2007) by means of co-

infections with two of its major pathogens, BVDV and BHV1.  Previous studies 

based on this same experimental model revealed different findings, including an 

earlier depletion of circulating CD8+ lymphocytes and more intense clinical 

symptoms and lesions in the BVDV-inoculated calves, as well as the observation of 

BHV1 viremia only in this coinfected group (Risalde et al., 2011; Molina et al., 2013; 

Risalde et al., 2013). These results, coupled with the evident lesional changes 

observed in the thymus of the coinfected animals (Chapter 2a), appeal to a 

potential role for this central immune organ in the BVDV-induced characteristic 

immunosuppression. Slight signs of morphologic recovery where observed in this 

organ at the end of the study (Chapter 2a). Nevertheless, since it does not 

necessarily mean a restoration of the thymus functionality, we aimed to further 

investigate by focusing on the thymic immune cells and mediators that might alter 

ensuing immune responses.  

 A previous study from our group focused on the first 12 dpi with BVDV 

revealed a transitory decrease of monocytes (Molina et al., 2014). After these 12 

days of infection with BVDV, circulating monocytes restored to normal values and 

maintained with no significant changes after BHV-1 inoculation (Molina et al., 

2013), coinciding with systemic results from other authors (Falkenberg et al., 

2014). However, as regards tissular macrophages, increases were observed in the 

thymus of calves acutely infected with BVDV (Raya et al., 2012), and in the lungs of 

calves BVDV-infected from this experiment (Risalde et al., 2014), as well as in the 

thymus cortex of these calves, as has been pointed out in this study. These results 

suggest that at systemic levels, BVDV induces transient monocyte depletion 

possibly associated with a migration to different organs, resulting in an increased 
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and prolonged presence of tissular macrophages. A migration of macrophages 

from the medulla to the cortex, were BVDV-infected cells were predominantly 

detected, may account for the lower counts observed in the medulla of coinfected 

calves. Despite not being observed in the thymus by IHC, the detection of BHV-1 by 

PCR in this organ in the BHV1 group from 2 dpi, coupled with the fact that 

macrophages/monocytes have been shown to be infected by BHV-1 (Renjifo et al., 

1999), might explain the rise in cortical macrophages in this group from 2 dpi.  

 By using serial thymus sections immunostained with 15c5 and MAC387 

antibodies, positivity to BVDV could be attributed to macrophages only partially, 

since many other cells with stellate or spindle shape were observed to be positive 

for BVDV and negative for the macrophage marker (Fig. 1), highlighting the 

importance of cells like thymic epithelial cells as target for BVDV, as previously 

described (Raya et al., 2014).  

 As regards detection of Ki67 antigen, the higher proliferative activity 

observed in the medulla of coinfected calves may be associated either with a 

medullar hyperplasia compensatory to the cortical atrophy described previously 

for these animals (Chapter 2a), or with a mechanism to fulfill the requirements of T 

cells in the periphery, since it is in the medulla where the final functional 

maturation of T lymphocytes takes place (Chen, 2004). Since macrophage cell 

counts in the medulla are lower in the coinfected animals, then, the higher 

proliferation observed in these calves may point out particularly to lymphocyte 

proliferation, coinciding in addition with the superior CD8+ cell counts in the 

medulla. In the cortex, the level of proliferation of preinfected animals starts with 

very low values coinciding with the intense lymphoid depletion associated with 

the great presence of BVDV antigen. These results are in agreement with previous 

reports on the acute phase of BVD where an inverse correlation between BVDV 

and proliferation rate is described (Liebler-Tenorio et al., 2003; Raya et al., 2014). 

As the BVDV is cleared, the rate of proliferation begins to increase in these 

coinfected animals, remaining constant in the BHV1 group until 4 dpi. In both 

groups, a retarded decline in the cortical cell proliferation was observed at 7 and 

14 dpi (BVDV/BHV1 group) and 14 dpi (BHV1 group). This decline may be 

accounted for a inhibitory effect of BHV-1 on lymphocyte proliferation, previously 
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described by Carter and colleagues (Carter et al., 1989), since the PCR study 

revealed the presence of BHV-1 in the thymus of calves in both groups.  

 DCs are key elements in the establishment of T-cell immune responses, with 

an extraordinary potential as antigen-presenting cells (APCs) (Banchereau and 

Steinman, 1998; Romero-Palomo et al., 2011). Within the thymus, however, DCs do 

not behave as classical APCs. Thymic DCs are considered the major cell population 

responsible for the process of immunologic central tolerance, by participating in 

the deletion of self-reactive developing T cells (Ardavin, 1997) and induction of 

natural regulatory T cells (Proietto et al., 2008). For this reason, we studied this 

type of cells by immunolabeling against two molecules (CD1b and CD208) 

previously reported as DC markers in cattle (Romero-Palomo et al., 2013 - Chapter 

1). 

 Unlike other molecules of the CD1 family, CD1b is restricted to cortical 

thymocytes and a dendritic cell subpopulation (Howard et al., 1993). All in all, a 

progressive increase was observed in both groups along the study period, claiming 

for the influence of BHV-1 inoculation to this change. However, the magnitude of 

this increase appeared to be more limited in the preinfected group, suggesting that 

the presence of BVDV infection might downregulate the proliferation of CD1b+ DCs 

in response to secondary infections with BHV-1.   

 CD208, also known as DC-LAMP (dendritic cell–lysosome-associated 

membrane protein) was found to be specifically expressed in mature DCs located 

in T zones of lymphoid tissues, known as interdigitant dendritic cells (de Saint-Vis 

et al., 1998). No remarkable differences between both infected groups were 

observed in the expression of CD208, although a progressive dual soaring was 

noted upon BHV-1 inoculation. Immunohistochemical studies revealed the absence 

of BVDV within the medulla, precisely where DCs are located, and even in the case 

it was present, it has been previously reported that DCs are not destroyed by BVDV 

(Glew et al., 2003), what explains the absence of remarkable differences between 

groups.  

 Collectively, these data may indicate that the presence of BHV1 in this organ 

(detected by PCR) may be behind a viral-induced process of DC maturation and 

proliferation of CD1b+ DCs. A previous study reported that despite the absence of 

productive infection, DCs were effective APC for BHV-1 antigens when cultured 
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with T cells (Renjifo et al., 1999), what functionally requires DC maturation, as 

observed in this study. Many pathogen strategies for immune evasion may be 

targeted at interfering with DC biology (Rescigno and Borrow, 2001), with a 

number of steps being proposed at which pathogens may interfere in the DC-T cell 

interaction outcome. Among these steps, hamper DC maturation does not seem to 

be the case for BHV-1 in this study. However, it could be the presence of BVDV the 

reason for the minor proliferation of CD1b+ DCs observed after BHV-1 infection; in 

this case indirect mechanisms may interfere in the process, since DCs are located 

in the medulla and BVDV in the cortex.   

 Given the fact that CD1b is restricted to a subpopulation of conventional 

DCs (Mittag et al., 2011; Ruscanu et al., 2013) and that CD208 expression cannot 

differentiate between mature conventional or plasmacytoid DC (Bendriss-Vermare 

et al., 2001), future works should address the study of plasmacytoid DC, cells of 

great interest during viral infections, due to their potent capacity of IFN-I 

production (Reid et al., 2011).  

 The thymus is the organ responsible for the generation and distribution 

through the vascular system of mature T lymphocytes from the medulla to the 

rest of the organism. Hence, to maintain a stable population, there must be an 

influx of new T cells replacing the ones that are decaying (Stromberg and Antia, 

2012). In this study, we observed an increase of CD8+ T cells in the thymus 

medulla of BVDV-infected calves that might take place as a result of a 

compensatory mechanism of cytotoxic T lymphocyte (CTL) mobilization in 

response to the intense CD8 systemic depletion observed in the coinfected animals 

during the acute phase of BVD (Molina et al., 2014), which was maintained after 

BHV-1 inoculation (Molina et al., 2013). Moreover, a greater vascularization was 

observed in the thymus of preinfected animals in this experiment (Chapter 2a), 

that may also facilitate the dissemination of CTLs.   

 Regulatory T cells (Tregs) are T cell subsets that possess immune 

suppression activities that are essential for maintaining self-tolerance and for 

controlling pathological immune responses (Sakaguchi et al., 2009; Peterson, 2012). 

Tregs that arise during the normal process of maturation in the thymus, also 

known as natural Tregs (nTreg), have a key role in the development of central 

tolerance. The transcription factor forkhead-box p3 (Foxp3) has been long 
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considered to play a major role in the function and development of humans and 

mice nTreg cells, representing their most specific marker identified so far (Hori et 

al., 2003). Previous studies have demonstrated an accurate identification of Foxp3-

expressing lymphocytes in cattle by using the same clone (FJK-16s) we used in this 

study (Gerner et al., 2010). However, additional studies have attributed to δγ T 

cells the role of regulatory T cells in cattle rather than Foxp3+ T cells (Hoek et al., 

2009; Guzman et al., 2014). Due to the current controversies regarding which cell 

population acts as Treg in cattle, both markers, Foxp3 and WC1 (recognizing the 

majority of δγ T cells) were considered in this study.  

 Regarding WC1+ δγ T cells, we observed that medullary δγ thymocytes 

showed a very distinctive association with Hassall's corpuscles, as previously 

reported (Hein and Mackay, 1991), suggesting a role for these structures in δγ 

thymocyte maturation. In this experiment, a progressive decrease in the number of 

WC1+ δγ T cells was observed in the medulla in both groups of animals, with 

significantly higher values in the coinfected group only at 4 and 7 dpi. At the 

systemic level, these animals did not show remarkable differences between 

groups, except for a peak in preinfected calves at 12 dpi with BVDV (0 dpi with 

BHV-1) (Molina et al., 2012; Molina et al., 2014). Results from these previous works 

must be cautiously interpreted, since the monoclonal antibody CACTB6A used in 

these studies detects only a part of the entire δγ T cells population. These results, 

in agreement with previous works, do not clearly claim for a major role of δγ T 

cells in resisting BVDV infection (Howard et al., 1992). Conversely, Foxp3 

expression did show important differences between groups, attaining levels both 

in medulla and cortex significantly lower in the preinfected group that reached 

values close to those of the BHV group from 7 dpi onwards, when the expression of 

BVDV-infected cells showed the lowest values in this organ. Given the fact that 

Tregs are a subset that generally suppress or downregulate induction and 

proliferation of effector T cells, the lower levels of Foxp3+ cells observed in the 

medulla of coinfected animals might be responsible for the higher expression of 

ki67 detected in these animals in this location, where T cell maturation takes place.  

 TGF-β is a potent regulatory cytokine produced by a broad variety of cell 

types and with a wide range of functional properties, including the regulation of T 

lymphocyte proliferation, differentiation and survival (Li et al., 2006). In this study, 
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low values of TGF-β were observed in the medulla and cortex of the coinfected 

animals at the beginning of the study (when the highest amount of BVDV-infected 

cells was detected). However, these levels of TGF-β underwent subsequently a 

progressive increase as the BVDV was cleared. It has been described that TGF-β 

promotes the differentiation of Tregs (Liu et al., 2008; Murphy et al., 2012) and has 

a role as antiapoptotic survival factor for T lymphocytes (Cerwenka and Swain, 

1999; Ouyang et al., 2010). Taken together, these data suggest that a possible 

pathogenic mechanism for BVDV may include the inhibition of TGF-β, thus 

hampering the differentiation of Foxp3+ Tregs (accounting for the reduced values 

of Foxp3 until 4 dpi) and favoring the appearance of increased apoptotic lesions, as 

have been described with the TUNEL technique in the previous chapter. 

