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Bovine viral diarrhea virus (BVDV) is an important pathogen of cattle, 

generating considerable economic losses for the livestock industry. This 

pestivirus is the causative agent of the bovine viral diarrhea (BVD), disease 

described for the first time by Olafson et al. in EEUU (1946) as an enteric 

bovine disease with high morbidity and low mortality that seemed to have 

viral etiology (Olafson et al., 1946). Then, another process with a sporadic 

presentation in cattle, extremely high mortality and produced by the same 

agent was reported in 1953, being named as mucosal disease (MD) (Ramsey, 

1953; Thomson and Savan, 1963). Nowadays, BVD is known as a contagious 

disease that induces severe reproductive, respiratory and gastrointestinal 

pathologies mainly in bovine, although the BVDV can also infect ovine, 

caprine, wild ruminants and porcine (Tremblay, 1996; Ames, 2005).  

BVD is widely distributed and presents high prevalence worldwide, 

seeing increased the number of BVDV-seropositive cases with the presence of 

immunotolerant animals in the herds. Nevertheless, the prevalence of BVDV 

infection is variable depending on diverse circumstances, such as density and 

size of the herds, housing system and management of the animals (Greiser-

Wilke et al., 2003).  
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Since 1946, BVDV has shown to be responsible for a multifactorial 

disease with probably the most complicated pathogenesis of the bovine 

malignances. During the past 50 years, BVDV research has made many 

advances leading to the development of diagnostic tests, the production of 

vaccines and the design of successful control strategies for this virus. 

Likewise, the discovery of persistent infection was a key factor to understand 

BVDV maintenance in the host and to develop rational eradication strategies 

(Deregt, 2005). 

 

1. Taxonomy, morphology and structure of BVDV 
BVDV is a pestivirus classified within Flaviviridae family that displays 

high homology with other pestiviruses, such as classical swine fever virus 

(CSFV) and border disease virus of the sheep (Bolin and Grooms, 2004; 

Fauquet et al., 2005). Flaviviruses are a closely related group of small 

enveloped viruses with a single-stranded, positive sense ribonucleic acid 

(RNA) genome of approximately 12.5 kb in length (Ridpath and Bolin, 1997; 

Grummer et al., 2001). This RNA strand comprises an open reading frame 

(ORF) flanked on the 3' and 5' ends by untranslated regions (UTR), showing 

the 5' UTR extreme as the most conserved region in pestiviruses (Ridpath and 

Bolin, 1997). The ORF 5' end encodes the structural proteins of the virus (C, 

Erns, E1, E2), while the nonstructural proteins (Npro, NS23) are encoded at 

the 3' end (Thiel et al., 1996). The lipid envelope derives from the membrane 

of infected cells with a range from 40 to 60 nm in diameter and is found 

surrounding an icosahedral nucleocapsid of 25-37 nm (Lindenbach and Rice, 

2001; Ridpath, 2005).  
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2. Genotypes and biotypes of BVDV  
RNA viruses are characterized by their plasticity and ability to generate 

a selection of variants with different antigenic properties (Corapi et al., 1990; 

Ridpath, 1996), which helps BVDV to evade recognition by neutralizing 

antibodies (Abs) and escape the host immune response (Donis, 1995). BVDV 

has been classified into two different genotypes, BVDV-1 and BVDV-2, 

based on genetic differences (Ridpath et al., 1994; Heinz et al., 2000; Fulton et 

al., 2003a).  

BVDV-1 includes the most common isolates on herds. This genotype 

causes processes with unapparent symptoms, characterized by a slight increase 

in body temperature and the presence of moderate lesions restricted to the 

digestive tract and organs of the lymphoid system, causing also abortions in 

pregnant cows and other reproductive disorders (Pellerin et al., 1994; Ridpath 

et al., 1994). 

BVDV-2 isolates are associated with acute severe processes, presenting 

an intense lymphopenia, thrombocytopenia and body temperatures exceeding 

40.6ºC (Carman et al., 1998; Liebler-Tenorio et al., 2002, 2003b), sometimes 

characterized by producing an acute bleeding disease, called hemorrhagic 

syndrome (Corapi et al., 1990; Stoffregen et al., 2000).  

Independently of the genotype to which it belongs, BVDV is divided in 

two biotypes, cytopathogenic (CP) and non-cytopathogenic (NCP), depending 

on their lytic activity on cultured epithelial cells (Ridpath et al., 1994; Heinz et 

al., 2000; Fulton et al., 2003a). CP biotypes provoke a cytopathic effect which 

leads to cytoplasmic vacuolization and cell death, while NCP biotypes 

replicate in these cells without causing morphological changes (Bolin and 

Grooms, 2004; Ridpath, 2005). The biochemical hallmark of CP strains is the 

production of high levels of NS3 as a free protein after the early phase of 

infection. However, NCP BVDV variants produce small amounts of NS3 and 
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largely NS23 in the early phase of infection (Donis and Duvobi, 1987; 

Lackner et al., 2004). In this regard, there are evidences that NCP biotype of 

BVDV may originate CP strains, either by proteolytic cleavage of the NS23 

protein (Lackner et al., 2004, 2005), gene duplication of the altered NS3 

protein (Meyers et al., 1992), genetic deletion of the NS2 protein (Tautz et al., 

1994) or mutation (Kümmerer et al., 2000).  

Cytopathology in vitro does not correlate with virulence in vivo (Bezek 

et al., 1994). Indeed, the most severe clinical form of acute BVDV infection 

and the establishment of persistent infections are associated with NCP virus 

(Ridpath et al., 1994; Evermann and Ridpath, 2002; Fulton et al., 2002), which 

is the most common biotype in nature (Bolin and Grooms, 2004; Ridpath, 

2005).  

 

3. Clinical forms 
As it has been reported, the biology of BVDV is very complex, 

depending on different factors such as genotype and biotype that causes the 

infection, the immune status and age of animals, as well as the gestational 

period of the cows. This leads to a broad spectrum of clinical manifestations 

and lesions that can be classified according to the type of BVDV infection in: 

acute infection, congenital infection and MD (Figure 1). 

 

3.1. Acute infection  

The infection of immunocompetent animals with BVDV can originate 

some clinical variants: subclinical infection, acute BVDV infection, severe 

acute BVDV infection and hemorrhagic BVDV infection (Grooms et al., 

2002). 

A significant percentage (70-90%) of BVDV infections results in 

subclinical infections (Rickey, 1996; Bolin and Grooms, 2004), showing the 
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animals only a slight increase in body temperature, decreased white blood cell 

count and immunosuppression (Wilhelmsen et al., 1990; Brock, 1995; Rickey, 

1996; Bolin and Grooms, 2004; Pedrera et al., 2009b). This 

immunosuppression favors the emergence of opportunistic infectious agents 

(Potgieter, 1995), highlighting those that cause bovine respiratory disease 

(Brodersen and Kelling, 1998; Hamers et al., 2000). In these processes, 

clinical signs will depend on the nature of secondary infection, so that almost 

never are recognized as processes induced by BVDV (Brownlie, 1990; 

Rickey, 1996; Bolin and Grooms, 2004).  

Acute infection with characteristic clinical symptoms is described as 

BVD, observing only moderate clinical manifestations as pyrexia, anorexia, 

lethargy, salivation, oculo-nasal discharge, cough and mild diarrhea (Müller-

Doblies et al., 2004). Occasionally, erosions and ulcerations of the oral and 

gastrointestinal mucosa may be noticed (Wilhelmsen et al., 1990; Marshall et 

al., 1996; Spagnuolo-Weaver et al., 1997; Lambot et al., 1998). This form of 

disease is usually produced by BVDV-1 strains and some low virulence 

BVDV-2 strains, and although it is possible to obtain isolates from both 

strains, NCP biotypes are more frequent. These processes, that have a high 

morbidity and very low or no mortality, affect more frequently to calves with 

6-24 months old (Wilhelmsen et al., 1990; Cherry et al., 1998).  

There is an acute severe form of BVD characterized by high fever (39.7 

to 41ºC), agalactia, watery diarrhea and respiratory disorders. These animals 

show a minimum reduction of 50% in the circulating lymphocytes and a 

marked thrombocytopenia together with pneumonic lesions, ulcerations in the 

oral mucosa and depletion of lymphoid organs (David et al., 1994; Rickey, 

1996; Carman et al., 1998; Archambault et al., 2000). This clinical form is 

caused by NCP strains of BVDV-2 with high virulence, presenting elevated 

morbidity and mortality within 48 hours after the onset and affecting animals 
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of all ages (Wilhelmsen et al., 1990; Ridpath and Bolin, 1998; Archambault et 

al., 2000; Stoffregen et al., 2000; Jones and Weber, 2001; Liebler-Tenorio et 

al., 2002). 

Hemorrhagic syndrome is a grave clinical form evolved from the acute 

severe form, where the animals show pyrexia, bloody diarrhea, conjunctiva 

and mucous congestion, petechial hemorrhages and ecchymoses in mucous 

membranes (Corapi et al., 1990; Stoffregen et al., 2000; Evermann and 

Barrington, 2005). In addition, this syndrome is characterized by a marked 

thrombocytopenia, leukopenia and neutropenia (Rebhun et al., 1989; Bolin 

and Grooms, 2004). Among the most characteristic lesions highlights an 

important depletion of lymphoid organs, increased lymphocytic apoptosis, 

vacuolization of epithelial cells and vasculitis in various organs (Ellis et al., 

1998; Stoffregen et al., 2000; Liebler-Tenorio et al., 2003b). This clinical form 

is caused by NCP BVDV-2 highly virulent strains and has a mortality rate 

near to 25% (Pellerin et al., 1994; Ridpath et al., 1994; Bolin and Grooms, 

2004).  

 

3.2. Congenital infection 

BVDV can also produce reproductive disorders, as it can be removed in 

the semen of infected animals, giving rise to venereal infections (Schlafer et 

al., 1990; Kirkland et al., 1991) that cause a decline in male fertility and 

reduced conception rates (Paton et al., 1990). In the case of females, all 

reproductive organs are permissive to BVDV, being the ovary the most 

affected organ, altering its function and preventing normal follicular dynamics 

which produces a temporary infertility (Fray et al., 2000; McGowan et al., 

2003). 

Adult immunocompetent pregnant cows can clear the virus and become 

immune, but during this period a transplacental infection involving any of 
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both genotypes may occur, although in turn only the NCP biotype causes the 

fetal infection (Wittum et al., 2001; Harding et al., 2002). Fetuses infected 

with NCP BVDV present differences in the severity of lesions depending on 

the stage of gestation at which the infection takes place (Goyal, 2005).  

Thus, when the infection occurs before 60 days of gestation, it may lead 

to fetal death with mummifications or abortions from 10 days to 3 months 

after the virus entrance (Done et al., 1980; Evermann and Barrington, 2005). 

The fetus infected between 50-120 days of gestation, which is prior to 

the development of fetal lymphoid tissues and to a functional acquired 

immune response, is unable to recognize the virus as foreign, which results in 

the acquisition of immunotolerance to the infecting BVDV strain and 

persistent infection (Stokstad and Loken, 2002; Goyal, 2005). After birth, 

these persistently infected (PI) animals appear clinically normal but they are 

viremic and shed virus in all excretions and secretions continuously, becoming 

the main reservoir of virus within the herd (Odeon et al., 1999; Brock, 2003; 

Bolin and Grooms, 2004; Confer et al., 2005) and being at risk of suffering 

MD. Some PI calves have reduced fertility and show immunosuppression that 

predispose them to secondary infections (Muñoz-Zanzi et al., 2003; Confer et 

al., 2005), occurring their death during the first year of life (Bock et al., 1997; 

Brackenbury et al., 2003).  

Between 100-150 days of gestation, coinciding with the onset of fetal 

immunocompetence and organogenesis, congenital malformations appear and 

abortions are less frequent. Thus, the most characteristic lesions are thymic 

hypoplasia and pulmonary necrosis, alopecia, hypotrichosis, arthrogryposis, 

growth retardation and other skeletal and eye abnormalities (Baker, 1995; 

Bielefeldt Ohmann, 1995; Kahrs, 2001), presenting also severe malformations 

of the nervous system, such as microcephaly, hydrocephaly and cerebellar 

hypoplasia (Bielefeldt Ohmann, 1995). 



Inflammatory response in the BVD and its alteration in secondary infections  

 

 
32 

 

When infection occurs in late stages of the gestation, the immune 

system is sufficiently developed and may start an immune response against the 

infecting virus. Therefore, these calves generally born immunocompetent and 

without problems, although seropositves to BVDV (Goyal, 2005).  

 

3.3. Mucosal disease (MD) 

MD is an sporadic and fatal disease produced by BVDV that only 

affects PI animals when exist a mutation of NCP strains into CP or a super-

infection shortly after birth by a CP biotype antigenically homologous to the 

NCP biotype that caused the immunotolerance (Thiel et al., 1996; Sentsui et 

al., 2001; Confer et al., 2005; Smirnova et al., 2008).  

Animals that suffer from this disease present bloody diarrhea, 

mucocutaneous erosions and death within 2-3 weeks from the onset of clinical 

signs. Microscopically, calves have fibrinous enteritis, erosions, ulcerations 

and hemorrhages in the mucous membranes of the oral cavity, esophagus, pre-

stomachs, abomasum and intestine. Moreover, these animals show depletion 

of lymphoid tissues, especially those associated with mucous membranes, 

which induces a state of immunosuppression (Liebler et al., 1995; Wilhelmsen 

et al., 1991; Bolin and Grooms, 2004).    
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Figure 1. Schematic summary of different clinical manifestations described in cattle following 
BVDV infections. 

 

 

 

4. Pathogenesis 
After BVDV infection, there is a complex interaction between the 

etiologic agent and the infected host defined as “pathogenesis”. This process 

evolves from the entry of virus to the development of disease and immune 

response in the host. The pathogenic mechanisms of BVDV have not yet been 

clarified, existing discrepancies about whether the direct action of the virus 

may or may not be the responsible for lesions appeared in different locations. 
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4.1. Distribution and target cells of BVDV 

4.1.1. Acute infections 

Regardless the virulence of the strain, the main route of postnatal 

infection with BVDV is the oronasal, being the nasal mucosa and tonsils the 

primary organs of virus replication. The virus spreads from the nasal cavity to 

regional lymph nodes through lymphatic and blood vessels and then to 

systemic distribution in a free form or associated with lymphocytes and 

monocyte-macrophages (m-MΦs) (Brodersen and Kelling, 1998; Bruschke et 

al., 1998b; Kelling et al., 2002). BVDV displays a special tropism for the 

mucosa-associated lymphoid tissue (tonsils and intestine) and lymphoid 

organs as lymph nodes, thymus and spleen. In these locations the presence of 

BVDV antigen is associated with a marked lymphoid depletion. Moreover, the 

antigen-presenting cells (APCs) such as dendritic cells (DCs) and m-MΦs, and 

the lymphocytes (T and B) appear as the main virus target cells (Bruschke et 

al., 1998b; Teichmann et al., 2000; Liebler-Tenorio et al., 2003a,b, 2004; 

Kelling et al., 2007; Pedrera et al., 2009b; Raya et al., 2011).  

In studies performed after inoculation with strains of low virulence, 

viral antigen was only detectable in lymphoid tissues, not observing the 

presence of virus in the bone marrow during the infection (Wilhelmsen et al., 

1990; Liebler-Tenorio et al., 2003a,b, 2004) (Table 1). However, in 

experimental infections of colostrum-deprived calves with BVDV strains of 

low virulence, the viral antigen can be also detected in the intestinal mucosa, 

liver, upper and lower respiratory tract (Liebler-Tenorio et al., 2003a,b, 2004; 

Da Silva et al., 2007; Pedrera et al., 2009b).  

In inoculations with highly virulent strains, it was observed that the 

quantity and spread of viral antigen in tissues exceeded that produced by low 

virulence strains. The presence of antigen in processes caused by these strains 

is not only restricted to the follicles of lymphoid tissues, but it also extends to 
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other organs as skin, digestive and respiratory tracts, endocrine tissues, bone 

marrow and interstitium or vascular walls (Bruschke et al., 1998b; Ellis et al., 

1998; Odeon et al., 1999; Stoffregen et al., 2000; Liebler-Tenorio et al., 2002, 

2003b) (Table 1). Furthermore, other cells undergoing BVDV infection to a 

lesser extent are endothelial cells, neutrophils, epithelial cells, keratinocytes, 

megakaryocytes and platelets (Liebler et al., 1995; Marshall et al., 1996; 

Liebler-Tenorio et al., 2002, 2003b). Thus, the infection of epithelium in the 

upper digestive tract may cause erosive to ulcerative lesions (Marshall et al., 

1996; Ellis et al., 1998; Odeon et al., 1999; Stoffregen et al., 2000). Bone 

marrow infection is related with the development of a marked 

thrombocytopenia characteristic of the infection with these strains (Spagnuolo 

et al., 1997; Ellis et al., 1998; Archambault et al., 2000; Stoffregen et al., 

2000; Liebler-Tenorio et al., 2002, 2003b). 
 

4.1.2. Congenital infections 

Both BVDV biotypes infect the ovaries in experimental inoculations 

leading to a decreased conception rate (Bielanski et al., 1998; Grooms et al., 

1998; McGowan et al., 2003). In the first stage of gestation, BVDV infects the 

placenta and numerous tissues of the fetuses, causing severe damage that is 

considered as an important initiator for abortion (Baszler et al., 1995; 

Fredriksen et al., 1999a). Nevertheless, if the fetus is not immediately 

expulsed, it can give rise to mummifications (Liebler-Tenorio, 2005). 

PI animals present a wide distribution of BVDV in all their tissues, 

having more tropism for epithelial, lymphoid and central nervous system cells, 

although there are not morphological lesions associated with the presence of 

the virus (Fredriksen et al., 1999b; Njaa et al., 2000; Shin and Acland, 2001; 

Liebler-Tenorio et al., 2004). 
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Teratogenic effects of BVDV appear when the immune competence 

begins to develop, the ability to mount an inflammatory response sets in, and 

organogenesis is not completed. Such alterations affect mainly to brain and 

eyes because the organogenesis of these tissues occurs in the final stages of 

gestation (Liess et al., 1987; Liebler-Tenorio, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution of  BVDV strains in acute infections 

Organs Low virulence Highly virulence
Lymphoid tissues

   Tonsils + +
   Thymus + +
   Spleen + +
   Lymph nodes + +
   Peyer's patches + +
   Bone marrow - +

Digestive tract

   Oral mucosa - +
   Esophagus - +
   Intestines - +

Respiratory tract
   Nasal mucosa - +
   Lung - +
Heart - +
Skin - +
Liver - +
Pancreas - +
Kidney - +
Adrenal - +
Thyroid - +
Pituitary - +
Ovary - +
Testis - +
Nervous system - -

Table 1. 

*(-) absent; (+) presence
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4.1.3. Mucosal disease 

Like in PI animals, the NCP BVDV strains can be present in numerous 

organs and tissues of calves with MD, but are not associated with tissue 

lesions. When intranasal infection with CP BVDV occurs, primary replication 

of the virus is observed in epithelium of the tonsil. Following BVDV spread to 

the regional lymph nodes, it can be detected in Peyer’s patches, lymphoid 

follicles of mucosa-associated to intestinal and respiratory tracts, and to a 

lesser extent, in peripheral lymph nodes, thymus, and spleen. Therefore, 

lesions occurring in MD are associated with the presence of CP BVDV 

antigen (Liebler, 1991, 1995; Liebler-Tenorio, 2005). 

 

4.2. Immune response and immunosuppression 

The vertebrate immune system posses sophisticated mechanisms to 

counter the multitude of pathogens that establish an infection and cause 

disease. However, at the same time, several pathogens evolve continuously 

developing complicated strategies to suppress or evade the host immune 

mechanisms. BVDV is not an exception to this phenomenon, being able to 

produce disease on its own and, which is perhaps more important, inducing a 

state of immunosuppression that predispose calves to infections by other 

micro-organisms.  

As it has been seen before, BVDV has a special tropism for cells of the 

immune system, inducing cell death as an extreme event of the infection, or 

more subtle effects on cytokines and co-stimulatory molecules produced by 

immune or non-immune cells that could affect to both innate and adaptive 

immune response (see Table 2).  
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4.2.1. Innate immune response  

Phagocytosis is a critical innate defense mechanism which implies the 

intracellular killing of pathogens and the secretion of pro-inflammatory 

cytokines. This internalization and killing of pathogens is an essential pre-

requisite for microbial antigen presentation and induction of a specific 

adaptive immune response against pathogens (Henneke and Golenbock, 

2004).  

Specialized APCs, such as MΦs and DCs, are considered key 

components of innate immune system, developing the pathogens several 

strategies to combat these phagocytes (Coombes et al., 2004). Particularly, 

MΦs are of great importance in the defense of the body against viral 

infections, so that the valuation of their functions permits to determine the 

ability of the individual resistance or susceptibility to infection (Laskin et al., 

2001).  

Infection of MΦs with BVDV produces a decrease in chemotactic and 

phagocytic capacity by altering cellular metabolism (Ketelsen et al., 1979), an 

impaired microbicidal activity by decreasing superoxide anion (O2
-) 

production and increasing nitric oxide (NO) synthesis in response to 

lipopolysaccharide (LPS) (Adler et al., 1994, 1996; Potgieter, 1995), and a 

stimulation of prostaglandin E2 (PGE2) synthesis (Welsh and Adair, 1995; 

Van Reeth and Adair, 1997). Furthermore, various authors have demonstrated 

that BVDV also induces an impaired production of cytokines by MΦs both in 

vitro and in vivo, which could affect to the generation of a subsequent immune 

response (Adler et al., 1996; Yamane et al., 2005; Lee et al., 2008; Pedrera et 

al., 2009a; Raya et al., 2011).   

Proinflammatory cytokines as interleukin (IL)-1 and tumor necrosis 

factor-α (TNFα) are of great importance in the innate immune response, being 

secreted by MΦs in the inflammatory response or due to the existence of tissue 
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damage (Biron and Sen, 2001). These cytokines, together with type I IFN, 

mediate in the acute phase response (APR), an important defense mechanism 

that is activated before the specific immunity against disturbances in 

homeostasis by infections, tissue injury or immune disorders (Heinrich et al., 

1990; Dinarello, 2006). This nonspecific mechanism include, among others, 

changes in the synthesis of certain plasma proteins denominated acute phase 

proteins (APPs) that can be considered as “positive’’ or ‘‘negative’’, 

depending on the increase or decrease of their concentration in serum. 

Haptoglobin (Hp) and serum amyloid A (SAA), the main positive APPs in 

cattle, are used as indicators of disease severity (Eckersall, 2000; Petersen et 

al., 2004) (Figure 2).  

About proinflammatory cytokines, in vitro BVDV infection of bovine 

MΦs does not provide consistent results; whereas some authors demonstrate a 

decrease in the production of TNFα with both CP and NCP BVDV strains 

(Adler et al., 1996; Lee et al., 2008), others maintain that CP strains induce the 

production of TNFα, which contributes to apoptosis of infected cells (Yamane 

et al., 2005). In this regard, acute experimental infection with a NCP strain 

also provided variable results depending on viral target organs (Pedrera et al., 

2009b; Raya et al., 2011). The pro-inflammatory capacity of TNFα is limited 

by the lack of IL-1α, since these two cytokines act synergistically (Le and 

Vilcek, 1987; Van Reeth et al., 1999). Thus, BVDV-associated inhibition of 

IL-1 has been reported both in vitro and in vivo, regardless the biotype of the 

strain used (Jensen and Schultz, 1991; Adler et al., 1996; Yamane et al., 2005; 

Lee et al., 2008; Pedrera et al., 2009a; Raya et al., 2011).  

On the other hand, the secretion of these proinflammatory cytokines in 

acute BVDV processes with NCP strains induced a progressive and late 

increase of disease indicators as Hp, SAA and fibrinogen in serum (Gånheim 

et al., 2003; Müller-Doblies et al., 2004). 



Inflammatory response in the BVD and its alteration in secondary infections  

 

 
40 

 

 

Figure 2. Diagram of inflammatory response associated to proinflammatory cytokines action. 
 

