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ABSTRACT

The significance of field work in remote sensing studies when applied to large areas has often been
underestimated. The combination of specific forest inventories for the estimation of aboveground biomass in
large dry tropical forest areas with remote sensor data has scarcely been explored to date. In this work, a
systematic, stratified forest inventory involving 100 × 100 m square plots in an area of Peruvian Prosopis
pallida dry forest, roughly one million hectares in size in the Piura province (Peru) has been compiled. The
inventory encompassed the principal silvicultural variables defining the ecosystem studied, which were used
in allometric equations for the different species, genera and plant associations in the area in order to estimate
the amount of aboveground biomass present in each plot. Field data were related to a Landsat 7 ETM+ image
by using six different vegetation indices derived from an image mosaic for the area. Two regression equations
(relating the amount of aboveground phytomass to the different vegetation indices) provided reasonably
acceptable phytomass predictions for the type of ecosystem concerned (R2 between 0.72 and 0.52).
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RESUMEN

La importancia del trabajo de campo en estudios de teledetección radica en la necesidad de proveer una
validación a los valores de reflectividad incluidos en los datos de los sensores remotos. La diversidad
ecológica del medio forestal y la evaluación de grandes superficies de difícil acceso hacen de la combinación
del inventario forestal y de la teledetección una herramienta compleja y útil en el análisis del medio terrestre.
El presente trabajo muestra la aplicación de un inventario sistemático estratificado sobre un millón de
hectáreas de bosque tropical seco de Prosopis pallida en el Departamento de Piura (Perú) en la validación de
diferentes tipos de clasificación realizadas sobre dicho ecosistema mediante el uso de imágenes Landsat
ETM+. El inventario recoge las principales variables del ecosistema y de los individuos, tomadas en parcelas
de 1 hectárea, que posteriormente fueron relacionadas con los valores de reflectividad de las imágenes
mediante el uso de índices de vegetación. Se hallaron ecuaciones de regresión entre valores de fracción de
suelo cubierto y cinco índices de vegetación, obteniéndose resultados con R2 de hasta 72 %. Los niveles de
significación hallados mediante el uso de los índices NDVI y EVI permiten una estimación razonable del
estado del bosque seco de Prosopis pallida del Departamento de Piura de una forma económica, fácil de
repetir en el tiempo y aplicable a zonas que difícilmente pueden ser evaluadas mediante inventarios
convencionales.

Palabras clave: Prosopis pallida, Landsat 7 ETM+, índices de vegetación, estimación de biomasa.

INTRODUCTION

Phytomass is a key structure variable for
research into ecosystem dynamics and it is
defined as the net amount of energy fixed by
plants (Terradas 2001). The significance of
aboveground phytomass (the amount of

aboveground dry plant matter per trunk and
branch surface area) (Terradas 2001), and the
interest in i ts determination in specific
ecosystems, have fostered the use of new
technologies, such as remote sensing, for its
calculation (Häme et al. 1997, Kueh & Lim
1999). Data acquired by remote sensors
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(specifically, reflectance data) allow various
biophysical properties of forests including
phytomass to be estimated. Reflectance, which
is taken to be the proportion of incident energy
reflected by a surface (Chuvieco 1995), enables
the identification of the different states of a
forest ecosystem from cut forest to mature
canopy (Boyd et al. 1996).

Empirical models relating ground
biophysical measurements to remotely acquired
data are useful tools for studying forest
ecosystems. The variables usually examined in
this context are phytomass (Häme et al. 1997,
Steninger 2000), leaf area index (LAI) (Reich
et al. 1999) and ground cover (Collin et al.
2000, Cohen  et al .  2003).  Among other
purposes, remote sensing is useful for detecting
forest changes and acquiring data for their
different development stages (Boyd et al. 1996,
Shu 2003). This is made easier by the fact that
the regeneration stages of forests are related to
their biophysical properties (Cohen et al. 2003).
These properties, which include tree height,
diameter at breast height (DBH), leaf area
index (LAI) and tree density, influence the
amount of radiation that is reflected or emitted
by the canopy.

