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Abstract 

Medium-range guided wave testing is commonly employed for inspection of areas with restricted access. 

The technique usually works in pulse echo mode and at high frequency-thickness products, around 20 

MHz⋅mm, offering good sensitivity and resolution. Defect sizing is based on the reflection amplitude of the 

received mode(s). However, the scattering of guided waves is complex, and the amplitude of the reflected 

modes does not provide sufficient information for defect sizing. This work aims to overcome this limitation 

using a focusing technique based on Lamb waves. Specifically, multiple Lamb wave modes are excited 

individually and superimposed to form a new mode with a desired through-thickness energy distribution. This 

way, energy is focused on a single point in the structure. Using weighting functions, the location of the focal 

point is swept across the thickness of the sample. The technique allows for accurate sizing of flaws, such as 

cracks and wall loss. 
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1. Introduction 

Ultrasonic guided waves are commonly used for the non-destructive testing of plates and pipes. They can 

be employed to quantify wall loss [1–4], axial and/or circumferential cracks [5,6] and other flaws. The choice 

of guided wave inspection method depends on the specific inspection requirements, such as sensitivity, 

resolution, and inspection range. 

Long-range guided wave testing is commonly employed for the inspection of pipework, such as pipe 

racks and transmission lines [7,8]. Large lengths (typically around 100 m) are screened with a single capture, 

making the technique time-efficient and practical. Potential problem areas are identified and are further 

investigated using a more precise method to determine the exact dimensions of the defect. 

Compared to long-range, medium-range guided wave testing offers higher sensitivity and resolution but a 

shorter inspection range [9–11]. Ultimately, the technique is an intermediate step between bulk wave and 

long-range guided wave testing. The approach is attractive in cases where high accuracy is needed, however 

direct access to the test component is limited or time is sensitive. Relevant applications include but are not 

limited to the inspection of the annular plate of above ground storage tanks, inspection for corrosion under 

pipe supports, and in-process weld inspection of thin plates at the point of manufacture [12–14]. 

Although a fair body of work is committed to the development of medium-range guided wave testing, 

there are still important considerations that limit the wide application of the technique. Specifically, while it 

has been shown that a single guided wave mode can be generated and received [10,15,16], it is difficult to size 

indications reliably and determine the severity of damage using purely the amplitude of the reflection of the 

received modes. The scattering behavior of ultrasonic waves is complex and depends on defect size, 

orientation, and geometry. Moreover, the variation in energy distribution across modes means there is no 

consistency in the reflectivity from different flaws.  

In this work, a technique is presented to perform focusing on medium-range distances using guided wave 

modes. Specifically, multiple higher modes are selectively excited and time delayed to arrive simultaneously 

at a selected cross section, say 𝑥𝑐𝑠, as shown in Figure 1. The modes are then weighted and superimposed so 

that energy is focused at a specific point at (𝑥𝑐𝑠, 𝑧𝑓). By altering the modal weights, the focal point can be 

swept across the thickness of the plate. 

 

 

Figure 1. Schematic showing Lamb wave focusing approach. Multiple guided wave modes are combined to 

focus the energy at a specific cross section 𝑥𝑐𝑠 and depth. 
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The structure of this paper is as follows. First, in Section 2, Lamb wave focusing is presented, and 

analytical results are outlined. Next, in Section 3, simulation results are presented, testing the technique 

against various defects. Then, in Section 4, experimental results are illustrated and discussed. Finally, in 

Section 5, key conclusions are drawn. 

 

2. Theory 

In this section, the fundamental theory for Lamb wave focusing is outlined. The excitation of Lamb 

waves at high frequency-thickness products is discussed in Section 2.1. In Section 2.2, the details of the 

method are presented. A sensitivity analysis is performed in Section 2.3, to study how various parameters 

affect focusing. 

 

2.1 Single mode excitation at high frequency-thickness products 

At high frequency-thickness products, around 20 MHz⋅mm, the first few higher order modes exhibit little 

dispersion and have small wavelengths. These properties make them attractive for medium-range non-

destructive testing applications. 

Figure 2 displays the through-thickness compressional σ11 and shear 𝜎13 stress components of the first 

four higher order modes for a 10 mm thick plate. Mode A1 has a dominant shear stress component, as shown 

in Figure 2 (a). Energy is concentrated at the middle of the plate. Figure 2 (b) illustrates the stress profiles of 

mode S2. The shear wave stress is still dominant, maximizing at ¼ and ¾ of the plate thickness. Modes A2 

and S2 have both stress fields dominant, as shown in Figure 2 (c) and (d), respectively. These four modes are 

individually excited and superimposed to form a new desired energy distribution. Since all modes have a 

dominant shear stress profile, this is selected for Lamb wave focusing. To simplify the notation, in what 

follows, 𝜎 ≔ 𝜎13. 
 

  
(a) (b) 

  
(c) (d) 

Figure 2. Stress profiles along the thickness direction of mode: (a) A1, (b) S1, (c) A2 and (d) S2. 