 

Other cytokines as interferons (IFNs) were discovered due to their 

ability to protect cells from viral infection, reducing virus replication and 

dissemination. In acute processes, infection with CP BVDV strains produces a 

rapid and powerful local early response with the release of type I IFN (α/β) by 

m-MΦs or DCs, activating to the effector cells of innate immune response and 

limiting virus replication at mucosal level (Brackenbury et al., 2003). By 

contrast, NCP BVDV strains do not stimulate an early local cytokine response 

and the virus is conveyed to local lymph nodes where interacts with DCs that 

produce large amounts of IFNα, increasing their activation and limiting viral 

replication. This generates an effective primary immune response (Charleston 

et al., 2002; Glew et al., 2003) which, however, does not prevent the spread of 
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the virus (Palucka and Banchereau, 2002; Brackenbury et al., 2003), 

indicating the presence of other factors involved in the immunosuppression 

induced by BVDV (Charleston et al., 2002; Müller-Doblies et al., 2004).  

The infection with both NCP and CP BVDV early in gestation gives 

rise to an elevated type I IFN production only in fetuses infected with CP 

BVDV. Thus, the evasion of innate immunity by inhibition of type I IFN 

following NCP BVDV infection favors the establishment of an 

immunotolerance state that allows virus persistence in the fetus (Charleston et 

al., 2001a, 2002). Since a functional fetal adaptive immune response does not 

occur at this time, virus replication will not be limited and this will spread 

throughout the body, not developing in PI calves an acquired immune 

response to BVDV attributed to tolerance of CD4+ cells (Collen et al., 2000; 

Schweizer and Peterhans, 2001; Peterhans et al., 2003; Smirnova et al., 2008).  

 

4.2.2. Adaptive immune response  

Adaptive immunity is an antigen-specific response with immunologic 

memory regulated by T and B lymphocytes, and the soluble factors produced 

by them – cytokines and Abs, respectively –. The immune response, whether it 

is cell or humoral mediated, begins with antigen recognition, processing and 

presentation (Goldsby et al., 2003; Tizard, 2008).  

 

Cell-mediated immune response 

This type of adaptive immune response, represented by T cells, 

recognizes peptide epitopes presented by the major histocompatibility 

complex (MHC) molecules on self-cells such as virus-infected cells. T cells 

are functionally divided into T-helper (Th) cells that act as inducers of the 

immune response through the release of different cytokines and T-cytotoxic 



Inflammatory response in the BVD and its alteration in secondary infections  

 

 
42 

 

(Tc) cells for exerting a predominantly cytotoxic function, both generally 

expressing specific cell surface molecules CD4 and CD8, respectively.  

Antigen recognition and its presentation by MHC molecules class I to 

CD8+ lymphocytes and class II to CD4+ lymphocytes are crucial for their 

proliferation and the successful induction of an immune response to any 

pathogen (Yewdell and Hill, 2002; Hewitt, 2003; Janeway and Travers, 2005). 

Many viruses, as BVDV, have developed strategies for interfere in these 

processes, compromising the capacity of infected APCs and affecting the 

proliferative response of lymphocytes, as means of immunosuppression. 

DCs are more resistant than monocytes to in vitro infection with NCP 

strains; while DCs are not affected in their ability of viral antigen presentation 

to T cells, monocytes infected with NCP strains show an altered presentation 

function that reduce the proliferation of CD4+ T cells (Glew et al., 2003). 

Some authors report a decrease in the expression of MHC class II by 

monocytes infected with NCP (Archambault et al., 2000; Chase et al., 2004) 

and CP strains (Chase et al., 2004). In addition, it has been observed a 

decrease of MHC class I in monocytes infected by NCP and an increase in the 

case of CP (Archambault et al., 2000; Glew et al., 2003; Chase et al., 2004). 

Accordingly, T cell proliferative responses appear more lately in NCP BVDV 

infections than in CP (Collen and Morrison, 2000; Brackenbury et al., 2003). 

In PI animals, infected monocytes do not seem to have affected his 

ability to present antigens, being able to stimulate responses of CD4+ and 

CD8+ lymphocytes (Archambault et al., 2000; Glew and Howard, 2001).  

 

Th1/Th2 paradigm, postulated by Mosmann et al. (1986) from studies 

on cytokines produced by T lymphocytes in a murine model, is less well 

defined in ruminants (Estes and Brown, 2002). Th1 cytokines (IFNγ and IL-2) 

support MΦs activation, generation of cytotoxic T cells, induction of apoptosis 
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and production of opsonizing Abs, thereby enhancing resistance against viral 

infections (Biron and Sen, 2001; Samuel, 2001). These chemical mediators are 

produced by Natural killer (NK) cells, lymphocytes CD8+ and CD4+ Th1 in 

response to IL-12 (Hunter, 2005; Tizard, 2008). Th2 cytokines (IL-4, IL-5, IL-

10 and IL-13) stimulate the production of IgE by B cells that causes mast cell 

degranulation and activation of eosinophils, contributing to immune reactions 

in allergy and parasitic infections (Murphy and Reiner, 2002). IL-4 promotes 

the development of helper and cytotoxic T cells and the differentiation of 

immunoglobulins-producing plasma cells from B cells (Tizard, 2008). This 

cytokine is produced in response to antigen activation by CD4+ Th2 cells and 

some CD8+, NK1+ and γδT cells (Marcenaro et al., 2005). IL-10 is a 

regulatory cytokine with anti-inflammatory effects produced by Th cells in 

humans and cattle (Brown et al., 1994, 1998), inhibiting the activities initiated 

by proinflammatory cytokines (Biron and Sen, 2001; Pestka et al., 2004).  

Studies on the type of immune response induced by BVDV do not 

provide consistent results. While some authors have demonstrated the 

establishment of a Th1 response (Howard et al., 1992; Charleston et al., 2002), 

others maintain that occurs a Th2 type immune response associated with a 

state of immunosuppression which might interfere with protective Th1 

responses against other pathogens (Rhodes et al., 1999). Thus, experimental 

acute infections with NCP strains show an impaired IFNγ response against 

Mycobacterium bovis and bovine herpesvirus-1 (BHV-1) that would cause the 

inhibition of cellular immunity, diminishing host´s ability to contain these 

pathogens at the site of entry (Charleston et al., 2001b).  

 

Humoral immune response 

B lymphocytes are genetically programmed to recognize a particular 

antigen, multiply and differentiate giving rise to plasma cells that produce 
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large amounts of immunoglobulins. Humoral immunity may be caused by 

passive immunity for ingesting colostrum Abs or by an active immune 

response after exposure to antigen (Tizard, 2008).  

High levels of maternal Abs can block B cell-mediated response to 

vaccination with BVDV (Ellis et al., 2001). However, the vaccination appears 

to be effective, protecting the animal against acute infections through a T cell-

mediated and memory B cells response (Endsley et al., 2003; Ridpath et al., 

2003).  

Neutralizing Abs at the portal of entry are perhaps the most effective 

component of anti-viral immunity, since they can neutralize the virus and 

prevent their entry into the host. However, once the virus enters into the cell, 

cell-mediated immune response is critical for the defense against most viral 

infections. So, the disappearance of BVDV in acute infection cannot be 

attributed to the presence of specific Abs, which have a moderate and delayed 

response, not being detected until 2-4 weeks post-infection (Wilhelmsen et al., 

1990; Archambault et al., 2000; Müller-Doblies et al., 2004).  

 

4.2.3. Apoptosis 

Apoptosis, or programmed cell death, can prevent the replication and 

spread of the viral infection, so many viruses have developed strategies to 

prevent this phenomenon. However, apoptosis might also facilitate virus 

dissemination and several viruses have developed potential mechanisms to 

activate the apoptotic pathway (Schweizer and Peterhans, 1999; Everett and 

McFadden, 1999).  

During the BVD, there is a decrease in the number of lymphocytes of 

50% in infections with strains of low virulence and 90% with high virulence 

strains (Ellis et al., 1998; Archambault et al., 2000; Ridpath et al., 2000; 

Stoffregen et al., 2000; Liebler-Tenorio et al., 2003a,b, 2004). Among T 
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lymphocytes subpopulations, the number of CD8+ is more reduced than the 

CD4+, with little affectation of the Tγδ circulating cells (Ellis et al., 1998; 

Brodersen and Kelling, 1999; Archambault et al., 2000). This lymphopenia 

correlates with infection and lesions in lymphoid tissues, since severe 

lymphoid depletion due to apoptosis is prominent in lymphoid follicles of 

Peyer’s patches and, to a lesser extent, in thymic cortex (Marshall et al., 1996; 

Ellis et al., 1998; Stoffregen et al., 2000; Liebler-Tenorio et al., 2002, 2004; 

Pedrera et al., 2009a,b; Raya et al., 2011). It has not yet been clarified whether 

these lesions are induced directly by the virus or the immune response also 

contributes to their development. In this regard, different studies have 

attributed lymphoid depletion to the direct action of BVDV on lymphocytes 

(Wilhelmsen et al., 1990; Marshall et al., 1996; Stoffregen et al., 2000; 

Liebler-Tenorio et al., 2002, 2003a). However, other studies report that this 

apoptosis occurs subsequent to the elimination of viral antigen (Bolin and 

Ridpath, 1992; Marshall et al., 1996; Bruschke et al., 1998a; Liebler-Tenorio 

et al., 2003a, 2004), suggesting that cell death process would be mediated by 

CD4+ and CD8+ T lymphocytes (Hahn et al., 1995; Ellis and Yong, 1997; 

Liebler-Tenorio et al., 2003a).  

It has also been indicated the existence of an indirect mechanism by 

which infected m-MΦs could play an important role in apoptosis of T 

lymphocytes through the release of pro-apoptotic cytokines (Zheng et al., 

1995; Stennicke et al., 1998; Pedrera et al., 2009a), being the principal cause 

of lymphocyte apoptosis caused by other pestiviruses, such as CSFV (Gómez-

Villamandos et al., 2001; Sánchez-Cordón et al., 2002, 2003, 2005). Thus, 

apoptosis of MΦs and epithelial cells induced by the release of type I IFN 

from MΦs infected with CP BVDV strains would contribute to the severe 

lesions observed in MD (Adler et al., 1997; Lambot et al., 1998; Perler et al., 

2000). Other studies in vitro suggest the possibility that only the highly 
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virulent NCP strains could induce the production by MΦs of these pro-

apoptotic factors (Chase et al., 2004), a fact that rules out the direct 

implication of virus replication in the lesions affecting lymphoid tissues 

(Stoffregen et al., 2000; Liebler-Tenorio et al., 2002, 2003b). 

There are two major regulatory pathways of apoptosis: the extrinsic 

pathway, which can be induced by members of the TNF family of cytokine 

receptors, associated with the cleavage and activation of caspase-8 (Rasper et 

al., 1998; Stennicke et al., 1998); and the intrinsic or mitochondria-dependent 

pathway, governed by Bcl-2 family proteins (Cory et al., 2003; Miller and 

Fox, 2004), which promotes the cleavage and activation of the caspase-9 (Li et 

al., 1997; Slee et al., 1999). Both pathways induce apoptosis via activation of 

effector caspases such as caspase-3, which, once activated, leads to 

irreversible cell death (Huppertz et al., 1999; Pedrera et al., 2009a). 

The activation of initiator caspase-8 (extrinsic pathway) seems to play a 

major role in lymphocyte apoptosis within Peyer’s patches during infection 

with NCP BVDV strains (Zheng et al., 1995; Stennicke et al., 1998; Pedrera et 

al., 2011). It has also been reported that the inactivation of caspase-9 

accompanied by a moderate expression of the anti-apoptotic Bcl-2 protein 

dictates the resistance of MΦs to some apoptotic stimuli and favors the 

replication of BVDV within them (Levine et al., 1993; Reed, 2000; Pedrera et 

al., 2011). NCP BVDV replication undermines the biosynthetic functions of 

MΦs and impairs their immunological role as effector cells against virus 

infection (Pedrera et al., 2009a). Furthermore, other studies in vitro show that 

NCP strains are able to induce an apoptosis-inhibiting effect at the 

mitochondrial level in cell culture (Grummer et al., 2002b). This mechanism 

may be linked to the induction of bcl-2 over-expression and the lack of 

increase in effector caspase-3, which would presumably favor the 

establishment of persistent infections (Bendfeldt et al., 2003). 



Background 

 
47 

 

CP strains of BVDV induce apoptosis in cell cultures (Lambot et al., 

1998; Ridpath et al., 2006), although this phenomenon is not necessary for 

their replication (Schweizer and Peterhans, 1999). Studies realized on the 

mechanisms involved in the phenomenon of apoptosis indicate the activation 

of the intrinsic pathway (Grummer et al., 1998, 2002b), not ruling out the 

extrinsic (St-Louis et al., 2005), and pointing to the great presence of virus in 

cells infected with CP strains as the key factor for the induction of the intrinsic 

pathway (Vassilev and Donis, 2000). 

Different mechanisms utilized by BVDV to induce a state of immunosuppression 

Decreased phagocytic activity
Decreased chemotactic activity

Decreased O2
- synthesis 

Increased NO synthesis 
Stimulation of PGE2 synthesis 

Impaired TNFα response
Inhibition of IL-1 synthesis 

Low type I IFN response to NCP strains 
Delayed increase of positive APPs

Decreased expression of MHC I in m-MΦs by NCP strains 
Decreased expression of MHC II in m-MΦs

Reduced proliferation of CD4+ T cells
Impaired IFNγ response

Delayed neutralizing antibodies response

Lymphopenia
Severe lymphoid depletion in lymphoid tissues 

 Direct infection of lymphocytes
Release of pro-apoptotic factors by infected MΦs

Activation of extrinsic pathway by NCP strains
Activation of intrinsic pathway by CP strains

Table 2. 

BVDV immune evasion strategies 

Innate immunity

Adaptive immunity

Apoptosis 
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4.3. Role of BVDV in the Bovine Respiratory Disease Complex (BRDC)  

BRDC is characterized by a primary active viral infection with bovine 

respiratory viruses as BVDV, BHV-1, bovine respiratory syncytial virus 

(BRSV) and parainfluenza-3 (PI-3) that favors secondary bacterial infections. 

Bacterial pathogens implicated in this cattle pneumonia include Mannheimia 

haemolytica, Pasteurella multocida, Histophilus somni, Arcanobacterium 

pyogenes and Mycoplasma bovis (Shahriar et al., 2002; Hodgson et al., 2005; 

Srikumaran et al., 2008; Fulton et al., 2009) (Figure 3). Several immune 

evasion strategies have been developed by these respiratory pathogens that 

help themselves and also the other agents to establish the infection, resulting 

in an exacerbation of the disease.  

BVDV is considered as the main predisposing factor for the occurrence 

of this process through an alteration of the immune response, thus favoring the 

colonization by other pathogens (Potgieter, 1997; Srikumaran et al., 2008). In 

this regard, there is evidence that combined infections with BVDV have a 

potentiating effect on several pathogens, increasing in a more severe form the 

respiratory disease compared to calves infected only with rota- and 

coronavirus (Kelling et al., 2002; Niskanen et al., 2002), BHV-1 (Potgieter et 

al., 1984a; Castrucci et al., 1992), BRSV (Brodersen and Kelling, 1998) and 

Mannheimia haemolytica (Potgieter et al., 1984b, 1985; Gånheim et al., 2003).  
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Figure 3. Scheme depicting the outcome of acute BVDV infection, where the animal is 
predisposed to suffer from BRDC upon infection with secondary viral and bacterial pathogens. 

 

 
In these processes, the alteration of pulmonary MΦs activity by 

respiratory viruses enhances calves susceptibility against secondary infections, 

since these cells play an important role in nonspecific primary defense of the 

lung (Crystal, 1999; Zhang et al., 2000; Laskin et al., 2001), through their 

phagocytic, microbicidal and secretory functions (Nicod, 1999). Thus, it has 

been reported that BVDV infection of pulmonary alveolar MΦs can lead to a 

decrease in the expression of Fc receptor and complement C3 required for 

their phagocytic activity, reducing its antimicrobial activity and releasing 

chemotactic factors (Welsh et al., 1995; Adler et al., 1996; Liu et al., 1999; 

Glew et al., 2003; Peterhans et al., 2003).  

The challenge for the animal in the BRDC is to initiate an innate 

immune response in order to defeat the virulence mechanisms utilized by the 

pathogens without eliciting extensive inflammation that can compromise lung 

function (Hodgson et al., 2005; Czuprynski, 2009). Indeed, inflammatory 

cytokines seem to play a central role in the lung injury produced during BRDC 
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since high levels of these mediators have been found in the airways of cattle 

infected with viruses or other respiratory pathogens (Rontved et al., 2000; 

Malazdrewich et al., 2001; Avraamides et al., 2007; Rivera-Rivas, 2009).  

 

5. BHV-1 pathogenesis 
BHV-1 is a member of the α-herpesvirinae subfamily classified in three 

subtypes, BHV-1.1, BHV-1.2a and BHV-1.2b, based on their antigenic and 

genomic differences (Fauquet et al., 2005; Muylkens et al., 2007). Subtype 1 

is the causative agent of infectious bovine rhinotracheitis and the most 

frequently isolated in respiratory tract diseases or abortion cases (Oirschot, 

1995; D’Arce et al., 2002). 

The incubation period of BHV-1 is 2-6 days, appearing after the clinical 

symptoms. These signs include high fever, anorexia, coughing, excessive 

salivation, nasal discharge, conjunctivitis with lacrimal discharge, inflamed 

nares and sometimes dyspnoea. In the absence of bacterial pneumonia, 

recovery typically occurs 4-5 days after the onset of clinical symptoms. 

Acute BHV-1 infection is initiated on mucosal surfaces and leads to 

high levels of virus in ocular, oral and nasal secretions, shedding virus until 7-

10 days post-infection (Jones, 1998, 2003). BHV-1 has a special tropism for 

respiratory epithelial cells developing necrotic lesions in the nasal cavity, 

trachea, tonsils and bronchi that reduce the mucosal clearance due to mucous 

secretion and ciliary activities (Ohmann et al., 1991; Tikoo et al., 1995; Jubb 

and Kennedy, 2007). BHV-1 spreads into the infected animal using the local 

and systemic dissemination by viraemia and eventually neuroinvasion through 

the free enveloped particles or directly from cell-to-cell. BHV-1 neuroinvasion 

usually establishes a latent infection in ganglionic neurons (Schang and Jones, 

1997; Inman et al., 2002; Muylkens et al., 2007), as well as in non-neural sites 
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as tonsils and lymph nodes (Mweene et al., 1996; Winkler et al., 2000; Perez 

et al., 2005).  

During early stages after BHV-1 infection, IFN type I promotes 

leukocyte migration and increases NK cell activity stimulating cytolytic 

activities against virus-infected cells (Jensen and Schultz, 1990; Srikumaran et 

al., 2008). 

BHV-1 can infect many different cell types in cattle, but the number of 

cells infected is small, and productive infection does not occur in most cells. 

Although the infected cells survive, their activity is affected (Jones and 

Chowdhruty, 2008). Thus, BHV-1 has evolved strategies to down-regulate 

expression of MHC class I molecules as a means to escape CD8+ lymphocytes 

recognition, key cells in the defense against cell-to-cell spread (Yewdell and 

Hill, 2002; Hewitt, 2003; Van Drunen Littel-van den Hurk, 2007). CD4+ T-

cell function is also impaired during acute disease because BHV-1 infection of 

these cells carries out their apoptosis in peripheral blood and lymph nodes 

(Winkler et al., 1999). In addition to the destruction of infected cells, T-

lymphocytes release a number of lymphokines such as IFNγ that modulate 

specific and non-specific immune response against BHV-1 (Jones and 

Chowdhruty, 2008). 

Cattle infected with BHV-1 present a transitory immunosuppression 

that gives rise to secondary infections involved in the BRDC (Muylkens et al., 

2007). In this regard, BHV-1 infections can diminish the activities of alveolar 

MΦs and polymorphonuclear neutrophils (Warren et al., 1996; Leite et al., 

2004), as well as alter the profile of cytokines leading to inflammation and 

pneumonia (Ohmann et al., 1991; Muylkens et al., 2007).  
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The main objective of this work was to contribute to the study of the 

immune-evasion strategies of BVDV and the different mechanisms by which 

primary BVDV infections enhance the susceptibility to secondary infections 

of the respiratory tract. For that, we have proposed the following partial aims: 
 

1. To examine the response of cytokines in hepatic MΦs and their 

relationship with the APR during subclinical BVD: Chapter 1.  
 

2. To evaluate and compare the clinical symptoms, severity of the 

pathological changes and antigen distribution between calves pre-

infected with BVDV and challenged with other respiratory pathogen, 

such as BHV-1, versus others infected only with BHV-1: Chapter 2.  
 

3. To estimate the effects of the pre-infection with BVDV in the pattern 

of cytokines and APPs implicated in the immune response against a 

secondary agent: Chapter 3. 
 

4. To study the histopathological and ultrastructural changes in the lung 

of calves pre-infected with BVDV and challenged later with BHV-1, 

evaluating the role of MΦs and other immunocompetent cells in the 

development of pathological lesions in this organ: Chapter 4. 
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1. Experimental designs 
  

Based on the proposed objectives, we designed two experimental 

models: the first consisted of a single BVDV infection of colostrum-deprived 

calves with the aim of examine the immune response of hepatic MΦs and their 

relationship with the APR during subclinical BVD (Experimental model 1). 

Once valued the alterations in these cell populations and their influence on 

systemic response, our objective was to study the susceptibility of BVDV-

infected calves against secondary infections. For that, it has been proposed a 

second experimental model that included a primary BVDV infection followed 

by a challenge with BHV-1.1 in order to reproduce the clinical and 

pathological symptoms associated with BRDC (Experimental model 2).  
 

1.1. Experimental model 1  

Ten colostrum-deprived male Friesian calves, aged 8-12 weeks, were 

used in this study. All calves were free of BVDV antigen and Abs by enzyme-

linked immunosorbent assay (ELISA). Eight calves were each inoculated 

intranasally with 10 ml of NCP BVDV-1 strain 7443 (courtesy of the Institute 

für Virologie, TIHO, Hannover, Germany) containing 105 tissue culture 

infective dose 50% (TCID50)/ml (Dean et al., 2003). This time point was 
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defined as day 0. Two animals used as uninfected (UI) controls received 10 ml 

of tissue culture fluid free of virus. 

Animals were sedated with xylazine (Rompun® 2% solution; Bayer 

Healthcare, Kiel, Germany) and euthanased by overdosing with thiopental-

sodium (Thiovet®; Vet Limited, Leyland, Lancashire, UK) in batches of two 

at 3, 6, 9 and 14 days post-inoculation (dpi). The two control animals were 

euthanased at the end of the experiment (Figure 1), which was approved by 

the University of Cordoba Ethics Committee (approval number 74/2006). 

 

 

Figure 1. Schematic summary of experimental model 1. 
 

 

 

Inoculated animals: 8 colostrum deprived calves 

Uninoculated animals : 2 colostrum deprived calves

Euthanased at the end of the 
study

NCP BVDV-1 
strain 7443

Euthanased in batches of two at 
3, 6, 9 and 14 dpi BHV-1.1

Tissue culture fluid 
free of virus 
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EDTA blood and serum samples were collected from all calves before 

inoculation (day 0) to obtain baseline values. Samples from calves inoculated 

with BVDV were collected at 1, 2, 3, 5, 6, 8, 12, 13 and 14 dpi, and stored at   

-80ºC. At postmortem examination, samples of liver were fixed in 10% 

buffered formalin (pH 7.2), routinely processed and embedded in paraffin wax 

for histopathological and immunohistochemical studies. 
 

