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RESUMEN 

 

La avena es un cultivo de origen mediterráneo presente de forma tradicional como cultivo de 

grano y forraje, siendo el cuarto cereal en importancia en España, solo superado por trigo, 

cebada y maíz. Sin embargo, la sequía y enfermedades causadas por hongos biotrófos, tales 

como la roya de la corona (Puccinia coronata f.sp. avenae) y el oídio (Blumeria graminis f. sp. 

avenae), mitigan fuertemente su producción. El hecho que tanto la tolerancia a la sequía como 

la resistencia a ambas enfermedades sean extremadamente complejas, incluyendo un amplio 

rango de procesos entre los que están incluidos importantes interacciones entre moléculas 

señalizadoras, hacen que el conocimiento de las bases moleculares de la resistencia a dichos 

estreses sea fundamental para la mejora genética de este cultivo. Además, conocer un poco 

más sobre los efectos sinérgicos y antagónicos de las moléculas implicadas en la resistencia a 

ambos estreses es fundamental para promover una mejora genética de la avena más eficiente 

y con ello poder desarrollar plantas con una resistencia más amplia pudiendo hacer frente a 

diversos estreses.  

 

Teniendo en cuenta esto, en el capítulo 1 de la presente tesis estudiamos el papel de las 

poliaminas en la resistencia a oidio. Así, se monitorizó el contenido de poliaminas en dos 

genotipos, resistente y susceptible, de avena a oidio durante la interacción huésped y no-

huésped. Los resultados mostraron diferencias significativas en los niveles de algunas 

poliaminas solubles entre los genotipos resistente y susceptible en ambas interacciones, así 

como en los productos de degradación de las poliaminas relacionados con las especies 

reactivas de oxígeno (ROS). Esto  sugiere un papel importante de las poliaminas en la 

resistencia a este hongo fitopatógeno. En el segundo capítulo se llevó a cabo el estudio del 

papel de las poliaminas durante la infección de roya en cultivares resistentes y susceptibles de 

avena y en particular en los diferentes mecanismos de resistencia. Se confirmaron aumentos 

de espermidina y espermina asociados a mecanismos de resistencia pre- y durante la 

penetración de la células del mesófilo, que se corroboró con el aumento de la resistencia en el 

cultivar susceptible tras la aplicación exógena de las mismas. En el cultivar resistente Saia 

observó además un aumento en la actividad DAO y PAO unida a pared y en la producción de 

DAP en etapas tempranas, lo que sugiere que la implicación de los mismos en la resistencia a la 

penetración o la contribución al endurecimiento de la pared celular o lignificación. En capitulo 

3 se monitorizaron los niveles de óxido nítrico (NO) endógeno en cultivares de avena 

susceptible y resistente a la sequía confirmando una reducción de los niveles de NO asociados 

a la tolerancia. Para confirmar estos resultados se han utilizado líneas transgénicas de cebada 



que sobreexpresan el gen de la hemoglobina HvHb1 reduciendo los niveles de NO y se ha 

estudiado el rol del NO durante la sequía en relación con el metabolismo de las poliaminas. Los 

resultados obtenidos muestran como una mayor resistencia de la línea de cebada transgénica 

frente a su “wild type”, correlacionada con un aumento en el contenido de poliaminas 

específicas. Además se ha confirmado que el NO influye en la ruta de las poliaminas por varias 

vías, afectando al flujo de nitrógeno y contenido de aminoácidos clave en la biosíntesis de 

poliaminas, a nivel de expresión génica, influyendo genes claves de la ruta de la poliaminas y 

modificando postraduccionalmente algunas proteínas. Por otro lado, en el capítulo 4 se ha 

llevado a cabo un estudio de diversidad genética de 177 entradas, incluyendo variedades 

comerciales y de población de avena que componen nuestra colección con la finalidad de 

poder conocer la estructura y la similaridad genética de nuestra población para un uso más 

eficaz dentro del un programa de mejora. De acuerdo a este estudio, las entradas de la 

colección han sido clasificadas dentro de cuatro grupos principales que separaron claramente 

las variedades comerciales de las variedades población de avena roja y blanca. En el último 

capítulo se ha desarrollado un análisis de asociación para identificar secuencias génicas 

asociadas a la  resistencia a roya y oídio en avena mediante “association mapping”. Para ello 

174 entradas de avena, incluyendo cultivares de avena roja y blanca y variedades población 

fueron evaluadas para resistencia a roya y oídio, y genotipadas usando marcadores 

microsatélites y DArTs para identificar secuencias génicas con caracteres de resistencia a 

dichas enfermedades. Cinco marcadores, dos de ellos altamente significativos en todos los 

modelos testados, resultaron asociados con resistencia a roya y un marcador resultó 

fuertemente asociado a resistencia a oídio. Así dichos marcadores fuertemente asociados, 

pueden ser utilizados como candidatos ideales en posteriores estudios y en futuras estrategias 

de selección asistida por marcadores. 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

Oat is a Mediterranean crop used for grain and fodder and ranking fourth in importance in 

Sapin, following wheat, barley and maize. However drought stress and fungal diseases such as 

the crown rust  (Puccinia coronata f.sp. avenae) and the powdery mildew (Blumeria graminis f. 

sp. avenae) strongly constrain its yield. The high complexity of the resistance responses to 

both, drought and fungi, including the crosstalk with other signaling molecules, made that a 

deep knowledge of the molecular bases of the resistance to these stresses is crucial for 

breeding the crop. In addition, knowledge of the synergic and antagonic effects that different 

molecules involved in both kind of stresses may have is important to promote a more efficient 

breeding of the crop. 

 

Taking this into account in the chapter 1 of the present thesis we studied the role of 

polyamines in the resistance to powdery mildew. Thus, polyamine content in two, powdery 

mildew resistant and susceptible oat genotypes was monitored during a host and non-host 

interactions. Results showed significant differences in the levels of particular soluble 

polyamines between resistant and susceptible genotypes in both interactions. In addition, 

resistant and susceptible genotypes differed in the content of important polyamine 

degradation products, suchas reactives oxygen species (ROS). This suggests an important role 

for polyamines in the oat resistance to these phytopathogenic fungi. In the second chapter, we 

carried out an study on the role of polyamines during the oat-rust interaction focusing in 

particular disease resistance mechanism. We confirmed an increase on spermidine and 

spermine associated with the pre- and penetration resistance. These results were supported 

with bioassays of exogenous polyamine application that increase the resistance in the 

susceptible cultivar. In addition in the resistant cultivar Saia, we observed an early increase in 

the cell-wll bound DAO and PAO activity and in the generation of DAP, suggesting its 

implication in the penetration resistance for instance in the cell-wall reinforcement or 

lignification. In chapter 3 we monitored the levels of nitric oxide (NO), in resistant and 

susceptible oat cultivars and confirmed an NO reduction associated with drought tolerance. In 

order to confirm the results and to determine the role of NO during drought in relation with 

polyamine metabolism, barley transgenic plants overexpressing the hemoglobin gen HvHb1 

and hence with lower level of NO were used. Results showed a higher drought resistance in 

the barley lines overexpressing the hemoglobin gene compared with the wild type and 

modification in these plants in the level of specific polyamines. In addition we confirmed the 

influence of NO in the polyamine biosynthetic pathway at different levels:  influencing nitrogen 



fluxes and hence the content of key aminoacids of the polyamine biosynthetic pathway, at 

gene expression level, influencing key genes of the polyamine pathway and through post-

translational modifications of proteins. On the other hand, in chapter 4 we carried out a 

genetic diversity study of 177 oat accessions including commercial varieties and landraces to 

determine the structure and genetic similarity of the collection, which is an important 

component for a more efficient breeding. According to our study, the different accessions of 

the collection were classified in four clusters that clearly separated the commercial varieties 

from the landraces and the red and white oats. In the last chapter and taking advance of this 

previous studywe carried out an association mapping study in order to associated specific 

genomic regions with resistance to rust and powdery mildew. To this aim, the 177 accessions 

of the oat collection including the white and red oat commercial varieties and landraces were 

screened for resistance to rust and powdery mildew and genotyped using SSR and DArTs 

markers. Five markers, two of them highly significant in all models tested, were associated 

with the resistance to rust, and one marker was strongly associated with resistance to 

powdery mildew. These markers can be used as candidates to future studies and strategies 

of marker assisted selection. 

 

 



OBJECTIVES 

The main objectives of this work are:  

o Characterize the role of polyamines in the host and non-host interaction between oat 

and the powdery mildew fungus (Blumeria graminis f. sp. avenae). 

o Determine the implications of polyamines on pre/penetration resistance and 

hypersensitive response of oat to crown rust (Puccinia coronata f.sp. avenae). 

o Characterize the role of polyamines during tolerant responses to drought stress in 

cereals and the possible crosstalk with the signaling molecule nitric oxide. 

o Study the genetic diversity of an oat collection of commercial cultivars and landraces. 

o Perform a genome-wide association study for crown rust and powdery mildew 

resistance in an oat collection of commercial varieties and landraces. 
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GENERALITIES OF THE OAT CROP 

 

The Oat Crop 

Avena ssp. ranks sixth in world cereal production statistics, following wheat, maize, rice, barley 

and sorghum (FAO, 2013). Thus, world production in 2012 was 20.974.945 tons, 7.893.544 

tons in Europe and 681.200 tons in Spain, the latter being the fifth country in European 

production (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With respect to the cultivated area, oats are widely grown in temperate areas, with an 

increasing interest to expand the crop to subtropical areas, Mediterranean countries (Stevens 

et al., 2004) and northeast China (Islam et al., 2011). This is mainly due to its good adaptation 

to a wide range of soil types and because on marginal soils oats can perform better than other 

small grain cereals (Stevens et al., 2004). In 2012, the oat cultivated area in the world was 

9.627.546 hectares; 2.665.677 in Europe and 441.600 has in Spain being the latter the fifth 

country in the world and the second in Europe (Fig. 2). 

 

 

Figure 1. Evolution of the average production of oat       (x 100.000 tons) in the World, Europe and Spain 
during the last ten years (FAO, 2013).   
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Taxonomy  

Oats (Avena sativa L.) are members of the Gramineae (Poaceae) family along with other 

important grass species (Fig. 3; Draper et al., 2001). The base chromosome number of oats is 

seven and within the genus Avena we distinguish three ploidy levels according to their 

chromosome number (Chamla, 1984) and four karyotypes (A, B, C and D). Diploid oats (2n = 

14) include Avena strigosa Schreb.; Avena strigosa var. brevis Roth.; Avena clauda Dur. ; Avena 

longiglumis Dur. Tetraploid oats (2n = 28) include Avena barbaso subsp. wiestii Steud.; Avena 

barbata Pott. Ex Link. Hexaploid oats (2n = 42) include Avena sterilis L. ; Avena byzantina C. 

Koch.; Avena fatua L.; Avena sativa L. (Table 1). All hexaploid oats have the same genome 

structure, AACCDD. The D genome has an unknown origin but it shows a close relationship to 

the A genome and may have arisen by duplication (Leggett and Thomas, 1975).  

 

Figure 2. Evolution of oat area cultivated (x 100.000 hectares) in the World, Europe and Spain during the last ten 
years (FAO, 2013). 
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Fig. 3.  Phylogenetic relationships within the Poaceae family (from Draper et al., 2001). 

 

According to Harlan and De Wet (1971) and Leggett and Thomas (1975) Avena spp. are 

classified into three gene pools based on the ease of gene transfer (introgression) from the 

alien species into the cultivated hexaploid oats: 

 

The Primary Gene Pool: Given the high inter-fertility in crosses, all the hexaploid oat taxa, 

including the most common wild oats A. sterilis and A. fatua, were grouped into a single 

biological species with cultivated oats (Ladizins and Zohary, 1971; Loskutov and Rines, 2011). 

Within this group we could achieve a good introgression of desired traits from the wild 

hexaploid oats by conventional crossing and backcrossing (Loskutov and Rines, 2011). 

 

The Secondary Gene Pool: this group includes the AACC tetraploid species A. magna Murphy et 

Terrell. , A. murphyi Ladiz. and A. insularis Ladiz. Hybridizations with A. sativa produce highly 

self-sterile plants, but the F1 female fertility is enough to produce progeny. Subsequent 

crosses between tetraploid and hexaploid individuals are possible due to a correct pairing 

between chromosomes (Loskutov and Rines, 2011). 

 

The Tertiary Gene Pool: Defined by Leggett and Thomas (1975) involves all the diploid Avena 

species and the tetraploids A. barbata, A. vaviloviana (Malz.) Mordv., A. abysinnica and A. 

macrostachya. Introgression of desired traits is complex since the F1 progeny derived from the 

crosses with A. sativa are often sterile and the development of lines free of accompanying 

deleterious genes is difficult. 
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 Table 1: Examples of ploidy levels within the Avena genus. (From Leggett, 1995) 

 

Species Chromosome Number Genome 

A. clauda 2x  = 14 CC 

A. eriantha 2x = 14 CC 

A. ventricosa 2x = 14 CC 

A. strigosa 2x = 14 AA 

A. abyssinica 4x = 28 AABB 

A. barbata 4x = 28 AABB 

A. vaviloviana 4x = 28 AABB 

A. maroccana 4x = 28 AACC 

A. murpyi 4x = 28 AACC 

A. atherantha 6x = 42 AACCDD 

A. fatua 6x = 42 AACCDD 

A. hybrida 6x = 42 AACCDD 

A. occidentalis 6x = 42 AACCDD 

A. sativa 6x = 42 AACCDD 

A. sterilis 6x = 42 AACCDD 

A. trichphylla 6x = 42 AACCDD 

 

 

The hexaploid A. sativa is the most common cultivated oat. A. sativa varieties can be described 

as either winter or spring oats. Winter oats are sown in the autumn, over winter in the fields 

and are harvested in the summer. Spring oats are sown in early spring and harvested in late 

summer. Winter oats, like other winter cereals, have a significant yield advantage over spring 

oats with approximately 50% higher yield (SEERAD, 2005). However, a major limitation to 

growing autumn-sowing cereals is their susceptibility to freezing conditions during winter; this 

is particularly true for oat, that is considered the least winter-hardy of the winter cereals 

(Livingston et al., 2005). Winter oats also require a period of cold for vernalisation which 

results in a delay of flowering until spring-time. The vernalisation requirement ensures that 

flowering does not occur in the late autumn before the onset of winter. In contrast, spring oats 

flower and mature later in the summer, without vernalisation. The majority of oats grown in 

England and Wales are winter oats. However at northern latitudes, spring oats are used. There 

is a variation of A. sativa that was initially classified as the separate species A. nuda or the 

‘naked oat’. The difference between the two being that the groat (caryopsis) of the naked oat 
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threshes free from the hull (lemma and palea). However the ‘naked’ trait is controlled by a 

single gene with a few modifier genes so now naked oats are described as a variant of A. sativa 

(Rines et al., 2006).  

 

 

The Origin of the Oat Crop  

There is a great controversy about the center of origin and domestication of the oat crop. 

However, it seems clear that the domestication of the oat crop happened much later that for 

other cereals, such as barley and wheat. While the domestication of barley and wheat held at 

12.000-8.000 years before present, oat domestication took place about 4000 years before 

present. This was so, because for many centuries, oats have spread as a weed in wheat and 

barley crops. Its constitution as crop with own identity did not occur until it was shifted to the 

north of the continent, where meteorological conditions are characterized by increased 

humidity and cold.  

 

A good review of evolution and domestication of Avena species is summarized in Loskutov 

(2008). To date, it was accepted that the origin of Avena genus was the Fertile Crescent and its 

spread as weed within wheat and barley crop towards the rest of Europe finalized when the 

constitution of the oat crop by itself. We must differentiate between the origin of the genus 

Avena and the center of origin and diversification of cultivated oat. According to the analyses 

in the global diversity of local varieties available in the Vavilov Institute of Plant Industry (VIR) 

oat collection, the most likely center of origin of the genus Avena lies in the western part of 

the Mediterranean region, while the secondary center and origin of cultivated oat (A. sativa L.) 

is situated within the Asia Minor center (Loskutov, 2008). 

 

The first morphogenetic center of oats, the Mediterranean center, was placed between 

Morocco, Algeria and Spain. From here, the center of diversity for the diploid species A. 

strigosa Schreb. was placed in Spain and Portugal towards Great Britain where naked forms 

designated as A. nuda appeared. The second morphogenetic center of oat is placed in the 

Fertile Crescent, the origin and domestication center of cultivated oat. From this South-West 

Asian Center (Turkey, Iran, Iraq and Syria) the hull-less forms (A. sativa subsp. nudisativa 

Husn.) were developed in Mongolia and China and A. sativa covar. volgensis (Vavilov, 1992) in 

Tatarstan region.  
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Morphology  

The oat plant is described as having a main shoot or culm, which is usually the tallest; any side 

shoots that are produced are called tillers (Fig. 4). The stem is composed of a series of nodes 

(solid) and internodes (hollow in the maturity but solid during vegetative development). The 

leaves are solitary, alternate, two-ranked and sessile. Each leaf is composed of a sheath, which 

surrounds the culm, a ligule inserted at the apex of the sheath, and a leaf blade. Unlike the 

other grasses that have spikes, the inflorescence of oats is a panicle, equilateral (with spikelets 

arranged on both sides) or unilateral (all on one side) (Fig. 4). This is a highly branched 

inflorescence with a main axis called rachis, from which nodes arise other alternating lateral 

axes. Both the main axis and each lateral axes, culminate in a terminal spikelets, which is the 

individual floral unit.  Each spikelet contains 2-3 flowers. The first two structures within the 

spikelet correspond to a pair of squamous glumes at the base which includes the rest of the 

floral unit. The flower itself is composed of the reproductive organs (ovary and three stamens) 

and two bracts, a lower, lemma, and an upper palea (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. A: Diagram of an oat panicle. B: Spikelet of A. sativa. Key: LO Lodicule; P. Palea; L. Lemma; S.Spikelet; FS, 
Florets; G1 Lower glume; G2. Upper glume; FL. Flower; CE caryopsis, dorsal viewwith embryo; CH, caropsis, ventral 
view showing groove. C: Detailed picture of a spikelet (from White et al., 2006). 
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Each developmental period of an oat plant is usually designated according to the growth stage 

of the Zadoks scale (Table 2; Zadoks et al., 1974). Initially the number of tillers produced is 

used to measure the growth stage of the crop. Stem extension is the next major class of 

growth stage classification. The subsequent growth stage classes are concerned with panicle 

emergence and development. Other key growth stages, complete flag leaf emergence,  

complete panicle emergence, beginning of anthesis, beginning of grain filling. These GS are the 

same as those used of barley and wheat (Zadoks et al., 1974). Unlike other cereal crops grown 

oats have a panicle rather than an ear. 

 

Table 2: Stages of crop growth. (Zadoks et al., 1974) 

 

GS Code General Description Explanation 

00-09 Germination Coleoptile emergence 

10-19 Seedling growth Leaf expansion 

20-29 Tillering Emergence of tillers 

30-39 Stem elongation Extension and formation of internodes 

40-49 Booting Swelling of flag leaf sheath 

50-59 Inflorescence Ear emerging 

60-69 Anthesis Anthers visible 

70-79 Milk development Content of milk in the grain 

80-89 Dough development Content of dough in the grain 

90-99 Ripening Grain hardening and loosening in panicle 

 

Uses of the oat 

         Human food  

Oats have numerous uses as human food. It is used as flakes, flour and meal. It is fairly 

low in gluten, so it is not suitable for making bread, although is suitable for use into oat-

cakes. It is present at breakfast as cereal porridge and in special varieties of bread (FAO, 

2011). 

 

Oats has many proven health benefits for human health. The phytochemicals in oats 

mediate anti-oxidant activity (Sur et al., 2008) and when included in food they provide a 

means of preventing diseases such as cancer and coronary heart disease. ß-glucan is 

found in the cell walls of cereals. This compound has been found to lower blood 

http://www.fao.org/docrep/008/y5765e/y5765e0f.htm�
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cholesterol levels, control blood sugar and enhance the immune system (Liu, 2007). 

Many studies have shown that the ß-glucan content of oats reduced the total 

cholesterol in the blood (Ripsin et al., 1992; Brown et al., 1999; Karmally et al., 2005; 

Queenan et al., 2006). Uncontaminated oats and oat products can be tolerated by the 

majority of people with celiac disease (Janatuinen et al., 2002; Hogberg et al., 2004; 

Garsed and Scott, 2007; Londono et al., 2013). 

 

       Use of whole-crop oats for animals  

Oats are also used for animal feed but this is limited due to the fibrous husk which 

lowers the energy value of the grain. This has led to the development of cultivars of 

naked oats for in the animal feed industries. They were originally developed for 

specialized markets such as feed for premium horses but more recently their value for 

the avian market has been examined. Naked oats have a high oil content which provides 

high protein and energy grain when fed to poultry (HGCA, 2010). Naked oats had an 

overall better feed value when compared to wheat (HGCA, 2010). For ruminants, high oil 

husked lines are being developed. The low lignin husk has been found to be more 

digestible by rumen microbes and could have the potential to reduce methane 

emissions (HGCA, 2010). 

 

 

BIOTIC STRESSES AFECTING OATS  

Oats, as all plants, under both natural and agronomic conditions, are subjected to stresses; 

external conditions adversely affect growth, development or productivity of the plants. These 

stresses are classified in two groups depending on its origin: biotic stress when they are it is 

caused by the action of an organism or abiotic stress when it’s caused by a physical or chemical 

agent (Azcón-Bieto and Talón, 2008). Biotic stresses can be produced by animals, other plants 

(allelopathy) and microorganisms such as bacteria, fungi and other plant pathogens causing 

disease. Oat diseases may cause direct damages and reduction of the fodder yield or produce 

indirect damages, compromising the quality of the product when they produce toxins in the 

grains and make them unsuitable for consumption either by animals or humans (FAO, 2011).In 

this work we will focus in the oat diseases caused by the rust and powdery mildew fungi.  
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Rust 
Rust diseases are the most harmful diseases affecting cereals, and particularly oat. Cereal rusts 

are obligate biotrophic fungi with a complex life cycle, belonging to Puccinia genus. They are 

heteroecious and macrocyclic. To complete their life cycle, 5 types of spores and 2 different 

hosts are needed. On oats two spore stages of rust can occur, telial and uredial stages. The rest 

of spore stages to complete the life cycle must happen in the alternative host. Symptoms can 

appear in all aerial green parts of the plant (leaf sheaths, panicles, even floral structures) but 

especially in the leaves in the case of crown rust, and the stem in the stem rust. Although 

plants can be infected from seedling, is at the time of maturation and flowering when the 

disease usually impact in the crop. 

 

 The Crown Rust 

Crown rust, caused by Puccinia coronata Cda. f. sp. avenae Eriks. is the most harmful 

disease affecting oats, causing high losses in yield and grain quality worldwide (Simons, 

1985) particularly in the Mediterranean basin (Hemmami et al., 2006) where 

populations are more virulent than in the center and north of Europe. Infection by the 

pathogen induces several structural, biochemical and physiological changes in its host. 

The more profound changes are brought about by intracellular invasion by the fungus 

and the formation of haustoria (Harder and Haber, 1992). Following inoculation of oat 

leaves with crown rust, the rate of whole-leaf gas exchange declines during the 

sporulation stage and photosynthesis is severely inhibited over the entire leaf (Scholes 

and Rolfe, 1996). This disease may reduce yield up to 40%. Its development is more 

rapid and harmful when weather conditions allows good oat crop growth and 

pathogen development, this is humidity and a range of temperature between 15-25 °C. 

 

The life cycle explained here for P. coronate is valid for P. graminis, except for the 

sexual part. For P. coronate development, the alternative host is Rhamnus ssp. for P. 

graminis it is Berberis ssp. At the end of the planting season, coinciding with the lack of 

nutrients and the onset of oat senescence, uredia transform into telia that produce 

teliospores (Fig 5), a diploid-dark and thick-walled spore resistant to adverse 

environmental conditions that act as latent stage for the fungus. When environmental 

conditions are favorable, the germination of teliospores and subsequent meiosis 

results in the formation of four haploid spores, basidiospores, that is not able to infect 

the telial host and furthermore must travel to the aecial host, where its germination 
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produce a haploid colony called pycnia that can be of two or more mating types. Inside 

pycniospores are produced. This sexual recombination results in a higher frequency of 

new physiological races (Dhanda et al., 2004) particularly during summer in the 

Mediterranean region, where several species of Rhamnus, the alternate P. coronata 

host, are widespread (Vavilov, 1992). 

 

The distribution of pycnidiospores carried out by insects or surface moisture 

distributes spores on the host surface facilitating the union of the opposite mating 

types and resulting in a dikariotic hyphae that profilate to form an aecial colony in the 

abaxial surface where dikaryotic aeciospores are produced . These aeciospores travel 

until the telial host and germinate.  

  

After a uredospore lands on the leaf surface, its germination develops an appressorial 

germ tube. The germ tube growths towards stomata along the leaf surface guided by 

chemical and physical features of the host surface (Hoch and Staples, 1987). When 

finding a stomata, growth of the tube ceases and an appressorium is produced over 

stomata in response to some physical components of the stomatal structure (Hoch and 

Staples, 1987) (Fig. 6A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure5. Life cycle of Puccinia coronata f.sp. avenae   
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Beneath the appressorium, a penetration peg grows reaching the substomatal cavity, a 

cigar-shaped substomatal vesicle (SSV) is formed, from which a secondary hypha and a 

haustorium mother cell, at its tip, forms (Fig. 6B). Following contact between the 

haustorium mother cell and the mesophyll cell, an infection peg develops, penetrates 

the mesophyll cell and forms a feeding structure, the haustorium, which takes up 

nutrients for fungal growth (Parlevliet and Kievit, 1986) (Fig 6C). The haustorium is 

separated from the plant cytoplasm by an extension of the plant plasma membrane 

and is not truly intracellular but functions as the feeding organ of the fungus (Heath 

and Skalamera, 1997). As a result, a colony grows and develops pustules called 

uredinia, containing urediniospores (Fig. 6D). Beneath the appressorium, a penetration 

peg grows reaching the substomatal cavity, a cigar-shaped substomatal vesicle (SSV) is 

formed, from which a secondary hypha and a haustorium mother cell, at its tip, forms 

(Fig. 6b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Infection process of oat crown rust. A) Appressorium formed over a stoma. B) Substomatal vesicle and 
secondary hyphae formation. C) Intracellular haustorium formed in mesophyll cells supporting the colony growth. 
D) Uredospores produced ready to be widespread.  
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Following contact between the haustorium mother cell and the mesophyll cell, an 

infection peg develops, penetrates the mesophyll cell and forms a feeding structure, 

the haustorium, which takes up nutrients for fungal growth (Parlevliet and Kievit, 

1986) (Fig 6c). The haustorium is separated from the plant cytoplasm by an extension 

of the plant plasma membrane and is not truly intracellular but functions as the 

feeding organ of the fungus (Heath and Skalamera, 1997). As a result, a colony grows 

and develops pustules called uredinia, containing urediniospores (Fig. 6d). 

 

Disease symptoms consist in yellow pustules containing masses of urediospores that 

are exposed after the rupture of the epidermis (Fig. 7). Lesions are circular or oblong 

and occur on both surfaces of the leaf and can reach other green parts of the plant, 

when the epidemic becomes more severe. After some weeks, the borders of the 

pustules can turn black, with teliospores formation. When the infected plants reach 

maturity, production of urediospores ceases and they are then replaced by teliospores. 

 

 

 

 

 

 

 

 

 

 Stem rust  

Stem rust is another harmful disease affecting oat that occurs wherever oats are 

grown. It is caused by Puccinia graminis f. sp. avenae Eriks. and Henn. and, although it 

could be a more destructive pathogen than crown rust fungi under favored weather 

conditions, the damages caused by stem rust are lower than with other rust diseases. 

However, these damages may seriously affect yield and quality of grain.   

 

Disease symptoms appear on the stems and leaf sheaths like masses of urediospores 

called pustules (uredia), larger than those crown rust, oval or elongated, and dark-

brown in color. They may appear in both surfaces on the leaf and the rupture of the 

epidermis expose masses of reddish-brown spores. The fungus can produce several 

Figure 7. Pustules of crown rust on leaves caused by Puccinia coronata f. sp. avenae  
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times this part of its life cycle until plant approach maturity, when teliospores 

transform into telia. 

 

Powdery mildew  

Although Blumeria graminis is considered to be a major disease of wheat and barley, in the 

case of oats, this consideration is restricted only in those areas with a cold and humid climate. 

In these regions, powdery mildew is the most important foliar pathogen of oats causing annual 

grain yield and total biomass losses (Harder and Haber, 1992). Jones (1977) reported that 

powdery mildew caused 11 to 40% oat grain yield losses depending on disease severity and 

cultivar. Taking into account the potential of the oat crop for fodder, it is interesting to note 

that a strong epidemic of the disease at the seedling stage results in 40 to 50% forage loss, 

albeit, the disease does not affect grain yield because later in the season stage, with the 

appearance of higher temperatures, the powdery mildew is arrested. Powdery mildew 

overwinters primarily as mycelium on volunteers and autumn-sown crops. The cleistothecia 

produced during late summer act as survival forms of the fungus, being resistant to low 

temperatures and drying out, allowing the fungus to survive for a time in the absence of a 

host.  

 

 

 Fig 8. Life cycle of powdery mildew.  
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Under humid conditions, cleistothecia release the sexually produced ascospores which can 

initiate autumn infections. As temperatures rise in the spring, dormant mycelium starts to 

grow and spores are quickly produced. The asexual conidia of Blumeria graminis DC Speer f. 

sp. avenae, germinates and follows an ordered morphogenetic sequence (Green et al., 2002). 

Following deposition on the leaf surface, a short primary germ tube (PGT) emerges after 

contact with the epidermal cell surface and play three main roles as a prerequisite to 

appressorium formation (Carver et al., 2001): 1) attachment to the host surface, 2) gaining 

access to host water and 3) recognizing host surface features. After that, the appressorial germ 

tube (AGT) emerges, elongates and differentiates a hooked, apical appressorium (Kunoh, 

2002) (Fig. 9a). When a functional appressorium is formed, a penetration peg emerging 

beneath the appressorium attempts to breach the plant epidermal cell wall, probably 

combining physical force and enzymatic degradation (Fig. 9b). The attack leads a cell response 

involving localized deposition of material into the inside surface of the cell wall, directly 

beneath the appressorium and penetration peg.  
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Figure 9. Infection process of Blumeria graminis f. sp. avenae, causal agent of oat powdery mildew. A) Apical 
hocked appressorium form on an epidermal cell. B) Penetration peg breach cell. C) Formation of an intracellular 
haustorium. D) Colony well-established. E) Beginning of formation of conidiophore and F) Chain of conidiophores 
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These cell wall appositions, called papillae, may arrest the infection process. If this first 

penetration attempt fails, the fungus, may forms another lobe, usually opposite the first lobe 

thought nearer to the conidia, and tries the penetration again. In this way, one AGT could 

develop 3-4 lobes in the attempt to penetrate the cell. On susceptible hosts, penetration tends 

to be successful and the peg penetrates into the host cell (12-15 h.a.i) and a primary 

haustorium is formed (15-24 h.a.i).The haustorium then develops digitate processes over the 

next 4-5 days (Fig. 9c). This haustorium absorbs enough nutrients to feed mycelia which 

develop subsequent generations of haustoria and conidiophores (Fig. 9d). At this point, the 

asexual lifecycle is completed. 

 

The disease is most destructive when mild winters are followed by dry weather in spring and 

early summer, particularly when late-sown crops occur near infected winter oat (Jones and 

Griffiths, 1952). At the end of the season, volunteers and early autumn-sown crops may 

become infected, providing inoculum for the following crop. The symptoms appear as colonies 

with a grey-white superficial mycelium on the upper surfaces of the lower leaves of the plant, 

although colonies may develop also on the underside of the leaf (Fig. 10). The colonies could 

be surrounded by chlorosis and often join together to form large masses of fundal growth on 

the upper surface of leaves when conditions are favorable. At the disease progresses, the 

patches become grey or brown, and may eventually extended to upper areas in the plant if the 

weather conditions are favored. Severely diseased leaves collapse and die. Powdery mildew is 

most prevalent on lower leaves but can cause blighting of the upper leaves, heads and awns of 

susceptible cultivars. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Mycelium of powdery mildew on leaves caused by Blumeria graminis f. sp. avenae. 
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MAIN CONTROL MEASURES FOR OAT DISEASES 

There are several methods of control against biotic stresses; however, no single practice is 

available to completely control all diseases. The biotic stress control should be done as part of 

an integrated pest management.  An integrated control program is defined as the strategy that 

allows control of biological stress with no economic damage, using all appropriate techniques 

combined as possible, benefiting to the whole society. Thus the different control methods 

should consider not only the biological and agroecosystem factor but also related ecosystems 

and society that will use agricultural products (Pimentel, 1982; Kogan, 1998). The various 

control methods can be classified into four categories: agronomic, chemical, biological and 

genetic control. 

 

Agronomic and cultural methods  

The most important cultural methods include the crop rotation, agronomical changes to 

escape from the favorable disease conditions and practices that reduce the inoculums pool.  

Crop rotation: In general, avoidance of monoculture is a good technique to reduce the impact 

of pests, diseases and weeds. In some areas where the same crop is sown repeatedly after 

years, the diseases related to it are established, incremental population and the damage is 

more severe. 

Escape: Sometimes is possible avoid the coincidence between the period of maximum 

susceptibility of the plant and the highest abundance of the parasite through the use of early 

maturing cultivars or early date planting (Last, 1954). Thus, it has been reported a reduction of 

P. coronata damages in early ripening oats (Simons and Michel, 1968) and by an earlier 

planting date (Simons, 1966). 

Inoculum reduction: Any cultural practice that minimizes the amount of over-wintering 

inoculum on volunteer plant should help to reduce disease levels of powdery mildew in oat 

(Harder and Haber, 1992). In those areas where Rhamnus host acts actively generating new 

sources of genetic variability for the pathogen, its eradication, through mechanical elimination 

or using foliar fungicides, could help reducing crown and stem rust epidemics. This method is 

applied in the dispersal part of the life cycle the pathogen. 

 

 Chemical control 

Chemicals has been used for more than a century to control plant diseases, but acquired a 

special significance from the 40's with the development of broad-spectrum organic pesticides. 

Chemical control has been effective in controlling many pests and weeds and is still widely 
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used and necessary in intensive agriculture for high yields. However, in many cases it has been 

ineffective and presents a series of problems. Thus, it should be used wisely taking into 

account the proportion between advantages and disadvantages. Oat crop is usually considered 

a low input crop, with little economic margins as to justify widespread use of fungicides. Even 

so, Jones et al., (1985) assured that a systemic fungicidal seed treatment together with an 

adult plant resistant could be used controlling oat powdery mildew. Systemic fungicides have 

been successfully used against crown rust (Rowell, 1984). However, its use has been refused 

on economic grounds and difficulties to have a unique and effective formulation so its use is 

only recommended in very susceptible varieties under weather conditions that favored the 

epidemic (Soovaeli and Koppel, 2011). 

 

Biological control 

Biological control consists on the use of any living organism or substances derived there from, 

to control biotic factors that can damage a crop. Obviously the effectiveness of biological 

control depends on the combination between the agent employed and the pathogen. The use 

of biological must take into consideration the impact that parasites or predators may have in 

the ecosystem and their relationship to other crops in the area (Bélanger and Labbé, 2002). 

 

Genetic resistance 

The most desirable method for protecting plants from diseases is the use of resistant cultivars. 

Developing resistant cultivars requires the sought of sources of resistance, donors that restore 

the diversity lost in cultivated oats but that initially possessed their wild progenitors. This 

highlights the importance of maintain, screen and characterise genetic resources. About 

220.000 oat accessions in ex situ collections have been estimated in the state of the world’s 

plant genetic resources report (Loskutov and Rines, 2011). Large collections are held by the 

USDA, USA (20.000 accessions), the PGRC, Canada (30.000 accessions) and within the 

framework of the ECP/GR (34.146 accessions), namely by the Vavilov Institute of Plant Industry 

(VIR, Russia) (about 12.000 accessions), which has a collection of about 10.000 accessions of 

four cultivated and 2.000 accessions of 21 wild species. In FAO/VIEWS 

(htpp://apps3.fao.org/views/germplasm.htm), 29 collections listed maintain accessions of wild 

Avena species (Table 3) (Loskutov and Rines, 2011). 
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Some genebanks accumulate specific and geographic diversity of wild oat species not only by 

means of natural collection but also through seed exchange with and ordering samples from 

other gene banks (Table 4)  

 

It should be noted that hexaploids species, A. sterilis (A. ludoviciana) and A. fatua, represent 

the main part of wild oat accessions in the ex situ collections because they are of great 

importance as breeding material and are easy to conserve and propagate in the field (Loskutov 

and Rines, 2011). Although acreage grown to oats is continuously declining in Europe, oat still 

plays an important part in the genetic resources work within the European Cooperative 

Programme for Plant Genetic Resources (ECPGR). This program has been established as a 

platform to strengthen cooperation of European ex situ collections already in 1980. The Avena 

Working Group has been established in 1984 as one of the original six Crop Working Groups 

(Germeier, 2008). 

 

 

Table 3.  Number of accessions of oat germplasm in the main genebanks  

Institution Country Number of 

accessions 

Agriculture and Agri-Food Canada, Plant Gene Resources of Canada, 

Saskatoon Research Center 

Canada 14.935 

USDA-ARS, National Small Grains Germplasm Research Facility USA 10.908 

N.I. Vavilov Research Institute of Plant Industry Russia 2.001 

Tel-Aviv University Institute Cereal Crop Development Lieberman 

Germplasm Bank 

Israel 1.544 

Agricultural Research Center, Australian Winter Cereals Collection Australia 549 

Aegean Agricultural Research Institute, Department of Plant Genetic 

Resources 

Turkey 311 

Institute for Plant Genetics and Crop Plant Research – Genebank Germany 300 

National Wheat Research Center Brazil 254 

National Plant Genetic Resources Center Plant Breeding and 

Acclimatization Institute  

Poland 168 

Agricultural Research Organization, Volcani Center, Israel Gene Bank for 

Agricultural Crops 

Centro de Recursos Fitogenéticos   

Israel 

 

Spain 

117 

 

1405 
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Nowadays, the European Avena Database (EADB) has passport data of 32.910 accessions 

representing collections from 26 European contributors and nearly 170,000 

characterisation and evaluation observation points for 3134 accessions. Besides, Avena is 

one of the four model crops represented in a European initiative for “An European 

Genebank Integration System” (AEGIS), which also represents the regional strategy for 

Europe.  

