

a gran escala. El examen manual de los espectros sería impensable, solo factible cuando estudiamos modificaciones para una proteína única.

Quizás, un mayor conocimiento del mecanismo de fragmentación de estos péptidos pueda dar lugar a una mejora en la identificación correcta de los mismos y, de esta forma, hacer posible el estudio de esta modificación a nivel de proteoma.

Referencias

- [1] Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A. "S-glutathionylation in protein redox regulation". Free Radical Biology & Medicine 2007; 43:883-898.
- [2] Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A. "Protein S-glutathionylation: a

- regulatory device from bacteria to humans". Trends in Biochemical Sciences 2008; 34, 2:85-96.
- [3] Bonzon-Kulichenko E, Pérez-Hernández D, Núñez E, Martínez-Acedo P, Navarro P, Trevisan-Herraz M, Ramos MC, Sierra S, Martínez-Martínez S, Ruiz-Meana M, Miró-Casas E, García-Dorado D, Redondo JM, Burgos JS, Vázquez J. "A robust method for quantitative high-throughput analysis of proteomes by 18O labeling". Mol Cell Proteomics, 2009 (en revisión).
- [4] Borges C.R, Geddes T.J, Watson J.T, Kuhn D.M. "Dopamine biosynthesis is regulated by S-glutathionylation. Potential mechanism of tyrosine hydroxylase inhibition under oxidative stress". J Biol Chem 2002; 277:48295-48302.

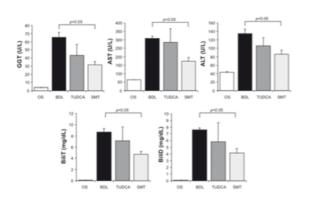
La inhibición de la síntesis de óxido nítrico durante la colestasis inducida experimentalmente reduce la lesión hepatocelular al facilitar la homeostasis de nitrosotioles

Laura M. López-Sánchez¹, Fernando J. Corrales², Montserrat Barcos³, Isabel Espejo³, Juan R. Muñoz-Castañeda¹, Antonio Rodríguez-Ariza¹

¹Hospital Universitario Reina Sofía. Unidad de Investigación, IMIBIC, Córdoba, ²Universidad de Navarra, Hepatology and Gene Therapy Unit, Pamplona, ³Hospital Universitario Reina Sofía. Servicio de Análisis Clínicos, Córdoba

Introducción

Las intervenciones que faciliten el metabolismo del óxido nítrico (NO) en etapas colestásicas tempranas pueden ayudar a mantener el estado redox de las proteínas hepáticas. Además, escasos estudios han explorado la participación de la S-nitrosilación de proteínas y el metabolismo de nitrosotioles (SNO) en la lesión hepatocelular por colestasis.


Metodología

Se dividieron ratas macho Wistar (200-250 g) en 4 grupos (n=10): operación simulada (OS), ligadura del conducto biliar (BDL), y ratas BDL tratadas con el inhibidor de síntesis de NO S-metilisotiourea

(SMT, 25 mg/Kg) o con ácido tauroursodeoxicólico (TUDCA, 50 mg/Kg). La función hepática y NO plasmático se analizaron mediante ensayos bioquímicos. La proliferación ductular se determinó en cortes teñidos con hematoxilina-eosina y se confirmó con inmunotinción específica (citoqueratina 19) de colangiocitos maduros. La fibrosis hepática se determinó mediante tinción con tricrómico de Masson. Se analizó la expresión de la bomba exportadora de productos conjugados (Mrp2), afectada en diversos modelos experimentales de colestasis, mediante western blot, y la de iNOS y la enzima nitrosoglutatión reductasa (GSNOR, codificada por el gen ADH5 en humanos) por RT-PCR. Las proteínas S-nitrosiladas se detectaron y purificaron con el método "biotin-switch", una aproximación

metodológica que permite el marcado selectivo de las nitrosoproteínas con biotina, en el que los tioles libres se bloquean con metil metanotiosulfonato, a continuación los SNO son reducidos selectivamente con ascorbato y finalmente los tioles nuevamente formados reaccionan con HPDP-biotina. Las proteínas biotiniladas se detectaron mediante un anticuerpo anti-biotina o purificaron utilizando estreptavidina y se identificaron por análisis proteómico con HPLC acoplado a ESI-MS/MS.

Resultados

Figura 1. Marcadores séricos de función hepática en ratas BDL.

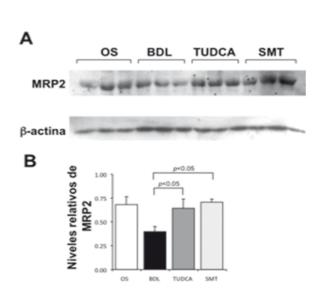
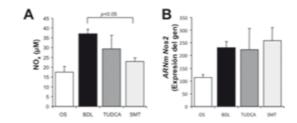
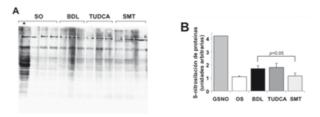




Figura 2. Expresión de la proteína Mrp2 en ratas BDL.