A number of remote sensing studies have
been conducted with a view to relating ground
biophysical parameters in general (Boyd et al.
1996, Cohen et al. 2003), and biomass in
particular (Häme et al. 1997, Steninger 2000),
to the digital values contained in each Landsat
image band. While remote sensing and biomass
studies in tropical areas have long been
focussed on wet forests (Steninger 2000, Pua &
Saito 2003) on the grounds of their worldwide
significance, there have also been some studies
on biomass in dry tropical forests (Guerra et al.
1998, Arroyo-Mora et al. 2003).

Stratifying biomass areas in dry forest
ecosystems can be very useful for managing
forest resources and estimating their carbon
fixation capacity. The amount of matter
contained in an ecosystem can also be used to
assess its potential uses and whether wood
extraction is viable or to what extent it should
be restricted in order to reduce the risk of
degradation, deforestation and desertization
(Roper & Roberts 1999).

No specific studies appear to have been
conducted for estimating the amount of
aboveground biomass present in Peruvian

Prosopis pallida ecosystems. The aim of this
work was to construct an empirical model to
relate aboveground phytomass in the Prosopis
pallida dry forest ecosystem of the Piura
Province (Perú) to reflectance values derived
from images obtained by the Landsat ETM+
sensor in the year 2000.

MATERIAL AND METHODS

Study area

The Prosopis pallida dry forest studied spanned
an area of one million hectares located between
04º05’, 06º22’ S and 79º00’, 81º07’ W in the
Piura Province (north-western Peru, South
America). Its boundaries were Tumbes (Perú)
and the Republic of Ecuador to the north,
Lambayeque to the south, Cajamarca to the east
and the Pacific Ocean to the west (Fig. 1).

The study area consists mainly of forests,
the principal species is Prosopis pallida H.B.K.
(algarrobo), accompanied by Loxopterygium
huasango Spruce ex Engl. (hualtaco), Bursera
graveolens (Kunth) Triana and Planch. (palo
santo), Capparis angulata R. & P. (sapote) in
the tree stratum; and by Cordia lutea Lam.
(overo), Capparis ovalifolia R. & P. (bichayo),
Capparis cordata R. & P. (satuyo), Ipomoea
carnea Cav. (borrachera), Acacia huarango
Macbr. (faique), Pithecellobium excelsum
(Kunth) Martius (chaquiro), Bougainvillea spp.
(papelillo), Grabowskia boerhaaviaefolia (L.f.)
Schlecht. (palo negro) and Encelia canescens
Lam. (charamusco) in the bush stratum. The
tree stratum comprised individuals with a DAB
(diameter at the base) ≥ 10 cm and the rest of
them were considered the regenerate stratum.

The forests in the study area are of the open
type, with a tree cover of less than 100 % and
they spanned approximately 1 million ha. They
lie on semi-desertic plains that may have been
formed by aeolian or alluvial deposition of the
soil substrate (INRENA 1998).

Sampling design and data collection

A forest systematic inventory was developed
within the study zone using a GPS to locate the
central point of each plot. The variables used
were as follows: tree,  Prosopis ,  bush,
regenerate ground cover (by measuring
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Fig. 1: Location of the images and the study area in the Piura Province.
Ubicación de las imágenes y área de estudio en la Provincia de Piura.
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perpendicular crown diameters), total height of
each individual, diameter at the base and each
stratum density (tree, bush and regenerate). The
data for each stratum included in the forest
inventory were calculated by using sampling
plots located at the vertices of a 9 × 9 km grid.
Finally, an overall 111 plots were finally
included in the regression analysis.

Individual plots were assessed from data for
the plot at the grid vertex, whereas plot groups
were assessed both at the grid vertex and in
four additional plots within a 1 × 1 km square
centred at the original plot. The other four plots
were in the NW, NE, SW and SE directions of
the central plot, 707.1 m away from the grid
vertex.

Aboveground phytomass estimation

The aboveground phytomass for each stratum
considered, in addition to Prosopis biomass,
was determined. All individuals recorded for
all  species (39,425 individuals) were
considered and all the data were converted into
unit per hectare values.

Aboveground biomass values were obtained
by using equations that estimated the overall
biomass in relation to diameter and height
(Table 1). The values of the dasometric
variables collected in the field inventory
compiled between May and July 2000 were
incorporated into each equation.