 

In Spain, the Centro de Recursos Fitogenéticos (CRF-INIA) has 1405 accessions of A. 

byzantina K. Koch, A. murphyi, A. prostata, A. sativa, A. sterilis and A. strigosa Schreb. In the 

last 60 years, efforts have been done in order to incorporate resistance genes against 

different pathogens in cereals and also oat cultivars. The use of resistant varieties has some 

advantages over other control methods, especially over the use of chemicals (Niks et al., 

1993): 

 

Table 4. Representation of wild Avena species in ex situ collections in the world (Germeier, 2008) 

 

Species Number of accessions 

A. strigosa 697 

A. abyssinica 615 

A. barbata 2.526 

A. fatua 2.341 

A. sterilis 22.951 

 

 Use of resistant cultivars represents an economic saving. If we have a complete 

resistance, it is not necessary the use of chemicals; if the resistance is partial, the 

dose employed is lower. 

 The seed cost is the same compared with susceptible varieties. 

 Resistant varieties are safer because its use avoid the risks of using chemicals for 

farmers and have no potentially harmful residues. 

 Contrary to what happens with chemical control, use of resistant varieties is 

compatible with other control methods, such as biological control. 

 

However, the use of resistant varieties is not a perfect solution.   

 Developing resistant varieties, using conventional breeding methods, is a very 

long process. 
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 Resistant varieties may be low yielding due to the namely “resistance cost” 

discussed later.   

 Resistant varieties are usually resistant to a specific pathogen or even isolate 

(race-specific resistance), while there are wide spectrum chemicals that act against 

several pathogens.  

 The resistance usually is not durable in time, although this also occurs with the 

use of chemicals.  

 

 

PLANT RESISTANCE RESPONSES TO PATHOGENS 

It is now clear that there are, in essence, two branches of the plant immune system. One uses 

transmembrane pattern recognition receptors (PRRs) that respond to slowly evolving 

microbial- or pathogen-associated molecular patterns (MAMPS or PAMPs), that therefore act 

before pathogen invade host cells. The second acts largely inside the cell, using the 

polymorphic NB-LRR protein products encoded by most R genes (Dangl and Jones, 2001). They 

are named after their characteristic nucleotide binding (NB) and leucine rich repeat (LRR) 

domains. Pathogen effectors from diverse kingdoms are recognized by NB-LRR proteins, and 

activate defence responses leading to cell death. NBLRR-mediated disease resistance is 

effective against pathogens that can grow only on living host tissue (obligate biotrophs), or 

hemibiotrophic pathogens, but not against pathogens that kill host tissue during colonization 

(necrotrophs) (Jones and Dangl, 2006). 

 

The plant immune system can be represented as a four phased ‘zig-zag’ model (Fig. 11). In a 

first phase, PAMPs (or MAMPs) are recognized by receptors, resulting in PAMP-triggered 

immunity that can halt further colonization. This phase is also named basal resistance and may 

act at different stage of the infection process. In phase 2, successful pathogens deploy 

effectors inside the cell contributing to pathogen virulence. However if a given effector is 

‘specifically recognized’ by one of the NB-LRR proteins, an effector-triggered immunity leading 

to disease resistance and, usually, a hypersensitive cell death response (HR) at the infection 

site is developed (phase 3). Finally, in phase 4, natural selection drives pathogens to avoid host 

recognition either by shedding or diversifying the recognized effector gene, or by acquiring 

additional effectors that suppress the previous reaction. In turn natural selection results in 

new R specificities so that the host effector-triggered immunity can be triggered again. 
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In this work we will focus on the resistance responses that plants may trigger as part of the 

basal resistance and the effector-triggered immunity. In addition a brief consideration will be 

also taken with those constitutive characteristic that may confer resistance without the 

induction of the immune system. Example will focus mainly on the rust and powdery mildew-

plant interaction since they are the main target of our studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constitutive defenses 

Constitutive, physical leaf characteristics may influence pathogens germination, appressorial 

tube elongation, and appressorial formation. For both, powdery mildew and rusts germination 

adhesion of the germ tube to the leaf surface is necessary to start the infection process 

(Mendgen, 1978) so that features avoiding these early processes successfully contribute to 

plant resistance. In addition, failed stomata penetration, by germ tubes not forming 

appressoria or forming them away from the stomata is responsible for might contribute to 

resistance to rusts (Niks and Rubiales, 2002; Patto and Rubiales, 2009; Prats et al., 2007; 

Rubiales and Moral, 2004; Rubiales and Niks, 1992; Sillero and Rubiales, 2002). 

 

Figure 11. Zigzag model illustrating the quantitative output of the plant immune system. From Jones and Dangl, 2006 
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Waxes: waxes on leaf surfaces may form a water repellent surface avoiding the formation 

of a film of water necessary to germination. Thus, low appressorium formation by various 

leaf rusts of cereals (P. triticina, P. hordei, P. recondita) in some genotypes of Hordeum 

chilense and of other wild barleys (till 10 times fold reduction) have been reported, but 

unfortunately not in accessions of the cultivated barley, H. vulgare or any cultivated cereal 

(Rubiales and Niks, 1996). In addition a marked reduction in appressorium formation by P. 

hordei on some cer-mutants (Rubiales et al., 2001) or in stomatal recognition by P. 

striiformis in some resistant wheat cvs. have been also found (Broers and Lopez-Atilano, 

1996). Finally, Patto and Niks (2001) and Rubiales and Niks (1996) reported a decrease in 

appressorium formation due to wax accumulation (Fig 12). 

 

  

 

 

 

 

 

 

Figure 12. Ultrastructure of stomata of H. chilense line H1 (low avoidance) control (left) and wax removed 

(right) from (Patto and Niks, 2001). 

 

 

Trichomes: Trichomes have been also reported to hamper the germ tubes in reaching a 

suitable penetration site, considering them as a physical barrier to infection (Martin and 

Glover, 2007) and in Uromyces, this can retard germination of the surface of bean leaves by 

trapping the spores (Mmbaga et al., 1994). Finally, Chattopadhyay et al (2011) reported a 

powdery mildew resistance in field grown mulberry (Morus spp.) associated to high 

trichome density.  

 

Basal resistance 

In addition to these constitutive characteristics, PAMPs may induce a battery of mechanisms to 

avoid cell invasion by the pathogen.  
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Production of fungitoxic compounds:  Fungitoxic compounds excreted to leaf surface 

may inhibit conidia germination, and appressorium formation. Thus, in rice, inhibition of 

germination and appressorium differentiation by Magnaporthe grisea has been reported to 

occur, probably by the accumulation of fungitoxic leaf diffusates accumulated in resistant 

and partial resistant cultivars (Pasechnik et al., 1997). Studies by Prats et al., (2002) 

demonstrated how coumarins accumulations (such as scopolin, ayapin and scopoletin) on 

sunflower leaf surface prevent rust germination tube growth and appressorium 

differentiation, describing the “lost” stage of the fungus. 

 

Cell-wall modifications: The cell-wall constitutes the first line of defense against fungal 

pathogens. It is composed of a framework of cellulose microfibrils that are embedded in a 

matrix of hemicelluloses, pectins and structural proteins. During the infection process, 

microbes produce a number of cutinases and cell wall hydrolyzing enzymes, such as 

pectinases, cellulases, xylanases and polygalacturonases (PGs) that attack the cell wall 

polymers, to breach the cell wall and enter into the plant. Plants can exhibit inhibiting 

proteins of these enzymes, such as polygalacturonase-inhibiting proteins (PGIPs) that inhibit 

PGs conferring resistance against pathogens reviewed by De Lorenzo et al., (2001). Also, 

plants may exhibit some cell-wall modifications leading to plant cell wall strengthening. The 

materials involved in the thickening of the host cell wall range from minerals (silicon, calcium 

and sulphur) to more or less complex organic polymers, including callose or lignin.  

 

 Papillae formation: 

Fungal penetration attempts may be hampered by encasement of the penetration 

peg in a localized deposition of material between the cell wall and the plasmalema, 

known as “papilla response” (Zeyen et al., 2002) (Fig 13.). Papillae are chemically 

complex appositions comprising inorganic and organic constituents including callose 

(a carbohydrate containing β-1-3, linked glucan as the most important constituent) 

and autofluorogenic phenolic (Prats et al., 2006). Papillae are deposited by the 

epidermal cell cytoplasmic aggregate onto its own inner wall surface, directly 

beneath the appressorium contact area (Zeyen et al., 2002). Their deposition involves 

generation of NO (Prats et al., 2005) and H2O2 (Vanacker et al., 2000). H2O2 provides 

oxidative power necessary to drive protein cross-linking, polymerization or 

esterification of phenolic compounds (Zeyen et al., 2002) in the papilla area.  
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Figure 13. Transmitted light (left) and fluorescence images (right) of a germling that failed to penetrate a 

living plant cell from its first appressorial lobe and therefore formed a second lobe (L2). Refractive, 

autofluorescent papillae subtend both appressorial lobes (Pa) (Prats et al., 2006). 

 

 Cell wall lignification: 

It makes the cell wall more resistant to mechanical pressure applied during 

penetration by fungal appressorial (Vance et al., 1980). Additionally, lignin plays a 

role as an impermeable film and thus, less accessible to cell wall-degrading enzymes. 

Therefore, induced lignification represents an efficiency inducible structural barrier 

for plant pathogens. 

 

 Crosslinking: 

Protein cross-linking has been shown as a rapid and effective defensive response 

against intruding pathogens like bacteria, fungi or parasitic plants. Extensins and 

other Hydroxyproline rich glycoproteins (HRGPs), proline-rich proteins (PRPs), and 

glycine-rich proteins (GRPs) are structural proteins present in the cell walls. They 

can be rapidly insolubilized after wounding, pathogen penetration or elicitor 

treatment and it is a very fast response which enhances cell wall resistance within 

just a few minutes after pathogen attack. This process implies the formation of 

covalent cross-links and is mediated by H2O2 and peroxidases (Perez-de-Luque et 

al., 2006). 

 

 

Hypersensitive resistance (HR) 

Successful pathogens that circumvent the basal resistance response usually triggered an HR 

like resistance response (Jones and Dangl, 2006). Then, this kind of resistance occurs after the 

pathogen reaches the cytoplasmic content (Heath, 1981). Harold Flor first described the 

dependence of the HR and resistance on R gene-interaction with pathogen encoded avirulence 
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(avr) gene production hence the term gene-for-gene interactions (Flor, 1956). Subsequently, a 

large number of R genes have been cloned and can be broadly classified into five classes 

(Martin et al., 2003). A near ubiquitous feature of this resistance gene products (RGP) is the 

possession of variable numbers of leucine-rich repeats (LRR), and frequently nucleotide 

binding sites (NB).Those NB containing RGP that have either regions of homology to insect Toll 

or mammalian IL-1 receptors the TIR domain form the TIR-NB-LRR R gene classes. Another 

major class of R gene has a coil-coil motif instead of a TIR domain and is designated CC-NB-LRR.  

 

Among the first signs of HR are H+ and Ca2+ efflux from the apoplast and, within the attacked 

cell, the transient generation of nitric oxide and H2O2 (Prats et al., 2006; Thordal-Christensen et 

al., 1997). The whole cell subsequently shows autofluorescence, as phenolic compounds 

accumulate (Fig 14.). Apoptotic features in oat cells at and around the infection sites were 

observed to various oat pathogens: oat crown rust, the halo or stripe blights of oats and the 

blast fungus (Tada et al., 2004). Some studies have reported the hypersensitive cell death in 

oat involved in resistance against crown rust (Tada et al., 2001; Yao et al., 2002) and victoria 

blight  (Coffen et al., 2004). 

 

 

 

 

 

 

 

 

 

Figure 14.  Epidermal cell death (CD) as a result of single gene-controlled hypersensitivity that prevents further 

pathogen growth. By SEM (left), dead epidermal cells are obviously collapsed while they show-cell 

autofluorescence viewed by fluorescence microscopy (right) (Prats et al., 2006) 

 

 

It is apparent that all nutrients necessary for elongating powdery mildew and rust secondary 

hyphae and colony growth must be absorbed via haustoria. Thus, in absence of hypersensitive 

response, restriction of haustorial development may result in limited fungal invasion. 

Restriction of haustorium growth may arise from several factors which include nutritional 

limitation or possibly physical restriction by the haustorial sheath which showed to be an 
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invagination of the host plasmamembrane separating it from the host cell (Bracker, 1968). As 

the sheath appears to be derived from host tissue, host genotype could exert an influence. 

Thus reduction in colony size could result from a lack of host nutrients suitable for colony 

growth or, as the sheath seems to behave like a semipermeable membrane through which 

nutrients must pass before being absorbed by the haustorium (Bushnell, 1972; Hirata, 1967), 

sheath structure may affect nutrient passage. Altogether, this resistance, only very poorly 

studied, lack for the selection pressure for pathogen change implicit in that kind of resistance 

causing a complete block to pathogen development such as hypersensitive response. Any 

restriction in size and/or efficiency of haustoria must necessarily affect such characters as 

latent period, sporulation capacity and colony size and so should reduce disease development. 

If the factors limiting colony growth can be combined with those limiting primary infection (i.e. 

penetration resistance), it should be possible to produce varieties with a high level of broadly 

based and hopefully durable resistance. 

 

In conclusion several important factors are crucial for improving plant crops with durable 

resistance including availability of resistance sources, appropriate selection tools and 

characterisation of the resistance responses.  

 

BREEDING OATS FOR RESISTANCE TO POWDERY MILDEW AND RUST 

Over the last decades there has been a continuous debate on the classification of the forms of 

resistance and its relation with the breeding of resistance crops. 

 

Race-specific resistance 

Due to the monogenic nature of this resistance it has been the most widely used in breeding 

programs for years. However, under field conditions HR is almost invariably overcame by 

pathogens because mutation of Avr genes matching the R genes is favored by selection since 

this new pathogenic isolates avoid recognition and plant defence (Dangl and McDowell, 2006). 

In turn, new specificities of R genes may then be generated by variation of the leucine-rich 

repeats that they encoded in the plants. 

 

Due to the relative easy management and despite the short durability of this form of 

resistance it has been widely use in oat resistance, particularly against rusts. Indeed, the use of 

race-specific (Pc) genes for rust resistance has been the primary mean of control. Currently, 
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more than 90 genes for crown rust resistance have been assigned with permanent 

designations (Chong et al., 2000). For instance, from the primary gene pool, A. sterilis, the 

progenitor of cultivated oat, has been found to be quite a riche source of crown resistance 

genes allowing introgression of Pc38, Pc39 and Pc68 to develop hexaploids resistance oat 

cultivars (Brown et al., 2001; McKenzie et al., 1984; McKenzie et al., 1981). However, the 

resistance was overcome and search for additional sources of resistance including new A. 

sterilis lines was necessary to do. Other A. sterilis-derived Pc genes for crown rust resistance 

include Pc58 in TAM-0-301 (McDaniel, 1974a), Pc59 in TAM-0-312 (McDaniel, 1974b) and 

finally Pc60 and Pc61 (Leonard and Martinelli, 2005). In addition, from the secondary gene 

pool, the resistance Pc91 from A. magna has been used to develop the cultivar HiFi (McMullen 

et al., 2005) and A. strigosa from the tertiary gene pool has been the source to introgress the 

Pc15, Pc23 and Pc94 genes, to hexaploids Avena species (Dyck and Zillinsk.Fj, 1963; Rines et al., 

2007). 

 

Although not as widely used as in rust resistance, sources of resistance to powdery mildew and 

specific resistance genes have been identified. The partially dominant gene Eg-1 was found in a 

hexaploid oat derived from the cross between A. sativa and A. ludoviciana (Jones and Griffiths, 

1952). Another powdery mildew resistant gene, Eg-2, was reported in the diploid A. strigosa 

ssp. hirtula by the same author. Later Hayes and Jones (1966) reported the powdery mildew 

resistance gene Eg-3 traces to a wild oat, A. sterilis L. var. ludoviciana. This resistance has been 

transferred to many oat cultivars grown commercially in Belgium, France, Germany, Great 

Britain and other countries (Leonard et al., 2004). Gene Eg-4 was found in a tetraploid A. 

barbata and successfully transferred to a cultivated hexaploid oat by induced translocation 

(Aung et al., 1977) or interfering with regular meiotic behaviour using the diploid specie A. 

longiglumis (Thomas et al., 1980). Recently, a new powdery mildew resistance gene from A. 

macrostachya, Eg-5 gene, has been successfully introgressed into hexaploid oat A. sativa (Frey, 

1982). A. sterilis has been reported as a source of resistance to oat powdery mildew (Roderick 

et al., 2000) and although chromosomal heteromorphology between the diploid and tetraploid 

donors and A. sativa could make difficult the crosses, some successful introgression of 

resistance genes from A. barbata, A. hitula, A. ventricosa, A. prostata and A. macrostachya to 

hexaploids oat cultivars have been done (Thomas, 1968). 

 

Unfortunately, as previously stated these genes have been usually defeated rapidly by new 

populations of the pathogens, because of selection pressure resulting from large-scale and 

long-term cultivation practices (Chong and Kolmer, 1993; Leonard et al., 2004, 2005a; Leonard 



  Introduction 

28 
 

et al., 2005b; Leonard and Martinelli, 2005). Thus, in the last year several strategies such as the 

use of multilines or pyramiding have been adopted to improve the durability of the resistance 

to crown rust. Gene pyramiding is based in the idea of combine in just one cultivar two or 

more single resistance genes. Thus, it would be necessary the occurrence of two or more 

simultaneous mutations to overcome the resistance. However, it’s difficult to work with gene 

pyramiding due to the dominance and epistasis effect of multiple resistance genes. In addition, 

since two or more resistance genes may have similar reactions to numerous races it makes 

necessary the use of molecular markers to tag specific rust resistance genes (Chen et al., 

2007). Even so, it would take few years to gather in a single variety two or more genotypes 

because of the backcrosses needed. Multilines are mixtures of individual varieties that are 

agronomically similar (precocity, flowering time, mechanical harvesting, and grain quality) but 

differ in their resistance. Theoretically, the varieties would be obtained by parallel backcrosses 

and these varieties would be isogenic lines. However, in practice, the varieties used in the 

mixtures have often only a common phenotypic base. The mechanism involved in the 

protection of the multilines, is not completely understood. It seems clear that a fewer number 

of susceptible plants, would reduce the amount of inoculum available for development of the 

epidemic. In the same way, the presence of a resistant variety in the mixture could act as 

mechanical barrier, difficulting pathogen dispersion. Also, induced resistance during 

incompatible interactions may play a role in these mixtures. Thus, the use of multilines with 

Pc51 and Pc52 genes has been successfully used in reducing rust severity in oat (Frey, 1982). 

 

Broad-spectrum resistance  

Unlike race-specific resistance, broad-spectrum resistance confers an incomplete, partial but 

more durable protection to the pathogen (Niks and Rubiales, 2002). Due to its complex genetic 

base it is difficult to improve cultivars with this form of resistance, mainly due to the lack of 

appropriate selection tools for selecting the appropriate individuals from the segregating 

populations. 

 

One of the difficulties of managing the broad-spectrum resistance is the subjective assessment 

of the phenotypic resistance parameters. Recently, in order to avoid the subjectivity of such 

assessments, more objective methods based on digital image analysis (Diaz-Lago et al., 2003) 

has been used in these evaluations. Although these phenotypic approaches can estimate the 

heritability and the weight of dominance and additive effects in the control of the traits, these 
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methods do not give information about the location and the number of genes involved 

(Fondevilla et al., 2010). 

 

The development of genetic maps and Quantitative Trait Loci (QTL) analyses has been a major 

breakthrough in the characterization of quantitative traits, enabling the identification of 

associated genomic regions and their contribution to the phenotypic variation. In addition, the 

mapping of QTLs is an useful tool to identify molecular markers linked to the resistance genes 

that could be used to assist breeding (Collard et al., 2005). 

 

Only a limited number of QTLs for partial resistance to crown rust have been identified and 

they have been determined by using the impact of the disease in agronomic traits (Diaz-Lago 

et al., 2003) or macroscopic evaluation of disease symptoms such as disease severity and 

infection type (IT) (Acevedo et al., 2010; Jackson et al., 2007; Zhu et al., 2003) hence, the 

specific resistance responses linked to the QTLs were not elucidated.  In chapter three “QTL 

association with resistance mechanism to crown rust” we aimed to identified QTLs for 

resistance to crown rust, and particularly with specific resistance responses related to basal 

resistance previously determined histologically in a mapping population Ogle x TAM 0-301 

(Jackson et al., 2007). 

 

Currently it is commonly accepted that together with a wide genetic resource base and 

appropriated selection tools, understanding the mechanisms underlying the plant resistance 

response is crucial in order to improve cultivars for durable resistance. Thus, there has been an 

increasing impetus for modern breeding strategies to employ the physiological, biochemical 

and molecular characteristics responsible for resistance phenotypes, which may better reflect 

lineage productivity, coupled with a requirement to integrate responses to environmental 

stress into any assessment (Araus, 1996; Richards, 1996; Slafer and Araus, 1998). 

 

ABIOTIC STRESSES AFFECTING OATS 

Abiotic stresses are the primary cause of crop loss worldwide, reducing average yields for most 

major crop plants by more than 50% (Bray et al., 2000). Abiotic stresses may have a physical 

nature: water stress (deficit or excess), temperature (high or low), salinity and UV radiation, or 

a chemical origin; heavy metals, toxins and alteration of the mineral components are the most 

representative.  
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However, among all of the resources necessary for plant growth and development, water can 

be considered the most important and limiting factor. In fact, currently drought is one of the 

main constrains preventing crops plants from expressing their full genetic potential (Farooq et 

al., 2009) so that in the present work, we will focus on drought stress. The effects of drought in 

plants range from morphological to molecular levels and are evident at all phenological stages 

of plant growth at whatever stage the water deficit takes place. The knowledge of the impact 

of drought on plants is important since differences in the drought effect on the plants together 

with changes in the resistance responses may indicate drought tolerance and may be used as 

marker for selection.  

 

Effects of drought on plants  

Effects on crop growth and yield: Cell enlargement, differentiation and division are key 

phenomena involved in the plant growth. All of them are strongly influenced by water deficit 

since water is one of the physical forces involved in the cell enlargement. Impaired mitosis, cell 

elongation and expansion result in reduced plant height, leaf area and crop growth under 

drought conditions. Drought-induced yield reduction has been reported in many crop species 

by reduction the number of tillers, spikes or grains per plant. Moreover, the flower production 

and grain filling is hampered (Taiz and Zeiger, 2006). Decline in the rate of grain growth 

resulted from reduce sucrose synthase activity, while cessation of growth resulted from 

inactivation of adenosine diphosphate-glucose-pyrophosphorylase in water-stressed wheat 

(Ahmadi and Baker, 2001). 

 

Assimilation partitioning: Drought stress frequently enhances allocation of dry matters to 

the roots, which can enhance water uptake due to a preferential accumulation of starch and 

dry matter in roots as an adaptation to drought (Singh and Gupta, 1993). Drought stress 

decreases the photosynthetic rate and disrupts the carbohydrate metabolism and level of 

sucrose in leaves that spills over to a decrease export rate. Limited photosynthesis and sucrose 

export to the sink organs and ultimately affect the reproductive development (Sinha, 1978). 

 

Nutrients: Drought stress reduces the availability, uptake, translocation and metabolism of 

nutrients. A reduced transpiration rate due to water deficit reduces the nutrient absorption 

and efficiency of their utilization (Farooq et al., 2009). Therefore, water stress affects plant 

mineral nutrition and disrupts ion homeostasis. It is difficult to identify the effects of drought 

on mineral uptake and accumulation in plant organs but in general, moisture stress induces an 
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increase in N, a decline in P and no effects on K. Briefly four main ions are affected by drought 

stress; calcium, potassium, phosphorous and nitrogen.  

 

Water relations: Under drought stress, some important characteristics of the plant such as 

relative water content (RWC), leaf water potential, stomatal resistance, rate of transpiration, 

leaf temperature and canopy temperature are influenced. Exposure of plants to drought led to 

noticeable decreases in leaf water potential and RWC with an increase in leaf temperature in 

wheat plants (Siddique et al., 2000). Change in leaf temperature may be an important factor in 

controlling water leaf status under drought stress. Canopy temperature, obtained by infrared 

thermometry, was proposed as a crop water indicator by (Jackson et al., 1981) and widely used 

in drought studies since then. Also, numerous studies have associated increased stomatal 

resistance (or its opposite, diminution of stomatal conductance) with response to water deficit 

in cereals (Otoole and Cruz, 1980). As previously reported Medrano et al., (2002), stomata 

close in response to drought before any change in leaf water content was detectable. This is 

attributed to the abscisic acid (ABA) root-to-leaf signaling promoted as the soil dries. The 

stomatal closure is followed by parallel decreases of net photosynthesis. 

 

Photosynthesis: Photosynthesis is particularly sensitive to water deficit. In accordance with a 

decrease in relative water content (RWC) and leaf water potential, there is a decrease in 

photosynthetic rate (Lawlor and Cornic, 2002). However there are controversial reports about 

whether the origin of the photosynthetic decrease is the result of stomatal closure or a direct 

metabolic impairment (Sharkey, 1990; Tezara et al., 1999). It´s evident that stomata close 

progressively with increased drought stress. Thus, water deficiency reduces the supply of 

carbon dioxide and photosynthetic carbon assimilation in favor of photorespiration. In 

addition, metabolic impairment may also contribute to photosynthetic rate decrease since: 1) 

under drought conditions, reduction in chloroplast volume may lead to desiccation within the 

chloroplast, which in turn leads to conformational changes in rubisco (Reddy et al., 2004), 

furthermore, acidification of chloroplast stroma due to drought conditions inhibits rubisco 

activity (Vu et al., 1987); 2) Water stress reduces activity of other photosynthetic enzymes such 

as phosphoenolpyruvate carboxylase, nicotinamide adenine dinucleotide phosphate-malic 

enzyme, fructose-1,6-bisphosphatase and pyruvate orthophosphate dikinase; 3) Inhibition of 

chlorophyll biosynthesis; 4) Impaired adenosine triphosphate synthesis (Tezara et al., 1999). 

 



  Introduction 

32 
 

Oxidative damage: As stomata close during progressive drought stress, an imbalance 

between excess incident light and the CO2 available for reduction lead to reactive oxygen 

species generation (Foyer and Noctor, 2000). In fact, under conditions of photon excess, cyclic 

electron flow either through photosystem PSI or PSII to down regulate quantum yield. 

However, if there is more excitation than can be processed, photoinhibition occurs and highly 

reactive species are produced. In PSII highly reactive singlet oxygen can be produced via triplet 

chlorophyll P680 (Asada, 2006; Krieger-Liszkay, 2005). In PSI, under low NADP+ concentration, 

Fd will reduce O2 instead of FNR yielding O2
-. O2

- dismutates to H2O2 and dioxygen, in a reaction 

catalysed by superoxide dismutase (Cruz et al., 2005). Increase of ROS, if not properly scavenge 

lead a denaturation of functional and structural macromolecules, including DNA, protein and 

lipids causing oxidative damage an impairing the normal functions of cells, overall enhancing 

peroxidation of membrane lipids, degradation of nucleic acids and both structural and 

functional proteins.  

 

Mechanisms of adaptation to drought stress  

Several morphological, physiological and molecular plant responses can contribute for coping 

with drought stress. These may be classified in three groups (Turner et al., 2001): shortening of 

the crop duration to complete life cycle before stress, escape; increasing its ability to avoid 

damage, avoidance mechanisms and/or to maintenance of metabolic functions under water 

limiting conditions, tolerance mechanisms 

 

Escape: Plants may complete the life cycle before the onset of severe drought by different 

ways: 

 Early flowering time is probably the most representative trait associated with 

drought escape. Drought escape occurs when plant phenological development is 

successfully matched with periods of soil moisture availability avoiding stress period 

that could mitigate plant yield (Araus et al., 2002). Developing varieties that mature 

before the onset of severe terminal drought has successfully increased the yield 

crop under drought-prone conditions (Kumar and Abbo, 2001). However, we must 

be careful reducing crop duration, because yield is correlated with it and an 

excessive decline in crop duration under favorable conditions could mitigate 

optimum yield (Turner et al., 2001).  Peuke and Rennenberg (2004) reported a 

selection, for earlier flowering Avena barbata germplasm under drought conditions. 
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 Early vigor. It is considered one of the most import drought escape mechanism. 

Early vigour should be combined with appropriate phenology for the target 

environment. Correlation between initial growth vigour and other characterises in 

recombinant imbred lines of chickpea showed that high growth vigour had 

significant negative correlation with days to first flower, flowering, first pod and 

maturity (Toker, 2006). In cultivated oat early planting, rapid germination and early 

emergence results in a competitive advantage over wild oat having a great effect of 

final yield (Willenborg et al., 2005). In fact, the selection of oat genotypes with 

larger seeds suitable for sowing in areas displaying moisture stress will help to 

reduce the risk of poor stand establishment and will enable more homogenous 

growth under varying rainfall conditions (Medrano et al., 2002). 

 

Avoidance: It is the ability to avoid damage by keeping the water content high in the plant 

tissues. This may be achieved by:  

 Closing stomata, reducing light absorbance through rolled leaves (Ehleringer and 

Cooper, 1992), dense trichome layer increasing reflectance (Larcher, 2000), steep 

leaf angles, decreasing canopy leaf area through reduced growth. Others traits are 

shedding of older leaves, production of smaller leaves, with more densely 

distributed stomata and leaves covered by epicuticular waxes or thicker cuticles. 

 Maximising water uptake developing an adapted root system to drought 

conditions. Root thickness and root dry weight per tiller have been found to be 

implicated in drought avoidance (Champoux et al., 1995). In fact, all root 

parameters could be considered as drought avoidance traits: biomass, length, 

density, depth, branching, diameter, and root to shoot ratio (Gowda et al., 2011). 

 Storing water on below ground organs. 

 

Tolerance mechanisms: Understanding plant tolerance to drought is of fundamental 

importance and forms one of the major research topics in plants research. Osmotic 

adjustment, osmoprotection, antioxidation and a scavenging defense system have been the 

most important bases responsible for drought tolerance to counteract the previously state 

drought induced damages. However, the physiological basis of genetic variation in drought 

response is not clear; in part, because highly complex mechanisms are likely involved. Some of 

these mechanisms are described below (Farooq et al., 2009). 
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At physiological level:  Mechanisms such as improved water uptake under stress and the 

capacity of plant cells to hold acquired water, reduce water loss and water storage are 

important. Plants respond to water deficit using mechanisms as improved root traits (Price et 

al., 2002) and by reducing water loss through reduced epidermal (stomatal and cuticular) 

conductance, reduced radiation absorption, and reduced evaporative surface (leaf area). 

 

In addition, maintenance of turgor pressure through osmolite accumulation and cell wall 

elasticity. Popham et al., (1993) reported that changes in cell wall rigidity are important in 

drought tolerance in cotton. 

 

Biological membranes are the first target of many abiotic stresses (Levitt, 1980). Then, it’s 

generally accepted that the maintenance of integrity and stability of membrane under water 

stress is a major component of drought tolerance in plants (Bajji et al., 2002); indeed cell 

membrane stability is a physiological trait widely used for the evaluation of drought tolerance 

in wheat (Blum and Ebercon, 1981; Dhanda et al., 2004; Singh et al., 1992) and rice (Agarie et 

al., 1995). The causes of membrane disruption are unknown; it supposed that a decrease in 

cellular volume causes crowding and increases the viscosity of cytoplasmic components. This 

increases the chances of molecular interactions that can cause protein denaturation and 

membrane fusion (Farooq et al., 2009). Thus, the adaptation of oat seedlings to water stress 

has been associated with changes in the lipid composition of the plasma membrane of root 

cells increasing permeability for glucose and decreased permeability for protons as compared 

to control vesicles and highlighting the importance of the ratio phosphatidylcholine (PC) / 

phosphatidylethanolamine (PE), the levels of cerebrosides and free sterols and the possible 

interaction of these components for the plasma membrane in that acclimation (Mut and Akay, 

2010). 

 

At molecular level:  Tolerance of environmental stress such drought arises from integration of 

events occurring at molecular and biochemical levels which are manifested at the physiological 

and morphological level previously seen. At the molecular level drought is perceives as signal 

that brings about changes in expression of genes and synthesis and modification of protein 

activity. At biochemical level drought tolerance responses are related with profound 

metabolism changes mostly leading to osmotic compound production.  

 

Oxidative damage induced by drought may be alleviated by the join action of both enzymatic 

and non-enzymatic antioxidants systems. Among antioxidant enzymes are catalases, 
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superoxide dismutase, peroxidases, ascorbate peroxidases, glutathione reductase and 

monodehydroascorbate reductase. The non-enzymatic antioxidant systems include β-

carotenes, ascorbic acid, α-tocopherol, reduced glutathione (Hasegawa et al., 2000; Havaux, 

1998; Prochazkova et al., 2001). 

 

Compatible solutes and osmotic adjustment through overproduction of compatible organic 

solutes (Serraj and Sinclair, 2002) help to maintain turgor in the cells; low-molecular-weight, 

highly soluble compounds contribute not only to osmotic adjustment, but also contributes to 

the detoxification of ROS, stabilization of membranes and native structures of enzymes and 

proteins. This involve accumulation of specific compounds such as sugars (i.e. from the 

raffinose family oligosaccharides, RFO) sugar alcohols (such as mannitol), amino acids (such as 

proline) and amines (such as glycine, betaine and polyamines) which allows the cell to 

decrease osmotic potential and hence increase the gradient for water influx and turgor. Thus, 

osmotic adjustment has been related to grain yield under water deficit environments 

(Moinuddin et al., 2005) and it is considered as a selection criterion for drought tolerance in 

wheat (Dhanda et al., 2004). 

 

In addition sugar and sugar alcohols such as galactinol and raffinose function as 

osmoprotectans during drought stress. Trehalose is a non-reduncing disaccharide of glucose 

that functions as a compatible solute in the stabilization of biological structures under abiotic 

stress (Garg et al., 2002). Trehalose enhance drought tolerance by stabilization of dehydrated 

enzymes, proteins and lipid membrane, as well as protection of biological structures under 

desiccation stress rather than regulation water potential (reviewed by Farooq et al., 2009)  

 

Accumulation of proline is one of the first plant responses to water stress. Proline has widely 

been studied because its accumulation provides drought tolerance in many species. It is 

thought to play a multifunctional role to cope water stress; participates in cellular 

homeostasis, including redox balance and energy status. Also, it acts as signaling molecule to 

modulate mitochondrial functions, influence cell proliferation or cell death and trigger specific 

gene expression which can be essential for plant recovery (Szabados and Savoure, 2010).  

 

In addition to this and other aminoacids polyamines (PAs) such as putrescine, spermidine and 

spermine are accumulated under abiotic stress providing tolerance in many species such as 

rice or wheat (Erdei et al., 1990; Yang et al., 2007) playing as osmolites increasing leaf water 
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potential. Since we extensively focused in polyamine role during biotic and abiotic stress 

responses we will be devoted to these important molecules in the next section.  

 

POLYAMINES IN BIOTIC AND ABIOTIC STRESS RESPONSES 

Polyamines (PAs) are low molecular weight aliphatic nitrogen compounds positively charged at 

physiological pH (Groppa and Benavides, 2008) that are found in a wide range of organisms 

from bacteria to plants and animals (Alcazar et al., 2006). 

 

They are protonated at cellular pH and because of this interact with macromolecules like DNA 

and RNA, as well as with other negatively charged molecules such as phospholipids and 

proteins (Walters, 2000). Thus, polyamines are known to stabilize macromolecular structures,  

but, in addition, recent studies indicate that polyamines may act as cellular signals in intricate 

crosstalk with hormonal pathways, such as abscisic acid, ethylene, hydrogen peroxide and 

nitric oxide (An et al., 2008; Toumi et al., 2010; Yamasaki and Cohen, 2006). Overall poliamines 

has been reported to act as regulatory molecules in many fundamental cellular processes 

including cell division, embryogenesis, senescence and in response to stress (Martin-Tanguy, 

1997). 

 

Several studies have demonstrated that the homeostasis of PAs in plants correlates with 

several important physiological functions, including the control of the N:C balance (Mattoo et 

al., 2006), stress responses (reviewed in Alcazar et al., 2011), xylem differentiation (Muniz et 

al., 2008; Tisi et al., 2011a; Tisi et al., 2011b), pollen tube growth (Wu et al., 2010), membrane 

fluidity, and protein regulation (Baron and Stasolla, 2008; Takahashi et al., 2010). Polyamines 

have also been implicated in plant responses to abiotic stress, with polyamine levels increasing 

several fold in plants responding to, for example, potassium deficiency, osmotic shock, drought 

and salt stress (Watson et al., 1998; Watson and Malmberg, 1996). PA catabolism, 

biosynthesis, conjugation, interconversion, and transport altogether contribute to PA 

homeostasis. The pathways of PA biosynthesis in higher plants have been well established: 

most genes for enzymes involved are cloned and transgenic and mutant plants with changed 

PA metabolism obtained (Bhatnagar et al., 2001; Kaur-Sawhney et al., 2003; Capell et al., 

2004). Over-expression of different PA biosynthetic enzymes (cloned from bacterial, fungal, 

plant, and animal genomes) in different plant species have yielded biotic and abiotic stress 

tolerant plants (reviewed by Alcazar et al., 2010 and Hussain et al., 2011b). Thus PAs have 

been highlighted to be the substantial players in self-defense against various environmental 
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stresses which have been substantiated by gain-of-function and loss-of-function experiments 

on PA biosynthetic genes. For example, Arabidopsis thaliana plants overexpressing a Cucurbita 

ficifoia Spd synthase gene have been demonstrated to become tolerant to multistress factors 

such as low temperature, freezing temperature, salinity, drought, and herbicide Paraquat 

(Kasukabe et al., 2004). 

 

In plants cells the polyamines could be found as free molecules and also exist as conjugates, 

associated with small molecules such as phenolics acids preferentially p-coumaric, ferulic and 

caffeic acids, (Martin-Tanguy, 1997). Conjugation is achieved by the formation of an amide 

linkage, using esters of CoA for provision of the activated carboxyl groups (Negrel, 1989). 

Putrescine and spermidine are conjugated by distinct transferases that differ in their 

specificities towards hydroxycinnamoyl CoA derivatives. Polyamine conjugates have long been 

associated with flowering (Martin-Tanguy 1997), and they have also been found to undergo 

marked changes in interactions between plants and viruses. Thus, Torrigiani et al., (1997) 

found that conjugated forms of putrescine and spermidine increased in tobacco leaves 

exhibiting a hypersensitive response (HR) to the tobacco mosaic virus (TMV). 