Accordingly, as BVDV is cleared and TGF-β arises, this would result in Foxp3+ 

proliferation and reduced apoptotic phenomena. This explanation fits with the 

classical regulatory function attributable to Foxp3+ T cells, but further studies may 

be required to confirm if the in vitro studies considering bovine δγ T cells (instead 

of Foxp3+ cells) as the actual Tregs in cattle can be extrapolated to natural thymic 

Tregs.  

CCoonncclluussiioonnss  

 These findings point out BVDV as responsible for the thymic lesions 

observed in this experiment as well as for the majority of immunopathologic 

changes, including a downregulation of Foxp3 lymphocytes and TGF-β that 

reverted as BVDV was cleared, and an overexpression of medullary CD8+ T cells. 

However, despite not inducing evident lesions in the thymus, BHV-1 did seem to 

prompt some immune alterations, as observed in terms of cortical macrophages, 

dendritic cells or cortical cell proliferation, which may be associated with de 

immunosuppressive features described also for BHV-1 (Nandi et al., 2009). 

Collectively, these data contribute to the knowledge on the immunopathologic 

alterations of the thymus during BVDV infections, and its importance in the 

development of secondary infections. 
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In vitro study of the effect of infections 

with BVDV and BHV-1 on PBMCs  
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IInn  vviittrroo  ssttuuddyy  ooff  tthhee  eeffffeecctt  ooff  iinnffeeccttiioonnss  wwiitthh  BBVVDDVV  aanndd  

BBHHVV--11  oonn  PPBBMMCCss  

 

  
  

AAbbssttrraacctt  

 BVDV and BHV-1 infections are spread in cattle populations all over the 

world causing important economic losses, being considered important 

predisposing factors in the development of BRDC, as a result of their 

immunosuppressive features. Since synergic interactions have been observed in 

vivo with both viruses, the aim of this study was to determine the consequences of 

in vitro infections on distinct populations of blood immune cells. For this study, 4 

Holstein-Friesian heifers (8-10 months old) were selected from a dairy herd free of 

BVDV and BHV-1 and each animal was confirmed to be BVDV and BHV-1 antigen 

and antibody free by using serum neutralization tests, ELISA or PCR. Peripheral 

blood mononuclear cells (PBMCs) were isolated from the blood of these animals 

and separated in turn into 4 groups of infection: uninfected control cells (CON), 

cells infected with ncp BVDV-1 (BVDV), cells infected with BHV-1 (BHV) and cells 

infected with both BVDV and BHV-1 (BVDV+BHV). BVD and BHV-1 viruses were 

grown and titrated on MDBK cells.  PBMCs were infected at 1 m.o.i. and harvested 

at 18, 24, 48, and 72 hours post infection (hpi) to determine the effect of virus 

infection by flow cytometry, determining the percentage and/or MFI of expression 

of different leukocyte differentiation antigens. The main findings of this study 

included the reduced percentage of monocytes after viral infection, especially 

pronounced after co-infection with both viruses, which also produces a 

detrimental effect on CD11b expression in these cells. In addition, monocytes 

seemed to down-regulate expression of CD80 in response to BVDV infection. These 

changes in monocytes may be responsible for an undermined innate response to 

infections and an impaired process of antigen presentation and activation of 

lymphocytes. 

 

Key words: BVDV, BHV-1, PBMCs, leukocyte populations, flow cytometry. 
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IInnttrroodduuccttiioonn  

 Bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BHV-1) 

infections are spread in cattle populations all over the world causing important 

economic losses, not only as the etiological agents of diseases like BVD and 

infectious bovine rhinotracheitis (IBR), respectively, but also as frequent 

pprreeddiissppoossiinngg  ffaaccttoorrss in the development of bovine respiratory disease complex 

(BBRRDDCC), as a result of their iimmmmuunnoossuupppprreessssiivvee features (Srikumaran et al., 2007). 

Though BVDV can infect a wide variety of cell types, there is an apparent 

predilection for cells of the immune system, including T and B cells, monocytes, 

macrophages, and dendritic cells (Sopp et al., 1994; Glew et al., 2003). Likewise, 

although BHV-1 has a special tropism for respiratory epithelial cells, many cell 

types of the immune system can be infected by this virus (Hanon et al., 1998; 

Renjifo et al., 1999; Leite et al., 2005) 

 For mounting an effective clearance of intruder pathogens, the participation 

of both innate and adaptive immune responses is required. Cells like 

monocytes/macrophages (m-MØs) are key components of iinnnnaattee immunity. These 

cells migrate to sites of inflammation and exert their abilities to phagocytose 

pathogens by expressing molecules such as complement receptor 3 (CR3-

CD11b/CD18), which regulates leukocyte adhesion and migration and recognizes 

molecules of invading pathogens acting as a pattern recognition receptor (PRR) 

(Solovjov et al., 2005). In addition, m-MØs secrete immunomodulatory cytokines, 

which may contribute to excessive and harmful proinflammatory environments as 

observed during the BRDC. T and B lymphocytes are the major cells responsible for 

the development of aaddaappttiivvee immune responses.  T cell receptors (TCR) are unable 

to recognize intact antigens (like B lymphocytes do), and they need the antigen to 

be processed by an antigen-presenting cell and presented through molecules of the 

major histocompatibility complex (MHC). The majority of nucleated cells can 

operate as antigen-presenting cells due to its capacity of presenting intracellular 

antigens to cytotoxic T lymphocytes (CTL, CD8+) by means of MHC type I 
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molecules; however, the term “antigen-presenting cell” (APC or professional APC) 

is commonly referred to those cells that constitutively express MHC type II, 

including dendritic cells (DC), m-MØs and B cells, which uptake extracellular 

antigens and present them to helper T cells (Th, CD4+) (Romero-Palomo et al., 

2011). This “first signal”, antigen recognition by the T cell, must then be followed 

by secondary signals as a result of the interaction between co-stimulatory 

molecules like CD80/86 (B7 family) on the APC with their co-receptors on the T 

cell (like CD28 binding to CD80/86 (Orabona et al., 2004)). This secondary signal 

generated by co-stimulatory molecules is necessary for the correct activation of T 

lymphocytes (Johnson and Jenkins, 1992).  Activation of naive T cells in the 

presence of co-stimulation through CD28 signaling induces the expression and 

secretion of IL-2 and the expression of CD25 (α chain of IL-2 receptor (IL-2Rα), 

responsible for conversion into high-affinity IL-2 receptors). IL-2 binds to the high-

affinity IL-2 receptors to promote T-cell growth in an autocrine fashion (Murphy et 

al., 2012). 

 Effects of infections with BVDV or BHV-1 on APCs and lymphocytes have 

been intensively studied separately (Chase, 2013; Levings and Roth, 2013a; b; 

Peterhans and Schweizer, 2013). The reasons why BRDC is still a problem, despite 

the use of antibiotics and vaccines, is the complex interactions between the 

pathogens and the host, and the still incomplete knowledge of the process (Ellis, 

2014). Since synergic interactions have been observed in vivo with both viruses 

(Risalde et al., 2013a), the aim of this study was to determine the consequences of 

in vitro infections on distinct populations of blood immune cells. 

 

 

RReessuullttss  

 Both viruses were replicated in epithelial cells and the final viral stocks 

were titrated, giving values of 104,6 TCID50/µl for ncp BVDV (7443 strain) and 

104.76 TCID50/µl for BHV-1. Total leukocyte and platelet counts from the animals 

used in this study had values included within the normal range for the bovine 

species, with only a slight increase in one animal in the number of monocytes 

(Figure 1, Table 1).  
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Figure 1. Graphic representation of total leukocyte and platelet counts from the animals 

used in this study. 

 

Table 1. Values of total leukocyte and platelet counts from the animals 

used in this study, and normal values of reference. 

 (n x 103/μl) Animal 1 Animal 2 Animal 3 Animal 4 Normal values1  

Lymphocytes 5.05 3.59 3.10 3.68 4.5 (2.5-7.5) 

Monocytes 1.59 1.08 0.97 0.55 0.4 (0.025-0.84) 

Neutrophils 1.06 1.65 1.30 2.17 2 (0.6-4) 

Eosinophils 0.62 0.20 0.31 0.59 0.7 (0-2.4) 

Basophils 0.10 0.11 0.12 0.15 0.05 (0-0.2) 

Total leukocytes 8.42 6.63 5.80 7.14 8 (4-12) 

Platelets 197 99 211 283 500 (100-800) 
 

1 Normal blood values for cattle (Schlam’s veterinary hematology. 4th ed. 

Philadelphia: Lea & Febiger, 1986) 

  

 Percentages of CD14+ monocytes revealed remarkable differences among 

groups of infection, with decreased numbers in all infected groups, but being more 

pronounced and statistically significant when PBMCs are infected with both 

viruses compared with control group (Figure 2a). Percentages of expression of 

CD11b or CD80 within the monocyte population did not show significant 

differences except for a decreased in BHV and BVDV+BHV groups compared to 

CON group at 18 hpi (Figures 2b,c). Infected monocytes showed a decreased in the 

mean fluorescence intensity (MFI) for CD11b, especially pronounced and with 

significant differences when infected with both viruses (Figure 2d). Some 

significant increments were observed in the CD80 MFI of monocytes associated 

with the time in culture, although this increasing tendency was observed in all 

groups of infection (Figure 2e); monocytes of the groups infected with BVDV (alone 

or along with BHV-1) seemed to show a downregulation of CD80, as observed 
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when comparing with control and BHV groups, with significant decreases in the 

co-infected group compared with BHV group.  

 

Table 2. Surface molecule expression by PBMC prior to infection 

(0 hpi). Average values from four separate experiments (4 

animals). MFI: mean fluorescent intensity, geometric mean 

channel number. 

 
% (±SD) MFI (±SD) 

CD14+ 2 (1)  

(CD14) CD11b+ 91 (6) 143 (24) 

(CD14) CD80+ 41 (4) 19 (4) 

CD4+ 20 (6)  

CD8+ 15 (3)  

(CD4) CD25+ 12 (5) 11 (2) 

(CD8) CD25+ 4 (4) 8 (2) 

CD28 4 (0) 7 (1) 

B-B2 33 (11)  

MHC-I  99 (1) 150 (51) 

MHC-II 27 (5) 21 (12) 

 

 T lymphocyte did not show differences along the study period neither in the 

percentages of CD4+ or CD8+ subpopulations (Figure 3 a,b), nor in the percentage 

of expression of the CD25 activation marker within these subpopulations (Figure 3 

c,d). With respect to the CD25 MFI of CD4+ lymphocytes, some significant 

differences were observed among groups of infection at different time points 

(Figure 3e), with no changes being observed in the CD8+ subpopulation (Figure 3f) 

except for a slight increment in all groups of infection. No differences among 

groups of infection were detected in the percentage or MFI of cells expressing 

CD25 out of the total PBMC population (data not shown). 