The expression used with Prosopis pallida
(aboveground woody dry biomass) was equation
1 (Padrón & Navarro 2004). The aim of using
this equation was that it is specific for the
Prosopis pallida in the Piura Province. Although
this equation was established only for woody dry
biomass, it represents a more accurate estimation
of the biomass than using a more general
equation, which would accumulate the error of
the ecosystem variance in each species biomass.
The aboveground phytomass of faique (Acacia
huarango,) individuals (aboveground dry
biomass) with an arboreal form, was calculated
using equation 2, which was originally derived
for a species of the same genus (Acacia magium
Willd.) (Kueh & Lim 1999) (Table 1).

The biomass of the other tree species of the
legume family included in the forest inventory
(Caesalpinia paipai R. & P.,  Cercidium
praecox R. & P. Harms and Parkinsonia
aculeata L.) was calculated from the equations
for Prosopis pallida (equation 1) as they
belonged to the same family and there are no
specific equations for these species (Table 1).

Finally,  the aboveground phytomass
(aboveground dry biomass) for the remaining
tree species (viz. Loxopterygium huasango,
Bursera graveolens, Capparis angulata and
Capparis eucalyptifolia Haught) was calculated
by using a revised equation (equation 3) for dry
forest specific to the studied formation
(Mesquite) (Jenkins et al. 2004) (Table 1).

TABLE 1

Equations used to calculate the biomass of each plant species, family or formation
Ecuaciones utilizadas para el cálculo de la biomasa para cada especie, familia o formación

Individual species or
species groups Equation R2 Variables Source

Prosopis pallida H.B.K 75.1691 + 0.08732*[(DAB)^2]*Ht

[Equation 1] 0.950 DAB (cm) Ht (m) Padrón & Navarro (2004)

Acacia huarango 0.0921*(DBH)^2.5899 [Equation 2] 0.991 DBH (cm) Kueh & Lim (1999)

Mesquite Exp (–0.7152 + 1.7029*Ln(DBH))

[Equation 3] 0.938 DBH (cm) Jenkins et al. (2004)

Family Asteraceae 2.361 _ (fcc)3/2 [Equation 4] 0.966 Fcc (m2) Schenk et al. (2003)

Bush stratum –0.095 + 36.26*fcc [Equation 5] 0.921 Fcc (%) Mattiske (1975)
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Charamusco (Encelia canescens) was the
bush species (aboveground dry biomass) with
the largest number of individuals recorded.
Because no allometric equations for calculating
its biomass at the species or genus level were
available, an equation (equation 4) for another
genus (Acamtopappus) (aboveground dry
biomass) of the same family (Asteraceae) was
employed (Schenk et al. 2003) (Table 2).
Because faique (Acacia huarango) was the
second most important species and no specific
equations for calculating its biomass existed,
the equation 5 applicable to bush formations
(aboveground dry biomass) including the genus
Acacia (as a bush) was used and extended to
the other individuals in the bush stratum
(Mattiske 1975) (Table 1).

Aboveground biomass of regenerate
biomass was calculated using the same
equation as for the bush stratum (equation 5) as
the weight of this variable was negligible with
respect to the previous ones and finding a
regression equation for each species would
have been far beyond the scope of this work.
This equation was preferred to the one for the
Asteraceae family because the faique
regenerate was more abundant than the
charamusco regenerate (3,687 versus 665
individuals) (Table 1).

The overall biomass was calculated by
adding the regenerate, the bush and the tree
biomass weight for each plot.

Forest stratification

The vegetation types were separated into two
classes according to the presence of Prosopis
pallida as the main species in the tree strata or

the existence of a mixed forest. After that, the
forest was divided according to the percentage
of ground cover: very sparse (10-50 % ground
cover) or sparse (50-100 % ground cover).
Zones with less than 10 % of ground cover
were considered as non-forest or non-cover.
The nomenclature used was VSDF for “very
sparse dry forest” and SDF for “sparse dry
forest”. Also, a distinction was made between
areas of bushes (Bush) and non-cover (NC).
Finally, dense forests were split into two
categories (viz. dense and very dense) owing to
the great variability of their variances in
aboveground biomass. In this way, the plots
with extremely high biomass values, most of
which were due to the individual characteristics
of the plots rather than to the type of dry forest
studied, were separated from the rest. The
nomenclature used was VDDF for “very dense
dry forest” and DDF for “dense dry forest”.