 

1.2. Experimental model 2 

Thirty male Friesian calves (8-9 months old) were obtained from a herd 

free of tuberculosis, brucellosis and bovine leucosis virus. The animals were 

tested to confirm their BVDV and BHV-1 antigen and antibody free status by 

ELISA. The calves were housed in the Animal Experimental Centre of 

Cordoba University (Spain), separated in three groups and inoculated as 

follows (Figure 2): 

- BVDV/BHV1 group: 14 calves were inoculated in each nostril with 5 

ml of a suspension of NCP BVDV-1 strain 7443 with a titration of 105 

TCID50/ml. Twelve days later, when the calves did not show clinical 

signs and viraemia against BVDV, 12 of them were challenged with 1 

ml per nostril of BHV-1 subtype 1 (BHV-1.1) strain Iowa containing 

107 TCID50/ml (courtesy of Laboratorios Hipra). Animals were sedated 

with xylazine (Rompun 2% solution; Bayer Healthcare, Kiel, 

Germany) and euthanased by overdosing with thiopental-sodium 

(Thiovet; Vet Limited, Leyland, Lancashire, UK) in batches of two at 

1, 2, 4, 7 and 14 dpi with BHV-1.1. The other 2 animals inoculated 

with BVDV-1 and BHV-1.1-free, were killed before BHV-1.1 

inoculation (0 dpi) and used as BVDV infection controls. 
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- BHV1 group: 12 calves were only infected intranasally with 2 ml of 

BHV-1.1 and euthanased in batches of two at 1, 2, 4, 7 and 14 dpi. 

- Negative control group: 4 calves received 2 ml of tissue culture fluid 

viruses-free and were killed at the end of the study (14 dpi BHV-1.1). 

The entire experimental procedure was carried out in accordance with 

the Code of Practice for Housing and Care of Animals used in Scientific 

Procedures, approved by the European Economic Community in 1986 

(86/609/EEC amended by the directive 2003/65/EC). 
 

 
Figure 2. Schematic summary of experimental model 2. 

BVDV/BHV1 group: 14 calves

BHV1 group: 12 calves

(12 days)

Negative control group: 4 calves

Euthanased in batches of two at 
1, 2, 4, 7 and 14 dpi BHV-1.1

Euthanased at the end of the 
study

2 calves BHV-1.1-free
euthanased at 0 dpi BHV-1.1
(BVDV infection controls) 

NCP BVDV-1 
strain 7443

BHV-1.1 
Iowa strain 

Euthanased in batches of two at 
1, 2, 4, 7 and 14 dpi BHV-1.1

BHV-1.1 
Iowa strain 

Tissue culture fluid 
free of virus 
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Body temperature was recorded and clinical signs were assessed daily 

during the adjustment period and throughout the study. The clinical evaluation 

was carried out by a numerical score based on the sum of symptoms like 

depression, lacrimation, nasal discharge, cough, dyspnoea, nasal lesions and 

diarrhea valuated individually from 0 to 3, depending on the severity and 

specificity of the clinical sign. 

EDTA blood obtained from coccygeal vein and nasal swabs samples 

were collected at 0, 1, 2, 4, 5, 7, 9 and 14 dpi and frozen at -80ºC until 

assayed. Blood samples without additive were taken at 0, 3, 6, 9, 12, 15, 18 

and 21 hours post-inoculation (hpi), 1, 2, 4, 5, 7, 9 and 14 dpi. Blood was 

centrifuged at 4000 rpm for 10 min and the serum was separated and frozen in 

aliquots at -80ºC until assayed. 

All euthanased calves were subjected to necropsy examination. Samples 

were collected from lymphoid tissues (retropharyngeal, tracheobronchial, 

mesenteric and ileocecal lymph nodes, pharingeal and lingual tonsils, thymus, 

spleen and bone marrow), respiratory tract (nasal mucosa, trachea, cranial and 

caudal lobes of the lung), digestive tract (liver, esophagus, duodenum, 

jejunum, distal ileum and ileocecal valve) and nervous system (anterior and 

posterior cerebrum, cerebellum, trigeminal ganglia, medulla oblongata and 

spinal cord). The collected tissue samples were immediately frozen at -80ºC 

for virological study; likewise, they were fixed in 10% buffered formalin 

solution for histopathological and immunohistochemical studies as well as in 

2.5% glutaraldehyde in 0.1 M PBS for ultrastructural analysis. 
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2. Methods and techniques 
 

2.1. Virological examination by Polymerase Chain Reaction (PCR) 

BVDV RNA was extracted from EDTA blood and tissue samples using 

the High Pure Viral Nucleic Acid Kit (Roche, Mannheim, Germany) and the 

RNeasy Lipid tissue kit (Qiagen), respectively, according to the 

manufacturer’s instructions. A one step Real-Time Reverse Transcription plus 

Polymerase Chain Reaction (RT-PCR) of the RNA was performed using the 

primers and Taqman probes (at the same concentration) based on conserved 

regions of the 5´-UTR of BVDV-1 described by Letellier and Kerkhofs (2003) 

and the Real Time Ready RNA Virus Master (Roche, Mannheim, Germany) 

following the manufacturer’s instructions. The reactions were carried out in a 

LightCycler 1.5. Any sample that had a cycle threshold value less than or 

equal to 45 was considered as positive. The positive control was the NCP 

BVDV-1 strain 7443 at 105 TCID50/ml.  

BHV-1 deoxyribonucleic acid (DNA) was extracted from EDTA blood 

and nasal swabs samples using Genomic DNA Purification kit (Macherey-

Nagel, Germany), and from tissue samples using Genomic DNA from tissue 

kit (Macherey-Nagel, Germany), according to the manufacturer’s protocol. 

The real-time PCR analysis of the extracted DNA template was performed as 

describes the OIE Terrestrial Manual (OIE, 2010). Data were analyzed on an 

Applied 7300 detector (Applied Biosystems, USA). Any sample that had a 

cycle threshold value less than or equal to 45 was considered as positive. The 

positive control was the BHV-1.1 strain Iowa at 108.3 TCID50/ml. 

 

 

 

 



Materials and methods 

 

 
65 

 

2.2. Cytokines study 

Serum cytokine levels were measured in duplicate by a sandwich 

ELISA that specifically detects soluble cytokine proteins. IL-1β, TNFα, IFNγ, 

IL-12, IL-4 and IL-10 protocols make use of commercially available 

monoclonal antibodies (mAbs) pairs (Serotec). Briefly, microplates (Nunc 

Maxisorb, Roskilde, Denmark) were coated with highly purified anti-cytokine 

Abs at 1 µg/ml in PBS (pH 7.5), except for the bovine IL-1β (2 µg/ml), and 

incubated at 4ºC overnight. After a blocking step with PBS, 2% Tween-20 and 

3% BSA for 1 h at room temperature in agitation, the plates were washed 3 

times with PBS/Tween-20 and incubated with the serum diluted 1:50 for 1 h at 

room temperature. Then, the plates were washed 3 times and incubated with 

secondary biotinylated Abs at 1 µg/ml, except IL-1β (2 µg/ml). This was 

followed by another washing step and addition of streptavidin–peroxidase 

(Sigma-Aldrich Química, Spain, 1:1000) for 45 min at room temperature. 

After a final wash, the chromogenic substrate (OPD) was added and 

absorbance values were measured spectrophotometrically using an ELISA-

plate reader (Bio-Rad Laboratories, Spain) at 450 nm. Standard curves to 

calculate cytokine concentrations (ng/ml or pg/ml) were generated using 

recombinant bovine IL-1β, TNFα, IFNγ and IL-4 (Serotec). Because of the 

lack of commercial recombinant bovine IL-10 and IL-12, the results of these 

cytokines were presented as OD values. 

 

2.3. APPs analysis 

APPs were analyzed in duplicate in serum samples. Hp concentration 

was measured with a commercial spectrophotometrical assay based on the 

peroxidase activity of Hp-haemoglobin complex (Phase Haptoglobin assay, 

Tridelta). A commercial solid-phase sandwich ELISA was used to determine 

SAA concentrations (Phase Serum Amyloid A assay, Tridelta). Fibrinogen 
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serum concentration was measured with Biuret method (Total protein Kit, 

Spinreact SA), calculating the difference between total plasma protein and 

serum protein. Serum albumin was determined by the bromocresol green 

method (Albumin Kit, Spinreact SA). All these analysis were performed 

following the manufacturer’s instructions. 

 

2.4. Serum antibodies detection  

The specific detection of BVDV Abs was tested in commercially 

available competitive ELISA, Ingezim BVD Compac (Ingenasa, Madrid, 

Spain), following the manufacturer’s protocol.  

Virus neutralization was applied for the evaluation of Ab response 

against BHV-1.1 Iowa strain, previously used for secondary infection. Briefly, 

the test protocol (OIE, 2010) was performed in 96-well microtitre plates with a 

24 h virus/serum incubation period and Madin Darby Bovine Kidney cells 

(MDBK ATCC CCL-22). The plates were incubated for 4 days and the Ab 

titres were expressed as the reciprocal of the highest dilution that completely 

neutralized the virus effects in 50% of the wells. Any neutralization at an 

initial dilution titre of 1 or above was considered as positive. 

 

2.5. Pathological and immunohistochemical studies 

Formalin-fixed samples were dehydrated through a graded series of 

alcohol to xylol and embedded in paraffin wax by routine techniques for light 

microscopy. Samples were sectioned (3 µm) and stained by different methods 

as haematoxylin-eosin (HE) and the Fraser Lendrum technique, or processed 

for their immunohistochemical study using the avidin-biotin-peroxidase 

complex (ABC) method.  

The type and location of histopathological lesions were graded as absent 

(-), mild (+), moderate (++) and severe (+++). For graphical representation and 
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statistical analysis of these findings, they were graded by a numerical score 

based on the sum of lesions valuated from 0 to 3, depending on their severity 

and specificity.  
 

The ABC method for immunohistochemistry (IHC) was performed on 

serial sections of formalin-fixed samples, which were dewaxed and rehydrated 

as described previously Pedrera et al. (2009a,b). Briefly, endogenous 

peroxidase activity was exhausted by incubation with 0.3% hydrogen peroxide 

in methanol for 30 min at room temperature. The samples were subjected to 

different methods for antigen retrieval (Table 1). After pre-treatment, sections 

were rinsed three times in PBS pH 7.2 for 10 min and then covered with 1% 

normal horse serum (Pierce-Endogen, Woburn, USA) in 0.05M Tris buffer 

(pH 7.6) for 30 min at room temperature. After this blocking stage, sections 

were incubated with primary mAbs at 4ºC overnight. After primary incubation, 

the slides were washed in PBS (three times for 5 min each) and then incubated 

with biotinylated horse anti-mouse IgG secondary Ab (Pierce-Endogen), 

diluted in 0.05M Tris buffer containing 1% normal horse serum, for 30 min at 

room temperature. After three further 5 min washes in PBS, samples were 

incubated with the ABC complex (Vectastain® ABC Elite Kit, Vector 

Laboratories, CA, USA) for 1 h at room temperature. All tissue sections were 

finally rinsed in PBS and incubated with chromogen solution (NovaRED® 

Substrate Kit, Vector Laboratories). Slides were counterstained with Mayer’s 

haematoxylin. 

Details of the primary mAbs and polyclonal antibodies (pAbs) are 

summarized in Table 1.  
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For gp48 detection by IHC, positive control tissues were from calves 

persistently infected with BVDV (kindly provided by Dr Dubovi, Cornell 

University, NY, USA) and for gC detection, positive controls were from 

abortion foetus samples positive to BHV-1.1 (courtesy of Moredum Research 

Institute, Scotland, UK), whilst negative control tissues were from specific 

pathogen-free calves not exposed to these viruses.  

Tissues samples from cattle, in which reactivity for primary Abs against 

cytokines and cellular markers used in this study had been demonstrated, were 

used as positive controls in IHC (Pedrera et al., 2009a,b). Tissue sections for 

which the specific primary Abs were replaced by rabbit or mouse non-immune 

sera (DakoCytomation, Glostrup, Denmark) were used as negative controls. 

 

Cell counting 
To evaluate the number of immunolabelled cells and to correlate the 

results obtained using different Abs, two paraffin-wax blocks from liver and 

lung of each animal were selected. On tissue sections from these blocks, cell 

counts were carried out in 25-50 fields of 0.2 mm2 chosen randomly. The 

results were given as the number of positive cells per 0.2 mm2. Identification 

of different kind of immunolabelled cells was based on morphological 

features, location and size of the cells.  

In the liver, circulating monocytes were located inside blood vessels and 

hepatic sinusoids and were round with a lobed nucleus and moderate amounts 

of cytoplasm. Küpffer cells (KCs) adherent to endothelial cells of sinusoids 

exhibited stellate morphology and had an indented nucleus with abundant 

cytoplasm. Interstitial MΦs (IMΦs) located among hepatocyte laminae, as well 

as in the interlobular connective tissue and in portal areas, exhibited rounded 

or elongated morphology, an indented nucleus and abundant cytoplasm. 
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In the lung, the different pulmonary MΦs exhibited rounded or 

elongated morphology, an indented nucleus and abundant cytoplasm. IMΦs, 

pulmonary intravascular MΦs (PIMs) and pulmonary alveolar MΦs (PAMs) 

are localized in distinct anatomical compartments of the lung, including 

connective tissue, adhered to endothelium in the pulmonary capillaries and air 

spaces, respectively. PIMs and IMΦs were grouped together and described as 

‘septal MΦs’. 
 

A semiquantitative estimation of platelet aggregations Factor-VIII-

positive were performed in 50 areas of 0.2 mm2 chosen randomly. Results 

were given as presence of positive clusters of platelets per area as follows: 

absent (-), mild (+), moderate (++) and abundant (+++). For graphical 

representation and statistical analysis, they were scored from absent to severe 

(0 to 3).  

Antigens distribution was valuated as absent (-), scarce (+), moderate 

(++), and intense (+++). The identification of target cells for both viruses was 

based on morphologic features, location and size of the cells. 

 

2.6. Detection of apoptosis 

Presence of apoptosis in formalin fixed samples was studied through the 

DNA fragmentation by a TUNEL (terminal deoxynucleotidyl transferase-

mediated dUTP nick end labelling staining) detection method (In situ Cell 

Death Detection kit, POD; Roche Diagnostics), according to the 

manufacturer’s instructions. Internal positive control consisted on distal ileum 

sections with apoptotic lymphocytes from calves experimentally inoculated 

with BVDV-1 (Pedrera et al., 2009a). Negative controls were also included in 

each series of sections assayed. 

 

 



Materials and methods 

 

 
71 

 

2.7. Ultrastructural study  

For transmission electron microscopy (TEM), glutaraldehyde-fixed 

samples were post-fixed in 2% osmium tetroxide, dehydrated in acetone and 

embedded in Epon 812® (Fluka Chemie AG, Buchs, Switzerland). Sections 

(50 nm) were counterstained with uranyl acetate and lead citrate, and 

examined with a Philips CM-10 transmission electron microscope. 

 

2.8. Statistical analysis 

Data were assessed to calculate mean ± standard error values and were 

analyzed with the SAS System for Windows, version 9.1 (SAS Institute, Cary, 

North Carolina, USA). Duncan’s Multiple Range Test (p<0.05) was used to 

analyze significant differences of the values in the same group at various time 

points (*) and non-paired Student’s t-test (p<0.05) was used between both 

inoculated groups at the same time point (**).  
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HHeeppaattiicc  iimmmmuunnee  rreessppoonnssee  iinn  ccaallvveess  dduurriinngg  aaccuuttee  

ssuubbcclliinniiccaall  iinnffeeccttiioonn  wwiitthh  bboovviinnee  vviirraall  ddiiaarrrrhheeaa  vviirruuss  

ttyyppee  11  
  

Veterinary Journal 2011, 190: e110-e116.  
  

  

  

AAbbssttrraacctt  
  

Eight colostrum-deprived calves aged 8-12 weeks were inoculated 

intranasally with a NCP strain of BVDV-1 and the effects on the hepatic 

immune response were studied. Two calves were sacrificed at each of 3, 6, 9 

and 14 dpi and two UI animals were used as negative controls. BVDV was 

detected in hepatic MΦs and monocytes from 3 to 14 dpi and in KCs from 6 to 

14 dpi. Increases in the numbers of MAC387+ KCs and monocytes, but not 

IMΦs, differentiated by morphological features, were evident in the liver 

following inoculation with BVDV. There was a substantial increase in the 

number of monocytes positive for TNFα, but only small increases in the 

numbers of TNF-α+ KCs and IMΦs and IL-6+ monocytes, KCs and IMΦs. 

There was an increase in the number of interstitial CD3+ T lymphocytes in the 

liver, but no substantial changes in the numbers of circulating CD3+ T 

lymphocytes, interstitial or circulating CD4+ or CD8+ T lymphocytes, or 

CD79αcy+ B lymphocytes. Serum Hp and SAA increased transiently at 12 

dpi. Upregulation of some pro-inflammatory cytokines by hepatic MΦs is 

evident in subclinical acute BVDV-1 infection in calves. 
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IInnttrroodduuccttiioonn  
  

BVDV has been classified into two genotypes (genotypes 1 and 2) and 

NCP and CP biotypes (Ridpath et al., 1994; Fulton et al., 2003a). NCP strains, 

including NCP genotype 1 strains, produce mild disease in seronegative and 

immunocompetent infected cattle, characterized by a short febrile period, 

transient leucopenia and lymphoid depletion (Wilhelmsen et al., 1990; Hamers 

et al., 2000; Walz et al., 2001). BVDV exhibits tropism for lymphoid tissues, 

with m-MΦs, DCs and lymphocyte populations being the main target cells 

(Bruschke et al., 1998b; Liebler-Tenorio et al., 2003b). 

To date, the liver has not been considered to be an important organ in 

the pathogenesis of BVDV. However, this organ plays a crucial role in the 

inflammatory response to infectious and toxic agents, as well as in the 

synthesis of APPs. Hepatic MΦs are important in the pathogenesis of liver 

disease, especially in viral hepatitis (Sánchez-Cordón et al., 2008). KCs, a 

resident population of hepatic phagocytes derived from circulating monocytes 

and located within the sinusoidal vascular space, represent the first line of 

defense against viruses entering the liver through the portal circulation 

(Gómez-Villamandos et al., 1995; Cabillic et al., 2006). 

During viral infection, KCs exhibit phagocytic and biosynthetic changes 

characterized by the release of pro-inflammatory cytokines, such as TNFα, IL-

1 and IL-6 (Bilzer et al., 2006). These cytokines play an important role in the 

regulation of the immune response and stimulate the synthesis of APPs by 

hepatocytes (Heinrich et al., 1990; Gabay and Kushner, 1999). These proteins 

can be classified as ‘positive’ or ‘negative’ according to the magnitude of their 

increase or decrease in serum concentrations during the APR. The APR is an 

early non-specific mechanism against local or general disturbances in 

homeostasis attributable to several stimuli, such as infection, inflammation, 
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stress or tissue injury (Figure 1). Hp and SAA are considered to be the main 

positive APPs in cattle, while albumin is considered to be a negative APP 

(Eckersall, 2000; Petersen et al., 2004). 

APPs can be used as non-specific markers of clinical and subclinical 

disease in cattle. The expression of APPs during BVDV infections in cattle 

has been described by Gånheim et al. (2003) and Müller-Doblies et al. (2004). 

However, production of cytokines by the hepatic MΦs population and their 

relationship with serum APPs during BVDV infection has not been 

investigated yet. 

 

  

  

  

  

  

  

  

  

  

  

  

  
Figure 1. Stimulation and synthesis of positive acute-phase reactants during inflammation. 
Inflammation caused by infection or tissue damage stimulates the circulating inflammation-
associated cytokines, including IL-1, IL-6, and TNFα. These cytokines stimulate hepatocytes to 
increase the synthesis and release of positive APPs. 
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With this objective, eight colostrum-deprived calves aged 8-12 weeks 

were inoculated intranasally with the NCP strain 7443 of bovine BVDV-1 and 

the effects on the hepatic immune response were studied. Two calves were 

sacrificed at each of 3, 6, 9 and 14 dpi and two UI animals were used as 

negative controls. The presence of BVDV was detected in liver by RT-PCR 

and IHC. The hepatic immune response was analyzed through 

immunohistochemical study (MAC387, TNFα, IL-1α, IL-6, CD3, CD4, CD8, 

CD79αcy and IFNγ). Serum APP concentrations (Hp, SAA and albumin) were 

determined by ELISA and colorimetric methods (See Materials and methods 

section, page 57. Experimental model 1). 

 

 

RReessuullttss  
  

Clinical signs, haematological and serological findings, virus detection 

in blood by antigen ELISA and conventional RT-PCR after experimental 

infection with BVDV have been described by Pedrera et al. (2009b). No 

macroscopic lesions were found in the livers of inoculated calves. 

 

Detection of bovine viral diarrhea virus 

BVDV was detected in the livers of inoculated calves by RT-PCR from 

3 dpi onwards. Small numbers of monocytes and some IMΦs were positive for 

BVDV antigen (gp48) by IHC from 3 to 14 dpi, whereas small numbers of 

gp48-positive KCs were observed from 6 to 14 dpi (Figures 2 and 3). 
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Figure 2. Numbers of hepatic MΦs (mean ± standard error) positive for BVDV antigen (gp48) 
in the livers of UI animals and animals inoculated with BVDV. 

 
 
 

 

 
Figure 3. IHC for BVDV antigen in calves inoculated with BVDV. (A) IMΦ positive for 
BVDV gp48 at 3 dpi. Bar = 30 µm. (B) KC positive for BVDV gp48 at 6 dpi. Bar = 30 µm.  
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Histopathology and immunohistochemistry 

On histopathological examination, moderate oedema, with dilatation of 

lymphatic vessels, was evident in portal areas at 3 dpi (Figure 4A). There were 

increased numbers of mononuclear cells (Figure 4B) composed mainly of 

MAC387+ MΦs (Figure 4C), CD3+ T lymphocytes (Figure 4D) and a few 

interspersed CD79αcy+ B lymphocytes. From 9 dpi onwards, oedema was 

observed in fewer portal areas, while cellular infiltrates were reduced in size. 

 

 
Figure 4. Histopathology (HE) and IHC at 3 dpi in the livers of calves infected with BVDV. 
(A) Periportal oedema and dilatation of lymphatic vessels. HE. Bar = 130 µm. (B) Mononuclear 
cells in the periportal area. HE. Bar = 65 µm. (C) Mononuclear cells, mainly MΦs, 
immunolabelled against MAC387 in the periportal area. IHC. Bar = 40 µm. (D) CD3+ T 
lymphocytes in the cluster of mononuclear cells in the periportal area. IHC. Bar = 30 µm. 
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Monocytes, KCs and IMΦs were MAC387+ and were differentiated on 

the basis of location and histomorphology, whereas lymphocytes were 

negative for MAC387. Numbers of monocytes increased from 3 to 14 dpi in 

calves inoculated with BVDV compared to UI calves, while numbers of KCs 

increased from 3 to 6 dpi and there were few changes in the numbers of IMΦs 

(Figure 6). 

Following inoculation with BVDV, there was a substantial increase in 

the numbers of monocytes positive for TNFα, but only small increases in the 

numbers of TNFα+ KCs and IMΦs (Figures 5 and 6). Monocytes exhibited 

positive staining for IL-1α following inoculation with BVDV, but KCs and 

IMΦs were negative. There were mild increases in numbers of IL-6+ 

monocytes, KCs and IMΦs at 9 dpi (Figure 6). 
 
 

 
Figure 5. (A) Monocyte (arrow) and KC (arrowhead) positive for TNFα at 9 dpi. Bar = 30 µm. 
(B) IMΦs positive for TNFα at 9 dpi. Bar = 40 µm. 
 
 
 
 
 

DA B
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Figure 6. Numbers of monocytes, KCs and IMΦs (mean ± standard error) positive for 
MAC387, TNFα, IL-1α and IL-6 by IHC in the liver of UI animals and animals inoculated with 
BVDV. 

 

There was an increase in the numbers of interstitial CD3+ T 

lymphocytes from 3 to 9 dpi, mainly in periportal areas, but little change in the 

numbers of circulating CD3+ T lymphocytes in the liver. Numbers of 

circulating γδ+ T lymphocytes increased from 6 to 9 dpi, but no changes were 

observed in the numbers of interstitial or circulating CD4+ or CD8+ T 

lymphocytes, interstitial γδ+ T lymphocytes or interstitial or circulating 

CD79αcy+ B lymphocytes. There were no consistent changes in the numbers 

of IFNγ+ lymphocytes (Figure 7). 
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Figure 7. Numbers (mean ± standard error) of interstitial and circulating CD3+ T lymphocytes, 
CD4+ T lymphocytes, CD8+ T lymphocytes, γδ+ T lymphocytes, CD79αcy+ B lymphocytes 
and interferon-γ+ lymphocytes in the livers of calves inoculated with BVDV and UI animals. 
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inoculation concentration of 15.8 µg/ml to 60.3 µg/ml at 12 dpi, and then 

decreased to 4.2 µg/ml by 14 dpi. There were few changes in the 

concentrations of albumin during the experiment (Figure 8). 
 