Consider an 𝑁 element array probe with pitch 𝑠 mounted on a wedge of angle 𝜃𝑤, as shown 

schematically in Figure 3. The aperture length of the array is 𝐷 ≈ 𝑁𝑠. Applying a linear time delay law, 

ultrasonic waves are steered at an angle 𝜃𝑠 with respect to the wedge angle. Therefore, by varying 𝜃𝑠, the 

angle of incidence, given by 

𝜃 = 𝜃𝑤 + 𝜃𝑠 
can be selected to dynamically target more than one guided wave mode. The plot of frequency versus 

coincidence angle is shown in Figure 4. The first four higher order modes are densely packed around 20 

MHz⋅mm. Unless care is taken, multiple modes are generated simultaneously and propagate in the sample. 
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Figure 3. Schematic of an array probe mounted on an angled wedge. 

The generation of a guided wave mode is primarily determined by the excitation spectrum 𝐻 [17]. The 

excitation spectrum is proportional to the amplitude of a mode, 𝐴 ∝ 𝐻. Therefore, to enhance a mode, say at 
(𝜔𝑒 , 𝑘𝑒), it must be true that 

𝐻(𝜔𝑒 , 𝑘𝑒)

𝐻(𝜔𝑠, 𝑘𝑠)
≫ 1, 

where (𝜔𝑠, 𝑘𝑠) corresponds to any mode that needs to be suppressed. The excitation spectrum of a single 

element probe mounted on an angled wedge is given by Rose [17]. In the case of an array probe, the spectrum 

appears in the more general form, 

𝐻(𝑐𝑝, 𝜔; 𝑁, 𝑠, 𝜃𝑤, 𝜃𝑠) = 2
sin⁡(0.5𝑁𝑠𝑐𝑜𝑠𝜃𝑠((𝜔/𝑐𝑤) tan 𝜃 − 𝜔/𝑐𝑝𝑐𝑜𝑠𝜃)

(
𝜔
𝑐𝑤
) sin𝜃 −

𝜔
𝑐𝑝

(1)
 

If no time delays are applied, 𝜃𝑠 = 0, and the spectrum is identical to the single-element transducer case. The 

plot of equation (1) in the frequency-phase velocity domain is shown in Figure 5. At high frequencies, the 

spectrum appears as a horizontal line and has a phase velocity bandwidth. The phase velocity bandwidth of H 

at −9 dB reads 

Δ𝑐𝑝(𝑁, 𝑠, 𝜃𝑠, 𝜃𝑤) =

𝐾
𝜋
𝜆𝑒
𝐷′

1 − (
𝐾
2𝜋
)
2

(
𝜆𝑒
𝐷′)

2 

where 𝜆𝑒 = 𝑐𝑝𝑒/𝑓, 𝐷′ = 𝑁𝑠𝑐𝑜𝑠𝜃𝑠/𝑐𝑜𝑠𝜃 and 𝐾 = 4.398 [17]. For a 32-element array with a 1 mm pitch and 

targeting mode 𝐴1 at 1.9 MHz, 𝜆𝑒 = 1.7 mm and thus Δ𝑐𝑝 = 0.051 mm/s. The phase velocity separation 

between modes A1 and S1 can be found from the dispersion curves to be Δ𝑐𝑝
𝑆1−𝐴1 = 3.296 − 3.243 = 0.053 

mm/s. Thus, since Δ𝑐𝑝/2 < Δ𝑐𝑝
𝐴1−𝑆1, mode A1 can be targeted and solely excited. Since the rest of the higher 

order modes are more separated, it follows that these modes can be excited individually. 

Besides the excitation spectrum, excitation of a single mode in a high frequency-thickness product 

region, around 20 MHz⋅mm, requires a narrow frequency bandwidth. In practice, this requires a temporal 

excitation with a relatively large number of cycles. The effect of the frequency bandwidth on the excitation of 

a single mode is studied experimentally and presented later in Section 4.1. 

 

 

Figure 4. Frequency vs. coincidence angle of Rexolite® wedge on a 10 mm thick aluminum plate. 
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Figure 5. Excitation spectrum of an array mounted on an angle wedge in the frequency-phase velocity 

domain. 

 

2.2 Through-thickness multi-modal focusing 

To focus the acoustic energy at a specific point along the thickness direction, multiple modes are utilized. 

Each mode has a different shear stress distribution, denoted 𝜎𝑚(𝑧). The modes can be superimposed to create 

a new modal profile, 

𝜎(𝑧) = ∑ 𝑤𝑚𝜎
𝑚(𝑧)

𝑀

𝑚=1

(2) 

where 𝑀 is the number of modes used and 𝑤𝑚 is a weight associated with mode 𝑚. Obviously, different 

weight values generate different stress profiles. Therefore, the weights need to be appropriately selected to 

match a desired profile, say 

𝜎̂(𝑧; 𝑧𝑓 , 𝜎) = 𝑒
−
(𝑧−𝑧𝑓)

2

2𝜎𝑓
2

(3)
 

where 𝑧𝑓 is the focal point and 𝜎𝑓 is the width of the focal point at -3.3dB. Indeed, it is straightforward to 

determine the weights after discretization along the 𝑧-axis and using the Gram-Schmidt process. Figure 6 

shows the absolute value of the desired and obtained stress profiles after implementation of the Gram-Schmidt 

algorithm using the first six higher order modes, namely A1, S1, …, S3. The focal point width was set to 𝜎𝑓 =