Pre-processing of images

Three images acquired by the Landsat 7 ETM+
scenes captured in May 2000 (Path 11, Row 63
and Path 10 Row 64) and one in January 2000
(Path 10, Row 64) were used in this work (Fig.
1). The software used to process the satellite
images was ERDAS 8.4 imagine.

A mosaic was constructed with these three
scenes spanning the whole studied forest. The
images were georeferenced with 30 suitably
distributed points that were acquired by GPS.
Corrections were performed by using a third-
order polynomial with the nearest-neighbour
method. The total RMSE error was 0.4 pixel
(12 m). Image data were radiometrically
corrected using standard methods for

TABLE 2

Formulae used to calculate the different vegetation indices

Fórmulas para el cálculo de los índices de vegetación

Index Formula Source

NDVI (TM4 – TM3) / (TM4 + TM3) [Equation 6] Huete & Jackson (1987)

NDMI (TM5 – TM4) / (TM5 + TM4) [Equation 7] Cibula et al. (1992)

N37I (TM3 – TM7) / (TM3 + TM7) [Equation 8] Boyd et al. (1996)

SAVI (1+L) +(TM4 –TM3) / (TM4 + TM3 + L) L = 1 [Equation 9] Huete (1988)

MSAVI [(2* TM4 + 1)+[(2* TM4 +1)^2 - 8*(TM4 - TM3)]^1/2]/ TM3 [Equation 10] Qi et al. (1994)

EVI G*(TM4 – TM3)/ (TM4 + C1*TM3 – C2*TM1 + 1) L = 1, C1 = 6, C2 = 7.5, G = 2.5
[Equation 11] Huete et al. (2002)
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conversion of digital data into spectral radiance
values based on the formula of Markham &
Barker (1986) and subsequently transformed
into reflectance values using the earth-sun
distance, solar irradiance and zenith angle for
the day and time each image was obtained.
Radiometric corrections were based on the
coefficients of the bands 1-5 and 7 in the head
files of the Landsat images (http://
l t p w w w . g s f c . n a s a . g o v / I A S / h a n d b o o k /
handbook_htmls/chapter11/chapter11.html).

The use of absolute atmospheric corrections
in order to handle actual reflectance values was
considered. Some authors (Song et al. 2001)
believe that the methods available for
calculating such values may not be the most
effective ones for analyzing forest changes;
however,  the use of images acquired at
different moments of the year or in different
years entailed considering atmospheric effects
on reflectance. In this study, a relative
atmospheric correction based on the
information contained in the three images using
a pseudo-invariant points treatment was used
based on 31 samples (e.g., roads) that were
selected from a visual inspection of the study
area (Schott et al. 1988, Hall & Hay 2003).
This method does not decrease the magnitude
of change between scenes (Yang & Lo 2000).

Indices used

A number of general vegetation indices
including the normalized difference vegetation
index (NDVI) (Huete & Jackson 1987),
normalized difference moisture index (NDMI)
(Cibula et al. 1992) and other ratios integrating
the Landsat-TM sensor bands 3 and 7 (Boyd et
al. 1996) have been reported. Additional
indices have been developed in order to
consider atmospheric effects in addition to
discriminating vegetation. One such index is
the enhanced vegetation index (EVI) developed
by NASA (Huete et al. 2002) (Table 2).

One of the main difficulties faced in
studying low-density forests by using remote
sensing techniques is the need to separate soil
and vegetation effects (Huete 1988). As the
ground cover in these ecosystems is often less
than 100 %, pixels contain mixed information
for both components. This shortcoming has
been addressed by using indices such as the soil
adjusted vegetation index (SAVI) (Huete

1988). The SAVI uses a calibration curve for
soil values to resolve them from the reflectance
values due to the vegetation. This index was
subsequently refined to the modified soil
adjusted vegetation index (MSAVI), which
requires no calibration curve and varies with
the plant cover (Qi et al. 1994).

The indices used in this study and their
formulae are listed in Table 2. The normalized
difference vegetation index (NDVI) (Arroyo-
Mora et al. 2003, Hurcon & Harrison 1998) is
the one most widely used in remote sensing
applications on account of its ability to
represent the relative state of vegetation.

