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1 Introduction

There has been a recent resurgence in supersymmetric AdS3 backgrounds in string the-
ory. This is partly because two-dimensional CFTs provide an excellent testing ground for
AdS/CFT since they are generally more tractable than their higher dimension cousins.
Moreover, with the recent advent of c-extremization [1, 2] it has become possible to com-
pute the central charges of strongly coupled two-dimensional IR fixed points using just
UV data. The analogous extremization principle in gravity [3–5]1 has been understood for
backgrounds with only five-form flux [7]. However, since c-extremization works indepen-
dently of the brane construction of the 2d SCFT it is natural to conjecture that there are
similar extremization principles for all AdS3 backgrounds in string and M-theory preserving
N = (0, 2) supersymmetry.

1See [6] for a proof of c-extremization and its geometric dual for toric theories.
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Progress in understanding the geometric dual of c-extremization was only made possi-
ble after the underlying geometry of the class of solutions consisting of just five-form flux
was classified in [7] and further studied in [8]. To make progress in extending the geometric
dual of c-extremization to more general classes of AdS3 solutions one must thus first derive
the sufficient and necessary conditions for preserving supersymmetry à la [7]. This is the
motivation behind this paper and we classify all supersymmetric AdS3 solutions of type
IIB supergravity preserving N = (0, 2) with arbitrary flux configurations and an SU(3)
structure.

Many works have been produced in classifying and studying AdS3 solutions, whether
in string theory or M-theory, yet a unified result for type IIB supergravity with arbitrary
fluxes, N = (0, 2) supersymmetry and a dynamical SU(3) structure was until now lack-
ing. Various aspects of type IIB supergravity with an AdS3 factor have been discussed
in [7, 9–13]. Solutions preserving N = (0, 2) have been considered in [7, 9, 12]. The first
considers purely five-form flux configurations. Whilst the latter two include additional
fluxes, they are not the most general configurations possible. In [10] N = (0, 4) solutions
with five-form flux and varying axio-dilaton were considered and [11] considered N = (2, 2)
geometries with pure NS-NS flux. This work is an extension of all these results. Finally [13]
considered N = (0, 1) solutions with a particular choice of three-form flux. By making a
suitable ansatz later, they find a class of N = (0, 2) solutions generalizing [7, 9, 12], this
class will be recovered as a special case of our results. Solutions of these various classifica-
tions can also be found in [14–17], see also [18] for some TsT-dual solutions.

Important results in other supergravity theories for AdS3 solutions have also been
made. In massive type IIA N = (0, 4) solutions have been classified and their field theories
investigated in [19–23]. Further work for type IIA can be found in [24, 25]. Results
for Heterotic supergravity can be found in [26], whilst results in M-theory can be found
in [27, 28].

In this work we shall classify all N = (0, 2) solutions of type IIB supergravity with
arbitrary fluxes where the internal manifold admits an SU(3) structure. We shall not make
any assumptions on the form of the fluxes at any point in this work. The necessary and
sufficient conditions for supersymmetric solutions are phrased in terms of torsion conditions
for spinor bilinears after employing the G-structure formalism [29]. In seven dimensions
and with an SU(3) structure imposed, this is determined by three differential conditions
determining a one-form, a real two-form and a complex three-form. The vector dual to the
one-form foliates the internal manifold and therefore we reduce the torsion conditions on
to this base space. In general the base is complex but it need not be (conformally) Kähler.
It does however satisfy the weaker (conformally) balanced condition.

The paper is organised as follows. In section 2 we derive the torsion conditions for
an arbitrary G-structure. We specialise the G-structure to a dynamical SU(3) structure in
section 3 and derive the necessary and sufficient conditions for a supersymmetric solution.
The analysis must be split into three classes depending on the scalar bilinears which deter-
mine whether the dynamical SU(3) structure reduces to a strict one. Some representative
examples of solutions are given in section 4 among which is a new infinite class of solutions.
We conclude in section 5. We have relegated some technical material and useful identities
to two appendices.
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2 Conditions for supersymmetry in seven dimensions

In this section we begin our journey of finding supersymmetric AdS3 solutions of type IIB
with generic fluxes. We construct the most general ansatz for the metric and fluxes pre-
serving SO(2, 2) symmetry and reduce the ten-dimensional supersymmetry variations onto
a seven-dimensional internal space X7. We present the reduced supersymmetry equations
that will form the starting point of our analysis.

By using G-structure techniques we will analyse the necessary and sufficient condi-
tions for the preservation of supersymmetry by reformulating the supersymmetry equa-
tions, (2.7)–(2.9), in terms of both algebraic and differential conditions on a set of differ-
ential forms constructed from spinor bilinears defined in table 1. We spare the reader the
tedious details of the derivation and present just the results. We have added a parameter
α = ± which determines the chirality of the preserved supersymmetry on the boundary
of AdS. We have included the higher form torsion conditions for completeness despite the
fact that they are typically implied by the lower form ones.

Since we will specialise to the case of N = (0, 2) supersymmetry, one expects the exis-
tence of an R-symmetry vector. This is a Killing vector of the full solution both metric and
fluxes and is holographically dual to the R-symmetry of a putative SCFT dual. We show
that such a Killing vector always exists for solutions preserving N = (0, 2) supersymme-
try. We end the section by showing which equations of motion and Bianchi identities are
implied by supersymmetry and which need to be imposed by hand.

2.1 Reduced supersymmetry equations

The focus of this work is to find N = (0, 2) supersymmetric bosonic backgrouds of type
IIB supergravity2 fully preserving an SO(2, 2) symmetry. The ten-dimensional metric in
Einstein frame is taken to be the warped product

ds2
10 = e2∆(ds2(AdS3) + ds2(X7)

)
, (2.1)

where ∆ ∈ Ω0(X7,R). The metric on AdS3 has been normalised such that Rab = −2m2gab,
with m an arbitrary length scale related to the cosmological constant of AdS space. The
remaining fluxes are expanded as

F (5) = (1 + ?10)F ∧ dvol(AdS3) , G(3) = GAdSdvol(AdS3) +G , (2.2)

with F ∈ Ω(2)(X7,R), GAdS ∈ Ω(0)(X7,C) and G ∈ Ω(3)(C). Moreover the axio-dilaton is
taken to be a complex function of X7 only. The reduction of the flux Bianchi identities
and equations of motion with this ansatz are:

dF = Im[GAdSG
∗] , d ? F = i

2G ∧G
∗ , (2.3)

DG= −P ∧G∗, DGAdS = −G∗AdSP , D(e4∆ ? G) = e4∆P ∧ ?G∗+ iGAdS ? F− iF ∧G .
2We shall follow the conventions for type IIB supergravity as given in [30], to which we refer the reader

for further details. In particular we will work in Einstein frame and use the formalism where the SU(1, 1)
symmetry of type IIB is realised linearly.
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To proceed we must decompose the two ten-dimensional Majorana-Weyl Killing
spinors, εi of type IIB supergravity under

Spin(1, 9)→ Spin(1, 2)× Spin(7) . (2.4)

We take
εi = ψ ⊗ e

∆
2 χi ⊗ θ , ε = ε1 + iε2 ≡ ψ ⊗ e

∆
2 ξ ⊗ θ , (2.5)

where χi are Spin(7) Majorana spinors, θ is a two-component constant spinor satisfying
σ3θ = −θ and ψ is a Spin(1, 2) Majorana spinor on AdS3 satisfying

∇µψ = αm

2 γµψ . (2.6)

The parameter α = ±1 and corresponds to the chirality of the preserved supersymmetry on
the boundary of AdS. For each choice of α there are two distinct Majorana Killing spinors
satisfying (2.6). In general a solitary Dirac spinor ξ will preserveN = (0, 1) supersymmetry,
however this is enhanced to N = (0, 2) when the Killing spinor equation decouples ξ from
its charge conjugate in the reduced supersymmetry variations, see for example [9]. We make
further comments about the G-structure and preserved supersymmetry in section 3.1.