1mm. Smaller focal widths yield poorer focusing profiles, thus the 𝜎𝑓 = 1 mm was used. The results indicate 

energy is successfully concentrated for 𝑧𝑓 0, -2 and -3 mm. However, when focusing closer to the bottom 

surface of the plate, namely at 𝑧𝑓 = −4⁡mm, the agreement between the obtained and the desired profiles is 

poor. Therefore, the technique has a ‘dead zone’ close to the bottom surface. The depth of the dead zone is 

approximately 1.5 mm. Since the focusing results are symmetric along the z axis, an identical dead zone 

appears close to the top surface. Although the Rayleigh wave can be potentially used for inspection of the top 

surface of the plate, it cannot be used with a conventional wedge as it is damped by the wedge [15]. 

  
(a) (b) 
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(c) (d) 

Figure 6. Desired vs. Obtained focusing profiles for 𝜎𝑓 = 1 mm and: (a) 𝑧𝑓 = 0⁡mm, (b) 𝑧𝑓 = −2 mm, 

(c) 𝑧𝑓 = −3 mm, (d) 𝑧𝑓 = −4 mm. 

To decide the performance of different modal combinations on focusing, a similarity metric is derived, 

given by 

𝑠(𝑧𝑓; 𝜎𝑓) =
∫ ∫ 𝜎(𝑧, 𝑧𝑓)𝜎̂(𝑧, 𝑧𝑓)𝑑𝑧𝑑𝑧𝑓

−ℎ

−ℎ

ℎ

−ℎ

∫ ∫ 𝜎(𝑧, 𝑧𝑓)𝜎̂(𝑧, 𝑧𝑓)𝑑𝑧𝑑𝑧𝑓
−ℎ

−ℎ

ℎ

−ℎ

. 

Assuming a perfect match between the desired and obtained profiles at all focal points 𝑧𝑓, the similarity metric 

equals to one. The metric varies between 0 and 1, giving a score for each combination of modes. The result of 

the similarity metric for combinations of different modes is shown in Figure 7. The result indicates low 

focusing resolution when using only two modes, A1 and S1. When four modes are considered, namely A1, 

S1, A2 and S2, the focusing resolution is significantly improved. Superimposing six modes slightly improves 

the result. Using eight modes barely improves the result. Since adding more modes makes the experimental 

analysis more involved, practically adding more than six modes does not improve focusing. 

 

Figure 7. Similarity metric value for different modal combinations. 

Next, the distribution of stress along the 𝑥-axis is investigated. Consider the time-harmonic case of 

equation (2), 

𝜎(𝑥, 𝑧, 𝑡; 𝑧𝑓 , 𝜎𝑓) = ∑ 𝜎𝑚(𝑧)𝑤𝑚(𝑧𝑓 , 𝜎𝑓)𝑒
𝑖(km𝑥−𝜔𝑡+𝜓𝑚)

M

𝑚=1

. (4) 

Assuming that the total phase is zero at (𝑡𝑐𝑠, 𝑥𝑐𝑠), 
⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜙𝑚 = 𝑘𝑚𝑥𝑐𝑠 −ω𝑡𝑐𝑠 + 𝜓𝑚 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 
the phase at a distance 𝑏 away from 𝑥𝑐𝑠 reads  
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𝜙𝑚 = 𝑘𝑚(𝑥𝑐𝑠 + 𝑏) − ω𝑡𝑐𝑠 + 𝜓𝑚 = 2𝜋
𝑏

λm⁡
.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

Equation (6) shows that for 𝑏 ≠ 0, phase angles contribute to the sum of (4). Figure 8 shows the energy 

distribution along the 𝑥-𝑧 plane for focusing at four different depths, namely 𝑧𝑓 = 0,−1,−2 and −3 mm. 

Modes A1, S1, A2 and S2 were utilized using equation (4). Note that although the waves are time harmonic 

and extend infinitely along the 𝑥-axis, the energy drops further away from 𝑥𝑐𝑠. The reason is that each mode 

has a different wavelength; thus at distances far from 𝑥𝑐𝑠, the modes are not in phase and can cancel each 

other. In practice, the excitation signal is not time-harmonic and has a non-zero frequency bandwidth. 

Therefore, the axial length of the wave packet is limited due to the finite duration of the excitation toneburst. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Energy distribution at 𝑥-𝑧 plane after superposition of time-harmonic guided waves at 𝑥 = 𝑥𝑐𝑠 =
10 mm and 𝑡 = 𝑡𝑐𝑟 = 4.34⁡𝜇𝑠, using the first 4 modes. 

2.3 Sensitivity 

 

2.3.1 Sensitivity to phase 

So far, it is assumed that all modes are in phase at a desired cross-section, say 𝑥𝑐𝑠. In practice, this can be 

achieved by time shifting the modes to arrive simultaneously at the same cross section. This is performed in 

simulation and experiments sections as a preliminary step. However, the process of determining the time 

delays is error prone, which leads to errors in focusing. Consider again the time-harmonic case using modes 

A1, S1, A2 and S2. The focusing profile is given by equation (4). The phase angle 𝜓𝑚 can be expressed as 

𝜓𝑚 = 𝜓0
𝑚 + 𝜓1

𝑚, 
where 𝜓0

m is an arbitrary phase angle and 𝜓1
m is a phase shift. The phase shift is selected so that all modes 

arrive simultaneously at 𝑥 = 𝑥𝑐𝑠, 
𝜙𝑚 = 0 → 𝜓1

𝑚 = −𝑘𝑚𝑥𝑐𝑠 +𝜔𝑡𝑐𝑠 − 𝜓0
𝑚. 