The normalized difference moisture index
(NDMI) is the wavelength difference between
bands TM4 and TM5 (middle infrared), band
TM5 representing plant water content (Cibula
et al. 1992, Hunt et al. 1987). An index
recommended for studying tropical forests and,
more specifically, for estimating regeneration
(Boyd et al. 1996), is N37I, which uses a ratio
between bands TM5 and TM7 to determine
vegetation-related parameters. The soil adjusted
vegetation index (SAVI) (Huete 1988) was
designed to reduce the influence of the
reflectance of soil under a plant cover in
studying open covers. It uses a reference curve
with a coefficient L to separate the effects of
soil reflectance and vegetation reflectance. The
modified soil  adjusted vegetation index
(MSAVI) is an improved variant of the SAVI,
which uses a variable coefficient depending on
changes in the red and infrared region (Qi et al.
1994). The enhanced vegetation index (EVI)
optimizes the sensitivity of the vegetation
signal in areas of abundant biomass and is used
to separate the vegetation signal from the
background signal in order to reduce
atmospheric effects (Huete et al. 2002).

Statistical analysis

The data obtained from the plots were
subjected to different types of statistical
analysis using the software Statgraphics Plus
5.1. First, an analysis of variance (ANOVA)
was used to compare the biomass means for
each vegetation type (no cover/bush/very
sparse dry forest/sparse dry forest). Significant
differences between means were identified
using Fisher’s least significant difference
(LSD) test (Devore 2004).
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Then, a Pearson correlation matrix was
constructed in order to identify the index
providing the best correlation with the
aboveground phytomass data. Pixel values for
the vegetation indices were extracted by using a
matrix of 3 × 3 pixels georeferenced to each
point acquired with the GPS and subsequently
related to the indices. The other procedures
involved regressions of aboveground biomass
for each extracted index, in order to identify the
best correlations between vegetation indices
and aboveground biomass, and a correlation
matrix was developed. All the statistical results
were subjected to the lack-of-fit test to check
whether the model concerned accurately
predicted variations in the data.

RESULTS

Forest stratification

The forest stratification for Prosopis pallida
ecosystem data is shown in Table 3. The
regeneration of Prosopis was greater in the
Prosopis pallida forest than in the mixed
forest.  In general,  there was a positive
relationship between the Prosopis pallida
ground cover and its regeneration. As can be

seen, most of the plots had Prosopis pallida as
their main species and mixed forest plots were
scant. Based on the foregoing, the results were
reclassified by ignoring the difference between
mixed and Prosopis pallida forests and
grouping them in terms of ground cover alone.

Quantifying biomass from the satellite images

Table 4 shows the aboveground biomass values
obtained for each vegetation stratum in the
forest inventory. The overall biomass varied
from 0 to 9.9 Mg ha-1. EVI and NDVI were the
best estimators for biomass (Table 5) in both
mosaics.  However,  EVI showed better
correlations and this index was finally selected
to evaluate the biomass in the Piura Province.
The regression equations relating the field
values of overall biomass to EVI is shown in
Table 6, with a parabola-like curve of R2 = 0.85
for overall biomass and R2 = 0.72 for tree
biomass.

The means of biomass for each prediction
range was established using the Equations 12,
which was the one providing the optimal
separation between forest types. Based on
ANOVA results, Table 7 shows the overall
biomass values obtained as a function of EVI
from the January–May 2000 mosaic.

TABLE 3

Mean ground cover (± SE) for each vegetation stratum and the species Prosopis pallida in each
type of forest (in terms of tree ground cover)

Cobertura media (± EE) para cada estrato de vegetación y para Prosopis pallida en cada tipo forestal establecido

Forest type n Ground cover (m2 ha-1)

Overall Tree Bush Regeneration Prosopis Prosopis Overall
tree* pallida regeneration cover

Prosopis pallida VSDF 55 4,768 (135) 2,573 (112) 6,247 (245) 4,235 (143) 2,195 (108) 3,563 (169) 18,813 (777)

Prosopis pallida SDF 18 13,346 (344) 7,018 (267) 9,506 (421) 2,244 (134) 6,238 (219) 1,633 (97) 26,729 (1138)

Prosopis pallida DDF 9 33,442 (780) 17,900 (611) 12,722 (532) 1,219 (87) 15,542 (567) 456 (19) 47,839 (1816)

Mixed VSDF 6 2,624 (93) 2,260 (102) 4,455 (201) 250 (12) 364 (21) 30 (3) 7,359 (339)

