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Abstract

This paper propose a multithreaded Genetic
Programming classification evaluation model
using NVIDIA CUDA GPUs to reduce the
computational time due to the poor perfor-
mance in large problems. Two different clas-
sification algorithms are benchmarked using
UCI Machine Learning data sets. Experi-
mental results compare the performance us-
ing single and multithreaded Java, C and
GPU code and show the efficiency far better
obtained by our proposal.

Keywords: GPUs, CUDA, Genetic Pro-
gramming, Classification.

1 INTRODUCTION

Evolutionary Algorithms (EA) are good method to
find a reasonable solution for data mining and knowl-
edge discovery [1], but they can be slow at converg-
ing with complex, high dimensional problems. To
solve this problem, different ways of parallelization
have been studied. Specifically, if we focus on ge-
netic programming (GP), we can find multiple ways
to take advantage both of different types of parallel
hardware and of different features of particular prob-
lem domains. Most of the parallel algorithms during
the last two decades deal with the implementation over
clusters or Massively Parallel Processing architectures
(MPPs). More recently, the work about parallelization
using graphics processing units (GPUs) [3], [5] and [10]
provide fast parallel hardware for a fraction of the cost
of a traditional parallel system.

The purpose of this paper is to analyze the scalability
of NVIDIA GPUs using Compute Unified Device Ar-
chitecture (CUDA) framework by the implementation

of two Genetic Programming (GP) classification mod-
els and benchmark them using UCI datasets. Experi-
mental studies compare our proposal with C and Java
single and multithreaded code proving the viability of
GPUs to speedup EAs solving very large problems.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the GP classification
algorithms to find out which parts of the algorithms
are more susceptible to performance improvement.
Section 3 presents information on the GPU comput-
ing architecture. Section 4 discusses the parallelization
analysis and implementation. Section 5 describes the
experimental models benchmarked. Section 6 presents
computational experiment results. Conclusions of our
investigation and future research tasks are summarized
in Section 7.

2 GP CLASSIFICATION
ALGORITHMS

GP is a kind of mainstream Evolutionary Algorithms
paradigm that presents more variants from EAs and
its goal is to develop programs automatically. GP’s in-
dividuals are expressions or syntax trees that represent
the structure of a program that solves the problem, in
our case, the correct classification of a set of instances.

There are different proposals using the paradigm of
the GP to represent sets of expressions (decision trees,
discriminant functions, classification rules, etc). Clas-
sification rules are widespread employed for GP and
the formalism they use to represent the classifier is IF-
THEN rules [8]. The antecedent of the rule (IF) con-
sists of a combination of conditions on the attributes
predictors. The consequent (THEN) contains the pre-
dicted value for the class. Thus, a rule assigns a pat-
tern to the class if the values of predictor attributes
satisfy the conditions assessed in the antecedent.

GP algorithms have the same structure as other EAs.
Deb K. [4] propose a model where an EA starts with a
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set of individuals named algorithm’s population. The
initial population is generated randomly. For each it-
eration, the algorithm evaluates each individual us-
ing the fitness function. The algorithm terminates if
it finds acceptable solutions or the generation count
reaches a limit. Otherwise, it selects several individu-
als and copies them to replace individuals in the pop-
ulation that were not selected for reproduction so that
the population size remains constant. Then, the al-
gorithm manipulates individuals by applying different
evolutionary operators such as crossover and muta-
tion. This model initializes the population at first.
The consecutive processes of selection, generation, re-
placement, update and control constitute an iteration
of the algorithm.

The most computationally expensive step is genera-
tion since it involves the evaluation of all individu-
als generated. For each individual its expression must
be interpreted or translated into an executable format
and then it is evaluated for each training pattern. The
result of an evaluation can be: true positive (tp), false
positive (fp), true negative (tn) or false negative (fn).
With these values the confusion matrix of the individ-
ual is constructed to get its quality index, its fitness.

The evaluation process of individuals within the pop-
ulation consists in two loops, where each individual
iterates each pattern and checks if the rule covers that
pattern. These two loops makes the algorithm really
slow when the population or patterns count increases.