However, small errors in phase shifts might occur, thus 

𝜓1
𝑚 = 𝜓1

𝑚 + 𝜓𝑒𝑟
𝑚 , 

and 

𝜙𝑚 = 𝑘𝑚𝑥𝑐𝑠 −𝜔𝑡𝑐𝑠 + 𝜓0
𝑚 + 𝜓1

𝑚 +𝜓𝑒𝑟
𝑚 = 𝜓𝑒𝑟

𝑚 . 
If the phase error 𝜓𝑒𝑟

𝑚  reaches 90°, the contribution of the mode 𝑚 to the focused profile becomes zero. 

Moreover, in the case where 𝜓𝑒𝑟
𝑚 = 180°, the inverted profile contributes to the sum of equation (4). This is 
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equivalent to multiplying the mode with a negative weight value and has undesirable results. 

Figure 9 displays the sensitivity of the similarity metric to phase changes of a given mode. Each curve is 

obtained by increasing the phase error of only the corresponding mode, whereas all other modes are assumed 

to be in phase. For example, the curve corresponding to mode A1 (in blue) is obtained by keeping 𝜓𝑒𝑟𝑟
𝑚 =

0,𝑚 = 2,3,4 and varying 𝜓𝑒𝑟𝑟
1  from 0° to 360°. When the phase error is zero, all modes are in phase and the 

similarity metric is about 0.7. As phase changes are introduced, the similarity metric decreases, reaching its 

minimum value at 180°, when the modes are out of phase. As the phase error further increases, the similarity 

metric also increases, until it reaches its maximum value at 360°. All modes show the same pattern; however 

the similarity metric is most sensitive to phase changes of mode A1. This implies mode A1 has a significant 

contribution to equation (4). As modal order increases, the similarity metric is less sensitive to phase errors. 

The similarity metric is above 0.65 when the phase error is below 35°. At 2 MHz, the corresponding time 

delay error is 𝑡𝑒𝑟𝑟𝑜𝑟 =
0.6109

2𝜋𝑓
= 48.6 ns. 

 

Figure 9. Sensitivity with respect to phase error of modes A1, S1, A2 and S2. 

 

2.3.2 Sensitivity to small thickness variations 

Consider a plate-like structure with a nominal thickness of 10 mm and a small smooth local thickness 

variation, as shown in Figure 10. The wall thickness of a 10 mm thick plate reads  
𝑑(𝑥) = 10 −Ψ(𝑥), 

where the indentation function Ψ can be put in the following form 

Ψ(𝑥) = {⁡⁡⁡⁡⁡⁡⁡
𝛼⁡

𝑒−1
𝑒

−1

1−(
𝑥
𝛽
)
2

, 𝑥 ∈ (−𝛽, 𝛽)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

where 𝛼 is the height and 2𝛽 is the length of the indentation. 

 

Figure 10. Plate with an indentation of 1 mm extending for 10 mm. 

As guided waves propagate through the indentation region, their operating frequency-thickness product 

slightly changes. Therefore, the propagation speed also changes, and this can lead to phase errors. Assuming 

time-harmonic waves, the travel time through the wall loss is 
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𝑡𝑏𝑢𝑚𝑝 = ∫
1

𝑐𝑝(𝑑(𝑥))
𝑑𝑥

2𝛽

0

, 

where the time required to travel a distance of 𝑙 when the plate is intact is simply 

𝑡𝑖𝑛𝑡 =
2𝛽

𝑐𝑝
. 

Therefore, the phase difference between the two cases can be written in the following form, 

𝜙𝑠ℎ𝑖𝑓𝑡 = 𝜔(𝑡𝑖𝑛𝑡 −⁡𝑡𝑏𝑢𝑚𝑝). (7) 

The plot of equation (7) with respect to indentation length is shown in Figure 11 (a). As expected, in the 

absence of the indentation, the phase difference is zero. As the indentation length increases, the difference in 

phase increases linearly. Mode 𝐴1 exhibits the smallest slope as is the least dispersive amongst the four 

modes. This is beneficial, as focusing is mostly sensitive to phase changes in mode A1 (see Figure 9.) The 

plot of indentation length vs. the similarity metric is given in Figure 11 (b). For lengths smaller than 15 mm, 

the similarity metric is above 0.65. This means that small thickness variations with a length less than or equal 

to approximately 9𝜆𝐴1 (15 mm), do not significantly affect the technique. 

  
(a) (b) 

Figure 11. Indentation length vs.: (a) phase change of each mode, (b) similarity metric. 

3. Simulations 

To capture the fundamental physics and speed up simulation time, 2D finite element simulations [18] 

were developed using OnScale [19]. The mesh size was set to 0.05 mm, which resulted in more than 20 nodes 

per wavelength [20]. The timestep was set to 5 ns, which is lower than the time required for the fastest wave 

to travel through an element of the given size [21]. 