Mixed SDF 2 12,941 (456) 9,321 (287) 7,933 (321) 934 (43) 3,620 (129) 0 21,808 (780)

Mixed DDF 2 17,143 (567) 12,648 (502) 4,131 (187) 3,859 (123) 4,495 (176) 191 (23) 25,324 (1011)

Bush 19 611 (23) 351 (17) 2,336 (125) 521 (21) 260 (18) 248 (19) 3,716 (200)

*Overall tree cover = tree cover + Prosopis pallida cover;
VSDF: very sparse dry forest; SDF: sparse dry forest; DDF: dense dry forest
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DISCUSSION

The data obtained from Prosopis pallida forests
in Piura were used in conjunction with
allometric relations to calculate the biomass for
the different dry forest vegetation strata present

TABLE 4

Mean biomass (± SE) in Mg ha-1 for each
vegetation type. Different letters indicate

significant differences between treatments at P
≤ 0.05 (ANOVA, LSD test)

Valor medio de biomasa (± EE) en Mg ha-1 para cada tipo
de vegetación. Letras diferentes indican diferencias

significativas a P ≤ 0,05 (ANOVA, prueba LSD)

Forest type Aboveground biomass (Mg ha-1)

No cover 0 a

Bush 1.154 (0.096) a

Very sparse dry forest 4.451 (0.237) b

Sparse dry forest 9.984 (0.879) c

TABLE 5

Pearson correlations matrix between aboveground biomass (lines) and vegetation indices
(columns). Pearson’s correlation index and level of significance

Matriz de correlación de Pearson entre la biomasa aérea y los índices de vegetación estudiados

Aboveground EVI MSAVI N37I NDMI NDVI SAVI
biomass

Aboveground biomass P 1 0.8120 0.5407 –0.3041 –0.2329 0.7954 0.7730

Significance ** * ns ns ** *

ns: not significant at P = 0.05; * Significant at P = 0.01-0.05 level; ** Significant at P = 0.001-0.01

TABLE 6

Single regression equations with the highest correlation values between aboveground
biomass versus EVI

Ecuaciones de regresión simple con los mayores valores de correlación entre la biomasa aérea y el índice EVI

Variable Y Variable Y (kg ha-1) n R R2 P SE a b Equation type

EVI Overall biomass 111 0.85 0.72 < 0.001 20.95 –1615.60 9.74613 y = (a + b*x)2

[Equation 12]

EVI Tree biomass 111 0.72 0.52 < 0.001 23.92 –1187.65 7.16453 y = (a + b*x)2

[Equation 13]

Coefficients of correlation R and R2, number of plots (n), significance level (P), standard error (SE), equation coefficients
and type of equation used

in the study area. The overall biomass values for
the Prosopis pallida H. B. K. ecosystem in the
Piura Province in the year 2000 as estimated
from the forest inventory ranged from 0 to 9.98
Mg ha-1. These values are consistent with the
previously reported mean estimates for desertic
or subdesertic forests (7 Mg ha-1) in various
ecosystems worldwide (Terradas 2001).

The forest inventory for the year 2000 was
also used to estimate the ground cover for each
vegetation stratum (tree, bush and regenerate)
and the different forest types established in
terms of the tree ground cover. As can be seen,
the forest types with the lowest tree ground
covers were those exhibiting the highest
proportions of regenerate. Also, the regenerate
values for Prosopis pallida were higher for
monospecific dry forests than for mixed
forests. This is an important criterion in
choosing a specific classification to estimate
natural regeneration and deforestation in
Prosopis pallida ecosystems as the tree stratum
is related to the regenerate stratum.
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TABLE 7

Aboveground biomass, EVI, and 95 % confidence limits of biomass estimation for each forest type

Valor medio de la biomasa, el índice EVI y 95 % límites de confianza en la estimación de biomasa para cada tipo forestal

Biomass (Mg ha-1) EVI Prediction limits (95%) Confidence limits (95%)

Minimum Maximum Minimum Maximum
(Mg ha-1) (Mg ha-1) (Mg ha-1) (Mg ha-1)