 

 
Figure 8. Serum concentrations (mean ± standard error) of Hp, SAA and albumin in calves 
before and after inoculation with BVDV. 
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DDiissccuussssiioonn  
  

Inoculation of calves with NCP BVDV-1 strain 7443 results in 

subclinical infection, with lesions of moderate severity confined mainly to the 

digestive and lymphoid systems, with limited expression of cytokines at these 

sites (Da Silva et al., 2007; Pedrera et al., 2009a; Raya et al., 2011). In the 

present study, histopathological examination of the livers of calves inoculated 

with BVDV strain 7443 revealed vascular changes in portal areas, along with 

clusters of mononuclear cells composed mainly of MAC387+ MΦs and CD3+ 

T lymphocytes. There were increases in the numbers of KCs, monocytes and 

interstitial CD3+ T lymphocytes in the liver. A substantial increase in the 

number of monocytes positive for TNFα was observed, while the numbers of 

TNFα+ KCs and IMΦs were moderately increased. 

The presence of some IMΦs positive for BVDV by IHC from 3 dpi was 

accompanied by a local increase in T lymphocytes and MΦs in portal areas. 

This increase in numbers of mononuclear cells in periportal areas could be due 

to immune complex deposition in the basement membranes of vessel walls, 

infection of endothelial cells or release of chemical mediators (Hewicker et al., 

1987; Liebler-Tenorio et al., 2003b). The first two mechanisms are considered 

to be unlikely, since there was no evidence of vasculitis or endothelial cell 

damage or infection. 

Instead, the release of chemotactic mediators may account for increases 

in lymphocytes and MΦs in portal areas in BVDV infected calves (Iwai et al., 

2003; Fainboim et al., 2007). A moderate increase in immunoreactivity for 

TNFα was observed in IMΦs, coinciding with detection of BVDV gp48 in 

these cells, but there were few changes in expression of IL-1. The increase in 

numbers of TNFα+ IMΦs corresponded with an increase in the numbers of T 

lymphocytes in portal areas. However, since there were no changes in the 
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numbers of IFNγ+ cells following infection with BVDV, findings were not 

consistent with a TNFα-modulated Th1 response. Inhibition of antiviral 

function associated with IFNγ has been reported in previous BVDV studies 

(Rhodes et al., 1999; Schweizer and Peterhans, 2001; Lee et al., 2008). 

KCs are able to produce chemical mediators with pro-inflammatory 

properties and contribute to the cell-mediated immune response by presenting 

antigens to T lymphocytes (Bilzer et al., 2006; Kolios et al., 2006). In the 

present study, small increases in the numbers of TNFα+ and IL-6+ KCs were 

observed in the livers of calves inoculated with BVDV. However, the pro-

inflammatory capacity of TNFα would be limited by the low number of IL-1α-

producing cells, since these two cytokines act synergistically (Le and Vilcek, 

1987; Van Reeth et al., 1999). Impaired production of cytokines during 

BVDV infection has been reported in vitro (Adler et al., 1996; Yamane et al., 

2005; Lee et al., 2008) and in vivo in the small intestine, the main target organ 

(Pedrera et al., 2009a). 

Increased serum concentrations of SAA, a type 1 APP, are induced 

predominantly by IL-1 and TNFα acting synergistically with IL-6, whereas 

increased serum concentrations of Hp, a type 2 APP, are induced 

predominantly by IL-6 (Petersen et al., 2004). Changes in serum 

concentrations of some APPs, such as Hp, occur more slowly, whereas others, 

such as SAA, exhibit a faster response; the combined use of both APPs is 

recommended in cattle to distinguish between acute and chronic inflammatory 

processes (Horadagoda et al., 1999). 

In our study, there was a progressive and therefore late increase in 

serum concentrations of SAA during subclinical infection with BVDV strain 

NCP 7443, but few changes in serum concentrations of Hp, which only 

peaked at 12 dpi. Similar findings have been reported in other studies using 

BVDV NCP strains (Gånheim et al., 2003; Müller-Doblies et al., 2004) and 
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may reflect the lack of activation of KCs early in the course of BVDV 

infection (Heinrich et al., 1990; Knolle et al., 1995; Gabay and Kushner, 

1999). The relationship between elevated levels of pro-inflammatory 

cytokines and the onset of an intense early APR has been demonstrated in 

infections caused by other pestiviruses, such as classical swine fever virus, in 

which pigs exhibit severe clinical signs accompanied by high serum pro-

inflammatory cytokine concentrations and secretory activation of KCs (Núñez 

et al., 2005; Sánchez-Cordón et al., 2007). 

 

CCoonncclluussiioonnss  
  

Increases in the numbers of KCs, monocytes and interstitial CD3+ T 

lymphocytes are evident in the liver during subclinical infection of calves with 

BVDV-1 NCP strain 7443. These changes are accompanied by increased 

immunohistochemical expression of TNFα in hepatic MΦs and increased 

serum concentrations of SAA and Hp. These findings indicate that there is 

upregulation of some pro-inflammatory cytokines in hepatic MΦs during 

subclinical BVDV infection in calves. 
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CCoommppaarraattiivvee  ssttuuddyy  bbeettwweeeenn  hheeaalltthhyy  aanndd  ssuubbcclliinniiccaall  BBVVDD--

iinnffeecctteedd  ccaallvveess  cchhaalllleennggeedd  wwiitthh  BBHHVV--11::  lleessiioonnss  aanndd  

vviirraall  aannttiiggeenn  ddiissttrriibbuuttiioonn  
 

Veterinary Record. In review 
 

 

 

AAbbssttrraacctt  
  

As it is known BVDV is one of the pathogens involved in the 

BRDC, being able to produce disease on its own and, which is perhaps 

more important, it also can predispose calves to infections by other micro-

organisms. The aim of this work was to carry out a detailed and sequential 

study in tissues of the effects of BVDV pre-infection in calves challenged 

with another respiratory viral pathogen, such as BHV-1. For it, we studied 

lesions and viral antigen distribution by IHC in healthy calves and calves 

with subclinical BVD, both experimentally inoculated with BHV-1. The 

results obtained indicate that compared with their healthy counterparts, 

calves with subclinical BVD displayed the earlier development of more 

severe inflammatory processes, leading to a worsening of tissue lesions –

limited to lymphoid tissues, respiratory and digestive tracts– and more 

spread of BHV-1. This data suggest that BVDV facilitates the 

establishment of BHV-1, thereby potentiating its pathogenic action and 

increasing host susceptibility to other infections. Furthermore, the presence 

of BHV-1 favors the persistence of BVDV in target organs, which was 
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detected during very late stages of the disease, revealing a synergic effect 

of both agents.  

 

IInnttrroodduuccttiioonn  
  

Virus and bacteria co-infections in cattle are considered key factors in 

the aetiology of respiratory disease (Fulton et al., 2002; Shahriar et al., 2002). 

As it is known BVDV is one of the pathogens involved in the BRDC, being 

able to produce disease on its own and, which is perhaps more important, it 

also can predispose calves to infections by other micro-organisms (Potgieter, 

1997; Peterhans et al., 2003; Risalde et al., 2011b-Chapter 3-). Experimental 

inoculation with BVDV of low virulence demonstrates that even infections 

that have a subclinical course and would go unnoticed under field conditions 

can cause a marked, although transient, immunosuppression (Liebler-Tenorio 

et al., 2003a; Pedrera et al., 2009b). This explains why combined infections 

with BVDV have a potentiating effect on several pathogens, increasing the 

severity of rota- and coronavirus, (Kelling et al., 2002; Niskanen et al., 2002), 

BHV-1 and BRSV infections (Castrucci et al., 1992; Brodersen and Kelling, 

1998). Furthermore, sequential inoculation of calves with BVDV and 

Mannheimia haemolytica also increased the severity of lung lesions (Gånheim 

et al., 2003; Fulton et al., 2009).  

Based on antigenic and genetic differences, cattle pestivirus isolates can 

be classified into two genotypes, BVDV-1 and BVDV-2, which are divided in 

NCP and CP biotypes, depending on their effect on cell cultures (Ridpath et 

al., 1994; Fulton et al., 2003a). BVDV displays a special tropism for the 

mucosa-associated lymphoid tissue (tonsils and intestine) and lymphoid 

organs, appearing m-MΦs, DCs and lymphocytes as the main virus target cells 

(Bruschke et al., 1998b; Liebler-Tenorio et al., 2003b).  
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BHV-1 is an important cattle pathogen with worldwide distribution that 

causes significant economical losses in the bovine industry. This virus is an α-

herpesvirinae classified in three subtypes: BHV-1.1, BHV-1.2a and BHV-

1.2b, based on antigenic and genomic analysis. BHV-1.1 isolates are the 

causative agents of infectious bovine rhinotracheitis and are found in the 

respiratory tract as well as in aborted fetuses (Fauquet et al., 2005; Muylkens 

et al., 2007). Moreover, this pathogen can establish latent or persistent 

infections in ganglionic neurons and in non-neural sites as tonsils and lymph 

nodes (Mweene et al., 1996; Winkler et al., 2000; Perez et al., 2005).   

To the authors’ knowledge, a detailed and sequential study in tissues of 

the effects of BVDV pre-infection in calves experimentally inoculated with a 

respiratory viral pathogen has not been performed yet. So, the purposes of this 

study were: (1) to evaluate the clinical symptoms of calves co-infected with 

BVDV and BHV-1 and compare them with those of calves infected only with 

BHV-1.1; (2) to characterize and evaluate the severity of the pathological 

changes occurring in both inoculated groups; and (3) to determine whether 

BHV-1.1 antigen distribution is affected by BVDV pre-infection. 

 

For it, fourteen calves were inoculated intranasally with the NCP strain 

7443 of BVDV-1 and twelve days later, when the calves did not show clinical 

signs and viraemia against BVDV, twelve of them were challenged with 

BHV-1.1 Iowa strain (BVDV/BHV1 group). The other 2 animals inoculated 

with BVDV-1 and BHV-1.1-free, were killed before BHV-1.1 inoculation (0 

dpi) and used as BVDV infection controls. Twelve calves were only 

inoculated with the BHV-1.1 (BHV1 group). The infected calves were 

sacrificed in batches of two at 1, 2, 4, 7 and 14 dpi. Four UI animals were used 

as controls and sacrificed at the end of the study (negative control group).  
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Clinical examinations were performed daily. Blood and serum samples 

were collected at 0, 3, 6, 9, 12, 15, 18 and 21 hpi, 1, 2, 4, 5, 7, 9, 12 and 

14 dpi. The presence of BVDV and BHV-1.1 in blood was assessed by PCR. 

At post-mortem examination, samples collected from lymphoid tissues, 

respiratory tract, digestive tract and nervous system were fixed and routinely 

processed for histopathological and ultrastructural examination. Identification 

of BVDV and BHV-1.1 surface glycoproteins, gp48 and gC respectively, was 

carried out through immunohistochemical study in formalin fixed samples (See 

Materials and methods section, page 57. Experimental model 2). 

 

RReessuullttss  
  

Assessment of clinical symptoms and post-mortem lesions  

The calves in the control group remained clinically unaffected 

throughout the study. In both inoculated groups, the calves had elevated body 

temperature and their general appearance was affected in varying degrees. 

Calves of the BHV1 group had a slightly affected appearance, showing 

depression, lacrimation and serous nasal discharge, mainly between 7 and 9 

dpi (p<0.0001). These calves had a significant elevation of the rectal 

temperature at 5 and 11 dpi (39.6 ◦C; p<0.0001). Animals of the 

BVDV/BHV1 group displayed more significant severe clinical symptoms, 

including cough, mucopurulent nasal discharge, dyspnoea, open-mouth 

breathing, nasal lesions and recurrent diarrhea between 4 and 11 dpi 

(p<0.0001). Moreover, the animals of this group showed more significant 

increase of the rectal temperature at 4 and 5 dpi BHV-1.1 (>40 ◦C; p<0.0001) 

(Figure 1).  
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Figure 1. Means of the rectal temperature (ºC) and clinical score values of calves inoculated 
with BHV-1.1 versus co-infected with BVDV and BHV-1.1., and UI control animals (0, pre-
inoculation values; h, h post-inoculation with BHV-1.1; *p<0.05 significant differences in the 
same group at various time points; **p<0.05 significant differences between inoculated groups 
at the same time point). 
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lesions were observed in BVDV-inoculated animals which displayed severe 
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characterized by mononuclear infiltrate composed of MΦs, lymphocytes and 

plasmatic cells associated with vascular changes. The most severe 

inflammatory changes were observed in the BVDV/BHV1 group between 4 

and 7 dpi (2.03 and 1.83 score values, respectively; p<0.0001), presenting 

significant differences in magnitude with respect to BHV1 group, except at 7 

dpi, due to a peak in the single infection (1.4 score value) (Figure 2).  
 

 

Figure 2. Means of the gross and microscopic lesions score values of calves inoculated with 
BHV-1.1 versus BVDV/BHV1 group calves. (0, BHV-1.1 UI animals; *p<0.05 significant 
differences in the same group at various time points; **p<0.05 significant differences between 
inoculated groups at the same time point). 
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Lymphoid tissues 

  Both infected groups had large lymph nodes with petechial 

haemorrhages that were more evident over the course of the study, being the 

lesions more intense in retropharyngeal lymph nodes. Additionally, 

BVDV/BHV1 group showed petechial haemorrhages in lingual tonsil, 

congestive splenomegaly and atrophic bone marrow. 

  Microscopically, the tonsils displayed hyperaemia, petechial 

haemorrhages within lymphoid follicles and dense accumulations of 

leukocytes in epithelium with occasional ulceration, mainly in the co-infected 

calves. From 2 dpi onwards, these animals showed progressive depleted 

lymphoid follicles together with the presence of pyknosis, cellular 

fragmentation and MΦs showing phagocyted cell debris (tingible bodies 

MΦs), characteristic of apoptosis TUNEL-positive (Figure 3A). Moreover, 

between 4 and 7 dpi, we observed focal necrosis in epithelium, tonsil crypts 

and lymphoid follicles, together with an inflammatory response of infiltrated 

MΦs, lymphocytes and neutrophils. Two types of intranuclear inclusion 

bodies (IIBs) were seen in epithelial cells of the margins of necrotic lesions: 

slightly basophilic IIBs occupying the entire nucleus and small eosinophilic 

IIBs (Figure 6C). 

  The thymic lesions appeared before BHV-1.1 inoculation and were 

more evident in the BVDV/BHV1 group. Thymic cortex of co-infected calves 

was reduced in size due to the marked depletion of lymphocytes associated 

with apoptotic images TUNEL-positive, increased visible stellate cells and 

proliferation of adjacent interlobular stroma (Figure 3B).  
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Figure 3. (A) Lymphoid follicles of the pharyngeal tonsil with free and phagocyted apoptotic 
bodies TUNEL-positives in BVDV/BHV1 group at 14 dpi. (B) Pyknotic lymphocyte-like cells 
and apoptotic bodies TUNEL-positives in the thymic cortex of co-infected animals at 7 dpi. 

 

 

  Microscopic examination confirmed the congestive splenomegaly, 

characterized by dilated splenic sinuses with packed red cells and widely 

separated germinal centres. From 2 dpi, both inoculated groups displayed a 

mild to moderate depopulation of follicular cells and apoptosis within 

germinal centres. Although the vascular changes were more intense in the 

animals of the BVDV/BHV1 group, there were no apparent differences 

between both groups in the rest of lesions described. 

  In the bone marrow of BVDV-infected animals, there was a severe 

hypoplasia caused by the lack of myeloid progenitor cells (Figure 4A). 
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Hypoplasia signs in the bone marrow were almost inexistent in the BHV1 

group (Figure 4B). 

  Vascular alterations as hyperaemia and petechial haemorrhages within 

lymphoid follicles were seen in lymph nodes of all inoculated calves. After 

BHV-1.1 inoculation, the lymph nodes showed an intense hyperplasia that was 

more evident over the course of the disease, mainly in the BVDV/BHV1 

group. Thus, in early stages, there was a follicular and paracortical hyperplasia 

due to the increased number and size of the follicles, together with the intense 

scattering of lymphocytes. Sinus hyperplasia was produced by a migration of 

lymphocytes and MΦs occluding the lumen (sinus catarrh) (Figure 4C,D). 

Retropharyngeal lymph nodes displayed the most important alterations. 

  

Respiratory tract  

  The gross respiratory lesions described were almost unapparent in the 

BHV1 group and mild in the co-infected group, consisting in congestion of the 

nasal mucosa after BHV-1.1 inoculation and occasional mucosal tracheitis in 

later stages of the study. The ulcerated lesion of the nares appeared only in 

BVDV/BHV1 group.  

  Histologically, the epithelial lesions were described as necrotic 

ulcerations, accompanied by connective tissue proliferation and mononuclear 

infiltrate in the dermis. Eosinophilic IIBs appeared in epithelial cells of the 

margins of necrotic lesions. 

  The upper respiratory tract of infected calves showed hyperaemia in 

lamina propria, besides diffuse and periglandular infiltrate, composed of MΦs, 

lymphocytes and plasmatic cells. Some epithelial syncytia with basophilic 

IIBs were seen in nasal mucosa of the BVDV/BHV1 group (Figure 4E).  

  Inflammatory changes were also observed microscopically in the lung 

after BHV-1.1 infection. In both inoculated groups, pulmonary parenchyma 
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was affected by interstitial pneumonia with alveolar septal thickening 

produced by interstitial aggregates of lymphocytes, MΦs and, to a lesser 

extent, neutrophils. This alteration appeared earlier and in a more severe form 

in the BVDV/BHV1 group, associated with occasional alveolar oedema and 

haemorrhages (Figure 4E,F). Moreover, in these animals were observed 

sporadic epithelial syncytia in pulmonary alveoli between 2 and 7 dpi. 

 

Digestive tract 

  Gross lesions in the alimentary tract were observed in BVDV-infected 

calves. Mucosa of the small intestine showed congestion and oedema from the 

start of the experiment. These changes increased after BHV-1.1 infection and 

were accompanied by an intense inflammation of the biliary vesicle and 

petechial haemorrhages in colon.  

  Microscopically, the ileum showed hyperaemia, sporadic haemorrhages 

in interfollicular areas and mononuclear infiltrate in lamina propria throughout 

the study. Ileal submucosa displayed intense dilation of lymphatic vessels with 

migration of lymphocytes, accompanied by depleted lymphoid follicles in the 

Peyer’s patches. This lesion was characterized by the reduction in follicle size 

due to severe lymphoid depletion, as well as infiltrated MΦs and enlarged 

stellate cells. Moreover, we observed pyknosis, cellular fragmentation and 

tingible body MΦs TUNEL-positives in the interfollicular lymphoid tissue. 

  The most characteristic lesion found in the ileocecal valve was a 

proliferation of Lieberkühn crypts resulting in crypthyperplasia. Affected 

crypts were dilated and filled with mucus, epithelial debris and inflammatory 

cells. Some of these crypts appear herniated into the submucosal space 

previously occupied by involuted lymphoid follicles.  

  Microscopic examination of the liver in the infected animals showed 

acute inflammation signs after BHV-1.1 infection. Vascular changes as 
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hyperaemia and sporadic oedema in the portal triads and dilation of lymphatic 

vessels were more intense between 2 and 7 dpi. Evidence of mononuclear 

infiltrate in the portal tracts and occasionally in the hepatic parenchyma, 

together with an increased number of leukocytes in sinusoids (sinusoidal 

leukocytosis) was seen from 2 dpi in both inoculated groups.  

 

Nervous system 

  There were no apparent gross or histological lesions in the sections of 

nervous tissue analyzed in this study.   

(-) no gross lesion; (+) mild; (++) moderate; (+++) severe. 
 

Means of the gross lesions valuation (n = 2 per time point) of calves inoculated with BHV-1.1 
versus calves inoculated with BVDV and BHV-1.1. (UI, uninoculated animals of the negative 
control group; BVDV control, calves inoculated with BVDV-1 and BHV-1.1-free). 

LYMPHO ID TISSUES
   Enlarged lymph nodes - + + + + ++ ++ +++ ++ +++ +++ +++
   Petechial haemorrhages in 
lymph nodes

- + + ++ + ++ + + - + - -

   Petechial haemorrhages in 
lingual tonsil

- - - + - ++ - ++ - - - -

   Congestive splenomegaly - - - +++ - ++ - ++ + ++ + +++
   Atrofic bone marrow - +++ - +++ + +++ - +++ - +++ - +++

RESPIRATO RY TRACT
   Congestive nasal mucosa - - - - + +++ + +++ - - - -
   Ulcerated nares - - - - - - - - - +++ - ++
   Mucosal tracheitis - - - - - - - +++ - - + ++

DIGESTIVE TRACT -
   Congestive and oedematous 
small intestinal mucosa

- + - + - +++ - +++ - ++ - ++

   Congestive and oedematous 
biliary vesicle mucosa

- - - - - +++ - +++ - - - -

   Petechial haemorrhages in 
colon

- - - - - - - +++ - +++ - +++

Table 1
Macroscopic lesions observed at postmortem examination.

1 dpi 2 dpi 4 dpi 7 dpi 14 dpi

UI BVDV 
control BHV1

BVDV/
BHV1 BHV1

BVDV/
BHV1

BVDV/
BHV1 BHV1

BVDV/
BHV1 BHV1

BVDV/
BHV1 BHV1
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(-) no gross lesion; (+) mild; (++) moderate; (+++) severe. 
 

LYMPHO ID TISSUES
Tonsils
   Hyperaemia - - - - - + ++ + +++ + ++ +
   Petechial haemorrhages - - - - - +++ - ++ - - - +
   Apoptosis in lymphoid follicles - - - - - + + ++ + ++ - +++
   Focal necrosis - - - - - - - +++ - +++ - -

Thymus
   Hyperaemia - + + ++ + - + - ++ - + -
   Petechial haemorrhages - + - + + + ++ ++ - - - -
   Lymphoid depletion - ++ - ++ - ++ - +++ - +++ + ++
   Apoptosis - + - + - ++ - ++ + +++ + +

Spleen
   Hyperaemia - - - +++ - ++ - ++ + ++ + +++
   Lymphoid depletion - - - - + ++ + + ++ + ++ -
   Apoptosis - - - - + - + + + ++ ++ ++
Bone marrow
   Hypoplasia - +++ + +++ + +++ + +++ + +++ + +++

Lymph nodes

   Hyperaemia - - - - - ++ + ++ + ++ - +

   Petechial haemorrhages - ++ + ++ + ++ - ++ - + + +
   Apoptosis in lymphoid follicles - + - + - + + + + ++ + +++
   Hyperplasia - - + ++ + ++ ++ +++ ++ +++ ++ +++

RESPIRATO RY TRACT
Upper respiratory tract
   Hyperaemia - - - - ++ ++ + ++ - - - -
   Mononuclear infiltrate - - + ++ + ++ ++ ++ ++ ++ ++ ++

Lung
   Hyperaemia - + - + ++ ++ ++ ++ + ++ + ++
   Haemorrhages - - - - - ++ - ++ - + - +
   Interstit ial pneumonia - - - + + ++ ++ +++ + +++ + +

DIGESTIVE TRACT
Ileum
   Hyperaemia - + - ++ - ++ - ++ - ++ - +
   Haemorrhages - - - - - - - + - ++ - +
   Lymphoid depletion - +++ - +++ + +++ + +++ + +++ + +++
   Lymphatic vessels dilation - +++ - +++ - ++ - ++ - +++ - +++

   Mononuclear infiltrate - ++ - ++ - ++ - ++ - +++ - +
Ileocecal valve

   Hyperaemia - + - ++ - +++ - +++ - ++ - -

   Proliferation Lieberkühn's crypts - + - + - +++ - +++ - ++ - -
Liver
   Hyperaemia - - - - ++ - +++ ++ +++ - + -

   Periportal mononuclear infiltrate - - - - ++ ++ + ++ + ++ + ++

   Sinusoidal leucocytosis - - - - +++ + ++ ++ ++ ++ + ++

Table 2. Type and location of  histopathological findings after BHV-1.1 inoculation.
1 dpi 2 dpi 4 dpi 7 dpi 14 dpi

UI BVDV 
control BHV1

BVDV/
BHV1 BHV1

BVDV/
BHV1

BVDV/
BHV1 BHV1

BVDV/
BHV1 BHV1

BVDV/
BHV1 BHV1
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Figure 4. HE. Severe hypoplasia of the bone marrow caused by the lack of myeloid progenitor 
cells in BVDV/BHV1 group at 4 dpi (A), compared with an almost inexistent lesion in the 
BHV1 group (B). Sinus hyperplasia in retropharyngeal lymph node of the BVDV/BHV1 group 
produced by lymphocytes and MΦs occluding the lumen (sinus catarrh) together with an intense 
scattering of lymphocytes at 4 dpi (C) versus a mild lesion observed in the single infection (D). 
Lung of the BVDV/BHV1 group showing interstitial pneumonia with alveolar septal thickening 
at 7 dpi (E), compared with minor changes in the BHV1 group (F).  
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Virological examination 
 

Polymerase Chain Reaction (PCR)  
There was no evidence of any viral infection from blood samples in the 

animals of the negative control group. BVDV was not detected by RT-PCR in 

the blood of calves of the BVDV/BHV1 group at the moment of BHV-1.1 

inoculation (12 dpi BVDV). However, BVDV was detected in the blood of 

these calves between 1 and 5 dpi, showing only significant values at 1 and 2 

dpi BHV-1.1 (p=0.046). The presence of BHV-1.1 was confirmed in both 

inoculated groups by PCR of nasal swabs samples from 1 dpi onwards, 

detecting only viraemia in the BVDV/BHV1 group from 4 dpi onwards and 

peaking at 7 dpi BHV-1.1 (101.94 TCID50/ml) (Figure 5). 