In Section 3.1, a preliminary set of simulations was performed on an intact plate. In Section 3.2, focusing 

simulations were performed on a series of different notches to evaluate the sensitivity and resolution of the 

technique. Focusing was performed using the first four higher order modes, namely A1, S1, A2 and S2. 

 

Table 1. Simulation parameters 

Parameters 
Wedge 

Velocity 

Wedge 

Angle 

Plate 

thickness 

Plate long. 

Velocity 

Plate shear 

velocity 

Plate 

density 

Array 

elements 

Array 

pitch 

Array 

element 

width 

Excitation 

signal 

center 

frequency 

Excitation 

signal 

number of 

cycles 

 2343 m/s 41.69∘ 10 mm 6473 m/s 3226 m/s 
2700 

kg/m3 
32 1 mm 0.75 mm 1.9 MHz 

5-A1 

15-S1,A2,S2 

 

3.1 Extraction of time of arrival and stress profiles on an intact plate 

A schematic of the simulation set-up is shown in Figure 12. An angled wedge is located on top of a 10 

mm thick plate. A 32-element array is mounted on top of the wedge. The array emits plane waves by applying 

a piston-like pressure load at the wedge-element interface. Using beam steering, guided wave modes are 

excited. Each mode is excited individually, thus requires a separate simulation. The simulation parameters are 

given in Table 1. 
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Figure 12. Schematic of simulation set-up. 

 

Four simulations were performed to determine the time of arrival 𝑡𝑚  and stress profile 𝜎𝑚  of each 

mode across the cross section at 𝑥𝑐𝑠. The time of arrival is defined here as the time when the stress 𝜎𝑚 

maximizes. Extracting the time of arrival allows time shifting the modes to arrive simultaneously at 𝑥𝑐𝑠 . 

Modes A1, S1, A2 and S2 were generated and received using a vertical monitoring line located at 𝑥𝑐𝑠. To 

keep the results general, 𝑥𝑐𝑠 was arbitrary selected 345 mm away from the front face of the wedge. The time 

of arrival of each mode is shown in Table 2. The stress profile 𝜎𝑚 along the z-direction was also recorded. 

This profile is essentially identical to that of Figure 2, so it is not repeated here. 

 

Table 2. Time of arrival at cross section 345 mm away from the wedge 

Mode A1 S1 A2 S2 

Time of arrival 

(𝜇s) 
132.6 ⁡138.0 ⁡⁡142.0 147.5 

 

3.2 Lamb wave focusing 

Next, Lamb wave focusing is evaluated against different notches. The length, depth, and position of the 

notch are varied to evaluate the sensitivity of the technique to different types of flaws. Short and deep notches 

are simple models of a crack or sharp pit, whereas larger and shallower notches may be used to model a 

corrosion patch. Unless otherwise stated, all parameters in the simulations are identical to the ones used in 

Section 3.1. 

 

3.2.2 Focusing at a notch  

The simulation set-up is shown in Figure 13. A notch of length ℓ𝑛𝑜𝑡𝑐ℎ and depth 𝑑𝑛𝑜𝑡𝑐ℎ is modeled. The 

notch is located 345 mm away from the front face of the wedge, as in Section 3.1. Modes A1, S1, A2 and S2 

are excited separately and received independently by all array elements, thus operating in pulse echo mode.  

Focusing is performed in post-processing at the front (insonified) face of the notch. The focal points lie at 

(𝑥𝑐𝑠, 𝑧𝑓) and their number depends on the step of discretization, which was selected 0.25 mm. First, the 

received signals are phased according to Table 2. Then, for each focal point, guided wave modes are weighted 

and summed, according to equation (2). This leads to the construction of a matrix of the form [𝑧𝑓 × 𝑅𝑥 × 𝑡]. 

Then, for each focal point (𝑥𝑐𝑠, 𝑧𝑓) , the signals are beamformed and the reflection amplitude 𝑅(𝑧𝑓)  is 

calculated. It is expected that 𝑅(𝑧𝑓) is large when a reflector is present and small in the absence of a reflector. 

The beamforming is semi-synthetic, as Lamb waves are physically propagating, but they are superimposed 

and focused synthetically. 

 

 

Figure 13. Schematic of simulation set-up to image a vertical notch. 

 

3.2.2.1 Effect of notch length 

Three different notches with varying lengths were simulated. The lengths of the notches were chosen to 

be  
ℓ𝑛𝑜𝑡𝑐ℎ=𝜆𝐴1

4
, ⁡𝜆𝐴1 and 5𝜆𝐴1, where 𝜆𝐴1 is the wavelength of mode A1 and equals 1.7 mm. The depth of the 

notches was kept constant at 50% thickness. The beamforming, by combination of the different modes, is as 

per the methodology outlined in equation (3) and this is used to step the focus throughout the thickness. 