With this spinor decomposition the ten-dimensional Killing spinor equations reduce to
the following Killing spinor equations on X7:

0 = γµPµξ
c + e−2∆

4
(
/G− iGAdS

)
ξ , (2.7)

0 =
(

1
2∂µ∆γµ − iαm

2 + e−4∆

8
/F

)
ξ − e−2∆

16
(
3iGAdS + /G

)
ξc , (2.8)

0 =
(
Dµ + iαm

2 γµ −
e−4∆

8 Fν1ν2γ
ν1ν2

µ

)
ξ + e−2∆

4

(
iGAdSγµ + 1

2Gµν1ν2γ
ν1ν2

)
ξc . (2.9)

Simple manipulations of (2.7) show that if G vanishes then necessarily so does GAdS. If
this is the case then we fall within the class of geometries considered in [7, 12] and thus we
shall restrict to G 6= 0.

2.2 Torsion conditions and general analysis

In this section we give the torsion conditions for the spinor bilinears defined in table 1.
These are computed from the supersymmetry equations (2.7)–(2.9).

Bilinear definitions. We shall use the notation γ(n) to denote Clifford contraction.
Table 1 defines all the possible spinor bilinears. Higher order forms are given by the Hodge
star of the defined bilinears. It is then simple, but slightly tedious, to compute the torsion
conditions using (2.7)–(2.9) and some gamma matrix identities.3

3One could use the mathematica package [31] to check the conditions given here.
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Scalars Sij ≡ ξ̄iξj Aij ≡ ξ̄ci ξj
One-forms Kij ≡ ξ̄iγ(1)ξj Bij ≡ ξ̄ci γ(1)ξj

Two-forms Uij ≡ ξ̄iγ(2)ξj Vij ≡ ξ̄ci γ(2)ξj

Three-forms Xij ≡ ξ̄iγ(3)ξj Yij ≡ ξ̄ci γ(3)ξj

Table 1. Definition of the spinor bilinears.

Scalar conditions.

dRe [Sij ] = −m2 (αi − αj)Im [Kij ] , (2.10)

e−4∆d(e4∆Im [Sij ]) = −3m
2 (αi − αj)Re [Kij ]− e−2∆Re [GAdSB

∗
ij ] + e−4∆iIm[Kij ]F ,

(2.11)

e−2∆D(e2∆Aij) = − im
2 (αi − αj)Bij −A∗ijP . (2.12)

One-form conditions. The one-form equations are4

e−4∆d
(
e4∆Re [Kij ]

)
=m(αi + αj)Im [Uij ]− e−4∆ Re[Sij ]F , (2.13)

e−4∆d
(
e4∆ Im[Kij ]

)
=−m(αi + αj) Re[Uij ]− e−4∆ Im[Sij ]F −

e−2∆

2 Re[G∗AdSVij ]

− e−2∆

2 Im[iBijG∗]−
e−2∆

2 Re[iVij ? G∗] (2.14)

e−2∆D(e2∆Bij) =P ∧B∗ij − ie−2∆iIm[Kij ]G . (2.15)

Two-form conditions.

e−4∆d(e4∆ Im[Uij ]) =− m

2 (αi − αj) Re[Xij ] + e−2∆ Im[A∗ijG] , (2.16)

e−4∆d(e4∆ Re[Uij ]) = m

2 (αi − αj) Im[Xij ] + 1
2e−2∆ Im[iBij ? G∗] + e−2∆

2 Re[i(1)
Vij
G∗] ,

(2.17)

e−6∆D(e6∆Vij) =− 3im
2 (αi − αj)Yij + e−4∆F ∧Bij + P ∧ V ∗ij

− ie−2∆GAdS Re[Xij ]− ie−2∆ Im[Sij ]G+ e−2∆iIm[Kij ] ? G . (2.18)

4Our convention for contractions of p-forms into q-forms, (p ≤ q) is

iT (p)T
(q) = 1

p!T
(p)
µ1..µp

T
(q)µ1..µp

µp+1...µq dxµp+1 ∧ dxµq 1
(q − p)! .

We will also need notation for the contraction of a single index of a p-form into a q-form and their higher
order generalisations. We shall define the notation i(n)

T (p)T
(q) to mean contract the last n indices of T (p) into

the first n indices of T (q), including the correct numerical factors.
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Three-form conditions.

e−8∆d(e8∆ Im[Xij ]) = 2m(αi + αj) ? Im[Xij ]− e−4∆F ∧ Im[Uij ]
− e−2∆ ? Im[GAdSY

∗
ij ] + e−2∆ ? Re[AijG∗] , (2.19)

e−4∆d(e4∆ Re[Xij ]) =− e−4∆iIm[Kij ] ? F + e−2∆ Re[Bij ∧G∗] , (2.20)

e−6∆D(e6∆Yij) =m(αi + αj) ? Yij − e−2∆G ∧ Re[Kij ] + ie−2∆ Re[Sij ] ? G− P ∧ Y ∗ij .
(2.21)

Four-form conditions.

e−8∆d(e8∆ ? Im[Xij ]) =− 3m
2 (αi − αj) ? Re[Uij ] , (2.22)

e−4∆d(e4∆ ? Re[Xij ]) =− m

2 (αi − αj) ? Im[Uij ] + e−4∆i
(1)
F ? Re[Uij ]

+ e−2∆ Im[G ∧ V ∗ij ] + e−2∆ ? Im[GAdSV
∗
ij ] , (2.23)

e−6∆D(e6∆ ? Yij) =− im
2 (αi − αj) ? Vij − P ∧ ?Y ∗ij − e−4∆Aij ? F − e−2∆G ∧ Im[Uij ].

(2.24)

Five-form conditions.

e−4∆d(e4∆ ? Im[Uij ]) =−m(αi + αj) ? Re[Kij ] + e−2∆ Re[G ∧ Y ∗ij ] + e−4∆F ∧ ? Im[Xij ] ,
(2.25)

e−8∆d(e8∆ ? Re[Uij ]) =−m(αi + αj) ? Im[Kij ] , (2.26)
e−6∆D(e6∆ ? Vij) = e−2∆GAdS ? Im[Kij ] + P ∧ ?V ∗ij + ie−2∆G ∧ Re[Xij ]

+ e−4∆i
(1)
F ? Bij . (2.27)

Six-form conditions.

e−12∆d(e12∆ ? Re[Kij ]) = 5m
2 (αi − αj) Im[Sij ]dvol(X7) + e−2∆ Im[G∗AdSAij ]dvol(X7)

(2.28)

e−8∆d(e8∆ ? Im[Kij ]) = −m2 (αi − αj) Re[Sij ]dvol(X7) (2.29)

e−10∆D(e10∆ ? Bij) = −3im
2 (αi − αj)Aijdvol(X7)− P ∧ ?B∗ij . (2.30)

Algebraic equations. Moreover the differential conditions are supplemented with a
number of algebraic conditions that can be derived from (2.7) and (2.8):