Después de 7 días, el inhibidor de iNOS fue mucho mas efectivo que TUDCA en reducir la lesión hepatocelular, con una disminución de enzimas hepáticas y de bilirrubina circulantes (Figura 1) y un grado significativamente menor de proliferación ductular y fibrosis periportal [1]. Ambos tratamientos recuperaron los niveles basales del transportador canalicular Mrp2 cuya expresión se inhibe durante la colestasis (Figura 2), pero sólo el tratamiento con SMT disminuyó significativamente los elevados niveles plasmáticos de NO y de proteínas hepáticas S-nitrosiladas en las ratas BDL (Figuras 3 y 4). La expresión de GSNOR hepática, que regula la homeostasis de SNO y los niveles de proteínas S-nitrosiladas, mostró un acusado descenso en ratas BDL, que se recuperó tras el tratamiento con SMT, pero no con TUDCA (Figura 5). Se identificaron 25 proteínas hepáticas que se encontraban S-nitrosiladas en ratas BDL (Tabla 1), incluyendo enzimas mitocondriales que participan en la síntesis de ATP y el metabolismo de ácidos grasos, dos procesos que se ven alterados en colestasis. Además, dos de las proteínas identificadas fueron la S-adenosilmetionina sintetasa (también llamada metionina adenosiltransferasa, MAT), y la betaína-homocisteina S-metiltransferasa (BHMT), dos importantes enzimas implicadas en el ciclo de la metionina cuya alteración es frecuentemente observada en procesos colestásicos.

Figura 3. Producción de NO y expresión del gen Nos2 en ratas BDL.

Figura 4. Detección de proteínas S-nitrosiladas en ratas BDL. *Lisado hepático incubado in vitro con GSNO.

Tabla 1. Proteínas S-nitrosiladas identificadas mediante LC-MS/MS en lisados de hígados de ratas BDL.

Nombre de la proteína	Número de acceso NCBI	Número de péptidos	Cobertura de secuencia (%)	Localización
Proteínas del citoesqueleto				
α-actina-2	P62738	1	10	Cit
Tubulina cadena β-2A	P04691	1	4	Cit
Enzimas metabólicas				
S-adenosil metionina sintetasa tipo 1	P13444	1	6	Cit
Aldehido deshidrogenasa, microsomal	P30839	2	5	RE
ATP sintasa, subunidad α	P15999	1	2	Mit
Betaina-homocisteina S-metil-transferasa 2	Q68FT5	1	4	Cit
Carbamoil-fosfato sintasa 1	P07756	13	20	Mit
Carboxilesterasa 3 precursor	P16303	3	7	RE
Dihidroxiacetona quinasa	Q4KLZ6	2	6	RE
10-formiltetrahidrofolato deshidrogenasa	P28037	2	3	Cit
Fructosa-bifosfato aldolasa B	P00884	3	11	Cit
Glutamato deshidrogenasa 1	P10860	1	5	Mit
Hidroximetilglutaril-CoA sintasa	P22791	3	17	Mit
3-cetoacil-CoA tiolasa	P13437	1	8	Mit
L-lactato deshidrogenasa, cadena A	P04642	1	6	Cit
Acido graso CoA ligasa, cadena larga 1	P18163	2	9	Mit
Malato deshidrogenasa	P04636	1	21	Mit
Piruvato carboxilasa mitocondrial precursor	P52873	2	6	Mit
Chaperonas moleculares				
HSP 90-β	P34058	1	6	Cit
PDI	P04785	2	9	RE
Riboforina 1	P07153	2	7	RE
Enzimas de detoxificación				
Glutatión S-transferasa Mu 1	P04905	2	28	Cit
Glutatión S-transferasa Mu 2	P08010	3	22	Cit
Proteínas de señalización				
Factor de elongación 1-α 2	P62632	1	4	Cit
Otras				
Albúmina de suero, precursor	P02770	3	12	Sec

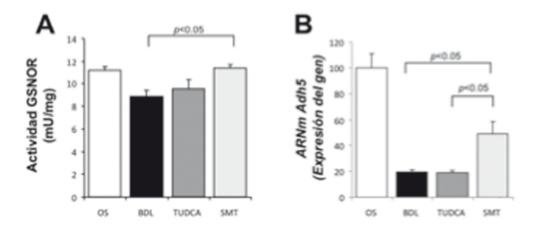


Figura 5. Actividad GSNOR hepática y expresión del gen Adh5 en ratas BDL.

Conclusiones

Nuestros resultados apoyan el beneficio terapéutico de inhibir la síntesis de NO, en un contexto colestásico, al facilitar la homeostasis de nitrosotioles. y proporcionan dianas de S-nitrosilación que posibilitarán el desarrollo de nuevas terapias en dolencias colestásicas.

Agradecimientos

Financiado por FIS PI 07/0159

Referencias

[1] López-Sánchez LM, Corrales FJ, Barcos M, Espejo I, Muñoz-Castañeda JR, Rodríguez-Ariza A. Inhibition of nitric oxide synthesis during induced cholestasis ameliorates hepatocellular injury by facilitating S-nitrosothiol homeostasis. Lab Invest. 2009 Oct 5. DOI: 10.1038/labinvest.2009.104.