Specifically, the focal point 𝑧𝑓 was swept from −3.5 to 3.5 mm with a step of 0.25 mm and the focal width 

was set to 𝜎𝑓 = 1 mm. For 𝑧 > 3.5 and 𝑧 < −3.5, i.e. close to the top and bottom surfaces of the plate, the 
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technique has no focusing ability (see Figure 6). Figure 14 illustrates the reflection amplitude 𝑅𝑛𝑜𝑡𝑐ℎ(𝑧𝑓) 

against 𝑧𝑓. The 0 dB value is common for all three cases. Little change is observed between the three cases, 

meaning the technique is insensitive to length variations, even for lengths smaller than the wavelength. The 0 

dB value is common for all three cases. Moreover, the depth of the notch can be accurately estimated. 

Specifically, a strong reflection is obtained when focusing along the face of the notch. The reflection 

amplitude is around 0 dB, with a variation of around 1.5 dB. When focusing on depths below the notch, the 

reflection amplitude drops by 8 dB, with a variation of around 1.5 dB. The depth of the notch can be estimated 

at 

𝑅𝑐𝑎𝑙𝑙 =
max𝑅𝑛𝑜𝑡𝑐ℎ +min𝑅𝑛𝑜𝑡𝑐ℎ

2
(8) 

where 𝑚𝑎𝑥𝑅𝑛𝑜𝑡𝑐ℎ and 𝑚𝑖𝑛𝑅𝑛𝑜𝑡𝑐ℎ are the maximum and minimum of the reflection amplitude, respectively. 

The call line is shown as a horizontal line at 𝑧 = −0.15 mm. The estimated depth is thus 51.5%. 

 

Figure 14. Focusing reflection of a 50% deep notch of length 5𝜆𝐴1, 2𝜆𝐴1 and 𝜆𝐴1/4. 

 

3.2.2.2 Effect of notch depth 

The effect of notch depth is studied. Three top surface notches were simulated at corresponding depths of 

35%, 50% and 70%. The length was kept equal to 𝜆𝐴1. Figure 15 illustrates the reflection amplitude for each 

case. The reflection from the 35% deep notch is shown in red. As expected, the reflection amplitude is 

approximately constant when focusing along the face of the defect; however it drops significantly when 

focusing below the notch. The same pattern is observed for the 50% and 70% notches, shown in blue and 

green, respectively. These results indicate the depth of the notch can be accurately obtained using equation 

(8). Moreover, three bottom surface notches were simulated. The reflection amplitude vs. focal point is shown 

in Figure 16. Again, the reflection amplitude drops when focusing away from the defect face. Nevertheless, 

the reflection locally peaks at some unwanted locations, for example, around 𝑧 = 1.5 mm for the 50% deep 

notch. This could be due to the size of the focal point, which is around 1 mm, but in any case, the increase in 

reflection amplitude is small and local. 

 

Figure 15. Focusing reflection varying the depth of a top surface notch. 
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Figure 16. Focusing reflection varying the depth of a bottom surface notch. 

 

3.2.3 Focusing at internal notches 

To further test the technique, focusing was performed at internal crack-like notches. Four notches were 

simulated, with a vertical length of 𝜎𝑓/2, 𝜎𝑓 , 2𝜎𝑓 and 4𝜎𝑓. The center of all notches was at 𝑧 = 0⁡mm. The 

reflection amplitude along the thickness direction is shown in Figure 17. Although in all cases the highest 

reflection is obtained at the crack face, accurate estimation of the crack’s vertical length using equation (8) is 

possible for crack lengths larger than the focal width. Specifically, cracks with vertical length equal to 

2𝜎𝑓 , 4𝜎𝑓 were overestimated with an error of 13% and 15%, respectively, whereas cracks with vertical length 

equal to 𝜎𝑓/2, 𝜎𝑓 were overestimated with 81% and 54% error. The reflection amplitude for the first three 

notches is very similar. 

 

Figure 17. Focusing on a crack-like notch of depth 
𝜎𝑓

2
, 𝜎𝑓 , 2𝜎𝑓 and 4𝜎𝑓. 

 

4. Experimental results 

 

4.1 Influence of steering angle and frequency bandwidth 

 

4.1.1 Effect of steering angle 

The SANR (signal-to-ambient-noise ratio) angle is defined as the angle that maximizes the energy 

dissipated in the targeted mode, i.e., maximizes the SANR. The SANR angle is determined experimentally 

and should coincide with the theoretical steering angle. The steering angle vs. signal amplitude for the first six 

higher order modes is shown in Figure 18. To extract the amplitude, at each angle, the Hilbert envelope of the 

signal is obtained, and the maximum of the Hilbert envelope is plotted. For each mode, the amplitude peaks at 

the SANR angle. As expected, as the modal order increases, the SANR angles are further separated from each 

other. 
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Figure 18. Steering angle vs. signal amplitude. The SANR angle is where amplitude peaks.   

For single-mode excitation, it is usually beneficial to select an excitation angle slightly different from the 

SANR angle. The SMNR (signal-to-modal-noise ratio) angle is defined as the angle that maximizes the 

SMNR, 

𝑅𝑜𝑝𝑡 =
𝑀𝑒

𝑀𝑠
, 

where 𝑀𝑒 is a mode to enhance and 𝑀𝑠 are the selected modes to suppress, which are usually the neighboring 

modes of 𝑀𝑒. The SMNR angle is not necessarily equal to the SANR angle. However, both angles must have 

similar values, because if not, the SANR drops significantly and the excitation is suboptimal. For this reason, 

the SMNR angle is not allowed to cause an amplitude drop of less than -2.5 dB. 