Pµ Im[Kij ]µ = 0 , (2.31)

∂µ∆ Im[Kij ]µ = −m2 (αi − αj) Re[Sij ] , (2.32)

2m(αi + αj) Im[Sij ] = −e−4∆iRe[Uij ]F , (2.33)

e−2∆ Re[Sij ]GAdS = −m(αi + αj)Aij , (2.34)
iIm[Xij ]G = Re[Sij ]GAdS , (2.35)

– 6 –
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iB∗
ij
P = e−2∆

4 (iRe[Xij ]G+ Im[Sij ]GAdS) , (2.36)

4e2∆iRe[Kij ]P = iYijG− iGAdSAij , (2.37)

A∗ijP − iPV ∗ij = −e−2∆

4 (iUijG+ i iXij ? G− iGAdSKij) , (2.38)

−Re[Sij ]P − iP Im[Uij ] = ie−2∆

4 iYij ? G , (2.39)

Im[Sij ]P − iP Re[Uij ] = e−2∆

4 (iVijG− iGAdSBij) , (2.40)

Im[Sij ]d∆− e−4∆

4 iIm[Kij ]F = e−2∆

8 (− Im[iVijG∗]− 6 Re[B∗ijGAdS]) . (2.41)

In the above torsion conditions we have allowed for the existence of more than one
Killing spinor and therefore are preserving at least N = (0, 2) supersymmetry. Instead if
one wants to make contact with the N = (0, 1) classification of [13] one should impose the
existence of a single Dirac Killing spinor. With a little work, and by switching off GAdS,
one can derive the conditions presented there. Note that setting GAdS = 0 is equivalent to
requiring Aij = 0 , ∀i, j. If we decompose the Dirac spinor into the Majorana spinors χi
in equation (2.5) the condition that Aij = 0 is equivalent to the two Majorana spinors χi
having equal norm |χ1| = |χ2|, which is indeed the additional condition imposed in [13].

2.3 Killing vector

We shall show in this subsection that geometries admitting at least two Killing spinors
preserving the same boundary chirality supercharges, necessarily have a universal Killing
vector which we call the R-symmetry vector in keeping with the literature. The R-symmetry
vector is a symmetry of the full solution, not only of the metric. Recall that in the vanishing
G case only one Dirac Killing spinor was needed to define such a universal Killing vector,
the inclusion of three-form flux gives an obstruction to this here. In principle, by a judicious
choice of fluxes, such as in [9], one could make the vector field Kii a Killing vector. This
fine tuning will not lend itself to a general analysis and therefore we shall not analyse this
choice of flux further.

The supersymmetry conditions imply

∇(µ Im[Kij ]ν) = m

2 (α1 − α2)gµν Re[Sij ] , (2.42)

and therefore for α1 = α2, (i.e. N = (0, 2)) the vector dual to the one-form Im[K12] is a
Killing vector.

We have thus shown that there always exists a Killing vector generating a symmetry
of the metric for any N = (0, 2) preserving G-structure. To substantiate our claim that
this Killing vector is dual to the R-symmetry of the field theory we must now show that
this Killing vector is a symmetry of the full solution, i.e.

LIm[Kij ]F = LIm[Kij ]G = LIm[Kij ]GAdS = LIm[Kij ]P = LIm[Kij ]∆ = 0 . (2.43)

– 7 –
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The algebraic conditions (2.31) and (2.32) imply that iIm[Kij ]P = 0 and iIm[Kij ]d∆ = 0,
from which it follows immediately that both ∆ and τ have vanishing Lie derivatives along
the R-symmetry vector.

Taking the gauged derivative of equation (2.15) and using the Bianchi identity for G
implies that LIm[Kij ]G = 0. Finally taking the exterior derivative of (2.33) and using the
Bianchi dientity for F implies LIm[Kij ]F = 0.

We conclude that Im[Kij ] defines an R-symmetry vector preserving the full solution
provided the Bianchi identities for F and G hold.

2.4 Bianchi identities and equations of motion

We must check which equations of motion and Bianchi identities are automatically implied
by supersymmetry. In the case of trivial three-form fluxes all but the equation of motion
for the two-form F was implied by supersymmetry. Instead the equation of motion for F
needed to be imposed separately and is equivalent to imposing the master equation [7, 9, 12].
As in the aforementioned cases the Einstein equation and equation of motion for the axio-
dilaton are implied by supersymmetry here. Only the F and G flux Bianchi identities and
equations of motion need further consideration. We shall see that there are two cases that
we need to consider depending on whether GAdS is vanishing or not. In the generic case
when GAdS 6= 0 we find that all the equations of motion and Bianchi identities are imposed
provided that the Bianchi identity for G is satisfied. In particular the equation of motion
for F is automatically satisfied. Instead when GAdS = 0 we find that imposing the Bianchi
identity for G is not sufficient and one must also impose the equation of motion for the
two-form F which amounts to imposing the master equation derived in [13] or one of the
less general ones in [7, 9, 12] depending on the choice of fluxes.

Integrability of the torsion conditions implies the following relations between the equa-
tions of motion and Bianchi identities:

AijFEOM = −e2∆GBianchi ∧ Im[Uij ] , (2.44)
i Re[Sij ]GEOM = e4∆GBianchi ∧ Re[Kij ] . (2.45)

In addition the Bianchi identity for F (2.3) is imposed by (2.13) and (2.16) whilst the
Bianchi identity for GAdS is imposed by (2.12) and (2.34).

The result of this analysis shows that imposing the G Bianchi identity implies that the
G equation of motion is always satisfied and in addition when GAdS 6= 0 the equation of
motion for F is also satisfied. On the other hand when GAdS = 0 we find that one must
impose the equation of motion for F in addition, which as we shall see later, is equivalent
to the condition of section 5 in [13].

2.5 Some simplifying observations for chiral theories

Before we end this section let us make a few remarks about the scalars in the solution
when we consider chiral theories, i.e. αi = α. It is easy to see from (2.10) that Re[Sij ] is
a constant for any choice of i, j. By a suitable constant rescaling of the spinor we may
normalise the spinors such that the norms Sii (no sum) are 1. Furthermore, since Re[S12] is

– 8 –
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a constant, we may set Re[S12] = 0 by a constant GL(2,R) rotation of the spinors, further
details may be found in [10]. Therefore Re[Sij ] = δij .

Inserting this into (2.34) implies that A12 = 0 and A11 = A22 ≡ A = −αe−2∆

2m GAdS.
We have introduced the shorthand A for this complex scalar related to GAdS. Furthermore
notice that for a constant axio-dilaton GAdS is also necessarily constant. The final non-
trivial scalar is the real scalar Im[S12] ≡ S.

3 Specifying a G-structure: the SU(3) case

Until now our analysis has been completely general and we have not imposed a G-structure
on the internal manifold. We deviate from this general analysis in the remainder of the
paper and in the this section we will impose a particular G-structure on the internal
manifold.

