JCLEC Meets WEKA!

A. Cano, J. M. Luna, J. L. Olmo, and S. Ventura

Dept. of Computer Science and Numerical Analysis,
University of Cordoba, Rabanales Campus, Albert Einstein building,
14071 Cordoba, Spain. Tel.:4+34957212218. Fax:434957218630
{ib2caroa, i321uarj, juanluisolmo, sventura}@uco.es

Abstract. WEKA has recently become a very referenced DM tool. In
spite of all the functionality it provides, it does not include any frame-
work for the development of evolutionary algorithms. An evolutionary
computation framework is JCLEC, which has been successfully employed
for developing several EAs. The combination of both may lead in a mu-
tual benefit. Thus, this paper proposes an intermediate layer to connect
WEKA with JCLEC. It also presents a study case which samples the
process of including a JCLEC’s EA into WEKA.

Keywords: WEKA, JCLEC, Evolutionary Algorithms, Data Mining

1 Introduction

The huge amount of data in many society fields has attracted the need for
obtaining useful information and knowledge from such data. Many application
domains as marketing, sales, medical diagnosis or education, where it is essential
to analyze many variables, have arised as typical domains to apply data mining
(DM) techniques [8]. The main objective of such techniques is to support expert
domains’ decisions, especially border line decisions.

Likewise, tools for applying these techniques should allow expert domains to
interact and visualize the DM process. Nowadays, there are a wide variety of
DM tools as KEEL [1], WEKA [7], Knime [2], RapidMiner [10], etc., which have
enough functionality to be used in a broad range of problems. WEKA has be-
come one of the most popular DM workbenchs and its success in researcher and
education communities is due to its constant improvement, development, and
portability. In fact, it can be easily extended with new algorithms. This tool, de-
veloped in the Java programming language, comprises a collection of algorithms
for tackling several DM tasks as data pre-processing, classification, regression,
clustering, association rules, also visualizing all the DM process. However, these
algorithms are hardly used in situations where there are a huge amount of in-
stances and attributes, situations where the execution becomes computationally
hard. Instead, evolutionary algorithms (EAs) are very useful in this kind of
circumstances, because they are powerful for solving problems that require a
considerable execution time. That is why it should be very interesting to har-
ness the power of EAs also in the DM field, and WEKA appears to be a good
platform to consider the inclusion of EAs.

2 A. Cano, J. M. Luna, J. L. Olmo, and S. Ventura

Several customized EA classifiers have been previously integrated in WEKA
but there is no algorithm following an evolutionary schema in the standard
WEKA distribution. Moreover, there is no evolutionary computation framework
that has been included into this platform yet. An Open Source efficient and
generic framework for evolutionary computation is JCLEC [12] (Java Class Li-
brary for Evolutionary Computation), which provides a high-level software en-
vironment to apply any kind of EA, with support for genetic algorithms (binary,
integer and real encoding), genetic programming (Koza style, strongly typed, and
grammar based) and evolutionary programming. This framework has been used
in different problems, obtaining good results [3, 9]. If we focus in the opposite di-
rection, WEKA tool can help JCLEC by providing different data pre-processing
algorithms to be applied before the EA. Because all of this, it seems very in-
teresting to join the capabilities of WEKA with JCLEC framework, in order to
allow the development of any kind of EA by using WEKA.

In this work, an intermediate layer that connects both WEKA and JCLEC
is presented, showing how to include any evolutionary learning algorithm coded
in JCLEC into WEKA. This enables the possibility of running this kind of algo-
rithms in this well-known software tool as well as it provides JCLEC additional
features and a graphical user interface.

This paper is structured as follows: Section 2 presents the architectonic de-
sign; Section 3 explains how to include a JCLEC EA in WEKA, illustrating this
by means of an example; finally, some concluding remarks and future work are
adumbrated.

2 Architectonic design

WEKA’s design allows to include new algorithms easily. Any new class is picked
up by the graphical user interface without additional coding needed to deploy it
in WEKA. To do so, new algorithms should inherit some properties from certain
classes, which also indicate the methods that should be implemented. Though we
focus on classification and association tasks, a similar approach could be followed
for any other DM task such as clustering. New classification and association
algorithms should extend the AbstractClassifier and AbstractAssociator
classes, respectively. An abstract class called ClassificationAlgorithm that
collects the common properties of classification EAs has been developed, which
extends from AbstractAlgorithm. Thus, any classification EA will inherit from
ClassificationAlgorithm the common properties and methods, and it will just
specify its particular properties. Similarly, association algorithms also inherit
from an abstract class called AssociationAlgorithm.