 

Furthermore, PA catabolism/ interconversion generates reactive oxygen species (ROS), and 

particularly H2O2 which has been confirmed as a key player during stress responses. Stress-

induced PA accumulation and their protective function against biotic and abiotic stresses are 

of special interest (Bouchereau et al., 1999).  

 

Thus, a general phenomenon observed is that PAs can alter their titres in response to various 

types of environmental stresses such as water stress (Capell et al., 2004; Kasukabe et al., 2004; 

Ma et al., 2005), low and high temperatures (Hummel et al., 2004; Imai et al., 2004; Song et al., 

2002) and salinity (Liu et al., 2006; Maiale et al., 2004; Roy et al., 2005). In another example, 

Waie and Rajam (2003), observed that transgenic tobacco plants over-expressing a human 

SAMDC gene had higher Spd and Put levels and exhibited tolerance to drought and salt stress. 

Franceschetti et al., (2004) also showed that over-expression of Arabidopsis SAMDC in tobacco 

plants resulted in increased SAMDC activity, accumulation of dcSAM, perturbation of PA levels 

and transgenic plants exhibited multiple stress tolerance. Recently, Peremarti et al., (2009) 

generated transgenic rice plants constitutively expressing heterologous SAMDC gene from 

Datura stramonium to dissect the roles of Put from higher polyamines Spd and Spm. Both 

transgenic and wild type plants showed identical symptoms when exposed to drought stress 

but transgenic plants recovered much more quickly on re-watering. Similarly, transgenic carrot 
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lines over-expressing mouse odc, which converts ornithine to diamine putrescine were able to 

withstand salt and osmotic stress over short period (Minocha and Sun, 1997). In another set of 

experiments, ADC expressing transgenic rice plants produced higher levels of Put, Spd and Spm 

and exhibited drought tolerance. Further, it has been proposed that Put may reflect the sub 

optimal growth conditions while Spd and Spm may help detoxifying free radicals (Larher et al., 

2003). These results confirmed the involvement of polyamines in drought stress and further 

attributed individual roles to Put, Spd and Spm. Interestingly, introduction of a single 

polyamine biosynthesis gene has been shown to confer tolerance to multiple stresses. 

Examples of these are when Kasukabe et al., 2006; Kasukabe et al., 2004; and Wi et al., 2006 

found broad spectrum tolerance to abiotic stresses—drought, chilling, freezing, salinity and 

oxidative stress—by over-expression of SPDS (Spermidine synthase) from Curcurbita ficifolia in 

Arabidopsis, sweet potato (Ipomoea batatas) or tobacco. A cDNA microarray analysis between 

chilled leaves of a transgenic line and wild type revealed that genes encoding transcription 

factors such as WRKY, B-box zinc finger proteins, NAM proteins, DREB2B and NAC domain 

proteins are up-regulated in transgenic plants. (Wen et al., 2008) demonstrated that 

overexpression of an apple MdSPDS1 gene in European pear substantially increased tolerance 

to multiple stresses by altering PA levels. Similarly, Prabhavathi and Rajam, (2007) 

demonstrated that transgenic eggplant harboring the oat ADC gene exhibited increased 

tolerance to drought, salinity, low and high temperature and heavy metals. 

 

In addition, several studies have shown that polyamine accumulation occurs under biotic 

stresses in plants.  For instance, early efforts found that in compatible interactions between 

barley and Puccinia hordei (brown rust fungus), polyamines particularly spermidine 

accumulate in infected leaves (Greenland and Lewis, 1984). Polyamine accumulation has also 

been reported in leaves of barley following infection by powdery mildew fungus (Blumeria 

graminis f. sp. hordei) (Walters et al., 1985; Walters and Wylie, 1986). The presence of PA in 

both plants and pathogenic fungi makes it difficult to identify their respective contribution to 

PA accumulation in infected organs. Another important observation regarding PA implication 

in the signaling pathway involved in biotic stress response has been postulated. Accumulation 

of H2O2 as a result of PA catabolism and nitric oxide due to induction by spermine/spermidine 

plays an important signaling role in plant–pathogen interactions (Romero-Puertas et al., 2004; 

Tun et al., 2006; Walters, 2003; Yamasaki and Cohen, 2006). These studies suggest that 

manipulation of key factors present upstream of polyamine biosynthesis or in the polyamine-

induced signaling pathway could render the host plant resistant to biotic stresses. 
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During the last decade, knowledge on the importance of PAs to unfavorable growth conditions 

has increased considerably. Analyses of metabolic adjustments of plants with different levels 

of stress tolerance and transgenic approaches provide important complementing evidence for 

better understanding the role of PAs in adjusting to harsh environments. However, the 

molecular mechanism of how PAs act in these processes has remained unclear. Stress-induced 

signaling networks are well studied with new and exciting reports coming up every year. 

However, the signaling processes required for homeostasis of basic cellular and metabolic 

processes in adverse environments are just starting to emerge. Better understanding of how 

environmental changes are communicated via cellular signal transduction to induce a 

coordinated metabolic response, and how the function of PAs are adjusted by transcriptional 

and post-translational modifications, are of basic scientific interest and will contribute to meet 

the goal of increased plant stress tolerance and productivity in an ever-changing environment 

(Gupta et al., 2013).  

 

CROSSTALK BETWEEN RESISTANCE RESPONSES TO BIOTIC AND ABIOTIC 

STRESSES  

Plants encounter a wide range of environmental stresses during a typical life cycle and have 

evolved mechanisms to increase their tolerance through both physical adaptations and 

interactive molecular and cellular changes that begin after the onset of stress (Gupta et al., 

2013). Thus, plant responses to biotic and abiotic stresses involve a network of molecular 

mechanisms that vary depending on the nature of the pathogen or stress signal (AbuQamar et 

al., 2009). It has been reported that exposure to abiotic stresses, in some cases, enhances 

plant resistance to pathogens indicative of crosstalk between biotic and abiotic stress signaling 

(Bowler and Fluhr, 2000). Induced resistance to both biotic and abiotic stresses has also been 

documented by Zimmerli et al., (2000), Jakab et al., (2005) and Ton et al., (2005). This may 

arise from the fact that the plant encounters stress combinations concurrently or separated 

temporally and must present an integrated response to them to survive. Thus, several biotic 

and abiotic stress pathways share common elements that are potential “nodes” for cross-talk. 

Cross-talk can also occur between pathways in different organs of the plant when a systemic 

signal moves from a stimulated cell into a another tissue to elicit a response (Knight and 

Knight, 2001).  

 

The involvement of a wide battery of signaling molecules and hormones in plant responses to 

different stresses may allow plants to quickly adapt to their biotic and abiotic environment and 
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to utilize their resources in a cost-efficient manner (Pieterse et al., 2009). It is generally 

believed that hormone-regulated induced defense responses evolved to save energy under 

enemy-free conditions, as they only involve costs when defense are activated upon pathogen 

or insect attack  (Walters and Heil, 2007). This cost arises from the allocation of resources to 

defense and away from plant growth and development. Trade-offs between plant growth rate 

and disease resistant has been well documented (Walters and Heil, 2007) and support the 

hypothesis that plant growth and defense are regulated by a network of interconnecting 

signaling pathways.  

 

Phytohormones such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid 

(ABA) are endogenous, low-molecular-weight molecules that primarily regulate the protective 

responses of plants against both biotic and abiotic stresses via synergistic and antagonistic 

actions, and hence they are important components of the signaling crosstalk  (Bostock, 2005; 

Lorenzo and Solano, 2005; Mauch-Mani and Mauch, 2005). Moreover, the generation of 

reactive oxygen species (ROS) has been proposed as a key process that is shared between 

biotic and abiotic stress responses (Apel and Hirt, 2004; Torres and Dangl, 2005). Rapidly 

accumulating data, resulting from large-scale transcriptome analyses with DNA microarray 

technology, strongly support the existence of such crosstalk between signaling networks 

(Schenk et al., 2000; Seki et al., 2002; Cheong et al., 2002; Narusaka et al., 2003; Davletova et 

al., 2005) with biotic and abiotic stresses regulating the expression of different but overlapping 

suites of genes.  

 

So far, many examples of positive and negative crosstalk between SA, JA and ET signaling have 

been reported and are documented in a series of informative reviews (Kazan and Manners, 

2008; Koornneef and Pieterse, 2008; Lopez et al., 2008; Lorenzo and Solano, 2005; Robert-

Seilaniantz et al., 2007; Spoel and Dong, 2008). 

 

In recent years, several proteins with an important regulatory role in SA-JA crosstalk have been 

identified in Arabidopsis. Mutation or ectopic expression of the corresponding genes were 

shown to have contrasting effects on SA and JA signaling and on resistance against biotrophs 

and necrotrophs (reviewed in Koornneef and Pieterse, 2008). 
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Fig 16. Networking by phytohormones in the plant immune response. Cross-communication between hormone 

signaling pathways provides the plant with a large regulatory capacity that may tailor its defense response to 

different types of attackers. On the other hand, pathogens such as P. syringae produce effector proteins (for 

example, coronatine, HopI1 and AvrRpt2) that manipulate the signaling network to suppress host immune 

responses and promote virulence. The SA, JA and ET signaling pathways represent the backbone of the defense 

signaling network, with other hormonal signaling pathways feeding into it. Only those signal transduction 

components that are relevant to this review are shown. ⊥, negative effect; purple stars, positive effect. ( from 

(Pieterse et al., 2009). 

 

 

ET has been demonstrated to be an important modulator of the plant’s defense response to 

pathogen and insect attack (Howe, 2004; Loake and Grant, 2007; van Loon et al., 2006; von 

Dahl and Baldwin, 2007). For instance, from a study with ET-insensitive (Tetr) tobacco plants, it 

was concluded that ET is essential for the onset of SA-dependent SAR that is triggered upon 

infection by tobacco mosaic virus (Verberne et al., 2003). Moreover, ET was shown to enhance 

the response of Arabidopsis to SA, resulting in a potentiated expression of the SA-responsive 

marker gene PR-1 (De Vos et al., 2006; Lawton et al., 1996). This synergistic effect of ET on SA-

induced PR-1 expression was blocked in the ET-insensitive mutant ein2 (De Vos et al., 2006), 

which indicates that the modulation of the SA pathway by ET is EIN2 dependent and thus 

functions through the ET signaling pathway (Fig. 16). 
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Though the SA, JA and ET response pathways serve as the backbone of the induced defense 

signaling network, studies in Arabidopsis demonstrated that other hormone response 

pathways feed into it (Fig.16). ABA is commonly associated with plant development and abiotic 

stress, but its role in biotic stress is becoming increasingly evident (Asselbergh et al., 2008; 

Mauch-Mani and Mauch, 2005). ABA is connected to the SA-JA-ET network, as it was shown to 

attenuate JA/ET-dependent gene expression (Anderson et al., 2004) and to affect JA 

biosynthesis and resistance against JA-inducing necrotrophic pathogens (Adie et al., 2007; 

Flors et al., 2008). Moreover, ABA was demonstrated to antagonize the onset of SA-dependent 

defenses and SAR (Mohr and Cahill, 2007; Yasuda et al., 2008). 

Auxins play a role in virtually every stage of plant development. The auxin response pathway is 

connected to the SA-JA-ET signaling network in different ways. For instance, auxin has been 

demonstrated to affect JA biosynthesis (Nagpal et al., 2005) and the expression of genes 

involved in JA production (Liu and Wang, 2006). 

Recently, gibberellins were shown to hook up to the SA-JA-ET network as well. Gibberellins are 

hormones that control plant growth by regulating the degradation of growth-repressing DELLA 

proteins. Navarro et al., (2008) demonstrated that DELLA proteins promote susceptibility to 

biotrophic pathogens and resistance to necrotrophic pathogens by modulating the relative 

strength of the SA and JA signaling pathways. 

 

Neverthless, it not well know the crosstalk between the polyamine and the other signals 

molecules implicated in plant resistance. 

 

 

GENOMIC APPROACHES FOR BREEDING OATS FOR BIOTIC AND ABIOTIC 

STRESS RESISTANCE 

Analysis of genetic diversity in crops by molecular markers is important for crop improvement 

and provides essential information to enable a more efficient use of available genetic 

resources in breeding programs (Mohannadi and Prasanna, 2003).  Thus, diversity studies can 

be used in a number of applications including analysis of genetic variability between cultivars, 

identification of parents in a crossing program to maintain a wide genetic base (Souza and 

Sorrells, 1990), introgression of desirable traits from wild relatives (Feuillet et al, 2007) and 

cultivar fingerprinting (Manifesto et al, 2001).  
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Associations between traits and molecular markers (e.g., allozymes or RFLPs) have been widely 

use in oats in surveys of genetic diversity. For example, in a collection of wild oat, Avena sterilis 

L., allozymes of 6-phosphogluconate dehydrogenase were associated with differences in groat 

size and spikelet yield (S. Beer and T. Phillips, pers. comm.). When a large fraction of the 

associations between molecular and agronomic traits are caused by linkage, then such 

associations may be useful in identifying a subset of probes with enhanced potential as 

markers for quantitative (or simply-inherited) agronomic trait loci. Even after a linkage map 

has been developed for a crop species, selection of probes for subsequent studies will remain 

a challenge, especially in polyploids. Markers will be sought for traits not evaluated in the 

original mapping population, and new polymorphisms will likely map on different 

chromosomes. Given the expense of generating mapping data and the large numbers and 

kinds of molecular markers from which to select, efficient selection of markers will be an 

objective of any marker-assisted breeding program. While genome coverage is usually the first 

criterion used in selecting probes, putative linkage with quantitative trait loci might be used as 

an additional criterion.  

 

The nature of the markers used in genetic diversity or linkage studies has been changing 

according to the development of new genomic approaches. The first markers used were 

biochemical markers such as enzymes or isozymes, which have been used in a number of 

species including oats (Souza and Sorrells, 1990) and morphological markers such as plant 

height, number of fertile tillers, maturity date and thousand grain weight also used in oats 

(Souza and Sorrells, 1991). However the most widely used markers are the molecular markers. 

These have an advantage over phenotypic markers in that they are potentially much more 

numerous and display variation in the DNA which is not seen in the phenotype e.g. differences 

in the length of a simple sequence repeat (SSR) or a single nucleotide polymorphism (SNP) 

(Jones et al., 1997). Another advantage of molecular markers is that they are not affected by 

the environment (Collard et al., 2005). There are many examples of the use of molecular 

markers in diversity studies of cereals including oats (Li et al., 2000, Fu et al., 2007), wheat 

(Manifesto et al., 2001, Soleimani et al., 2002), barley (Manninen and Nissila, 1997), and 

sorghum (Mace et al., 2008). 

 

Molecular markers include random fragment length polymorphisms (RFLPs, Weber and May, 

1989), amplified fragment length polymorphisms (AFLPs, Vos et al., 1995), microsatellite or 

simple sequence repeats (SSRs; Hearne, 1992) and diversity array technology (Jaccoud et al., 

2001) markers. These markers have been used in oats to produce molecular maps (Groh et al., 
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2001, De Koeyer et al., 2004), to map genes (Milach et al., 1997) and to monitor allele 

frequency (Fu et al., 2003). We will focuss in the SSR and DArT markers which have been used 

in this work. 

 

Microsatellite markers (SSR) 

Microsatellites (also known as simple sequence repeats or SSRs) are simple sequence tandem 

repeats of a relativity small size usually less than 100 base pairs (bp) in length (Hearne et al., 

1992). They occur in large quantities throughout the genome in eukaryotic cells. 

Microsatellites can be amplified using PCR to show polymorphisms which occur when there is 

a difference in the number of repeat units (Hearne et al., 1992). The size of the product 

reflects the length of the forward and reverse primers, the length of the repeat and any 

additional DNA adjacent to the repeat depending on where the primers are designed. They can 

be detected on high resolution gels or on capillary sequencer, which can separate products 

which vary in size by as little as two base pairs. Microsatellites are co-dominant markers 

meaning they are able to distinguish between hetero- and homozygotes. These qualities make 

microsatellites ideal molecular markers for genetic mapping and diversity studies. The 

development of microsatellite markers has followed two main paths. The first involves the use 

of expressed sequence tags (ESTs) which are short, sequenced fragments of DNA developed 

from cDNA libraries. These are then screened for microsatellite repeats. Recently 216 oat EST-

SSRs have been published in oats (Becher, 2007). The other method involves construction and 

screening of a small insert genomic library. In this, the whole genome is split into 300-900bp 

fragments using restriction enzymes and then screened with microsatellite probes. 

Microsatellite containing clones are then sequenced (Li et al., 2000). 

 

 In the last few years there have been a number of reports of the development of 

microsatellites in oats (Becher, 2007; Li et al., 2000). However, compared to other cereals such 

as barley, wheat and rice, relatively few oat microsatellites have been published. 

Microsatellites developed for other species have also been investigated for use in oats (Li et 

al., 2000) and used to help identify relationships between lines.  

 

In most genetic diversity studies the map position of the SSR markers is known before the 

commencement of the study (Mantovani et al., 2008). In some cases a good genome-wide 

spread can be devised by choosing a set of markers from each linkage group (Hurtado et al., 

2008).  
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DArTs markers 

SSR markers are expensive to develop as they rely on library construction and sequence 

information which is time consuming to determine. Diversity Array Technology (DArT) markers 

do not require any sequence information and offer a low-cost, high throughout system of 

marker analysis providing a wide coverage of the genome (Jaccoud et al., 2001). These markers 

can detect insertion, deletion and rearrangement type DNA polymorphisms (Jaccoud et al., 

2001) but more usually are a result of single-nucleotide polymorphisms (SNP) (Tinker et al., 

2009). DArT marker discovery comprises a complexity reduction of a pooled DNA sample of the 

species of interest (Fig. 16). The resulting fragments are used to form a library, a selection of 

these are spotted onto glass slides to form a genotyping array. Individual DNA samples can 

then be prepared using the same complexity reduction method and hybridised to the 

genotyping array, the presence or absence of hybridisation is then recorded (Fig. 16). DArT 

markers can expand map coverage and enhance germplasm characterisation of oats (Tinker et 

al., 2009) and have been used successfully in wheat (Akbari et al., 2006), barley (Wenzl et al., 

2004), sorghum (Mace et al., 2008) and pigeonpea (Yang et al., 2006). DArT markers are 

dominant so unlike SSRs they cannot distinguish between hetero- and homozygotes. 

 

DArT markers are a relativity new technology being first described by (Jaccoud et al., 2001). To 

date there has only been one paper published which reports the use of DArT markers in oats 

(Tinker et al., 2009); this paper describes how three microarray slides were developed using a 

worldwide selection of oat germplasm originating from 60 oat varieties from 15 countries. 

These arrays were then used on 182 different accessions, including 19 used in this study, to 

identify the genetic similarity. Unlike microsatellites, DArT markers cannot be transferred 

across species. However now the oat microarrays have been formulated and they can be used 

on any oat population thus allowing integration of existing genetic maps into a single 

consensus map. Integrated mapping of DArT and SSR markers has been conducted in durum 

wheat (Mantovani et al., 2008) and barley (Hearnden et al., 2007) and very recently in oat 

(Oliver et al., 2013). 
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Fig 17. A schematic diagram of how DArT markers detect a DNA polymorphism. The first step involves the 

development of an array based on a mixture of DNA representing the genepool of the species being analysed. 

Fragments formed from a complexity reaction are spotted onto glass slides to create a genotyping array. The 

second step involves the hybridisation of the sample DNA to the array (DArT, 2009). 

 

 

QTL identification by linkage mapping 

Genetic markers have been proved useful for selection of desirable traits in several species 

including oats. Moreover, association of genetic markers with regions of the genome 

controlling different traits would enable efficient and precise transfer of useful alleles from 

landraces to modern cultivars. 

 

Traditionally, genetic markers have been used with a number of experimental bi-parental oat 

populations to identify quantitative trait loci (QTL) associated with important agronomic traits 

including vernalization response, flowering time and heading date, quality traits including 

seed’s tocopherol concentration and groat protein and oil content and resistance to stresses 

including winter field survival, crown freezing tolerance and crown rust resistance reviewed by 

(Holland, 2007; Rines et al., 2006). Although this has proven to be a powerful approach for QTL 

detection, it delivers low-resolution, population specific QTL, and samples only a small portion 
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of the allelic diversity present in the germplasm available (Zhu et al., 2008). Thus markers 

linked to these QTLs are not immediately available for use in breeding. QTL effects are 

required to be validated in other genetic backgrounds prior to widespread application of QTL-

linked markers in marker-assisted selection (MAS). For example, Steele et al., (2006) found in 

rice that only one of four root-length QTLs were effective when transferred by backcrossing 

into a new rice variety. In some cases, this is due to the small effect of an allele transferred 

into elite varieties (Charcosset and Moreau, 2004). Often for QTL mapping experiments, 

parents that represent the extreme ends of a trait phenotype are selected. This increases the 

chance of detecting QTLs because QTL mapping is based on statistically different means of 

marker groups. The main disadvantage with this approach is that one (or even both) parent(s) 

may possess QTL alleles that are similar or even identical to the elite germplasm used in 

breeding programmes. In this case, the effect of a QTL may be insignificant when used for 

introgression into elite varieties. In other cases, the effect of a QTL may differ in different 

genetic backgrounds due to interactions with other loci or epistasis (Holland, 2001; Li et al., 

2000). 

 

Association mapping 

Genome-wide association studies (GWAS) attempt to overcome the pitfalls associated with 

linkage mapping in bi-parental populations. Genome-wide association studies have the ability 

to identify useful allelic diversity and to map this diversity with high resolution within complex 

plant pedigrees that are typical of breeding programs (Jannink et al., 2001). From a practical 

perspective, GWAS have been applied in many grain crops, including rice, maize, barley, and 

wheat (Agrama et al., 2007; Kraakman et al., 2006; Zheng et al., 2009). Implementation of 

GWAS in oat for QTL detection could be valuable to the oat community.  

 

The ability of GWAS to deliver high-power, high-resolution results is largely dependent on the 

extent of linkage disequilibrium (LD) within the working population. Also known as gametic 

phase disequilibrium, LD is defined as the non-random association of alleles at two loci 

(Falconer and Mackay, 1996) and is affected by mutation, admixture, selection, drift, 

population structure associated with breeding history, and reproductive biology (reviewed by 

Flint-Garcia et al., 2003). Additionally, since the mechanisms mentioned may differentially 

affect different genomic regions, this can introduce LD heterogeneity across the genome. This 

makes the power and resolution achieved in GWAS highly dependent on the species and the 

population being evaluated. 
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Alternatively, association mapping is a new QTL mapping approach that can use natural 

populations, the collection of cultivars released over years, and the material within a breeding 

program (Shi et al., 2011). These types of populations, or a subset of these may represent a 

smaller set of the available genetic diversity within a breeding program. Collections of these 

lines may provide great potential for applied association mapping experiments because they 

are routinely evaluated in the breeding programs and regional trials to assess their local 

adaptation or response to biotic and/or abiotic stresses (Shi et al., 2011).  

 

Thus, association mapping is increasingly being utilized to detect marker-QTL linkage 

associations using plant materials routinely developed in breeding programs. Compared with 

conventional QTL mapping approaches, association mapping using breeding populations may 

be a more practical approach for cultivar development, considering that markers linked to 

major QTL can immediately be utilized in MAS, once new QTLs are identified. 
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ABSTRACT 

Oat  crop  (Avena  sativa  L.)  constitutes  a  rich  source  of  biologically  active  secondary 

metabolites. Most of these compounds act as a chemical signals and defense metabolites and 

constitute  a  potential  source  for  the  development  of  pest  control  methods  for  specific 

diseases. Polyamines are low molecular organic cations involved in various physiological events 

particularly those related to abiotic stress resistance, i.e drought and cold, albeit recently their 

potential  in  disease  resistance  has  being  investigated.  In  this  work  we  monitored  the 

polyamine content on oat leaves in response to powdery mildew infection, both in a resistant 

and  susceptible  cultivar  challenged  with  the  appropriate  fungal  forma  specialis  (f.sp.),  

Blumeria  graminis  f.sp.  avenae  (Bga)  and  during  the  non‐host  interaction  with  Blumeria 

graminis  f.sp.  hordei.  Our  results  show  significant  differences  between  the  resistant  and 

susceptible cultivars for specific free polyamine  levels, and also with respect to the non‐host 

interaction  at  crucial  stages  of  the  infection  process.  In  addition,  polyamine  degradation 

products, such as 1,3‐diamino propane  increased  following pathogen challenge, suggesting a 

role  for  reactive  oxygen  species  derived  from  this  pathway  in  resistance.  Exogenous 

application of polyamines to  leaf surface  increased penetration resistance of oat against Bga. 

Overall, data support both, a direct and indirect role for polyamines in resistance responses of 

oat against appropriate and inappropriate powdery mildew f.sp.    

Keywords:  disease  resistance,  host  and  non‐host  interactions,  oat,  polyamines,  powdery 

mildew,    
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INTRODUCTION 

Plants  produce  a  wide  number  of  phytochemicals  useful  in  its  interaction  with  the 

environment  including biotic and abiotic stress factors. Polyamines can be considered as one 

of the earliest known secondary metabolites in biochemistry (Galston and Sawhney, 1990) and 

are considered to be ubiquitous in all living cells. These low molecular weight compounds are 

positively  charged  at  physiological  pH  and  hence  initially  their  biological  function  was 

associated  with  the  capability  of  binding  to  negatively  charged  molecules  (Cohen,  1998). 

However,  in  addition  to  stabilizing  macromolecular  structures,  polyamines  also  act  as 

regulatory  molecules  in  many  fundamental  cellular  processes  including  cell  division, 

embryogenesis,  as well  as  in  senescence  and  in  response  to  stress  (Martin‐Tanguy,  1997). 

Recent studies  indicate that polyamines may act as cellular signals  in  intricate cross talk with 

hormonal pathways, such as abscisic acid and ethylene, integrated with processes of hydrogen 

peroxide and nitric oxide  signaling    (An et al., 2008; Toumi et al., 2010; Wi and Park, 2002; 

Yamasaki and Cohen, 2006). 

 

Polyamine biosynthesis  is  initiated  from  the basic amino acids ornithine and arginine, which 

are decarboxylated by ornithine decarboxylase (ODC; EC 4∙1.1∙17) and arginine decarboxylase 

(ADC; EC 4∙1.1∙19), respectively, to yield the diamine putrescine. Putrescine then serves as the 

substrate  for  the  formation  of  the  tri‐  and  tetra‐amines  spermidine,  spermine  and  other 

derived  polyamines.  The  earliest  reported  changes  in  polyamines were  associated with  the 

response to abiotic stresses as reviewed by Alcazar et al., (2010). However, recent studies also 

show  polyamine  accumulation  in  response  to  pathogens  (Walters,  2003).  However  the 

physiological  significance  of  these  responses,  the  dynamics  of  polyamines  at  the  very  early 

stages of the infection, or whether same polyamines are commonly used during resistance to 

related  fungi  in other plant species remains unclear. Furthermore, very  little  is known about 

the role of polyamines  in a non‐host  interaction with  the sole evidence of  their  involvement 

during the attempt of infection of bacteria to non‐host tobacco plants (Yoda et al., 2009).    

 

Oat  powdery  mildew  (Blumeria  graminis  f.  sp.  avenae,  Bga)  is  a  biotrophic  fungus  that 

develops reasonably synchronously through a highly ordered morphogenetic sequence slightly 

delayed with respect barley powdery mildew (Blumeria graminis f. sp. hordei, Bgh) reviewed 

by Green, (2002). Emergence of a short primary germ tube  is followed by that of the second, 

appressorial  germ  tube  that  elongates  and  differentiates  a  hooked,  apical  appressorium.  A 

penetration  peg  emerging  beneath  the  appressorium  (14‐16  hours  after  inoculation;  h.a.i.) 
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attempts to breach the plant epidermal cell wall. If successful,  it enters the cell  lumen where 

its tip swells  and differentiates (20‐24 h.a.i.) a mature haustorium. This absorbs nutrient from 

the  epidermal  cell  to  support  further  fungal  growth.   Alternatively  plants may  hamper  the 

infection process  to  limit  fungal multiplication. The best known mechanisms by which cereal 

defend against powdery mildew are by  forming papillae  ‐ cell wall appositions deposited on 

the  inner  surface  of  epidermal  cell  walls  directly  beneath  appressoria  that  impede  fungal 

penetration within the epidermal cell, and by the death of penetrated cells.  

 

The  objective  of  this  work  is  to  reveal  changes  on  specific  free  polyamines  during  the 

resistance  response of oat against Blumeria graminis  f.sp. avenae  focusing  in  the very early 

changes occurred following inoculation, and the role of each specific polyamine in the different 

resistant mechanisms  (i.e. penetration  resistance,  cell death).  Furthermore, we  investigated 

the role of polyamines during the non‐host  interaction between oat and the barley powdery 

mildew fungus (Blumeria graminis f.sp. hordei). 

 

 

MATERIALS AND METHODS 

Plant material and inoculation 

Seedlings  of  the  oat  (A.  sativa)  cultivars  (cvs)  Charming  (resistant  to  powdery mildew)  and 

Selma (susceptible to powdery mildew) were used. Seedlings were grown  in plastic pots with 

peat:sand (3:1) in a growth chamber with 20 ºC, 65% relative humidity and under 12 h dark/12 

h  light with 200 μmol m‐2 sec‐1 photon flux density supplied by high‐output white fluorescent 

tubes. 

 

For host interaction studies both oat cvs were inoculated with Blumeria graminis f.sp. avenae 

(Bga) race 5. For non‐host  interactions cv Selma was  inoculated with Blumeria graminis  f.sp. 

hordei (Bgh)  isolate CC1 according to Prats et al., (2005). 

 

Microscopic observations  

For histological studies leaves were fixed at 48 h.a.i. and cleared  as described by (Carver et al., 

1994).  Fungal  structures were  stained with  aniline blue  in  lactoglycerol  (0.1%)  according  to 

Lyngkjaer  and  Carver,  (1999). Observations were made with  a  Leica DM  LS  phase  contrast 

microscope  (Leica Microsystems)  fitted with  differential  interference  contrast  and  incident 
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fluorescence attachments (blue exciter filter, max transmittance 480 nm; dichroic mirror and 

barrier filter transmittance >530 nm). 

 

Polyamine quantification 

The  standard  polyamines,  putrescine  (Put),  spermidine  (Spd),  spermine  (Spm)  and  1‐

3,diaminopropane  (Dap)  were  obtained  as  their  hydrochlorides  (Sigma)  whereas  agmatine 

(Agm) was obtained as  its sulfate (Sigma) and norspermidine (Norspd) was used as free base 

(Aldrich).  At 12, 24 and 48 h.a.i. oat leaves were fixed in liquid nitrogen and stored frozen until 

use. Plant extract were obtained by homogenizing the plant tissue in perchloric acid (0.1 w/v) 

according  to  Flores  and  Galston,  (1982).  Standards  and  plant  extracts  were  benzoylated 

according to Redmond and Tseng, (1979). High performance liquid chromatography analysis of 

benzoyl‐PAs was performed according  to Slocum et al.,  (1989), using an Agilent 2100 Series 

HPLC.  

 

Analysis of ADC activity 

ADC  activity  in  the  leaf  extract was  determined  as  previously  described  by  (Tiburcio  et  al., 

1986), using L‐[U‐14C]arginine (Amersham, UK) as substrate, and measuring the 14CO2 resulting 

from the specific decarboxylation of arginine catalysed by ADC. Enzyme was expressed as nmol 
14CO2  released/h mg protein. Protein was determined  according  to  the method of Bradford 

(Bradford, 1976). Bovine γ‐globulin (Sigma) was used as a standard. 

 

Polyamine bioassay 

To assess the effects of polyamines on the different resistance mechanisms, a 1mM solution of 

each polyamine with 0.1% Tween 20 was sprayed over the entire plant until surface runoff was 

observed. Control plants were similarly treated with 0.1% Tween 20  in water. Treatment was 

applied  twice a day during  two days and  the  third day plants were  inoculated and  fixed  for 

microscopic inspection.  

 

In  addition  a  second  polyamine  application  was  performed  by  removing  the  abaxial  leaf 

epidermis and floating the  leaf segments on solution, to bathe the mesophyll and facilitate a 

wide access of polyamine solution to the adaxial (inoculated) epidermis (Lyngkjær et al., 1997; 

Zeyen et al., 2002b). Therefore, the abaxial epidermis was removed and the central 30 mm leaf 

segment  was  excised  and  floated  adaxial  (intact)  surface  up,  in  a  randomised  design,  on 

individual  10 ml  aliquots  of  the  appropriate  solution  1mM  of  each  polyamine  contained  in 
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wells of multi‐compartment boxes. Segments were held for 1 h for uptake before  inoculation 

using a settling tower placed directly over the floating segments. Transparent  lids were fitted 

to  the boxes which were placed  in  the growth cabinet  for 36 h  incubation before  segments 

were fixed as stated above. 

 

Statistic 

Five  replications  were  used  for  experimentation.  For  statistical  analysis,  percentages  from 

microscopy studies were transformed to arcsine square roots to normalize data and stabilize 

variances  throughout  the  data  range.  Data  were  subjected  to  analysis  of  variance  using 

GenStat 7th Edition, after which  residual plots were  inspected  to confirm data conformed  to 

normality.  Significances  of  mean  differences  were  assessed  following  contrast  analysis 

(Scheffe’s).  

 

 

RESULTS 

Microscopic characterization of resistance responses to Bga attack 

Histological  characterization  shown  in  Table  1  (controls)  confirmed  the  susceptibility  of  cv 

Selma with approximately 70% of established colonies. No cell death was evident, and failed 

attempted  penetration  due  to  papilla  formation was  observed  in  the  30%  of  the  cases.  In 

contrast, cv Charming was resistant with only 9% established colonies, with a combination of 

penetration  resistance  (44%)  and  hypersensitive  response  (HR). Approximately  47%  of  cells 

triggered a HR  leading  to  the death of  the  cell. From  this, 26.7% of  the  cells  showed death 

symptoms  before  any  haustorium  could  be  observed  and  the  response was  considered  an 

early and rapid HR whereas  in 20% of the cells a small haustorium was observed  in the dead 

cell and the response was considered a late HR.  

 

Polyamine  content  and  ADC  activity  in  oat  leaves  following  Bga  attack  (host 

interaction) 

Detailed  quantification  of  polyamines  showed  significant  differences  between  the  resistant 

and  the  susceptible  cv,  regarding  specific  polyamines  and  time‐frame  during  the  infection 

process  (Fig.  1).  Putrescine  levels were  slightly but  significantly  increased  in both  cvs  at  24 

h.a.i.  In addition, an early increase at 12 h.a.i. in DAP was observed in Charming following Bga 

inoculation  (Fig.1).  Selma  overall  showed  higher  levels  than  Charming  (P<0.001)  albeit  no 

changes with  inoculation were  observed.  By  contrary  Charming  showed  significantly  higher 
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levels of the polyamine spermidine than Selma  (P<0.01) and  in addition showed a significant 

increase at 24 h.a.i. of more than 40% respect to constitutive levels (P<0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1. Polyamine  content  in  Selma  and Charming  cultivars during  the host  interaction oat‐Bga. Putrescine, 
DAP,  Norspermidine,  Spermidine,  Spermine,  and  agmatine  were  quantified  in  susceptible  Selma  and  resistant 
Charming plants during a time course following inoculation with the host fungus Bga. Data are mean of 5 replicates 
+ standard error. White bar = control, healthy plants; Grey bars = plants  inoculated with Bga. *, **, ***  indicate 
significant differences at p<0.05, 0.01 and 0.001  respectively between  control and  inoculated plants; absence of 
stars indicates no significant differences. 
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Arginine  decarboxylase  activity  (ADC)  was  significantly  higher  in  Charming  compared  with 

Selma  with  a  mean  of  55.6  and  46.3  nmol  14CO2  h
‐1  mg  prot‐1,  respectively.  Following 

inoculation ADC activity was  significantly higher  in  inoculated Charming  leaves  compared  to 

Selma at 12 and 24 h.a.i. although a significant decrease was observed at 48 h.a.i. (Fig. 2A). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.  ADC  activity  in  oat  leaves  during  the  host  and  non‐host  interaction.    A.  ADC  activity  in  Selma  and 

Charming cultivars during the host interaction oat‐Bga. ADC activity of inoculated Selma (white bars) and Charming 

(black bars) cvs, respect to healthy plants during a time course following inoculation with the host fungus Bga.  B. 

ADC activity  in Selma plants during the non‐host  interaction oat‐Bgh. Bars  indicate the ADC activity of  inoculated 

Selma respect to healthy plants during a time course following inoculation with the non‐host fungus Bgh.  Data are 

mean of 5 replicates + standard error. *, **  indicate significant differences at p<0.05 and 0.01 respectively between 

genotypes; absence of stars indicates no significant differences. 

 

 

Polyamine  content  and  ADC  activity  in  oat  leaves  following  Bgh  attack  (non‐host 

interaction) 

Following non‐host inoculation of oat leaves with Bgh an increase in putrescine was observed 
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oat  leaves with the  inappropriate powdery mildew f.sp. ADC activity of healthy plants was by 
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inoculated leaves were similar to those found in healthy plants at 24 h.a.i and slighty lower at 

48 h.a.i. (Fig 2B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Polyamine content in Selma and Charming cultivars during the non‐host interaction oat‐Bgh. Putrescine, 
DAP, Norspermidine, Spermidine, Spermine, and agmatine were quantified  in Selma plants during a  time  course 
following  inoculation with  the non‐host  fungus Bgh. Data are mean of 5  replicates + standard error. White bar = 
control, healthy plants; Grey bars = plants inoculated with Bgh. *, **, *** indicate significant differences at p<0.05, 
0.01  and  0.001  respectively  between  control  and  inoculated  plants;  absence  of  stars  indicates  no  significant 
differences. 

 

 

Effect of exogenous polyamine application on  the different  resistance  responses of 

oat to powdery mildew 

Exogenous  spraying  of  a  1mM  solution  of  each  independent  polyamine  on  leaves  previous 

fungal inoculation increased the resistance response of the susceptible cv Selma but not of the 

resistant Charming (Table 1). Interestingly, the effect of all polyamines was observed regarding 

the  penetration  resistance.  Thus,  all  assayed  polyamines  increased  the  percentage  of 

penetration resistance in Selma up to the levels observed in Charming (Table 1). This lead to a 

significant decrease  in  the percentage of established  colonies  following polyamine  spraying. 