3.1 G-structure and supersymmetry preservation

We restrict our attention to solutions preserving N = (0, 2) since we want the internal
manifold to admit an R-symmetry vector, and for the dual field theory to admit an R-
symmetry. As we remarked in the introduction, this is desirable since it allows for the
use of c-extremization [1, 2] in computing the central charge and R-charges of the dual 2d
SCFT. Without a continuous R-symmetry this is not possible. This is reflected in gravity
by the fact that in the geometric dual of c-extremization [3, 4],5 the existence of an R-
symmetry vector plays a central role. Recall that the class of gravity solutions studied there
had only five-form flux turned on, preserved N = (0, 2) and admitted an SU(3) structure.
We want to to mimic the properties of the classification in [7] as much as possible whilst
turning on arbitrary three-form fluxes and axio-dilaton. As such, we impose that the
internal manifold admits two independent Killing spinors satisfying (2.7)–(2.9), thereby
preserving N = (0, 2) supersymmetry.6 With these two spinors we have a richer choice of
G-structure than in [7], however we shall focus on the SU(3) G-structure case as was done
in [7, 9, 12]. We have presented some details about SU(3) structures in appendix A and
present the analysis of the SU(3) G-structure in the following section.

The static SU(3) structure for solutions preserving N = (0, 1) has recently been inves-
tigated in the case where GAdS = 0 but otherwise general G flux in [13]. The authors of [13]
also made a further ansatz in a later section thereby enhancing the amount of supersym-
metry preserved to N = (0, 2) and generalizing the results of [12] to include a particular
three-form and the results of [9] to include a non-trivial axio-dilaton. We shall recover this
as a special case.

5See [32] for the geometric dual of I-extremization and [33, 34] for further developments.
6A key difference of turning on three-form flux to the case without is the counting of preserved supersym-

metries by a single Dirac spinor. As is clear from the explicit expressions (2.7)–(2.9), the supersymmetry
equations without three-form flux are invariant under the multiplication of the Killing spinor by an arbi-
trary complex constant. By this mechanism one can trivially generate an additional real supercharge on the
boundary. However as soon as one turns on a generic three-form flux this argument is no longer applicable
and a single Killing spinor thus gives a single real supercharge, i.e. N = (0, 1). This enhancement can be
seen in [9] with the inclusion of transgression terms and in section 5 of [13], the latter of which studies
N = (0, 1) solutions.
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An SU(3) structure in seven dimensions is specified by the existence of a single real
vector defining a transverse foliation over a six-dimensional base admitting a canonical
SU(3) structure. This constitutes a real two-form J and a (3, 0)-form Ω, which satisfy the
algebraic conditions

1
3!J

3 = dvol6 , Ω ∧ Ω̄ = −8i dvol6 , J ∧ Ω = 0 . (3.1)

Since we have two spinors forming this SU(3) structure it is necessary to impose a condition
on the spinor bilinear scalars. As we explain in appendix A one must impose a relation
between the scalar spinor bilinears A ≡ A11 = A22 and S ≡ Im[S12], namely

|A|2 + S2 = 1 . (3.2)

One can then rewrite the two scalars as

A = eiϕ sin Θ , S = cos Θ , (3.3)

with Θ and ϕ real functions. This parametrisation will not be used extensively in the
computations, but should be kept in mind. There are two special limits to consider where
A or S vanish (but not both!) and they require a separate investigation.

For clarity of the reduced torsion conditions we shall show how the classic AdS3×S3×
S3 × S1 with only three-form fluxes fits into the classification and we shall present a new
solution which fits into the more general class of solutions. This new solution is obtained
by performing a beta deformation [35] on the solution given in [14] with a product T 2.
Such a solution then admits both three-form flux, five-form flux and dilaton and possesses
a parameter interpolating between vanishing and non-vanishing three-form flux. To the
best of our knowledge such a solution has not appeared in the literature previously.

3.2 Reduced torsion conditions

We shall now assume throughout the remainder of the paper that the internal manifold
admits an SU(3) structure.7 Having imposed the structure we can simplify the above
torsion conditions in terms of the invariant forms of the SU(3) structure. It is easy to
check, either through Fierz identities or by constructing an orthonormal frame, that the
bilinears satisfy8

Im[K12] ≡ K = −e7 , K11 = K22 = SK , B12 = iAK , (3.4)
U12 = J , U11 = U22 = −iSJ , V12 = AJ , (3.5)
X11 = −iK ∧ J − i|A|Re[Ω] , X22 = −iK ∧ J + i|A|Re[Ω] ,
X12 = SJ ∧K − i|A| Im[Ω] , (3.6)

7One should note that the solution discussed in appendix F of [10] admits an identity structure. Of
course given an identity structure one can still define an SU(3) structure as considered here, however it
would still be interesting to look into the identity structure case in the future.

8For simplicity of notation we have defined

K ≡ Im[K12] , A ≡ A11 , S ≡ Im[S12] .
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Y11 = −iAK ∧ J − i A
|A|

(Re[Ω]− iS Im[Ω]) ,

Y22 = −iAK ∧ J + i A
|A|

(Re[Ω]− iS Im[Ω]) ,

Y12 = A

|A|
(S Re[Ω]− i Im[Ω]) . (3.7)

Here e7 is a vielbein transverse to the six-dimensional canonical SU(3) structure foliation.
Note that the Killing vector has unit norm and since it defines a transverse foliation of the
space we can introduce a local coordinate via

K# = −2m ∂

∂ψ
, K = − 1

2m(dψ + σ) . (3.8)

The metric then takes the form

m2ds2(X7) = 1
4(dψ + σ)2 + ds2(M6) , (3.9)

and we reduce the torsion conditions onto the base of the U(1) fibration M6. In the
remainder of this section we shall first reduce the torsion conditions to a minimal set
without making any assumptions on the scalar bilinears. In later sections we shall consider
the three cases separately.

Scalar conditions. Let us first study the conditions arising from the scalar bilinears. The
only non-redundant condition is obtained from equation (2.12) which implies the Bianchi
identity for GAdS. The condition following from (2.11) is implied by later conditions.

One-form conditions. Since K11 = K22, we may use the torsion condition for Re[Kii]
to define the two-form F ,

F = −2me4∆SJ − d(e4∆SK) . (3.10)

This takes a similar form to the two-form appearing in [7] and the later generalisations,
differing only by the inclusion of the scalar S. It is clear that for S = 0, which is one of
the special cases we shall consider later, that the five-form flux is switched off. It is useful
to decompose F into a part with a leg along the Killing direction and a term without, we
have

F = K ∧ d(e4∆S) + F̂ , F̂ = −e4∆S(2mJ + dK) . (3.11)

Equation (2.15) implies
iKG = −e2∆AdK (3.12)

and therefore we may write G as

G = −e2∆AK ∧ dK + Ĝ , iKĜ = 0 . (3.13)

The complex three-form Ĝ is as yet undetermined.
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The final non-trivial one-form equation implies two conditions

e−8∆d(e8∆|A|2) = e−2∆iJ ?6 Re[AĜ∗] , (3.14)
0 = |A|2

(
2mJ + dK + ∗6(J ∧ dK)

)
. (3.15)

We shall see later that the bracketed part of the second equation is in fact true even for
A = 0 and implies iJdK = −2m.

Two-form conditions. Equation (2.16) implies

d(e4∆SJ) = e2∆ Im[AĜ∗] = 1
2m Im[G∗AdSĜ] . (3.16)

This guarantees that the three-form Im[G∗AdSĜ] is closed as is necessary for the Bianchi
identity of F to be consistent. Equation (2.17) implies the two conditions

|A|2i(1)
J dK = 0 , (3.17)

e−4∆d(e4∆J) = e−2∆

2
(
∗6 Re[AĜ∗] + i

(1)
J Re[AĜ∗]

)
. (3.18)

Finally equation (2.18) implies

Ae−4∆d(e4∆J) = 2A∗P ∧ J + e−2∆(∗6Ĝ− iSĜ) . (3.19)

Depending on the case under consideration imposing that these three conditions are consis-
tent for J will impose conditions on the three-form flux Ĝ. For the special case of A = 0 it
is easy to see that J is conformally closed, and Ĝ satisfies a self-duality constraint. Instead
in the S = 0 case we see that Im[AĜ∗] vanishes. We shall analyse these cases in further
detail later.