 The T cell activating receptor CD28 did not show significant variations 

neither in the percentage of cells expressing it nor in their MFI (Figure 4 a,b). No 

significant changes were observed in the percentage of B lymphocytes (Figure 4c), 

neither in the MFI for MHC-I or MHC-II positive cells (Figure 4 d,e) (nor in their 

percentages, data not shown). 
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Figure 2. Percentage of monocytes (CD14+) (a), percentage of cells expressing CD11b or CD80 of the 

monocyte population (b,c), and MFI for CD11b+ or CD80+ cells of the monocyte population (d,e) (MFI: mean 

fluorescent intensity, geometric mean channel number). The values represented in all the graphs are the 

means (±SD) of four separate experiments (4 animals). (*) Significant differences (p<0.05) between different 

groups of infection at the same time point. (a,b,c…) Significant differences (p<0.05) within a group of infection 

at different time points. 

 

 

(a)

(b) (c)

(d) (e)
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Figure 3. Percentage of CD4+ or CD8+ T lymphocytes (a,b), percentage of cells expressing CD25 of the CD4+ 

or CD8+ T lymphocyte populations (c,d), and MFI for CD25+ cells of the CD4+ or CD8+ T lymphocyte 

populations (e,f) (MFI: mean fluorescent intensity, geometric mean channel number). The values 

represented in all the graphs are the means (±SD) of four separate experiments (4 animals). (*) Significant 

differences (p<0.05) between different groups of infection at the same time point. (a,b,c…) Significant 

differences (p<0.05) within a group of infection at different time points. 

 

 

(a) (b)

(c) (d)

(e) (f)
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Figure 4. Percentage of cells expressing CD28 and MFI for CD28+ cells (a,b), percentage of B lymphocytes 

(B-B2+)(c), and MFI for MHC-I or MHC-II positive cells (d,e) (MFI: mean fluorescent intensity, geometric 

mean channel number). The values represented in all the graphs are the means (±SD) of four separate 

experiments (4 animals). (*) Significant differences (p<0.05) between different groups of infection at the 

same time point. (a,b,c…) Significant differences (p<0.05) within a group of infection at different time points. 
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DDiissccuussssiioonn    

 This study analyzes and compares the effect of dual and single infections 

with ncp BVDV-1 and BHV-1 on different populations of PBMCs obtained from 

naïve uninfected cattle. The percentages of several constitutive leukocyte 

differentiation antigens were calculated by flow cytometry, along with the MFI of 

some of the molecules susceptible to infection-induced regulation.   

 Values of total leukocyte counts from the animals used in this study were 

within the normal range, with only one animal showing a slight increase in the 

number of monocytes; however, the normal reference interval for monocytes 

shown in Table 1 can be considered even higher according to some studies using a 

hematology analyzer that gives similar results to those obtained with the 

hematology analyzer used in this study (Bauer et al., 2011; Warren et al., 2013). 

 A reduction in the percentage of monocytes in the virus-infected groups 

was reported in this study, especially after co-infection with both viruses, 

reflecting their marked pathogenicity and tropism for monocytes. In agreement 

with this observation, monocytes were found to be the leukocyte population with 

the highest frequency of infection with BVDV (Sopp et al., 1994). Similarly, BHV-1 

replicates in purified m-MØs cultures inducing a reduction of monocyte viability 

(Hanon et al., 1998; Renjifo et al., 1999) or without causing apparent cytopathic 

effects (Woldehiwet and Rowan, 1990). In vitro studies revealed that monocytes 

were killed with cp BVDV but not after ncp infection in purified (Glew et al., 2003) 

or monocyte-enriched cell cultures (Lambot et al., 1998). This absence of cell death 

after infection with these viruses is based on purified monocyte culture systems, 

and the detrimental effects that other cells may induce on them are not considered 

(Wang and Splitter, 1998), as it might be occurring in this study with total PBMC or 

in in vivo experiments (Molina et al., 2014), where a substantial reduction of 

monocytes is described after infection.  

 These differences in purified cell cultures have also been observed in the 

absence of evident changes in the expression of CD11b (Glew et al., 2003). 

However, in this study with PBMCs, along with the reduction in their percentage, 

monocytes in the infected groups of cells underwent a reduction in the expression 

of CD11b, especially significant in the dually infected group. Similarly, alveolar 
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macrophages recovered from BVDV-infected animals showed decreased 

functionality, including reduction of complement receptor 3 (CR3) expression 

(Welsh et al., 1995). Given the role of CD11b in leukocyte adhesion, migration and 

antigen recognition (Solovjov et al., 2005), this reduced expression may be partially 

responsible for the impairment of the immune response.     

 Professional APCs express relatively high levels of MHC class I and class II 

molecules, co-stimulatory molecules induced upon activation, receptors for endo- 

and phagocytosis, and adhesion molecules (Murphy et al., 2012). To determine if 

viral strains affect the professional antigen presenting function of monocytes to 

activate T cells, we assessed CD80 expression. In vitro studies to determine the 

expression of CD80/86 during infection of bovine monocytes with BVDV have 

shown variable results, ranging from down-regulation of gene expression (Lee et 

al., 2008) to a lack of effect on the surface expression (Glew et al., 2003). During in 

vivo infections with BVDV, down-regulation of cells expressing CD80/86 

(Archambault et al., 2000), and variable levels of mRNA expression of CD80 

depending on the organ or viral virulence have also been reported (Palomares et 

al., 2014). In our study, monocytes of the BVDV-infected groups showed a 

downregulation in the surface expression of CD80 that may be responsible for an 

impaired process of antigen presentation and activation of lymphocytes.  

 To our knowledge, the absence of changes in CD11b and CD80 expression 

after infection with BHV-1 observed in our study is the first description of the 

effect of BHV-1 on these leukocyte markers. 

 We did not observe significant changes in the MFI of MHC-I or MHC-II 

positive cells. Studies by Glew et. al. (2003) neither observed evidence for MHC 

down/up-regulatory effect on BVDV-infected monocytes or moDC; however, 

despite the unaltered expression of co-stimulatory and MHC molecules, these 

authors reported that monocytes infected with ncp BVDV were compromised in 

their ability to stimulate allogeneic and memory CD4+ T cells responses. Studies by 

Lee et al. (2009) on purified monocytes reported that ncp BVDV had the strongest 

inhibitory effect on the MHC class I, MHC class II and MHC-DQ isotype protein 

expression levels. With regard to BHV-1, previous studies in vitro have reported 

down-regulation of MHC-I and MHC-II after infection (Nataraj et al., 1997; Hinkley 

et al., 2000; Koppers-Lalic et al., 2005).  As we can see in this study, although not 
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significant, virus-infected groups of cells seem to down-regulate MHC-II 

expression, suggesting that higher infectious doses might induce more evident 

changes. 

 This study revealed an absence of changes in the percentage of T 

lymphocytes despite the viral infections. In vivo infections with BBHHVV--11 revealed 

that CD4+ and CD8+ blood T cells decreased, especially CD4+ T cells, which unlike 

CD8+ T cells, was correlated with an increase in apoptosis, being CD4+ T cells (but 

not CD8+) infected with BHV-1 (Winkler et al., 1999). Hanon et al. (1998) reported 

increased levels of apoptosis in T and B lymphocytes and monocytes after in vitro 

infection with BHV-1, although these studies used to infect an m.o.i. as high as 10 

PFU per cell, possibly due to the fact that PBMCs are not the principal target cells 

for BHV-1. In vitro studies with homologous strains of BBVVDDVV revealed that only the 

cp biotype, in contrast to the ncp counterpart, induced evident apoptosis in PBMCs 

after infection (Lambot et al., 1998). On the contrary, in vivo BVDV infections 

showed significant decreases in the number of T lymphocyte subpopulations (Ellis 

et al., 1988; Ganheim et al., 2005; Molina et al., 2014). The absence of changes in the 

percentage of T lymphocytes also suggest that these cells do not proliferate in 

response to antigen presentation of virus, possibly explained by the fact that cells 

used in this study were obtained from naïve (non-immunized) animals. This 

absence of pre-immunization might explain the decreased levels or the absence of 

changes observed in the CD25 MFI (Carter et al., 1989; Hou et al., 1998), 

contrasting with CD25 up-regulation observed upon pre-infection or vaccination 

(Lan et al., 1996; Endsley et al., 2002; Platt et al., 2006).  

 To our knowledge, there are no previous reports describing the effect of 

BVDV/BHV-1 infection in CD28 expression; our studies suggest that none of the 

viruses we used induce changes in the expression of this molecule, not even up-

regulation, as it might be expected in response to a viral stimulation.   

  Varying effects on circulating B-lymphocytes have been reported during in 

vivo infections with BVDV. Ellis et al. (1988) found a decrease in the proportion of 

B-cells, while Archambault et al. (2000) and Ganheim et al. (2005) observed no 

effect on the B-cells, possibly due to differences in the viral strains. No changes 

were observed in the percentage of B-lymphocytes in this study, contrasting with 

their evident affectation during in vivo infections with the same BVDV strain, either 
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transiently in circulating B-cells (Molina et al., 2014) or within lymphoid follicles 

(Pedrera et al., 2009b). These results support the hypothesis considering that B-

lymphocytes may die by indirect mechanisms triggered by other infected cells like 

macrophages or stromal cells (Pedrera et al., 2009a; Pedrera et al., 2012), which are 

not present in the present in vitro study.  

 In summary, the main findings of this study included the reduced 

percentage of monocytes after viral infection, especially pronounced after co-

infection with both viruses, which also produces a detrimental effect on CD11b 

expression in these cells, reflecting synergic mechanisms that undermine the 

response of m-MØs and, in turn, the innate immune response to these viruses. In 

addition, monocytes seemed to down-regulate expression of CD80 in response to 

BVDV infection, which may be responsible for an impaired process of antigen 

presentation and activation of lymphocytes.  

 Further studies with this experimental design are being carried out to 

complement this study, focused on late and early markers of apoptosis, cytokine 

production and viral replication. Additionally this complete set of results from 

naïve animals will be compared with results from cells of immunized animals. 

Taken together, this project will help to a better understanding of the possible 

interaction mechanism lying behind the BRDC and the effectiveness of current 

vaccine systems.  
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1. MHC-II expression is the most sensitive marker for detecting any DC of 

hematopoietic origin in bovine tissue sections by means of 

immunohistochemistry, being both anti-S100 and CNA.42 antibodies useful 

markers for the detection of stromal FDCs. In addition, immunolabeling of 

CD208 allows the detection of mature DCs in T zones of lymphoid organs, 

while CD1b identifies DC populations mainly located in the thymus: 

CHAPTER 1 

 

2. Pre-infection of calves with BVDV induces severe atrophic changes in the 

thymus, an organ of outstanding relevance for the immune system, 

associated with a delayed persistence of the virus in this organ. This thymus 

atrophy is characterized by a reduction in the cortex:medulla ratio, and an 

increase in cortical apoptosis as well as in collagen deposition and 

vascularization:  CHAPTER 2A. 

 

3. In calves pre-infected with BVDV and challenged with BHV-1, BVDV gives 

rise to the majority of immunopathological changes observed in the thymus, 

including a down-regulation of Foxp3+ T cells and TGF-β that reverts as 

BVDV is cleared from this organ: CHAPTER 2B. 