 

Figure 5. Mean of viruses titres in the blood of BVDV/BHV1 group (0, BHV-1.1 pre-
inoculation values; dpi, days post-infection with BHV-1.1; *p<0.05 significant differences in 
the group at various time points). 
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Immunohistochemistry  

  In positive control samples, gp48 and gC labelling appeared as evenly 

distributed dark red granules or a diffuse cytoplasmic staining. There was no 

labelling of any tissue when BHV-1 or BVDV-specific Abs were replaced by 

murine non-immune serum. 

  Neither BVDV nor BHV-1 antigens were detected in tissue sections 

from negative control calves. The distribution of both viral antigens, 

principally associated to lymphoid tissues and intestinal mucosa of inoculated 

animals, is represented in Table 3. 

  BVDV antigen was only detectable in the BVDV/BHV1 group, being 

present in lymphoid tissues, specifically in the thymus and ileocecal lymph 

node, as well as mucosa-associated lymphoid tissue of the ileum and ileocecal 

valve. Gp48 was not seen in the respiratory tract, central nervous system, 

upper digestive tract, liver, spleen and bone marrow of any of the BVDV-

infected animals.  

  In the thymus of the BVDV inoculated animals, viral gp48 was detected 

throughout the experiment, being scarce its presence at 14 dpi BHV-1.1. 

Positive staining was associated with reticular epithelial cells, MΦs and 

occasional lymphocytes of the thymic cortex as well as with fibroblasts of the 

adjacent stroma (Figure 6A).  

  In the ileocecal lymph nodes, a great presence of BVDV antigen was 

observed until 4 dpi BHV-1.1. The widest viral distribution was seen in the 

medullary sinuses where the antigen was confined to the cytoplasm of MΦs, 

stellate-like cells and some lymphocytes. In one calf, viral gp48 was detected 

in the tunica media of muscular arteries of the retropharyngeal lymph node, 

associated with lymphocytic arteritis. 

  BVDV antigen was present in great amounts within depleted lymphoid 

follicles and interfollicular areas in ileal Peyer's patches until 4 dpi. In this 
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period, MΦs and stellate cells as well as some lymphocytes, fibroblasts and 

apoptotic bodies were positive to virus (Figure 6B). Thereafter, we observed a 

gradual decrease of the labelled cells towards the end of the study, where viral 

gp48 was only detected in MΦs.  

  BHV-1 antigen distribution was mainly confined to ulcerations in the 

nares, and both pharingeal and lingual tonsils of BVDV/BHV1 group at 4 and 

7 dpi. Viral gC was observed in epithelial and lymphoid necrotic areas, as well 

as in cell debris within tonsil crypts. The target cells of the BHV-1.1 were 

epithelial cells and, to a lesser extent, lymphocytes and MΦs (Figure 6D).  

 

Transmission electron microscopy 

  Ultrastructural study revealed BHV-1-like particles and virus-like 

replication sites in epithelial cells of the tonsil and nasal necrotic lesions, 

pulmonary alveolar MΦs and necrotic cells in alveoli of the BVDV/BHV1 

group calves. Intranuclear viral particles measured 105 to 115 nm in diameter, 

were hexagonal in shape and showed variable electron-density in the cores. 

Other intracellular changes indicative of viral infection were margination of 

chromatin, intranuclear aggregation of small particles and intranuclear 

filamentous structures with concentric distribution. Moreover, enveloped (200 

to 250 nm in diameter) and non-enveloped virions were found in the 

cytoplasm of infected cells (Figure 6F). 
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(-) absent; (+) scarce; (++) moderate; (+++) intense. 
 

Means of the antigen distribution assessment in tissues (n = 2 per time point) of calves inoculated 
with BHV-1.1 versus calves inoculated with BVDV and BHV-1.1. (UI, uninoculated animals of the 
negative control group; BVDV control, calves inoculated with BVDV-1 and BHV-1.1-free). 

 

 

 

 

BVDV (gp48) DETECTIO N 
Lymphoid tissues
   Pharyngeal tonsil - - - - - - - + - - - -
   Lingual tonsil - - - - - - - - - - - -
   Thymus - +++ - +++ - ++ - ++ - ++ - +
   Spleen - - - - - - - - - - - -
   Bone marrow - - - - - - - - - - - -
   Retropharyngeal lymph node - - - - - - - - - + - -

   Tracheobronchial lymph node - - - - - - - - - - - -
   Mesenteric lymph node - - - - - - - - - - - -
   Ileocecal lymph node - +++ - +++ - +++ - ++ - - - -
Digestive tract
   Liver - - - - - - - - - - - -
   Esophagus - - - - - - - - - - - -
   Duodenum - - - - - - - - - - - -

   Jejunum - - - - - - - - - - - -

   Ileum - +++ - +++ - ++ - ++ - + - +
   Ileocecal valve - + - + - - - - - - - -

BHV1 (gC) DETECTIO N
Lymphoid tissues
   Pharyngeal tonsil - - - - - - + +++ - + - -
   Lingual tonsil - - - - - - - + - +++ - -
   Thymus - - - - - - - - - - - -
   Spleen - - - - - - - - - - - -
   Bone marrow - - - - - - - - - - - -
   Retropharyngeal lymph node - - - - - - - - - - - -

   Tracheobronchial lymph node - - - - - - - - - - - -

   Mesenteric lymph node - - - - - - - - - - - -
   Ileocecal lymph node - - - - - - - - - - - -

Table 3. Organ and tissue distribution of BVDV and BHV1 antigens.
4 dpi 7 dpi 14 dpi

UI BVDV 
control

1 dpi 2 dpi

BHV1
BVDV/
BHV1BHV1

BVDV/
BHV1

BVDV/
BHV1 BHV1

BVDV/
BHV1 BHV1

BVDV/
BHV1 BHV1
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Figure 6. (A) IHC. Multifocal depletion of lymphocytes in the thymic cortex associated with 
distribution of viral gp48 in MΦs and cells with dendritic morphology of the BVDV/BHV1 
group at 1 dpi. (B) IHC. Stellate cells, MΦs and fibroblasts expressing BVDV antigen within 
the medulla of depleted Peyer’s patches follicles in BVDV/BHV1 group at 2 dpi. (C) HE. 
Pharyngeal tonsil of a co-infected animal: focal necrosis in a tonsil crypt with infiltrated MΦs, 
lymphocytes and neutrophils at 4 dpi. Detail of eosinophilic IIBs observed in epithelial cells of 
the necrotic margins (arrowheads). (D) IHC. BHV-1 gC associated with the necrotic lesion of 
the pharyngeal tonsil crypt. (E) HE. Epithelial syncytia with slightly basophilic IIBs occupying 
the entire nucleus in nasal mucosa of BVDV/BHV1 group at 2 dpi. (F). TEM. Necrotic alveolar 
cell in a co-infected animal showing BHV-1-like particles at 4 dpi (arrowheads). 
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DDiissccuussssiioonn  
  

  In the present work, a descriptive study of lesions and viral antigen 

distribution was carried out in healthy calves and calves with subclinical 

BVD, both inoculated with BHV-1.1. Compared with their healthy 

counterparts, calves with subclinical BVD displayed a worsening of tissue 

lesions –particularly inflammatory lesions– and more dissemination of BHV-

1.1. Moreover, BVDV was detected in this group using immunohistochemical 

techniques during very late stages of the disease, a finding not reported in 

studies of calves inoculated with BVDV alone (Liebler-Tenorio et al., 2003a, 

2004; Pedrera et al., 2009b; Raya et al., 2011). 

  The greater intensity of the clinical manifestations and lesions observed 

in the BVDV/BHV1 group may have been due to: 1) more dissemination of 

the agent, with direct action on target cells; 2) the triggering of a more intense 

host inflammatory response; or 3) a combination of the two mechanisms 

(Beutler, 2004; Muylkens et al., 2007; Tizard, 2008), as occurs in this study.  

  In the BHV1 group, only a small amount of viral antigen was found in 

tonsils at 4 dpi. By contrast, in the BVDV/BHV1 group, abundant presence of 

viral antigen together with IIBs were observed in tonsils at 4 and 7 dpi, 

associated with necrotic lesions due to the cytopathic effect of BHV-1 (Schuh 

et al., 1992; Winkler et al., 2000; Perez et al., 2005). These differences 

highlight a widespread dissemination of the secondary agent in calves 

inoculated with BVDV, which might be linked to an inadequate local cell-

mediated response and the consequent failure to stop BHV-1 at its entry site, 

thus favoring systemic spread (Potgieter et al., 1984). It has been suggested 

that changes in resident CD8+ T lymphocytes, with cytotoxic capacity against 

infected cells (Tizard, 2008), may contribute to a delayed local immune 
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response to BHV-1, and to inefficient elimination of the pathogenic agent 

(Schuh et al., 1992).  

  Moreover, in the BVDV/BHV1 group, BVDV was detected in 

association with MΦs in thymus and Peyer’s patches throughout the 

experiment (26 dpi BVDV), a finding not reported in single infection studies, 

in which this virus starts to clear from 12-14 dpi (Liebler-Tenorio et al., 

2003a, 2004; Pedrera et al., 2009b; Raya et al., 2011). Thus, just as BVDV 

facilitates the dissemination of BHV-1, the presence of BHV-1 favors the 

persistence of BVDV in target organs and the reappearance of digestive-tract 

changes attributed to BVDV (Potgieter et al., 1984; Castrucci et al., 1992; 

Risalde et al., 2011b-Chapter 3-), thereby potentiating its pathogenic action 

and increasing host susceptibility to other infections (Hodgson et al., 2005).  

  With regard to inflammatory lesions, calves of the BHV1 group 

displayed only moderate changes as hyperaemia and mononuclear cell 

infiltrate in the upper airways, lung and, especially, liver; similar cell 

recruitment is reported in other studies of BHV-1 infection (Babiuk et al., 

1996; Leite et al., 2002b, 2005; Rivera-Rivas et al., 2009). By contrast, in the 

BVDV/BHV1 group these inflammatory changes occurred earlier and were 

more severe, particularly at 4 dpi, remaining these differences until the end of 

the experiment. Calves in this group also displayed marked activation of 

lymph nodes from 1 dpi, particularly retropharyngeal nodes, which underwent 

greater antigen stimulation because of their proximity to the inoculation route.  

  Massive recruitment of mononuclear cells in the lungs of BVDV/BHV1 

group calves prompted interstitial pneumonia, with a marked thickening of the 

lung parenchyma between 4 and 7 dpi, coinciding with the onset of respiratory 

symptoms (Risalde et al., 2011b-Chapter 3-). This finding may be attributable 

to the direct action of both viruses, detected by PCR in the lung (data not 

shown), showing that pre-infection with BVDV favors the development of 
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more severe respiratory symptoms in response to secondary infections 

(Castrucci et al., 1992; Fulton et al., 2002; Confer et al., 2005). Despite the 

identification of both agents using molecular techniques, the occasional 

detection of syncytial cells in alveoli, associated with BHV-1 replication (Jubb 

and Kennedy, 2007), and the detection of BHV-1 virions in alveolar MΦs by 

TEM, at no stage was viral antigen detected in lungs using IHC techniques, 

though this had been reported by other authors  (Babiuk et al., 1996; Narita et 

al., 2000; Shahriar et al., 2002; Fulton et al., 2003b, 2009; Liebler-Tenorio et 

al., 2004).  
 

  Calves of the BVDV/BHV1 group displayed other lesions not directly 

related to the inflammatory response and prior to infection with BHV-1. These 

included numerous TUNEL-positive apoptotic bodies phagocyted by MΦs in 

B-dependent areas of lymph nodes, thymus and ileal Peyer’s patches, together 

with marked lymphoid depletion associated with BVDV. These lesions have 

been reported in other in vivo studies of this virus (Liebler-Tenorio et al., 

2003a, 2004; Pedrera et al., 2009b; Raya et al., 2011), being more intense in 

our study after BHV-1 inoculation, which can induce apoptosis both in vivo 

and in vitro (Devireddy and Jones, 1999; Winkler et al., 1999; Perez et al., 

2005; Geiser et al., 2008). These results suggest that the concomitance of the 

two agents has a synergic effect, thus potentiating the immunosuppressive 

action of the BVDV.  

  Another lesion observed in the BVDV/BHV1 group prior to infection 

with BHV-1 was an intense bone marrow hypoplasia, which persisted until the 

end of the study. To our knowledge, this lack of hematopoietic nests has not 

been reported hitherto in infections with low-virulence BVDV-1 or BVDV-2 

strains, although it has been observed in inoculations with more virulent 

BVDV-2 strains (Wood et al., 2004; Keller et al., 2006). 

Immunohistochemical analysis detected no BVDV antigen in bone marrow, 
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suggesting that the changes observed may have been prompted by indirect 

virus action due to altered cytokine expression by stromal cells, leading to a 

modification of the hematopoietic microenvironment, a finding reported with 

other pestiviruses (Gómez-Villamandos et al., 2003). Further research is 

therefore required into the mechanisms triggered by BVDV to alter the 

environment regulating these cells. 

 

 

CCoonncclluussiioonnss  
  

  The results obtained indicate that BVDV does not prevent the 

development of a cell-mediated response, but in fact favors the earlier 

development of more severe inflammatory processes following BHV-1 

infection, leading to a worsening of clinical signs and lesions limited to 

lymphoid tissues, airways and the digestive tract. Moreover, BVDV facilitates 

the establishment and dissemination of BHV-1, thereby potentiating its 

pathogenic effect and predisposing the host to secondary infections. At the 

same time, the presence of BHV-1 favors the persistence of BVDV in target 

organs. 
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RReessppoonnssee  ooff  pprroo--iinnffllaammmmaattoorryy  aanndd  aannttii--iinnffllaammmmaattoorryy  

ccyyttookkiinneess  iinn  ccaallvveess  wwiitthh  ssuubbcclliinniiccaall  bboovviinnee  vviirraall  

ddiiaarrrrhheeaa  cchhaalllleennggeedd  wwiitthh  bboovviinnee  hheerrppeessvviirruuss--11  
 

Veterinary Immunology and Immunopathology 2011, 144(1-2):135-143. 
 

 

  

AAbbssttrraacctt  
  

The aim of this work was to investigate the susceptibility of calves 

infected with BVDV against secondary infections. For this purpose, the profile 

of cytokines implicated in the immune response of calves experimentally 

infected with a NCP strain of BVDV-1 and challenged with BHV-1.1 was 

evaluated in comparison with healthy animals challenged only with BHV-1.1. 

The immune response was measured by serum concentrations of cytokines 

(IL-1β, TNFα, IFNγ, IL-12, IL-4 and IL-10), APPs (Hp, SAA and fibrinogen), 

and BVDV and BHV-1.1 specific Abs. BVDV-infected calves displayed a 

great secretion of TNFα and reduced production of IL-10 following BHV-1 

infection, leading to an exacerbation of the inflammatory response and to the 

development of more intense clinical symptoms and lesions than those 

observed in healthy animals BHV-1-inoculated. A Th1 immune response, 

based on IFNγ production and on the absence of significant changes in IL-4 

production, was observed in both groups of BHV-1-infected calves. However, 

whereas the animals inoculated only with BHV-1 presented an IFNγ response 

from the start of the study and high expression of IL-12, the BVDV-infected 

calves showed a delay in the IFNγ production and low levels of IL-12. This 
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alteration in the kinetics and magnitude of these cytokines, involved in 

cytotoxic mechanisms responsible for limiting the spread of secondary 

pathogens, facilitated the dissemination of BHV-1.1 in BVDV-infected calves. 

 
 

IInnttrroodduuccttiioonn  
  

BVDV is an endemic ruminant pestivirus in populations worldwide. 

Two genotypes, BVDV-1 and BVDV-2, are recognized as distinct species 

within this genus, being classified in CP and NCP based on their activity on 

cultured epithelial cells (Ridpath et al., 1994; Heinz et al., 2000; Fulton et al., 

2003a). Although acute BVDV infections are often asymptomatic or produce 

only mild clinical symptoms, there is evidence that they induce lymphopenia 

and a range of effects on the immune response which allow the appearance of 

secondary infections (Peterhans et al., 2003; Liebler-Tenorio et al., 2004; 

Pedrera et al., 2009b). BVDV infects a wide variety of cell types but has a 

predilection for cells of the immune system as m-MΦs, DCs and lymphocyte 

populations (Glew et al., 2003; Liebler-Tenorio et al., 2003b). The 

consequences of infection include the death of these cells populations as an 

extreme event, or more subtle effects on cytokine expression and synthesis of 

co-stimulatory molecules (Brackenbury et al., 2003; Glew et al., 2003; 

Peterhans et al., 2003). Thus, the changes in the profile of cytokines, produced 

by immune or non-immune cells, could affect to both innate and specific 

immunity (Nobiron et al., 2001). 

Pro-inflammatory cytokines as IL-1 and TNFα are of great importance 

in the innate immune response (Biron and Sen, 2001), causing leukocyte 

chemoattraction, phagocyte stimulation and enhancement of downstream 

cytokine and chemokine production (Krishnadasan et al., 2003; Pfeffer, 2003). 

Moreover, these cytokines mediate in the APR through the regulation of the 
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profile of “positive” or “negative” APPs, depending on the increase or 

decrease of their concentration in serum. Hp and SAA, the main positive APPs 

in cattle, are used as indicators of disease severity (Eckersall, 2000; Petersen 

et al., 2004). In this regard, various authors have demonstrated that BVDV 

induces an impaired production of these chemical mediators both in vitro and 

in vivo, which could affect to the generation of a subsequent immune response 

(Adler et al., 1996; Yamane et al., 2005; Lee et al., 2008; Pedrera et al., 2009a; 

Risalde et al., 2011a-Chapter 1-). 

Th1/Th2 paradigm, postulated by Mosmann et al. (1986) from studies 

on cytokines produced by T lymphocytes in a murine model, is less well 

defined in ruminants (Estes and Brown, 2002). The functions of Th1 cytokine 

IFNγ include the stimulation of immunoglobulin production and specific 

cytotoxicity of T cells, induction of apoptosis and activation of resting tissue 

MΦs, thereby enhancing resistance against viral infections (Biron and Sen, 

2001; Samuel, 2001). This chemical mediator is produced by NK cells, 

lymphocytes CD8+ and CD4+ Th1 cells in response to IL-12 (Hunter, 2005; 

Tizard, 2008). On the other hand, the Th2 cytokine IL-4 promotes the 

development of helper and cytotoxic T cells and the differentiation of 

immunoglobulins-producing plasma cells from B cells (Tizard, 2008). This 

cytokine is produced in response to antigen activation by CD4+ Th2 cells and 

some CD8+, NK1+ and γδT cells (Marcenaro et al., 2005) (Figure 1). IL-10 is 

a regulatory cytokine with anti-inflammatory effects, inhibiting the activities 

initiated by pro-inflammatory cytokines (Biron and Sen, 2001; Pestka et al., 

2004). This mediator is produced by all subtypes of Th cells in humans and 

cattle (Brown et al., 1994, 1998). 

Previous studies on the immune response to BVDV do not provide 

consistent results. Whereas some authors demonstrate the establishment of a 

Th1 response (Charleston et al., 2002; Lee et al., 2008), others maintain that 
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occurs a Th2 type immune response which might interfere with protective Th1 

responses against other pathogens (Rhodes et al., 1999). However, to our 

knowledge, no studies have been made on pro-inflammatory and Th1/Th2 

cytokines during co-infections with BVDV and secondary agents in calves. 

BHV-1 is an α-herpesvirinae subfamily member that, together with 

other bacterial and viral pathogens as BVDV, is implicated in the BRDC 

(Hodgson et al., 2005; Muylkens et al., 2007; Srikumaran et al., 2007). Innate 

immune responses against BHV-1 include the antiviral action of IFN, 

alternative complement pathway and local infiltration of lymphoid cells, MΦs, 

neutrophils or NK cells (Babiuk et al., 1996). In the specific cellular 

immunity, T helper lymphocytes mediate the lysis of BHV-1 infected cells by 

activating MΦs and NK cells through IFNγ and IL-2 secretion, and by 

recruiting and promoting the proliferation of specific cytotoxic T lymphocytes 

(Babiuk et al., 1996; Van Drunen Littel-van den Hurk, 2007). The specific 

humoral immunity also participates in BHV-1 infection clearance by 

mediating the antibody-dependent cell cytotoxicity and by neutralizing cell-

free virus particles (Muylkens et al., 2007). 

In the present study, we have evaluated the effects of the pre-infection 

with BVDV in the pattern of cytokines implicated in the immune response of 

calves BHV-1-challenged with the purpose of investigate the susceptibility of 

these animals against secondary infections. 
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Figure 1. Schematic representation of cytokines influencing the development of Th1 and Th2 
responses. APCs present their antigens to T cells, which recognize them through their T-cell 
receptors. Intracellular organisms as bacteria or viruses are recognized inducing the secretion of 
IL-12 and differentiation of T cells into the Th1 lineage that produces IFNγ and develops such 
cell-mediated immunity. When APCs recognize larger pathogens, the end result is 
differentiation of Th2 effector cells regulated by T-cell-produced IL-4 that start an antibody-
mediated immunity. 

 
 

Thus, fourteen Friesian calves were inoculated intranasally with the 

NCP strain 7443 of BVDV-1 and twelve days later, twelve of them were 

challenged with BHV-1.1 Iowa strain (BVDV/BHV1 group). Twelve calves 

were only inoculated with the BHV-1.1 (BHV1 group). Four UI animals were 

used as negative controls (negative control group). Blood and serum samples 

from calves inoculated with BVDV were collected at 0, 3, 6, 9, 12, 15, 18 

and 21 hpi, 1, 2, 4, 5, 7, 9, 12 and 14 dpi.  

The systemic inflammatory and immune response was analyzed through 

the study of serum concentrations of cytokines (IL-1β, TNFα, IFNγ, IL-12, IL-

4 and IL-10) measured by ELISA, and serum APPs levels (Hp, SAA and 
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fibrinogen) determined by ELISA and colorimetric methods. BVDV and 

BHV-1.1 specific Abs were measured by ELISA and VN, respectively. (See 

Materials and methods section, page 57. Experimental model 2). 

 

 

RReessuullttss  
  

Cytokines study 
The different analyzed cytokines in the negative control group 

maintained low and constant levels without changes in this study. The 

cytokine results of both inoculated groups are depicted in Figures 2 and 3.  