Three-form conditions. The reduced three-form equations will be used to compute the
derivative of the holomorphic three-form Ω. From equation (2.20) we find

S
(
2mJ + dK + ∗6(J ∧ dK)

)
= 0 (3.20)

and since both A and S cannot be simultaneously vanishing we have that the bracketed
expression must vanish identically after using (3.15).

Reducing equation (2.19) for the difference X11 −X22 and for X12 implies

e−8∆d(e8∆|A|Ω) = −2im|A|K ∧ Ω . (3.21)

Therefore the internal manifold is complex when A 6= 0 and the almost complex structure
provided by J is integrable. In fact we shall see shortly that the base M6 is complex in
all cases, and as such we shall use that we can split n-forms into forms of bidegree (p, q),
p+ q = n. Computing (2.19) for the sum X11 +X22 one finds

∗6 Re[AĜ∗] = J ∧ ∗6(J ∧ Re[AĜ∗]) + i
(1)
J Re[AĜ∗] , (3.22)
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which implies that Re[AĜ∗] has no (3, 0) nor (0, 3) part (this is implied by the algebraic
conditions also), whilst it is satisfied identically for generic (2, 1) and (1, 2) three-forms.

We obtain two further conditions on the holomorphic three-form Ω by reducing (2.21)
for Y11 − Y22 and Y12 and taking suitable combinations:

e−6∆D
(

e6∆(1 + S) A
|A|

Ω̄
)

= 2im(1 + S) A
|A|

K ∧ Ω̄ + (1− S)A
∗

|A|
P ∧ Ω̄ , (3.23)

e−6∆D
(

e6∆(1− S) A
|A|

Ω
)

= −2im(1− S) A
|A|

K ∧ Ω + (1 + S)A
∗

|A|
P ∧ Ω . (3.24)

The equation for the sum Y11 + Y22 is trivial in this case. Note that the three equations
for Ω given above all imply that the transverse foliation is a complex space.

Four-form conditions. The only remaining torsion condition to impose is the four-form
equation (2.22) for the sum X11 +X22 which implies

e−8∆d(e8∆J ∧ J) = 0 . (3.25)

This is the condition for a manifold to be conformally balanced.
All other differential torsion conditions are implied by the conditions above and so this

is a set of necessary conditions to impose. In the following sections we shall simplify the
above conditions, however this must be done on a case by case basis depending on whether
the SU(3) structure is dynamical or strict. We first consider the case when A = 0, before
turning our attention to A 6= 0. For S = 0 the conditions simplify further and we present
the S = 0 case in the final part of this section.

3.3 Special case 1: A = 0

Recall from (2.34) that A = 0 implies GAdS = 0 and therefore the geometry does not sup-
port the inclusion of D1-branes nor fundamental strings. The SU(3) scalar condition (3.2)
implies S = ±1. Without loss of generality we choose to set S = 1, however for a better
exposition it is useful to keep S explicitly in places and therefore we employ a somewhat
laissez-faire approach towards setting S = 1.9 Since the only solutions in this class are
those contained in section 5 of [13] we shall be somewhat brief in this section and sketch
only the most pertinent details.

Note that setting A = 0 in the frame given in (3.7) is a bit subtle. The term A
|A| in the

limit of A = 0 simply becomes a phase which may be absorbed into the definition of Ω.
This subtlety does not extend to any other terms where the naive limit works and should
be taken.

With the frame in hand let us reduce the necessary conditions derived in the previous
section 3.2. The two-form flux F is given by (3.10). Further it is trivial to see from (3.13)
that G has no leg on the Killing vector and is therefore defined only on the transverse

9The sign is correlated with the sign of the complex structure that we choose and is thus irrelevant. We
have chosen S = 1 so that the axio-dilaton is holomorphic as is the usual convention in F-theory.
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foliation M6. From (3.16) and (3.18) we see that the transverse foliation M6 admits a
conformally closed two-form which will give rise to the Kähler form

d(e4∆J) = 0 . (3.26)

This clearly also satisfies the conformally balanced manifold condition (3.25). More-
over (3.19) implies

?6 Ĝ = iSĜ . (3.27)

The sign of S then fixes whether Ĝ is self-dual or anti self-dual. We absorb the conformal
factor into the definition of the two-form by defining the new SU(3) structure forms

j = m2e4∆J , ω = m3e6∆Ω . (3.28)

The metric takes the form

m2ds2 = 1
4(dψ + σ)2 + e−4∆ds2(X6) (3.29)

with X6 Kähler.
Finally (3.23) and (3.24) imply10

P ∧ ω = 0 , Dω̄ = −i(dψ + σ) ∧ ω̄ . (3.30)

The first condition shows that τ is a holomorphic function, this can also be derived from the
algebraic condition (2.40). The second condition is precisely the result from [12] and gives
the Ricci-form of the base ρ in terms of the τ dependent connection Q and the connection
on the R-symmetry vector σ,

ρ = d(σ −Q) . (3.31)

From (3.20) and from the Kähler geometry identity

Rµν = −J τ
µ ρτν , (3.32)

we find that the Ricci scalar is given by

R = 2|P |2 + 8e−4∆ , (3.33)

exactly as in [12].
Finally the algebraic conditions imply that Ĝ is a primitive11 (2, 1)-form ((1, 2)-form

if one sets S = −1), and its Bianchi identity implies that it takes the form

Ĝ = i
√
τ2

(τdB − dC2) ∈ Ω(2,1)(M6) . (3.34)

10We have set S = 1 here, setting S = −1 will exchange ω ↔ ω̄ below and holomorphic ↔ anti-
holomorphic.

11A p-form u(p), p = {2, 3} is primitive with respect to the complex hermitian form J if iJu(p)=0.
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The final condition to impose is the equation of motion for F , which is not imposed
by supersymmetry in this case. It is trivial to see by using an amalgamation of the results
in [9] and [10] that this implies precisely the master equation presented in [13]

�(R− 2|P |2)− 1
2R

2 +RµνR
µν + 2|P |2R− 4RµνPµP ∗ν − 4|G|2 = 0 . (3.35)

We have recovered the class of N = (0, 2) solutions considered in [13] which they obtained
upon imposing an ansatz in their N = (0, 1) results. This gives a generalization of the
results in [7, 9, 12] to include additional fluxes. As a byproduct of our analysis we have
shown that this class of solutions is the unique one preserving N = (0, 2), GAdS = 0 and
an SU(3) structure.

3.4 A 6= 0 case

In the following we will analyse the class of solutions where A 6= 0. We must further
distinguish between whether S = 0 or is non-trivial, however much of the analysis can be
performed concurrently.