 

4. In vitro infection of PBMCs with BVDV and BHV-1 induces in monocytes 

(CD14+) a decrease in their percentages and a down-regulation in the 

expression of CD11b, a molecule of great importance for leukocyte 

migration and antigen recognition, being the most pronounced reduction 

observed in the co-infected group. In addition, in response to BVDV 

infection, monocytes seem to down-regulate the expression of the co-

stimulatory molecule CD80, required for an adequate antigen presentation 

and activation of lymphocytes: CHAPTER 3. 
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 The impairment of the immune system arisen during bovine viral diarrhea 

virus (BVDV) infections is one major paradigm of the immunology in the modern 

research of cattle diseases. In this sense, several efforts are being conducted to 

elucidate the complex mechanisms used by BVDV to evade the host immune 

response. Although BVDV is not a primary agent in the pathogenesis of bovine 

respiratory disease complex (BRDC), its suppressive effects on the host immune 

system can increase the risk of secondary infections, thus enhancing pulmonary 

colonization by other pathogens. Consequently, the general objective of this work 

was to contribute to the knowledge of the immunopathogenic strategies by which 

BVDV infections enhance the susceptibility to secondary infections, as those 

produced by bovine herpesvirus type 1 (BHV-1). 

 

 Due to the important effects that viral pathogens can induce on the immune 

system, this work was firstly focused on a cell type of outstanding relevance for 

the immune system, the dendritic cells (DC), which are the most effective antigen-

presenting cells (APC), and modulates both innate and adaptive immune 

responses. The absence of a solid literature detailing DC marker candidates for 

cattle gave rise to the first objective, focused on finding potential DC markers for 

the bovine species, standardize their immunohistochemical protocol and describe 

their histological distribution, in order to establish a basis for the study of DCs in 

diseased tissues (CHAPTER 1). For this purpose, paraffin wax-embedded tissues 

from 6 healthy Friesian calves were subjected to immunohistochemical studies and 

the most appropriate protocols were studied for each of the following primary 

antibodies: MHC-II, CD208, CD1b, CD205, CNA.42 and S100.  

 Despite labeling other APCs, MHC-II expression was established as the most 

sensitive marker for detecting any DC of hematopoietic origin in bovine tissue 

sections. Both CNA.42 and anti-S100 antibodies stained stromal FDCs, but only the 

latter allowed for the identification of FDCs as isolated cells. Cells stained against 
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CD205 were scarce, and their location was mainly restricted to non-lymphoid 

tissues. Immunolabeling of CD208 allowed the detection of mature DCs in T zones 

of lymphoid organs, while CD1b identified DC populations mainly located in 

interfollicular areas of some lymph nodes and in the thymus.   

 

 Secondly, with the aim of reproducing and studying the pathologic 

condition developed during the BRDC, by which a primary BVDV infection favors 

the susceptibility to secondary infections, the following in vivo experimental design 

was proposed. Twelve Friesian calves were inoculated intranasally with 

noncytopathic BVDV-1 (strain 7443). Twelve days later, when the calves did not 

show clinical signs of viremia against BVDV, ten of them were subsequently 

challenged intranasally with BHV-1.1 (strain Iowa) and euthanized in batches of 

two at 1, 2, 4, 7, or 14 days post-infection (dpi) with BHV-1 (BVDV/BHV1 group). 

The other 2 calves were euthanized prior to the second inoculation (0 dpi with 

BHV-1) and were used as BVDV-infected controls for this group. Another 10 calves 

were inoculated solely with BHV-1 and euthanized in batches of two at the same 

time points (BHV1 group). Two calves were not inoculated with any agent and 

were used as negative controls. Several papers with clinical and pathological 

results from the animals in this experiment have been previously published 

(enumerated in section “preface”). The thymus was the focus of attention in this 

work (CHAPTER 2A-B) since it is considered a target organ for BVDV and because it 

remains as an active organ also throughout the adult life, allowing lymphocyte 

supply to secondary lymphoid organs when required. For this study, thymus 

samples from these animals were processed for viral genomic detection and for 

histopathological, immunohistochemical, and ultrastructural studies focused on 

BVDV/BHV-1 antigens, cortex:medulla ratio, apoptosis (TUNEL and caspase-3), 

collagen deposition, and Factor VIII endothelial detection (lesional study - CHAPTER 

2A), as well as on thymus immune cells (immunopathological study - CHAPTER 2B). 

Among these immune cells, we studied the main APCs (DCs and macrophages), 

lymphocyte subpopulations (CD8, γδ T cells, FoxP3+ T cells) as well as the 

proliferative activity of these cells and the expression of TGF-β, a potent 

immunoregulatory cytokine. To study DCs, some of the DC markers described in 

the first chapter were used (CD208 and CD1b).  
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 Our study revealed the immunohistochemical presence of BVDV antigen in 

the thymus of all animals in the BVDV pre-infected group, unlike BHV-1 detection, 

which was observed in the thymus of animals in both infection groups only by 

molecular techniques. BVDV-preinfected animals showed severe thymic atrophic 

changes associated with reduced cortex:medulla ratio, higher presence of  cortical 

apoptosis, and increased vascularization and deposition of collagen 

(ultrastructurally identified as type I-collagen). Calves solely infected with BHV-1 

did not show atrophic changes. These findings could affect not only the numbers of 

circulating and local mature T cells but also the T cell-mediated immunity, which 

seems to be impaired during infections with BVDV, thus favoring pathogenic 

effects during secondary infections (CHAPTER 2A). 

 The immunohistochemical evaluation to compare the quantitative changes 

in thymus immune cells from coinfected calves and calves challenged only with 

BHV-1 pointed out BVDV as responsible for the majority of immunopathologic 

changes, including a downregulation of Foxp3 lymphocytes and TGF-β that 

reverted as BVDV was cleared, and an overexpression of medullary CD8+ T cells. 

However, despite not inducing evident lesions in the thymus, BHV-1 did seem to 

prompt also some immune alterations. Collectively, these data contribute to the 

knowledge on the immunopathologic alterations of the thymus during BVDV 

infections, and its importance in the development of secondary infections (CHAPTER 

2B). 

 

 BVDV is considered as the main predisposing factor for the occurrence of 

BRDC through an alteration of the immune response, thus favoring the 

colonization of the respiratory system by other pathogens. BHV-1 is one of these 

pathogens, which is the etiological agent of infectious bovine rhinotracheitis (IBR), 

and, in turn, has also some detrimental effects on the immune system. Results from 

our in vivo experimental model revealed a synergic action of the pathogenic 

mechanisms between both viruses. Therefore, the last objective was to shed light 

on these mechanisms by establishing an additional experimental model with in 

vitro infections with ncp BVDV-1 (strain 7443) and BHV-1.1 (strain Iowa) on 

distinct populations of blood immune cells (CHAPTER 3). For this study, 4 Friesian 

heifers were selected from a dairy herd free of BVDV and BHV-1 and each animal 
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was confirmed to be BVDV and BHV-1 antigen and antibody free by using serum 

neutralization tests, ELISA or PCR. Peripheral blood mononuclear cells (PBMCs) 

were isolated from the blood of these animals and separated in turn into 4 groups 

of infection: uninfected control cells (CON), cells infected with BVDV-1 (BVDV), 

cells infected with BHV-1 (BHV) and cells infected with both BVDV and BHV-1 

(BVDV+BHV). BVD and BHV-1 viruses were grown and titrated on MDBK cells.  

PBMCs were infected at a multiplicity of infection (m.o.i.) of 1 TCID50 per cell and 

harvested at 18, 24, 48, and 72 hours post infection (hpi) to determine the effect of 

virus infection by flow cytometry, determining the percentage and/or mean 

fluorescence intensity (MFI) of expression of different leukocyte differentiation 

antigens (CD14, CD11b, CD80, CD4, CD8, CD25, CD28, MHC-I, MHC-II, and B-B2 (B-

cells)).  

 After in vitro infection of PBMCs, BVDV and BHV-1 induced in monocytes 

(CD14+) a decrease in their percentages and a down-regulation in the expression 

of CD11b, a molecule of great importance for leukocyte migration and antigen 

recognition, being the most pronounced reduction observed in the co-infected 

group, reflecting synergic mechanisms that undermine the response of monocytes 

and, in turn, the innate immune response to these viruses. In addition, in response 

to BVDV infection, monocytes seemed to down-regulate the expression of the co-

stimulatory molecule CD80, which may be responsible for an impaired process of 

antigen presentation and activation of lymphocytes (CHAPTER 3).  

 Further studies with this experimental design are being carried out to 

complement this study, focused on late and early markers of apoptosis, cytokine 

production and viral replication. Additionally this complete set of results from 

naïve animals will be compared with results from cells of immunized animals. 

Taken together, this project will help to a better understanding of the possible 

interaction mechanism lying behind the BRDC and the effectiveness of current 

vaccine systems.  
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 El deterioro del sistema inmunológico que surge durante las infecciones con 

el virus de la diarrea vírica bovina (VDVB) es uno de los principales paradigmas de 

la inmunología en la investigación actual de las enfermedades del vacuno. En este 

sentido, se están llevando a cabo numerosos esfuerzos para dilucidar los complejos 

mecanismos utilizados por el VDVB para evadir la respuesta inmune del 

hospedador. Aunque el VDVB no es un agente primario en la patogénesis del 

complejo respiratorio bovino (CRB), sus efectos supresores sobre el sistema 

inmune del hospedador pueden aumentar el riesgo de infecciones secundarias, 

potenciando así la colonización pulmonar por otros patógenos. En consecuencia, el 

objetivo general de este trabajo fue contribuir al conocimiento de las estrategias 

inmunopatógenas mediante las cuales, infecciones con el VDVB aumentan la 

susceptibilidad a infecciones secundarias, como las producidos por el herpesvirus 

bovino tipo 1 (HVB-1). 

 

 Debido a los importantes efectos que los patógenos virales pueden inducir 

sobre el sistema inmune, este trabajo se centró en primer lugar en un tipo de 

células de excepcional relevancia para el sistema inmune, las células dendríticas 

(CDs), que son las células presentadoras de antígeno (CPA) más eficaces y modulan 

las respuestas inmunitarias tanto innatas como adaptativas. La ausencia de una 

literatura sólida que detalle candidatos marcadores de CDs para bovino dio lugar al 

primer objetivo, centrado en encontrar marcadores potenciales de CDs para la 

especie bovina, estandarizar su protocolo inmunohistoquímico y describir su 

distribución histológica, con el fin de establecer una base para el estudio de las CDs 

en tejidos patológicos (CAPÍTULO 1). Para este propósito, tejidos incluidos en 

parafina de 6 terneros frisones sanos fueron sometidos a técnicas 

inmunohistoquímicas y se estudiaron los protocolos más apropiados para cada 

uno de los siguientes anticuerpos primarios: MHC-II, CD208, CD1b, CD205, CNA.42 

y S100. 
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 A pesar de marcar otras CPA, la expresión de MHC-II se estableció como el 

marcador más sensible para detectar cualquier CD de origen hematopoyético en 

secciones de tejido bovino. Ambos anticuerpos CNA.42 y anti-S100 tiñeron células 

dendríticas foliculares (CDF) estromales, pero sólo este último permitió la 

identificación de CDF como células aisladas. Las células teñidas frente a CD205 

fueron escasas, y su ubicación se limitó principalmente a tejidos no linfoides. El 

inmunomarcaje de CD208 permitió la detección de CDs maduras en zonas T de 

órganos linfoides, mientras que CD1b identificó poblaciones de CDs localizadas 

principalmente en áreas interfoliculares de algunos nódulos linfáticos y en el timo.   