 

 

Figure 19. A-scan comparing the ratio between mode A1 (targeted) and S1 (unwanted) for different steering 

angles. 

Consider for example mode A1. In contrast to other modes, mode A1 has a single neighbor in the 

dispersion diagram, namely mode S1 (neglecting the Rayleigh wave). It can be shown that the amplitude ratio 

A1/S1 is monotonically increasing as the angle of incidence exceeds the SANR angle. However, the overall 

energy dissipated to mode A1 decreases, and there is a trade-off between single-mode excitation and energy 

dissipation. A good compromise was found at 5.3 degrees, where the amplitude drop of mode A1 is -2.5 dB 

and the A1/S1 ratio is significantly improved, as shown in Figure 19. A similar analysis was conducted for all 

modes. The SANR and SMNR angles are given in Table 3. 

Table 3.SANR and SMNR angles and for four modes. 

Steering angle \Mode A1 S1 A2 S2 

SANR (deg.) 
4.8 

 
4.0 2.7 0.9 

SMNR (deg.) 5.3 3.7 2.5 0.9 
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4.1.2 Effect of frequency bandwidth 

The frequency bandwidth is a critical factor for guided wave excitation. Assuming a sinusoidal toneburst 

with center frequency 𝑓𝑐 and number of cycles 𝑀, the bandwidth is approximated as 

𝐵𝑊 =
2𝑓𝑐
𝑀

. 

The center frequency was kept fixed at 1.9 MHz, thus the bandwidth depends only the number of cycles. As 

shown in Figure 19, mode A1 is successfully excited using 3 cycles. However, this is not the case for other 

higher order modes. 

To clarify the ideas that follow, mode S3 is studied. Similar results are obtained by studying A3, A2 or 

S2. The A-scan of mode S3 is shown in Figure 20 (a). Several echoes appear in the signal, with two dominant 

echoes of approximately equal amplitude. The 2DFFT result is shown in Figure 20 (b). Multiple guided wave 

modes are observed, and two modes are dominant, namely A3 and S3. Initially, it might seem like each mode 

depicted in the 2DFFT corresponds to a distinct echo in the A-scan. However, this is not accurate, as clarified 

by the time-frequency graph presented in Figure 20 (c). According to the time-frequency plot, all echoes span 

the same frequency range. Therefore, an echo does not correspond to a mode, since each mode is dominant in 

a distinct frequency range. In fact, each echo that appears in the A-scan is a combination of all modes. The 

signal corresponds to a bulk-wave bouncing at the top and bottom surfaces of the plate. These types of waves 

are used in the M-skip method [22]. 

 

  
 

(a) (b) (c) 

Figure 20. Mode S3 excited with a 3-cycle toneburst centered at 1.9 MHz: a) A-scan b) 2DFFT c) 

spectrogram. 

As the number of cycles increases, the frequency bandwidth becomes narrower, thus only the targeted 

mode is excited. The spectrogram of mode S3 at 3, 10 and 15 cycles is shown in Figure 21. The corresponding 

bandwidths are 1.27, 0.38 and 0.25 MHz, respectively. As the frequency bandwidth decreases, the excitation 

becomes single-mode [10]. 

   
(a) (b) (c) 

Figure 21. Spectrogram of mode S3 excited with: (a) 3, (b) 10 and (c) 15 cycles. 

 

4.2 Experimental determination of the through thickness profiles 

To determine experimentally the through-thickness profiles of the modes and time of arrival, a first 

experiment was conducted in pitch-catch configuration. More specifically, a wedge-mounted 32 element, 1 



- 14 - 

   

 

mm pitch array with a nominal frequency of 2.25 MHz emits plane waves, and these are received by a second 

128 element 0.75 mm pitch array mounted at the edge of the 10 mm plate. Only the first 13 elements of the 

latter array are in contact with the sample and so only these are used as receivers. A schematic of the 

experimental set-up is shown in Figure 22. 

 

 

Figure 22. Pitch-catch configuration set-up. 

 

Figure 23. Experimental vs. theoretical through-thickness compressional stress profiles. 

 

Figure 23 presents the experimental vs. theoretical through-thickness profiles. Note that due to a non-

viscous couplant layer between the plate and the receiver, the shear components cannot propagate and so these 

profiles correspond to the 𝜎11 profile. As can be seen, there is very good agreement for all modes. This 

validates the generation of the targeted modes. 

The profile 𝜎11(𝑥𝑐𝑠, 𝑧, 𝑡) is obtained experimentally for each mode. Using 𝜎11 and the theoretical ratio 

of  𝜎11/𝜎13, the 𝜎13 profile is obtained. The time of arrival of each mode at the edge is extracted manually. 

Specifically, the time of arrival is selected at the time where 𝜎11 maximizes. The shear and compressional 

stress profiles are phased by 𝜋/4, thus this phase difference is added to obtain the time of arrival of 𝜎13.  