Consider first the equation (2.12) for Aij , which allows us to express the real part of
A∗2P in terms of ∆ and |A|,

e−4∆d(e4∆|A|2) = −(A∗2P +A2P ∗) . (3.36)

Alternatively, from (2.38) we find

Re[A∗2P ] = −e−4∆

4 iJ(?6GR − SGI) ,

Im[A∗2P ] = e−4∆

4 iJ(?6GI + SGR) , (3.37)

where we have introduced the notation

GR ≡ e2∆ Re[AĜ∗] , GI ≡ e2∆ Im[AĜ∗] , Ĝ = e2∆A

|A|2
(GR − iGI) . (3.38)

From the algebraic conditions (2.35) and (2.36) it is trivial to see that these three-forms
have no (3, 0) nor (0, 3) part, iRe[Ω]Ĝ = iIm[Ω]Ĝ = 0. Clearly since they are real they contain
both a (2, 1)-form and a (1, 2)-form. Note that this differs with the A = 0 case where the
three-form Ĝ is either (2, 1) or (1, 2) but not both. Further the algebraic condition (2.41)
implies

dS = e−4∆

2 iJGI . (3.39)

From (3.14) and the scalar condition (3.2) one can derive analogous expressions for d∆
and d|A|:

d∆ = e−4∆

8|A|2 iJ(?6GR + SGI) , (3.40)

d|A| = −e−4∆S

2|A| iJG
I . (3.41)

This fixes all the scalars of the theory in terms of contractions of the three-form with J .
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Consistency of the three equations involving J , (3.16), (3.18) and (3.19), requires that
the three-form flux satisfies

GI − 1
2J ∧ iJG

I = S

(
?6GR −

1
2J ∧ iJ ?6 GR

)
, (3.42)

and then
e−4∆d(e4∆J) = e−4∆

(
?6GR −

1
2J ∧ iJ ?6 GR

)
. (3.43)

Note that both dJ and ∗dJ are primitive and therefore equation (3.43) implies the confor-
mally balanced condition (3.25).

The simplest way of solving (3.42) is to set

GI = S ?6 GR (3.44)

and this is in fact how our new solution satisfies this equation. However it is not clear that
this is the most general solution. What is clear is that when S = 0 one has GI = 0 and
many of the one-forms given above vanish. The S = 0 case therefore results in a much
simpler class of solutions to consider.

It remains to study the consistency of the three equations for the holomorphic three-
form, namely equations (3.21), (3.23) and (3.24). Using all the previously defined results
it is simple to see that the three conditions all imply

e−6∆d(e6∆Ω) =
(
−2imK − e−2∆

|A|
d(e2∆|A|)

)
∧ Ω . (3.45)

As previously stated we can see from the above that the base space is complex and that
the complex structure is integrable.

Similar to the A = 0 case we absorb a conformal factor into the SU(3) invariant
forms, viz.

j = m2e4∆J , ω = m3e6∆Ω . (3.46)

The equations then reduce to

dj = ?6GR −
1
2j ∧ ij ?6 GR , (3.47)

dω =
(
−2imK − e−2∆

|A|
d(e2∆|A|)

)
∧ ω , (3.48)

dj ∧ j = 0 . (3.49)

From (3.48) we can compute the Ricci-form potential of the base space:

P = σ + e−2∆

|A|
dc(e2∆|A|), (3.50)

where dc ≡ i(∂̄ − ∂) = −i(1)
j d. The Ricci-form is given simply by ρ = dP and σ is defined

in (3.8).
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Since the base is not Kähler but only the weaker condition of being a balanced man-
ifold some of the nice Kähler identities used in the previous section no longer hold. In
particular the Ricci-form and the Levi-Civita curvature two-forms are not identical, see for
example [36]. One can therefore define more than one scalar obtained by contracting the
curvature two-form with the complex structure (i.e. the identity used to obtain the Ricci
scalar in (3.32)). If we use that ijdK = − 2

me−4∆, as follows from (3.15), we can compute
an expression for the Chern Ricci scalar in terms of the warp factor and |A|:

RC = 4e−4∆ + ijd
(

e−2∆

|A|
dc(e2∆|A|)

)
. (3.51)

For a balanced manifold the Chern Ricci scalar is related to the usual Ricci scalar by a
torsion term

R = 2RC −
1
2 |T |

2 , T = dcj . (3.52)

The fluxes are determined via

mF = −2Sj −md(e4∆SK) ,

G = −Ae2∆K ∧ dK + e−2∆A

|A|2
(GR − iGI) , (3.53)

GAdS = −2me2∆A ,

and the derivatives of the scalars are fixed via

dS2 = −d|A|2 = m2S ijGI , d∆ = m2

8|A|2 ij(?6GR + SGI) ,

Re[A∗2P ] = −m
2

4 ij(?6GR − SGI) , Im[A∗2P ] = m2

4 iji
(1)
j (S ?6 GR − GI) . (3.54)

Recall that all the equations of motion and Bianchi identities are satisfied provided that
the Bianchi identity for G is satisfied. This implies the unwieldy condition

e4∆|A|2m2dK ∧ dK = e4∆|A|2ddc
(

e−4∆

|A|2
j

)

+ j ∧
[
−1 + S2

2|A|2 ddcS2 + 2(1 + S2)
|A|2

(dS2 ∧ dc∆ + d∆ ∧ dcS2)

+4S2ddc∆− 16S2d∆ ∧ dc∆ + 1− 6S2 − 3S4

4S2|A|2
dS2 ∧ dcS2

]
. (3.55)

Note that the last term vanishes if one imposes GI = S ?6 GR or S = 0.
These are the general equations one needs to solve for a generic solution with all possible

fluxes turned on.12 This class of solutions allows for a very complicated brane construction,
it would therefore be very interesting to find new solutions to this set of equations. We

12It would be interesting to understand if there is a connection to the AdS5 solutions of [30] in an
analogous way to the connection between the Sasaki-Einstein solutions and those of [7]. Since the solutions
of [30] admit an identity structure this seems somewhat fanciful.
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have presented a new solution in section 4 derived using duality transformations and some
other N = (0, 4) solutions can be found in [21] also found by using duality transformations.

The equations to solve are relatively imposing. To proceed it is useful to make an
assumption and the most useful and less strict one is to set GI = S ?6 GR. Alternatively if
one sets the stronger condition S = 0 the conditions simplify further as we shall show now.

3.5 Special case 2: S = 0

We set S = 0 in the remainder of this section. Recall that this implies in addition that
|A| = 1. Clearly for S = 0 the two-form F vanishes and consequently there is no five-form
flux.13 Moreover it is easy to see that GI vanishes in this case, which in turn implies
Im[A∗2P ] = 0. We can rewrite (3.47) as

e−4∆d(e4∆j) = ?6GR , (3.56)

whilst (3.48) implies that the Ricci-form potential P is

P = σ + 2dc∆ , (3.57)

Finally the Bianchi identity reduces to

1
4dσ ∧ dσ = ddc(e−4∆j) . (3.58)

An interesting ansatz to make is to set the warp factor to be constant. This is equivalent
to imposing that the three-form flux ?6GR is primitive. The equations reduce to the
simpler set

ρ = dσ , (3.59)
ρ ∧ ρ = 4ddcj , (3.60)

dj = ?6GR . (3.61)

We shall present an example of a solution with this restriction in section 4, namely the
classic AdS3 × S3 × S3 × S1 solution.