The architectonical design, developed to include JCLEC in WEKA, fol-
lows the schema represented in Figure 1, where it is depicted that WEKA
provides two abstract classes from which any association or classification al-
gorithm should inherit, AbstractAssociator and AbstractClassifier. The
abstract class ClassificationAlgorithm extends AbstractClassifier, and
it is in charge of defining the properties and methods that any classification

JCLEC Meets WEKA! 3

_ —_ - - - - - - - - - - = = = = = = —
| WEKA

AbstractAssociator AbstractClassifier |
! |
. = _ _ _ _ _ o
~— - - - - -1 - - -" -" -"" -\ - - - - - - - /N
| JOLEC-WEKA |
| AssociationAlgorithm ClassificationAlgorithm |

+buildAssociations(Instances) +buildClassifier(Instances)
| =~ +classify(Instance) |
I 13 |
I — . g . |
| MyAssociationAlgorithm MyClassificationAlgorithm
I

| |
e il -~
JCLEC JCLEC
| associaTion || cLASSIFICATION |
| Association Algorithms | 1 Classification Algorithms [
\ _ _ _ _ _ _ _ —_ /7 N _ _ _ _ - —_ _ /7
e - - - —
[JcLEG |
| JCLEC Core |
I
o J

Fig. 1. Architectonical design.

EA shares, e.g., population size, number of generations, crossover and mu-
tation operators, etc. Similarly, regarding association task, the abstract class
AssociationAlgorithm extends AbstractAssociator. Finally, any EA extends
from one of these classes and calls the corresponding execution method of JCLEC.
This way, the JCLEC algorithm is executed in WEKA tool.

Next, the methods of the intermediate layer that have to be taken into ac-
count when including any classification or association algorithm are described.
In case of classification, the following two particular methods should be imple-
mented:

— void buildClassifier(Instances data). This method generates a clas-
sifier from a training set.

— double classifyInstance(Instances instance). This method classifies
a new instance using the classifier learned previously.

On the other hand, for association algorithms, only one particular method
should be implemented:

4 A. Cano, J. M. Luna, J. L. Olmo, and S. Ventura

— void buildAssociations(Instances data). This method generates a set
of association rules from a dataset.

Independently of whether a classification or an association algorithm is going
to be included, it should implement the following methods:

— Capabilities getCapabilities(). This method determines if the algo-
rithm is compatible with the type of each attribute in the dataset (e.g.,
numeric, nominal, etc.).

— String globalInfo(). Returns information about the algorithm, which will
appear when selecting the About option in the graphical user interface.

— TechnicalInformation getTechnicalInformation(). Shows information
about the author, year of the publication, etc.

— void setOptions(String[] options). This method establishes the param-
eters of the algorithm, e.g., -P 50 -G 100—the former indicates the popula-
tion size and the latter the number of generations.

— String [] getOptions(). Returns the set of parameters previously estab-
lished.

— Setters and getters methods that set and get the parameter values.

— String toString(). This method shows the results obtained in the graph-
ical user interface.

An additional and very useful tool contained in WEKA is the package man-
ager. This tool allows the inclusion of any external library or code necessary
to run new algorithms or features in WEKA, incorporating the files into the
properly structure so that it avoids the developer to modify WEKA’s source
code. The directory structure of any new package has to fulfill a fixed anatomy.
Hence, the JCLEC-WEKA intermediate layer is necessary in order to be able to
instantiate the execution code of the algorithm, as shown in Figure 1. This way,
a connection between WEKA and JCLEC is established.

3 Case study

This section presents a sample case study that shows the functionality and pro-
cess of a given classification algorithm. The considered algorihtm was presented
in [11] by Tan et al.. This algorithm has been developed in JCLEC and it is
based in a grammar guided genetic programming approach.

In order to show the advantages of incorporating JCLEC into WEKA tool,
the classification algorithm presented by Tan et al., has been added to a sample
package! that can be easily included into WEKA. This package is the interme-
diate layer, which connects the WEKA interface with the JCLEC algorithm.