No  toxic symptoms  in  the  leaves or  in  the  fungal development were observed  following  this 

application. No effect of polyamine application was observed with respect to the percentage 

of HR in any of the cvs.  
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Table 1. Effect of polyamine application on resistance responses of oat cvs Selma, susceptible, and Charming, 
resistant, to powdery mildew (Bga) infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
aData obtained at 48 h.a.i. The percentage of germlings that reached different developmental stages (passing from 
one stage to the next), a) formed an appressorium but not penetrated the cell (Pen Res), b) penetrated the cell but 
a  rapid  hypersensitive  response  avoid  haustorium  development  (Early  HR)  c)  penetrated  the  cell  and  a  late 
hypersensitive  response  develop  but  allowing  haustorium  development  (Late  HR)  d)  penetrated  the  cell  and 
establish a colony (Est) not associated with cell necrosis, were scored from 100 infection units. Analysis of variance 
was applied to transformed replicate data. *** indicate a significant difference between genotypes at P<0.001. Data 
are mean of 5 replications. 

 

 

Interestingly, when  polyamines were  applied  to  stripped‐epidermal  leaf  segments  allowing 

solutions  to  bath  mesophyll  cells  a  toxic  effect  was  observed.  In  Charming  the  rate  of 

abnormally germinated conidia  (i.e.  formation of multi germ  tubes,  long germ  tubes or very 

thin  appresorial  tubes)  of  control  plants  was  25.3%.  However,  application  of  agmatine, 

putrescine,  spermine  and  spermidine  increased  significantly  (p<0.001)  the  number  of 

abnormally  germinated  conidia  up  to  69.4,  49.5,  39.4,  and  43.75,  respectively.  Similarly, 

whereas  in  Selma  the  rate  of  abnormally  germinated  or  conidia was  15.83,  application  of 

agmatine,  putrescine,  spermine  and  spermidine  increased  significantly  (p<0.001)  these 

percentages to 64.6, 35.2, 45.2, and 46 respectively.       

  

 

Treatment  Pen Resa  Early HR  Late HR  Total HR  Established 

Selma 

Control   29,7  0,0  0,0  0,0  70,2 

Agmatine   44,0***  0,0  0,0  0,0  56,0*** 

Putrescine  45,2***  0,0  0,0  0,0  54,7*** 

Spermine  42,5***  0,0  0,0  0,0  57,5*** 

Spermidine  41,0***  0,0  0,0  0,0  59,0*** 

Charming 

Control   44,0  26,7  20,2  9,0  47,0 

Agmatine   40,7ns  30,5ns 20,2ns 8,5ns 50,7ns 

Putrescine  41,0ns  29,5ns 18,7ns 10,7ns 48,2ns 

Spermine  46,0ns  28,2ns 17,5ns 8,2ns 45,7ns 

Spermidine  44,5ns  23,5ns 20,2ns 11,7ns 43,7ns 
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DISCUSSION.  

Traditionally  it has been assigned a  role  for polyamines during  resistance  to abiotic stresses. 

However, a few reports have recently highlighted the modulation of polyamines profiles during 

compatible and incompatible interaction of several plants species and their pathogens (Carver 

et  al.,  1992;  Cowley  and  Walters,  2002b;  Christopher‐Kozjan  and  Heath,  2003;  Krippner‐

Heidenreich  et  al.,  2001).  Increased  levels  of  free  putrescine  and  spermine  have  been 

associated with  the  resistance  response of barley  to powdery mildew  (Cowley and Walters, 

2002a,  b)  but  also  in  the  green  islands  that  form  in  compatible  responses  around mildew 

pustules during  the  later  stages of  infection  (Coghlan and Walters, 1990). Particularly  it has 

been  reported  an  increase  of  free  putrescine  and  spermine  in  barley  plants  of  cv  Delibes 

carrying  the  genes Ml1al  and Ml(Ab)  conferring  HR  to  Bgh  (Cowley  and Walters,  2002b). 

However,  the  lack  of  histological  characterisation, made  difficult  to  assign  this  polyamine 

increase to the HR or the penetration resistance present in different rates in all genotypes. In 

this  sense, our data  showed an early  (24 h.a.i.)  increase  in putrescine  in both  resistant and 

susceptible oat cvs infected with Bga. Since even the susceptible cv Selma showed a moderate 

level  of  penetration  resistance,  the  increase  in  putrescine  could  be  associated  with  this 

resistance mechanism. Supporting  this, exogenous application of putrescine  to Selma  leaves 

increased  the  level  of  penetration  resistance  up  to  the  level  observed  in  the  resistant 

Charming. No additional effect of putrescine on penetration  resistance could be observed  in 

Charming  which  could  indicate  that  polyamine  content  in  Charming  could  be  near  to  the 

maximum  threshold  at which  it  exerts  its  influence.  Furthermore  an  increase  in  spermidine 

was  also  observed  in  Charming  and  its  exogenous  application  also  lead  to  an  increase  in 

penetration  resistance.  Thus,  the  combined  levels  of  putrescine  and  spermidine  or  a 

synergistic effect might explain at  least  in part the higher penetration resistance observed  in 

Charming. Since Bga development  is slightly delayed with  respect  to Bgh,  the  time at which 

the  increase  in polyamines were observed fit with the time at which penetration mechanism 

are engaged.  Interestingly, an  increase  in DAP was observed earlier, at 12 h.a.i. Since DAP  is 

formed  by  spermine  oxidation mediated  by  polyamine  oxidase,  data  suggest  that  the H2O2 

generated might contribute to the localized oxidative burst which occurs directly beneath the 

region of attempted penetration (Huckelhoven, 2007; Vanacker et al., 2000). This leads to the 

rapid accumulation of hydrogen peroxide at the site of papilla formation that is involved in the 

oxidative  cross  linking  of  the  papilla  component  in  the  callose  matrix.  Alternatively,  the 

earliness at which DAP was increased in Charming point out to a role for H2O2 as messenger for 

the papilla assembling. Indeed, H2O2 together with nitric oxide and have been proposed as the 
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earliest signals triggering both penetration resistance and HR  (Huckelhoven and Kogel, 2003; 

Prats et al., 2005). Overall our data showed a role for polyamines, particularly for putrescine, 

spermidine and DAP in the penetration resistance response of oat to its appropriate powdery 

mildew f.sp, Bga. No significant increases in any of the assessed polyamines were observed at 

later  stages  of  the  infection  processes  correlating  with  the  HR.  In  addition,  exogenous 

application of polyamines did not increase the percentage of cell death, early or late, in any of 

the cultivars.  

 

A  direct  toxic  role  could  also  be  attributed  to  polyamines  since  high  abundance  of  these 

compounds  in epidermal  cells  following bath of mesophyll  cells  in  the polyamines  solutions 

lead to abnormal fungal development at the very early stages.   Since one of the functions of 

the  PGT  is  to  gain  access  to water  and  other  host  components  directly  through  epidermis 

(Carver and Bushnell, 1983), polyamines  could entry early  into  the  fungus and exert a  toxic 

effect. Polyamines are important regulators of growth and differentiation in higher eukaryotic 

organisms  including  fungi  (Pegg,  1988; Walters,  1995).  It  has  been  described  that whereas 

polyamine  depletion  in  fungal  cells  results  in  growth  cessation,  excessive  intracellular 

accumulation of polyamines may be cytotoxic (Valdes‐Santiago et al., 2012). Thus, an excess of 

polyamine  uptake  during  this  treatment  might  be  responsible  for  a  deregulation  of  the 

polyamine metabolism  leading  to  the  fungal  growth  abnormalities  observed.  However  this 

direct fungicide effect does not appear to be the cause of the reduction of disease following 

polyamine  spraying  where  normal  fungal  development,  including  appressorium  and 

haustorium formation was observed. 

 

Attempted  infection  of  a  cereal  by  an  inappropriate  fungal  pathogen  f.  sp.  is  commonly 

arrested  by  papilla  deposition  at  attempted  penetration  site  and  if  cell  is  penetrated,  the 

challenged epidermal cell dies before haustoria are formed or mature (Bushnell and Bergquist, 

1975; Niks and Rubiales, 2002). The frequency of these responses appears influenced by plant 

genus  and  fungal  f.  sp.,  and  also  by  genotypic  variation  in  host.  However,  inappropriate 

relationships rarely allow fungal development to proceed to sporulation. During the non‐host 

interaction between Selma and the inappropriate powdery mildew Bgh approximately 50% of 

the penetration attempts were successfully hampered by penetration resistance mechanisms 

and the penetrated cells developed a programmed cell death so no sporulation of the fungus 

was observed (data not shown, Carver et al., 1992). Our data shows a very fast increase in the 

polyamine  putrescine  from  12  h.a.i.  that might  contribute  to  the  penetration  resistance  as 

observed  during  the  host  interaction  between  oat  and  Bga.  The  earliness  of  the  response 
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might account for the higher penetration resistance observed during the non‐host interaction 

since  the  speed  at  which  the  resistance  machinery  is  triggered  as  well  as  the  speed  of 

deposition  and  compaction  of  papilla  is  crucial  for  successful  defense  (Huckelhoven,  2007; 

Prats  et  al.,  2005;  von  Ropenack  et  al.,  1998).In  addition,  a  significant  increase  in 

norspermidine and slight  increase  in spermidine at  later stages,  i.e. 48 h.a.i. might contribute 

for cell death during the non‐host interaction. Norspermidine levels were not changed during 

the host interaction oat‐Bga. However, evidence suggests that processes leading to cell death 

differ between R‐gene controlled cell death and non‐host cell death  (Christopher‐Kozjan and 

Heath, 2003).  Increased  levels of putrescine and  spermidine have been  reported during  the 

non‐host interaction of tobacco plants with the bacteria Pseudomonas cichorii which lead to an 

extensive  cell  death  reaction.  These  polyamines  were  shown  to  serve  as  the  source  of 

hydrogen peroxide during the non‐host cell death (Yoda et al., 2009). The increase in agmatine 

observed  at  12  h.a.i.  together with  the  increase  in  ADC  activity  respect  to  non‐inoculated 

plants at this time point, suggest the involvement of this pathway in the increase of polyamine 

observed while we  cannot  rule  out  the  involvement  of  the ODC  enzime  in  the  increase  of 

polyamines observed. 
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ABSTRACT 

Polyamines are low-molecular-weight polycations implicated in a wide range of regulatory 

processes including growth, cell division, DNA replication, cell differentiation and stress 

responses. Although in recent years a wealth of studies have focussed on the role of 

polyamines during plant-environmental stress interaction, relatively little work has been 

carried out in incompatible interactions between plants and pathogens, and much of that was 

related to the hypersensitive response. In this work we examined the involvement of 

polyamines during the oat-crown rust interaction focusing in the resistance mechanisms acting 

before, during and post mesophyll cell penetration. Increased in spermidine and spermine 

were associated with increased pre-penetration resistance. This role was supported by the 

inhibition of appressorium formation observed following exogenous polyamine application to 

the susceptible cultivar Araceli, which increased its resistance. Elevated levels of spermidine 

and spermine together with increases of wall-bound DAO and PAO activities in resistant 

cultivar Saia at early stages of the infection process and concomitant increases of oxidation 

product DAP suggest and involvement of polyamine derived H2O2 during the penetration 

resistance by mean or contributing to the cell wall strengthening and lignification.    
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INTRODUCTION 

Polyamines (PAs) are low-molecular-weight organic polycations positively charged at 

physiological pH. This property allows PAs to interact with negatively charged macromolecules 

such as DNA and RNA, proteins and phospholipids and in this way they are involved in the 

regulation of physical and chemical properties of membranes, nucleic acids structure and 

function and modulation of enzyme (Galston and Sawhney, 1990). As result, polyamines are 

implicated in a wide range of regulatory processes such as promotion of growth, cell division, 

DNA replication, cell differentiation and stress responses (Evans and Malmberg, 1989). 

 

Polyamine biosynthesis pathway is under complex metabolic and developmental control and 

such control is necessary for efficient regulation of cell metabolism (Hussain et al., 2011). The 

diamine putrescine (Put), the triamine spermidine (Spd) and the tetramine spermine (Spm) are 

the main PAs found in all living cells. In plants, putrescine is synthethized from ornithine by 

ornithine decarboxylase (ODC, EC  4.1.1.17) or from arginine by arginine decarboxylase (ADC, 

EC 4.1.1.19) via agmatine. Spd and Spm are synthesized by addition of aminopropyl groups, 

arisen from the decarboxilation of S-adenosylmethionine through decarboxylated S-

adenosylmethionine (dcSAM), to putrescine and spermidine respectively, by spd and spm 

synthases. Free PAs level in plant cells depends not only on their synthesis but also on their 

transport, degradation and conjugation. Polyamines are catabolized through the activity of one 

or more diamine oxidases (DAO) and polyamine oxidases (PAO) (Bagni and Tassoni, 2001). 

Thus, putrescine degradation is catalyzed by diamine oxidase (DAO; EC 1.4.3.6), whereas Spd 

and Spm are oxidized at their secondary amino groups by a flavin-containing polyamine 

oxidase (PAO; EC 1.5.3.3) (Flores, 1985). There is evidence that DAO and PAO are 

predominantly located in the cell wall (Angelini et al., 1993; Sebela et al., 2001) and that DAO 

can be released into the apoplast (Moller and McPherson, 1998).  

 

In the last years, there has been a growing interest in the study of PAs involvement in the 

defense reaction of plants against several environmental stresses (Bouchereau et al., 1999; 

Kasukabe et al., 2004; Kumar et al., 1997). Stress-induced accumulation of PAs often correlates 

with the improvement of plant tolerance in a wide range of environmental stresses 

(Bouchereau et al., 1999; Kasukabe et al., 2004; Kumar et al., 1997; Liu, 2007). Increase of 

these molecules have been observed under several abiotic stresses such as drought, high 

salinity, mechanical injury, potassium deficiency and cold (Alcazar et al., 2006; Armengaud et 

al., 2004; Hummel et al., 2004; Perez-Amador et al., 2002; Urano et al., 2003). However, 
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relatively little work has been carried out on free polyamines and their metabolism in 

incompatible interactions between plants and pathogens (Walters, 2000), and much of what 

has been conducted relates to the hypersensitive response (Walters, 2003).  

 

Puccinia coronata f.sp. avenae is an obligated oat fungal pathogen that cause crow rust. It is 

the most important disease of the oat crops with high yield and grain quality losses worldwide 

(Simons, 1985), particularly in the Mediterranean basin (Hemmami et al., 2006) where 

populations are more virulent than in the center and north of Europe. The rust infection 

process starts with the germination of the urediospores on the leaf surface. When the germ 

tube contacts a stoma, an appressorium develops over the guard cells and then a penetration 

hypha penetrates through the stomata (Hoch and Staples, 1987; Prats et al., 2002). The 

penetration hypha develops a substomatal vesicle from which a secondary hypha and a 

haustorium mother cell, at its tip, forms. Following contact between the haustorium mother 

cell and the mesophyll cell, an infection peg develops, penetrates the mesophyll cell and forms 

a feeding structure, the haustorium, which takes up nutrients for fungal growth (Parlevliet and 

Kievit, 1986). Attacked plants may trigger a battery of resistance mechanisms that can act 

before, during, or after cell penetration to arrest rust development. Prestomatal penetration 

mechanisms include poor germling adhesion to the leaf surface (Mendgen, 1978; Wynn and 

Staples, 1981), deviating micromorphology of the epidermal surface that serves as cues in 

guiding the thigmosensing germ tube toward stoma (Wynn and Staples, 1981) stomatal guard 

cell morphology (Wynn, 1976), leaf pubescence (Mmbaga and Steadman, 1992) and leaf 

chemical compounds excreted to the leaf surface that interfere with appressorium 

development (Choi et al., 1998; Prats et al., 2007). If despite these barriers the fungus  reach 

the stomata, papillae, apoplastic cell wall appositions deposited by host cells at site of 

attempted penetration, may be formed and act as physical or chemical barriers to hamper the 

rust infection process (Skalamera and Heath, 1996; Zeyen et al., 2002). If penetration 

resistance fails, a second defense mechanism involving race-specific, programmed cell death 

(PCD-hypersensitivity) (Heath, 2000) may be triggered to arrest pathogen growth. Such PCD 

has been described in many pathosystems including the cereal rusts (Niks and Dekens, 1991; 

Niks and Rubiales, 1994; Tiburzy and Reisener, 1990). Whenever resistance mechanisms are 

lacking or they are insufficient to hamper fungal development, disease symptoms appear. 

These consist on yellow pustules containing masses of urediospores which are exposed after 

the rupture of the epidermis. Lesions are circular or oblong and occur in both surfaces of the 

foliar sheet and can reach other green parts of the plant, when the epidemic becomes more 

severe. After some weeks, the borders of the pustules can turn black, with teliospore 
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formation. When the infected plants reach maturity, production of urediospores ceases and 

they are then replaced by teliospores (Simons, 1985). 

 

The present work aim to unravel the role of polyamines, during the different resistance 

responses engaged by oats against Puccinia coronata f.sp. avenae.  To this, we determined 

polyamine content at key point of the infection process in different oat genotypes resistant 

and susceptible to the crown rust, characterized different enzymatic activities related to 

polyamine biosynthesis and catabolism and performed targeted bioassays of exogenous 

polyamine application complemented with histological studies.  

 

MATERIAL AND METHODS  

Plant material  

For this study 3 commercial varieties supplied by the Andalusian Network of Agriculture 

Experimentation (RAEA) were used. Oat varieties studied were Araceli, Kankan y Saia that had 

previously shown to be susceptible and resistant to the rust isolate used and their resistance 

mechanisms characterized (Sanchez-Martin et al., 2012). Seedlings were grown in 5 L trays filled 

with peat:sand (3:1) in a growth chamber with 20ºC, 65% relative humidity and under 12 h 

dark/12 h light with 250 μmol m-2 sec-1 photon flux density supplied by high-output white 

fluorescent tubes. All experiments used fully expanded first-formed leaves of 11 day-old plants 

(their second-formed leaf was unrolled).  

 

Inoculation  

P. coronata f.sp. avenae (Pca) isolate Co-04, was used for inoculation (Sanchez-Martin et al., 

2012). Urediospores were multiplied on plants of oat cvs. Araceli which were highly susceptible 

to this isolate. One day before experimental inoculation, spores were collected and kept 

overnight in a desiccator. 

When plants had the first leaf completely expanded they were inoculated with urediospores 

mixed with pure talcum (1:1, w/w) by dusting them over the plants to give approximately 30 

spores mm-2 (checked by counts made from glass slides laid adjacent to leaves). Homogeneous 

inoculation was ensured by placing the leaves attached to the plant horizontally with the help 

of metallic clips. After inoculation, plants were incubated for 9.5 hours in darkness at 100 % RH 

and 18oC, and thereafter at 20 oC under a 14 h photoperiod with 150 μmol m-2 sec-1 photon 

flux density.  

 



  Chapter 2 

90 
 

Microscopic observations 

For microscopic assessment of fungal development, middle segments of 1-3 cm2 from each 

inoculated leaf still attached to the plant (four leaves per treatment) were excised at 24, 48 

and 72 hours after inoculation (h.a.i.) and stained with Uvitex (Ciba, Barcelona, Spain), 

according to (Niks and Rubiales, 1994)and non inoculated plants fixed at the moment of the 

inoculation were used as control (T0). These were observed by ultraviolet light incident 

fluorescent microscopy (330 nm excitation/380 nm emission) using a Leica DM LS phase 

contrast microscope (Leica Microsystems, Wetzlar, Germany; 100x objective). 

 

Percentages of germinated urediospores were determined from 100 random urediospores per 

leaf segment. Percentages of germtubes forming an appressorium over a stoma were 

determined from 100 germinated urediospores per leaf segment. In addition, on each leaf 

segment, 100 infection units (growth arising from individual urediospore) that successfully 

formed an appressorium on a stoma were scored and classified according to their 

developmental stage i.e whether they formed the substomatal vesicle, penetrate the 

mesophyll cell, and establish a colony. Accordingly, early aborted infection attempts due to 

penetration resistance, were those that formed a substomatal vesicle and one or more 

primary infection hyphae but forming less than six haustorial mother cells and where colony 

growth had ceased. Infection units with six or more haustorial mother cells were considered 

established. The presence of host cell death associated with early aborted or established 

colonies was recorded. Death of plant cells was recognized by yellow whole-cell fluorescence 

under violet incident light (420 nm excitation/490 nm emission). 

 

Polyamine quantification 

The standard polyamines, putrescine (Put), spermine (Spm), spermidine (Spd), and 1-

3,diaminopropane (DAP) were obtained as their hydrochlorides (Sigma) whereas agmatine 

(Agm) was obtained as its sulfate (Sigma). HTD (1,7-diaminoheptane) was used as internal 

control (Sigma).  

 

For total polyamine quantification, plant tissue was pulverized in liquid N2 and homogenizing in 

cold 5% HClO4 in (0.1 w/v) according to Flores and Galston, (Flores and Galston, 1982). Extracts 

were incubated at 4ºC during 1 h and centrifugated at 13000 g at 4ºC during 20 min. Resulting 

supernatant were collected in a plastic tube was stored at -20ºC until use. In addition and in 
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order to quantify the excreted polyamine to the leaf surface, leaves were washed twice with 

the help of a pipette with 4 ml of 5% perchloric acid 5% (Prats et al., 2002).  

 

Standards and plant extracts were benzoylated according to Redmond and Tseng, (Redmond 

and Tseng, 1979); one ml 2 N NaOH was mixed with 500 uL of HClO4 extract. After addition of 

10 uL benzoyl chloride, vortexing for 10 s, and incubation for 20 min at room temperature, 2 

mL saturated NaCl were added. Benzoyl polyamines were extracted in 2 mL diethyl ether, 

vortexing for 15 s and incubating 5 min at 4ºC. Thereafter 1 mL of the ether phase was 

collected, evaporated to dryness under a stream of warm air, and redissolved in 100 uL 

methanol (MERCK; HPLC grade). Standards were treated in a similar way, with up to 50 nmol of 

each polyamine in the reaction mixture. The benzoylated samples were stored at -20°C. High 

performance liquid chromatography analysis of benzoyl-PAs was performed according to 

Slocum et al., (Slocum et al., 1989), using an Agilent 2100 Series HPLC.  The benzoylated 

extracts were eluted at room temperature through a 4.6 x 250 mm, 5-,um particle size reverse-

phase (C18) column (Altex-octadecylsilane) and detected at 254 mm. 20 uL of benzoyl-PAs 

were manually injected at a flow rate of 1 mL/min. The solvent system consisted of 

methanol:water, run isocratically at 50 to 100% methanol following the Programme I 

described by Slocum et at., (Slocum et al., 1989). 

 

Polyamine bioassay 

To assess the effect of polyamines on the different resistance responses, 1mM solution of each 

polyamine with 0.1% Tween 20 was sprayed over the entire plant until surface runoff was 

observed. Control plants were similarly treated with 0.1% Tween 20 in water. Treatment was 

applied twice a day during two days and the third day plants were inoculated and fixed for 

microscopic inspection at 84 h.a.i. 

 

ARN extraction and cDNA amplification 

Total RNA from was extracted from 100 mg of ground leaf tissue using previously reported 

protocols (Chomczynski and Sacchi, 1987; Raeder and Broda, 1985). RNA was cleaned by 

means of RNeasy® Minelute Cleanup Kit (QIAGEN). Contamination of residual genomic DNA in 

all RNA samples was verified by conventional PCR amplification on total RNA using the 

designed primers listed in Table 1. RNA samples containing DNA were further DNase treated 

until no PCR amplification of RNA samples was obtained. Prior to retrotranscription 

experiments, the concentration and integrity of RNA were verified by an optical density at 260 
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nm (OD260)/OD280 absorption ratio in a NanoDrop ND- 1000 spectrophotometer (Thermo 

scientific).  

 

First and second-strand of complementary DNA (cDNA) were synthesized using SuperScript® III 

First-Strand (Invitrogen) and DNA Polymerase I (BioLabs), respectively. cDNA was cleaning by 

QUIquick PCR Purification Kit (QIAGEN and DNase treated by the RNase-Free DNase Set 

(Qiagen), according to the manufacturer’s recommendations. Conventional RT-PCR and PCR 

assays followed by gel electrophoresis were performed to verify the amplification of cDNA 

using the designed primers. Quality and quantity of cDNA was determined by running aliquots 

in agarose gels and by spectrophotometric analysis in a NanoDrop ND- 1000 

spectrophotometer (Thermo scientific). 

 

Gene expression analysis by real-time QRT-PCR.  

Relative expression of ADC activity was quantified by using the following primers: 5’-

TACGGCGATGTGTACCATGT-3’ and 5’-GTCCTTGTTCACGGCAAAGT-3’); designed with the 

Universal Probe Library Assay Design Center (Roche applied Science) from the sequence 

published in NCBI database (X56802.1; (Bell and Malmberg, 1990). Previous to test the 

expression of ADC, four additional genes were tested for using as reference genes; 

glyceraldehyde-3-phosphate dehydrogenase (GADPH), beta-tubulin (TUBB), alpha-tubulin 

(TUBA) and 18S ribosomal RNA (10S rRNA) according to Jarasova and Kundu (Jarosova and 

Kundu, 2010). Following preliminary assay, GADPH was selected as the endogenous 

normalization measure for the relative quantification of the ADC gene due to the high stable 

expression showed in our oat samples. Real-time qRT-PCR was performed for the ADC gene 

and for GADPH on at least 3 independent biological plus 3 technical replicated cDNA templates 

in StepOne Real-Time PCR System (Applied Biosystems) using FartStart Universal SYBR Green 

Master (Rox) (Roche) according to the manufacturer’s recommendations. The reaction mixture 

contained: 10 μl of SYBR Green master mix, 6 μl of each primer set (Table 1), and 4 μl of cDNA 

or standard solution as template. The amplification conditions were 95°C for 10 min, followed 

by 40 cycles of amplification at 95°C for 15 s, 60°C for 1 min,. Following amplification, a melting 

curve program 95ºC for 15 seg, 60ºC for 1 min and 60 to 95°C with a heating rate of 0.3°C/min. 

The melting point analysis was performed at the end of the real-time RT-PCR to confirm the 

amplification of a unique product for each gene. The fold changes of ADC gene transcripts in 

different treatments versus control (i.e., non-inoculated plants) were normalized using the CT 

and efficiency obtained for the GADPH amplification run on the same cDNA templates 

according to the 2-∆∆Ct method (Livak and Schmittgen, 2001). 
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Analysis of ADC activity 

ADC activity was determined in leaf extracts in which fungal structures has been 

removed with latex (Prats et al., 2005) according to (Tiburcio et al., 1986), using L-[U-
14C]arginine (Amersham, UK) as substrate, and measuring the 14CO2 resulting from the specific 

decarboxylation of arginine catalysed by ADC. Enzyme was expressed as nmol 14CO2 released/h 

mg protein. Protein was determined according to the method of Bradford (Bradford, 1976). 

Bovine γ-globulin (Sigma) was used as a standard. 

 

Analysis of DAO/PAO activity 

Diamine oxidase (DAO) (EC1.4.3.6.) and polyamine oxidase (PAO) (EC1.4.3.4.) activities were 

estimated using the first leaf as source of enzyme, following fungal removal with latex (Prats et 

al., 2005). Activity was measured spectrophotometrically based on the colorimetric assay of ∆ -

pyrroline using putrescine (Put) and spermidine (Spd) as substrates for DAO and PAO activities, 

respectively (Asthir et al., 2004; Holmstedt et al., 1961a). Briefly, as a cleaning step each leaf 

was homogenized 1:2 (w:v) in 100 mM K-phosphate buffer (pH 7) containing 5mM 

dithiothreitol at 4ºC, and centrifuged at 16,000g for 20 min at 4ºC. In order to measure soluble 

DAO/PAO activities the pellet was extracted 100 mM K-phosphate buffer (pH 7) containing 20 

mM EDTA (1:1, p:v), incubated 10 min at 4ºC and centrifuged 20 min at 16,000g at 4ºC 

supernatant collected. This step was repeated twice. The remaining pellet was used directly to 

quantify wall-bound DAO/PAO activities. For the assay, extract (0.75 uL of supernatant for 

soluble or 0.30 mg of the pellet for wall-bound activity) was combined with 50 units of 

catalase, 75 uL of 2-aminobenzaldehyde (0.1%) and 75 uL of substrate: 10 mM Put in 50mM K-

phosphate buffer (pH 7.5) for DAO or 10 mM Spd in 50mM K-phosphate buffer (pH 6) for PAO. 

The reaction was carried out at 30ºC for 3h, then 10% perchloric acid (v:v) was added and the 

mix was incubated 15 min at RT in order to stop the reaction. The mix was then centrifuged at 

5,000 rpm for 15 min at RT and the supernatant was used to determinate the formation of ∆ -

pyrroline product by reading the absorbance at 430 nm. Inactivated enzymes by heating at 

95ºC for 5 min were used as control reactions. Enzyme activity was expressed in ng ∆ -pyrroline 

g-1FW min-1.  

 

Statistical analysis 

Four leaves (from four different plants) per genotype were studied in a complete 

randomized block design. For statistical analysis, data recorded as percentages were 
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transformed to arcsine square roots (transformed value = 180/п x arcsine [√(%/100)]) to 

normalize data and stabilize variances throughout the data range. Data were then subjected to 

analysis of variance using SPSS software after which residual plots were inspected to confirm 

data conformed to normality. In addition Shapiro-Wilk test and Bartlett’s test were performed 

to test normality and homogeneity of variances respectively. Multiple comparison among all 

genotypes were carried out according to Tukey test (p<0.05).  

 

RESULTS 

Microscopic characterization of resistance responses of oat cultivars to Puccinia 

coronata f.sp. avenae attack  

Histological characterization confirmed the susceptibility of cv Araceli with 68.5% of 

established colonies and a lower number of early aborted colonies (Table 1). Pre-penetration 

resistant mechanisms, those engaged previous to mesophyll attempt penetration, and 

penetration resistance mechanisms (early aborted colonies) of cv Kankan were not significantly 

different to Araceli, however post-penetration resistant mechanisms leading to cell death were 

strongly enhanced in this genotype so that the final number of established colonies decreased 

up to 15%. A detailed histological caharacterisation showed that out of the 50% of cells that 

died following rust attack, 20% died rapidly, before haustorium formation, and c.a. 30% 

showed a late cell death allowing the growth of a limited number of hyphae. Cultivar Saia 

showed also a high resistance response as Kankan but this was not based on cell death 

response but in mechanisms engaged before mesophyll cell penetration. Thus, 34% of rust 

attacks were hampered during the early stages of the infection process, before mesophyll cell 

penetration , and 37% were hampered during the penetration attempt leading to early 

aborted colonies.  

 

Table 1: Microscopic characterisation of resistance response to Puccinia coronata attack.  

 

 

Polyamine content  

At most crucial times of the infection process significant differences were observed in levels of 

particular polyamines between the oat cultivars.  

Genotype Pre-penetration EA EA-N Est-N Est
Araceli 24.02 + 1.26 7.44 + 1.45 0.00 + 0.00 0.00 + 0.00 68.54 + 2.08
Kankan 21.78 + 2.08 10.38 + 1.36 19.42 + 1.94 32.58 + 3.11 15.84 + 1.19
Saia 33.87 + 4.06 37.07 + 5.04 3.03 + 1.84 7.74 + 5.02 18.29 + 1.87

l.s.d 4.4 4.7 3.8 5.8 3.8
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Figure 1.  Total polyamine content in rust susceptible and resistant oat cultivars. Agmatine (AGM), putrescine 
(PUT), spermidine (SPD), spermine (SPM) and 1,3-diaminopropane (DAP) were quantified in susceptible Araceli 
(white bars) and resistant Kankan (grey bars) and Saia (black bars) plants during a time course following inoculation 
with the host fungus Puccinia coronata f. sp. avenae. Data are mean of 5 replicates + standard error. 

 

 

Overall, the highest significant differences among genotypes were found for Spm, Spd, Agm 

and Put (p<0.001; Fig 1). Thus, Saia displayed significantly, 4 fold higher, constitutive levels of 

0

50

100

150

200

250

300
0

3000

6000

9000

12000
AGM

PUT

0

20

40

60

80

100 SPM

0

20

40

60

80

100
SPD

DAP

0

50

100

150

200

0h 24h 48h 72h

µm
ol

 p
ol

ya
m

in
e

/ g
 F

W



  Chapter 2 

96 
 

Spd and Spm, than the susceptible genotype Araceli. Although Kankan did not showed this 

high Spd and Spm constitutive levels, it showed significant higher levels of both polyamines 

respect Araceli at 24 and 48 hai. Agmatine content was also overall higher in Saia and Kankan 

respect to Araceli (p=0.013). By contrast Put content was overall higher in cultivar Araceli than 

in the two resistant Kankan and Saia (p<0.001). In addition statistical analysis showed 

interaction between genotype and time post inoculation for most polyamines indicating a 

different trend between the susceptible and resistant cultivars. Decrease in the levels of Spm 

and Spd 24 and 48 hai after inoculation in cv Saia correlated with a increase of DAP at these 

time points (Fig 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Excreted polyamine to leaf surface in rust susceptible and resistant oat cultivars. Agmatine (AGM), 
putrescine (PUT), spermidine (SPD), spermine (SPM) and 1,3-diaminopropane (DAP) were quantified in susceptible 
Araceli and resistant Kankan and Saia plants 12 hours following inoculation with the host fungus Puccinia coronate f. 
sp. avenae. Data are mean of 5 replicates + standard error. White bar = control, healthy plants; Black bars = plants 
inoculated with Puccinia coronata f. sp. avenae. 
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In general levels of polyamines excreted to the surface was less than 10% of the total 

polyamine content for all polyamine assessed. Interestingly excreted polyamines to the leaf 

surface increased 24 hai inoculation in both susceptible and resistant genotypes compared 

with non inoculated controls (p<0.001). However, there was a significant interaction for most 

polyamines between genotypes and treatment indicating that not all cultivars respond in a 

similar proportion to the rust attack. Cultivar Saia showed the highest increase in excreted Spm 

and Spd after inoculation, showing significant differences respect to the susceptible Araceli. 

Particularly whereas no significant increase of excreted Spd was observed in Araceli, more than 

two fold increase was observed in Saia. In addition both Saia and Kankan showed 2 and 2.3 

fold increased respectively in excreted agmatine respect to Araceli. No significant differences 

were found between genotypes respect to excreted DAP.   

 

Exogenous polyamine bioassay 

Since levels of particular excreted polyamines showed higher in cultivar Saia with increased 

pre-penetration resistance that in Araceli, polyamines were applied exogenously to susceptible 

cultivar Araceli in order to test the effect in arresting early fungal developmental stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Effect of exogenous application of polyamines on P. coronata f.sp. avenae development and plant 
resistance responses. All parameters were microscopically evaluated on the second leaf 84 hours after inoculation. 
Values are the means of five independent replicates + standard error.  
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Exogenous application of polyamines showed an increase of pre-penetration resistance in the 

susceptible genotype Araceli for all polyamines applied particularly for Spm, Spd and Put 

(p<0.001). In addition, the percentage of early aborted colonies increased following leaf 

treatment with Put, 4 fold, and Spm, 3 fold, respect to the control. Thus, a significant decrease 

of established colonies were observed following polyamine application in susceptible cultivar 

Araceli, showing Put, Spm, and Spd the highest reduction in colony establishment. Cell death 

response was not modified following polyamine application.  

 

Relative expression of ADC gene 

Quantitative RT-PCR experiments were carried out to assess ADC regulation at transcript level 

during the responses to rust attack in the different cultivars. Surprisingly, ADC expression was 

overall down-regulated in all genotypes following rust inoculation (Fig 4A). However, 

significant differences were observed between cultivars. Thus, genotype Araceli showed the 

lowest expression of ADC gene and this was maintained during the first 72 hai. Cultivar Kankan 

showed relatively higher ADC expression than Araceli at 24 hai but then the gene expression 

was down-regulated to reach similar levels to that observed in Araceli by 72 hai. Interstingly 

although ADC expression was dow-regulated at 24 hai in Saia, it significantly increased at 48 

hai  (p=0.002) whereas at 72 hai it was similar to control, non-inoculated levels (Fig 4A). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Relative expression of ADC gene. Real time RT-PCR was carried out in oat leaves of susceptible (Araceli) 
and resistant (Kankan and Saia) during a time course following inoculation with the host fungus Puccinia coronata f. 
sp. avenae at 24 (white), 48 (grey) and 72 (black) hours after inoculation. Data are mean of 3 biological replicates 
and 3 technical replicates + standard error. 
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ADC activity 

Assessment of ADC activity showed steady state levels in susceptible Araceli during 24, 48 and 

72 hai. Overall, Kankan and Saia showed significantly higher ADC activity than Araceli (p<0.001) 

following inoculation. Particularly, Kankan showed the maximum levels at 48 hai showing at 

slight decrease at 72 hai. Saia showed significantly increased ADC activity at earlier timepoints 

after inoculation with approximately 3 fold higher ADC activity at 24 hai than Kankan or Araceli 

(p<0.001). This activity also decrease in Saia at 72hai reaching similar levels than those 

observed in Araceli (Fig 4B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. ADC activity in oat leaves.  ADC activity was measured in oat leaves of susceptible (Araceli) and resistant 
(Kankan and Saia) during a time course following inoculation with the host fungus Puccinia coronata f. sp. avenae at 
24 (white), 48 (grey) and 72 (black) hours after inoculation. Data are mean of 5 biological replicates + standard 
error. 