The experience using GP algorithms proves that al-
most 98% of the time is taken by generation step. The
execution time of the algorithm is mainly linked to the
evaluation of individuals due to the population size
and the number of patterns. Thus, the most signifi-
cant improvement is obtained by accelerating the eval-
uation phase, and this is what we do in our proposal.

3 CUDA ARCHITECTURE

The CUDA programming model consists of a host that
is a traditional CPU and one or more massively data-
parallel coprocessing compute devices such as a GPU.

The runtime system executes kernels as batches of
parallel threads in a single-instruction, multiple-data
(SIMD) programming style. These kernels comprise
thousands to millions of lightweight GPU threads per
each kernel invocation. To make the most of the hard-
ware, creating enough threads is required; for example,
the kernel might compute each array’s element result
in a separate thread.

CUDA’s threads are organized into a two-level hierar-
chy, at the higher one all the threads in a data-parallel
execution phase form a grid. Each call to a kernel

initiates a grid composed of many thread groupings,
called thread blocks. All the blocks in a grid have the
same number of threads, with a maximum of 512. The
maximum number of thread blocks is 65535 x 65535,
so each device can run up to 65535 x 65535 x 512 =
2 · 1012 threads.

To properly identify threads, each thread in a thread
block has a unique ID in the form of a three-
dimensional coordinate, and each block in a grid also
has a unique two-dimensional coordinate.

Thread blocks are executed in streaming multiproces-
sors (SM). A SM can perform zero-overhead scheduling
to interleave warps and hide the latency of long-latency
arithmetic and memory operations.

There are three different main memory spaces: global,
shared and local. GPU’s memories are specialized and
have different access times and output limitations.

Global memory is a large, long-latency memory that
exists physically as an off-chip dynamic RAM. The
threads can read and write global memory to share
data and must write the kernel’s output to be read-
able after the kernel terminates. However, a better
way to share data and improve performance is to take
advantage of shared memory.

Shared memory is a small, low-latency memory that
exits physically as an on-chip registers and its con-
tent only maintained during thread block execution
and are discarded when the thread block completes.
Kernels that read or write a known range of global
memory with spatial or temporal locality can employ
shared memory as a software-managed cache. Such
caching potentially reduces global-memory bandwidth
demands and improves overall performance.

Each thread also has its own local memory space as
registers, so the number of registers a thread uses de-
termines the number of concurrent threads executed in
the multiproccesor, that is called multiprocessor oc-
cupancy. To avoid wasting hundreds of cycles while
a thread waits for a long-latency global-memory load
or store to complete, a common technique is execut-
ing batches of global accesses, one per thread, ex-
ploiting the hardware’s warp scheduling to overlap the
threads’s access latencies.

4 IMPLEMENTATION

To take advantage of the GPUs architecture we de-
cided to evaluate all individuals over all the patterns
simultaneously. An easy way to do that, is to create a
grid of thread blocks sized as follows: one dimension
is sized as the number of individuals and the other di-
mension is sized as the number of patterns in the data
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set. This organization represents that one thread is
the evaluation of one individual over one pattern.

To achieve full performance, we have to maximize the
multiprocessor ocupancy, so each block represents the
evaluation of one individual over 512 patterns. This
way, each thread within the block computes one single
evaluation, then the size of the second dimension of
the grid is the number of patterns divided by 512.

This configuration shown at figure 1 allows up to 65535
individuals and 33.553.920 patterns per GPU, large
enough for all tested data sets. Larger populations
can be evaluated using several GPUs in the system up
to 4 devices and 8 GPU cores per host.

Figure 1: Parallel Evaluation Model.

Before running the evaluator on the GPU, the indi-
viduals’s rules must be copied to the device memory
using PCI-E bus. The CUDA programming model is
an extension of the C language, so kernels are easy to
write. We use Java Native Interface (JNI) to call Java
natives methods and get the individuals’s expression
tree. JNI, Java’s foreign function interface for exe-
cuting native C code, is used to bridge the Java code
with the kernels. In JNI, the programmer declares
selected C functions as native external methods that
can be invoked by a Java program. The native func-
tions are assumed to have been separately compiled
into host-specific binary code using nvcc compiler and
also supports callback functions to enable native code
to access Java objects.