4 Examples of solutions

Having given the reduced torsion conditions for the three cases we shall exhibit how these
can be solved for various solutions. We shall focus on the two cases where A 6= 0 since the
A = 0 case has been studied, albeit not in full generality, in the literature already. For the
S = 0 case we shall show how the classic AdS3 × S3 × S3 × S1 fits into the classification.
Of course this solution preserves more than the N = (0, 2) supersymmetry that we have
imposed here and therefore we will restrict ourselves to an N = (0, 2) subsector of the
preserved supersymmetry. We will find that despite the warp factor and axio-dilaton being

13Mirroring the previous footnote, it would be interesting to see if there is a connection with the AdS5

classification in type IIB without five-form flux carried out in [37] and this class of solutions.
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trivial, the flux GR is non-vanishing and is instead a primitive three-form on the base. Had
we instead considered the AdS3×S3×CY2 with just three-form flux, we would have found
that GR = 0.

For the more generic case with both scalar bilinears non-vanishing we find a new
solution by applying a beta deformation [35] to the solution found in [9, 14]. The solution
we find has all fluxes, except axion, switched on. We shall make some brief comments on
the field theory of the solution but we will not pursue this in more detail here since it can
be understood from the beta deformed field theory of the seed solution.

4.1 S = 0 case and the AdS3 × S3 × S3 × S1 solution

The near-horizon limit of the supergravity solution for the intersection of two stacks of
D5-branes intersecting with the worldvolume of a stack of D1-branes was given in [38–40].
The geometry is

AdS3 × S3
+ × S3

− × S1 (4.1)

where we have compactified the real line one would get in the near-horizon. By suitable
SL(2,Z) transformations one can exchange the RR-fluxes for NS-NS fluxes, or some com-
bination of them. We shall take a solution with a constant parameter that allows us to
interpolate between the two distinct endpoints. In particular the solution we will use is
the following

m2ds2 = ds2(AdS3) +
R2

+
4 (σ2

1+ + σ2
2+ + σ2

3+) +
R2
−

4 (σ2
1− + σ2

2− + σ2
3−) + dz2 ,

m2G = 2eiϕ
(

dvol(AdS3) +
R2

+
8 dvol(S3

+) +
R2
−

8 dvol(S3
−)
)
, (4.2)

where σi± are the SU(2) invariant Maurer-Cartan one-forms, R± are the radii of the two
three-spheres satisfying R2

+R
2
− = R2

− +R2
+, the radius of AdS3 is given by m2 = R2

+ +R2
−

and ϕ is a real constant. We have defined the volume of the three-spheres to be dvol(S3
±) =

σ1±∧σ2±∧σ3±. All other fluxes are trivial. We shall focus only on an N = (0, 2) subsector
of the total preserved supersymmetry, the choice of which amongst the four quasi-Majorana
spinors satisfying (A.11) is arbitrary. It is easy to find the Killing spinors solving (2.7)–(2.9)
on the internal manifold:

ξ = 1
2

{
eiϕā,−eiϕb̄, eiϕ iR+ +R−

R+R−
ā,−eiϕR− − iR+

R+R−
b̄,

iR+ +R−
R+R−

b,
R− − iR+
R+R−

a, b, a

}
, (4.3)

with a and b arbitrary complex constants. Moreover it is not too difficult to see that
the spinor satisfies the quasi-Majorana condition (A.11) as required. In the following we
shall work with the SU(3) structure given by the two Killing spinors obtained by setting
a = 0, b = 1 for the first and a = 0, b = i for the second. We reiterate that this is an
arbitrary choice and any other combination would also give an SU(3) structure satisfying
the conditions presented above. Then the scalar bilinears are

A = −eiϕ , Sij = δij . (4.4)
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The Killing vector is
K = 1

2m(σ1− − σ3+) , (4.5)

whilst the two-form j is

m2j =
R2

+
4 σ1+ ∧ σ2+ −

R2
−

4 σ2− ∧ σ3− −
1
2

(
R1
R2

σ3+ + R2
R1

σ1−

)
∧ dz . (4.6)

Finally the three-form GR is given by

GR = 1
4m2R3

−
[R2

+R−σ1+ ∧ σ2+ ∧ σ3+ +R2
+R−(R2

− − 1)σ1+ ∧ σ2+ ∧ σ1−

+R3
−σ3+ ∧ σ2− ∧ σ3− +R3

−(R2
− − 1)σ1− ∧ σ2− ∧ σ3−] , (4.7)

which can be seen to be primitive. It is now simple to check that the reduced torsion
conditions of section 3.5 are all satisfied.

4.2 A representative solution of the general case

In this section we shall present a representative example of the generic class of solutions.
This solution was obtained by taking the Baryonic twist solution for Y p,q found in [14] and
further elucidated in [12] and performing a beta deformation [35] along the two directions
of the two-torus in the geometry. We use the conventions for the solution presented in [12].
The final solution includes all fluxes but for a non-trivial axion, though this may be added
by using the SL(2,Z) symmetry. We shall present only the final solution since performing
a beta deformation on a two-torus is relatively straightforward. The final solution is

m2ds2(X7) = 1
4(dχ+ σ)2

+ e−4∆
[√

1 + aβ2x

4x

(
dx2

x2U(x) + U(x)Dψ2 + ds2(S2)θ,φ

)
+ dx2

1 + dx2
2

]
,

e−4∆ = ax√
1 + aβ2x

, U(x) = 1− a(x− 1)2 , (4.8)

σ = a(x− 1)Dψ + 2dψ ,

where we have defined the shorthand Dψ = dψ + cos θdφ. The fluxes are given by

m2G = − 2iβ
(1 + aβ2x)

1
4

dvol(AdS3)−Ae2∆K ∧ dK + e−2∆A

|A|2
GR ,

e−2∆GR = iaβ2√ax
(1 + aβ2x)

9
4

dx ∧ dvol(T 2) + aβ2√axU(x)
4(1 + aβ2x)

3
4
Dψ ∧ dvol(S2) ,

e−2Φ = 1 + aβ2x , (4.9)

A = iβ
√
ax√

1 + aβ2x
,

mF = − 1
2ax2 dx ∧Dχ+ 1− x

2x2 dx ∧Dψ + 2
(1 + aβ2x) + 1

2dvol(S2) .
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We have written the metric and fluxes in terms of the classification and it is easy to see
that the conditions are satisfied identically.

From the origin of the solution it is easy to see that the metric is regular by construction
and therefore we shall not perform any regularity analysis. Furthermore by construction the
central charge will be β independent and therefore its result precisely agrees with the value
of the central charge of the seed solution. It is interesting to note that the field theories on
the two sides have quite different brane constructions. The original seed theory consists of
wrapping D3-branes on a two-torus with a Baryonic twist whilst this new solution is a com-
plicated intersection of D3-branes, (p,q) 5-branes and fundamental strings with a non-trivial
dilaton. It would be interesting to better understand the dual field theory in this case.

5 Concluding remarks

In this paper we have classified all AdS3 solutions of type IIB supergravity with an AdS3
factor, arbitrary fluxes and an SU(3) structure. We have seen that there are three distinct
cases to consider depending on the values of particular scalar bilinears.

The first case recovers the master equation derived in [13] which is a generalization of
the master equations appearing in [7, 9, 12]. The internal manifold is a U(1) fibration over
a conformally Kähler base space which supports a holomorphically varying axio-dilaton,
a particular choice of three-form flux (primitive and of (2, 1) type), and in addition the
geometry supports five-form flux. Only this case, of the three discussed in this paper, allows
for a canonical F-theoretic interpretation. Duality to eleven-dimensional supergravity along
the AdS3 factor (see [12] for further details of the duality prescribed here) shows that this
class of solutions are dual to the AdS2 class discussed in [9] when the Kähler base is taken to
be an elliptically fibered manifold satisfying the eleven-dimensional master equation in [9].
Of the three cases studied in the paper it is this first class that looks most promising for
extending the geometric dual of c-extremization.