 

 

DAO and PAO activities 
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inoculation with respect to soluble DAO activity. However significant differences were 

observed in bound-wall DAO activity between cultivars. Thus, although the different cultivars 

showed similar non-inoculated activity levels, a 4 fold increase in  bound-wall DAO activity was 

observed in resistant Saia at 48 hai respect to control non-inoculated plants (p=0.01). In 

addition, Kankan showed a slight increase in bound-wall DAO at 48 hai and more than 4 fold 

increase at 72 hai (p=0.004). Cultivar Araceli also significantly increase the bound-wall DAO 

activity at 72 hai (p=0.014) although in a lower proportion than Kankan (Fig. 5).  
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Figure 6. DAO activity in oat leaves. Soluble and cell-wall bound DAO was measured in oat leaves of susceptible 
(Araceli) and resistant (Kankan and Saia) during a time course following inoculation with the host fungus Puccinia 
coronata f. sp. avenae. Data are mean of 5 biological replicates + standard error. White bar = control, healthy 
plants; Black bars = plants inoculated with Puccinia coronata f. sp. avenae 

 

 

Overall no significant differences were also observed between genotypes respect to soluble 

PAO activity (Fig. 6). However, slight increases of bound-wall PAO activity were observed in 

Saia at 24 and 72 hai. 
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Figure 7. PAO activity in oat leaves. Soluble and cell-wall bound PAO was measured in oat leaves of susceptible 
(Araceli) and resistant (Kankan and Saia) during a time course following inoculation with the host fungus Puccinia 
coronata f. sp. avenae. Data are mean of 5 biological replicates + standard error. White bar = control, healthy 
plants; Black bars = plants inoculated with Puccinia coronata f. sp. avenae 
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al., 2013) little information exists on polyamine metabolism during plant-pathogen interaction 

(Walters, 2003). Our data in oat show increases in specific free polyamines, particularly Agm, 

Spd and Spm at crucial times of the crown rust infection process in cultivars Kankan and Saia 

characterized by hypersensitive response and pre/penetration resistance responses, 

respectively but not in the susceptible cultivar Araceli. Previously, Cowley and Walters (Cowley 
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and Walters, 2002b) reported increased levels of free and conjugated forms of putrescine, 

spermidine and spermine 1-4 days after inoculation with the powdery mildew fungus. 

Increased levels of free and conjugated spermidine were also observed in an incompatible 

interaction between barley and powdery mildew that involved a penetration based resistance 

(Cowley and Walters, 2002a). Further, work in barley inoculated with a compatible powdery 

mildew fungus also showed increased concentrations of putrescine, spermidine and spermine 

in the infected leaves (Walters, 2000). In wheat infected with the leaf rust fungus Puccinia 

recondita increases in putrescine and spermine levels were observed in both susceptible and 

moderately resistant near-isogenic lines (Bharti et al., 1996) whereas in wheat infected with 

Puccinia graminis f.sp. tritici, spermine concentrations remained unchanged in moderately 

resistant and susceptible plants. Thus, although changes in levels of polyamines have been 

observed during plant-pathogen interaction, the topic deserves further studies.  

 

Our data showed particularly elevated levels of polyamines in cultivar Saia, characterized with 

a strong resistance response not based on hypersensitivity. These resistance mechanisms 

acting before or during mesopyhll cell penetration may prove more durable and difficult to be 

overcome than resistance based on a single mechanism or mechanisms governed by a single 

gene as occur in the HR and hence are desirable from a breeding point of view. Pre-

penetration resistance mechanisms might be particularly relevant during the plant-rust 

interaction due to the relatively extense growth of the rust germ tube until reaching a stomata 

for appressorium formation (Prats et al., 2007). It is known that topographical signals mediate 

the processes leading to appressorium formation (Hoch and Staples, 1987). However, physical 

features are not the only important determinant of rust germ tube growth and appressorium 

formation. Specific plant chemical signals may also influence appressorium differentiation. 

Thus, it has been found that phenolic compounds excreted from dead cells of outer scales to 

the surface in resistant onion varieties prevent urediospore germination of Colletotrichum 

circinans (Walker and Stahmann, 1955) and coumarins excreted to sunflower leaf surface 

prevent germination and appressorium formation of Puccinia helianthii. In order to determine 

whether the higher pre-penetration resistance observed in Saia could be due at least in part to 

differential polyamine content on the leaf surface, we quantified the levels of excreted 

polyamines. Interestingly all genotypes increased the levels of one or more polyamines 

following rust inoculation and this might explained the basal levels of pre-penetration 

resistance observed in all genotypes including the susceptible Araceli (Table 1). However, Saia 

showed significantly higher levels of spermidine and spermine compared with Araceli. Further, 

these two polyamines showed highly efficient at the concentration tested to increase pre-
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penetration responses in leaf bioassays. Increase of the pre-penetration resistance following 

exogenous polyamine application was mainly due to a poor growth of the germ tube that often 

did not reach the stoma, because disoriented germ tube growth or continued germ tube 

growth across stomata and the inability of the germ tube to form an appressorium when 

finding a stoma. No correlation was found between a particular polyamine and the prevalence 

of one of these responses. These observations agree with previous work on Magnaporthe 

grisea in vitro showing that polyamines did not affect conidial germination but specifically 

impaired appressorium formation (Choi et al., 1998). These authors observed high levels of 

polyamines, particularly of spermidine, in freshly collected spores, decreasing during conidial 

germination and growth. Thus, altered levels of polyamines within the fungus, provoked by the 

excreted polyamines from the host might lead to the inhibition of the appressorium formation 

observed in cultivar Saia.     

 

Polyamine content in Saia remained higher during the earliest stages of the rust infection 

process compared to that of the susceptible check. This together with the increase of early 

aborted colonies following exogenous polyamine application, suggest a further role for 

polyamines during mesophyll penetration resistance. This is supported by the induction in the 

DAP in Saia at 24 and 48 hai together with increases in ADC expression and in the ADC and 

DAO and PAO wall-bound activities. There is evidence that DAO and PAO are predominantly 

located in the cell wall (Sebela et al., 2001). Particularly in oat leaf 80% of the total PAO could 

be accounted for in the cell wall debris (Kaursawhney et al., 1981). As a result of DAO activity, 

putrescine can be oxidised whereas PAO catalised the oxidation of spermidine and spermine in 

both cases yielding H2O2 (Bagni and Tassoni, 2001). H2O2 is required in oxidative cross-linking of 

components such as phenolics and proteins into the papilla and associated cell wall region 

(Pellegrini et al., 1994; Vanacker et al., 2000) to enhanced penetration resistance to pathogen 

infection (Angelini et al., 1993). The H2O2 generated by the bound-wall DAO and PAO could be 

utilised by cell wall peroxidises for cell wall strengthening and lignification (Angelini et al., 

1993; Yoda et al., 2009). Thus, our data suggest an involvement of polyamine derived H2O2 

during the penetration resistance as it has been demonstrated recently during the 

hypersensitive response in host and non-host interaction (Yoda et al., 2009).  

 

In agreement with previous results that showed and increase of spermidine and spermine 

during hypersensitive response in barley 1-4 days following inoculation with the powdery 

mildew fungus, our results also showed such an increase during the oat-rust interaction. This 
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was accompanied by increases in the ADC activity and DAO wall-bound activity at 48 and 72 

hai supporting the role of polyamines during HR.  
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ABSTRACT 

Understanding plant tolerance to drought is of fundamental importance for plant breeding of 

improved drought tolerant plants. However drought tolerance responses are extremely 

complex and involved a wide range of processes including intricate signaling crosstalk.  

Polyamines are low-molecular-weight polycations that may act as hormones or regulatory 

molecules in many fundamental cellular processes. Nitric oxide (NO) is a key biological 

messenger implicated in fundamental plant processes such as flowering, germination, growth 

and development or responses to biotic and environmental stresses.  Although increasing 

numbers of studies have addressed the role of NO during plant-drought stress interaction, 

many questions remain yet unanswered.  We here monitored the endogenous NO levels in 

drought susceptible and resistant oat cultivars during a drought time course and further used 

transgenic barley lines overexpressing the barley hemoglobin gene HvHb1 to dissect the role of 

NO during drought tolerance responses in relation with polyamine metabolism. Our data 

showed an in vivo reduction of NO levels in the oat drought resistant cultivar. Further work 

showed that transgenic HHb barley lines were also more tolerant to drought than the wild 

type. This tolerant phenotype correlated with increases in the content of specific polyamines 

in the HHb lines. Further work showed that NO influenced polyamine pathway in several ways. 

Thus, HHb lines showed an increase of the direct aminoacids precursor of polyamines, and 

regulate the expression of several polyamine biosynthesis genes. In addition our data showed 

a differential S-nytosylation and nitration pattern between HHb and WT although the identity 

of the S-nytrosilated and nitrated proteins remains to be elucidated. 
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INTRODUCTION 

Drought is considered the most important stress contributing to yield and economical losses in 

many regions worldwide (Farooq et al., 2009). Understanding plant tolerance to drought is 

therefore of fundamental importance and forms one of the major research topics. Drought, as 

other environmental stresses lead to profound changes in the plants for adaptation to the 

adverse conditions at gene, protein and metabolite level. Polyamines are low molecular weight 

metabolites considered to be ubiquitous in all living cells. These molecules are positively 

charged at physiological pH and hence initially their biological function was associated with 

their capability of binding to negatively charged molecules, such as nucleic acids, 

phospholipids, and proteins. These ionic interactions, which are reversible, lead to the 

stabilization of DNA, RNA, membranes and some proteins (Bachrach, 2005; Cohen et al., 1998). 

In addition to stabilizing macromolecular structures, polyamines also act as hormones or 

regulatory molecules in many fundamental cellular processes including replication, 

transcription, translation and enzyme activity modulation in cell division, embryogenesis, as 

well as in senescence and in response to stresses (Kuznetsov and Shevyakova, 2007a; Martin-

Tanguy, 1997). The di-amine Putrescine (Put), the tri-amine spermidine (Spd) and tetra-amine 

spermine (Spm) are the most common polyamines in plants although agmatine, a putrescine 

precursor, cadaverine and thermospermine are also found. A protective role for spermine 

against drought stress has been reported in Arabidopsis, where spermine, by modulating the 

activity of certain ion channels, increases Ca2+ regulating stomatal closure (Yamaguchi et al., 

2007). In cereals, changes in polyamines contents have also been reported in barley and rice 

during drought stress (Turner and Stewart, 1986; Yang et al., 2007). 

 

Over the last decade the free radical nitric oxide (NO) has gained special interest due to its 

involvement in an increasing number of signaling pathways controlling processes that range 

from growth and development to biotic and abiotic stress responses (reviewed in (Mur et al., 

2012; Wendehenne et al., 2001). At the crossroad between developmental and abiotic stress 

responses lies the regulation of the stomatal aperture by NO (Hancock et al., 2011; Mur et al., 

2012). Thus, during the induction of stomatal closure it has been demonstrated an ABA 

induced NO generation together with an increase in cytoplasmic pH and H2O2 (Bright et al., 

2006; Neill et al., 2002). According to this, stomatal closure provoked by exogenously applied 

NO donors (i.e. sodium nitropruside, SNP) correlated with tolerance to rapid dehydration in 

wheat seedling (Garcia-Mata and Lamattina, 2001). However, NO can also appear to be a 

redundant element in stomatal regulation in conditions of rapid dehydration (Ribeiro et al., 
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2009). Thus, despite some evidences of NO involvement in stomatal-based drought tolerance 

by exogenous applications of NO donors, the in vivo NO generation in plants undergoing water 

stress has not been determined as neither other possible roles of endogenous generated NO 

during drought. 

 

Evidences indicated that NO might interact with polyamines during developmental and stress 

responses. Thus, NO production has been observed in plants exposed to exogenously applied 

polyamines (Tun et al., 2006). However, whether polyamines act as substrates, cofactors, or 

signals for promoting NO synthesis needs to be determined (Freschi, 2013). In addition, a 

possible effect of NO on polyamine byosinthesis have been also shown in some studies (Fan et 

al., 2013) but not in others (Arasimowicz-Jelonek et al., 2009) consequently this topic still 

deserve further research efforts.  

 

It is known that NO interact with phytohormones such as auxins, ABA, ethylene, giberelins, 

cytoninins, or salicylic acid (Freschi, 2013). Furthermore, the polyamine biosynthetic pathway 

share common elements with that of NO and hence polyamines  could be particularly 

influenced by the NO levels (Supplemental Fig 1). For instance L-arginine is a common 

precursor in the biosynthesis of both putrescine and NO (Gao et al., 2009) and nitrate/nitritre 

are common precursors of NO and several aminoacids directly related with the polyamine 

biosynthesis.  

 

In addition to this direct influence of NO on polyamine metabolism, as a signaling molecule, 

NO may be able to modulate elements controlling the plant hormone level and distribution 

(Freschi, 2013). This modulation may occur at transcriptional and/or post-translational level. 

Thus, NO likely interacts with a wide range of target proteins via direct modification of protein 

structure triggering changes in their activities and functions (Paris et al., 2013). Among the NO-

depended post-translational modification, S-nytrosilation of cysteine residues is emerging as 

key mechanism for transduction of bioactivity of NO in plants (Mengel et al., 2013). This 

reversible post-translational modification has been involved in the control of plant processes 

such as cellular architecture, photosynthesis, genetic information processing, protection 

against oxidative stress, defense responses to biotic and abiotic stresses and hormonal signal 

(Astier and Lindermayr, 2012; Astier et al., 2011; Lindermayr et al., 2005; Romero-Puertas et 

al., 2008). In addition, NO may react with reactive oxygen species (ROS), such as superoxide 

(O2
-), resulting in the production of NO derived species such as peroxynitrite (ONOO-)which can 

covalently modify tyrosine residues by a process known as tyrosine nitration (Ferrer-Sueta and 
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Radi, 2009). This NO post-translational modifications have been involved in processes such as 

photosynthesis, respiration, and nitrogen metabolism (Cecconi et al., 2009; Chaki et al., 2009; 

Lozano-Juste et al., 2011; Tanou et al., 2012). Furthermore, it has been shown that redox-

sensitive transcription factors are also nitrosylated and that NO influences the redox-

dependent nuclear transports of some proteins, implying a role for NO in the regulation of the 

transcription and/or general nuclear metabolism (Mengel et al., 2013). Thus, several studies, 

based on plants with altered NO-levels, have provided genetic evidences for the relevance of 

NO in gene induction (reviewed in (Besson-Bard et al., 2009; Grun et al., 2006). 

 

An important and frequently neglected aspect that influences NO metabolism and signaling 

are the NO scavenging mechanisms. NO may be removed by reacting with ROS and others 

chemicals such as urate, which have been shown to prevent NO toxicity (Alamillo and Garcia-

Olmedo, 2001). In addition, enzymatic NO removal by GSNO reductase and non-symbiotic 

hemoglobins (nsHb) have been reported for more selective regulation of NO levels. Plants Hbs 

are able to regulate several of the NO effects, as recently reviewed by Hill (Hill, 2012).  Out of 

the three different classes to which Hbs evolutionary belong, class 1 Hbs possess an extremely 

high affinity to oxygen and their main function seems to be related to scavenge NO (Gupta and 

Igamberdiev, 2011). Thus, this Hb class have been shown to regulate the NO-induced 

expression of genes involved in phosphatidic acid synthesis and sphingolipid phosphorylation 

during plant acclimation and tolerance to cold (Cantrel et al., 2011). Class 1 Hb have been also 

found to modulate salicylate and jasmonate/ethylene-mediated resistance mechanisms 

against pathogens (Mur et al., 2012) and modulates the NO emission and hyponasty under 

hypoxia-related stress in Arabidopsis thaliana (Hebelstrup et al., 2012). Class 2 Hbs are mainly 

devoted to facilitate oxygen supply to tissues and include the Hbs found in association with 

nitrogen-fixing bacteria in root nodules (“symbiotic hemoglobins”). Class 3 Hbs are truncated 

Hbs with a very low affinity for O2 and albeit their function is obscure, it might be related to 

regulation of oxygen delivery at high O2 concentrations (Watts et al., 2001).         

 

Early work used over-expressed bacterial Hb hmpX in transgenic lines as a useful method to 

reduce NO production and show the roles of NO in the hypersensitive response, responses to 

UV-B, symbiotic interactions and senescence (Boccara et al., 2005; del Giudice et al., 2011; 

Mishina et al., 2007; Tossi et al., 2009; Zeier et al., 2004). We here monitored the endogenous 

NO levels in drought susceptible and resistant oat cultivars during a drought time course and 

further used transgenic barley lines overexpressing the barley hemoglobin gene HvHb1 to 
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dissect the role of NO during drought tolerance responses in relation with polyamine 

metabolism.  

 

MATERIALS AND METHODS 

Plant Material 

We used a transgenic barley line (Hordeum vulgare var. Golden Promise) expressing cDNA of 

the barley hemoglobin gene HvHb1 (accession number: U94968), donated as a plasmid (CA2α) 

from Dr. Robert D. Hill, University of Manitoba (Duff et al., 1997). The cDNA was cloned into 

the vector pUCEHordD::USER::NOS or pUCEUbi::USER::NOS by USER cloning (Hebelstrup et al., 

2010). The generation of independent transgenic lines (HHb) with overexpression of HvHb1 by 

the barley hordein-D promoter is described in Hebelstrup et al. (Hebelstrup et al., 2010). 

 

Experiments were carried out at seedling stage (3 week old plants) (Gong et al., 2010; Hao et 

al., 2010; Sanchez-Martin et al., 2012). Seedlings were grown in 0.5 L pots filled with peat:sand 

(3:1) in a growth chamber at 20 ºC, 65 % relative humidity and under 12 h dark/12 h light with 

150 μmol m-2 sec-1 photon flux density supplied by white fluorescent tubes (OSRAM). During 

growth, trays carrying the pots were watered regularly. At day 21, water was withheld from 

those plants selected for drought treatment, (Gong et al., 2010; Hao et al., 2010). Control 

plants were watered as described above throughout the whole experiment. During the 

drought treatment the relative water content of the soil was monitored daily reaching a level 

of 20% by day 18 (Gong et al., 2010) 

 

In vivo NO measurements 

NO production was measured using a QCL (quantum cascade laser)-based spectrometer, 

equipped with an astigmatic multipass absorption cell for wavelength modulation 

spectroscopy on NO (Cristescu et al., 2008). For online concentration measurements and data 

analysis, LabVIEW program (National Instruments) was used (Cristescu et al., 2008). The 

detector was calibrated using a certified calibration mixture with 100 ppbv NO (National 

Measurement Institute, Delft, The Netherlands). Four glass cuvettes (150 ml volume) 

containing one barley plant each were used per replication. NO was allowed to accumulate in 

the headspace for 75 min, and, thereafter, the cuvette was flushed with purified air at a flow 

rate of 1.66 l/h, and accumulated NO was quantified. The four cuvettes were measured 

sequentially. One cuvette contained the control WT plant, the second cuvette the control HHb 

plant, a third and four, with the water stress samples. For the following three replications on 
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independent plants the order of the cuvettes was changed randomly.  Soil and pots were 

autoclaved to prevent the growth of microorganisms which could modify the NO balance.  

 

Visual assessment of drought symptoms 

From the time at which water was withheld for drought treatment (from now on T0) all plants 

were visually evaluated daily according to the following scale: 0 = vigorous plant, no leaves 

shows drought symptoms; 1 =  one or two leaves show slight drought  symptoms (less turgor) 

but most leaves remain erect; 2 = most leaves show slight levels of drought stress, however 

one or two leaves still show no drought symptoms; 3 = all leaves show drought symptoms but 

these are no severe; 4 = all leaves show severe drought symptoms including incipient wilting; 5 

= the whole plant is wilted with all leaves starting to dry, rolled and or shrunken (Online 

Resource 1). Five plants per accession were assessed. Drought severity values daily assessed 

according to this scale were used to calculate the area under the drought progress curve 

(AUDPC) for each oat accession similarly to the area under the disease progress curve widely 

used to disease screenings (Jeger and Viljanen-Rollinson, 2001) using the formula: 

 

 

                                                  AUDPC=  ∑ki=1 ½ [(Si+Si+1)(ti+1-ti)] 

 

 

where Si is the drought severity at assessment date i, ti is the number of days after the first 

observation on assessment date i and k is the number of successive observations. 

Measurements were performed on ten independent plants per genotype and treatment. 

 

Relative water content  

RWC was measured in ten plants per genotype and treatment according to (Barrs and 

Weatherley, 1962).  Measurements were carried out in the second leaves at time 0, 6, 9, 12, 15 

and 18 days after withholding water (daww). Six hours after the onset of the light period, leaf 

blade segments were weighed (fresh weight; FW), floated on distilled water at 4 ºC overnight 

and weighed again (turgid weight; TW). They were then dried at 80 ºC for 48 h. After this, the 

dry weight (DW) was determined. RWC was then calculated as RWC = (FW - DW) (TW -DW)-1 x 

100. 

 

 



  Chapter 3 

116 
 

Leaf water potential 

Leaf water potential (Ψ) was measured at midday with a pressure chamber (Soil Moisture 

Corp., Santa Barbara, CA, USA). Measurements were performed on ten independent plants per 

genotype and treatment. 

 

Transpiration assessment 

Transpiration expressed in per leaf unit area was measured gravimetrically in 10 plants per 

genotype and treatment. The pots were covered from both ends with 2 polythene bags that 

were fixed to the pot with elastic bands. A small slit was made in the top bag to allow the plant 

to go through. Control pots without plants showed minimum water loss. The initial and final 

(after each time point) pot weight was taken and transpiration was calculated by subtracting 

the final pot weight from the initial weight. Leaf area was calculated with software ImageJ 

after scanning the leaves fixed on a sheet of paper.  

 

Polyamine quantification 

The standard polyamines, putrescine (Put), spermidine (Spd), spermine (Spm) and 1-

3,diaminopropane (Dap) were obtained as their hydrochlorides (Sigma) whereas agmatine 

(Agm) was obtained as its sulfate (Sigma). When soil reach 20% RWC, leaves were fixed in 

liquid nitrogen and stored frozen until use. Plant extract were obtained by homogenizing the 

plant tissue in perchloric acid (0.1 w/v) according to Flores and Galston, (Flores and Galston, 

1982). Standards and plant extracts were benzoylated according to Redmond and Tseng, 

(Redmond and Tseng, 1979). High performance liquid chromatography analysis of benzoyl-PAs 

was performed according to Slocum et al., (Slocum et al., 1989), using an Agilent 2100 Series 

HPLC. HTD (1,7-diaminoheptane) was used as internal control (Sigma). 

 

Aminoacids quantification 

Amino acids standards and the internal standard, norvaline were obtained from Sigma. 

Standard solutions were prepared from a stock solution by dilution with 0.1 M HCl. When soil 

reach 20% RWC, leaves were fixed in liquid nitrogen and stored frozen until use. Plant extract 

were obtained by homogenizing the plant tissue in 0.1 M HCl according to Herbert et al., 

(Herbert et al., 2000). Analysis were carried out using an Agilent 2100 Series HPLC and a 

column Merck Lichro-CART®250-4 Superspher®100 RP-18 endcapped (25 cm x 4.6 mm; 5 mm 

particles) at 42 °C. Briefly, 40 µL of leaf extract was mixed with 200 µL borate buffer (0.4M, ph 

10.6), 200 µL OPA reagent and 40 µL FMOC reagent prepared according to (Herbert et al., 
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2000). The reaction mixture was allowed to stand for 2 min at 42 ºC and then 20 µL was 

injected. The chromatographic separation was made using a binary gradient elution (Herbert 

et al., 2000). Mobile phase A was a 20 mM sodium acetate solution, with 0.018% (v/v) 

triethylamine, 0.3% (v/v) tetrahydrofurane, and 0.010% (v/v) of a 4% (m/v) solution of EDTA. 

The pH was adjusted to 7.20 with a 0.1% (v/v) solution of acetic acid. Mobile phase B was a 

solution with 20% (v/v) of a sodium acetate solution (100 mM, pH 6.0), 40% (v/v) of 

acetonitrile, 40% (v/v) of methanol, and 0.018% (v/v) triethylamine. Excitation/emission 

wavelengths were respectively 340/450 nm for primary amino acids and 237/340 nm for 

secondary amino acids. The latter was used to enhance the sensitivity of proline detection. The 

change in wavelengths was made at 115 min.  

 

Primer design 

All primers used in this study (Table 1) were designed using the Universal Probe Library Assay 

Design Center (Roche applied Science) based on mRNA sequences deposited in GenBank. The 

specificity of the primers was checked by alignments with the original GenBank sequences 

using the standard nucleotide-nucleotide BLAST (blastn; provided online by NCBI).  

 

ARN extraction and cDNA amplification 

When soil reach 20% RWC, leaves were fixed in liquid nitrogen and stored frozen until use. 

Total RNA from was extracted from 100 mg of ground leaf tissue using previously reported 

protocols (Chomczynski and Sacchi, 1987; Raeder and Broda, 1985). RNA was cleaned by 

means of RNeasy® Minelute Cleanup Kit (QIAGEN). Contamination of residual genomic DNA in 

all RNA samples was verified by conventional PCR amplification on total RNA using the 

designed primers listed in Table 1. RNA samples containing DNA were further DNase treated 

until no PCR amplification of RNA samples was obtained. Prior to retrotranscription 

experiments, the concentration and integrity of RNA were verified by an optical density at 260 

nm (OD260)/OD280 absorption ratio in a NanoDrop ND- 1000 spectrophotometer (Thermo 

scientific).  

 

First and second-strand of complementary DNA (cDNA) were synthesized using SuperScript® III 

First-Strand (Invitrogen) and DNA Polymerase I (BioLabs), respectively. cDNA was cleaning by 

QUIquick PCR Purification Kit (QIAGEN and DNase treated by the RNase-Free DNase Set 

(Qiagen), according to the manufacturer’s recommendations. Conventional RT-PCR and PCR 

assays followed by gel electrophoresis were performed to verify the amplification of cDNA 
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using the designed primers. Quality and quantity of cDNA was determined by running aliquots 

in agarose gels and by spectrophotometric analysis in a NanoDrop ND- 1000 

spectrophotometer (Thermo scientific). 

 

Gene expression analysis by real-time QRT-PCR 

Previous to test the expression of the polyamine-associated genes, four additional genes were 

tested for using as reference genes; glyceraldehyde-3-phosphate dehydrogenase (GADPH), 

beta-tubulin (TUBB), alpha-tubulin (TUBA) and 18S ribosomal RNA (10S rRNA) according to 

Jarasova and Kundu, (Jarosova and Kundu, 2010). Following preliminary assay, GADPH was 

selected as internal control as it showed a highly stable expression in our barley samples. Real-

time qRT-PCR was performed for each of the polyamine-associated genes and for GADPH on at 

least 3 independent biological plus 3 technical replicated cDNA templates in StepOne Real-

Time PCR System (Applied Biosystems) using FartStart Universal SYBR Green Master (Rox) 

(Roche) according to the manufacturer’s recommendations. The reaction mixture contained 10 

μl of SYBR Green master mix, 6 μl of each primer set (Table 1), and 4 μl of cDNA or standard 

solution as template. The amplification conditions were 95°C for 10 min, followed by 40 cycles 

of amplification at 95°C for 15 s, 60°C for 1 min,. Following amplification, a melting curve 

program 95ºC for 15 seg, 60ºC for 1 min and 60 to 95°C with a heating rate of 0.3°C/min. The 

melting point analysis was performed at the end of the real-time RT-PCR to confirm the 

amplification of a unique product for each gene. The fold changes of polyamine-associated 

gene transcripts in different treatments versus control (i.e., well watered plants) were 

normalized using the CT and efficiency obtained for the GADPH amplification run on the same 

cDNA templates according to the 2-∆∆Ct method (Livak and Schmittgen, 2001). 

 

Protein analysis 

For protein extraction, frozen leaves were ground to a fine powder (about 500 mg) in a mortar 

placed in a liquid nitrogen bath. Then, leaves were homogenized in lysis buffer (50 mM Tris-

HCl, 300mM NaCl, 5 mMEDTA, 0.1 mM Neocuproine; 1% Triton X-100, pH 7.4) containing 

complete protease inhibitor cocktail (Sigma, St. Louis) (Martinez-Ruiz and Lamas, 2005). The 

extract was centrifuged at 4 ºC for 20 min at 10000 g, and the protein concentration in the 

supernatant was measured using a Bradford assay (BioRad, Hercules, CA). 

 

S-nitrosylated proteins were detected by using the biotin-switch method (Jaffrey and Snyder, 

2001), with slight modifications. Briefly, samples containing 200 µg of protein were diluted in 
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TABLE  1. Primers designed and used in real-time reverse transcription-polymerase chain reaction (RT-PCR) for amplifying polyamine-associated genes of barley plants. 

 

Target 

 

Primer name Fw Primer Rv Primer Accession Reference 

ADC ADCHor CATCATCGTGTTGGAGATGG AGCTTGTTGCTCTGGTCGAT AK249293.1 Sato,  et al., 2009  

ODC ODCHor CGGCTCCAACTTCAATGG GTCAGCTGGAGTAGGCCAAG AK367967.1 Matsumoto, et al., 2011. 

MAT MAT123Hor CTTCACCAAGCGTCCAGAA GCATCAGCTCAGGGGTCTC 

D63835.1 

AK354757.1 

AK358278.1 

Mori,and Takizawa, unpublished;  

Matsumoto et al., 2011. 

AdoMetDC AdoMetDCHor GGCTCTCTCATCTACCAGAGCTT GATCTTGGCGACCCACTG AK368996.1 Matsumoto et al., 2011 

ACS1 ACS1Hor GTCTCCTCCCAGACGCAGTA TGCGGGTGAAGTCCTTGT JX046052.1 Dahleen et al., 2012 

ACS2 ACS2Hor GAGTTCAGACAGGCGATGG GTCAAACCTGGCCTTCCAC JX046053.1 Dahleen et al., 2012 

ACS5 ACS5Hor GAGCTGCTCACGTTCATCCT CAAAACCCGGGTAGTACGG JX046054.1 Dahleen et al., 2012 

ACS6 ACS6Hor TCCTCCAGCTCTACATCAAGC GAGGAGGAGGCCGAAGTG JX046055.1 Dahleen et al., 2012 

GADPH GADPH TGTCCATGCCATGACTGCAA CCAGTGCTGCTTGGAATGATG AK251456 Sato et al., 2009 
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HENS buffer (with 2.5% SDS) to obtain a 1:1.5 (µg protein/µl) proportion. Samples were then 

incubated with the S-nitrosylating agent GSNO (500 µM), or DTT (10mM) in the dark at room 

temperature for 30 min with regular vortexing. Reagents were then removed by two 

precipitations with two volumes of cold acetone. Protein extracts were then incubated with 20 

mM methyl-methanethiosulfate (MMTS) at 50 ºC for 1h with frequent vortexing to block free 

cysteines. Excess MMTS was removed by precipitation with two volumes of cold acetone, and 

proteins were resuspended in 0.1 ml HENS buffer (25 mM HEPES, 1 mM EDTA, and 1% SDS, pH 

7.7) per milligram of protein. After the addition of 1 mM HPDP-biotin (Pierce, Rockford, IL) and 

1 mM ascorbic acid, the mixture was incubated 1 h at room temperature in the dark with 

intermittent vortexing. Reagents were removed again by precipitation with two volumes of 

cold acetone. Proteins were then subjected SDS-PAGE and Western blot analysis using an 

antibiotin antibody. 

 

For analysis of nitrated proteins leaf extracts were precipitated in an acetone:methanol 

solution (8:1 v/v) to remove interfering compounds/molecules (including chlorophyll).  

 

SDS-PAGE was performed according to (Laemmli, 1970) using 12% acrylamide gels. Briefly, 

protein extracts were diluted 1:1 with Laemmli’s sample buffer (62.5mM Tris-HCl, pH 6.8, 25% 

v/v glycerol, 2% w/v SDS, 0.01% w/v bromophenol blue and 5% β-mercaptoethanol), and 

boiled for 3min. The applied amount of protein sample per lane was 50 mg; the bioBlu 

prestained protein ladder (gTPbio) was used as a standard for molecular weight determination. 

The electrophoresis was conducted in a PROTEAN 2 Cell (Bio-Rad) with Tris/glycine/SDS 

running buffer (192mM glycine, 0.1% w/v SDS and 25 mM Tris to pH 8.3) by setting 25 mA until 

the tracking dye bromophenol blue, penetrated in the running gel and then 200V, until it 

reached the anodic end of the gels. The experiment was repeated twice.  

 

For western blot analysis, proteins were electrophoretically transferred to nitrocellulose 

membranes (BioTraceTM NT, Pall Corporation) using a Mini Trans Blot Cell (Bio-Rad) at 30 V 

overnight. Membranes were stained with Ponceau S (Sigma–Aldrich) to confirm equal protein 

loading and then blocked by incubating with 1% w/v bovine serum albumin in TTBS (0.2% v/v 

Tween- 20 Tris-buffered saline; 20mM Tris, 150mM NaCl, pH 7.6) for 1 h at RT. After 2x5 min 

washes in TTBS, the membranes were incubated with either  an antibiotin antibody (1:10 000 

dilution; Sigma) or a monoclonal antibody against nitrotyrosine (1:2500 dilution; Alpha 

diagnostic Int) for detection of S-nitrosylated or nitrated proteins, respectively, for 1 h at RT in 
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blocking solution. The membranes were then washed six times in TTBS and probed with ECL 

anti-mouse IgG HRP-linked (Santa Cruz Biotechnology) at 1:10 000 dilution for 1 h at RT in 

blocking solution. The immunocomplexes were detected by chemiluminescence (ECL Advance, 

Amersham Biosciences) on ETNA Firefly system (ETNA Sciences). The experiment was repeated 

twice.  

 

 

RESULTS 

In vivo NO generation in susceptible and resistant oat plants under water stress 

Assessment of in vivo NO production in oat plants revealed a contrasting trend between the 

susceptible, Flega, and the resistant, Patones, oat cvs. Thus, the resistant cv Patones reduced 

by 50% the levels of NO at mild and high water stress (between 60% and 30% of soil relative 

water content, sRWC), whereas susceptible Flega increased its NO level respect to control, well 

watered plants, showing significant differences respect to Patones (Fig. 1). No differences 

between the levels of control and treated plants were observed at 90-95% sRWC, when plants 

still had sufficient water availability. Levels of NO decreased in Flega plants at the highest 

water stress tested (15-20% sRWC), although at this point it did not show significant 

differences respect to Patones plants (Fig 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. In vivo NO generation in Flega and Patones oat plants under drought. NO generation was measured in 
total plant in susceptible cultivar Flega (white)  and tolerant cultivar Patones (black) during a time course drought 
course. Data are mean of 3 biological replicates + standard error. 
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HHb barley plants showed reduced levels of NO compared with WT 

In order to dissect the role of NO during water stress, hemoglobin overexpressing barley lines 

were assessed, as oat genotypes affected in NO pathway were not available to us.  According 

to Hebelstrup et al., (2010) the HHb barley line overexpressing the HvHb1 gene used in this 

study, showed c.a 2000 fold increased relative expression of the HvHb1 gene with respect to 

the wild type. To confirm reduced NO levels in the HHb lines respect to WT, in vivo NO 

measurements were carried out in both, the wild type and HHb line under well watered and 

water stress conditions. Under well watered conditions, the HHb barley genotype showed 

significantly reduced levels of NO generation with respect to the wild type (Fig 2). Interestingly, 

under water stress wild type plants slightly but significantly reduced the production of NO 

whereas HHb plants dramatically reduced its NO levels (Fig. 2). This confirmed the efficiency of 

the HHb line in scavenging important amounts of the NO generated by the plant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. NO content in barley HHb line compared with Golden Promise (20% sRWC) NO generation was measured 
in total plant in barley wild type Golden Promise and in HHb line in control (white) and drought (black) conditions. . 
Data are mean of 3 biological replicates + standard error. 

 

HHb barley plants showed increased drought tolerance compared with WT  

To confirm the effect of NO reduction in ameliorating drought stress symptoms, WT and HHb 

plants were evaluated during a water stress time course. HHb plants started to show visual 
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drought symptoms several days later than the wild type and showed a better aspect during the 

complete time course (Fig. 3). Indeed the area under the drought progress curve was greatly, 

3-fold, and significantly reduced (P=0.003) in the HHb plants compared with the WT.  

 

 

 

Figure 3. Drought tolerance response of barley HHb lines. Measure of drought tolerance response of barley HHb 
lines (        ) and in wild type Golden Promise (         ) using a visual escale during the time course of drought Data are 
mean of 3 biological replicates + standard error. 

 

To confirm the drought tolerance phenotype of the HHb plants, assessment of several 

physiological parameters related to water balance was carried out at 20-25% sRWC (Fig 4). 

Both, wild type and HHb plants showed reduced levels of leaf relative water content under 

water stress respect to its respective well watered controls (P<0.001 and 0.05 respectively for 

WT and HHb plants). However, the HHb plants showed a significant higher lRWC than the wild 

type under drought (Fig 4A). As expected, no differences in the leaf relative water content 

were observed between well watered plants of both genotypes.  

 

Assessment of the midday leaf water potential showed a similar trend than with lRWC albeit 

differences between WT and HHb plants were clearer. Both genotypes reduced significantly 

(P<0.001) the water potential under drought stress respect to its watered controls but 

whereas the WT doubled the negative water potential respect to well watered plants, HHb 

only slightly reduced its levels showing significant differences respect to WT plants (P<0.001; 

Fig 4B). Assessment of transpiration during the central part of photoperiod showed no 

differences between well watered. As expected both genotypes reduced transpiration under 

water stress (P<0.001). However, a slightly higher but significant (P<0.001) transpiration level 

in HHb plants subjected to drought stress respect to WT plants was observed (Fig 4C).  
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Figure 4. Water related parameters in barley HHb lines under drought. Different water related parameters;  leaf 
relative water content, midday leaf water potential, transpiration and accumulated transpirations per unit area 
were measure in barley HHb lines and in wild type Golden Promise in control (white) and drought condition (black). 
Data are mean of 5 biological replicates + standard error. 

 

Levels of specific polyamines were increased in HHb lines respect to WT under 

drought 

Polyamines are well known metabolites largely associated with drought and abiotic stress 

tolerance (REF). Recently a possible linkage between polyamines and NO have been reported 

(Tun et al., 2006). Thus, we explored the levels of polyamines in HHb and WT plants in order to 

determine if the drought tolerance response observed in the HHb plants might be at least in 

part due to changes in polyamine levels. Overall, HHb plants showed higher constitutive levels 

of putrescine, spermidine and spermine than WT plants (Fig 5). Following water deficit 

treatment, the content of these polyamines increased in both genotypes. The levels of 
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putrescine dramatically increase in the WT plants respect to control level and it also increased 

albeit moderately in HHb plants (Fig 5). Spermine also increased in both genotypes reaching 

similar levels. By contrast, spermidine did not significantly increase in WT plants following 

drought stress whereas it increased in HHb plants (p<0.05). Thus, the content of spermidine in 

HHb plants under drought stress was near 2-fold the content of WT plants. Increases of 

Agmatine and DAP were also observed in both WT and HHb plants subjected to drought with 

slighty higher levels observed in HHb plants (Fig 5). These results, confirmed a role for NO 

influencing polyamine content in HHb plants in control conditions and also under drought 

stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Poliamine content in HHb lines under drought  Putrescine, spermidine, spermine,agmatine, and 1,3-
diaminopropane (DAP) were quantified in in barley wild type Golden Promise and in HHb line in control (white) and 
drought (black) conditions. Data are mean of 5 biological replicates + standard error. 
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Levels of aminoacids linked to the polyamine pathway differed between HHb and WT 

plants 

Several aminoacids are directly involved in the polyamine biosynthesis pathways 

(Supplemental Fig 1 (modified from Alcazar et al., 2010). Alteration of NO levels, could affect 

their concentration either by modifying the nitrogen fluxes or through the regulation of their 

particular biosynthetic pathways affecting ultimately polyamine content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Content of aminoacids involved in poliamine pathway in barley Hb05 lines under drought. Glutamate, 
glutamine, citruline, arginine, GABA, ornitine, methionine, lysine and proline were quantified in in barley wild type 
GoldenPromise and in HHb line in control (white) and drought (black) conditions. Data are mean of 5 biological 
replicates + standard error. 
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To support this hypothesis, aminoacids concentration in HHb and WT plants were determined. 