In order to create this package, a new class with the name of the algorithm
is created, which extends the ClassificationAlgorithm class explained in Sec-
tion 2. In the buildClassifier () method, the algorithm is instantiated and

! This new package is also available in JCLEC site, http://jclec.sourceforge.net

JCLEC Meets WEKA! 5

the configuration parameters that are necessary for its execution are established.
Then, the execution method of the algorithm is called and the classifier model
is inferred using the training set. These steps make up the buildClassifier ()
method, as depicted in the following code:

public void buildClassifier(Instances instances)

{
algorithm = new TanAlgorithm();
configureMetadata(instances);
algorithm.execute();

}

The classifyInstance () method receives a WEKA instance. It is necessary
to turn this instance into a JCLEC instance. Then it is applied to the classifier,
which returns the class predicted for this instance.

public double classifyInstance(Instance ins)

{
ArffDataSet.Instance instance = dataset.new Instance();
instance.setValues(ins.toDoubleArray()) ;
return algorithm.getClassifier().classify(instance);

}

DO ® WekaExplorer
Classify Assoda

Classifier

3 weka
¢ [classifiers
o [bayes
o~ 3 functions
o[lazy
o= [J meta
o= [F misc
¢ T rules
D Corcoran
D DecisionTable
[Falco
[D Freitas
[(3 Jrip
O
[oner
[y PaRT
[y Tan
D ZeroR
o= [Jtrees

Close

Fig. 2. WEKA'’s rules classifiers with EAs.

6 A. Cano, J. M. Luna, J. L. Olmo, and S. Ventura

The next step is to build the package using the Ant file provided by WEKA,
which generates a zip file. This file has to be imported using the package manager.
Once the package is charged, the classification algorithm appears beside the other
classification algorithms available in WEKA, as illustrated in Figure 2. Notice
that other EAs have been included along with Tan et al.—Corcoran and Sen [4],
Falco et al. [5] and Freitas et al. [6].

The next step is to specify the parameters needed to run the algorithm. Like
EAs, this algorithm has a series of parameters such as population size, number of
generations, crossover and mutation probability, seed, etc. All these parameters
should be specified in a dialog box, as shown in Figure 3.

@ weka.gui.GenericObjectEditor £ Information

weka. classifiers.rules.Tan NAME =
weka.classifiers.rules Tan

About SYNOPSIS
Tan Classifier algorithm. For more information, see

Tan Classifier algorithm. More

— K C. Tan, A Tay, T. H. Lee, C. M. Heng (2002). Mining
Capabilities multiple comprehensible classification rules using genetic
programming.

copyProb [0.01 | QeTIONS

| copyProb -- Individual reproduction probability.

crossoverProb (0.8

debug ‘False |v| crossoverProb — Individual crossover probability.

debug - If set to true, classifier may output additional info

elitistProb [0.1 to the console.

maxDerivSize [20

generations - Maximum number of generations to iterate.

|

generations [100 | elitistProb -- Elitist rate,
|
|

mutationProb (0.1

maxDerivsize -- Maximum number of grammar derivations
to build an individual.

parentsSelector ‘Tournament Selector |v|

. . mutationProb -- Individual mutation probability.
populationSize [100 |

‘ parentsSelector -- Parents selector operator.

seed [123456789

‘ populationsize -- Mumber of individuals within the

support [0.05 population.

sead - Seed number for random initialization. =

Open... | ‘ Save... ‘ | OK | ‘ Cancel ‘ support — Minimum rules support.

4]

Fig. 3. Parameters configuration dialog box.

Finally, once the algorithm execution is carried out, the classifier obtained,
computed metrics and the confusion matrix are displayed. Figure 4 shows the
results of running the Tan et al. algorithm over the Iris dataset. This dataset
along with other well-known datasets are available in the WEKA data folder.

4 Concluding remarks and future work

This paper presents an intermediate layer that provides the possibility of con-
necting an evolutionary computing framework as JCLEC with WEKA. This
synergy makes easier the final user to harness the power of EAs in the DM field,
by using on the one hand WEKA’s graphical user interface and pre-processing

JCLEC Meets WEKA! 7

2 ©® Weka Explorer

Preprocess | Classify | Cluster | Associate | Select attributes | Visualize

Classifier

Tan -P150-G150-M 0.1 -C 0.8 -D0123456789-S1 -R0.0L

Test options Classifier output

C Use training set === Classifier model (full training set) === =
& Sprplied e eaft Ser IF (AND <= sepallength 6.476 NOT NOT < petallength 2.784) THEN (class = Iris-setosa)

© Crosswvalidation. Folds ELSE IF (AND >- petallength 3.906 NOT AND < petallength 4.741 NOT >- petalwidth 1.642) THEN (class - Iris-virginica)

® Percentage split - ’r Etgg %ij;f:gt:;apetalleﬂqth 2.784 < petalwidth 1.812) THEN (class = Iris-versicolor)