 

 En segundo lugar, con el objetivo de reproducir y estudiar el estado 

patológico que tiene lugar durante el CRB, por el cual una infección primaria 

favorece la susceptibilidad a infecciones secundarias, se propuso el siguiente 

modelo experimental in vivo. Doce terneros frisones fueron inoculados por vía 

intranasal con VDVB-1 no citopático (cepa 7443). Doce días más tarde, cuando los 

terneros no mostraban signos clínicos de viremia frente al VDVB, diez de ellos 

fueron infectados intranasalmente con HVB-1.1 (cepa Iowa) y sacrificados en lotes 

de dos a los 1, 2, 4, 7, o 14 días post-infección (dpi) con HVB-1 (grupo 

VDVB/HVB1). Los otros 2 terneros fueron sacrificados antes de la segunda 

inoculación (0 dpi con HVB-1) y se utilizaron como controles infectados con VDVB 

para este grupo. Otros 10 terneros fueron inoculados únicamente con HVB-1 y 

sacrificados en lotes de dos a los mismos tiempos (grupo HVB-1). Dos terneros no 

se inocularon con ningún agente y se utilizaron como controles negativos. Varios 

artículos con resultados sobre clínica y patología de estos animales han sido 

anteriormente publicados (enumerados en la sección "prefacio"). El timo fue el 

foco de atención en este trabajo (CAPÍTULO 2A-B) ya que se considera un órgano 

diana para el VDVB y porque continua como un órgano activo también durante la 

vida adulta, permitiendo el aporte de linfocitos a órganos linfoides secundarios 

cuando es necesario. Para realizar este estudio, se procesaron muestras de timo de 

los animales anteriormente citados para la detección de genoma vírico y para 

estudios  histopatológicos, inmunohistoquímicos y ultraestructurales,  centrados 

en antígenos de VDVB/HVB-1, ratio corteza:médula, apoptosis (TUNEL y caspasa-

3), depósito de colágeno, y detección de Factor VIII endotelial (estudio lesional - 
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CAPÍTULO 2A), así como en las células inmunes del timo (estudio inmunopatológico - 

CAPÍTULO 2B). Entre estas células inmunes, se estudiaron los principales CPA (CDs y 

macrófagos), subpoblaciones de linfocitos (CD8, células T γδ, células T FoxP3+), así 

como la actividad proliferativa de estas células y la expresión de TGF-β, una 

potente citoquina inmunorreguladora. Para estudiar las CDs, se utilizaron algunos 

de los marcadores de CDs descritos en el primer capítulo (CD208 y CD1b). 

 Nuestro estudio reveló mediante inmunohistoquímica la presencia del 

antígeno de VDVB en el timo de todos los animales del grupo preinfectado con 

VDVB, a diferencia de la detección de HVB-1, que se observó en el timo de los 

animales infectados en ambos grupos sólo mediante técnicas moleculares. Los 

animales preinfectados con VDVB mostraron cambios atróficos severos en el timo, 

caracterizados por un reducido ratio corteza:médula, una mayor presencia de 

fenómenos de apoptosis cortical y un incremento en la vascularización y el 

depósito de colágeno (ultraestructuralmente identificado como colágeno tipo I). 

Los terneros únicamente infectadas con HVB-1 no mostraron cambios atróficos en 

el timo. Estos hallazgos podrían afectar no sólo a la cantidad de células T maduras 

circulantes y locales sino también a la inmunidad mediada por células T, que 

parece verse afectada durante las infecciones con el VDVB, favoreciendo así los 

efectos patógenos durante infecciones secundarias (CAPÍTULO 2A). 

 La evaluación inmunohistoquímica para comparar los cambios cuantitativos 

en las células inmunes del timo de los terneros coinfectados y de los infectados 

solamente con HVB-1, apuntaron al VDVB como responsable de la mayoría de los 

cambios inmunopatológicos, incluyendo una disminución de linfocitos Foxp3 y de 

expresión de TGF-β que revirtieron a medida que el VDVB se iba eliminando del 

organismo, y un incremento de linfocitos T CD8+ medulares. Sin embargo, a pesar 

de no inducir lesiones evidentes en el timo, el HVB-1 pareció provocar también 

algunas alteraciones inmunes. En conjunto, estos datos contribuyen al 

conocimiento sobre las alteraciones inmunopatológicas que sufre el timo durante 

infecciones con VDVB, y su importancia en el desarrollo de infecciones secundarias 

(CAPÍTULO 2B). 

 

 El VDVB se considera como el principal factor predisponente en la aparición 

del CRB a través de una alteración de la respuesta inmune, lo que favorece la 
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colonización del aparato respiratorio por otros patógenos. El HVB-1 es uno de 

estos patógenos, el cual es el agente etiológico de la rinotraqueítis infecciosa 

bovina (IBR), y a su vez, tiene también algunos efectos perjudiciales sobre el 

sistema inmunológico. Resultados de nuestro modelo experimental in vivo 

revelaron una acción sinérgica entre los mecanismos patogénicos de ambos virus. 

Por lo tanto, el último objetivo fue profundizar en el conocimiento sobre estos 

mecanismos mediante el establecimiento de un modelo experimental adicional de 

infecciones in vitro con VDVB-1 no citopático (cepa 7443) y HVB-1.1 (cepa Iowa) 

en distintas poblaciones de células inmunes sanguíneas (CAPÍTULO 3). Para este 

estudio, se seleccionaron 4 vacas frisonas de una explotación lechera libre de 

VDVB y HVB-1 y cada animal fue confirmado como libre de antígenos y anticuerpos 

de VDVB y HVB-1 mediante el uso de pruebas de seroneutralización vírica, ELISA o 

PCR. Se aislaron células mononucleares de sangre periférica (PBMCs) de la sangre 

de estos animales y se separaron a su vez en 4 grupos de infección: células control 

no infectadas (CON), células infectadas con VDVB-1 (VDVB), células infectadas con 

HVB-1 (HVB) y células infectadas con VDVB y con HVB-1 (VDVB+HVB). Los virus 

VDVB y HVB-1 se hicieron previamente replicar y se titularon en una línea celular 

establecida de células epiteliales de riñón bovino (MDBK). Los PBMC fueron 

infectados a una multiplicidad de infección (m.o.i.) de 1 TCID50 por célula y se 

recogieron a las 18, 24, 48, y 72 horas post- infección (hpi) para analizar el efecto 

de la infección viral mediante citometría de flujo, determinando el porcentaje y/o 

la intensidad de fluorescencia media (MFI) de la expresión de diferentes antígenos 

de diferenciación leucocitaria (CD14, CD11b, CD80, CD4, CD8, CD25, CD28, MHC-I, 

MHC-II, y B-B2 (células B)). 

 Tras la infección in vitro de PBMCs, el VDVB y el HVB-1 indujeron en los 

monocitos (CD14+) una disminución en sus porcentajes y una reducción en la 

expresión de CD11b, una molécula de gran importancia para la migración de 

leucocitos y el reconocimiento de antígenos, observándose la reducción más 

pronunciada en el grupo de células co-infectadas, lo que evidencia la presencia de 

mecanismos sinérgicos que perjudican la respuesta de los monocitos y, a su vez, la 

respuesta inmune innata a estos virus. Además, en respuesta a la infección con el 

VDVB, los monocitos parecían mostrar una reducida expresión de la molécula 
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coestimuladora CD80, que puede ser responsable de una alteración en los procesos 

de presentación antigénica y activación linfocitaria (CAPÍTULO 3). 

 Estudios adicionales sobre este último diseño experimental se están 

llevando a cabo para complementar este estudio, centrados en marcadores 

tempranos y tardíos de apoptosis, producción de citoquinas y replicación vírica. 

Además, este conjunto completo de resultados con animales indemnes a ambos 

virus se comparará con resultados procedentes de células de animales 

inmunizados. En conjunto, este proyecto ayudará a una mejor comprensión de los 

posibles mecanismos de interacción que subyacen tras el CRB así como de la 

eficacia de los actuales sistemas vacunales. 
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II..  SSuupppplleemmeennttaall  mmaatteerriiaall  

 
Figure S1. Immunohistochemical detection of CD1b+ cells in lymph nodes and 

dermis. (CHAPTER 1) 

 

Figure S2. Positive-infection tissue controls for the immunohistochemical 

detection of BHV-1. (CHAPTER 2A) 

 

Figure S3. Low magnification of thymus sections. Hematoxylin-eosin (CHAPTER 2A) 

 

Figure S4. Representative figure of BVDV-induced thymus atrophy.  (CHAPTER 2A) 

 

Figure S5. Transmission electron microscopy photographs showing structures 

compatible with BHV-1 particles. (CHAPTER 2A) 
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Figure S1. Immunohistochemical detection of CD1b+ cells in the interfollicular areas of some 

lymph nodes (A), and in the dermis (B). (CHAPTER 1) 
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Figure S2. PPoossiittiivvee--iinnffeeccttiioonn  ttiissssuuee  ccoonnttrroollss  ffoorr  tthhee  iimmmmuunnoohhiissttoocchheemmiiccaall  ddeetteeccttiioonn  ooff  BBHHVV--11. 

Palatine tonsil from a calf euthanized at 4 dpi with BHV-1 (BVDV/BHV1 group) immunolabeled 

with F2 monoclonal antibody (A) and isotype-matched negative control (B). Liver from an aborted 

fetus that was positive for BHV-1 immunolabeled with F2 monoclonal antibody (C) and isotype-

matched negative control (D). Insets represent higher magnifications of the fields framed in black. 

(CHAPTER 2A) 
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Figure S3. LLooww  mmaaggnniiffiiccaattiioonn  ooff  tthhyymmuuss  sseeccttiioonnss.. Hematoxylin-eosin (CHAPTER 2A) 
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Figure S4. RReepprreesseennttaattiivvee  ffiigguurree  ooff  BBVVDDVV--iinndduucceedd  tthhyymmuuss  aattrroopphhyy,,  characterized by a decreased 

C:M ratio, a high grade of apoptosis, and an increased type-I collagen deposition and 

vascularization. (CHAPTER 2A) 
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Figure S5. Transmission electron microscopy photographs showing the presence of round 

structures composed by an outer envelope and an inner electrodense core, compatible with BHV-1 

particles, located in the cytoplasm of tingible body macrophages of a calf euthanized at 14 dpi with 

BHV-1. Figures B, C and D correspond to higher magnifications of the field outlined in A. Figure F 

corresponds to a higher magnification of the field outlined in E. (CHAPTER 2A) 
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Functional Anatomy, Degenerative and Metabolic Disease Research

Immunohistochemical Detection
of Dendritic Cell Markers in Cattle

F. Romero-Palomo1, M. A. Risalde1, V. Molina1,

P. J. Sánchez-Cordón1, M. Pedrera1, and J. C. Gómez-Villamandos1

Abstract

Dendritic cells (DCs) are ‘‘professional’’ antigen-presenting cells with a critical role in the regulation of innate and adaptive immune

responses and thus have been considered of great interest in the study of a variety of infectious diseases. The objective of this
investigation was to characterize the in vivo distribution of DCs in bovine tissues by using potential DC markers to establish a

basis for the study of DCs in diseased tissues. Markers evaluated included MHCII, CD208, CD1b, CD205, CNA.42, and S100

protein, the latter 2 being expressed by follicular dendritic cells whose origin and role are different from the rest of hematopoietic

DCs. Paraffin wax–embedded tissues from 6 healthy Friesian calves were subjected to the avidin-biotin-peroxidase method, and

the most appropriate fixatives, dilutions, and antigen retrieval pretreatments were studied for each of the primary antibodies. The

most significant results included the localization of CD208-positive cells not only in the T zone of lymphoid organs but also within

lymphoid follicles; CD1b-positive cells were mainly found in thymus and interfollicular areas of some lymph nodes; cells stained

with anti–CD205 antibody were scarce, and their location was mainly in nonlymphoid tissues; and CNA.42- and S100 protein–
positive cells localized in primary lymphoid follicles and light zones of germinal centers, although showing differences in the stain-

ing pattern. Furthermore, MHCII was established as one of the most sensitive markers for any DC of hematopoietic origin. These

results increase our understanding of DC immunolabeling and will help in future DC studies of both healthy and diseased tissues.