Figure 6 showed leaf content of those aminoacids directly linked to the polyamine pathway 

according to Alcazar et al., (2010) in HHb and WT plants under well watered and drought 

conditions.  

 

For several of the aminoacids both, WT and HHb plants followed a similar trend under water 

stress. Thus, both genotypes decreased the levels of glutamine and citruline and increased the 

levels of ornithine, the latter slightly higher in the WT, under water stress. However, a quite 

different trend between genotypes was observed for key aminoacids such as Arginine, γ-

Amibutiric acid (GABA), Methionine, Lisine and Proline (Fig. 6). HHb plants showed a significant 

increase in arginine and methionine particularly under drought stress compared with WT 

plants. By contrast, WT showed a significant increase in GABA, lisine and proline under drought 

stress with respect to HHb plants (Fig 6). These results support a role for NO influencing the 

concentration of the aminoacid precursors of polyamines. 

 

 

NO regulate the expression of several polyamine biosynthesis genes 

Several studies have recently provided genetic evidence for the importance of NO in gene 

regulation (Grün et al., 2006). Thus, we investigated whether NO might influence polyamine 

levels through regulation of several key genes of their biosynthesis pathway. Thus, quantitative 

RT-PCR experiments were carried out to determine the expression of key enzymes of the 

polyamine pathway, ADC, ODC, MAT, AdoMetDC and ACS - from which 4 different isoforms 

has been described in barley (Fig. 7). Expression of ADC increased significantly in both, WT and 

HHb plants under drought stress. However the increased was by far significantly higher 

(P<0.001) in the WT compared with the HHb plants (Fig. 7). No differences were observed 

between genotypes in well watered conditions. The level of the expression of ADC was 

significant (P=0.003) and positively (r2=0.87) correlated with the level of drought symptoms 

(AUDPC) observed in the plants.  

 

ODC expression followed a different trend in WT and HHb plants. Thus, whereas ODC 

expression up-regulated in WT plants it down-regulated in HHb lines. No significant differences 

were observed with respect to MAT expression in WT and HHb plants. Interestingly, a 

significant (P<0.01) downregulation of AdoMetDC was observed in WT plants subjected to 

drought stress compared with HHb plants in the same conditions. Finally a strong up-

regulation of ACS gene, ACS1, ACS2 and ACS5, of up to more than 100-fold was observed in WT 
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plants subjected to water stress, whereas no significant differences or slightly higher increases 

in the expression levels (3.5-fold) were observed in HHb plants. No differences in ACS6 

expression were observed between genotypes (Fig. 7).       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure7. Expression of several poliamines pathway genes in HHb under drought. Real time RT-PCR was carried out 
in barley wild type GoldenPromise and in HHb line in control (white) and drought (black) conditions. Data are mean 
of at least 3 biological replicates and 3 technical replicates + standard error. 

 

 

Different nitration and S-nitrosylation pattern of proteins between WT and HHb 

plants  

Nitration and S-nitrosylation processes have emerged as key post-translational modifications 

of proteins in animal and plants. Thus, we explored the possibility of NO affecting the activity 

of proteins involved in the polyamine byosinthesis pathway, through S-nitrosylation and 

nitrosilation of cystein and tyrosin residues, respectively. Western blots assayed with anti-
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nitrotyrosine antibodies showed one protein of approximately 22 KDa nitrated in WT plants, 

both well watered and under drought stress, that were not observed in HHb plants (Fig. 8A). 

Following the biotin-switch assay anti-biotin antibodies were used to detect S-nytrosilated 

proteins (Fig. 8B). One protein of approximately 18KDa that was not observed or with a very 

weak signal in WT and HHb under control conditions was S-nitrosylated  under drought stress 

in WT but not in HHb plants. A similar trend was observed for another protein of 

approximately 8 KDa. Spots corresponding to both proteins increased the signal following 

extract incubation with the NO donor GSNO, and signal disappears in the controls without 

biotin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Nitration and nitrosilation of proteins. S-nitrosylated and nitrated  proteins were detected in barley wild 
type Golden Promise and in HHb line under control and drought conditions by using the biotin-switch method.  

 

DISCUSSION 

 

Reduced NO levels lead to drought tolerance in oat and barley 

Our work shows that during drought stress oat resistant cultivar Patones reduced NO levels 

respect to the susceptible cultivar Flega. This would suggest and involvement of NO in drought 

tolerance by which low NO levels correlate with the tolerance phenotype. To support this 

kd

~22

Cont         Dro           Cont         Dro 

WT                               HHb

kd

~18

Cont    Dro     Cont  Dro 

WT                    Hb05

~8

+DDT +GSNO –Biotin

A

B
WT Dro



   Chapter 3 

130 
 

hypothesis, further work in barley showed that the transgenic barley line HHb with reduced 

NO levels had increased drought tolerance respect to the WT plants with normal NO levels. 

Previous work by (Garcia-Mata and Lamattina, 2001)had reported an effect of NO conferring 

water deficit tolerance when it was exogenously applied as SNP. Thus, 150 µM SNP increased 

the RWC of detached wheat leaves subjected to different period of drought for no longer than 

3 h. This higher RWC was associated to a decrease in the water loss achieved by stomata 

closure.  It is known that ABA induced NO generation induced stomatal closure (Bright et al., 

2006; Neill et al., 2003) and stomatal closure would be a crucial factor to maintain RWC in 

detached leaves in absence of water so it could be expected that NO induced the higher RWC 

in this system. However, although reduction of stomatal openings is a common feature of 

plants suffering stress periods of decreasing soil water availability,  fine modulation of 

stomatal aperture, not only tight closure, is necessary to maintain a delicate equilibrium 

between saving water, maintenance of photosynthesis and  avoiding oxidative damage. This 

fine stomatal modulation have been previously reported in Patones, whereas in Flega, rapid 

and tight stomatal closure resulted in a lack of a circadian rhythm, an increase of leaf 

temperature, increased electron flow-associated oxidative stress and altered photosynthethic 

activity leading to drought susceptibility (Sanchez-Martin et al., 2012). Similarly, HHb plants, 

which showed higher drought tolerance, although reduced the transpiration rate per leaf unit 

area under drought compared with well watered controls, they maintained slightly but 

significant higher transpiration than the WT plants. This likely aided to maintain lower 

oxidative stress and higher root hydraulic conductance than the WT plants contributing to the 

better water status observed in HHb plants (i.e. higher RWC and lower leaf water potential). 

This higher transpiration rate might be promoted by the lower NO levels observed but clearly, 

this is not only mediated by NO, as cross-talk between NO, SA, ABA and other hormones such 

auxin, ethylene, and jasmonate are also crucial in determine the size of stomatal apertures 

(Acharya and Assmann, 2009). 

 

Moreover, contrasting results of SNP application in wheat seedlings have been also reported. 

According to Tian and Lei (Tian and Lei, 2006) 0.2 mM SNP enhanced wheat seedling growth 

under drought whereas 2 mM aggravated the stress. Thus, care should be taken when 

analyzed the results of NO donors (Floryszak-Wieczorek et al., 2006). Indeed, since we showed 

that the reduced NO levels had an effect on polyamine metabolism, we also tested whether 

exogenously applied SNP (Prats et al., 2005) to Flega and Patones oat plants could also affect 

polyamine production. Surprisingly exogenous SNP at the concentration tested increased the 

levels of putrescine in both cultivars and spermidine in Flega (Supplemental Fig 2) which could 
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be promoted for instance by alteration of the nitrogen fluxes and alteration of the direct 

polyamines precursor aminoacids such as arginine involved in both NO and polyamine 

biosynthesis (Supplemental Fig 1).  This again highlights precaution when supporting 

hypothesis based in the use of NO donors. 

 

Endogenous NO influence polyamine content by altering polyamine precursor 

content and gene expression 

Polyamines have been largely defined as protective compounds involved in abiotic and also 

biotic stresses resistance (Kuznetsov and Shevyakova, 2007b; Walters, 2000). Our results 

showed an involvement of NO in polyamine content. Particularly HHb plants showed increased 

levels of putrescine and spermidine constitutively and spermidine under drought respect to 

WT plants. WT plants showed a dramatic increase of putrescine under drought which was 

accompanied by a near 100 fold increase of adc mRNA far higher than the 5-fold increase 

observed in the HHb plants. The lower spermidine levels observed in the WT plants under 

stress were associated with the down-regulation of the AdoMetDC gene and reduced 

methionine levels observed in WT plants. The production of dcSAM by the action of AdoMetDC 

is an essential step in polyamine production, so AdoMetDC is a key node controlling polyamine 

content. In addition the aminopropyl groups for spermidine or spermine synthesis  are 

ultimately derived from methionine aminoacid (Pegg et al., 1998) so the reduced methionine 

content observed in WT plants would also contribute to the lower spermidine level of the WT 

plants. Furthermore, dramatic increase in the ACS1, ACS2 and ACS5 transcripts would 

contribute to a diversion of the methionine to the ethylene pathway instead to that of 

polyamines (Supplemental Fig 1). Thus, putrescine levels would be increased in Wt plants 

under drought favoured by the up-regulation of the adc gene. However, reduced levels of 

methionine, down-regulation of AddoMetDC and up-regulation of ACS would reduce its 

conversion to higher polyamines, spermidine and spermine. Using oat leaf system (Galston et 

al., 1997) showed that upon onset of osmotic stress, activation of adc gene transcription 

induced the accumulation of a putrescine inactive precursor. This precursor was post-

translationally cleaved in the N-terminal fragment to produce the 24-kDa C-terminal fragment 

containing the ADC active site promoting the putrescine formation (Malmberg and Cellino, 

1994; Malmberg et al., 1992). The increased levels of putrescine on the leaves lead to a 

chlorophyll loss and accelerated senescence (Capell et al., 1998). Exougenously applied 

spermine (Capell et al., 2004; Capell et al., 1998) and spermidine (Capell et al., 1998) are able 

to inhibit the post-translational processing decreasing putrescine accumulation and the 
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associated senescence. Our data agreed with these and also showed a senescence related 

phenotype under drought associated with the high putrescine accumulation in (Yang et al., 

2007) suggested that high levels of putrescine at an early stage of drought is necessary for 

plants to adapt to stress by triggering the conversion of Put to the higher polyamines. Further, 

mass accumulation of putrescine extending beyond its involvement as higher polyamine 

precursor would be toxic for the plants. Our data reflect this point since the higher constitutive 

and also induced levels of putrescine might account for the increase in spermidine observed in 

HHb plants whereas the massive increase observed in WT might contribute to the drought 

induced senescence observed in WT.   

 

In addition, a massive increase of the transcript levels of various member of the ACS family was 

observed in WT plants under drought. ACS catalyzes the first committed step in ethylene 

biosynthesis in higher plants. Thus, the induction of ACS transcription by NO in WT under 

drought, not observed in HHb plants, would greatly contribute to an increase in ethylene 

accelerating the drought induced senescence in this genotype as has been previously reported 

in maize (Young et al., 2004). Controversy exist about the synergistic or antagonistic 

relationship between NO and ethylene. However, this probably comes from the exogenous 

application of the NO as different NO donors and concentrations. Despite this, SNP infiltration 

has been shown to stimulate ACS expression (Ederli et al., 2006; Mur et al., 2008) and GSNO 

stimulate the transcript not only of ACS gene but also other key enzymes involved in ethylene 

biosynthesis (Garcia et al., 2011). Our data agree with these and demonstrate the influence of 

endogenous produced NO during drought stress stimulating ACS transcripts and suggesting an 

induction of the drought induced senescence mediated by ethylene.  

 

Post-translational NO modifications under drought 

A rapidly increasing number  of substrates for S-nitrosylation in plants have been reported in 

the last years including protein kinases, phosphatases, ion channels, metabolic and regulatory 

enzymes, cytoskeletal and structural proteins, transcription factors, oxidoreductases, and 

respiratory proteins (review in (Hess et al., 2005; Wang et al., 2006). Much less information is 

available on protein nitration albeit recent studies also shown its relevance during plant abiotic 

and biotic interaction (Corpas et al., 2009; Radi, 2004). Our data showed differences in the 

nitration and S-nitrosylation pattern of WT and HHb plants under drought. In particular WT 

plants showed two nitrosylated proteins that appeared under drought stress in WT plants but 

did not appear or in a very low concentration in the HHb plants. Interestingly one of them 

might correspond to the AdoMetDC, which is synthesized as a proenzyme subsequently 
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cleaved in aproximately 30 (a) and 8 kDa (b) subunits (Park and Cho, 1999). The small subunit 

is part of the active enzyme complex, and in fact it contains residues which play critical roles in 

both processing and catalytic activity (Yerlikaya and Stanley, 2004). AdoMet DC has been 

described as a target for inactivation by NO since its activity was lost upon incubation in vitro 

with NO donors such as GSNO and SNAP (Hillary and Pegg, 2003). This post-translational 

inhibition of AdoMetDC by NO would add to the down-regulation of the enzyme above 

demonstrated, reducing spermidine and/or spermine biosynthesis in WT plants.  Not only 

AdoMetDc, but also ODC (Bauer et al., 2001), MAT and additional polyamine handling enzymes 

are regulated by S-nitrosylation (Perez-Mato et al., 1999). Unfortunately it did not prove 

possible the identification of the nitrated/nitrosylated proteins so the detected proteins could 

belong to the polyamine biosynthesis or other metabolic pathway. A detailed study for the 

identification of the nitrosilated and nitrated proteins under drought in WT and HHb will be 

carried out to further dissect the nature of these proteins.  
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Supplemental Figure 1.  Biosynthetic polyamine pathway (Modified from Alcazar et al., 2010) 
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Supplemental Figure 2. Effect of the NO donor SNP in poliamine content in Hb05 lines under drought. Polyamines 
were quantified in in in Flega (susceptible) and Patones (resistant) plants, well watered (white) or subjected to 
drought treatment (black) conditions. Data are mean of 5 biological replicates + standard error. 
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Abstract In this study, genetic diversity among 177 oat
(Avena sativa L.) accessions including both white and red
oat landraces and 36 commercial cultivars was studied for
simple sequence repeat (SSR) loci. Thirty-one genomic and
expressed sequence tags (EST)-derived primer pairs were
selected according to high polymorphism from an initial 66
SSR batch. Markers revealed a high level of polymorphism,
detecting a total of 454 alleles. The average gene diversity
for the whole sample was 0.29. Genetic similarity, calculat-
ed using the Dice coefficient, was used for cluster analysis,
and principal component analysis was also applied. In addi-
tion, population structure using a Bayesian clustering ap-
proach identified discrete subpopulation based on allele
frequency and showed similar clustering of oat genotypes
in four groups. Accessions could be classified into four main
clusters that clearly separated the commercial cultivars, the
red oat landraces and two clusters of white oat landraces.
Cultivars showed less diversity than the landraces indicating
a reduction of genetic diversity during breeding, whereas
white oat landraces showed higher diversity than red ones.
The average polymorphic information content of 0.80 for the
SSR loci indicated the usefulness of many of the SSR for
genotype identification. In particular, two markers, MAMA5
and AM04, with a total of 50 alleles and a high discrimination
power (>0.90), were sufficient to discriminate among all

commercial cultivars studied highlighting their potential use
for variety identification.

Keywords A. sativa . Genetic diversity . Oat . Simple
sequence repeat (SSR)

Introduction

Oat is a cereal crop of Mediterranean origin (Stevens et al.
2004). Avena sativa L. is the main cultivated oat including the
white and red oats. White oats are preferred for milling and are
used for human food and for fodder, especially for poultry and
horses. Red oats (formerly known as A. byzantina K. Koch)
are preferred for hay (Stevens et al. 2004).

During the twentieth century, landraces have increasingly
been replaced by modern cultivars, resulting in significant
reduction in genetic diversity (Warburton et al. 2008; Reif et
al. 2005; Roussel et al. 2004) and contributing to the stabil-
ity in genetic diversity of wheat, barley, and maize cultivars
in recent years (Christiansen et al. 2002; Donini et al. 2000;
Koebner et al. 2003). Thus, the loss of genetic diversity has
become an important problem both in natural plant
populations and in important crop species. This loss led to
calls for the genetic conservation of crop germplasm
(Frankel and Bennett 1970). Current molecular characteri-
zation of ex situ plant germplasm has placed more emphasis
on cultivated gene pools and less on exotic gene pools
representing wild relative species (Karp 2002). Although
these modern cultivars may be higher yielding under high-
input systems, landraces have considerable potential for use
in improving disease and abiotic stress tolerance. Transfer of
beneficial traits from landraces is relatively straightforward
in that there is no barrier to crossing, as there can be with the
use of crop wild relatives. Thus, several studies suggest that
landraces may be a good source of new allelic diversity for
breeding programs. However, better characterization of
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exotic germplasm is needed to facilitate its use in plant
breeding and in research (Hawkes 1990; Jellen and
Leggett 2006), so as to the introgression of exotic germ-
plasm into a plant breeding program.

Genetic diversity studies, assessed by various tools includ-
ing DNA markers, provide important information both for
genetic conservation and for use in efficiently breeding new
commercial varieties. To date, genetic studies in hexaploid oat
has been more difficult than in other species, mainly due to
large genome size (Bennett and Smith 1976) and polyploidy
causing inherent complexities for mapping including large
numbers of linkage groups, detection of multiple loci by a
single probe, and comigration of fragments from different loci
that can impede interpretation of allelic relationships and
genetic analyses (Iannucci et al. 2011). Amplified fragment
length polymorphisms (AFLPs) (Achleitner et al. 2008; Fu et
al. 2005; Fu and Williams 2008), random amplified polymor-
phic DNA (RAPDs) (Baohong et al. 2003; Paczos-Grzeda
2004), and microsatellites have been previously used in oat for
assessment of genetic diversity. In particular, microsatellites have
been used to dissect genetic diversity in several Avena spp. (Li et
al. 2000, 2007) and to examine allelic diversity changes over 100
years of oat breeding in both Nordic countries (Nersting et al.
2006), Canada (Fu et al. 2007), and North Europe (He and
Bjornstad 2012). Association of genetic markers with regions
of the genome controlling different traits would enable efficient
and precise transfer of useful alleles from landraces to modern
cultivars while minimizing linkage drag of nonbeneficial alleles.

To date, identification of oat cultivars has relied on mor-
phological and phenological characteristics that may be
influenced by environmental factors and require trained staff
and large-scale growth experiments of mature plants under
uniform conditions for evaluation. In addition, some culti-
vars are morphologically similar, making difficult to distin-
guish between them visually. SSR profiles can be used as a
DNA fingerprint for registered cultivars to avoid redundan-
cy of identical cultivars as well as to protect breeders' rights.

Here, we studied the genetic diversity of 141white and red oat
landraces together with 36 currently grown oat cultivars for
potential use in breeding programs. Furthermore, we tested the
potential of SSRs for molecular identification of the oat cultivars
studied.

Materials and methods

Plant material

A germplasm collection of landraces consisting of 141 A.
sativa accessions (110 white and 31 red oats) originally col-
lected from 1944 to 1997 in southern Spain, when they were
used locally in agriculture (Online resource 1), was provided
by the “Plant Genetic Resources Center” (CRF-INIA,Madrid,

Spain). In addition, 36 commercial cultivars were supplied by
the Andalusian Network of Agriculture Experimentation
(RAEA) selected for their adaptation to southern Spain agroeco-
logical conditions. For simplicity, germplasm bank codes were
substituted for the codes included in Supplementary Table 1
(Sanchez-Martin et al. 2011a). White oat cultivars studied were
Ac1, Acebeda, Adamo, Aintree, Alcudia, Anchuela, Araceli,
Brawi, Caleche, Canelle, Chambord, Chapline, Charming,
Cobeña, Condor, Cory, Edelprinz, Flega, Fringante, Fuwi,
Hammel, Kankan, Kantora, Karmela, Cassandra, Kazmina,
Mirabel, Mojacar, Norlys, Orblanche, Pallini, Patones,
Prevision, Primula, and Rapidena. In addition, the A. strigosa
cultivar Saia was included for comparison.

Seedlings were grown in 0.5-L pots filled with peat:sand
(3:1) in a growth chamber at 20 °C, 65 % relative humidity,
and under 12 h dark/12 h light with 150 μmol m−2 s−1

photon flux density supplied by high-output white fluores-
cent tubes. Sites and year of landraces sampling together
with other characteristics of the site are recorded in Online
resource 1, and year of registration, origin, and genealogy, if
known of cultivars, are recorded in Online resource 2.

DNA extraction, SSR markers, and PCR procedure

Ten leaves from 12-day-old seedlings were harvested and
DNA was extracted according to the CTAB protocol
(Murray and Thompson 1980). Sixty-six SSR primer pairs
derived from genomic and EST libraries of oats and barley
were selected from previous reports to test for polymor-
phism (Becher 2007; Jannink and Gardner 2005; Li et al.
2000; Liu et al. 1996; Pal et al. 2002; Wight et al. 2010). In
addition, three SSRs were developed from EST sequence infor-
mation from Avena barbata and Festuca by using the following
primers: Barb2-40 (5′-CCATCTCAACCTTTGCTTCTCTCCT-
3′ and 5′-GTTCTTGAGCTCCTTGACCTTGAGC-3′), Barb4-
10 (5′-GCTGAGCAATCTCA TCAGCTCAACT-3′ and
5′-GAGGTGATCCGAGCTTACTTCATCA-3′), and Fesc12
( 5 ′ - G TCGCCGGAGAAGAGAAGAG - 3 ′ a n d
5′-AACGCTAGCCGTGATGACTT-3′). Following prelimi-
nary assays in a subset of 46 samples, a final set of
31 primer pairs (Table 1) were chosen because of their
consistency in amplification and polymorphism in our
oat genotypes and/or because they had been mapped in
a mapping population developed from two winter oat
cultivars Buffalo and Tardis (data not shown) and
displayed reasonable genome coverage.

Amplification reactions were set up for 40 cycles with an
initial denaturing step of 10 min at 95 °C. Each cycle
consisted of denaturation at 94 °C for 1 min, followed by
primer-specific annealing for 1 min (temperature specified
in Table 1), and extension at 72 °C for 1 min. After 35
cycles, there was a final extension step of 10min at 72 °C. The
10 μL reaction mix comprised of 6.05 μL sterile-distilled
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water, 0.05 μL Taq polymerase (Roche Applied Sciences,
Mannheim, Germany), 1 μL of 10× PCR buffer with
MgCl2, 1.3 μL of dNTP (5 mM equimolar solution of each
dATP, dCTP, dGTP, and dTTP), 0.3 μL each of forward and
reverse primers (10 μM solution), and 1 μL of template DNA
(30 ng μL−1). Reactions were stopped with 95 % formamide
loading dye. Amplification products from markers AME097,
AME105, AME168, AME176, AME192, BarbSSR_2-40,
and BarbSSR_4-10 were separated on 4.5 % polyacrylamide
denaturing gel (Bio-Rad, CA, USA, Sequi-Gen GT, 38×
50 cm) using 73-well comb and visualized by silver staining
(Promega Silver Sequencing system, WI, USA). Relative move-
ment of different amplicons and standard molecular-weight
marker were used to estimate the sizes of amplified fragments
using regression. The remaining markers were run on the ABI
3137 capillary sequencer. PCR, using AmpliTag gold, was
conducted as for polyacrylamide gel analysis, except that one
primer was labeled with a fluorescent dye and the concentration
of DNA was 20 ng μL−1. The size standard GeneScan 500
LIZ™ (orange) was included with each sample and used to
determine the sizes of the PCR products detected. All primers
and the size standards were supplied by Applied Biosystems
(ABI). Data were analyzed using GeneMapper (ABI). Presence
or absence of each amplified band was scored as 1 and 0,
respectively, for all markers to generate a binary data matrix.
The genetic diversity of each microsatellite locus was assessed
by calculating the frequency of the microsatellite alleles based on
polymorphic information content (PIC) following (Botstein et al.
1980) using the equation:

PIC ¼ 1�J ¼ 1�
Xn

j¼1
P2ij

where Pij is the frequency of the jth allele for the ith marker.
Estimates of genetic similarity (GS) were calculated for all
possible pairs of genotypes according to Dice similarity coeffi-
cient (Nei and Li 1979). In addition, frequencies of incidence of
all polymorphic alleles for each SSRmarker were calculated and
used for determination of statistical parameters. Confusion prob-
ability (Cj) and discriminating power (Dj) of each marker were
estimated according to Tessier et al. (1999). Cluster analysis
based on unweighted pair-group method with arithmetic average
(UPGMA) was performed on a matrix of GS estimates using
GenStat 7th Edition and a dendrogram was constructed. The
correlation coefficient between the similarity matrix and the
cophenetic values matrix was computed to test the goodness of
fit of the cluster analysis. NTSYS-pc 2.02j software (Biostatistics
Inc., USA, Rohlf 1998) was used for these statistical analyses.

Population structure and percentages of admixture

Population structure was inferred by the software STRUCTURE
2.3.3. We set most parameters to their default values as
advised in the user's manual (Pritchard and Wen 2003).

Specifically, we chose the admixture model and the option of
correlated allele frequencies between populations, as this
configuration is considered best in cases of subtle pop-
ulation structure (Falush et al. 2003). Similarly, we let
the degree of admixture alpha be inferred from the data.
Each simulation included 10,000 burn-in and 100,000
iterations. Longer burn-in or MCMC did not change
significantly the results. Ten independent simulations
per k value were run and the mean estimate across runs
of the log posterior probability of the data for a given k,
Pr(X | k), called L(k), was plotted for each k category
on a graph to determine the k value of the population as
the value of k for which the distribution of L(k) plateaus
or continues to increase, but much more slowly. Because
this point is known to be difficult to determine, we also used
Δk, an ad hoc quantity proposed by Evanno et al. (2005)
related to the second-order rates of change of the likelihood
function with respect to k that is supposed to show a clear
Δk at a true value of k.

Results

The 31 primer pairs used to characterize and evaluate the
genetic diversity in the landraces and commercial varieties
of the oat collection showed a high level of polymorphism,
displaying a total of 454 alleles. The total number of alleles
per marker ranged from three for AME168 to 42 for
MAMA05 with a mean of 14.65 (Table 1). PIC varied from
0.46 (AME168 and AM112) to 0.96 (AM04) with a mean of
0.80. Based on PIC values obtained, most SSRs, with the
exception of AM112, AME168, AME176, BarbSSR_2-40,
and BarbSSR_4-10, were considered informative markers
(PIC>0.7), indicating the potential use of this set of SSR
markers for cultivar identification (Table 1). Allelic frequen-
cies observed ranged from 0.001 to 0.69 with a mean of
0.062. One hundred thirty-eight alleles out of 454 detected
were classified as “rare” due to their low frequency (<0.03),
194 were classified as “common,” with frequencies between
0.03 and 0.2, and 122 were classified as “more frequent”
with frequencies >0.2 (Table 1). Rare and common alleles
were detected at 26 and 27 SSR loci studied, respectively.
Rare alleles per locus ranged from 0 to 16 (MAMA05),
whereas the number of common alleles per locus ranged
from 0 to 28 (AM04) and the more frequent from 0 to 9
(AM30) (Table 1). High values of discriminating power
(Dj≥0.81) and PIC≥0.81, and low values of confusion
probability (Cj≤0.19) were obtained for 20 of the markers
evaluated (64.5 %) (Table 1).

From the dendrogram generated, the 177 accessions
could be classified into four main clusters that clearly
separated the commercial cultivars, the red oat landraces
and two clusters of white oat landraces (Fig. 1). The A.
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strigosa genotype, Saia, did not cluster with the A.
sativa entries. Genetic similarity estimates calculated
among the oat collection varied from 0.16 to a maxi-
mum of 0.99 (between Gen130 and Gen131) with a
mean similarity of 0.29 (Fig. 1). Cluster 1 included
most of the commercial cultivars together with the land-
races Gen141 and Gen17. Cultivars with the highest
genetic similarity (0.88) were Chapline and Cobeña.
Cluster 2 comprised the red oat landraces along with
the commercial red oat cultivars Cassandra and
Prevision. In addition, four landraces, Gen139, Gen64,

Gen27, and Gen106, which are all described as white
oats, were included in this cluster. The red oat landrace
Gen84, however, grouped in cluster 3. The third and
fourth clusters included most of the white oat landraces.
The third cluster contained 51 genotypes, with Gen5
and Gen 13 being the most related landraces with a
GS of 0.84. The fourth cluster was the largest with 53
genotypes. Genetic similarity within each cluster was
similar with values of 0.50, 0.55, 0.50, and 0.54 for
clusters 1, 2, 3, and 4, respectively, but when compar-
ing the white oats, commercial cultivars had a slightly

Table 1 Characteristics of 31 microsatellite markers selected for use in the study. Size range, number of alleles (rare, common, and most frequent),
confusion probability (Cj), discriminating power (Dj), and polymorphic information content (PIC)

Marker name SSR type Tm Detection Size (pb) No. of
alleles

Rare alleles
(<0.03)

Common alleles
(0.03–0.2)

Frequent
alleles (>0.2)

Cj Dj PIC

AM01 Genomic 55 ABI 154–240 27 10 14 3 0.11 0.89 0.89

AM03 Genomic 58 ABI 249–298 22 7 15 0 0.06 0.94 0.93

AM04 Genomic ABI 78–180 41 7 28 6 0.04 0.96 0.96

AM07 Genomic 55 ABI 146–195 25 8 13 4 0.08 0.92 0.92

AM102 Genomic 55 ABI 160–217 10 2 3 5 0.18 0.82 0.82

AM112 Genomic ABI 227–255 7 3 3 1 0.54 0.46 0.46

AM14 Genomic 55 ABI 98–134 17 4 5 8 0.10 0.90 0.90

AM30 Genomic 55 ABI 178–230 17 3 5 9 0.11 0.89 0.89

AM42 Genomic 58 ABI 165–208 13 4 1 8 0.14 0.86 0.86

AM87 Genomic 55 ABI 92–171 15 6 3 6 0.17 0.83 0.83

AM89 Genomic 53 ABI 173–201 10 3 2 5 0.22 0.78 0.77

AME097 EST 52 Silver 145–155 4 0 0 4 0.26 0.74 0.74

AME105 EST 52 Silver 140–190 10 0 5 5 0.13 0.87 0.87

AME168 EST 52 Silver 200–220 3 0 1 2 0.54 0.46 0.46

AME176 EST 52 Silver 90–110 4 0 1 3 0.32 0.68 0.68

AME192 EST 52 Silver 300–345 6 1 0 5 0.22 0.78 0.78

BarbSSR_2-40 EST 60 Silver 195–220 4 0 0 4 0.37 0.63 0.63

BarbSSR_4-10 EST 60 Silver 270–310 5 1 1 3 0.36 0.64 0.63

CDO187 EST 55 ABI 104–152 9 3 0 6 0.18 0.82 0.82

Fesc12 EST 61 ABI 124–194 21 7 12 2 0.10 0.90 0.90

HVM20 Genomic 53 ABI 103–154 21 9 11 1 0.10 0.90 0.90

HvXan EST 50 ABI 93–206 26 15 6 5 0.15 0.85 0.85

MAMA01 Genomic 55 ABI 183–215 12 3 7 2 0.18 0.82 0.81

MAMA03 Genomic 55 ABI 351–403 12 2 8 2 0.14 0.86 0.85

MAMA05 Genomic 55 ABI 62–274 42 16 20 6 0.07 0.93 0.92

MAMA07 Genomic 55 ABI 322–371 12 5 5 2 0.29 0.71 0.70

MAMA08 Genomic 55 ABI 548–623 18 5 12 1 0.10 0.90 0.90

MAMA09 Genomic 55 ABI 401–491 14 6 4 4 0.16 0.84 0.84

MAMA11 Genomic 55 ABI 124–183 9 4 3 2 0.24 0.76 0.75

MAMA12 Genomic 55 ABI 297–321 8 2 3 3 0.22 0.78 0.78

OL0410 EST 55 ABI 256–281 10 2 3 5 0.19 0.81 0.81

Mean 14.65 4.45 6.26 3.94 0.20 0.80 0.80

Total 454 138 194 122

ABI Applied Biosystem ABI3137
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Fig. 1 UPGMA dendogram of 176 oat accessions based on Dice distance for 31 SSR markers
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higher GS compared with landraces. Most clusters
showed particular alleles characteristic for that group.
For example, most genotypes of cluster 1 had the 209-
bp allele from AM01 marker, all genotypes of cluster 2
had the 137- and 368-bp alleles from AME097 and
MAMA3 markers, all genotypes from clusters 3 and 4,
except one, had the 232-pb allele amplified with
AM112 marker, but only genotypes from cluster 3 had
the 161-pb allele amplified with AM87. Overall, com-
parison of the white oats revealed 22 unique alleles
belonging to commercial cultivars and 129 to landraces.
In addition, 11 alleles were assigned exclusively to the
red oat landraces. Analysis of the allelic frequency
obtained for each marker showed that often clusters 2,
3, or 4 associated with landraces had a significantly
higher allelic frequency than cluster 1 (Table 2). In
particular, markers AME105 and MAMA 9 showed
significantly higher allelic frequencies in clusters 2, 3,
and 4 compared with cluster 1. Only for marker MAMA11
was the allelic frequency of cluster 1 higher than that of
clusters 2, 3, and 4 (Table 2). Comparison between the
cophenetic matrix and the similarity matrix was significant
with r2=0.876 (p<0.01), indicating a high goodness of fit
between both matrices.

Interestingly, when assessing independently the oat
cultivars, a subset of 11 markers (HvXan, AM01,
AM30, AM14, AM87, AM07, MAMA08, AM42,
MAMA5, AM04, and FESC12) showed a high polymor-
phism with 167 alleles and high PIC (>0.80). This subset
of SSRs was able to group the white oat cultivars from
cluster 1 showing a similar genetic relationship among
them as obtained when assessed with the complete SSR
set. Furthermore, among these SSRs, two of them
MAMA5, with 23 alleles and a discriminating power
of 0.90, and AM04, with 27 alleles and a discrimination
power of 0.94, were sufficient to discriminate between
all cultivars.

Structure of the population

The criteria used to define the number of subpopulations in
the oat collection, which are the position of a break point in
the L(k) curve and a peak in the Δk distribution, supported
values of k=2 and k=4 (data not shown). For both k values,
most accessions were assigned by STRUCTURE to a sub-
population. With k=2, it was possible to distinguish be-
tween the white oat landraces and the rest of the
collection. With k=4, a finer subgrouping corresponding to
the commercial varieties, the red oat landraces, and two
groups of white oat landraces was obtained. Figure 2 shows
the four subpopulations detected by STRUCTURE with the
percentage of admixture of each genotype in the corresponding
subpopulation. The results of the assignments showed a very

good congruence between the two methods. Indeed, only three
out of the 177 genotypes assessed, Saia, Gen51, and Gen61,
were assigned to different clusters by UPGMA and
STRUCTURE approaches, and in the three cases,
STRUCTURE coefficients indicated a membership lower than
80 % in the corresponding population. According to
STRUCTURE, subpopulation 1 showed the lowest degree of
admixture with only 16.2 % of the genotypes with less than
80 % of membership to this subpopulation followed by sub-
population 2 with 28.6 % of genotypes with less than 80 % of
membership in this group. Subpopulations 3 and 4, with 31.4
and 34.6 % of genotypes with less than 80 % membership to

Table 2 Comparison of allelic frequency between subpopulations

Alellic frequency Significance

Primer Cluster
1

Cluster
2

Cluster
3

Cluster
4

AM01 0.12ª 0.11ª 0.11ª 0.12ª ns

AM03 0.05ac 0.06ad 0.07bd 0.05c ***

AM04 0.12ª 0.13ª 0.13ª 0.10b ***

AM07 0.09ab 0.10ª 0.08b 0.10ª ns

AM102 0.21ª 0.31b 0.23ª 0.16c ***

AM112 0.18ª 0.18ª 0.15bc 0.15c ***

AM14 0.21ª 0.20ª 0.25b 0.22ab *

AM30 0.33ª 0.43b 0.38c 0.33ª ***

AM42 0.32ª 0.31ª 0.36b 0.31ª **

AM87 0.14ª 0.16a 0.18b 0.21c ***

AM89 0.33ª 0.34ª 0.33ª 0.34ª ns

AME097 0.36ab 0.43ª 0.34b 0.33b ***

AME105 0.14ª 0.26b 0.24b 0.24b ***

AME168 0.39ª 0.44ª 0.41ª 0.53b ***

AME176 0.48ª 0.48ª 0.63b 0.59b ***

AME192 0.36ª 0.43b 0.43b 0.38ª **

BarbSSR_2-40 0.32ª 0.49b 0.45ab 0.52b *

BarbSSR_4-10 0.40ª 0.45b 0.43ab 0.41a ***

CDO187 0.38ª 0.43bc 0.46b 0.40ac **

FESC12 0.09ª 0.09ª 0.08ª 0.09ª ns

HVM20 0.06ª 0.07ª 0.08ª 0.08ª ns

HvXan 0.16ª 0.15ª 0.17ªc 0.19bc *

MAMA01 0.10ª 0.09ac 0.08bc 0.10a *

MAMA03 0.10ª 0.11ª 0.10ª 0.16b ***

MAMA05 0.09ª 0.10ab 0.11b 0.08c ***

MAMA07 0.11ab 0.12ª 0.11ab 0.10b ns

MAMA08 0.07ªc 0.08ªb 0.06c 0.06c ns

MAMA09 0.09ª 0.13b 0.14b 0.12b ***

MAMA11 0.14ª 0.11b 0.11b 0.12b ***

MAMA12 0.14ª 0.17a 0.16a 0.22b ***

OL0410 0.32ª 0.35a 0.40b 0.34a ***

Different letters in a row indicate significant differences at p≤0.05,
p<0.01, and p≤0.001 according to *, **, and *** respectively for that
marker; ns not significant differences

1310 Plant Mol Biol Rep (2013) 31:1305–1314

Author's personal copy



the corresponding subpopulation, were the subpopulation with
higher admixture. In addition, the germplasm collection was
also subjected to multivariate analysis based on principal com-
ponent analysis (PCA) and discriminant function analysis
(DFA) that revealed clear separation of four subpopulations
that indicate high consistency of the data (Fig. 3).