No cover 0 < -0.020 0 1.79 0 0.07

Bush 1.00 0.0507 0 5.40 0.67 1.38

VSDF 4.50 0.1089 6.43 11.83 3.98 5.04

SDF 10.00 0.1634 3.37 20.13 8.89 11.17

VSDF: very sparse dry forest; SDF: sparse dry forest

A new classification of forests based on a
single variable, the ground cover (for trees,
bushes and regenerate), was proposed whether
it belonged to forests having Prosopis pallida
as their main species or to mixed forests. These
classifications have the advantage that forest
types can be easily separated for referencing to
satellite images. This is a result of the difficulty
of distinguishing individual dry forest species
among them. Remote sensing studies on open
masses usually rely on a vegetation estimator
rather than on a species-based criterion, i.e.
they seek to discriminate vegetation abundance
(Huete 1988) more than the individual species
constituting the vegetation.

Ground cover is a biophysical parameter
that can easily be measured in a traditional
forest inventory and it is also sensitive to
remote sensing sensors (Cohen et al. 2003).
Therefore, dry forest can be inventoried and
typified in order to develop a biomass study
with remote sensing techniques. These results
have an immediate implication in choosing the
specific classification to be used in the present
study of dry forests. Thus, the use of a
classification relying on a combined (tree and
bush) ground cover should be discarded as it
does not allow the very sparse and sparse forest
types to be distinguished.

As regards biomass calculations from
satellite images, two equations for estimating
overall biomass and tree biomass with the EVI
index were developed. This had two major
implications: (i) the tree stratum was the
principal stratum as regards biomass; and (ii)
biomass values were positively correlated with

the vegetation index and EVI (R2 = 0.85),
which can herewith be used as effective
estimators for the biomass of the Prosopis
pallida ecosystem. The results of the variance
analysis reveal that forest typing models
including the variable tree biomass are
effective for studying Prosopis pallida dry
forests to establish an inventory procedure
which allows the acquisition of field data for
remote sensing studies. Of the vegetation
indices used to estimate biomass, those
involving some atmospheric correction (EVI in
our case) are desirable with a view to
comparing images acquired on different dates.

Landsat images have been used for a variety
of purposes in biomass studies. Thus, Cook et
al. (1989) examined the usefulness of the
Landsat TM satellite and biogeographic data to
estimate forest productivity as the mean annual
increase in available volume in local
inventories. Their regressions were highly
significant, but they do not report R2 data.
However, they failed to account for most of the
variance in the data (R2 ranged from 0.27 to
0.42). The models of Ung et al.  (2000)
accounted for merely 11-30 % of the variability
in their data. Houghton (2003) performed
biomass calculations based on canonical
correlation analysis (CCA), Cohen et al. 2003
did as well, using LAI and ground cover values
to obtain R2 = 0.52. However, Lee & Nakane
(1996) obtained an R2 of 0.73 by using a small
sample (n = 9) of field values to estimate
biomass. Meyer et al. (1996), using a sample of
identical size (n = 9) in conjunction with
vegetation indices and SPOT images, obtained
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an R2 of 0.57 by applying a non-linear
equation. Finally, Lu et al. (2002) obtained R2

values of between 0.627 and 0.88 for wet
tropical forests. Compared to these regression
studies, the result of R2 = 0.85 obtained for the
Piura Province (n = 111) improves on
previously reported values and is reasonably
acceptable with a view to calculating biomass
for the Prosopis pallida ecosystem.

It should be noted that the NDVI values
were positively correlated, which is consistent
with the results of previous regression analyses
(Arroyo-Mora et al. 2003; Cohen et al. 2003).
By contrast, the soil indices exhibited relatively
low correlations. The EVI exhibited the highest
correlation obtained with this type of regression
for aboveground biomass, the most plausible
explanation for this being that the inclusion of
a correction factor with the values for band 1
reduces atmospheric influences and optimizes
the sensitivity towards biomass-rich zones
(Huete et al. 2002). The use of images acquired
in January and May in this work allowed the
influence of the atmospheric effect to be
reduced by the index as vegetation changes
were insubstantial, the 1999-2000 period being
one of scant precipitation (“El Niño” did not
occur) and slight seasonal changes.

Equation overall biomass = (–1615.60 +
9.74613*EVI)2 was recommended for
estimating biomass for the Piura Province in
the year 2000 as it was the one providing the
best r2 values and the best balance between
points with scant biomass and points with
abundant biomass.
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