Keywords

bovine, CD208, CD205, CD1b, dendritic cells, follicular dendritic cells, immunohistochemistry, MHCII

Dendritic cells (DCs) are ‘‘professional’’ antigen-presenting

cells (APCs) and are well known for their unique ability to

present processed antigens to naive T lymphocytes.20 In

addition to their critical role in the regulation of the adaptive

immune response, DCs serve as sentinels, recognizing the

presence of invading pathogens and secreting proinflammatory

cytokines involved in host defense and thereby linking both the

innate and adaptive immunity.35 These cells have a hemato-

poietic origin and express the major histocompatibility

complex class II (MHCII) molecule. This is contrasted with the

so-called follicular dendritic cells (FDCs) present in lymphoid

follicles, which have a stromal origin, do not express MHCII,

and present intact antigens to B cells in the form of surface

immune complexes, being related to B-cell homeostasis.39,41

Different authors have studied the role of DCs in various

cattle diseases by means of in vitro infections of different

subtypes of DCs, including monocyte-derived DCs9,21,37 and

afferent lymph DCs (veiled cells or ALDCs).14,15 To our

knowledge, this report is the first that describes in vivo distri-

bution of DCs in bovine tissues on the basis of their differential

expression of potential dendritic cell markers such as MHCII,

CD208, CD1b, CD205, CNA.42, and S100 protein.

The MHCII molecule is expressed by professional APCs,

which includes all subtypes of DCs as well as macrophages and

B lymphocytes. APCs are responsible for T helper cell activa-

tion by means of a synapse established between the antigen-

loaded MHCII molecule and the T-cell receptor. CD208, also

known as DC-LAMP (dendritic cell–lysosome-associated

membrane protein) was found to be specifically expressed in

mature DCs located in T zones of lymphoid tissues, known

as interdigitant dendritic cells.6 This molecule is not present

in any other cell type, with the exception of type II pneumo-

cytes,38 demonstrating the potential usefulness of this marker

in diagnostics of DC-related pathology. CD1 molecules are a

family of cell surface–associated glycoproteins now recog-

nized as having a role in the presentation of lipid antigens to

certain subpopulations of T cells, as MHC molecules do with

protein antigens.32 This family comprises several members, but
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J. C. Gómez-Villamandos, Departamento de Anatomı́a y Anatomı́a Patológica

Comparadas, Edificio de Sanidad Animal, Campus de Rabanales, 14014,
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not all are present in cattle. CD1b has been described as the

most important CD molecule in this species.36,42 The majority

of CD1 molecules are strongly expressed in cortical thymo-

cytes as well as in certain other cell types, to include DCs.16

CD205, also known as DEC-205, is a C-type lectin that belongs

to the same family of the macrophage mannose receptor and is

primarily expressed on certain DCs and epithelial cells, acting

as an endocytic receptor, and is involved in the capture of

antigens from extracellular spaces and transferal to a specia-

lized antigen-processing compartment.8,18 In addition, bovine

CD205 has been previously described as the WC6 antigen,

showing a strong expression on ALDCs.10 In this study, we

used a monoclonal antibody (clone CNA.42) for the labeling

of FDCs34 and a polyclonal antibody for the detection of

S100 protein, which is expressed in a wide variety of cell types,

including FDCs.17,23

Because of the complicated interactions between the distinct

cells associated with both normal and pathologic mechanisms

of action of the immune system, it is of critical interest to exam-

ine DCs not only in cell culture but also in vivo. This study

aims both to standardize the immunohistochemical method for

the detection of different potential DC markers but also to

elucidate the histological distribution of these markers, some

of which are commonly used in many in vitro studies, thus

helping to expand the understanding of the various roles of DCs

in different cattle diseases.

Materials and Methods

Six Friesian healthy male calves, aged 8 to 9 months, were

obtained from farms free of tuberculosis, brucellosis, bovine

leukosis virus, bovine viral diarrhea, and infectious bovine

rhinotracheitis and were housed in the Animal Experimental

Center of Cordoba University (Spain). Only those animals

clinically healthy and with blood parameters within the normal

range were included in the study. Parasitic coprological analy-

ses were negative in all animals. Animals were sedated with

xylazine (Rompun 2% solution; Bayer Healthcare, Kiel,

Germany) and euthanized by overdose with thiopental-

sodium (Thiovet; Vet Limited, Leyland, Lancashire, UK). This

work was carried out in accordance with the code of Practice

for Housing and Care of Animals used in Scientific Procedures,

approved by the European Economic Community Union in

1986 (86/609/EEC) amended by the directive 2003/65/EC.

No significant macroscopic pathologic lesions were

observed at necropsy. Samples from liver, intestine, and lung

were subjected to microbiological routine cultures by using

standard procedures, and no bacteria were isolated beyond the

normal intestinal microflora. Tissue samples (0.5–1 cm thick)

from a wide range of organs (Table 1) were immersed in 3 dif-

ferent fixatives: 10% neutral buffered formalin for 24 hours,

Bouin’s solution for 8 hours, and zinc salts fixative for 24 hours.

Samples were processed by routine methods and embedded in

paraffin wax. Sections (4 mm) were stained with hematoxylin

and eosin (HE) and examined microscopically.

Two monoclonal antibodies (CD1b and CD205) directed

against bovine antigens were used in this study. Anti–S100

antibody has been raised against S100 protein isolated from

cow brain, and CNA.42 monoclonal antibody cross-reacts with

FDCs in different species, including cattle.34 Studies by Aba-

bou et al1 and Grüneberg et al13 have demonstrated that the

clone TAL.1B5 (anti–human HLA-DR a chain) also binds to

an intracellular epitope of the BoLA-DR a chain. Given the

close phylogenetic relationship between cattle and sheep, an

anti–mouse CD208 antibody that cross-reacts with sheep38 was

used in this study (Table 2).

The avidin-biotin-peroxidase complex method was used.30,31

Tissue sections (3 mm) were dewaxed and rehydrated using

graded ethanol, and endogenous peroxidase activity was

exhausted by incubation of the sections with H2O2 3% in metha-

nol for 45minutes at room temperature. Tissue sectionswere sub-

jected to one of the following antigen retrieval pretreatments for

the stated antibodies (Table 3): no pretreatment, when no antigen

retrieval methods were performed; Tween 20 (Merck, Munich,

Germany) 0.1% in 0.01M phosphate-buffered saline (PBS), pH

7.2 (10 minutes at room temperature); protease type XIV

(Sigma-Aldrich Chemie, Steinheim, Germany) 0.1% in PBS (7

minutes at room temperature); and microwave heat–induced

epitope retrieval (HIER) in 0.01M citrate buffer at different pH

levels (3.2, 6, and 9), in addition to different time points from the

onset of boiling. After pretreatment, sections were given three 5-

minute rinses in PBS. For the primary antibodies MHCII,

CNA.42, CD1b, and CD205, tissue sections were covered with

1% normal horse serum (Pierce-Endogen, Woburn, MA) in

0.05MTris-buffered saline (TBS), pH7.6, for 30minutes at room

temperature and incubated with the primary monoclonal antibo-

dies at 4�C overnight. For the primary antibodies against

CD208 and S100 protein, 1% normal rabbit serum and 20% nor-

mal goat serum, respectively, replaced normal horse serum.

Details of the commercial primary antibodies tested in this study

are summarized in Table 2. After primary incubation, slides were

washed in PBS (3 times for 5 minutes each) and then incubated

with the secondary antibodies for 30 minutes at room tempera-

ture. Biotinylated horse anti–mouse IgG secondary antibody

(Pierce-Endogen) diluted 1:200 in TBS containing normal horse

serum 1% was used for the primary antibodies MHCII, CNA.42,

CD1b, and CD205. Biotinylated rabbit anti–rat Igs secondary

antibody (Dako, Glostrup, Denmark) diluted 1:100 in TBS con-

tainingnormal rabbit serum1%wasused for theprimary antibody

against CD208. Biotinylated goat anti–rabbit IgG secondary anti-

body (Vector Laboratories, Burlingame, CA) diluted 1:200 in

PBS containing normal goat serum 1.5% was used for the poly-

clonal primary antibody anti-S100. After 3 further 5-minute

washes in PBS, samples were incubated with the avidin-biotin-

peroxidase complex (Vectastain ABC Kit Elites; Vector Labora-

tories) for 1 hour at room temperature in the dark. All tissue

sections were finally rinsed in TBS, and labeling was ‘‘visualized’’

by application of a chromogen solution (NovaRED Substrate Kit;

Vector Laboratories). Slides were counterstained with Mayer’s

hematoxylin. Mouse or rat nonimmune sera were used in place

of specific monoclonal primary antibodies as negative controls.
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A semiquantitative assessment of the immunolabeled cells

was performed by 2 experienced observers in 25 fields of 0.2

mm2 randomly chosen. Results were expressed as number of

immunolabeled cells per area of 0.2 mm2: – (none), þ (0–5),

þþ (0–20), þþþ (20–60), and þþþþ (>60). Intensity and

quantity of cells stained with CNA.42 and anti–S100 antibodies

were assessed only within lymphoid follicles as þ (slight) or

þþ (high) (Table 1).

Results

Tissues used in this study were assessed by a board veterinary

pathologist who certified the absence of histopathological

lesions. Signs of inflammation indicative of infectious or toxic

agents were not observed in any of the animals included in the

study.

Optimization of the Immunohistochemical Method

Despite using other fixatives such as Bouin’s solution or zinc

salts fixative, the best results were obtained with buffered for-

malin. Tissue expression of the MHCII molecule was observed

with each of the different antibody concentrations as well as

with the different unmasking pretreatments, although the

higher dilution (1:100) and the unmasking method with citrate

at pH 3.2 during 6 minutes at subboiling temperature were

Table 1. Distribution of Cells Immunolabeled With Dendritic Cell Markers in Different Organs.