 

Pro-inflammatory cytokines 

The pro-inflammatory cytokines, IL-1β and TNFα, presented 

differences in magnitude and kinetics between single and dual infections, 

mainly from 1 dpi onwards. While the animals of the BHV1 group did not 

show changes on IL-1β serum concentration after BHV-1.1 inoculation, the 

calves of the BVDV/BHV1 group displayed a significant decrease of this 

cytokine (p=0.03), maintaining low levels until the end of the study (Figure 

2). TNFα concentration in the BHV1 group only increased in the later stages, 

at 9 dpi (59 ng/ml; p<0.001), whereas BVDV/BHV1 group showed an earlier 

and longer response subsequent to BHV-1.1 inoculation. These animals 

presented a significant increase of this chemical mediator from 1 dpi onwards 

(p<0.001), peaking at 4 dpi with values 5 times above the baseline level 

(Figure 2). 
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Figure 2. Serum concentrations of the pro-inflammatory cytokines (IL-1β and TNFα) in calves 
co-infected experimentally with BVDV and BHV-1.1, calves inoculated only with BHV-1.1 and 
uninfected control calves. (0, BHV-1.1 pre-inoculation values; h, hour post-inoculation with 
BHV-1.1; *p<0.05 significant differences in the same group at various time points; **p<0.05 
significant differences between inoculated groups at the same time point). 
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Th1/Th2 cytokines 

The concentration of Th1 cytokines, IFNγ and IL-12, were elevated in 

both inoculated groups, although presented differences in magnitude. IFNγ 

concentration in the BHV1 group displayed an early increase that was 

maintained with oscillations throughout the study, showing significant values 

at 5 dpi (4214.62 pg/ml; p<0.0001). However, in the BVDV/BHV1 group, 

IFNγ serum concentration remained constant from the start of the experiment, 

peaking only between 4 and 5 dpi (p<0.0001). There was a similar pattern of 

IL-12 serum concentration, because the BHV1 group presented a significant 

increase between 4 and 9 dpi, while the IL-12 levels remained low during the 

course of the study in the BVDV/BHV1 group, except for an increase at 4 dpi 

(Figure 3).  

Th2 cytokine (IL-4) serum concentration did not present changes in any 

of the studied groups, maintaining low and constant levels throughout the 

study (Figure 3).  

Anti-inflammatory cytokine (IL-10) concentration displayed a 

significant increase of twice the baseline level (from 0.18 to 0.45 of OD, 

approximately) associated with the peak of TNFα in both infected groups, 

although this increase was longer in BHV1 group (between 7 and 9 dpi) 

(Figure 3). 
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Figure 3. Th1 (IFNγ and IL-12), Th2 (IL-4) and (IL-10) cytokines in calves co-infected 
experimentally with BVDV and BHV-1.1, calves inoculated only with BHV-1.1 and uninfected 
control calves. (0, BHV-1.1 pre-inoculation values; h, hour post-inoculation with BHV-1.1; 
*p<0.05 significant differences in the same group at various time points; **p<0.05 significant 
differences between inoculated groups at the same time point). 
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APPs analysis 
APPs serum concentration of the negative control group remained low 

and without changes throughout the experiment.  

The serum levels of Hp displayed no significant changes in both 

inoculated groups in this study. However, SAA protein showed a significant 

increase in the animals of the BVDV/BHV1 group at 5 and 7 dpi, whereas the 

calves of the BHV1 group did not present changes in this study. Fibrinogen 

concentrations followed a similar pattern than SAA protein, showing only the 

animals of the BVDV/BHV1 group a significant increase at 7 and 9 dpi. 

Albumin, a negative APP, presented non-significant changes in any group 

during the experiment (Figure 4).  

 

Serum antibodies detection  
All animals were negative for BVDV or BHV-1 specific Abs at the start 

of the study and the UI animals of the control group remained seronegative 

until the end of the experiment. Appearances of BVDV-specific serum Abs 

were only detected in the calves of the BVDV/BHV1 group from 4 dpi BHV-

1.1 (16 dpi BVDV). On the other hand, in both inoculated groups were found 

neutralizing Abs against BHV-1.1 at 14 dpi, being greater the magnitude in 

the BVDV/BHV1 group (data not shown).  

 

Figure 5 depicts a schematic summary of the time-ordered 

manifestation of clinical signs, virological and immunological parameters 

addressed in the animals of both BHV1 and BVDV/BHV1 groups. 
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Figure 4. Serum concentrations of Hp, SAA, fibrinogen and albumin in calves co-infected 
experimentally with BVDV and BHV-1.1, calves inoculated only with BHV-1.1 and uninfected 
control calves. (0, BHV-1.1 pre-inoculation values; *p<0.05 significant differences in the same 
group at various time points; **p<0.05 significant differences between inoculated groups at the 
same time point). 
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Figure 5. Schematic summary of clinical signs, virological and immunological events occurring 
in calves infected with BHV-1.1 versus calves co-infected with BVDV and BHV-1.1. The 
length of the bars represents the duration of the parameters studied over the time course of the 
experiment. 
 

 

DDiissccuussssiioonn  
Clinical symptoms and lesions in the BVDV/BHV1 group were more 

varied and intense than in the BHV1 group; inflammatory processes, in 

particular, were exacerbated and more widely distributed. This marked 

inflammatory response in the BVDV/BHV1 group was confirmed by analysis 

of APPs, which showed an increase in SAA protein and fibrinogen, associated 

with greater secretion of pro-inflammatory cytokines (TNFα) and reduced 

production of anti-inflammatory cytokines (IL-10) (Petersen et al., 2004; 
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Sánchez-Cordón et al., 2007; Risalde et al., 2011a-Chapter 1-). The 

appearance of viraemia, clinical signs, fever and more intense inflammatory 

lesions also coincided with a peak in TNFα levels. However, IL-1β synthesis 

rather than increasing actually declined, avoiding the appearance of a synergic 

pro-inflammatory effect involving TNFα and IL-1β (Pedrera et al., 2009a; 

Risalde et al., 2011a-Chapter 1-). This BVDV-associated inhibition of IL-1 

has also been reported in vitro coinciding with a lack of TNFα response (Adler 

et al., 1996; Yamane et al., 2005; Lee et al., 2008), in contrast with our results 

where TNFα was the main inflammatory mediator. The enhanced 

inflammatory response observed in the BVDV/BHV1 group highlights the fact 

that prior inoculation of BVDV does not inhibit the development of a non-

specific response to the secondary agent (Gånheim et al., 2003). The results 

also suggest that the mild inflammatory signs observed in healthy BHV-1-

inoculated calves were associated with a transitory increase in TNFα during 

the final phase of the experiment. 

Differences in pro-inflammatory cytokine profiles were accompanied 

by differences in the synthesis of IL-10, a cytokine with anti-inflammatory 

activity that plays a major role in regulating the immune response (Grutz, 

2005). Thus, in the BHV1 group, IL-10 synthesis coincides with that of the 

pro-inflammatory cytokines studied, modulating their effect, whereas in the 

BVDV/BHV1 group the lesions observed suggest that the transitory increase 

in IL-10 synthesis failed to counteract the action of TNFα.  

Coinciding with similar findings reported by other authors, both groups 

of BHV-1-inoculated calves developed a Th1 immune response based on IFNγ 

production and on the absence of significant changes in IL-4 production over 

the course of the experiment (Takashima et al., 2002; Abril et al., 2004). 

However, while the BVDV does not appear to impair the development of a 

Th1 immune response, differences between inoculated groups were apparent 
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with regard to the kinetics and magnitude of IFNγ and IL-12 production, two 

cytokines that interfere with the spread of BHV-1 by mediating the lysis of 

infected cells. In the BHV1 group, IFNγ levels rose from the start of the 

experiment; this increase, together with intense expression of IL-12, could 

prevent the distribution of BHV-1 from primary replication sites into the blood 

(Babiuk et al., 1996; Hodgson et al., 2005). In the BVDV/BHV1 group, by 

contrast, IFNγ did not increase until 4 and 5 dpi, coinciding with the detection 

of BHV-1 in blood and with mild IL-12 production, suggesting an inhibition 

of the cytotoxic effect on infected cells at the start of the process, associated 

with the action of BVDV (Lee et al., 2008; Risalde et al., 2011a-Chapter 1-). 

Moreover, these changes may well be linked to the increase of TNFα in the 

BVDV/BHV1 group, and to the ability of this cytokine to induce integrins 

expression on leukocytes, contributing to their recruitment at the inflammation 

site (Ley et al., 2007; Rivera-Rivas et al., 2009) and favoring viral spread by 

increasing the number of target cells. The results obtained suggest that the 

protective cell-mediated immune response against BHV-1 was ineffective in 

the BVDV/BHV1 group, and failed to prevent the persistence and 

dissemination of the pathogen throughout the experiment.  

BHV-1-specific humoral response normally starts at around 7-10 dpi 

(Murphy and Reiner, 2002; OIE, 2010), a fact that was not observed in any 

group of our study until 14 dpi, attributing this delay to the virulence of the 

studied strains, as well as to the age and immune status of the calves. These 

results indicate that the specific humoral response to BHV-1 was not impaired 

by pre-infection with BVDV; indeed, calves in the BVDV/BHV1 group 

displayed higher Ab titres, with no decline in the Ab response to BVDV, 

which was detected from 16 dpi of BVDV, as reported by other authors 

(Wilhelmsen et al., 1990; Archambault et al., 2000; Müller-Doblies et al., 

2004). Similarly, healthy animals vaccinated against BVDV and later against 
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BHV-1 produce higher Ab titres than those vaccinated only against BHV-1 

(Alvarez et al., 2007). Because of this, our data suggest that the greater 

stimulation of the immune system in the BVDV/BHV1 group might favor the 

development of the humoral response to the secondary agent. 

 

CCoonncclluussiioonnss  
  

The results showed that BVDV-infected calves displayed changes in 

pro- and anti-inflammatory cytokine profiles following BHV-1 infection, 

leading to an exacerbation of the inflammatory response and to the 

development of more intense clinical symptoms and lesions than those 

observed in healthy animals as a response to a secondary infection. Alterations 

were also observed in cytokines involved in the cytotoxic mechanisms 

responsible for limiting the spread of pathogens giving rise to secondary 

infections, such as BHV-1, thus facilitating the dissemination of this virus. By 

contrast, prior inoculation of BVDV did not modify the development of a 

BHV-1-specific humoral response in comparison with that of healthy animals. 
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PPaatthhooggeenniicc  mmeecchhaanniissmmss  ooff  vvaassccuullaarr  aanndd  iinnffllaammmmaattoorryy  

lleessiioonnss  iinn  tthhee  lluunngg  ooff  BBVVDDVV--iinnffeecctteedd  ccaallvveess  cchhaalllleennggeedd  

wwiitthh  BBHHVV--11  

  

  

  

  
  

AAbbssttrraacctt  
  

Resistance to respiratory disease in cattle requires host defense 

mechanisms that protect against pathogens which have evolved sophisticated 

strategies to evade them, including an altered function of pulmonary MΦs or 

the induction of inflammatory responses that cause lung injury and sepsis. The 

aim of this study was to clarify the mechanisms responsible for 

histopathological and ultrastructural changes occurring in the lung of calves 

infected with BVDV and challenged later with BHV-1, evaluating the role of 

MΦs and other immunocompetent cells in the development of pathological 

lesions in this organ. For this purpose, pulmonary lesions and the local 

immune response were compared between co-infected calves and healthy 

animals inoculated only with BHV-1 through immunohistochemical studies 

(Factor-VIII, MAC387, TNFα, IL-1α, iNOS, COX-2, CD3, CD79αcy, CD4, 

CD8 and IFNγ). Both groups of calves presented mononuclear aggregates of 

IMΦs and T lymphocytes in the pulmonary parenchyma, along with important 

vascular alterations produced by fibrin microthrombi and platelet aggregations 

within the blood vessels. These findings were earlier and more severe in the 

co-infected group, indicating that the concomitance of BVDV and BHV-1 in 
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lung disrupts the pulmonary homeostasis by facilitating the establishment of 

an inflammatory and procoagulant environment modulated by inflammatory 

mediators released by pulmonary MΦs. In this regard, the co-infected calves, 

despite presenting a greater number of IMΦs than single-infected group, 

showed a significant decrease in iNOS expression coinciding with the 

presence of more coagulation lesions. Moreover, animals pre-inoculated with 

BVDV displayed an alteration in the response of pro-inflammatory cytokines 

(TNFα and IL-1), which play a key role in activating the immune response, as 

well as in the local cell-mediated response marked essentially by an inhibition 

in the CD8+ and CD4+ Th1 response to the secondary respiratory pathogen.  

  

IInnttrroodduuccttiioonn  
  

The BRDC is an important problem for the cattle industry, often 

resulting in severe economic losses (Barrett, 1998; Caldow and Nettleton, 

2000). This fatal bovine respiratory infection is a multi-factorial disease 

associated with a primary viral infection followed by a secondary bacterial 

infection, although frequently, is characterized by concurrent infections of 

several pathogens. The etiologic agents related to feedlot pneumonias include 

bovine viral diarrhea virus 1 and 2 (BVDV-1 and BVDV-2), BHV-1, bovine 

PI-3, BRSV, bovine adenovirus A-D, bovine coronavirus, Mannheimia 

haemolytica, Pasteurella multocida, Histophilus somni and Mycoplasma spp. 

(Griffin, 1997; Fulton et al., 2000, 2009; Hodgson et al., 2005). Resistance to 

respiratory disease in cattle requires host defense mechanisms that protect 

against viral and bacterial pathogens which have also evolved sophisticated 

strategies to evade the host immune responses, including among others an 

altered pulmonary MΦs function or the induction of profound inflammatory 

responses that cause lung injury and sepsis (Hodgson et al., 2005).  
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The inflammatory process is a protective response that occurs in 

response to trauma, infection or tissue injury (Zedler and Faist, 2006; 

Mariathasan and Monack, 2007). Increased blood supply, enhanced vascular 

permeability and migration of immune cells occur at damaged sites. In this 

process, MΦs play a central role in managing different immunopathological 

phenomena through the secretion of inflammatory mediators such as NO, 

prostaglandins, and the pro-inflammatory cytokines TNFα and IL-1 (Seibert et 

al., 1994; Esposito and Cuzzocrea, 2007; Tizard, 2008).  

NO is a potent vasodilator, acting to maintain vascular tone and 

function within the vessel wall, generated from L-arginine by the action of 

nitric oxide synthase (NOS) enzymes. There are three main isoforms of NOS 

with distinct functions and patterns of expression: endothelial NOS, neuronal 

NOS and inducible NOS (iNOS) highly expressed in Mφs (Cooney et al., 

2006; Esposito and Cuzzocrea, 2007). 

Prostaglandins are other important inflammatory mediators implicated 

in the vascular homeostasis since in low levels can prevent or reverse 

aggregation of platelets and induce vasodilatation (Seibert et al., 1994; Yoon 

et al., 2009). These mediators are produced from arachidonic acid metabolites 

by the catalysis of cyclooxygenase-2 (COX-2) (Wehbrink et al., 2008).  

Pro-inflammatory cytokines induce integrin expression and 

redistribution of leukocytes, which contribute to their recruitment and 

activation to the site of inflammation (Leite et al., 2002a,b), as well as to 

increase vascular permeability and tissue injury (Ohmann et al., 1991; Peper 

and Van Campen, 1995). There is evidence that inflammatory cytokines are 

the main orchestrators of the inflammatory cascade in BRDC, detecting high 

levels of TNFα and IL-1 in airways of cattle infected with respiratory 

pathogens (Rontved et al., 2000; Malazdrewich et al., 2001; Muylkens et al., 

2007; Rivera-Rivas et al., 2009).  
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BVDV is a pestivirus that although is not a primary agent in the 

pathogenesis of BRDC, it can suppress the host immune system and increase 

the risk of secondary infections, thus enhancing pulmonary colonization by 

other pathogens as BHV-1 (Castrucci et al., 1992; Cusack et al., 2003; Ridpath 

et al., 2003). The mechanisms of the immunosuppressive action of BVDV are 

object of debate, including changes related to decreased lymphocyte 

proliferation (Brown et al., 1991; Brodersen and Kelling, 1999), severe 

lymphoid depletion in lymphoid tissues (Liebler-Teneorio et al., 2004; Pedrera 

et al., 2009b; Raya et al., 2011), decreased chemotaxis and phagocytic activity 

(Ketelsen et al., 1979), increased production of PGE2 (Welsh and Adair, 1995; 

Van Reeth and Adair, 1997), increased NO synthesis in response to 

lipopolysaccharide (Adler et al., 1994, 1996) and impaired production of pro-

inflammatory cytokines (Yamane et al., 2005; Lee et al., 2008; Pedrera et al., 

2009a; Raya et al., 2011; Risalde et al., 2011a-Chapter 1-).  

Recently, we have undertaken a series of studies to examine in vivo the 

specific mechanisms by which a primary BVDV infection favors the 

dissemination of BHV-1, observing an impairment of the systemic immune 

response based on a delay in the IFNγ production and low levels of IL-12. 

Furthermore, BVDV pre-infected calves displayed a great TNFα secretion in 

serum and reduced production of IL-10 following BHV-1 infection, leading to 

an exacerbation of the inflammatory response and to the development of 

intense clinical symptoms and lesions (Risalde et al., 2011b-Chapter 3-). 

These inflammatory lesions have also been observed in the lung of 

BVD-infected calves challenged with BHV-1, which pulmonary parenchyma 

was affected by interstitial pneumonia produced by aggregates of mononuclear 

cells (Risalde et al., 2011c-Chapter 2-). Among the immune modulatory 

mechanisms that might play an important role in this viral synergy, it have 

been suggested a compromised local cell-mediated immunity, the main barrier 
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to contain BHV-1 infection in the respiratory tract of BVDV-infected calves 

(Potgieter et al., 1995), as well as an alteration in the antimicrobial activity of 

pulmonary MΦs (Welsh et al., 1995; Glew et al., 2003; Peterhans et al., 2003), 

key cells in the nonspecific primary defense of the lung (Zhang et al., 2000; 

Laskin et al., 2001). However, experimental studies of these immune 

modulatory processes in the lung have not been performed yet. 

Therefore, the aim of this study was to clarify the mechanisms 

responsible for histopathological and ultrastructural changes occurring in the 

lung of calves pre-infected with BVDV and challenged later with BHV-1. For 

this purpose, we characterized the interstitial aggregates observed in the 

pulmonary parenchyma, in addition to analyze the role of MΦs in the 

appearance of inflammatory lesions and the possible alteration of the local 

cell-mediated immunity induced by BVDV. This work will contribute to gain 

a better understanding about how this virus predispose to secondary airborne 

infections. 
 

For it, fourteen calves were inoculated intranasally with the NCP strain 

7443 of BVDV-1 and twelve days later, when the calves did not show clinical 

signs and viraemia against BVDV, twelve of them were challenged with 

BHV-1.1 Iowa strain (BVDV/BHV1 group). The other 2 animals inoculated 

with BVDV-1 and BHV-1.1-free, were killed before BHV-1.1 inoculation (0 

dpi) and used as BVDV infection controls. On the other hand, twelve animals 

were only inoculated with BHV-1.1 (BHV1 group). The infected calves were 

sacrificed in batches of two at 1, 2, 4, 7 and 14 dpi. Four UI animals were used 

as controls and sacrificed at end of the study (negative control group).  

Blood samples were collected at 0, 3, 6, 9, 12, 15, 18 and 21 hpi, 1, 2, 4, 

5, 7, 9, 12 and 14 dpi. Samples collected from lung were fixed and routinely 

processed for histopathological and ultrastructural examination. The presence 

of BVDV and BHV-1 in lung was assessed by PCR, IHC and TEM. 
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Pulmonary lesions and the local immune response were analyzed through 

immunohistochemical studies (Factor-VIII, MAC387, TNFα, IL-1α, iNOS, 

COX-2, CD3, CD79αcy, CD4, CD8 and IFNγ) (See Materials and methods 

section, page 57. Experimental model 2). 

 

RReessuullttss  
  

Respiratory signs and hematological findings 

The main respiratory sings were detailed in Chapter 2 (Risalde et al., 

2011b). Briefly, the calves pre-infected with BVDV showed more intense 

respiratory signs as cough, mucopurulent nasal discharge, dyspnoea and open-

mouth breathing, while the calves of BHV1 group only presented a moderate 

serous nasal discharge.  

Platelet numbers were within the clinically normal range in all calves 

throughout the study. In 2 animals of both inoculated groups, an important 

decrease of platelet numbers to 57% approximately was observed at 12 hpi. 

 

Detection of BVDV and BHV-1 in the lung  

Virological study of the lung by IHC and ultrastructural analyses have 

been described in Chapter 2. In brief, there was no evidence of any viral 

infection in tissue samples from animals of the negative control group. Neither 

BVDV nor BHV-1 antigens were detectable by IHC in both inoculated 

groups. However, the subcellular study revealed the existence of BHV-1-like 

particles and virus-like replication sites in PAMs and necrotic cells in alveoli 

of the BVDV/BHV1 group calves (Risalde et al., 2011c).  

The presence of viral agents in lung of both inoculated groups was 

confirmed using molecular techniques. In the BVDV/BHV1 group, BVDV 

was detected by RT-PCR between 0 and 7 dpi (12-19 dpi BVDV), and BHV-1 
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was detected by PCR from 2 to 14 dpi. However, in the BHV1 group, BHV-1 

was only detected between 4 and 7 dpi, whereas BVDV was not detected at 

any time of the experiment.  

 

Respiratory lesions 

The main morphological changes observed in the respiratory tract 

were described previously in Chapter 2 (Risalde et al., 2011c). Briefly, there 

were no remarkable lesions in the calves of the negative control group. The 

pulmonary parenchyma of inoculated calves was affected by interstitial 

pneumonia with alveolar septal thickening produced by interstitial aggregates 

of mononuclear cells. The appearance of this alteration was earlier in the co-

infected calves and was associated with occasional alveolar oedema and 

haemorrhages (Table 1). 

 
 

(-) no histopathological lesion; (+) mild; (++) moderate; (+++) severe. 
 

Means of the pulmonary lesions valuation (n = 2 per time point) of calves inoculated with BHV-
1.1 versus calves inoculated with BVDV and BHV-1.1. (UI, uninoculated calves of the negative 
control group; BVDV control, calves inoculated with BVDV-1 and BHV-1.1-free; 
BVDV/BHV1, calves infected with BVDV and BHV-1; BHV1, calves infected with BHV-1). 

 
 

 

 

 

   Hyperaemia - + - + ++ ++ ++ ++ + ++ + ++
   Alveolar oedema - - - ++ - +++ + ++ + - - -
   Haemorrhages - - - - - ++ - ++ - + - +
   Interstitial mononuclear aggregates - - - + + ++ ++ +++ + +++ + +
   Alveolar septal thickening - - - + + ++ ++ +++ + +++ + +

BVDV/
BHV1

BVDV/
BHV1 BHV1

BVDV/
BHV1 BHV1

BVDV/
BHV1 BHV1UI BVDV 

control BHV1
BVDV/
BHV1 BHV1

Table 1. Type and score of histopathological findings in lung after BHV-1.1 inoculation
1 dpi 2 dpi 4 dpi 7 dpi 14 dpi



Inflammatory response in the BVD and its alteration in secondary infections               

 

 
140 

 

The most intense histological changes were also observed in the 

BVDV/BHV1 group between 2 and 4 dpi (P<0.0001), being these changes 

significant with respect to BHV1 group, except at 4 dpi due to a peak in the 

single infection and at 14 dpi when both groups presented a recovery of the 

pathological signs (Figure 1).  
 

 

 
Figure 1. Means±standard errors (n = 2 per time point) of microscopic lesions score values in 
lung of calves inoculated with BHV-1.1 versus calves inoculated with BVDV and BHV-1.1.  (0, 
BHV-1.1 UI animals; *p<0.05 significant differences in the same group at various time points; 
**p<0.05 significant differences between inoculated groups at the same time point). 

 

 

Fraser Lendrum technique revealed fibrin microthrombi in some 

pulmonary venules and capillaries of inoculated calves, being more severe in 

co-infected calves, mainly from 4 dpi (Figure 2A). These changes were 

confirmed by the ultrastructural study together with the presence of fibrin in 

alveoli associated with PAMs in both inoculated groups at early stages (Figure 

2B). Moreover, these animals displayed an intense hyperaemia as well as 

interstitial and alveolar oedema during this period. 
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Figure 2. Fibrin microthrombi in a pulmonary venule of a co-infected animal observed by 
Fraser Lendrum technique (A) and TEM (B) at 4 dpi. 