Discussion

Genetic diversity analysis of the oat collection including land-
races and cultivars revealed high variability among accessions.
However, this variability was more evident within the white oat
landrace collection with 129 exclusive alleles, followed by the
red oat landraces, and the cultivars, with 11 and 22 exclusive

alleles, respectively. This indicates the considerable genetic
variation that exists in landraces that is not present in
the cultivars and offers opportunities for breeding new
cultivars by exploiting the genetic diversity existing in
the landraces. Our findings on clear distinctions between
white and red oat landraces are in agreement with previous
reports (Fu et al. 2005; Newell et al. 2011; Odonoughue et al.
1994) and support the hypothesis that white and red oats were
domesticated independently of each other (Zohary and Hopf
2000). White oat landraces were more distinct from the white
oat cultivars; however, red oat landraces grouped together
with the red oat cultivars analyzed (Fig. 1), suggesting either
lower improvement of the red oat cultivars compared with the
white or the involvement of the nearest genetic similar red
landraces in their genealogy.

Fig. 2 Estimated population structure of oat genotypes according to STRUCTURE software. Each individual is represented by a thin vertical
segment, which can be partitioned into 4 gray-scale colored segments that represent the individual estimated membership to the 4 clusters
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In general, most of the accessions closely related by pedigree
and/or derived from germplasm having specific traits clustered
together. Thus, those cultivars with the highest genetic similarity
from cluster 1 shared common ancestors. For instance, Mirabel,
Aintree, Caleche, and Norlys shared Fringante as one of their
parent. In addition, Norlys and Caleche shared other common
ancestors. Other closely related cultivars such as AC1 and
Orblanche had Mostyn as a common ancestor. Furthermore,
Orblanche together with Condor, Fuwi, and Adamo comprise
a subcluster with a genetic similarity of 0.7. This result may be
explained by their common genealogy, since Orblanche and
Adamo had Condor as an ancestor, andAdamo and Fuwi shared
the cultivar Manod in their genealogy. There is less information
about ancestry for the landrace collection, but geographic loca-
tion of the collection sites is known (Online resource 1). Cluster
2 grouped most red oat accessions but also four landraces
described as white oats, Gen139, Gen64, Gen27, and Gen106,
which also shared the 235-pb allele amplified by AM112 exclu-
sive to this group. A detailed analysis of the morphological
characters that differentiate white and red oats (Magness et al.
1971) showed that indeed Gen139, Gen64, and Gen27, in
addition to the color of the seeds, had the typical white oats'
morphological characters such as no basal scar in the spikelets
from the separation from pedicel, twisted awns, and small
glumes. However, Gen106 was morphologically nearer to red
oat showing weak and nontwisted awns. The geographic prox-
imity of these white oat accessions with their most related red
oat landraces suggests a possible cross between the landraces so
that the white landraces would have acquired some of the
exclusive alleles of cluster 2. Indeed, Gen64 (white oat) and
Gen65 (red oat) were sampled from the same locality, while
Gen106 (white oat) and Gen132 (red oat) were sampled at sites
with only 8 km between them. Interestingly, the white oat
landraces grouped in two clusters, 3 and 4. A detailed analysis
of alleles showed high differences between these two clusters.
For instance, more than 95 % of genotypes of cluster 3 had the
alleles BarbSSR4_10-4, MAMA3-2, AM87-15, and AM04-11,
whereas less than 15 % of the genotypes of cluster 4 had them.
On the contrary, more than 95% of genotypes from cluster 4 had
the alleles BarbSSR_4_10-2, AME192-3, and AME192-5,
whereas less than 30 % of genotypes of cluster 3 had them. In
order to determine the possible causes of these differences, we
plotted the geographic distribution of the landraces. No differ-
ences in latitude or longitude could be inferred between the two
clusters but landraces of cluster 3 were distributed in locations
with significantly higher altitude than those of cluster 4 (average
of 537 m altitude for cluster 3 and 377 m for cluster 4; P=0.01).
This suggests a different evolution for the two clusters, with
cluster 3 better adapted to higher altitudes and their associated
cooler temperatures and probably poorer soils than cluster 4.

The narrow separation observed in this study among the
A. sativa cultivars bred in European countries suggests that a
rather small proportion of the available genetic variation

from this species is currently used for oat improvement, as
seen by Achleitner et al. (2008) in an oat collection of
worldwide origin. A similar lack of diversity was also detected
within sets of Canadian and Chinese oat varieties (Baohong et al.
2003; Fu et al. 2004) leading Fu et al. (2004) to identify an urgent
need to broaden the genetic variation for sustainable oat improve-
ment in Canada. The reduction of genetic diversity may have
consequences both for the vulnerability of crops to new pests and
pathogens and for their ability to respond to changes in climate
and agricultural practices (Fu et al. 2003). Most of the landraces
studied in this work have been characterized for disease and
abiotic stress resistance (Sanchez-Martin et al. 2011a, b) reveal-
ing accessions with interesting resistance that would be valuable
to include in European cultivars. Study of mechanisms underly-
ing resistance in selected landraces and varieties has been also
performed (Sanchez-Martin et al. 2011a, b), and the oat collec-
tion was also tested under a variety of Mediterranean environ-
ments for agronomic adaptation (unpublished results). The
increased use of these accessions in European and/or
Mediterranean breeding programs could simultaneously increase
diversity and improve levels of valuable traits. From crosses of
genetically divergent parents (i.e., a high yielding cultivar crossed
with a landrace showing disease and drought resistance), novel
varieties with improved traits might be selected.

Methods such as UPGMA presented here, which do not
assume predefined structure, are only loosely connected to
statistical procedures allowing the identification of homoge-
neous clusters of individuals. For this reason, the oat germ-
plasm collection was also analyzed using an alternative
model-based method implemented in the software
STRUCTURE (Pritchard et al. 2000), which uses a Bayesian
approach to simultaneously determine k (the number of sub-
populations in a collection), and estimate for each accession the
proportion of its genome that originates from each subpopula-
tion, also called percentage of admixture. The model accounts
for the presence of Hardy–Weinberg assumption or linkage
disequilibrium by introducing population structure and attempts
to find population groupings that (as far as possible) are not in
disequilibrium (Pritchard et al. 2000).

Structure was detected in this germplasm collection using
both classical multivariate and Bayesian analyses. The patterns
obtained with the two methods were very similar. Population
structure is the primary obstacle to successful association stud-
ies in any organism (Buckler and Thornsberry 2002). Model-
based clustering suggests that a large amount of the allelic
diversity can be described by subdividing the accessions into
four discrete populations, where each subpopulation has a
unique set of allele frequencies. This method is clearly a sim-
plification of the observed data; however, it can be used to
compare with other methods of clustering and to test models of
association analysis that would account for genetic associations
arising from structure presence. The congruence of patterns
obtained with Bayesian and multivariate analyses suggests that
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the estimates of these admixture proportions are reasonably
reliable.

In other cereal crops such as corn (Gunjaca et al. 2008) and
rice (Bonow et al. 2009), molecular profiles associated with the
description of a cultivar have been used to enforce the rights
granted to breeders. The two selected markers, MAMA5 and
AM04, show great potential for identifying cultivars, since they
were able to discriminate between the 36 cultivars tested, some
of them with relatively high genetic similarity and sharing
common genealogy. Thus, our findings suggest that microsat-
ellite markers can play an important role as a source of addi-
tional information in oat to supplement the morphological
descriptors recommended by the International Union for the
Protection of New Varieties of Plants (UPOV).
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ABSTRACT 

Biotic stresses such as rust and powdery mildew constitute major constraints for oat crops. 

Efficient utilization of genetic resources in breeding programs might be greatly facilitated by 

proper information generated by genetic studies. However, linkage mapping studies are 

restricted to specific genetic backgrounds limiting their usefulness. To overcome this 

limitation, association analysis which exploits the variation in a collection of genetically diverse 

materials has emerged as a promising tool to identify QTL in plants. The purpose of this work 

was to identify elite alleles for rust and powdery mildew resistance in oat by association 

mapping. To this aim, 174 oat accessions including white and red oat cultivars and landraces 

were evaluated for disease resistance and further genotyped with 31 simple sequence repeat 

(SSR) and 15,000 Diversity Arrays Technology (DArT) markers to reveal association with disease 

resistance traits. After removing markers with more than 20% missing data, a minimum allele 

frequency (MAF) lower than 1%, and combining markers in near perfect linkage disequilibrium, 

1712 polymorphic markers were considered for association analysis. Principal component 

analysis and a Bayesian clustering approach were applied to infer population structure. Five 

different general and mixed linear models accounting for population structure and/or kinship 

corrections and two different statistical tests were carried out to reduce false positive. Five 

markers, two of them highly significant in all models tested were associated with rust 

resistance. Interestingly, these DArT sequences shared homology with an autophagy-related 

protein 2 and an anthocyanin 5-aromatic acyltransferase. We did not identify strong 

association between any marker and powdery mildew resistance at seedling stage. However, 

one DArT sequence, oPt-5014, was strongly associated with powdery mildew rust resistance in 

adult plants. Overall, the markers showing the strongest association in this study provide ideal 

candidates for further studies and future inclusion in strategies of marker assisted selection.  

 

Keywords: association analysis, drought, oat, powdery mildew, resistance, rust 
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INTRODUCTION 

Oat is a crop of Mediterranean origin used as feed grain, green or conserved fodder and, more 

recently, as a winter cover crop in no-till rotations (Stevens et al., 2004). Avena sativa L. 

including the white and red (former A. byzantina) oat is the main cultivated oats. Several 

pathogenic fungi can infect oats and drastically reduce its yield. Among them, the biotrophic 

pathogens such as the powdery mildew Blumeria graminis f.sp. avenae and the crown rust 

Puccinia coronata are important oat production constraint. These fungi have very efficient 

spreading mechanisms, hampering its control by crop management measures such as rotation 

and the use of resistant varieties is one of the best control alternatives (Stevens et al., 2004).   

 

Genetic markers have been proved useful for selection of desirable traits in several species 

including oats. Thus, they have been used with a number of experimental bi-parental oat 

populations to identify quantitative trait loci (QTL) associated with important agronomic traits 

including vernalization response, flowering time  and heading date, quality traits including 

seed’s tocopherol concentration and groat protein and oil content and resistance to stresses 

including winter field survival, crown freezing tolerance and crown rust resistance (Jackson et 

al., 2010). However, the parental genotypes used in these studies are often not 

representatives of the germplasm pool that is actively used in breeding programs and the 

markers linked to QTL are not always transferable to other genetic backgrounds, limiting their 

usefulness in marker-assisted selection (MAS) (Snowdon and Friedt, 2004).  

 

Association analysis is a promising approach to overcome the limitations of conventional QTL 

mapping that has received increased attention of plant geneticists during the last few years 

(Breseghello and Sorrells, 2006; Gupta et al., 2005; Kraakman et al., 2004; Stracke et al., 2009) 

following the success in dissecting human diseases (Cardon and Bell, 2001). Unlike linkage 

analysis, where bi-parental mapping populations are used, association analysis relies on 

unrelated individuals to create population-wide marker-phenotype associations (Jannink et al., 

2001). Association analysis is based on linkage disequilibrium, defined as the non-random 

association of alleles at two loci (Falconer, 1996). Linkage disequilibrium is affected by 

mutation, admixture, selection, drift and population structure and is related with breeding 

history and reproductive biology (Flint-Garcia et al., 2003; Newell et al., 2011). Thus, 

association analysis utilizes historic patterns of recombination that have occurred within a 

sample of individuals to detect correlations between genotypes and phenotypes within these 

individuals (Zondervan and Cardon, 2004). Although association analysis shows great promise 
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as an efficient and valuable tool for gene discovery it must account for the presence of 

population structure. Failure to do so can cause the detection of spurious associations 

between traits and unlinked markers.   

 

In recent years, association studies have been performed in several plant species. Marker-trait 

associations were identified for flowering time in maize (Thornsberry et al., 2001), yield traits 

in rice (Agrama et al., 2007), agronomic traits in sugar beet (Stich et al., 2008) and beta-glucan 

concentration in oat (Newell et al., 2012). Few studies focussed on the association of markers 

with stress resistance traits including marker association with disease resistance in Arabidopsis 

and potato (Aranzana et al., 2005; Malosetti et al., 2007), or with iron deficiency in soybean 

(Wang et al., 2008). In oats, only a few association analysis studies have been reported 

(Achleitner et al., 2008) to identify molecular marker associated to yield and quality traits and 

none attempted to identify marker-trait association with respect to some of the most 

important biotic constraint of this crop, the powdery mildew and rust pathogenic fungi. In this 

work, we performed an association analysis in an oat collection of commercial cultivars and 

landraces based on SSR and Diversity Arrays Technology (DArT) markers following a detailed 

study of population structure and linkage disequilibrium. As a result, we found several markers 

associated with rust and powdery mildew resistance some of them identified as resistance 

related genes in data base. 

 

MATERIALS AND METHODS 

Plant material 

For this study, a germplasm collection of landraces consisting of 141 A. sativa accessions (110 

white and 31 red oats) kindly provided by the “Centro de Recursos Fitogenéticos”, INIA, 

Madrid, Spain, and 36 commercial varieties supplied by the Andalusian Network of Agriculture 

Experimentation (RAEA) was used. For simplicity, germplasm bank codes were substituted for 

the codes included in Sánchez-Martín et al., (2011a). Oat cultivars studied were: Ac1, Acebeda, 

Adamo, Aintree, Alcudia, Anchuela, Araceli, Brawi, Caleche, Cannele, Chambord, Chappline, 

Charming, Cobeña, Condor, Cory, Edelprinz, Flega, Fringante, Fuwi, Hammel, Kankan, Kantora, 

Karmela, Kassandra, Kazmina, Mirabel, Mojacar, Norly, Orblanche, Pallini, Patones, Prevision, 

Primula, Rappidena and Saia. Seedlings were grown in 0.5 L pots filled with peat:sand (3:1) in a 

growth chamber with 20 ºC, 65% relative humidity and under 12 h dark/12 h light with 250 

μmol m-2 sec-1 photon flux density supplied by high-output white fluorescent tubes. Sites of 
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landraces sampling and commercial cultivar’s owners and origin, are recorded in Sánchez-

Martín et al., (2011a). 

 

Genotyping 

Forty leaves from 12-day-old seedlings were harvested and DNA extracted according to the 

method prescribed by Diversity Arrays P/L, Camberra, Australia and described by Tinker et al., 

(2009). SSR primer pairs derived from genomic and EST libraries of oats and barley were 

assessed as previously (Montilla-Bascón et al., 2013). DArT marker analysis was performed by 

Diversity Arrays P/L, as described in (Tinker et al., 2009).The high density oat array with 15000 

hybridized oat DArT markers was used. 

 

Data curation 

To remove possible errors and redundancies in markers that may cause false associations, data 

cleaning was performed. According to (Miyagawa et al., 2008) this process include four steps 

previously described as necessary for GWAS. Initially, the data set consisted of 177 accessions 

and 2086 polymorphic DArT and SSR markers. First, markers with call rates lower than 0.8 and 

hence, likely containing errors, were removed. Second, markers with minor allele frequency 

(MAF) of less than 0.01 were removed, as they do not contribute substantially to variation in 

the data. Third, markers that diverged less than 1% across the genotypes lines were merged, 

thus combining markers that were in near perfect LD. Finally, inspection were performed to 

determine accessions that differed by less than 1% on the markers to remove any redundant 

accession.The highest similitude was found between Gen130 and 131. However they differed 

in more than 1% of the markers so no accessions were removed following this step.     

 

Genetic distance, population structure and kinship 

Estimates of genetic distance were calculated according to Nei’s parameter (Nei and Li, 1979) 

with Arlequin software. Population structure was inferred by the software STRUCTURE 2.3.4 

(Pritchard et al., 2000). using the admixture model and the option of correlated allele 

frequencies between populations, as this configuration is considered best by (Falush et al., 

2003) in cases of subtle population structure. Similarly we let the degree of admixture alpha be 

inferred from the data. Each simulation included 20 000 burn-in and 100,000 iterations. Longer 

burn-in or MCMC did not change significantly the results. 10 independent simulations per k 

value were run and the mean estimate across runs of the log posterior probability of the data 

for a given k, Pr(X|k), called L(k) were plotted for each k category on a graph to determine the 
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k value of the population as the value of k for which the distribution of L(k) plateaus or 

continues to increase but much more slowly. Because this point is known to be difficult to 

determine, we also used Δk, an ad hoc quantity proposed by Evanno et al., (2005) related to 

the second order rates of change of the likelihood function with respect to k that is supposed 

to show a clear Δk at true value of k. The percentages of admixture of each accession (Q 

matrix) given by the software were used as cofactors in the association analyses. For trait 

analyses per subpopulation, an accession was assigned to a subpopulation when it showed 

more than 80% membership in this subpopulation de Alencar Figueiredo et al., (2010). 

Principal component analysis (PCAs) was also performed as an alternative method to infer the 

structure of the collection  with the software package PAST (Hammer et al., 2001) 

 

The kinship coefficient approach proposed by (Yu et al., 2006) allows taking possible family 

relatedness into account and can help removing additional false positives. We computed these 

coefficients (K matrix) with the software TASSEL 4.1.27 (Bradbury et al., 2007) and used the 

two matrices (Q + K) in the variance analyses for tentative model comparisons.  

 

Linkage disequilibrium 

There are three common methods to infer LD: through the metric D, which is a quantitative 

measure of allelic association, D´ which normalize allelic association, to some extend, with 

respect to allele frequencies, and r2, obtained dividing D2 by the product of the allele 

frequencies at the two loci (Gaut and Long, 2003). In this work we used r2 since it is not as 

highly influenced by small sample sizes and low allele frequencies (Flint-Garcia et al., 2003) and 

is relevant for QTL mapping as it relates the amount of variance explained by the marker to the 

amount of variance generated by the associated QTL (Zhu et al., 2008). r2 was calculated by 

software Tassel 4.1.27 to each marker pair together with the significance of the parameter. 

The disequilibrium matrix summarising pair wise measures of LD was also performed by Tassel 

software.    

 

Phenotyping 

Crown rust resistance assessment: The P. coronata f.sp. avenae (Pca) isolate Co-04, previously 

multiplied on the susceptible check Araceli was used (virulence described in Sánchez-Martín et 

al., 2012). Four plants per accessions were grown in a growth chamber at 65% RH and 20 oC 

under a 14 h photoperiod with 150 μmol m-2 sec-1 photon flux density. When plants had the 

first leaf completely expanded they were inoculated with urediospores mixed with pure talcum 
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(1:1, w/w) by dusting them over the plants to give approximately 30 spores mm-2 (checked by 

counts made from glass slides laid adjacent to leaves). After inoculation, plants were incubated 

for 9.5 hours in darkness at 100% RH and 18 oC, and thereafter at 20 oC under a 14 h 

photoperiod with 150 μmol m-2 sec-1 photon flux density. Infection frequency (IF) was 

determined as previously described (Prats et al., 2002). Infection frequency scores were 

converted into relative values, expressed as percentage of the reading of the susceptible check 

and referred to as the Relative Infection Frequency (RIF).  

 

Powdery mildew resistance assessment: Four plants per accessions were grown in a growth 

chamber at 65% RH and 20 oC under a 12 h photoperiod with 150 μmol m-2 sec-1 photon flux 

density. When the second leaf was fully expanded (12 days), the first leaf was inoculated using 

a settling tower (Lyngkjær et al., 1997) to give about 30 conidia mm-2 with one isolate of B. 

graminis f.sp. avenae race 5 maintained on seedlings of oat cv. Selma, in a spore proof 

glasshouse. After inoculation, plants were maintained in the above mentioned growth 

chamber 8 days before assessment of the percentage area covered by powdery mildew on the 

inoculated leaf. Disease scores were converted into relative values, expressed as percentage of 

the reading of Selma check and referred to as the Relative Disease Severity (RDS) (Martinez et 

al., 2007; Rubiales et al., 1993). For assessment of adult plant resistance 5th leaves were 

inoculated and macroscopically assessed as above without excising the leaves from the plant. 

 

Statistical analyses 

For phenotype assessments the experimental design was arranged according to randomized 

complete blocks. For ease of understanding, means of raw percentage data are presented in 

tables and figures. However, for statistical analysis, data recorded as percentages were 

transformed to arcsine square roots (transformed value = 180/п x arcsine [√(%/100)]) to 

normalize data and stabilize variances throughout the data range, and subjected to analysis of 

variance using GenStat 11th Edition, after which residual plots were inspected to confirm that 

data conformed to normality. Significance of differences between means was determined by 

contrast analysis (Scheffe’s). The percentage of variation of each trait explained by the 

structure was computed through multiple linear regression of the phenotypes on the 

percentages of admixture using R (Ihaka and Gentleman, 1996) with GenStat software.  
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Association analysis 

The tests of associations between molecular markers and phenotypes were computed using 

the software package TASSEL 4.1.27 (Trait Analysis by aSSociation, Evolution and Linkage) 

(Bradbury et al., 2007). Five models were used: a simple General Linear Model (GLM) which 

does not account for population structure as a potential cause of the genotype-phenotype 

relationship, a GLM model using the percentages of admixture of each accession (Q matrix) as 

cofactors to take population structure into account (GLM-Q), a GLM model using the PCAs 

covariates as cofactors (GLM-PCA), a GLM model using both Q matrix and PCAs covariates 

(GLM-Q-PCA) and a Mixed Linear Model (MLM) using both the percentages of admixture and 

the kinship coefficients as cofactors (Q and K matrices). All GLM procedures tested fixed-effect 

models in which mean phenotypes of a given trait were predicted by the independent 

variables. The tests were run with 1,000 permutations allowing the determination for each 

marker the site-wise p value, which is the probability of a greater F value under the null 

hypothesis that the polymorphic site is independent of phenotype. The Benjamini and 

Hochberg, (1995) false discovery rate (FDR) criteria at q = 0.25 was used to control for multiple 

testing (Newell et al., 2012) after estimation of the q values of each p values with the software 

QVALUE (Storey, 2002). 

 

Sequence homology 

Several of the DArT markers used here, have been previously sequenced (Tinker et al., 2009). 

To further characterise the identified markers, the nr protein database was searched for 

potential homologous sequence of significant markers using the function BlastX of the BLAST 

algorithm (Altschul et al., 1990) implemented in the ncbi webserver 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

RESULTS 

Data curation 

From the initial 15,000 DArT markers assessed, 1,587 showed polymorphism in the oat 

collection. In addition 499 SRR alleles were also polymorphic. From the total 2086 polymorphic 

markers, 11 markers that showed a call rate lower than 80% and 56 markers that showed a 

minimum allele frequency (MAF) <0.01 were removed. A total of 476 redundant markers were 

also merged in 169 groups representing these markers. Following data curation a total of 1,712 

markers were used for association purposes in the oat collection of 174 white and red 

commercial varieties and landraces. 
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Structure of the population 

A previous genetic diversity study of the oat collection with only SSR markers revealed a 

structure of 4 subpopulations (Montilla-Bascón et al., 2013). In the present study the number 

of markers was increased to more than 1,500 and STRUCTURE software indicated the same 

number of subpopulations (Fig. 1). Indeed, the correlation between SSR and DArT+SSR results 

was high with a correlation coefficient of 0.84 (P<0.001). However, slight modifications of the 

genotype-cluster assignation and the corresponding percentage of admixture were observed. 

According to both analyses approximately 30% of the accessions showed less than 80% of 

membership for a particular cluster. The differences of genotype-cluster assignation were 

always related to these accessions and when they were discarded from the analysis the 

correlation coefficient increase up to 1. According to STRUCTURE, subpopulation 1 showed the 

highest degree of admixture with 75.6% of the genotypes with less than 80% of membership to 

this subpopulation followed by subpopulation 3 and 4 with 18% of genotypes with less than 

80% of membership in these groups. Subpopulation 2 with 15% of genotypes with less than 

80% membership to the corresponding subpopulation, was the subpopulation with lowest 

admixture.  

 

 

 

 

 

 

 

 
 
Figure 1 Estimated population structure of oat genotypes according to STRUCTURE software. Each individual is 
represented by a thin vertical segment, which can be partitioned into 4 grey-scale colored segments that represent 
the individual estimated membership to the 4 clusters 

 

 

Multivariate analysis based on PCAs also revealed a separation of 4 subpopulations which 

indicate a high consistency of the data (Fig. 2). Cluster analysis was implemented on the first 

four principal components explaining approximately 50% of the variation with 23.3, 13.8, 8.11 

and 4.5 % for each of the components, respectively.  Although separation between clusters 

was clear, a continuity derived from accessions connecting all clusters was also observed (Fig. 
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2). The number of lines per cluster ranged from 33 to 64. The first cluster included mainly the 

white commercial varieties, cluster 2 the red oats, cluster 3 the white oat landraces 

characteristic to high altitude locations, and cluster 4 white oat landraces more adapted to low 

altitude locations.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Scatterplot of Principal Component Analysis scores of components 1 and 2 based on 1587 DArT and SSR 
markers used in this study. A. Represented are the genotypes belonging to cluster 1(red), cluster 2 (green), cluster 3 
(violet) and cluster 4 (blue).    

 

Cluster relationships 

As previously stated PCA showed a separation between clusters but also a clear pair-wise 

relationship between clusters. Quantitative results for genetic distance (according to Nei´s 

parameter) between clusters are shown in Table 1. Cluster 2 comprising the red oats was by 

far the most distant from all other clusters, with an average distance of 180 whereas the two 

white oat landraces clusters were the most closely related groups with an average distance of 

66. Clusters 1 and 4 corresponding to the white oat landraces adapted to low altitude and the 

commercial varieties, respectively were also closely related with a distance of 75  (Table 1).  

 
 
Table 1 . Population average pairwise genetic distance according to Nei’s parameter of pairwise difference  
 

 

 

 

 

 

  C1 C2 C3 
C2 150   
C3 125 205  
C4 75 185 66 
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These relationships between clusters were in agreement with those depicted by the PCA 

scatter plot (Fig. 2). These results suggest that clustering was also efficient in separating the 

oat types for the germplasm used in this study.  

 

Linkage disequilibrium 

Identification of disequilibrium between markers is highly useful since it may condition the 

strength of the association study. Since physical map distances between markers were not 

available, LD was represented by the disequilibrium matrix visualizing the linear arrangement 

of LD between polymorphic sites, represented by r2, and the probability (Flint-Garcia et al., 

2003; Gaut and Long, 2003) (Fig.3). A total of 507,042 pairs of markers showed a significant LD 

value with an average p=0.004. From these, 277,920 pairs of markers showed an r2<0.1 chosen 

here as nominal level, according to the studies performed by (Newell et al., 2011) in oat.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Linkage disequilibrium matrix. Pair-wise LD values of polymorphic sites displaying r2 above the diagonal 
and the corresponding p-values from rapid 1000 shuffle permutation test below the diagonal. Each cell represent 
the comparison of two pairs of marker sites with the color codes for the presence of significant LD. Colored bar 
code for the significance threshold levels in both diagonals is shown.  
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In this study with a world-wide oat collection of more than 1,200 accessions, the 14,122 

unlinked markers pairs assessed showed an r2 < 0.1 except for one point with a value of 0.15. 

The average linkage disequilibrium represented by r2, was 0.055. When assessing the LD of 

each cluster, similar values were observed ranging between 0.03 and 0.04 with the exception 

of cluster 2 that showed a slightly higher LD of 0.08, probably reflecting the low number of 

individuals of this cluster of red oats. 

 

Phenotypic data 

Both traits followed a normal distribution with accessions ranging from highly resistant to 

highly susceptible (Fig. 4). From these data a selection of resistant genotypes (c.a. 15 for each 

trait) has been evaluated to unravel the resistance mechanisms underlying the resistant 

response in separate studies (Sánchez-Martín et al., 2011a; Sánchez-Martín et al., 2011b).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Distribution of the infection frequency of the rust and powdery mildew infection in the oat collection.  

 

 

We compared the means of the 177 accessions assigned to the 4 subpopulations for the 

different traits, excluding the admixed accessions (Table 2). We observed significant 

differences between subpopulations for all traits. Thus, subpopulation 4 had a significantly 

lower relative infection frequency (RIF) after rust inoculation than the others (p<0.005) and 

showed a high resistant response. Subpopulation 2 had lower relative disease severity to 

powdery mildew than the others (p<0.001) (Table 2). Powdery mildew was the trait most 

affected by population structure although the proportion of variance explained by population 

structure remained under 4% (Table 3). 
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Table 2. Mean comparison between subpopulations for the accessions assigned to a subpopulation (>80% 
membership in the subpopulation).  
 

 

 

 

 

 

 

 

 

 

Table 3: Statistic for stress resistance and percentage of variation of these traits explained by population structure 

(K=4) through multiple linear regression. 

 

 

 

 

 

 

 

Association analysis  

We first ran association tests using four variations of general linear models, a simple GLM 

model, a model using the percentages of admixture (Q matrix) obtained for k = 4 as cofactors 

(GLM-Q), a model using the PCAs axes (from 1 to 4) as covariates (GLM-PCA) and finally a 

model using both, Q matrix and PCAs (GLM-Q-PCAs) in order to limit false positives. In parallel, 

we used a mixed linear model that combine both the Q matrix and the kinship coeficients (K 

matrix) in a stringent method to limit false positive. Table 4 and 5 shows the markers 

considered to be significantly associated with a rust or powdery mildew resistance trait 

according to the threshold of 0.25 for Q-value in the FDR test (Newell et al., 2012) in any of the 

models corrected for population structure.  

As expected considerably fewer markers showed a significant association with rust resistance 

when applying a correction accounting for the population structure than when using GLM 

aRelative infection frequency (number of pustules cm-2) 8 days 
after  rust inoculation 
b PM (powdery mildew) resistance expressed as relative disease 
severity (percentage of the leaf covered by mycelium) 8 days 
after powdery mildew inoculation 

Subpopulation Rusta PMb 
1      90.1 ab   88.6 a 
2  108.8 a   72.9 b 
3      95.5 ab   90.8 a 
4    86.0 b    86.1 a 

TraitTrait
T it 
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M
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aRelative infection frequency (number of pustules cm-2) 8 days after  rust 
inoculation 
b PM (powdery mildew) resistance expressed as relative disease severity 
(percentage of the leaf covered by mycelium) 8 days after powdery mildew 
inoculation 
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alone. Thus, we observed a decrease of significant markers of c.a 95% for any of the models 

accounting for structure, GLM-Q, GLM-PCA and GLM-Q-PCA with respect to GLM alone. The 

high differences in the number of significant tests between GLM and GLM-Q, GLM-PCA or 

GLM-Q-PCA showed that the structure effect was strong and needed to be taken into account 

to avoid false positives. We found 5 markers significantly associated with rust. Markers oPt-

11795 and MAMA5-163 were the two more significantly associated showing significant 

association in all models tested including the MLM models accounted for population structure 

and kinship and explaining 20 and 10% respectively of the variation observed for this trait 

(Table 4). Three additional markers, AM30-178, AME176-3 and oPt-15665 were significantly 

associated in all GLM models including those accounting for population structure (GLM-Q, 

GLM-PCA and GLM Q+PCA) but no in the MLM models (Table 4). 

A significant reduction of associated markers with powdery mildew resistance was also 

observed when applying a correction accounting for the population structure than when using 

GLM alone. We observed a decrease of c.a 98% for the models corrected with STRUCTURE 

coefficients. Since the significance of the marker associated according to GLM-Q model was in 

the limit of 0.25 (Table 5) and it was neither highlighted by the MLM models this marker, oPt-

14317, related to powdery mildew resistance in seedlings was not considered strongly 

associated.  

In order to find markers associated with powdery mildew resistance we took advantage of a 

previous detailed evaluation for powdery mildew adult plant resistance performed in a 

subpopulation of the collection (Sánchez-Martín et al., 2011a). In this, following a preliminary 

field assessment, 54 genotypes representing the different clusters were evaluated under 

controlled conditions for adult plant resistance. This population covered a continuous range 

for powdery mildew resistance between 0 and 100%, showed a similar structure than the oat 

collection and showed 414,311 significant marker pairs in linkage disequilibrium with 70,657 of 

them showing a r2 < 0.1 (Supplemental Fig 1 A,B,C). Association analysis for adult plant 

resistance yielded a marker, oPt-5014, highly significant in all models tested including the GLM 

accounting for population structure and the MLM accounting for both structure and kinship. 

This marker would explain approximately 30% of the observed variation according to r2. Other 

two markers, oPt-3306 and oPt-793335 were strongly associated in all GLM performed 

accounting for population structure but not in the MLM models. 
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Table 4 : Markers associated with rust resistance according to different of association analysis models: General Lineal Model, GLM corrected for population structure according to (percentage 
of admixture coefficients, Q, principal component covariates , PCA, or both respectively, and Mixed Lineal Model, MLM, corrected with kinship and structure matrix. Markers were considered 
to be associated with the traits if the markers were significant (FDR<0.25) in GLM models corrected for population structure or MLM models. 
 
 
 
 
 

   

 

a Percentage of phenotypic variance (partial R2x100%) of the total variation explained by the marker after fitting the other model effects  
 
 
Table 5 : Markers associated with powdery mildew resistance according to different of association analysis models: General Lineal Model, GLM corrected for population structure according to 
(percentage of admixture coefficients, Q, principal component covariates , PCA, or both respectively, and Mixed Lineal Model, MLM, corrected with kinship and structure matrix. Markers were 
considered to be associated with the traits if the markers were significant (FDR<0.25) in GLM models corrected for population structure or MLM models. Data in bold indicates values 
statistically significant according to the False Discovery Rate (FDR) test. 

 
Marker GLM GLM+Q GLM+PCA GLM+Q+PCA MLM 
  p FDR r2a p FDR r2 p FDR r2 p FDR r2 p FDR  r2 

Seedling Stage 
oPt-14317 1.1· 10-5 0.01 0.13 1.5· 10-4 0.25 0.10 3.8· 10-4 0.45 0.09 4.0· 10-4 0.4 0.09 8.0· 10-4 0.90 0.09 

Adult Plant Stage 
oPt-5014 5.0· 10-7 7.7· 10-4 0.45 7.1· 10-6 0.01 0.34 6.7· 10-6 5.4· 10-3 0.36 4.6· 10-6 7.4· 10-3 0.344 3.2· 10-4 0.19 0.35 
oPt-3306 2.0· 10-4 0.01 0.29 5.7· 10-5 0.04 0.29 7.5· 10-5 0.04 0.30 2.1· 10-5 0.01 0.30 7.7· 10-4 0.62 0.30 
oPt-793335 0.8 0.94 0.05 3.5· 10-4 0.01 0.24 5.0· 10-6 5.4· 10-3 0.36 5.0· 10-5 0.02 0.28 2.1· 10-3 0.99 0.26 

 

a Percentage of phenotypic variance (partial R2x100%) of the total variation explained by the marker after fitting the other model effects  

Marker GLM GLM+Q GLM+PCA GLM+Q+PCA MLM+Q+Kinship 
  p FDR  r2a p FDR r2 p FDR r2 p FDR r2 p FDR  r2 

oPt-11795 8.1· 10-8 7.8· 10-5 0.19 1.6· 10-7 2.6· 10-4 0.18 3.7· 10-7 6.0· 10-4 0.16 2.3· 10-7 3.8· 10-4 0.16 1.6· 10-7 2.7· 10-4 0.22 
MAMA5-163 7.0· 10-5 0.02 0.10 3.2· 10-4 0.11 0.08 1.9· 10-4 0.10 0.08 1.1· 10-4 0.06 0.08 1.3· 10-4 0.11 0.10 
AM30-178 8.2· 10-5 0.02 0.09 3.5· 10-5 0.02 0.10 9.4· 10-5 0.07 0.09 1.7· 10-4 0.06 0.08 1.0· 10-3 0.49 0.07 
AME176-3 2.0· 10-4 0.04 0.10 4.8· 10-4 0.11 0.09 8.0· 10-4 0.25 0.08 4.2· 10-3 0.63 0.06 1.2· 10-3 0.49 0.09 
oPt-15665 1.0· 10-3 0.08 0.08 7.0· 10-3 0.42 0.06 9.8· 10-4 0.20 0.08 7. · 10-5 0.05 0.10 2.9· 10-3 0.72 0.08 
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Sequence homology 

Since many of the DArT markers evaluated have been previously sequenced (Tinker et al., 

2009) we took advantage of this information to characterize further the significantly 

associated markers and identify homologous sequences in oat or related species by BLAST 

approaches. The marker oPt-11795 showed homology (38% identity, E-value of 10-12) with an 

autophagy-related protein 2 of Triticum urartu (Table 6). A hypothetical protein of Oriza sativa 

containing the same functional domains as the autophagy-related 2 of T. urartu also shared 

homology with this marker. Interestingly, marker oPt-15665 showed homology (56% identity) 

with an anthocyanin 5-aromatic acyltranferase of Aegilops tauschii with e-value of 10-23 and 

two other hypothetical proteins of sorghum.  

Table 6: Potential homologous sequence of significant markers using the function BlastX of the BLAST algorithm 
(Altschul et al., 1990) implemented in the ncbi webserver (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

Following the blast for markers associated with powdery mildew resistance, oPt-5014 showed 

homology with hypothetical proteins of Sorghum bicolor, Triticum urartu and Oriza sativa with 

E-values ranging from 10-12 to 6·10-30.  All these potential homologs contained a Zinc Knuckle 

domain (Table 6). Marker oPt-14317, that only shows low association with powdery mildew 

resistance, did not show any homology with sequences of the database.  For the two 

remaining significant markers associated with powdery mildew adult plant resistance, 

Marker Blastx Species E-value Cov Ident 

oPt-11795 Autophagy-related protein 2 Triticum urartu 1,00E-12 85% 38% 

 
Hypothetical protein  Oriza sativa  2,00E-12 96% 38% 

oPt-15665 Anthocyanin 5-aromatic acyltransferase Aegilops tauschii 1,00E-23 54% 56% 

 
Hypothetical protein Sorghum bicolor 1,00E-22 65% 41% 

 
hypothetical protein Sorghum bicolor 3,00E-17 50% 45% 

oPt-5014 hypothetical protein Sorghum bicolor 6,00E-30 94% 61% 

 
hypothetical protein Sorghum bicolor 2,00E-26 90% 56% 

 
hypothetical protein Sorghum bicolor 5,00E-26 93% 58% 

 
hypothetical protein Sorghum bicolor 7,00E-17 79% 48% 

 
hypothetical protein Sorghum bicolor 2,00E-16 78% 48% 

 
hypothetical protein Sorghum bicolor 2,00E-13 90% 48% 

 
hypothetical protein Sorghum bicolor 2,00E-13 90% 48% 

 
hypothetical protein Triticum urartu 5,00E-13 90% 44% 

 
hypothetical protein Oriza sativa  1,00E-12 65% 43% 
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sequences were not available and work is in process to determine the possible nature of the 

associated locus.  