Cell Markers

MHCII CD208 CD1b CD205 CNA42a S100a

Lymphoid tissues
Palatine tonsil

LF þþþþ þþþ – – þ þ

IFA þþþ þþ – þ

Epithelium þþ – – –
Thymus

Cortex – – þþþþ –
Medulla þþþþ þþ þþ –

Spleen
LF þþ þþþ – þ þþ þþ

RSP þþþ – – –
Lymph nodesb

LF þþ þþþ – – þþ þþ

IFA þþþ þþ þþ
c –

Medulla þþ – – þ

Respiratory tract
Lung

Alveolar septa þþ þþþ – þþ

BALT þþ þþ – þ þ þ

Trachea
Epithelium – – – –
Lamina propria þþ – – þ

Digestive and tegumentary system
Liver þ – – þþ

Distal ileum
Lamina propria þþþ – – –
PP follicles – þþþ – – þ þ

PP dome regions þþ þþ – – þþ þ

Ileocecal valve
Lamina propria þþþ – – –
LF þþ þþþ – – þ þ

IFA þþþ þþ – –
Haired skin

Epidermis þ – – –
Dermis þ – þ –

Results expressed as number of immunolabeled cells per area of 0.2 mm2: – (none), þ (0–5), þþ (0–20), þþþ (20–60), and þþþþ (>60). BALT, bronchus-
associated lymphoid tissue; IFA, interfollicular areas; LF, lymphoid follicles; MHCII, major histocompatibility complex class II molecule; PP, Peyer’s patches; RSP,
red splenic pulp.
aCNA.42 and anti–S100 antibodies were used for the detection of follicular dendritic cells, and thus only cells stained within lymphoid follicles were assessed in this
table. Intensity and quantity of cells stained with these antibodies were assessed as þ (slight) or þþ (high).
bLymph nodes included in this study were retropharyngeal, submandibular, mediastinal, ileocecal, and superficial inguinal lymph nodes.
cPositivity to CD1b antibody was mainly observed in superficial inguinal lymph nodes and submandibular lymph nodes.
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considered the most effective (Table 3). Immunolabeling

against CD208 was possible with the higher dilution (1:100),

although only when using the HIER methods at pH 6 during

20 minutes at subboiling temperature. This technique appeared

to be the most appropriate, since staining using pH 3.2 was too

weak, and pH 9 gave rise to intense background staining. The

most suitable antigen retrieval method for the CD1b molecule

was enzymatic digestion with protease but required the highest

concentration of anti–CD1b antibody (1:10) to obtain the best

results. In the case of anti–CD205 antibody, the only dilution

that yielded positive results was the most concentrated

(1:10), with the HIER methods being ineffective and the deter-

gent permeabilization with Tween 20 being considered the

most appropriate. For the detection of FDCs with CNA.42

monoclonal antibody, use of the HIER methodology was nec-

essary, with the best results obtained at pH 9 during 30 minutes

at subboiling temperature and with a 1:50 antibody dilution.

S100 protein expression was observed with all of the unmask-

ing methods except for enzymatic digestion, although the best

results were obtained with citrate at pH 3.2 during 6 minutes at

subboiling temperature and with a 1:400 antibody dilution.

Quantification and Location of Immunolabeled Cells

Immunolabeled cells were counted for each animal, with minor

differences among animals being observed and included within

the stated intervals (Table 1).

MHCII followed by CD208 appeared as the primary mole-

cules expressed in the different tissues, both in intensity of

labeling and quantity of labeled cells. All lymphoid organs dis-

played a high amount of MHCII-positive cells. These variably

sized cells were typically stellate or polygonal and had

Table 2. Primary Antibodies Used in the Present Study.

Primary Antibody Specificity Cellular Expression Isotype/Form Clone Source

Mouse anti–human HLA-DR MHCII DCs, B cells, Mø IgG1 k, Supernatant TAL.1B5 Dako
Rat anti–mouse CD208 DC-LAMP (CD208) Mature DCs, PnIIs IgG2a, Purified 1010E1 Dendritics
Mouse anti–bovine CD1w2 CD1b DCs, cortical thymocytes IgG2a, Supernatant CC20 Serotec
Mouse anti–bovine CD205 DEC-205 (CD205) DCs, some B/T cells, some epithelial cells IgG2b, Purified CC98 Serotec
Mouse anti–human FDC FDCs FDCs IgM k, Supernatant CNA.42 Dako
Polyclonal rabbit anti-S100 S100 protein Wide (including FDCs) Purified Polyclonal Dako

DC, dendritic cell; DC-LAMP, dendritic cell–lysosomal-associated membrane protein; FDC, follicular dendritic cell; MHCII, major histocompatibility complex class
II molecule; Mø, macrophages; PnII, type II pneumocytes.

Table 3. Immunoreactivity Produced by Various Primary Antibodies on Calf Tissues Fixed in Formalin Solution and Subjected to Various
Antigen-Retrieval Pretreatments.

Antibody dilutions

Pretreatments

Citrate Microwave

None Tween 20 Protease pH 3.2 pH 6 pH 9

MHCII 1:10 þþ þþ þþ þþ þþ þþ

1:50 þþ þþ þþ þþ þþ þþ

1:100 þþ þþ þþ þþþ
a

þþ þþ

CD208 1:10 – – – Bs Bs Bs
1:50 – – – Bs Bs Bs
1:100 – – – þ þþ

a Bs
CD1b 1:10 – þ þþþ

a – – –
1:50 – – þ – – –
1:100 – – þ – – –

CD205 1:10 Bs þþ
a

þ – – –
1:50 – – – – – –
1:100 – – – – – –

CNA.42 1:10 – – – þ þ þþ

1:50 – – – – þ þþþ
a

1:100 – – – – – –
S100 1:10 Bs Bs – Bs þþ –

1:50 þþ þþ – þþ þþ þþ

1:400 þþ þþ – þþþ
a

þþ þ

–, none; þ, slight positivity and light background; þþ, positive reaction and light background; þþþ, positive reaction without background; Bs, positive reaction
but intense background staining. MHCII, major histocompatibility complex class II molecule.
aElected dilution and pretreatment for each antibody.
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Figure 1. Lymph node; cattle No. 3. Immunostaining against major histocompatibility complex class II (MHCII) demonstrated strong labeling
intensity in interfollicular areas and also stained cells within lymphoid follicles. Immunohistochemistry (IHC) with the avidin-biotin-peroxidase
complex (ABC) method counterstained with hematoxylin. Figure 2. Lymph node; cattle No. 2. MHCII immunostaining of medulla, where many
positive cells with dendritic morphology can be appreciated. IHC (ABC method) counterstained with hematoxylin. Figure 3. Spleen; cattle No.
1. Cells with dendritic morphology and that stained against MHCII can be observed in both the red splenic pulp (arrowhead) and the periarter-
iolar lymphoid sheaths (arrows). IHC (ABC method) counterstained with hematoxylin. Figure 4. Thymus; cattle No. 4. There is strong labeling
against the MHCII molecule in the thymic medulla, which includes a population of dendritic-shaped cells. IHC (ABC method) counterstained
with hematoxylin. Figure 5. Palatine tonsil; cattle No. 2. The presence of MHCII-positive cells with dendritic morphology in the stratified
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homogeneous cytoplasmic staining. Immunopositive cells in

palatine tonsil and lymph nodes could be clearly differentiated

from one another in the interfollicular areas (Fig. 1). A general

faint staining was observed in the majority of lymphoid folli-

cles, and in some of these lymphoid follicles, more strongly

immunostained cells were noted and mainly located in the lym-

phoid follicle light zones (Figs. 1, 12a). Immunolabeled cells

were also observed in the medulla of lymph nodes, although

to a lesser degree in comparison with the cortex. The cells iden-

tified within the medullary regions had a very characteristic

dendritic morphology (Fig. 2). Immunostaining observed in the

spleen was evident in red splenic pulp and periarteriolar lym-

phoid sheaths, displaying many immunopositive dendritic-

shaped cells (Fig. 3), in contrast to lymphoid follicle staining

being weaker if more diffuse. In the thymus, immunolabeling

against MHCII was restricted to the medulla, where strong

immunoreactivity was observed, including many cells with a

dendritic morphology (Fig. 4). Rare immunopositive cells were

observed in the pulmonary alveolar septa and periportal areas

of the liver. Positive cells were also noted within the tonsillar

epithelium and, to a lesser degree, in the epidermis and dermis

of the skin, frequently showing dendritic morphology (mainly

in tonsillar crypts epithelium) (Fig. 5). MHCII-positive cells

in the distal ileum were located in the lamina propria as well

as within the dome region of the Peyer’s patches but not within

Peyer’s patches follicles (Fig. 6a), in contrast to the immunopo-

sitivity observed in the ileocecal valve lymphoid follicles.

Staining against CD208 (DC-LAMP) was cytoplasmic and

had a dark granular appearance. Positive cells were mainly

stellate or polygonal and were widely distributed in lymphoid

tissues. A slight generalized staining was observed as tiny dark

dots that could be appreciated on the cell surfaces (Fig. 7,

inset). This was more evident as the pH of the HIER method

was increased. Immunopositive cells were located in the inter-

follicular areas and, to a greater extent, within the lymphoid

follicles (Figs. 7, 12b), where the cells were homogeneously

distributed, with no differences observed between the dark and

light zones of the germinal center, unlike the differences noted

with anti–MHCII and anti–FDC antibodies. In general, not all

the lymphoid follicles of the same lymph node presented the

same quantity of immunopositive cells, and the medulla of

lymph nodes was observed to be free of CD208-positive cells.

Immunostained cells against CD208 had a round morphology

and were located on the alveolar surfaces in the lung (Fig. 8).

A moderate amount of immunolabeled cells that were predomi-

nantly stellate was identified in the periarteriolar lymphoid

sheaths of the spleen and within the thymic medulla. In addi-

tion, numerous large round immunopositive cells were detected

within the ileum Peyer’s patches and the lymphoid follicles of

the ileocecal valve (Fig. 6b).

Very few organs were noted to have CD1b-immunopositive

cells. Cortical thymocytes were uniformly immunopositive

along with some cells with a dendritic morphology located in

the thymic medulla (Fig. 9). Most lymph nodes were immuno-

negative for anti–CD1b antibody, with the exception of the

submandibular and superficial inguinal lymph nodes and, to a

lesser extent, the mediastinal lymph nodes, where numerous

dendritic-shaped immunolabeled cells were identified in the

interfollicular areas. Some scattered immunopositive cells

were also demonstrated in the dermis of the skin.

Immunolabeling against CD205 demonstrated a granular

appearance, located in the cytoplasm of cells with either round

or spindle morphology. In general, few immunolabeled cells

were observed by using this antibody, and these were located

in uncommon regions such as in tissue adjacent to tonsil

mucous glands or to large blood vessels (data not shown), in

trabeculae of lymphoid organs, or in the connective tissue of

hepatic portal spaces, central veins, and Glisson’s capsule. It

was difficult to find any immunopositive cells within the

interfollicular areas or the lymphoid follicles (Fig. 10). A

greater number of immunolabeled cells were identified in the

lung, located in the alveolar septa, the pulmonary pleura, or

surrounding bronchioles and arteries (Fig. 11).