 

 

These findings were associated with a great quantity of platelets, 

which detection was performed by IHC using anti-Factor-VIII Ab. Thus, in 

the negative control group, this Ab prompted positive granular 

immunostaining among sheathed capillary cells, free in the interstitium and 

occasionally in MΦs cytoplasm. However, in the inoculated groups, clusters of 

immunostained granular material were observed in blood vessels. Moreover, 

numerous IMΦs and periarterial MΦs, together with some PAMs, were 

swollen and displayed an intense positive granular and cytoplasmic reaction in 

both inoculated groups between 4 and 7 dpi (Figure 3A,B). In the 

BVDV/BHV1 group, clusters of platelets were observed from 1 dpi, being 

more evident throughout the study associated with MΦs engulfing platelets 

that peaked at 4 dpi (3 score values; p<0.0001) (Figure 4). Subsequently, the 

positive reaction in MΦs and vascular lumina diminished considerably without 

recovering thereafter (Figure 3C). In the BHV1 group, these findings were 

observed from 2 dpi with similar values to the co-infected group (1.5 score 

values; p<0.0001), decreasing the number of platelet clusters until the end of 

the study (Figure 3D and 4).        

A B
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Figure 3. IHC. (A) Lung of the BVDV/BHV1 group showing great quantity of Factor VIII-
positive clusters of platelets in some pulmonary venules and capillaries at 4 dpi, compared with 
minor changes in the BHV1 group (B), where were observed IMΦs and periarterial MΦs 
engulfing positive granular material. (C) Presence of less quantity of platelet clusters in the 
BVDV/BHV1 group at 14 dpi versus an almost inexistent lesion in the BHV1 group (D).  

 

 

Ultrastructural study confirmed that there was an increase in the 

number of activated platelets forming multiple aggregations within the blood 

vessels, which vascular lumina usually appeared completely occluded. The 

changes indicative of this activation were an enlarged and deformed shape of 

the cells, a partial or total decrease in granule numbers and dilation of the open 

canalicular system. The most common form of platelet aggregation was the 

appearance of mosaic-like clusters comprising fully degranulated platelets 

with fusion of cytoplasmic membranes. Occasionally, these membranes 

A B

C D
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completely disappeared, giving rise to a finely granular structure with low 

electron density, containing vestiges of platelet organelles and surrounded by a 

membrane layer. In the BVDV/BHV1 group, platelet aggregation occurred 

sooner and was more intense, increasing between 4 and 7 dpi (Figure 5A) and 

not showing a totally recovery at the end of the study (Figure 5C). In the 

BHV1 group this lesion was moderate, presenting retrieval signs from 7 dpi 

(Figure 5B,D).  

Subcellular changes indicative of a slight secretory activation in IMΦs 

as enlargement, proliferation and dilation of rough endoplasmic reticulum and 

Golgi complex cisternae were mainly observed in the BHV1 group at 4 dpi 

(Figure 5E). Moreover, from 4 dpi, some PIMs and PAMs of both inoculated 

groups appeared enlarged and rounded, with loss of filopodia, increased 

number of lysosomes and varying amounts of cell debris in their cytoplasm, 

characteristic signs of phagocytic activation (Figure 5F). 
 

 

Figure 4. Means±standard errors (n = 2 per time point) of score values of Factor VIII-positive 
clusters of platelets in lung of calves inoculated with BHV-1.1 versus calves inoculated with 
BVDV and BHV-1.1. (0, BHV-1.1 UI animals; *p<0.05 significant differences in the same 
group at various time points; **p<0.05 significant differences between inoculated groups at the 
same time point). 
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Figure 5. TEM. Multiple aggregations of platelets within the blood vessels with some vascular 
lumina completely occluded in the lung of the BVDV/BHV1 group at 4 dpi (A), versus a mild 
lesion observed in the BHV1 group (B). Pulmonary parenchyma showing recovery signs of this 
lesion in the co-infected group at 14 dpi (C), compared with a totally recuperation in the single 
infection (D). IMΦ in the BHV1 group with signs of secretory activation as enlargement, 
proliferation and dilation of rough endoplasmic reticulum at 4 dpi (E). PIM enlarged and 
rounded engulfing cell debris in the BVDV/BHV1 group at 4 dpi (F). 
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Changes in pulmonary immunocompetent cells 

It was observed by immunohistochemical examination that 

mononuclear aggregates present in the pulmonary parenchyma were 

composed of IMΦs and T lymphocytes (CD3+), which were mostly TCD4+, 

TCD8+ and Tγδ; a few interspersed CD79αcy-positive B cells were also 

observed. 

Immunolabeling of pulmonary MΦs showed no significant numerical 

changes of the PIMs in any of the inoculated groups, except for an increase in 

the BVDV/BHV1 group at 4 dpi; however, the number of PAMs was 

significantly higher in the co-infected calves at the start of the study, showing 

a decrease from 4 dpi. IMΦs displayed similar kinetics in single and dual 

infections after BHV-1.1 inoculation, although presented differences in the 

magnitude of their response. Thus, the BVDV/BHV1 group showed a higher 

number of these cells during the study, peaking at 4 dpi (p<0.0001) (Figure 6).  
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Figure 6. Means±standard errors (n = 2 per time point) of PAMs, PIMs and IMΦs positive for 
MAC387 by IHC in the lung of calves co-infected experimentally with BVDV and BHV-1.1 
compared with calves inoculated only with BHV-1.1. (0, BHV-1.1 UI animals; *p<0.05 
significant differences in the same group at various time points; **p<0.05 significant 
differences between inoculated groups at the same time point). 
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Secretory activity of MΦs observed ultrastructurally was confirmed by 

IHC, which enabled the detection of MΦs-secreted inflammatory mediators. 

For their evaluation, PIMs and IMΦs were grouped together and described as 

‘septal MΦs’. 

TNFα and IL-1α-producing cells, identified as septal MΦs and PAMs, 

were detected immunohistochemically in the lungs of control and infected 

animals. These proinflammatory cytokines presented differences in magnitude 

and kinetics between single and dual infections. TNFα-positive septal MΦs 

were associated with sites of inflammation in the BVDV/BHV1 group (Figure 

7A), showing only a slight peak at 2 dpi (p<0.008), whereas BHV1 group 

presented a longer response of this chemical mediator in peribronchial areas 

(from 4 dpi; p<0.0001) (Figure 7B). On the other hand, IL-1α-reactive septal 

MΦs were significantly different between both infected groups before BHV-1 

inoculation (0 dpi BHV-1). The calves of the BVDV/BHV1 group maintained 

lower numbers of IL-1α-positive septal MΦs throughout the study (Figure 

7C), showing a delayed response to BHV-1 inoculation (from 7 dpi onwards). 

By contrast, the calves of the BHV1 group displayed an early increase of this 

cytokine associated with peribronchial areas (at 2 dpi; p<0.007) (Figure 7D). 

The number of PAMs positive for studied cytokines was low in both 

inoculated groups, presenting only a slight response at end of the study, with 

the exception of an IL-1α peak in the single infected group between 1 and 2 

dpi (Figure 9). 
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Figure 7. IHC. Septal MΦs and PAMs positive for TNFα (A) and IL-1α (C) associated with 
sites of inflammation in the pulmonary parenchyma of the BVDV/BHV1 group at 2 dpi.  Higher 
number of IMΦs reactive to TNFα (B) and IL-1α (D) in peribronchial areas of the lung in the 
BHV1 group at 2 dpi.  

 

Numerous groups of immunolabeled septal MΦs presenting strongly 

iNOS-positive cytoplasmic granules, mainly IMΦs, were observed in the 

pulmonary parenchyma of animals infected only with BVDV (Figure 8A). 

After BHV-1 inoculation, in the calves of the BVDV/BHV1 group, septal 

MΦs expressing iNOS decreased significantly until the end of the experiment 

(p<0.0001), showing values of approximately twice below the baseline level 

from 4 dpi (Figure 8B). In healthy calves, septal MΦs presented a similar 

response after BHV-1 inoculation; although in these animals the decrease of 

this mediator was observed later than in the BVDV/BHV1 group. On the other 
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hand, the number of iNOS-positive PAMs was higher in the BVDV/BHV1 

group and did not suffer changes throughout the study, while the calves of 

BHV1 group showed a significant decrease from 7 dpi (Figure 9). 

Intracellular localization of COX-2 was perinuclear and cytoplasmic 

in the MΦs, being its expression scarce in the lung during the study (Figure 

8C), except for septal MΦs of the BVDV/BHV1 group at 4 dpi (p<0.0001) 

(Figure 8). This intense expression occurred at sites of inflammation and 

injury, mainly oedemas, and was correlated with the degree of pulmonary 

inflammation (Figure 8D). 

 

Figure 8. IHC. (A) Numerous immunolabeled septal MΦs iNOS-positive in the lung of calves 
inoculated only with BVDV (0 dpi of BVDV/BHV1 group), versus a minor number of these 
cells at 4 dpi BHV-1 (B). Pulmonary parenchyma of calves inoculated only with BVDV (0 dpi 
of BVDV/BHV1 group) showing an absence of MΦs positive for COX-2 Ab (C), compared 
with numerous immunolabeled MΦs COX-2-positive in sites of inflammation at 4 dpi (D). 
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Figure 9. Number of septal MΦs and PAMs (mean ± standard error) positive for TNFα, IL-1α, 
iNOS and COX-2 by IHC in the lung of calves inoculated with BHV-1.1 versus calves 
inoculated with BVDV and BHV-1.1. (0, BHV-1.1 UI animals; *p<0.05 significant differences 
in the same group at various time points; **p<0.05 significant differences between inoculated 
groups at the same time point). 
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Interstitial CD3+ T lymphocytes showed a similar behavior to BHV-

1.1 infection in both inoculated groups, presenting an increase in their number 

between 2 and 7 dpi. However, the magnitude of this response was 

significantly higher in the BVDV/BHV1 group (p<0.0001), except at 4 dpi 

due to a peak in the single infection (21.85 cells/0.2 mm2) (Figure 10).  

In both inoculated groups, the number of B lymphocytes rose after 

BHV-1.1 inoculation. This response was earlier and more intense in the BHV1 

group, showing a peak at 14 dpi with values 4 times above the baseline level 

(from 3.3 to 13.85 cells/0.2 mm2, approximately; p<0.0001) (Figure 10). 

 

 

Figure 10. Means±standard errors (n = 2 per time point) of interstitial CD3+ T lymphocytes and 
CD79αcy+ B lymphocytes in the lung of calves co-infected experimentally with BVDV and 
BHV-1.1 compared with calves inoculated only with BHV-1.1. (0, BHV-1.1 UI animals; 
*p<0.05 significant differences in the same group at various time points; **p<0.05 significant 
differences between inoculated groups at the same time point). 

 

Immunolabeling of T lymphocyte subpopulations revealed that CD4+, 

CD8+ and γδ+ lymphocytes also presented a greater number in BVDV pre-

infected calves with respect to BHV1 group from the start of the study. 

Following inoculation with BHV-1.1, these cell populations suffered a 

progressive decrease from 4 dpi (p<0.0001) in the co-infected calves, reducing 
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twice their baseline level at 14 dpi. In the BHV1 group, γδ+ lymphocytes 

presented a similar behavior, while CD8+ and CD4+ T lymphocytes showed a 

significant increase at 2 and 4 dpi, respectively. IFNγ, an important antiviral 

cytokine produced by lymphocytes, presented a significant increase in the 

single infection at 4 dpi, displaying also a peak in later stages (7 dpi) of the 

dual infection (Figure 11). 

 

 

Figure 11. Number (mean ± standard error) of CD4+ T lymphocytes, CD8+ T lymphocytes, 
γδ+ T lymphocytes and interferon-γ+ lymphocytes in the lung of calves inoculated with BHV-
1.1 versus calves inoculated with BVDV and BHV-1.1. (0, BHV-1.1 UI animals; *p<0.05 
significant differences in the same group at various time points; **p<0.05 significant 
differences between inoculated groups at the same time point). 
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DDiissccuussssiioonn  
  

The objective of this study was to evaluate and characterize the 

mononuclear cell infiltrates observed in the lung parenchyma of healthy calves 

and calves with subclinical BVD experimentally inoculated with BHV-1.1, 

and to clarify the role of these immunocompetent cells in the local response to 

the secondary pathogen. 

The results showed that following BHV-1 inoculation, both groups of 

calves displayed a mononuclear cell infiltrate comprising mainly IMΦs and T 

lymphocytes. This infiltrate occurred earlier, and was more severe, in calves 

with subclinical BVD. The most intense lesions were observed in the 

BVDV/BHV1 group at 4 dpi, coinciding with the most severe respiratory 

symptoms (Risalde et al., 2011b-Chapter 3-). 

Inoculation with BHV-1 also prompted major vascular alterations in 

the lungs of both groups, marked by intense intravascular coagulation in small 

and medium-sized blood vessels from an early stage of the disease. Three 

mechanisms, jointly known as Virchow’s triad, can induce thrombosis (Chung 

and Lip, 2003): 1) endothelial wall injury; 2) abnormalities of blood 

constituents (platelets, coagulation and fibrinolytic pathways); and 3) 

abnormalities of blood flow. 

With regard to endothelial damage, infection by human herpes 

simplex virus – belonging to the same subfamily as BHV-1 (Fauquet et al., 

2005) – has been shown to cause endothelial injury, favoring the exposure of 

subendothelial tissue and the release of procoagulant mediators (Key et al., 

1990; Russell et al., 1999). Here, however, neither histopathological nor 

ultrastructural examination disclosed any morphological evidence of 

endothelial damage in either of the inoculated groups. 

Analysis of the cell components involved in coagulation pathways 

revealed fibrin deposits and intense platelet aggregation in the pulmonary 
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microvasculature of both groups; these findings were particularly marked in 

the BVDV/BHV1 group at 4 dpi. According to this, in the course of certain 

acute viral infections, platelets may be activated in vivo, leading to their 

degranulation, aggregation and withdrawal from circulation (Boudreaux et al., 

1990a,b; Bautista et al., 2002). The procoagulant activity of BVDV and BHV-

1 has been reported in vitro (Olchowy et al., 1997), being increased in the co-

infected calves of our experimental study due to the concomitance of both 

agents in lung between 2 and 7 dpi; however, at no stage was there any 

evidence of direct interaction between these viruses and platelets. This would 

suggest that platelet activation may be enhanced by indirect mechanisms 

including the expression of inflammatory mediators released by MΦs, which 

are known to play a major role in the maintenance of tissue homeostasis 

(Gordon and Taylor, 2005; Tizard, 2008).  

The study of pro-inflammatory cytokines revealed alterations in the 

kinetics and magnitude of TNFα and IL-1 expression; both these mediators 

can prompt changes in coagulation by increasing the number of endothelial 

adhesion molecules or increasing vascular permeability (Tolcher et al., 1995; 

Tizard, 2008). Thus, coinciding with the onset of platelet aggregation in the 

lungs (2 dpi), calves in the BVH-1 group displayed an increase in IL-1 

synthesis by septal MΦs; this, together with the subsequent action of TNFα, 

would favor maintenance of the procoagulant setting. By contrast, calves in 

the BVDV/BHV1 group, whilst exhibiting a higher number of IMΦs – the 

main producers of these cytokines – displayed inhibited IL-1 expression until 

7 dpi, along with a minimal TNFα response; these results indicate that the 

synergic action of both mediators can be ruled out as a potential mechanism 

for inducing platelet aggregation in co-infected group.  

Calves inoculated only with NCP BVDV (0 dpi for the BVDV/BHV1 

group) displayed greater expression of iNOS by septal MΦs than healthy 
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calves (Adler et al., 1994, 1996; Potgieter, 1995). However, following BHV-1 

inoculation, calves in the BVDV/BHV1 group exhibited an early decline in 

iNOS (1 dpi), an inflammatory mediator that limits the extent and duration of 

pathogen-induced platelet activation (Moore et al., 2011). This finding, 

together with the moderate response of TNFα, may have favored the 

appearance of platelet aggregates in the early stages of the disease, and intense 

aggregation coinciding with the greatest decrease in iNOS levels (4 dpi). 

The intense platelet aggregation observed in lung microvasculature of 

the BVDV/BHV1 group at 4 dpi, together with the increase in number and 

size of PIMs as a result of phagocytic and secretory activation would 

indirectly prompt a slowdown in blood flow and a subsequent response by the 

COX-2 enzyme aimed at reversing that process (Yoon et al., 2009). However, 

in view of the damage observed at later stages, this action was presumably 

unable to counter the procoagulant events associated with the drop in iNOS 

expression, these additionally being enhanced by the delayed action of IL-1 in 

co-infected animals. Slowed blood flow, together with cytokine release, may 

lead to increased vascular permeability and extravasation of leukocytes into 

the pulmonary parenchyma (Tolcher et al., 1995; Feldmann et al., 1996; Law 

et al., 2007; Tizard, 2008). 

With regard to the other immunocompetent cells analyzed in 

interstitial aggregates, a difference was observed between groups in the 

behavior of CD8+ and CD4+ T lymphocytes in response to the secondary 

agent. After BHV-1 inoculation and according to the systemic findings 

(Molina et al., 2011), healthy calves showed at pulmonary level an early 

increase of CD8+ T lymphocytes, cytotoxic cells with a major role in 

preventing the spread of the pathogenic agent (Tizard, 2008). There was also 

an increase in the number of  CD4+ T lymphocytes at 4 dpi, coinciding with 

the detection of BHV-1 and with a marked IFNγ response in the lung; this 
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cytokine is known to have a major antiviral function (Biron and Sen, 2001; 

Samuel, 2001). Taken in conjunction, these results suggest that calves in the 

BHV-1 group develop an adequate adaptive immune response to BHV-1 at 

lung level, contributing to elimination of the virus from 7 dpi. However, 

BVDV pre-infected calves – though displaying greater CD8+ and CD4+ T 

lymphocyte numbers at the time of BHV-1 inoculation – failed to respond to 

the presence of this pathogen in the lung (from 2 dpi); indeed, significant 

lymphocyte depletion was observed from 4 dpi. This inhibition in the 

proliferative response of CD8+ and CD4+ T lymphocytes, also reported in 

other infections with NCP strains of BVDV (Howard et al., 1992), coupled 

with alterations in IFNγ production (Lee et al., 2008; Risalde et al., 2011a,b-

Chapters 1 and 3-), might impair the development of an adaptive immune 

response to the secondary viral agent, thus favoring its persistence in the lung, 

where it was detected until the end of the study (14 dpi).  

A marked decrease in the number of Tγδ+ lymphocytes was observed 

in both inoculated groups from 4 dpi; these cells play a key role in the early 

stages of inflammation, by stimulating the rapid flow of lymphocytes and 

monocytes to the site of infection (Tizard, 2008). Thereby, this inter-group 

similarity suggests that pre-infection with BVDV does not affect the response 

of these cells to BHV-1 in the lung, being more important their role in 

protecting mucosal surfaces (Haas et al., 1993; Bruschke et al., 1998b; Pollock 

and Welsh, 2002). 

On the other hand, the increase in B lymphocyte numbers was more 

marked, and occurred earlier, in calves inoculated with BHV-1 alone. The 

attenuated B-lymphocyte response observed in the BVDV/BHV1 group may 

be linked to marked lymphocyte depletion in BVDV target lymphoid organs, 

lesion already described in these calves (Risalde et al., 2011c-Chapter 2-) and 
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in other in vivo infections with BVDV (Liebler-Tenorio et al., 2003a, 2004; 

Pedrera et al., 2009a,b; Raya et al., 2011).  

 

CCoonncclluussiioonnss  
The results of this study indicate that the concomitance of BVDV and 

BHV-1 in lung enhance a synergic action of their pathogenic mechanisms, 

disrupting the maintenance of pulmonary homeostasis by facilitating the 

establishment of an inflammatory and procoagulant environment, 

characteristic of the BRDC, which appears to be modulated by inflammatory 

mediators released by pulmonary MΦs. Moreover, animals pre-inoculated 

with BVDV - despite suffering a transient infection - exhibit an alteration in 

the response of pro-inflammatory cytokines which play a key role in activating 

the immune response, as well as an impaired local cell-mediated response to 

the secondary respiratory pathogen, marked essentially by an inhibition in the 

response of CD8+ and CD4+ Th1 lymphocytes.  
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1. BVDV infection of colostrum-deprived calves induces a transitory 

and late APR characterized by the production of SAA and Hp in 

serum, as well as moderate inflammatory changes in liver regulated 

by TNFα secreted by hepatic MΦs: Chapter 1.  
 

2. The primary BVDV infection followed by a challenge with BHV-1 

give rise to the earlier development of more intense clinical 

symptoms and inflammatory lesions –limited to lymphoid tissues, 

respiratory and digestive tracts– and more spread of BHV-1 than in 

the single infection with this virus. In addition, the presence of 

BHV-1 favors the persistence of BVDV in target organs, facilitating 

a synergic effect of both agents: Chapter 2.  
 

3. BVDV-infected calves present at systemic level an inhibition of IL-1 

production and greater secretion of TNFα than healthy animals after 

BHV-1 inoculation, leading to an exacerbation of the inflammatory 

response confirmed by an increase of APPs. These calves also 

display an alteration in the Th1 immune response against the 



Inflammatory response in the BVD and its alteration in secondary infections  

 

 
162 

 

secondary agent based on a delay in the IFNγ production and low 

levels of IL-12, thus favoring BHV-1 dissemination: Chapter 3. 
 

4. BVDV pre-infection facilitates the establishment of an inflammatory 

and procoagulant environment in the lung, increasing the vascular 

changes induced by BHV-1 inoculation, which are modulated by 

inflammatory mediators released by pulmonary MΦs. Furthermore, 

BVDV pre-infection gives rise to an impaired local cell-mediated 

response due to an inhibition in the CD8+ and CD4+ Th1 response 

to the secondary respiratory pathogen: Chapter 4. 
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BVDV is an important pathogen of cattle, generating considerable 

economic losses for the livestock industry. This agent has a special tropism for 

cells of the immune system, inducing cell death as an extreme event of the 

infection, or more subtle effects on cytokines and co-stimulatory molecules 

produced by immune or non-immune cells that could affect to both innate and 

adaptive immune response. Thus, BVDV can produce disease on its own and, 

which is perhaps more important, induces a state of immunosuppression that 

predispose calves to infections by other micro-organisms. Consequently, the 

main objective of this work was to contribute to the study of the immune-

evasion strategies of BVDV and the different mechanisms by which primary 

BVDV infections enhance the susceptibility to secondary infections.  

For this purpose, we designed a first experimental model that consisted 

of a single BVDV infection of colostrum-deprived calves with the aim of 

examine the immune response of hepatic MΦs and their relationship with the 

APR during subclinical BVD. Thus, eight colostrum-deprived calves aged 8-

12 weeks were inoculated intranasally with the NCP BVDV-1 strain 7443. 

Two calves were sacrificed at each of 3, 6, 9 and 14 dpi and two UI animals 

were used as negative controls. The presence of BVDV was detected in liver 

by RT-PCR and IHC. The hepatic immune response was analyzed through 
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immunohistochemical study using different monoclonal and polyclonal 

antibodies to detect BVDV (15c5), MΦs (MAC387), B-lymphocytes 

(CD79αcy), T-lymphocytes (CD3, CD4, CD8, WC1), and cytokines (TNFα, 

IL-1α, IL-6 and IFNγ). Serum APP concentrations (Hp, SAA and albumin) 

were determined by ELISA and colorimetric methods.  

Inoculation of these calves results in subclinical infection with 

inflammatory lesions in the liver, such as vascular changes in portal areas, 

along with clusters of mononuclear cells composed mainly of MAC387+ MΦs 

and CD3+ T lymphocytes. BVDV was detected in hepatic MΦs and 

monocytes from 3 to 14 dpi and in KCs from 6 to 14 dpi. 

There were increases in the numbers of KCs, monocytes and interstitial 

CD3+ T lymphocytes in the liver following inoculation with BVDV. These 

changes are accompanied by increased immunohistochemical expression of 

TNFα in hepatic MΦs and transiently increased serum concentrations of SAA 

and Hp at 12 dpi, indicating that there is upregulation of this pro-inflammatory 

cytokine in hepatic MΦs during subclinical BVDV infection in calves. 