In contrast to simulations, in this case, the edge of the plate was used to extract the amplitude and time 

of arrival of each mode. To validate the approach, two separate sets of simulations were conducted to generate 

parameters that are more easily measured experimentally. Specifically, the displacement fields were extracted 

at the edge of the material. The distance between the edge and the front face of the wedge was 345 mm. The 

displacement fields were used instead of stress as 𝜎11 vanishes at the edge. Then, the displacement fields were 

extracted at the bulk of the material at the same distance. Direct comparison of the displacement fields showed 

no phase distortion above 7 degrees was observed in the waveforms for modes A1, S1, A2 and S2. Modes A3 

and S3 showed a phase shift of −39 and −90 degrees, respectively. This means that the estimated time of 

arrival of the first six modes is sufficiently accurate. 

 

4.5 Imaging defects 

The experimental set-up for imaging a notch 345 mm away from the front face of the wedge is shown in 

Figure 24. Data was received and acquired with a phased array controller with 64 transmitter and 64 receiver 

channels. Data was streamed and stored on a personal computer (PC) for further processing. All experimental 
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parameters match those in Table 1. 

 

 

Figure 24. Experimental set-up for imaging a vertical notch. 

 

Figure 25 (a) illustrates the reflection amplitude when focusing at a 55% deep top surface notch. The 

length of the notch was kept to approximately 5𝜆𝐴1. The reflection amplitude is close to 0 dB at the face of the 

notch. Although the amplitude drops away from the notch, a local peak right below the notch is present, thus 

the depth of the defect is overestimated with 20% error using equation (8). Figure 25 (b) shows the reflection 

amplitude for a 55% deep bottom surface notch. In this case, the amplitude starts dropping slightly earlier. 

The defect size is underestimated with an error of 7%. To evaluate the effect of adding two higher order 

modes to the technique, modes 𝐴3 and 𝑆3 were added to the sum of equation (2). The result is shown in 

Figure 25 (c) and (d). The results are very similar to those in Figure 25. This validates experimentally that no 

significant contribution is gained by adding modes A3 and S3. The depth estimation error is slightly higher 

compared to the simulation results. This is possibly due to small error in the time of arrival estimation of the 

modes. Overall, the experimental results are in good agreement with simulations. 

 

  
(a) (b) 
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(c) (d) 

Figure 25. Experimental results from through-thickness focusing at a 5.5 mm deep 10 mm diameter (a) 

top surface notch using 4 modes, (b) bottom surface notch using 4 modes, (c) top surface notch using 6 modes 

and (d) bottom surface notch using 6 modes. 

 

Compared to simulation results, the error in depth estimation exhibits a slight increase, which can be 

attributed to various contributing factors. Firstly, small variations in the thickness of the plate may introduce 

small errors in the estimation of the time of arrival for each mode. Additionally, in contrast to simulations, the 

time of arrival was determined using the edge of the plate. This introduces small phase shifts in each mode 

that can affect focusing. Furthermore, positioning discrepancies in the probe between the pitch-catch (see 

Figure 22) and pulse echo (see Figure 24) experiments might contribute to issues in focusing. Also, errors can 

be introduced in the calculation of the weight functions. The weights are calculated using the analytical 

through-thickness profiles. Although these agree well with the experimental ones (see Figure 23), small 

differences might lead to errors in the derivation of the weight functions. While these error sources may be 

individually small, their cumulative impact may either mitigate or amplify the overall error in depth 

estimation. 

 

5. Conclusion 

In this work, a focusing technique using guided waves was developed to image the volume of plate-like 

structures at locations up to 2-3 m away from the probe. First, emphasis was placed on single-mode guided 

wave excitation at high frequency-thickness products. Specifically, it was shown that multiple modes can be 

solely excited using an array probe, provided that both the excitation and frequency spectrums are 

narrowband. Then, guided wave modes were superimposed to focus on a single point at a specified distance 

from the transducer and at a desired depth. By weighting the modes, the focal point was swept across the 

thickness of the plate. It was found that the first four higher order modes yield good focusing results, and 

adding more modes does not significantly improve the focusing resolution. Analytical computations showed 

that the focusing ability decreases as the focal point approaches the top or bottom surfaces of the plate. 

Effectively, a 1.5 mm ‘dead zone’ starts from both the top and bottom surfaces. Inside this region, focusing is 

not possible. Additionally, thickness variations did not affect focusing, as long as they did not extend 

significantly, i.e., less than 9 wavelengths for a 1 mm wall loss anomaly. Next, simulations were performed. A 

variety of notches with varying lengths and depths were modelled. Their depth was accurately estimated, 

provided it was larger than the focal width. Notch length did not affect depth estimation, even for lengths 

shorter than the wavelength. Finally, experiments were conducted using two 55% deep notches, one on the top 

surface and the other on the bottom surface. As expected, a high reflection amplitude was obtained when 

focusing on the face of the notch, whereas focusing on the intact region of the sample led to a drop in 

amplitude. The error was slightly higher compared to simulation results, but the overall performance was in 

good agreement with theoretical and numerical results. Future work includes further simulation and 

experimental validation of the technique. A detailed study on the effect of defect width is required, employing 

full 3D simulations and the manufacture of more defects. The technique can be extended to different guided 

waves, such as shear horizontal modes. 
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