Use of the CNA.42 antibody yielded a staining pattern in the

form of a network distributed among lymphocytes of the pri-

mary lymphoid follicles, as well as the light zones and mantle

zones of germinal centers (Fig. 12c). Curiously, the lymphoid

follicles of palatine tonsil, Peyer’s patches, and ileocecal valve

demonstrated only a scarce staining intensity, unlike the stron-

ger labeling intensity noted in the lymphoid follicles of the

examined lymph nodes and the spleen. Expression of S100,

also observed in the primary lymphoid follicles and the light

zones of the germinal centers, showed organic differences

similar to those observed with CNA.42, although staining

against S100 was located in both the cell cytoplasm and the

nucleus (Fig. 12d). Both antibodies (CNA.42 and anti-S100)

yielded immunostaining of cell types other than cells located

within the lymphoid follicles, which are not included in the

aims of this study.

Discussion

It is well known that DCs are a heterogeneous cell population

categorized according to their location, functionality, and cell

marker expression. The present study has focused on the com-

parison and characterization of the location of dendritic cells of

Figure 5. (continued). epithelium, compatible with Langerhans cells, is demonstrated. IHC (ABC method) counterstained with hematoxylin.
Figure 6. Serial sections of distal ileum; cattle No. 1. (a) Cells staining against the MHCII molecule are restricted to Peyer’s patches domes and
the lamina propria. (b) CD208-positive cells are widely distributed in Peyer’s patches domes and follicles. IHC (ABC method) counterstained
with hematoxylin. Figure 7. Lymph node; cattle No. 1. Cells immunopositive for CD208, having a dendritic cell morphology compatible with
interdigitant dendritic cells, are demonstrated (inset). Positive cells are also observed within the lymphoid follicles, having the appearance of
tingible body macrophages (arrowhead). IHC (ABC method) counterstained with hematoxylin. Figure 8. Lung; cattle No. 6. CD208 immuno-
labeled cells are found among the surface cells of the alveoli, compatible with type II pneumocytes (arrows). IHC (ABC method) counterstained
with hematoxylin.
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Figure 9. Thymus; cattle No. 3. Anti-CD1b immunolabeling of cortex thymocytes and some dendritic-shaped cells of the medulla are demon-
strated (inset). Immunohistochemistry (IHC) with the avidin-biotin-peroxidase complex (ABC) method counterstained with hematoxylin.
Figure 10. Lymph node; cattle No. 1. CD205-positive cells in the medulla, located inside trabeculae, surround a blood vessel and rarely are
noted in lymphatic sinuses. IHC (ABC method) counterstained with hematoxylin. Figure 11. Lung; cattle No. 3. Cells immunostained against
CD205 with round morphology are located inside the alveolar septae. IHC (ABC method) counterstained with hematoxylin. Figure 12. Lymph
node; cattle No. 4. Serial sections showing the staining pattern within lymphoid follicles with different antibodies; insets represent a higher mag-
nification of the field framed in black. (a) Anti–major histocompatibility complex class II (MHCII) immunolabeling of the lymphoid follicle light
zone. (b) Anti-CD208 immunolabeling of cells compatible with tingible body macrophages all over the lymphoid follicles. (c) CNA.42 antibody
staining forming a cytoplasmic pattern restricted to the light zone. (d) Anti–S100 staining of cells located in the light zone of germinal centers
showing the dual cytoplasmic and nuclear staining pattern. IHC (ABC method) counterstained with hematoxylin.
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Friesian calves based on their expression for different cellular

markers. This was accomplished by using fixed and paraffin

wax–embedded tissues, which preserve an optimal cell mor-

phology, in comparison with frozen tissues, in which there can

be a significant loss of morphology, making the identification

of a precise location of the antigen-expressing cells within the

tissue much more difficult.2,5,33 Furthermore, frozen tissue

handling may involve a higher degree of difficulty to produce

cryostat sections of consistent quality.

The detection of the MHCII molecule is frequently

conducted in tissue sections, although the vast majority of these

studies are based on frozen tissue sections and typically for

purposes other than detecting DCs.24,25 The novel information

presented by this study employed the MHCII molecule to

describe the type of immunolabeled cells within a wide variety

of organs, thereby providing a standardization of the immuno-

histochemical methodology, as well as taking advantage of the

fact that DCs are strong expressors of this molecule and that

fixed paraffin-embedded tissues preserve the characteristic

morphology of these cells, allowing for a mapping of their

localization within select organs. To our knowledge, this is the

first report of the use of this list of antibodies in the detection of

DCs in bovine paraffin-embedded tissues.

This study revealed that of the antibodies examined, the

MHCII antibody yielded the greatest quantity of labeled cells

in the different tissues analyzed. This is due to the expression

of the molecule not only in DCs but also in macrophages and

certain populations of B cells, as well as being inducible in

endothelial cells. Despite this variety of positive cells, use of this

antibody also permits the detection of all DC populations, unlike

other markers that detect only certain subpopulations. A striking

finding in the results obtained with the anti–MHCII antibody

was the marked staining polarization in most of the germinal

centers of secondary lymphoid organs, which coincided to a

great extent with the immunolabeling observed with the use of

CNA.42 and anti–S100 antibodies, which was restricted solely

to the light zone (and adjacent mantle zone in the case of

CNA.42) of the germinal centers. This observation was possible

by using serial sections of the tissue immunostained with the

antibodies of interest (Fig. 12a,c,d). It is known that FDCs do not

internalize or present processed protein antigens in the context of

MHCII molecules,41 a fact that would establish as incompatible

the coincidence in location of FDCs in light zones with the

strong expression of MHCII. However, it has been shown that

this cell type can acquire MHCII molecules not expressed by

FDCs themselves,7 which may explain why a strong immunos-

taining against MHCII in light zones can be observed, where

FDCs are located. Human studies have demonstrated the

CNA.42 antibody as an immunomarker for FDCs for each level

of maturation, ranging from FDC precursors to activated

FDCs.19 Furthermore, the S100 protein is a molecule expressed

by activated FDCs, which may explain why CNA.42 yielded a

network staining pattern that was widely distributed and anti-

S100 gave rise to the staining of individual cells.

The present study describes for the first time in bovine tissue

samples the expression of CD208 (DC-LAMP), known as an

exclusive marker for mature DCs in T regions (interdigitant

DCs) and type II pneumocytes.6,38 CD208 expression in alveo-

lar surfaces coincides with the previously described expression

of this molecule in type II pneumocytes. However, we unex-

pectedly found CD208-positive cells not only in interfollicular

areas but also within lymphoid follicles; given the known

exclusive expression of CD208 to DCs in lymphoid organs,

these immunopositive cells found within lymphoid follicles

might be considered the previously described germinal center

DCs (GCDCs).11,12 However, this consideration would be

mistaken since GCDCs, whose origin is hematopoietic, should

express MHCII, a fact that was ruled out by using serial

sections immunostained with both antibodies (Figs. 6, 12a,b);

CD208-positive cells were located both in MHCII-positive

light zones and MHCII-negative dark zones. The typical

follicular location, round morphology, and large size suggest

that these CD208-positive cells are in fact tingible body

macrophages.

Numerous MHCII-positive cells were detected in the thymic

medulla, most of them having a stellate shape compatible with

that of DCs, which have significant importance in both positive

and negative selection during T-cell development.3 In this

same location, we also observed dendritic-shaped cells immu-

nolabeled against CD208, albeit to a lesser extent. This obser-

vation may be explained by the fact that during maturation,

DCs acquire a higher capacity to form and accumulate

MHCII-peptide complexes, a process that requires a general-

ized activation of the lysosomal function;40 the CD208

molecule is included in the lysosomal-associated membrane

protein family, which is why these CD208-positive cells in

thymic medulla may represent a population of mature DCs,

which corresponds to similar descriptions in humans.4

Langerhans cells (LCs) were originally described as imma-

ture DCs present in the epidermis, although currently this term

has been generalized to include DCs present in all surface-

stratified epithelium.27 This may support the hypothesis that

considers MHCII-positive cells observed in tonsillar epithe-

lium as LCs (Fig. 5), as these demonstrated stronger immuno-

positivity and were more numerous in comparison to those of

the epidermis, further highlighting the importance of DCs

in the tonsil due to its strategic location in the entrance of

numerous airborne pathogens.

It is well established that DCs are present within the dome

regions of the intestinal lymphoid tissue,28 coinciding with the

presence of stellated MHCII-positive cells that we found in

those intestinal sections examined. However, Peyer’s patches

follicles barely stained against the MHCII molecule. In rumi-

nants, ileal Peyer’s patches are considered primary lymphoid

organs,22 in which there is no germinal center reaction as

observed in jejunal Peyer’s patches,43 which may explain the

lack of MHCII expression at this level, similar to that which

occurs in the cortex of thymus, another primary lymphoid

organ. However, these MHCII-negative Peyer’s patches folli-

cles demonstrated a great quantity of widely distributed

CD208-immunopositive cells, supporting the hypothesis that

considers these cells to be tingible body macrophages.
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Previous studies have determined the phenotypic character-

istics of both intestinal and respiratory tract DCs in sheep2,26 by

using antibodies against CD205 and CD1b molecules. ALDCs

are strong expressors of CD205,10 and other tissues have been

shown to express this molecule as well.10,29 Contrary to results

obtained by Akesson and collaborators2 in sheep, we did not

find cells expressing CD205 in the ileum in this study of

Friesian cattle. However, a considerable amount of CD205-

immunolabeled cells were detected in the parenchyma and

pleura of the lung, which is consistent with other ovine

studies.26 In comparison with other DC markers, very few cells

demonstrated immunolabeling against CD1b in the intestine

and the lung of sheep. 2,26 Likewise, our results demonstrated

that both organs were negative to the expression of CD205 and

CD1b. Antibodies for detecting CD205 and CD1b used in this

study and in ovine studies from Akesson et al2 and McNeilly

et al26 are bovine specific. Despite this fact, the absence of

expression in this study of CD1b in the intestine and the respira-

tory track and of CD205 in the intestine suggests that the

observed species differences between sheep and cattle are due

to differences in the technique sensitivity employed; ovine stud-

ies have been carried out in frozen tissues, whereas this study

used tissue samples that had been fixed and embedded in paraf-

fin wax. The latter technique permits an optimal preservation of

the cellular morphology and tissue architecture, although it may

mask or alter the 3-dimensional structure of antigens, which is

why antigen retrieval methods are required.33

In summary, despite the existence of other molecules dis-

played by DCs, the recognition of MHCII expression appears

to be one of the most sensitive methods for the detection of any

DC of hematopoietic origin in tissue sections. The staining

pattern observed with the monoclonal antibody detecting

CD208 suggests that the expression of this molecule in bovine

lymphoid tissues is restricted not only to interdigitant DCs but

also to tingible body macrophages, a finding that has not been

previously described. Although further studies will be needed

to confirm this novel finding, this study has demonstrated that

CD208 detection allows for the differentiation of mature DCs

from all other DCs, a fact of significant interest in the diagnos-

tics and study of infectious diseases. This study further supports

the tissue expression of CD1b in dendritic-shaped cells, even

though these cells comprised a reduced population out of the

total number of the existing DCs and were located in specific

sites such as the thymus. Therefore, although global utility is

limited, CD1b will provide valuable information on the role

of thymic DCs, which is of significance due to the organ’s

importance in the central immunotolerance. Both CNA.42 and

anti–S100 antibodies stained FDCs, but only the latter allowed

for the identification of FDCs as isolated cells. Taken together,

these results provide a useful general view of the different

staining patterns of potential DC markers and will help in

future DC studies with pathologic tissues.
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