 

Once valued the alterations in these cell populations and their influence 

on systemic response, our objective was to study the susceptibility of BVDV-

infected calves against secondary infections. For that, it was proposed a 

second experimental model that included a primary BVDV infection followed 

by a challenge with BHV-1, in order to reproduce the clinical and pathological 

symptoms associated with BRDC. Thus, fourteen calves were inoculated 

intranasally with the NCP strain 7443 of BVDV-1 and twelve days later, when 

the calves did not show clinical signs and viraemia against BVDV, twelve of 

them were challenged with BHV-1.1 Iowa strain (BVDV/BHV1 group). The 

other 2 animals inoculated with BVDV-1 and BHV-1.1-free, were killed 

before BHV-1.1 inoculation (0 dpi) and used as BVDV infection controls. 
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Twelve calves were only inoculated with the BHV-1.1 (BHV1 group). The 

infected calves were sacrificed in batches of two at 1, 2, 4, 7 and 14 dpi. Four 

UI animals were used as controls and sacrificed at end of the study (negative 

control group).  

Clinical examinations were performed daily. Blood and serum samples 

were collected at 0, 3, 6, 9, 12, 15, 18 and 21 hpi, 1, 2, 4, 5, 7, 9, 12 and 14 

dpi. The presence of BVDV and BHV-1 in blood was assessed by PCR. 

BVDV and BHV-1 specific Abs were measured by ELISA and VN, 

respectively. The systemic inflammatory and immune response was analyzed 

through the study of serum concentrations of cytokines (IL-1β, TNFα, IFNγ, 

IL-12, IL-4 and IL-10) measured by ELISA, and serum APPs levels (Hp, SAA 

and fibrinogen) determined by ELISA and colorimetric methods.  

At post-mortem examination, samples collected from lymphoid tissues, 

respiratory tract, digestive tract and nervous system were fixed and routinely 

processed for histopathological and ultrastructural examination. Identification 

of BVDV and BHV-1.1 surface glycoproteins, gp48 and gC respectively, was 

carried out through immunohistochemical study in formalin fixed samples. 
Apoptosis in tissue samples was examined by TUNEL detection method. 

The calves of BHV1 group displayed subclinical infection, while the 

calves of BVDV/BHV1 group presented fever, mucopurulent oculonasal 

discharge, respiratory distress and recurring diarrhea. These results indicate 

that BVDV pre-infection induces more severity of the symptoms prompted by 

BHV-1, and that inoculation of this secondary agent favors the reappearance 

of digestive alterations attributed to BVDV. 

BVDV was not detected in the blood of calves of the BVDV/BHV1 

group at the moment of BHV-1.1 inoculation; by contrast, it was detected 

between 1 and 5 dpi with BHV-1. The presence of BHV-1 was confirmed in 

nasal swabs samples of both inoculated groups from 1 dpi onwards. Viraemia 
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was not detected in the BHV1 group at any stage, the only finding being small 

amounts of viral antigen in the tonsils at 4 dpi. In the BVDV/BHV1 group, by 

contrast, viraemia was detected from 4 dpi onwards, coinciding with the 

appearance of fever and clinical symptoms characteristic of BHV-1 infection, 

together with abundant viral antigen and IIBs in tonsils, associated with 

necrotic lesions due to the cytopathic effect of BHV-1. 

BVDV antigen was only detectable in tissues of the BVDV/BHV1 

group, being present in lymphoid tissues, specifically in the thymus and 

ileocecal lymph node, as well as mucosa-associated lymphoid tissue of the 

ileum and ileocecal valve during very late stages of the disease, a finding not 

reported in studies of calves inoculated with BVDV alone. Moreover, these 

animals displayed lesions prior to BHV-1 infection, including apoptosis-

associated lymphoid depletion in B-dependent areas and thymus. These 

changes were more intense following BHV-1 inoculation, which can also 

induce apoptosis. Thus, it seems that the presence of BHV-1 favors the 

persistence of BVDV in target organs and that the synergic effect of both 

agents would enhance the immunosuppressive action of BVDV.  

Both groups of calves displayed inflammatory alterations in the 

respiratory tract and lymphoid tissues following BHV-1 inoculation, 

characterized by mononuclear infiltrates composed of MΦs, lymphocytes and 

plasmatic cells associated with vascular changes, which were earlier and more 

severe in the BVDV/BHV1 group. This marked inflammatory response in the 

co-infected calves was confirmed by analysis of APPs, which showed an 

increase in SAA protein and fibrinogen, associated with greater secretion of 

TNFα and reduced production of IL-10. However, IL-1β synthesis rather than 

increasing actually declined, avoiding the appearance of a synergic 

proinflammatory effect.  
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After BHV-1 infection, both groups of calves developed a Th1 immune 

response based on IFNγ production and on the absence of IL-4. However, 

differences between groups were apparent with regard to the kinetics and 

magnitude of IFNγ and IL-12 production. In the BHV1 group, IFNγ levels 

rose from the start of the study; this increase, together with an intense 

expression of IL-12, could prevent the distribution of BHV-1 from primary 

replication sites into the blood. In the BVDV/BHV1 group, by contrast, IFNγ 

did not increase until 4 and 5 dpi, coinciding with the detection of BHV-1 in 

blood and with mild IL-12 production, suggesting an inhibition of the 

cytotoxic effect on infected cells at the start of the process.  

On the other hand, prior inoculation of BVDV did not modify the 

development of a BHV-1-specific humoral response in comparison with that 

of healthy animals, detecting neutralizing Abs against BHV-1.1 in both 

inoculated groups at 14 dpi.  

 

BVDV is considered as the main predisposing factor for the occurrence 

of BRDC through an alteration of the immune response, thus favoring the lung 

colonization by other pathogens. There is evidence that combined infections 

with BVDV have a potentiating effect on several pathogens, increasing in a 

more severe form the respiratory disease compared with calves single-

infected. Therefore, the last objective was to clarify the mechanisms 

responsible for histopathological and ultrastructural changes occurring in the 

lung of calves pre-infected with BVDV and challenged later with BHV-1, 

evaluating the role of MΦs and other immunocompetent cells in the 

development of pathological lesions in this organ. For this purpose, pulmonary 

lesions and local immune response were compared between both inoculated 

groups through immunohistochemical studies (Factor-VIII, MAC387, TNFα, 

IL-1α, iNOS, COX-2, CD3, CD79αcy, CD4, CD8 and IFNγ). 
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In the BVDV/BHV1 group, BVDV was detected by molecular 

techniques between 0 and 7 dpi (12-19 dpi BVDV), and BHV-1 was detected 

from 2 to 14 dpi. However, in the BHV1 group, this virus was only detected 

between 4 and 7 dpi.  

The pulmonary parenchyma of inoculated calves was affected by an 

interstitial pneumonia produced by mononuclear aggregates of IMΦs and T 

lymphocytes, which were mostly TCD4+, TCD8+ and Tγδ; a few interspersed 

B cells were also observed. Moreover, both groups presented important 

vascular alterations as fibrin microthrombi and platelet aggregations within the 

blood vessels. These changes were earlier and more severe in the co-infected 

calves, where were associated with occasional alveolar oedema and 

haemorrhages.  

Study of the pro-inflammatory cytokines revealed that BVH-1 group 

displayed an increase in IL-1 synthesis by septal MΦs, that together with the 

subsequent action of TNFα, would favored the onset and maintenance of the 

procoagulant environment. By contrast, BVDV/BHV1 group displayed an 

alteration in the response of these cytokines, presenting a delayed IL-1 

expression, along with a minimal TNFα response, ruling out a synergic action 

of both mediators as a potential mechanism for inducing platelet aggregation 

in these calves. In this regard, BVDV pre-infected calves showed after BHV-1 

inoculation a higher decline in iNOS expression, which acts limiting the action 

of pathogen-induced platelet activation; in fact, the greatest decrease of this 

enzyme coincided with the most severe coagulation lesions (4 dpi). This 

intense platelet aggregation, together with an increase in number and size of 

PIMs by their phagocytic and secretory activation, would indirectly prompt a 

slowdown in blood flow and a subsequent response by the COX-2 enzyme, 

which action was unable to counter the procoagulant events. These results 

indicate that the concomitance of BVDV and BHV-1 in lung produces a 
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greater disruption of pulmonary homeostasis by facilitating the establishment 

of an inflammatory and procoagulant environment modulated by 

inflammatory mediators released by pulmonary MΦs.  

With regard to the other immunocompetent cells studied in interstitial 

aggregates, calves infected with BHV-1 alone showed a greater number of B 

lymphocytes than the co-infected calves, which attenuated response may be 

linked to B cells depletion in BVDV target lymphoid organs.  

T lymphocytes response was characterized by differences in the CD8+ 

and CD4+ lymphocytes, not affecting the BVDV pre-infection to Tγδ+ 

lymphocytes response against BHV-1 in the lung. Thus, the calves of the 

BHV1 group developed an adequate adaptive immune response to BHV-1 in 

lung, based on an increase of CD8+ and CD4+ T lymphocytes, as well as a 

marked IFNγ response, which contributed to virus elimination from 7 dpi. 

However, BVDV pre-infected calves, despite displaying greater numbers of 

these cells before BHV-1 inoculation, exhibited an impaired local cell-

mediated response to the presence of BHV-1, marked by an inhibition in the 

response of CD8+ and CD4+ Th1 lymphocytes.  
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El virus de la diarrea vírica bovina (VDVB) es un importante patógeno 

del ganado vacuno que genera considerables pérdidas económicas en la 

industria ganadera. Este agente tiene un especial tropismo por células del 

sistema inmune, induciendo la muerte celular como efecto extremo de la 

infección, o alteraciones más sutiles sobre las citoquinas y otras moléculas co-

estimuladoras producidas por células inmunes o no inmunes que podrían 

afectar tanto a la respuesta inmune innata como a la adaptativa. Por lo tanto, 

VDVB puede producir enfermedad por sí mismo y, lo que es más importante, 

inducir un estado de inmunosupresión que predispone a la infección por otros 

microorganismos. El objetivo principal de este trabajo fue contribuir al estudio 

de las estrategias de evasión del VDVB ante el sistema inmune y de los 

diferentes mecanismos por los que las infecciones primarias con este virus 

aumentan la susceptibilidad a infecciones respiratorias secundarias. 

Con este fin, diseñamos un primer modelo experimental que consistió 

en la infección de terneros no encalostrados con el VDVB con el objetivo de 

estudiar la respuesta inmune local de los MΦs hepáticos ante esta infección y 

su relación con la respuesta de fase aguda (RFA). Para ello, ocho terneros no 

encalostrados de 8-12 semanas fueron inoculados intranasalmente con la cepa 
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7443 del VDVB-1 NCP y sacrificados en grupos de dos a los  3, 6, 9 y 14 dpi. 

Además, 2 terneros no inoculados fueron utilizados como controles negativos 

de la infección y sacrificados al final de la experiencia. La presencia del 

VDVB fue detectada en el hígado por RT-PCR e inmunohistoquímica (IHQ). 

Para analizar la respuesta inmune hepática se utilizó el estudio 

inmunohistoquímico mediante diferentes anticuerpos monoclonales y 

policlonales para detectar VDVB (15c5), MΦs (MAC387), linfocitos B 

(CD79αcy), linfocitos T (CD3, CD4, CD8, WC1) y citoquinas (TNF α, IL-1α, 

IL-6 e IFN). Las concentraciones séricas de diferentes proteínas de fase aguda 

(PFAs) (haptoglobina –Hp-, amiloide A del suero –AAS- y albúmina) se 

determinaron por ELISA y métodos colorimétricos. 

La infección de estos terneros dio lugar a una enfermedad subclínica 

con lesiones inflamatorias en hígado, tales como cambios vasculares y 

agregados monucleares en áreas periportales, constituidos por MΦs MAC387+ 

y linfocitos T CD3+. El VDVB fue detectado en MΦs hepáticos y monocitos 

desde los 3 dpi y en las células de Kupffer (CKs) desde los 6 dpi. 

Además, tras la inoculación con el VDVB se observó un aumento en el 

número de CKs, monocitos y linfocitos T intersticiales CD3+. Estos cambios 

estuvieron acompañados de un aumento en la expresión inmunohistoquímica 

de TNFα en MΦs hepáticos y una respuesta transitoria en las concentraciones 

séricas de AAS y Hp a los 12 dpi, lo que indica que existe una respuesta de 

esta citoquina pro-inflamatoria por parte de los MΦs hepáticos durante la 

infección subclínica del VDVB. 

 

Una vez valoradas las alteraciones en estas poblaciones celulares y su 

influencia en la respuesta sistémica, nuestro objetivo fue estudiar la 

susceptibilidad de los terneros infectados con el VDVB ante infecciones 
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secundarias. De este modo, se propuso un segundo modelo experimental que 

incluía una infección primaria por el VDVB seguida de una infección 

secundaria con el herpesvirus bovino 1 (HVB-1), con el fin de reproducir los 

síntomas clínicos y patológicos asociados al complejo respiratorio bovino 

(CRB). Para ello, 14 terneros fueron inoculados intranasalmente con la cepa 

7443 del VDVB-1 NCP y doce días después, cuando los terneros no mostraron 

signos clínicos de enfermedad ni viremia frente al VDVB, 12 de ellos fueron 

inoculados con la cepa Iowa del HVB-1.1 (grupo VDVB/HVB1). Los otros 2 

animales, inoculados con el VDVB y libres del HVB-1.1, fueron sacrificados 

antes de la inoculación con el HVB-1.1 (0 dpi) y utilizados como controles 

para el grupo pre-infectado con el VDVB. Otro grupo de 12 terneros fueron 

inoculados solamente con el HVB-1.1 (grupo HVB1). Los terneros infectados 

fueron sacrificados en grupos de dos a los 1, 2, 4, 7 y 14 dpi. Por otro lado, 4 

terneros no infectados fueron utilizados como controles negativos y 

sacrificados al final del estudio (grupo control negativo). 

El examen clínico de los terneros fue realizado diariamente. Las 

muestras de sangre y el suero se recolectaron a las 0, 3, 6, 9, 12, 15, 18 y 21 

hpi, 1, 2, 4, 5, 7, 9, 12 y 14 dpi. La presencia del VDVB y el HVB-1 en sangre 

se determinó mediante PCR. Los anticuerpos específicos frente al VDVB y 

HVB-1 se examinaron por ELISA y seroneutralización, respectivamente. La 

respuesta inflamatoria sistémica e inmune se analizó a través del estudio de las 

concentraciones séricas de citoquinas (IL-1β, TNFα, IFNγ, IL-12, IL-4 e IL-

10) medidas por ELISA y de PFAs (Hp, AAS y fibrinógeno) determinadas por 

ELISA y métodos colorimétricos. 

En el examen post-mortem, las muestras obtenidas de tejidos linfoides, 

tracto respiratorio, tracto digestivo y sistema nervioso fueron fijadas y 

procesadas rutinariamente para su estudio histopatológico y ultraestructural. 
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La identificación de las glicoproteínas de superficie del VDVB y HVB-1, 

gp48 y gC respectivamente, se llevó a cabo por IHQ de las muestras fijadas en 

formol. La determinación de apoptosis en tejidos fue realizada por el método 

de detección de TUNEL. 

Los terneros del grupo HVB1 mostraron una infección subclínica, 

mientras que los del grupo VDVB/HVB1 presentaron fiebre, secreción 

oculonasal mucopurulenta, dificultad respiratoria y diarrea recurrente. Estos 

resultados indican que la pre-infección con el VDVB induce síntomas más 

severos asociados al HVB-1,  y que la inoculación de este agente secundario 

favorece la reaparición de los signos digestivos atribuidos al VDVB. 

El VDVB no fue detectado en la sangre de los terneros del grupo 

VDVB/HVB1 en el momento de la inoculación con el HVB-1, en cambio, se 

detectó entre los 1 y 5 dpi HVB-1. La presencia del HVB-1 fue confirmada en 

muestras de hisopos nasales de ambos grupos inoculados a partir del 1 dpi. La 

viremia no se detectó en el grupo HVB1 en ningún momento, siendo el único 

hallazgo una pequeña cantidad de antígeno vírico en las tonsilas a los 4 dpi 

detectada por IHQ. En el grupo VDVB/HVB1, por el contrario, la viremia se 

detectó a partir de los 4 dpi, coincidiendo con la aparición de fiebre y los 

síntomas clínicos característicos de la infección por el HVB-1, junto con una 

abundante cantidad de antígeno vírico y cuerpos de inclusión en las tonsilas, 

asociados con lesiones necróticas por el efecto citopático del HVB-1. 

El antígeno del VDVB sólo se detectó en los tejidos del grupo 

VDVB/HVB1, estando presente en tejidos linfoides, especialmente en nódulos 

linfáticos ileocecales, timo y tejido linfoide asociado a la mucosa de la válvula 

ileocecal y del íleon en fases muy avanzadas de la enfermedad, hallazgo que 

no se encontró en otros estudios con inoculaciones simples del VDVB. Por 

otra parte, estos animales mostraron lesiones previas a la inoculación con el 
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HVB-1, incluyendo apoptosis asociada a la depleción linfocitaria en las zonas 

B dependientes y timo. Estos cambios fueron más intensos tras la inoculación 

con el HVB-1, el cual también puede inducir apoptosis. Por lo tanto, parece 

que la presencia de HVB-1 favorece la persistencia del VDVB en sus órganos 

diana y que el efecto sinérgico estos agentes potencia la acción 

inmunosupresora del VDVB. 

Los dos grupos de animales muestran alteraciones inflamatorias en el 

tracto respiratorio y los órganos linfoides tras la inoculación con el HVB-1, 

caracterizadas por un infiltrado mononuclear compuesto de MΦs, linfocitos y 

células plasmáticas asociados con cambios vasculares anteriores y más graves 

en el grupo VDVB/HVB1. Esta marcada respuesta inflamatoria en los 

animales co-infectados fue confirmada por el estudio de PFAs, observándose 

un incremento de la proteína SAA y el fibrinógeno, asociado con una mayor 

secreción de TNFα y una reducción de la IL-10. Sin embargo, la síntesis de 

IL-1β disminuyó, evitando la instauración de un efecto pro-inflamatorio 

sinérgico entre estas citoquinas. 

Tras la infección con el HVB-1, los dos grupos desarrollaron una 

respuesta inmune Th1 con la producción de IFNγ y la ausencia de IL-4. Sin 

embargo, las diferencias entre grupos fueron evidentes con respecto a la 

cinética y magnitud de respuesta del IFNγ y la IL-12. Así, en el grupo HVB1, 

los niveles de IFNγ fueron elevados desde el inicio del estudio; este fenómeno, 

junto con la intensa expresión de la IL-12, podría prevenir la diseminación del 

HVB-1 desde los sitios de replicación primaria a sangre. En el grupo 

VDVB/HVB1, por el contrario, el IFNγ no aumentó hasta los 4-5 dpi, 

coincidiendo con la detección de HVB-1 en sangre y con una ligera respuesta 

de la IL-12, lo que sugiere una inhibición de la acción citotóxica de estos 

mediadores frente a las células infectadas en el inicio del proceso. 
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Por otra parte, la pre-infección con el VDVB no alteró el desarrollo de 

una respuesta humoral específica frente al HVB-1, detectándose anticuerpos  

neutralizantes en ambos grupos inoculados a los 14 dpi. 

 

El VDVB es considerado como el principal factor predisponente en la 

aparición del CRB, dando lugar a una alteración de la respuesta inmune del 

hospedador para favorecer la colonización pulmonar por otros patógenos 

respiratorios. Existen evidencias de que las infecciones combinadas con el 

VDVB tienen un efecto potenciador sobre otros patógenos, aumentando en 

una forma más severa la enfermedad respiratoria. Por lo tanto, el último 

objetivo consistió en aclarar los mecanismos responsables de los cambios 

histopatológicos y ultraestructurales que ocurren en el pulmón de terneros pre-

infectados con el VDVB e inoculados más tarde con el HVB-1, así como 

evaluar el papel de los MΦs y otras células inmunocompetentes en el 

desarrollo de lesiones patológicas en este órgano. Para ello, las lesiones 

pulmonares y la respuesta inmune local fueron comparadas entre ambos 

grupos inoculados por IHQ mediante diferentes anticuerpos monoclonales y 

policlonales (Factor-VIII, MAC387, TNFα, IL-1α, iNOS, COX-2, CD3, 

CD79αcy, CD4, CD8 e IFNγ). 

En el grupo VDVB/HVB1, el VDVB fue detectado mediante técnicas 

moleculares entre los 0 y los 7 dpi (12-19 dpi VDVB) y el HVB-1 a partir de 

los 2 dpi. Sin embargo, en el grupo HVB1, este virus sólo se detectó entre los 

4 y los 7 dpi. 

El parénquima pulmonar de los terneros inoculados se vio afectado 

por una neumonía intersticial producida por agregados mononucleares de MΦs 

intersticiales y linfocitos T, principalmente CD4+, CD8+ y Tγδ, además de 

algunas células B. Por otra parte, ambos grupos presentaron importantes 
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alteraciones vasculares como la presencia de microtrombos de fibrina y 

numerosos agregados plaquetarios en vasos sanguíneos del pulmón. Estos 

cambios se presentaron de forma más temprana y severa en los animales co-

infectados, donde además se asociaron a la presencia ocasional de edema 

alveolar y hemorragias. 

El estudio de las citoquinas pro-inflamatorias reveló que los terneros 

del grupo HVB1 mostraron un aumento en la síntesis de IL-1 por MΦs 

septales, lo que unido a la acción posterior del TNFα favoreció la aparición y 

el mantenimiento de un ambiente procoagulante. Por el contrario, los terneros 

del grupo VDVB/HVB1 mostraron una alteración en la respuesta de estas 

citoquinas, basada en una expresión retrasada de la IL-1 y una mínima 

respuesta del TNFα, descartando una acción sinérgica entre ambos mediadores 

como mecanismo potencial para inducir la agregación plaquetaria en estos 

terneros. En este sentido, los terneros pre-infectados con el VDVB mostraron 

tras la inoculación con el HVB-1 una mayor disminución en la expresión de 

iNOS por los MΦs septales, enzima que actúa limitando la acción de 

patógenos inductores de la activación plaquetaria, coincidiendo su mayor 

descenso con una mayor presencia de fenómenos de coagulación (4 dpi). Esta 

intensa agregación plaquetaria, junto con el aumento en número y tamaño de 

los MΦs intravasculares pulmonares debido a su activación fagocítica y 

secretora, provocaría indirectamente un enlentecimiento del flujo sanguíneo y 

una posterior respuesta de la enzima COX-2, cuya acción fue incapaz de 

contrarrestar los mecanismos procoagulantes. Estos resultados indican que la 

concomitancia del VDVB y del HVB-1 en pulmón produce una mayor 

alteración en la homeostasis pulmonar, facilitando la creación de un ambiente 

inflamatorio y procoagulante modulado por mediadores inflamatorios 

liberados por los MΦs pulmonares. 
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Con respecto a las otras células inmunocompetentes que formaron 

parte de los agregados intersticiales, los terneros infectados solamente con el 

HVB-1 mostraron un mayor número de linfocitos B que los terneros co-

infectados, cuya respuesta pudo estar atenuada por la marcada depleción de 

estas células en los órganos linfoides diana del VDVB. 

La respuesta de los linfocitos T se caracterizó por las diferencias entre 

los linfocitos T CD8+ y CD4+, no afectando la pre-infección con el VDVB a 

la respuesta frente al HVB-1. Así, los terneros del grupo HVB1 desarrollaron 

una adecuada respuesta inmune adaptativa ante el HVB-1 en pulmón, 

caracterizada por un aumento de los linfocitos T CD8+ y CD4+, así como una 

marcada respuesta del IFNγ, lo que contribuyó a la eliminación del virus a 

partir de los 7 dpi. Sin embargo, los terneros pre-infectados con el VDVB, 

pese a mostrar un mayor número de estas células antes de la inoculación con 

el HVB-1, presentaron una alteración de la respuesta inmune local 

celulomediada ante la presencia del HVB-1, marcada por una inhibición en la 

respuesta de los linfocitos T CD8+ y CD4+ Th1. 
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