The second special class of supersymmetric solutionsconsist of U(1) fibrations over
a complex base, however unlike in the previous case this is not generically Kähler, but
instead admit a conformally balanced metric. In this case the geometry is supported by
three-form flux and admits a non-trivial axio-dilaton, albeit not a holomorphically varying
one. It is interesting to note that it is necessary to have both 1-branes and 5-branes in
such solutions, with the classic D1-D5 (or their SL(2,Z) relatives) solutions examples of
geometries in this class.

The final class of solutions allows for the inclusion of all fluxes. As before the internal
manifold is a U(1) fibration over a complex conformally balanced manifold, and again is
not generically Kähler. We have provided an example of a solution within this class which
was obtained by performing a beta deformation to a known solution discussed in [14].
Regularity of the solution follows from regularity of the seed solution which was performed
in [14] and expanded on in [12]. Moreover the central charge in the beta deformed solution
is known, by general arguments of beta deformation and T-dualities to be independent of
the deformation parameter and therefore it is the same as the result presented in [12]. It
would still be interesting to study the field theory in more detail.
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We have presented the necessary and sufficient conditions for a bosonic AdS3 geometry
with SU(3) structure and generic fluxes. It would be interesting to find the geometric
dual of c-extremization for this more general class of solutions. The first class seems the
most promising of the three discussed here due to its similarity with the class of solutions
considered in [3–5].
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A Imposing an SU(3) G-structure

In general a Dirac spinor in seven dimensions admits an SU(3) structure which defines a
vector v and a transverse foliation admitting a canonical SU(3) structure, (J,Ω). We are
interested in imposing N = (0, 2) supersymmetry and therefore we assume the existence
of two independent nowhere vanishing Dirac spinors ξi. Clearly each Killing spinor defines
its own SU(3) G-structure From two such spinors it is possible to obtain three possible
G-structures depending on the intersection of the SU(3) structures: SU(3), SU(2) and
an identity structure. In this appendix we shall focus on the case where the two SU(3)
structures intersect, giving an SU(3) structure. We will find that the existence of such an
SU(3) structure implies the condition on the scalar bilinears given in the main text (3.2).

Since a Dirac spinor in seven dimensions defines a vector v we can define a unit norm
vector e7 = v

|v| . Define the projectors P± = 1
2(1 + ±γ7) and compute the projections of

ξ, ξ± = ξ. The six-dimensional space transverse to the vector e7 then admits positive
and negative chirality spinors under the action of γ7. The projections ξ± can then be
associated with positive (negative) chirality spinors in six dimensions respectively. Each
spinor then defines an SU(3) structure since SU(3) is the stabilizer of a six-dimensional
spinor of definite chirality. One can argue (though we suppress the details here) that the
two spinors are related via

ξ+ = λξc− (A.1)

with λ a complex function and c charge conjugation.
This allows us to decompose an arbitrary 7d Dirac spinor as

ξ = aχ+ bχc , γ7χ = χ , χ̄χ = 1 . (A.2)

With the second spinor we may run the same argument. Since we are looking for an SU(3)
structure it must be that the two vectors are aligned and therefore the unit norm vectors
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differ only by an irrelevant sign. We can now expand both spinors in terms of the χ above:14

ξ1 = aχ+ bχc , ξ2 = cχ+ dχc . (A.3)

Since χ is chiral it satisfies χ̄cχ = 0 and χ̄cγ(1)χ = 0. We may now compute the various
bilinears in terms of this basis. We find

S11 = |a|2 + |b|2 = 1 , S22 = |c|2 + |d|2 = 1 , S12 = a∗c+ bd∗ = iS ,
A11 = 2ab = 2cd = A22 ≡ A , A12 = ad+ bc . (A.4)

We may solve these conditions via the real functions Θ and ϕ as

a = eiϕ sin Θ
2 , b = cos Θ

2 , c = −ieiϕ sin Θ
2 , d = i cos Θ

2 , (A.5)

which implies that the scalars are given by

S = cos Θ , A = eiϕ sin Θ . (A.6)

From here it is then trivial to check that imposing an SU(3) structure implies equation (3.2):

1 = |A|2 + S2 . (A.7)

The one-form bilinears in this basis are easily computed to be

Im[K12] ≡ K = −e7 , K11 = K22 = SK , Re[K12] = 0 , B12 = iAK . (A.8)

The two-form bilinears are given by

U12 = J , U11 = U22 = −iSJ , V12 = AJ , (A.9)

whilst the three-form bilinears are

X11 = −iK ∧ J − i|A|Re Ω , X22 = −iK ∧ J + i|A|Re Ω , X12 = SK ∧ J − i|A| Im Ω ,

Y11 = −iAK ∧ J − ieiϕ(Re Ω− iS Im Ω) , Y22 = −iK ∧ J + ieiϕ(Re Ω− iS Im Ω) ,
Y12 = eiϕ(S Re Ω− i Im Ω) . (A.10)

Special limits. Before we end this section we shall look at the special limits of the func-
tion Θ. For Θ = 0 we have that A vanishes and S = 1. From equation (A.3) and (A.5) we
see that this imposes ξ1 = iξ2. If we insert this into the Killing spinor equations (2.7)–(2.9)
we see that the G(3) dependent part of the supersymmetry equations decouples from the
remainder. One is left with the Killing spinor equations of [12] coupled with the G(3) de-
pendent part of [9]. It is then clear that this is precisely the class of solutions considered in
section 5 of [13] which generalises the master equations of [7, 9, 12] in various directions.

14If we wanted to look at an SU(2) structure one should now introduce a second spinor χ̂ such that
ξ2 = cχ + dχc + ĉχ̂ + d̂χ̂c. It is simple to see that imposing an SU(3) structure would set ĉ = d̂ = 0 as
expected.
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The other special limit is Θ = π
2 . In this case S vanishes and A is just a phase.

From (A.3) and (A.5) we see that the spinors ξi become quasi Majorana

ξci = −e−iϕξi , (A.11)

with the phase correlated with the phase of the bilinear A and therefore also GAdS. As
we saw in the main text in this limit the five-form flux is switched off and solutions only
contain three-form fluxes. Moreover it is necessary to include both non-trivial GAdS and G
flux, i.e. both magnetic and electric components of three-form flux in ten dimensions. It is
in this class that the well-known D1-D5 solutions15 AdS3×S3×S3×S1 and AdS3×S3×CY2
(or quotients thereof) can be embedded when studying an N = (0, 2) subset of their full
supersymmetry.

B Useful identities

In this final section we gather some useful identities that we have employed in the various
sections for simplifying the conditions on the base. Since neither (3, 0)- nor (0, 3)-forms
played any role in this paper we shall assume that all three-forms in this section are of
(2, 1) or (1, 2) type only. Let Z be such a three-form, then

iJ ?6 Z = ?6(J ∧ Z) ,
iJZ = − ?6 (J ∧ ?6Z) ,

?6Z = i
(1)
J (Z − J ∧ (iJZ)) ,

i
(1)
J (iJZ) = −iJ ?6 Z . (B.1)

Moreover for a one-form z on the base one has

?6

(
z ∧ 1

2J
2
)

= −i(1)
J z ,

?6z ∧ J = −J ∧ (i(1)
J z) . (B.2)

More useful identities can be found in the appendix of [13].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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