‘ Mol gptions. | |7ine taken to build model: 5.8 saconds

[tvom class [+] | === Eeatuation on test split - =
== Sumnary ===
‘ Start H Stop ‘ Correctly Classified Instances 28 93.3333 %
ist (i ; - Incorrectly Classified Instances 2 6.6667 %
Result list (right-click for options) Kappe sm{mc H
10:19:12 - rules.Tan Mean absolute error 0.0444
Root mean squared error 0.2108
Relative absolute error 9.9619 %
Root relative squared error 44,6806 %
Coverage of cases (0.95 level) 93.3333 %
Mean rel. region size (0.95 level) 33.3333 %
Total Number of Instances 30

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 [1 1 1 1 Iris-setosa
0.8 [1 0.8 0.820 0.9 Iris-versicolor
1 0.095 0.818 1 0.9 0.952 Iris-virginica
weighted Avg. 0.933 0.029 0.945 0. 0,933 0.952

=== Confusion Matrix ===

a b ¢ <- classified as

1 0 0] a-=Iris-setosa

@ 8 2| b =Iris-versicolor I
0 0 9| c=Iris-virginica

Status

o [ios | g0

Fig. 4. Results of running Tan et al. EA under WEKA

tools, and on the other hand the power of EAs when applying them specifically
to computationally expensive problems.

This work also opens up the chance of adding new features to WEKA. For
instance, JCLEC has recently incorporated a new module that allows the execu-
tion of any genetic programming algorithm using graphics processing units [3].
Thus, the intermediate layer developed also offers WEKA the speed up and par-
allel processing capabilities inherent to graphics processing units architecture.
In addition, this connection between JCLEC and WEKA permits not only the
implementation of classification and association algorithms, but the implemen-
tation of EAs devoted to other DM tasks —multi-instance learning, multi-label
classification, feature selection, etc.—also following binary, integer, real, expres-
sion tree and syntax tree codification schemes.

Acknowledgments.

This work has been supported by the Regional Goverment of Andalucia and
the Ministry of Science and Technology projects, PO8-TIC-3720 and TIN2008-
06681-C06-03 respectively, and FEDER funds.

8

A. Cano, J. M. Luna, J. L. Olmo, and S. Ventura

References

10.

11.

12.

Alcalé-Fdez, J., Sanchez, L., Garcia, S., del Jesus, M.J., Ventura, S., Garrell, J.M.,
Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernidndez, J.C., Herrera, F.:
KEEL: a software tool to assess evolutionary algorithms for data mining problems.
Soft Computing 13, 307-318 (2008)

. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kétter, T., Meinl, T., Ohl,

P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner.
In: Data Analysis, Machine Learning and Applications, chap. 38, pp. 319-326.
Springer Berlin Heidelberg (2008)

Cano, A., Zafra, A., Ventura, S.: Solving classification problems using genetic pro-
gramming algorithms on GPUs. In: Hybrid Artificial Intelligence Systems. Lecture
Notes in Computer Science, vol. 6077, pp. 17-26. Springer (2010)

Corcoran, A.L., Sen, S.: Using real-valued genetic algorithms to evolve rule sets
for classification. In: Proceedings of 1st IEEE Conference on Evolutionary Com-
putation. pp. 120-124 (1994)

De Falco, 1., Della Cioppa, A., Tarantino, E.: Discovering interesting classification
rules with genetic programming. Applied Soft Computing 1(4), 257-269 (2001)
Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algo-
rithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2002)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD 11, 10-18 (2009)

Han, M.S., Yu, J., Chen, P.S.: Data mining: An overview from a database per-
spective. IEEE Transactions on Knowledge and Data Engineering 8(6), 866-883
(1996)

J.M. Luna, J.R., Ventura, S.: Analysis of the effectiveness of G3PARM algorithm.
In: Hybrid Artificial Intelligence Systems. Lecture Notes in Computer Science, vol.
6077, pp. 27-34 (2010)

Mierswa, 1., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid proto-
typing for complex data mining tasks. In: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 935-940.
ACM, New York, NY, USA (2006)

Tan, K.C., Tay, A., Lee, T.H., Heng, C.M.: Mining multiple comprehensible clas-
sification rules using genetic programming. In: Proceedings of the Evolutionary
Computation CEC ’02. pp. 1302-1307. IEEE Computer Society, Washington, DC,
USA (2002)

Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervés, C.: JCLEC: a Java
framework for evolutionary computation. Soft Computing 12, 381-392 (2007)