In the following host code at figure 2, all variables
preceded by h are stored at host memory space and
d are stored at device memory space. A base pointer
is used to know which subset of the population must
be evaluated by each thread.

The evaluation takes place in two steps. In the first
kernel at figure 3, threads check if the rule covers or
not the pattern using a stack and stores a value for
that thread depending on the classification algorithm.
Generally, if the rules covers the pattern and the conse-
quent matches the pattern’s class or the rule does not

cover the pattern and the consequent does not match
the pattern’s class we get a success, otherwise we get
a fail.

The second kernel counts the results by subsets of 512,
the actual maximum number of threads per block, to
get the total number of tp, fp, tn and fn and build
the confusion matrix. This way, the kernel calculates
in parallel the fitness of individuals using the confu-
sion matrix and the quality metrics described for each
classification model. Finally, results are copied to host
memory and set to individuals for the next generation.

The kernel function must analyze the expression work-
ing with Polish notation, also known as prefix nota-
tion. Its distinguishing feature is that it places op-
erators to the left of their operands. If the arity of
the operators is fixed, the result is a syntax lacking
parentheses or other brackets.

int threadPopu lat ionS ize = c e i l (
popu la t i onS i z e /numThreads ) ;

int base = plan−>dev i ce ∗
threadPopu lat ionS ize ;

for ( int i =0; i<threadPopu lat ionS ize ; i++)
cudaMemcpy( d exprTree [ i ] , h exprTree [

base + i ] , s izeof (char ) ∗ s t r e l e n (
h exprTree [ base + i ] ) ,
cudaMemcpyHostToDevice ) ;

dim3 t h r e a d s e v a l ( 1 , 512) ;
dim3 g r i d e v a l ( threadPopu lat ionS ize , c e i l (

Matrix H /512 .0 ) ) ;

e v a l u a t e k e r n e l
<<<g r i d e v a l , t h r e a d s e v a l>>>
( d f i t n e s s , d exprTree , Matrix W

, Matrix H , c l a s s i f i e d C l a s s ) ;

cudaThreadSynchronize ( ) ;

dim3 threads cm ( 1 , 512) ;
dim3 grid cm ( threadPopu lat ionS ize , 1) ;

c o n f u s i o n m a t r i x k e r n e l
<<< grid cm , threads cm >>>
( d f i t n e s s , Matriz H ) ;

cudaMemcpy( h f i t n e s s + base , d f i t n e s s ,
threadPopu lat ionS ize ∗ s izeof ( f loat ) ,
cudaMemcpyDeviceToHost ) ;

Figure 2: Host code, kernel invocation.

While there are remaining tokens, it checks what it
has to do next. A stack is used to store numerical
values. Finally, we check the last value of the stack. If
this value is true, that means the antecedent was true,
so depending on the algorithm used we compare this
value to the known class given for the pattern.
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g l o b a l void e v a l u a t e k e r n e l ( )
{
int row = 512∗ blockIdx . y + threadIdx . y ;
int p o s i t i o n = blockIdx . x∗Matrix H + row ;
int sp =0, bufp=length ( expr [ b lockIdx . x ] ) ;

while (1 )
{
switch ( getop ( s , &bufp , expr [ b lockIdx . x ] ) )

{
case NUMBER:

push ( a t o f ( s ) , s tack , &sp ) ;
break ;

case VARIABLE:
push ( vars [ Matrix W∗( row ) + a t o i ( s ) ] ,

s tack , &sp ) ;
break ;

case AND:
i f ( pop ( s tack , &sp ) ∗ pop ( s tack , &sp ) )

push ( 1 , s tack , &sp ) ;
else push ( 0 , s tack , &sp ) ;
break ;

case OR:
i f ( pop ( s tack , &sp ) | | pop ( s tack , &sp ) )

push ( 1 , s tack , &sp ) ;
else push ( 0 , s tack , &sp ) ;
break ;

case NOT:
i f ( pop ( s tack , &sp ) == 0)

push ( 1 , s tack , &sp ) ;
else push ( 0 , s tack , &sp ) ;
break ;

case ’>’ :
op1 = pop ( s tack , &sp ) ;
i f ( op1 > pop ( s tack , &sp ) )

push ( 1 , s tack , &sp ) ;
else push ( 0 , s tack , &sp ) ;
break ;

case ’<’ :
op1 = pop ( s tack , &sp ) ;
i f ( op1 < pop ( s tack , &sp ) )

push ( 1 , s tack , &sp ) ;
else push ( 0 , s tack , &sp ) ;
break ;