DISCUSSION 

As the first step for the association study, structure of the population was inferred since it has 

great implications on the design and analysis of GWAs. The different approaches used here 

indicated subtle population structure within the germplasm collection evaluated. Thus, four 

oat groups could be detected albeit they presented a certain degree of admixture according to 

STRUCTURE software with up to 30% of accessions with less than 80% membership to a 

determinate group. This was also observed following PCAs with several accessions covering 

“gaps” between clusters. Interestingly the group comprising the commercial varieties showed 

the highest degree of admixture, likely due to the high exchange of germplasm within this 

group in which most accessions shared common ancestors in its genealogy as reported by 

Montilla-Bascón et al., (2013). One concern in respect to oat is the establishment of population 

structure arising from the different oat types, winter or spring, or interbreeding species such 

as the white and red ( A. byzantina) oats. Indeed in a study by Newell et al., (2012) a small 

cluster of red oat differentiated from the rest of the collection. Taking into account that our 

collection was consciously formed with diverse oat types to achieve high genetic diversity, its 

population structure was considered relatively weak compared with that found in other 

cereals such as barley (Hamblin et al., 2010) or wheat (Stich et al., 2008).  

 

Despite the relative weak structure of this oat population, it contains a high genetic diversity 

which is an important feature in order to find markers significantly associated with a trait 

(Ingvarsson and Street, 2011). Estimation of genetic distances between accessions and clusters 

revealed inter- and intra-group genetic diversity which is confirmed by the phenotypic 

evaluation for rust and powdery mildew resistance that showed a wide variability ranging from 

resistant to susceptible. As expected the less distant groups were the white oat landraces 

adapted to high and low altitude followed by commercial cultivars while the most distant 

group was the red oats.  

 

The extent of linkage disequilibrium in a species influences the strength and resolution of 

GWAS. The study of linkage disequilibrium in the oat collection showed a very high number of 

marker pairs in significant LD. In particular we found more than 275,000 marker-pairs with r2 < 
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0.1, selected here as nominal level for effective linkage according to previous work in oat 

(Newell et al., 2012; Newell et al., 2011). This indicated high genome coverage with non 

associated markers. In oat it has been proposed that a marker every cM (2,000 marker in total) 

would explain, on average 20% of QTL variance, since r2 between a marker and a QTL is equal 

to the percentage of phenotypic variation of a QTL that can be explained by a marker, and LD 

decay was found on average 0.2 for DArTs separated by 1.0 cM (Newell et al., 2011). Our work 

performed on 1,715 markers would cover an important part of the genome although obviously 

increasing the number of markers would increase the probability of identifying additional 

markers in high LD with a QTL.      

 

The molecular marker data set in combination with the phenotype evaluation was used to 

examine linkage-related marker-trait associations. Separating the role of population structure 

and genetic linkage as causes for marker-trait association remains the greatest challenge in 

association analysis (Achleitner et al., 2008). The five models used in this study accounted for 

“Q” (population structure from subpopulations) and/or “K” (genetic similarity in the 

background from shared kinship) which may be important to identify marker-phenotype 

associations not related to genetic linkage between markers and QTL. In addition we tested 

models containing PCA covariates, which may account for some proportion of both “Q” and 

“K”.  We performed a tentative comparison between the GLM and the MLM models, since 

MLM models that accounts for kinship relationships, such as that described by (Yu et al., 2006), 

might remove more of the structure effect. This point was demonstrated by (Brown et al., 

2008) in sorghum and (Cockram et al., 2008) in barley. Co-examination of different models and 

traits can provide an informative summary of the major trends affecting the analysis.  

 

 As expected, a reduction of significant markers associated with both traits was observed when 

correcting the models for population structure and/or kinship. Five markers, two of them 

highly significant in all models tested were associated with rust resistance. No significant 

similarity was identified by blast or blastx against NCBI databases other than with putative 

repetitive elements or retrotrasposons. However, two of these DArT sequences were 

somehow related to an autophagy-related protein 2 and an anthocyanin 5-aromatic 

acyltransferase that have been related to the plant immune defense reaction. Recently an 

autophagy-related protein 2 Arabidopsis mutant, atg2-2, has been reported to have enhanced 

resistance to powdery mildew (Wang et al., 2011). In our work this marker was found to be 

present in 23 out of the 31 red oats, showing this subpopulation the highest rust relative 

infection frequency. This would be in agreement with the positive correlation between atg2-2 
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presence and powdery mildew susceptibility found in Arabidopsis (Wang et al., 2011). An 

anthocyanin 5-aromatic acyltransferase gene has been located within the anthracnose 

resistance locus Co-4 of common bean (Melotto et al., 2004) and its expression have also been 

found to be altered in resistant A. thaliana ecotypes infected with cucumber mosaic virus 

(Ishihara et al., 2004). In agreement with the negative effect of expression of the anthocyanin 

acylation gene in Arabidopsis, the oPt-15665 marker was observed in 28 out of 31 red oat with 

high RIF and in 9 white oats with a mean RIF of 123 indicating highly susceptibility. However, 

further work would be needed to ascertain the relationship between the DArTs markers and 

these genes. 

 

 Despite the wide distribution of powdery mildew resistance in our collection, we did not 

identify strong association between any marker and seedling resistance. It may be that the 

combination of marker density and the phenotypic variation were insufficient. Polymorphisms 

causing variation for this trait may have been in linkage equilibrium with our markers, and 

higher marker densities could have uncovered more QTLs. Alternatively, a high number of rare 

alleles causing variation in seedling powdery mildew resistance in our collection might cause 

less variation in the data and therefore be not detected. Indeed, rare alleles are a leading 

hypothesis for the “missing heritability observation” in human association studies (Yang et al., 

2010). Alternatively, the low association for this trait could be due to the development of 

markers from a genetically narrow set of germplasm in relation to the lines used in this study. 

However this is highly unlikely since DArT markers were developed from a panel of 60 

accessions of global representation. Interestingly one DArT sequence, oPt-5014, was strongly 

associated with powdery mildew rust resistance in adult plants. The strong association 

observed taking into account the relative low number of accessions evaluated for this trait, 

suggest that a careful selection of accessions covering a complete range of phenotypic and 

genotypic variation may be adequate in some cases to find significant associations. Marker 

oPt-5014 was associated with hypothetical proteins of sorghum, wheat and rice containing a 

Zinc knuckle domain (pfam14392) which has been detected in several plants transcription 

factors and might therefore be involved in the regulation of gene expression. 

 

Recent oat maps sharing common markers allow us to more specifically locate the DArTs 

markers within the oat genome. Thus, according to (Tinker et al., 2009), oPt-11795 marker 

maps onto KO32 which is equivalent to chromosome 4C in the first physically anchored 

consensus oat map (Oliver et al., 2011) where there is no previously reported crown rust 

resistance genes. Recent studies showed synteny between this chromosome and regions of 
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Brachypodium dystachion chromosome 4 or Oryza sativa chromosome 9. Interestingly QTLs for 

resistance to the rust fungus Puccinia Brachypodii have been reported in chromosome 4 of B. 

dystachion (Barbieri et al., 2012). In addition the powdery mildew resistance gene PmAS846 

mapped in wheat chromosome 5BL is collinear with genomic regions on Brachypodium 

chromosome 4 and rice chromosome 9 (Xue et al., 2012) and a locus associated with broad-

spectrum resistance to rice blast, Pi5(t), also mapped onto rice chromosome 9. MAMA5 is 

reported in Wight et al., (2003) to map near to cdo53 on KO17 equivalent to chromosome 9D 

(Oliver et al., 2013). Interestingly, in this position the partial crown rust resistance Pc38 maps 

(Wight et al., 2004). In addition the major QTL for partial rust resistance, Prq1b, close to the 

markers cdo608x and cdo1467 also map (Portyanko et al., 2005), leading to authors to suggest 

and association between this QTL, Pc38,  and other resistance genes including Pc62 and Pc63 

that cluster with Pc38(Harder et al., 1980) Harder et al., 1980). AME176 maps onto 15A 

(unpublished Buffalo x Tardis results) which shows homology with 9D where according to 

Oliver et al., (2013) a number of other resistance genes maps. According to Tinker et al., 

(2009), oPt-14317 maps onto KO22_44_18 within the same framework marker than AM102 

now annotated as chromosome 19A. This is a similar position to where the dominant powdery 

mildew resistance gene Eg5 has been mapped (Yu and Herrmann, 2006)). Finally, has been 

mapped in a number of populations (eg. (He et al., 2013; Hizbai et al., 2012)) onto 

chromosome 21D. This chromosome is also known to contain a number of crown rust 

resistance genes such as Pc54, Pc59 and Pc68. However, lack of common markers makes it 

difficult relate how close oPt-5014 is to these genes.  

 

Overall, the markers showing the strongest association in this study provide ideal candidates 

for further studies and future inclusion in strategies of marker assisted selection.  

 

ACKNOWLEDGMENTS 

This work was supported by the Spanish Ministry of Economy and Competitivity [AGL2010-

15936/AGR], the European Regional Development Funds, a JAE PreDoc fellowship from CSIC to 

[GMB], a Ramon y Cajal funds from CSIC to [NR] and a FPU fellowship from the Spanish 

Ministry of Science and Innovation to [JSM]. We thank CRF (INIA, Madrid) for kindly suppling 

the seeds of the accessions used. We need to acknowledge BBSRC as well- I’ll find the correct 

form of words for this.  

 

 

 



  Chapter 5 

174 
 

REFERENCES  

Achleitner A, Tinker NA, Zechner E, Buerstmayr H. 2008. Genetic diversity among oat varieties 

of worldwide origin and associations of AFLP markers with quantitative traits. 

Theoretical and Applied Genetics 117, 1041-1053. 

Agrama HA, Eizenga GC, Yan W. 2007. Association mapping of yield and its components in rice 

cultivars. Molecular Breeding 19, 341-356. 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local aligment search tool. 

Journal of Molecular Biology 215, 403-410. 

Aranzana MJ, Kim S, Zhao KY, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang 

CL and others. 2005. Genome-wide association mapping in Arabidopsis identifies 

previously known flowering time and pathogen resistance genes. Plos Genetics 1, 531-

539. 

Barbieri M, Marcel TC, Niks RE, Francia E, Pasquariello M, Mazzamurro V, Garvin DF, 

Pecchioni N. 2012. QTLs for resistance to the false brome rust Puccinia brachypodii in 

the model grass Brachypodium distachyon L. Genome 55, 152-163. 

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful 

approach to multiple testing. Journal of the Royal Statistical Society Series B-

Methodological 57, 289-300. 

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 2007. TASSEL: 

software for association mapping of complex traits in diverse samples. Bioinformatics 

23, 2633-2635. 

Breseghello F, Sorrells ME. 2006. Association analysis as a strategy for improvement of 

quantitative traits in plants. Crop Science 46, 1323-1330. 

Brown PJ, Rooney WL, Franks C, Kresovich S. 2008. Efficient mapping of plant height 

quantitative trait loci in a sorghum association population with introgressed dwarfing 

genes. Genetics 180, 629-637. 

Cardon LR, Bell JI. 2001. Association study designs for complex diseases. Nature Reviews 

Genetics 2, 91-99. 

Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, Powell W, 

O'Sullivan DM. 2008. Association mapping of partitioning loci in barley. Bmc Genetics 

9,  

de Alencar Figueiredo LF, Sine B, Chantereau J, Mestres C, Fliedel G, Rami JF, Glaszmann JC, 

Deu M, Courtois B. 2010. Variability of grain quality in sorghum: association with 



  Chapter 5 

175 
 

polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theoretical and Applied Genetics 121, 

1171-1185. 

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the 

software STRUCTURE: a simulation study. Molecular Ecology 14, 2611-2620. 

Falconer DS, and T. F. C. MacKay. 1996. Introduction to quantitative genetics. Harlow, United 

Kingdom: Longman Scientific & Technical. 

Falush D, Stephens M, Pritchard JK. 2003. Inference of population structure using multilocus 

genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567-1587. 

Flint-Garcia SA, Thornsberry JM, Buckler ES. 2003. Structure of linkage disequilibrium in 

plants. Annual Review of Plant Biology 54, 357-374. 

Gaut BS, Long AD. 2003. The lowdown on linkage disequilibrium. Plant Cell 15, 1502-1506. 

Gupta PK, Rustgi S, Kulwal PL. 2005. Linkage disequilibrium and association studies in higher 

plants: Present status and future prospects. Plant Molecular Biology 57, 461-485. 

Hamblin MT, Close TJ, Bhat PR, Chao S, Kling JG, Abraham KJ, Blake T, Brooks WS, Cooper B, 

Griffey CA and others. 2010. Population Structure and Linkage Disequilibrium in US 

Barley Germplasm: Implications for Association Mapping. Crop Science 50, 556-566. 

Hammer O, Harper D, Ryan P. 2001. PAST: paleontological statistics software for education 

and data analysis. Paleontología Electrónica 4, 1-9. 

Harder DE, McKenzie RIH, Martens JW. 1980. Inheritance of drown rust resistance in 3 

accesions of Avena sterilis. Canadian Journal of Genetics and Cytology 22, 27-33. 

He X, Skinnes H, Oliver RE, Jackson EW, Bjornstad A. 2013. Linkage mapping and identification 

of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena 

sativa L.). Theoretical and Applied Genetics 126, 2655-2670. 

Hizbai BT, Gardner KM, Wight CP, Dhanda RK, Molnar SJ, Johnson D, Fregeau-Reid J, Yan W, 

Rossnagel BG, Holland JB and others. 2012. Quantitative Trait Loci Affecting Oil 

Content, Oil Composition, and Other Agronomically Important Traits in Oat. Plant 

Genome 5, 164-175. 

Ihaka R, Gentleman R. 1996. R: a language for data analysis and graphics. Journal of 

Computational and Graphical Statistics 5, 299-314. 

Ingvarsson PK, Street NR. 2011. Association genetics of complex traits in plants. New 

Phytologist 189, 909-922. 

Jackson EW, Obert DE, Avant JB, Harrison SA, Chong J, Carson ML, Bonman JM. 2010. 

Quantitative Trait Loci in the Ogle/TAM O-301 oat mapping population controlling 

resistance to Puccinia coronata in the field. Phytopathology 100, 484-492. 



  Chapter 5 

176 
 

Jannink JL, Bink M, Jansen RC. 2001. Using complex plant pedigrees to map valuable genes. 

Trends in Plant Science 6, 337-342. 

Kraakman ATW, Niks RE, Van den Berg P, Stam P, Van Eeuwijk FA. 2004. Linkage 

disequilibrium mapping of yield and yield stability in modern spring barley cultivars. 

Genetics 168, 435-446. 

Lyngkjær MF, Carver TLW, Zeyen RJ. 1997. Suppression of resistance to Erysiphe graminis f. 

sp. hordei conferred by the mlo5 barley powdery mildew resistance gene. Physiological 

and Molecular Plant Pathology 50, 17-36. 

Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA. 2007. A mixed-model approach 

to association mapping using pedigree information with an illustration of resistance to 

Phytophthora infestans in potato. Genetics 175, 879-889. 

Martinez F, Sillero JC, Rubiales D. 2007. Resistance to leaf rust in cultivars of bread wheat and 

durum wheat grown in Spain. Plant Breeding 126, 13-18. 

Miyagawa T, Nishida N, Ohashi J, Kimura R, Fujimoto A, Kawashima M, Koike A, Sasaki T, 

Tanii H, Otowa T and others. 2008. Appropriate data cleaning methods for genome-

wide association study. Journal of Human Genetics 53, 886-893. 

Montilla-Bascón G, Sánchez-Martín J, Rispail N, Rubiales D, Mur LAJ, Langdon T, Griffiths I, 

Howarth CJ, Prats E. 2013. Genetic Diversity and Population Structure Among Oat 

Cultivars and Landraces. Plant Molecular Biology Reporter.31: 1305-1314  

Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction 

endonucleasis. Proceedings of the National Academy of Sciences of the USA 76, 5269-

5273. 

Newell MA, Asoro FG, Scott MP, White PJ, Beavis WD, Jannink J-L. 2012. Genome-wide 

association study for oat (Avena sativa L.) beta-glucan concentration using germplasm 

of worldwide origin. Theoretical and Applied Genetics 125, 1687-1696. 

Newell MA, Cook D, Tinker NA, Jannink JL. 2011. Population structure and linkage 

disequilibrium in oat (Avena sativa L.): implications for genome-wide association 

studies. Theoretical and Applied Genetics 122, 623-632. 

Oliver RE, Lazo GR, Lutz JD, Rubenfield MJ, Tinker NA, Anderson JM, Morehead NHW, 

Adhikary D, Jellen EN, Maughan PJ and others. 2011. Model SNP development for 

complex genomes based on hexaploid oat using high-throughput 454 sequencing 

technology. BMC Genomics 12,  

Oliver RE, Tinker NA, Lazo GR, Chao S, Jellen EN, Carson ML, Rines HW, Obert DE, Lutz JD, 

Shackelford I and others. 2013. SNP Discovery and Chromosome Anchoring Provide 



  Chapter 5 

177 
 

the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model 

Species. Plos One 8,  

Portyanko VA, Chen G, Rines HW, Phillips RL, Leonard KJ, Ochocki GE, Stuthman DD. 2005. 

Quantitative trait loci for partial resistance to crown rust, Puccinia coronata, in 

cultivated oat, Avena sativa L. (vol 111, pg 313, 2005). Theoretical and Applied Genetics 

112, 195-197. 

Prats E, Rubiales D, Jorrin J. 2002. Acibenzolar-S-methyl-induced resistance to sunflower rust 

(Puccinia helianthi) is associated with an enhancement of coumarins on foliar surface. 

Physiological and Molecular Plant Pathology 60, 155-162. 

Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. 2000. Association mapping in structured 

populations. American Journal of Human Genetics 67, 170-181. 

Rubiales D, Brown JKM, Martín A. 1993. Hordeum chilense resistance to powdery mildew and 

its potential use in cereal breeding. Euphytica 67, 215-220. 

Sánchez-Martín J, Rubiales D, Prats E. 2011a. Resistance to powdery mildew (Blumeria 

graminis f.sp avenae) in oat seedlings and adult plants. Plant Pathology 60, 846-856. 

Sánchez-Martín J, Rubiales D, Sillero JC, Prats E. 2011b. Identification and characterization of 

sources of resistance in Avena sativa, A. byzantina and A. strigosa germplasm against a 

pathotype of Puccinia coronata f.sp. avenae with virulence against the Pc94 resistance 

gene. Plant Pathology 

Snowdon RJ, Friedt W. 2004. Molecular markers in Brassica oilseed breeding: current status 

and future possibilities. Plant Breeding 123, 1-8. 

Stevens EJ, Armstrong KW, Bezar HJ, Griffin WB, J.G. H. 2004. Fodder oats an overview. In: 

Suttie JM, Reynolds SG, editors. Fodder oats: A world overview. Rome: Food and 

Agriculture Organization of the United Nations, p 1-9. 

Stich B, Piepho HP, Schulz B, Melchinger AE. 2008. Multi-trait association mapping in sugar 

beet (Beta vulgaris L.). Theoretical and Applied Genetics 117, 947-954. 

Storey JD. 2002. A direct approach to false discovery rates. Journal of the Royal Statistical 

Society Series B-Statistical Methodology 64, 479-498. 

Stracke S, Haseneyer G, Veyrieras JB, Geiger HH, Sauer S, Graner A, Piepho HP. 2009. 

Association mapping reveals gene action and interactions in the determination of 

flowering time in barley. Theoretical and Applied Genetics 118, 259-273. 

Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES. 2001. Dwarf8 

polymorphisms associate with variation in flowering time. Nature Genetics 28, 286-

289. 



  Chapter 5 

178 
 

Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjornstad A, Howarth 

CJ, Jannink J-L, Anderson JM and others. 2009. New DArT markers for oat provide 

enhanced map coverage and global germplasm characterization. BMC Genomics 10, 

39-41. 

Wang J, McClean PE, Lee R, Goos RJ, Helms T. 2008. Association mapping of iron deficiency 

chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theoretical 

and Applied Genetics 116, 777-787. 

Wang Y, Nishimura MT, Zhao T, Tang D. 2011. ATG2, an autophagy-related protein, negatively 

affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. The 

Plant Journal 68, 74-87. 

Wight CP, O'Donoughue LS, Chong J, Tinker NA, Molnar SJ. 2004. Discovery, localization, and 

sequence characterization of molecular markers for the crown rust resistance genes 

Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.). Molecular Breeding 14, 349-

361. 

Wight CP, Tinker NA, Kianian SF, Sorrells ME, O'Donoughue LS, Hoffman DL, Groh S, Scoles 

GJ, Li CD, Webster FH and others. 2003. A molecular marker map in 'Kanota' x 'Ogle' 

hexaploid oat (Avena spp.) enhanced by additional markers and a robust framework. 

Genome 46, 28-47. 

Xue F, Wang C, Li C, Duan X, Zhou Y, Zhao N, Wang Y, Ji W. 2012. Molecular mapping of a 

powdery mildew resistance gene in common wheat landrace Baihulu and its allelism 

with Pm24. Theoretical and Applied Genetics 125, 1425-1432. 

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, 

Martin NG, Montgomery GW and others. 2010. Common SNPs explain a large 

proportion of the heritability for human height. Nature Genetics 42, 565-U131. 

Yu J, Herrmann M. 2006. Inheritance and mapping of a powdery mildew resistance gene 

introgressed from Avena macrostachya in cultivated oat. Theoretical and Applied 

Genetics 113, 429-437. 

Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen 

DM, Holland JB and others. 2006. A unified mixed-model method for association 

mapping that accounts for multiple levels of relatedness. Nature Genetics 38, 203-208. 

Zhu C, Gore M, Buckler ES, Yu J. 2008. Status and Prospects of Association Mapping in Plants. 

Plant Genome 1, 5-20. 

Zondervan KT, Cardon LR. 2004. The complex interplay among factors that influence allelic 

association. Nature Reviews Genetics 5, 89-U14. 



  Chapter 5 

179 
 

Supplemental Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplemental Figure 1.  A. Phenotypic evaluation of a subcollection of oat adult plants for powdery mildew 
resistance. B. Scatterplot of Principal Component Analysis scores of components 1 and 2 based on 1587 DArT and 
SSR markers of the oat subcollection. Represented are the genotypes belonging to cluster 1(red), cluster 2 (green), 
cluster 3 (violet) and cluster 4 (blue).  C. Linkage disequilibrium matrix of the oat subcollection. Pair-wise LD values 
of polymorphic sites displaying r2 above the diagonal and the corresponding p-values from rapid 1000 shuffle 
permutation test below the diagonal. Each cell represent the comparison of two pairs of marker sites with the color 
codes for the presence of significant LD. Colored bar code for the significance threshold levels in both diagonals is 
shown. 
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GENERAL DISCUSSION 

Oat (Avena sativa L.) is an important cereal crop cultivated for grain, feed, fodder and straw 

over more than 9 million hectares worlwide (FAO). Due to its good adaptation to a wide range 

of soil types and because oats can perform better than other small-grain cereals on marginal 

soils, there is an increasing interest to expand oat cultivation to southern countries 

(Buerstmayr et al., 2007; Forsberg and Reeves, 1995; Løes et al., 2007; Ren et al., 2007; 

Stevens et al., 2004). In fact, autumn sown oat is increasing in Australia (Armstrong et al., 

2004), south of Japan (Katsura, 2004), south China (Wang, 2004) and temperate areas of South 

America (Federezzi and Mundstock, 2004) where winter sowing of spring crops is a common 

practice. Thus, oats may be well suited to Mediterranean climates and farming systems. 

Indeed in Spain around half million hectares of oat crop produce more than 1,2 M Tons 

annually (MAPA). In addition, the current PAC policies and the reduction of subsidies is leading 

to a greater cereal crop diversification reducing the area of durum wheat and increasing oat 

crop (RAEA). However, in the rainfed Mediterranean environments oats will predictably 

encounter water limitations as well as disease incidence, such as the crown rust (Puccinia 

coronata f.sp. avenae) adapted to the warmest regions and the powdery mildew (Blumeria 

graminis f. sp. avenae) adapted to cooler regions, that provoke the instability of the yields and 

limits its cultivation. Thus, it is necessary to reduce these limitations to increase the 

profitability of the crop for the farmer.  

 

Water limitation is an important feature of the Mediterranean environments. Thus, adaptation 

to Mediteranean conditions implies the development of drought tolerance, particularly for 

rainfed crops in marginal areas such as oat. Furthermore, the Intergovernmental Panel on 

Climate Change predictions suggest that many more areas would exhibit increased 

temperatures and severe droughts (Kumar, 2007). Crop breeders are responding to the 

challenge of developing new drought tolerant lines. As in most crops this is achieved by 

selection of appropriate progeny. However, for selection of complex traits such as stress 

tolerance, breeding programmes must be based on a sound understanding of innate tolerance 

mechanisms (Blum, 1999; Dita et al., 2006). Focussing only in plant survival has lead to yield 

penalties in drought tolerant lines (Passioura, 2002; Turner, 1979) and selection only on the 

basis of yield is not appropriate due to the low heritability of this trait and a high genotype x 

environment (GE) interaction (Araus et al., 2002). This is supported by our previous work on GE 

interaction in oat around the Mediterranean basin (Sánchez-Martín et al., 2013) performed in 

our ressearch group. Consequently, modern breeding strategies attempt to include 
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assessments of physiological, biochemical and molecular characteristics which provide a better 

understanding of the intricate processes underlying the tolerance response and may 

proportion adecuate markers for selection (Araus, 1996; Richards, 1996; Sanchez-Martin et al., 

2012)  

 

 Biotic stresses such as the crown rust and the powdery mildew are also among the main oat 

constraints. Crown rust causes high losses in oat yield and grain quality worldwide (Simons, 

1985) but particularly in the Mediterranean basin where rust populations are more virulent 

than in the centre and north of Europe (Herrmann and Roderick, 1996). Powdery mildew 

becomes more intense after mild winters and warm springs (Priestley and Bayles, 1982) 

causing looses up to 30% in western Europe. Both pathogens can be controlled with fungicides 

but this is relatively expensive and harmful due to its negative effects on human health and 

environment. Consequently, host resistance is being explored as the most effective, 

economical and environmentally friendly control method (Stevens et al., 2004). However, 

resistance obtained is often overcome by emerging pathogenic races. This is mainly due to the 

inappropriate use of resistance sources, of monogenic nature. Thus, it is necessary to identify 

the bases of resistance mechanisms including those involved in durable resistance (Niks and 

Rubiales, 2002).  

 

This scenario is usually even more complex since in the field, crops usually have to face more 

than one stress at the same time. This is particularly true for certain stresses such as drought 

and rust that are both favoured under high temperatures. Then, in this work we tackled 

molecular nodes that may influence both biotic and abiotic stress responses. Until recently, 

interaction between biotic and abiotic resistance mechanisms have been poorly addressed. 

However, recent studies (Fujita et al., 2006; Schenke et al., 2011) revealed that certain 

transcription factors, MAP kinases, abscisic, salicylic and jasmonic acid, ethylene, reactives 

oxygen and nitrogen species are key molecules for both stresses, sometimes as synergistic but 

also as antagonistic factors (Fujita et al., 2006; Glazebrook, 2005). This is a good opportunity 

for breeding since synergistic effects could protect against different threats whereas 

antagonistic effects should be avoided. We focussed mainly in the role of polyamines in 

different aspects of the resistance to biotic and abiotic stresses including crosstalk with other 

signalling molecules. Polyamines, are known to stabilize macromolecular structures, and to act 

as regulatory molecules in many fundamental cellular processes including cell division, 

embryogenesis, senescence and in response to stress (Martin-Tanguy, 1997), but, in addition, 
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recent studies indicate that polyamines may act as cellular signals in intricate crosstalk with 

hormonal pathways, such as abscisic acid, ethylene, hydrogen peroxide and nitric oxide (An et 

al., 2008; Toumi et al., 2010; Yamasaki and Cohen, 2006). Traditionally, changes in polyamines 

were associated with the response to abiotic stresses including salinity, drought, chilling, heat, 

hypoxia, ozone, UV, heavy metals or wounding (Alcazar et al., 2010) and few few was known 

about their implication in biotic stress responses. However, recent studies show polyamine 

accumulation during compatible and incompatible plant-pathogen interactions (Walters, 

2003). In the present work we have highlighted the importance of polyamines for the 

resistance to powdery mildew in oat during host and non-host resistance  and unraveled the 

role of the polyamines during the resistance responses of oat to rust highlithing their relevance 

particularly during the pre- and penetration resistance mechanisms which are highly desirable 

since they may provide more durable resistance. Further, we explored its role during drought 

and the crosstalk with other hormones also involved in biotic and abiotic stresses such as nitric 

oxide and salicylic acid and showed that polyamines constitute a key node during the tolerance 

responses to drought in intimate crosstalk with other molecules traditionally associated to 

biotic stress resistance.    

 

The complexity of the resistance responses stated here usually limit the improvement of crop 

for resistance to biotic and abiotic stresses. Despite this, stress tolerant cultivars have been 

bred introducing traits from stress-adopted wild relatives or landraces (Bartels and Sunkar, 

2005). Landraces have considerable potential for use in improving abiotic stress tolerance 

since the transfer of beneficial traits is relatively straight-forward in that there is no barrier to 

crossing. Association of genetic markers with regions of the genome controlling different traits 

may enable efficient and precise transfer of useful alleles from landraces to modern cultivars. 

In oat, genetic markers have been used with a number of experimental bi-parental oat 

populations to identify quantitative trait loci (QTL) associated with  resistance to different 

biotic and abiotic stresses (Jackson et al., 2010; Jackson et al., 2008; Locatelli et al., 2006; 

Maloney et al., 2011; Zhu et al., 2004). However, genomic studies often turn out to be unique 

to a specific genetic background limiting their usefulness in marker-assisted selection. 

Association analysis which exploits the variation in a collection of genetically diverse materials 

to uncover a significant association between a trait and a gene or molecular marker on the 

basis of linkage disequilibrium has emerged as a promising and valuable tool to exhaustively 

identify QTL in plants. Therefore as a first step to take advance of these molecular approaches 

for the oat breeding for resistance to biotic and abiotic stresses, we established the genetic 
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diversity and population structure of a oat collection including commercial varieties and 

landraces. The results showed that the collection contained a high genetic diversity and 

showed appropriate for further studies. Then taking advantage of the screening for resistance 

to rust, and powdery mildew performed in our research group, we  genotyped the collection 

with DArT markers which provide the sufficient genome coverage for a solid association study 

of markers for rust, and powdery mildew. This work indeed identified new regions of the 

genome involved in the resistance to both biotic and abiotic stresses. 

 

Overall in this work we advanced in the  dissection of the molecular and cellular basis of 

resistance mechanisms of the most important constraints of the oat crop taking into account 

the potential interactions between them which is a novel aspect that is only recently being 

considered. This will undoubtedly help in improving the oat crop performance.  
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Chapter 1. Role of polyamines in host and non-host oat-powdery mildew 

interactions.  

1. During the host interaction between oat and the powdery mildew (Blumeria graminis f. sp. 

avenae) the resistant cultivar Charming increased significantly its content in the polyamine 

spermidine respect to the susceptible Selma. This was accompanied by an increase in the 

activity of the arginine decarboxylase (ADC) activity suggesting an involvement of this 

polyamine in the resistance response of Charming to powdery mildew. 

2. Inoculation of oat with the non-host powdery mildew (Blumeria graminis f. sp. hordei) 

induced increases in putrescine and agmatine, accompanied by induction of the ADC 

activity. 

3. Induction of resistance to powdery mildew by polyamines was supported by the exogenous 

application of polyamines to leaf surface before inoculation which leads to an increase of 

penetration resistance reducing the percentage of established colonies without toxic effect 

on fungal development. 

 

Chapter 2. Role of polyamines in host and non-host oat-powdery mildew 

interactions.  

1. Following rust (Puccinia coronata f. sp. avenae) inoculation the resistant oat cultivars 

Kankan and Saia showed increased levels of polyamine spermidine, spermine and agmatine 

whereas susceptible cultivar Araceli showed overall higher levels of putrescine.  

2. Detailed quantification of excreted polyamines to the leaf surface showed an induction 

following inoculation in both susceptible and resistant cultivars. However, polyamine 

induction was by far higher in the resistant cultivars. Particularly, cultivar Saia, with the 

highest pre/penetration resistance showed also the highest increase in excreted 

spermidine, spermine and agmatine to the leaf surface. 

3. Exogenous application of polyamines particularly, spermidine and spermine, increased the 

pre/penetration resistance and the percentage of early aborted colonies.  

4. Susceptible cultivar Araceli showed a strong down-regulation of the expression level of the 

ADC gene between 24 and 72 hours following rust inoculation. This down regulation was 

not as strong in cultivar Kankan and interestingly although ADC expression was dow-

regulated at 24 hai in Saia, it significantly increased at 48 hai. 

5.  Arginine decarboxylase activity showed steady state levels in susceptible cv. Araceli during 

the whole time course after inoculation with the crown rust whereas resistant cv. Kankan 

and Saia showed significantly higher ADC activity. In addition, a significant increase in  
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bound-wall DAO activity was observed in resistant Saia at 48 hai respect to control non-

inoculated plants, not observed in the susceptible cultivar.   

 

Chapter 3. Role of polyamines in host and non-host oat-powdery mildew 

interactions.  

1.  Assessment of in vivo NO production in oat plants revealed approximately, 50% reduction in 

the levels of NO at mild and high water stress in the drought resistant cv Patones whereas 

susceptible Flega increased its NO level respect to control, well watered, plants. 

2. The HHb barley line overexpressing the hemoglobin HvHb1 gene showed significantly 

reduced levels of NO generation with respect to the wild type. This confirmed the efficiency 

of the HHb line in scavenging important amounts of the NO generated by the plant. 

3.  The HHb barley plants overexpressing the hemoglobin HvHb1 gene showed increased 

drought tolerance compared with WT plants. 

4.  The HHb plants showed higher constitutive levels of the polyamines, putrescine, spermidine 

and spermine than WT plants. After a water stress deficit treatment, the levels of 

putrescine dramatically increase in the WT plants respect to control level whereas the 

content of spermidine in HHb plants increased near 2-fold the content of WT plants. This  

confirmed a role for NO influencing polyamine content in HHb plants in control conditions 

and also under drought stress. 

5. Key aminoacids of the polyamine biosinthesis pathway such as arginine and methionine 

showed a significant increase in HHb plants under drought stress compared with WT plants. 

By contrats, WT plants increased GABA, lisine and proline under drought stress with respect 

to HHb plants. These results support a role for NO influencing the concentration of the 

aminoacid precursors of polyamines. 

6. Nitric oxide regulated the expression of several polyamine biosynthesis genes. In particular, 

a significant downregulation of AdoMetDC was observed in WT plants subjected to drought 

stress compared with HHb plants in the same conditions, and a strong up-regulation of ACS 

gene, (ACS1, ACS2 and ACS5), of up to more than 100-fold was observed in WT plants 

subjected to water stress, not observed in HHb plants. 

7. Different nitration and S-nitrosylation pattern of proteins between WT and HHb plants 

confirmed differential post-tranlational modification. Lack of protein identification does not 

allow to confirm these post-translational modification in proteins related to polyamine 

biosynthesis. 
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Chapter 4. Genetic diversity and population structure among oat 

cultivars and landraces.  

1. The genetic diversity among 177 oat (Avena sativa L.) accessions including both, white and 

red oats landraces and 36 commercial cultivars, was by average 0.29 indicating 

considerable genetic variation within the collection. 

2. Both, genetic similarity calculated using the Dice coefficient, and population structure using 

a Bayesian clustering approach identified 4 discrete subpopulations that clearly separated 

the commercial cultivars, the red oats landraces and two clusters of white oat landraces.  

3. The average polymorphic information content of 0.80 for the SSR loci indicated the 

usefulness of many of the SSR for genotype identification. In particular two markers, 

MAMA5 and AM04, were sufficient to discriminate among all commercial cultivars studied 

highlighting their potential use for variety identification. 

 

Chapter 5. Genome-wide association study for crown rust and powdery 

mildew resistance in an oat collection of commercial varieties 

and landraces.  

1. Genetic diversity of the collection with more than 1500 DArT markers in addition of the SSR 

markers confirmed 4 subpopulations. However, slight modifications of the genotype-cluster 

assignation and the corresponding percentage of admixture were observed when 

increasing the number of markers. Multivariate analysis based on PCAs also revealed a 

separation of 4 subpopulations which indicate a high consistency of the data. 

2. A total of 507,042 pairs of markers showed a significant LD value with an average p=0.004. 

From these, 277,920 pairs of markers showed an r2<0.1 chosen here as nominal level 

indicating a good potential genome coverage of the markers. 

3. We found 5 markers significantly associated with rust resistance. Markers oPt-11795 and 

MAMA5-163 were the two more significantly associated showing significant association in 

all models tested including the MLM models accounted for population structure and kinship 

and explaining 20 and 10% respectively of the variation observed for this trait. Three 

additional markers, AM30-178, AME176-3 and oPt-15665 were significantly associated in all 

GLM models including those accounting for population structure 

4. The marker, oPt-14317, highlighted as related to powdery mildew resistance in seedlings 

was not considered strongly associated. However, oPt-5014, was highly significant 

associated with powdery mildew adult plant resistance in all models tested. This marker 
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would explain approximately 30% of the observed variation. Other two markers, oPt-3306 

and oPt-793335 were strongly associated with adult plant resistance in all GLM performed 

accounting for population structure but not in the MLM models.  

5.  The marker oPt-11795 showed homology with an utophagy-related protein 2 of Triticum 

urartu and marker oPt-15665 showed homology with an anthocyanin 5-aromatic 

acyltranferase of Aegilops tauschii. However, further work would be needed to ascertain 

the relationship between the DArTs markers and these genes. 
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