. . .
case END:

arg = pop ( s tack , &sp ) ;
i f ( arg == 1) { // The antecedent i s t rue
i f ( c l a s s i f i e d C l a s s == knownClass [ row ] )

r e s u l t [ p o s i t i o n ] = 0 ; // tp
else

r e s u l t [ p o s i t i o n ] = 2 ; // fp
}
else {
i f ( c l a s s i f i e d C l a s s != knownClass [ row ] )

r e s u l t [ p o s i t i o n ] = 1 ; // tn
else

r e s u l t [ p o s i t i o n ] = 3 ; // fn
}
return ;

default : break ;
}}}

Figure 3: GPU evaluation kernel.

This implementation allows scalability for different
GPUs multiprocessors count. The more SM the de-
vice has, the faster it runs because of the parallelized
blocks. Future devices will also take advantage of the
programming model by the implementation of L1 core
and L2 SM cache. The antecedent of the classification
rule is the same for all the threads within a block so
it can be cached in a single memory access.

5 EXPERIMENTATION

This paper presents an implementation of a GPU
GP evaluator for data classification using JCLEC [9].
JCLEC is a software system for Evolutionary Compu-
tation (EC) research, developed in the Java program-
ming language. It provides a high-level software en-
vironment to do any kind of Evolutionary Algorithm,
with support for genetic algorithms, genetic program-
ming and evolutionary programming.

Experiments were run on a PC equipped with an Intel
Core i7 processor running at 2.66GHz with one and
two NVIDIA GeForce 285 GTX video card equipped
with 2GB of GDDR3 video RAM. No overclock was
made to any of the hardware.

UCI Machine Learning Repository provides a reposi-
tory of databases, domain theories and data generators
that are used by the machine learning community for
the empirical analysis of machine learning algorithms.
We have selected two of them for benchmarks, shuttle
and poker hand inverse. The shuttle data set contains
9 attributes, 58000 instances and 7 classes. The poker
hand inverse data set contains 11 attributes, 106 in-
stances and 10 classes.

Two different GP classification models proposed in the
literature are listed. The evaluation from each model
is detailed for parallelization purpose. Full description
can be obtained from their references.

Falco model

Falco, Della y Tarantino [6] propose a method to get
the fitness of the rule by evaluating the antecedent over
all the patterns within the data set. The adjustment
function calculates the difference between the num-
ber of examples where the rule correctly predicts the
membership or not of the class and number of exam-
ples where the opposite occurs, then the prediction is
wrong. Finally fitness is expressed as:

fitness = I − (successes− fails) + α ∗N (1)

where I is the total number of examples from all train-
ing, α is a value between 0 and 1 and N is the number
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Table 1: Execution time results

Shuttle data set Poker-I data set

Falco Model Bojarczuk Model Falco Model Bojarczuk Model

Pop 100 200 400 800 100 200 400 800 100 200 400 800 100 200 400 800

T
im

e

Java 102 190 403 822 1832 2315 3652 6193 293 569 1093 2100 1447 2757 5177 9720

C1 19 23 77 165 97,7 185 328 655 64 115 196 430 261 488 888 1711

C2 10 12 38 82 51,1 94,1 165 342 33 58 99 216 136 250 446 863

C4 5 6 20 42 28,1 48,9 89,2 184 17 30 51 111 71,4 133 230 436

C8 5 6 19 40 27,9 49,4 90,1 177 16 28 47 80 66,4 125 213 408

GPU 17 23 67 142 3,9 7,2 14,2 28,4 55 99 172 362 20,8 40 ∞ ∞
GPUs 10 13 35 73 2,1 3,7 7,1 14 29 52 88 183 10,5 20 37,5 ∞

S
p

ee
d
u
p

Java 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C1 5,4 8,1 5,2 5,0 18,8 12,5 11,2 9,5 4,6 5,0 5,6 4,9 5,5 5,7 5,8 4,7

C2 10,6 15,9 10,5 10,1 35,9 24,6 22,1 18,1 9,0 9,8 11,1 9,7 10,6 11,0 11,6 11,3

C4 19,7 30,3 20,5 19,8 65,2 47,3 40,1 33,7 16,8 18,9 21,6 18,9 20,3 20,7 22,5 22,3

C8 19,9 30,1 21,2 20,6 65,7 46,8 40,5 34,6 18,5 20,5 23,3 26,4 21,8 22,0 24,2 23,8

GPU 349 491 361 347 468 325 256 218 319 343 380 348 69,7 69,6 ∞ ∞
GPUs 636 901 690 672 890 625 513 442 611 662 749 688 138 136 138 ∞

of nodes. The closer α to 1 is, the more importance is
given to simplicity.

Bojarczuk model

Bojarczuk, Lopes y Freitas [2] proposal presents a
method in which each rule is evaluated for all of the
classes simultaneously for a pattern. The classifier is
formed by taking the best individual for each class
generated during the evolutionary process. Instead of
successes and fails it measures tp, fp, tn and fn.

The fitness function used combines two indicators that
are commonplace in the domain, namely the sensitiv-
ity (Se) and the specifity (Sp), defined as follows:

Se =
tp

tp + fn
Sp =

tn
fp + tn

(2)

GP does not produce simple solutions. The compre-
hensibility of a rule is inversely proportional to its size.
Therefore Bojarczuk defines the simplicity (Sy) of a
rule:

Sy =
maxnodes− 0.5 ∗ numnodes− 0.5

maxnodes− 1
(3)

where numnodes is the current number of nodes of and
individual and maxnodes is the maximum allowed size
of a tree. Finally, the fitness function is calculated as
the product of the indicators of the predictive accuracy
and simplicity:

fitness = Se ∗ Sp ∗ Sy (4)

6 RESULTS

The results of the two GP classification algorithms
benchmarked using UCI data sets are shown at table
1 and figures 4 and 5. Rows in the first half repre-
sents the generation time and rows in the second half
represents the speedup compared to Java time. Each
column is labeled with the algorithm execution config-
uration from left to right: Population size, Java sin-
gle CPU thread, C single CPU thread, C two CPU
threads, C four CPU threads, C eight CPU threads,
1 GPU device, 2 GPUs devices. Infinite values mean
memory requirements excedded. In Falco table, GPU
time is expressed in seconds and CPU time is indicated
in minutes. Bojarczuk table times are in seconds.

Benchmarks results prove the ability of GPUs to solve
GP evaluation. Intel i7 quadcore performs linear scal-
ability from 1 to 2 and 4 threads, but not any further.
To go beyond, GPUs work much better. Its paral-
lelized model allows to speed up classification problem
from a month to an hour. Real classification training
usually needs dozens of evaluations to get an accu-
rate result, so the absolute time saved is a great deal
of time. The highest speedup is obtained with Falco
model, and it increased performance by a factor up to
700 over the Java standard CPU solution and up to
130 over the C single threaded CPU implementation.

7 CONCLUSION

Massive parallelization using NVIDIA CUDA frame-
work provides a speedup of hundred of times over Java
and C implementation. GPUs are best for thousands
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Figure 4: Falco implementation time comparison.
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Figure 5: Bojarczuk implementation time comparison.

threads tasks where each thread does its job but all of
them collaborate in the execution of the program.

CPU solution is lineal complex. However, the GPU
groups the threads in a block, then a grid of blocks is
exectued in SMs multiprocessors, one per SM. Thus,
linearity is approximately given by the number of 30-
blocks grid. This implementation allows future scala-
bility for GPUs with more cores. Next NVIDIA GPU
codenamed Fermi doubles the number of cores avail-
able up to 512. Make note that i7 CPU scores are 2.5
times faster than 3.0 GHz PIV.

Further work will implement the whole algorithm in-
side the GPU so selection, crossover and mutation
steps will be parallelized and data transfers between
CPU and GPU memory are expected to minimize.
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